WorldWideScience

Sample records for temperature conversion ltc

  1. Philips LTC 2009/51

    CERN Multimedia

    1999-01-01

    It was part of a range of high-performance monitors (computers screens) that were associated with other units such as Philip's video surveillance systems, cameras or transmission and control equipment. Included in this range of Philips monitors are LTC 2009 (like this one), LTC 2012, LTC 2017 and LTC 2020 Series monochrome monitors. They offer high-performance images with a resolution of 900 TVL (TV-Lines), or in the case of the LTC 2017 monitor, 700 TVL, making them ideal for remote viewing and video applications. The monitor housing consists of a robust rectangular metal case which minimizes interference from external signals and allows “stacking” of monitors when used in large numbers.

  2. Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments

    International Nuclear Information System (INIS)

    Cunha, Josilaine A.; Pereira, Marcelo M.; Valente, Ligia M.M.; Ramirez de la Piscina, Pilar; Homs, Narcis; Santos, Margareth Rose L.

    2011-01-01

    This article describes the influence of different sugarcane bagasse hydrolysis pretreatments on modifications to biomass feedstock and the characteristics of the resultant pyrolysis products. Sugarcane bagasse was pretreated with acid, alkaline or sequential acid/alkaline solutions and pretreated samples were then subjected to a low temperature conversion (LTC) process under He or O 2 /He atmospheres at 350-450 o C. Both pretreated samples and sugarcane bagasse in natura were analyzed by determination of their chemical composition and by thermogravimetric, FTIR and SEM analyses. The gases yielded during LTC were monitored on-line by quadrupole mass spectrometry, and the liquid fractions obtained were characterized by FTIR and 1 H and 13 C NMR. Irrespective of the sugarcane bagasse pretreatment applied, the main bio-oil component obtained was levoglucosan. However, the LTC yield of bio-oil depended on the hydrolysis treatment of the biomass and decreased in the presence of O 2 . The acid hydrolysis pretreatment increased the LTC bio-oil yield notably. -- Highlights: → Sugarcane bagasse modified by acid, alkaline or sequential acid/alkaline hydrolysis. → LTC-pyrolysis at 350-450 o C under He or O 2 /He of pretreated sugarcane bagasse. → Yield of bio-oil depended on hydrolysis treatment and decreased in presence of O 2. → The acid hydrolysis pretreatment increased the LTC bio-oil yield notably (72% in He). → Levoglucosan was the main bio-oil component obtained.

  3. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  4. Optimization of a cascade refrigeration system using refrigerant C3H8 in high temperature circuits (HTC) and a mixture of C2H6/CO2 in low temperature circuits (LTC)

    International Nuclear Information System (INIS)

    Nasruddin; Sholahudin, S.; Giannetti, N.; Arnas

    2016-01-01

    Highlights: • Multi-objective optimization is conducted in the cascade refrigeration system. • Combination of operating temperature and refrigerant performance has been studied. • Characteristic of C 3 H 8 and a mixture of C 2 H 6 /CO 2 have been investigated. • Determining of CO 2 fraction to optimize refrigeration system has been done. - Abstract: This paper discusses the multi-objectives optimization of a cascade refrigeration system using refrigerant C 3 H 8 in high temperature circuits (HTC) and a mixture of C 2 H 6 /CO 2 in low temperature circuits (LTC). The evaporator temperature, condenser temperature, C 2 H 6 /CO 2 mixture condensation temperature, cascade temperature differences, and the CO 2 mass fraction are chosen as the decision variables. Whereas cooling capacity, cold space temperature, and ambient temperature are taken as the constraints. The purpose of this research is to design a cascade refrigeration system whose optimum performance are defined in terms of economics and thermodynamics. Accordingly, there are two objective functions that should be simultaneously optimized including the total annual cost which consists of the capital and operational cost and the total exergy destruction of the system. To this aim, the optimum operating temperature of the system and CO 2 fraction should be determined so that the system has minimum exergy destruction and annual cost. Results show that, the optimum value of the decision variables for this system can be determined by trade-off between annual cost and exergy destruction.

  5. 42 CFR 412.515 - LTC-DRG weighting factors.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false LTC-DRG weighting factors. 412.515 Section 412.515 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE...-Term Care Hospitals § 412.515 LTC-DRG weighting factors. For each LTC-DRG, CMS assigns an appropriate...

  6. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Bayer, E.

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm 3 to 0.52 g.cm 3 . Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g -1 ), while O. martiana contained the highest lignin content (40.7 g.100g -1 ). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V micro ) was between 0.33cm 3 .g -1 - 0.40cm 3 .g -1 , while the mesopore volume(V meso ) was between 0.05 cm 3 .g -1 - 0.07 cm 3 .g -1 . The BET specific surface exceeds 1000 m 2 .g -1 . All these values compared favourably with high grade commercial active carbons. (author)

  7. LTC vacuum blasting machine (concrete): Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration

  8. Low-temperature catalytic conversion of carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available Laws of the rate of carbon conversion in steam atmosphere at a temperature in modes of the catalytic low-temperature treatment of peat, brown coal, semi-coke from peat and brown coal are obtained by experiments. Increasing of the rate of carbon conversion in temperature range up to 500 °C is achieved by using of catalysts. The possibility of using results is associated with the burners, a working zone of which is porous filling from carbonaceous particles.

  9. Towards spontaneous parametric down-conversion at low temperatures

    Directory of Open Access Journals (Sweden)

    Akatiev Dmitrii

    2017-01-01

    Full Text Available The possibility of observing spontaneous parametric down-conversion in doped nonlinear crystals at low temperatures, which would be useful for combining heralded single-photon sources and quantum memories, is studied theoretically. The ordinary refractive index of a lithium niobate crystal doped with magnesium oxide LiNbO3:MgO is measured at liquid nitrogen and helium temperatures. On the basis of the experimental data, the coefficients of the Sellmeier equation are determined for the temperatures from 5 to 300 K. In addition, a poling period of the nonlinear crystal has been calculated for observing type-0 spontaneous parametric down-conversion (ooo-synchronism at the liquid helium temperature under pumping at the wavelength of λp = 532 nm and emission of the signal field at the wavelength of λs = 794 nm, which corresponds to the resonant absorption line of Tm3+ doped ions.

  10. Coding long-term care services—eDESDE-LTC

    Science.gov (United States)

    Salvador-Carulla, Luis; Poole, Miriam; Bendeck, Murielle; Romero, Cristina; Salinas, José Alberto

    2009-01-01

    Introduction Semantic variability is a barrier to effective networking of long-term care (LTC) services. The same name may be used for services providing different activities (i.e. day centres), and services with different names may have a similar pattern of care delivery. Furthermore, services are complex constructs which depend on local characteristics, vary over time and do not allow comparisons like with like. At present there is no standard coding system of LTC in Europe. This fact impedes cross-national comparisons, hampers European statistics on service availability, access and use, and slows down the development of international care planning strategies and patient mobility. Description The ‘Description and Evaluation of Services and Directories in Europe’ (DESDE) adapts to LTC the only currently available methodology for mapping, comparing and monitoring mental health and disability services (European Service Mapping Schedule—ESMS), which has already been applied in 16 countries in Europe. The system is based on descriptors called ‘Main Types of Care’ (MTC) including accessibility, information, self-help, outpatient and community care, day care and residential care. Services are arranged or organised in cluster combination of MTCs which emulate ‘bar codes’, identifying service characteristics according to MTCs. Thus, MTC availability and use can be compared across areas regardless of how services are named. Conclusion DESDE is a standard coding system of services for LTC which can be incorporated to electronic registers, databases and websites.

  11. Advanced Thermal Energy Conversion of Temperature under 300°C by Thermoelectric Conversion Method

    Science.gov (United States)

    Ueda, Tadashi; Uchida, Yoshiyuki; Shingu, Hiroyasu

    Many approaches have been developing for energy conversion throughout the world. However, it is difficult to achieve the global warming countermeasure based on “The Kyoto protocol”. Until now effective utilization of low temperature thermal energy (under 300°C) is not advancing one. For example, effective utilization method has not been established for waste heat energy which arise from industry machine tools, automobiles, internal combustion engines and thermal energy from natural environment, etc. In this paper, we reported the experiment for effective utilizing of low temperature (under 300°C) thermal energy conversion. The device used for the measurement is a copper thermo device. Thermo electromotive force of 150mW/cm2 was obtained at 200°C. The obtained thermo electromotive force is about 15 times higher in comparison with generally used alumal-chromal thermocouple. Our aim is that utilizes low temperature thermal energy effectively by converting into electricity.

  12. Power Conversion Study for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Richard Moore; Robert Barner

    2005-01-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gas cooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language

  13. FINAL Report LTC-DOE DE-EE0000537

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Michelle [Lakeshore Technical College, Cleveland, WI (United States)

    2013-02-28

    At the time of LTC’s application we were home to a small / mid-sized Wind Energy Research and Teaching Center, funded in part by We Energies, and offered the state of Wisconsin’s first Associate of Applied Science (A.A.S.) Degree in Wind Energy Technology. With President Obama promising investment in wind, LTC and its partners were uniquely situated to meet the challenge through an organized career pathways approach that utilized industry drivers and occupationally verified curriculum to train the workers who “transform our energy sector.” LTC’s employer partners validated the findings of the “20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply” report by the US Department of Energy which recognized programs like LTC’s as an “excellent beginning,” noting that many more like them are necessary to meet the challenges of the 20% Wind scenario.One of the focuses of the study was the lack of trained technicians to work on installation and maintenance of renewables (and more specifically for our grant application wind turbines). LTC’s goal, made possible with the funding provided in this grant, was to increase the number of skilled graduates to help meet this national objective. LTC was already a leader in wind for the state of Wisconsin but wanted to upscale from a single school to a statewide (and potentially regional) center for wind energy. LTC planned to leverage our facilities, curriculum, and faculty expertise to meet this goal.

  14. LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

  15. Latent trait cortisol (LTC) during pregnancy: Composition, continuity, change, and concomitants.

    Science.gov (United States)

    Giesbrecht, Gerald F; Bryce, Crystal I; Letourneau, Nicole; Granger, Douglas A

    2015-12-01

    Individual differences in the activity of the hypothalamic pituitary adrenal (HPA) axis are often operationalized using summary measures of cortisol that are taken to represent stable individual differences. Here we extend our understanding of a novel latent variable approach to latent trait cortisol (LTC) as a measure of trait-like HPA axis function during pregnancy. Pregnant women (n=380) prospectively collected 8 diurnal saliva samples (4 samples/day, 2 days) within each trimester. Saliva was assayed for cortisol. Confirmatory factor analyses were used to fit LTC models to early morning and daytime cortisol. For individual trimester data, only the daytime LTC models had adequate fit. These daytime LTC models were strongly correlated between trimesters and stable over pregnancy. Daytime LTC was unrelated to the cortisol awakening response and the daytime slope but strongly correlated with the area under the curve from ground. The findings support the validity of LTC as a measure of cortisol during pregnancy and suggest that it is not affected by pregnancy-related changes in HPA axis function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A fast reactor transient analysis methodology for PCs: Volume 3, LTC program manual of the QuickBASIC code

    International Nuclear Information System (INIS)

    Ott, K.O.; Chung, L.

    1992-06-01

    This manual augments the detailed manual of the GW-BASIC version of the LTC code for an application in QuickBASIC. As most of the GW-BASIC coding of this program for ''LMR Transient Calculations'' is compatible with QuickBASIC, this manual pertains primarily to the required changes, such as the handling of input and output. The considerable reduction in computation time achieved by this conversion is demonstrated for two sample problems, using a variety of hardware and execution options. The revised code is listed. Although the severe storage limitations of GW-BASIC no longer apply, the LOF transient path has not been completed in this QuickBASIC code. Its advantages are thus primarily in the much faster running time for TOP and LOHS transients. For the fastest PC hardware (486) and execution option the computation time is reduced by a factor of 124 compared to GW-BASIC on a 386/20

  17. Conversion of medium and low temperature heat to power

    Science.gov (United States)

    Fischer, Johann; Wendland, Martin; Lai, Ngoc Anh

    2013-04-01

    Presently most electricity is produced in power plants which use high temperature heat supplied by coal, oil, gas or nuclear fission and Clausius-Rankine cycles (CRC) with water as working fluid (WF). On the other hand, geo-, solar-, ocean-, and biogenic-heat have medium and low temperatures. At these temperatures, however, the use of other WF and/or other cycles can yield higher efficiencies than those of the water-CRC. For an assessment of the efficiency we model systems which include the heat transfer to and from the WF and the cycle. Optimization criterion is the exergy efficiency defined as the ratio of the net power output to the incoming exergy flow of the heat carrier. First, for a better understanding we discuss some thermodynamic properties of the WFs: 1) the critical point parameters, 2) the shape of the vapour- liquid coexistence curve in the temperature vs entropy (T,s)-diagram which may be either bell-shaped or overhanging [1,2], and 3) the shape of sub- and supercritical isobars for pure fluids and fluid mixtures. Second, we show that the problems of a CRC with water at lower temperatures are 1) the shape of the T,s-diagram and 2) the exergy loss during heat transfer to the WF. The first problem can be overcome by using an organic working fluid in the CRC which then is called organic Rankine cycle (ORC). The second problem is reduced by supercritical organic Rankine cycles (sORC) [1,2], trilateral cycles (TLC) and the more general power-flash cycles (PFC) [2], and organic flash cycles (OFC) [3]. Next, selected results for systems with the above mentioned cycles will be presented. The heat carrier inlet temperatures THC range from 120°C to 350°C.The pure working fluids are water, refrigerants, alkanes, aromates and siloxanes and have to be selected to match with THC. It is found that TLC with water have the highest efficiencies but show very large volume flows at lower temperatures. Moreover, expansion machines for TLC and PFC are still under

  18. Analysis of thermoelectric energy conversion efficiency with linear and nonlinear temperature dependence in material properties

    International Nuclear Information System (INIS)

    Wee, Daehyun

    2011-01-01

    Highlights: → The effects of temperature dependent material properties on performance is studied. → The main simplification is to approximate the temperature profile with a linear one. → Accurate inclusion of the Thomson effect is essential to understand thermoelectrics. - Abstract: A novel approach to estimate energy conversion efficiency for a power-generating thermoelectric element, whose material properties possess both linear (first order) and nonlinear (second order) dependence on temperature, is developed by solving the differential equation governing its temperature distribution, which includes both the Joule heat and the Thomson effect. In order to obtain analytic expressions for power output and energy conversion efficiency, several steps of simplification are taken. Most notably, the material properties are evaluated with a linear temperature profile between the hot and cold ends. The model is further applied to a high-performance n-type half-Heusler alloy, matching the results of direct numerical analysis. The close correspondence between the proposed model and the numerical solution indeed proves that the approximations we have made are valid. The effect of linear and nonlinear components in the temperature dependence of material properties on the energy conversion efficiency is analyzed both qualitatively and quantitatively with the model. The results suggest that the accurate inclusion of the Thomson effect is essential to understand even the qualitative behavior of thermoelectric energy conversion.

  19. Saiboku-to, a Kampo herbal medicine, inhibits LTC4 release from eosinophils

    Directory of Open Access Journals (Sweden)

    Koichi Hirai

    1998-01-01

    Full Text Available Saiboku-to (TJ-96, a traditional Kampo herbal formation, has been used in the treatment of bronchial asthma in Japan as an anti-allergy herbal medicine. We investigated the effect of TJ-96 on leukotriene (LTC4 release from eosinophils and basophils isolated from healthy volunteers. Pre-incubation of eosinophils with TJ-96 inhibited ionophore- or formyl-methionyl-leucyl-phenylalanine (FMLP-induced LTC4 generation by eosinophils in a dose-dependent fashion. The TJ-96 was more potent in the release by ionophore (IC50 = 60 mg/mL than the release induced by FMLP (IC50 = 300 mg/mL. Maximal inhibition was observed when eosinophils were pretreated with TJ-96 for 5 min. Although TJ-96 at high concentrations inhibited IgE-mediated histamine release from human basophils, inhibition of IgE-mediated LTC4 release was not statistically significant. The potent inhibitory activity was found in the extract of Glycyrrhiza root, one of the herbal components of TJ-96, but the inhibitory effects were not due to either glycyrrhizin or liquiritin, the main elements of the Glycyrrhiza root. These results raise the possibility that the clinical efficacy of TJ-96 is derived, at least in part, from its potent inhibitory effect on LTC4 release from eosinophils.

  20. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  1. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  2. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  3. Conversion electron Moessbauer study of solid surfaces at lower temperatures with a proportional counter

    International Nuclear Information System (INIS)

    Matsuo, M.; Sato, H.; Takeda, M.; Tominaga, T.

    1980-01-01

    Conversion electron Moessbauer spectra of single crystals of iron(II) sulfate heptahydrate and ammonium iron(III) sulfate dodecahydrate were measured at 195 K by using a proportional counter, although such spectra were not available at room temperature because of the efflorescence of the crystals. In the solid phase reaction between bis(ammonium)iron(II) sulfate hexahydrate (Mohr's salt) and potassium cyanide, the conversion electron Moessbauer spectrum at 195 K revealed formation of potassium hexacyanoferrate(II) in the surface of the Mohr's salt, whereas any change was scarcely observed in the bulk crystal of the parent compound by transmission measurements. Good conversion electron Moessbauer spectra of a 57 Fe foil could be obtained at 100 K. (author)

  4. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  5. Developing Low-Intermediate Temperature Fuel Cells for Direct Conversion of Methane to Methanol Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, A.; Barton, J.; Willman, C.; Ghezel-Ayagh, H.; Li, N.; Poozhikunnath, A.; Maric, R.; Marina, O. A.

    2016-04-26

    The objective of this project is development of a durable, low-cost, and high performance Low Temperature Solid Oxide Fuel Cell (LT-SOFC) for direct conversion of methane to methanol and other liquids, characterized by: a) operating temperature < 500oC, b) current density of > 100 mA/cm2 in liquid hydrocarbon production mode, c) continuous operation of > 100 h, d) cell area >100 cm2, e) cell cost per rate of product output < 100,000/bpd, f) process intensity of > 0.1 bpd/ft3, g) product yield and carbon efficiency > 50%, and h) volumetric output per cell > 30 L/day.

  6. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Wickberg, Andreas; Mueller, Jonathan B. [Institute of Applied Physics and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Mange, Yatin J.; Nann, Thomas [Ian Wark Research Institute, University of South Australia, Mawson Lakes Blvd, Adelaide, SA 5095 (Australia); Fischer, Joachim [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Wegener, Martin [Institute of Applied Physics and DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2015-03-30

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.

  7. Three-dimensional micro-printing of temperature sensors based on up-conversion luminescence

    International Nuclear Information System (INIS)

    Wickberg, Andreas; Mueller, Jonathan B.; Mange, Yatin J.; Nann, Thomas; Fischer, Joachim; Wegener, Martin

    2015-01-01

    The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s

  8. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  9. Nanotechnology Based Green Energy Conversion Devices with Multifunctional Materials at Low Temperatures.

    Science.gov (United States)

    Lu, Yuzheng; Afzal, Muhammad; Zhu, Bin; Wang, Baoyuan; Wang, Jun; Xia, Chen

    2017-07-10

    Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms. This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances. Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    Science.gov (United States)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  11. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    Science.gov (United States)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm‑1. When E increased to 0.3 kV mm‑1 and 0.4 kV mm‑1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  12. Chirp and temperature effects in parametric down conversion from crystals pumped at 800 nm

    Science.gov (United States)

    Sánchez-Lozano, X.; Wiechers, C.; Lucio, J. L.

    2018-04-01

    We consider spontaneous parametric down conversion from aperiodic poled crystals pumped at 800 nm. Our analyses account the effect of internal and external parameters, where, in the former, we include the crystal chirp and length, while in the latter temperature, also the pump chirp and other beam properties. The typical distribution produced is a pop-tab like structure in frequency-momentum space, and our results show that this system is a versatile light source, appropriated to manipulate the frequency and transverse momentum properties of the light produced. We briefly comment on the potential usefulness of the types of telecom wavelength light produced, in particular for quantum information applications.

  13. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  14. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.

    Science.gov (United States)

    Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J

    2016-04-05

    The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.

  15. Design study of power conversion system for the gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunitomi, Kazuhiko; Yan, Xing; Katanishi, Shoji; Kosugiyama, Shinichi; Miyoshi, Yasuyuki

    2002-01-01

    A design study of the power conversion system for the Gas Turbine High Temperature Reactor (GTHTR300) was carried out. The study aimed at reducing the total mass of main system components, which simplified system configuration by selecting the non-inter-cooled cycle, and improvement of the performance of power conversion components to enhance economics. The 3-dimensional aerodynamic design of the turbine and compressor achieved high polytropic efficiencies of 93 and 90%, respectively, while reducing the differential thrust of the turbo-compressor to 10 kN as well as keeping a high surge margin of 30% for the compressor, which made it possible to attain a high power conversion efficiency of 45.8%. A horizontal turbo-machine layout, in which the turbo-compressor and generator rotors were connected by a diaphragm-coupling, was proposed to lessen the load requirements for magnetic bearings. The turbo-machine rotor, which passed over critical speeds of bending mode, fulfilled the standard limit of vibration amplitude of 75 μm at the rated rotational speed by optimizing the stiffness of the magnetic bearings. The main focus of the heat exchanger design was size and mass minimization, while fulfilling the target temperature efficiency of 95%. The plate-fin type recuperator employed an off-set fin arrangement, having a square cross section of 1.2 mm x 1.2 mm. The pre-cooler employed helical-coil tubes with low lateral fins. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  16. CysLT2 receptor activation is involved in LTC4-induced lung air-trapping in guinea pigs.

    Science.gov (United States)

    Sekioka, Tomohiko; Kadode, Michiaki; Yonetomi, Yasuo; Kamiya, Akihiro; Fujita, Manabu; Nabe, Takeshi; Kawabata, Kazuhito

    2017-01-05

    CysLT 1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT 2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT 2 receptor-mediated LTC 4 -induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC 4 is rapidly converted to LTD 4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC 4 -induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT 1 receptor antagonist, but not by BayCysLT 2 RA, a CysLT 2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT 2 RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC 4 -/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC 4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC 4 -induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC 4 -induced air-trapping was weak, treatment with BayCysLT 2 RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT 2 RA completely suppressed LTC 4 -induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT 2 receptors mediate LTC 4 -induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT 2 receptors contribute to asthmatic response involving air-trapping. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water

    DEFF Research Database (Denmark)

    Nguyen, Thi Dieu Huyen; Maschietti, Marco; Åmand, Lars-Erik

    2014-01-01

    The catalytic conversion of suspended LignoBoost Kraft lignin was performed in near-critical water using ZrO2/K2CO3 as the catalytic system and phenol as the co-solvent and char suppressing agent. The reaction temperature was varied from 290 to 370 C and its effect on the process was investigated...... in a continuous flow (1 kg/h). The yields of water-soluble organics (WSO), bio-oil and char (dry lignin basis) were in the ranges of 5–11%, 69–87% and 16–22%, respectively. The bio-oil, being partially deoxygenated, exhibited higher carbon content and heat value, but lower sulphur content than lignin. The main 1...

  18. A Techno-Economic Optimization of the Power Conversion System of a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Mansilla, Christine; Dumas, Michel; Werkoff, Francois

    2006-01-01

    Generation IV nuclear reactors will not be implemented unless they enable lower production costs than with the current systems. In such a context a techno-economic optimization method was developed and then applied to the power conversion system of a very high temperature reactor. Techno-economic optimization consists in minimizing an objective function that depends on technical variables and economic ones. The advantage of the techno-economic optimization is that it can take into account both investment costs and operating costs. A techno-economic model was implemented in a specific optimization software named Vizir, which is based on genetic algorithms. The calculation of the thermodynamic cycle is performed by a software named Tugaz. The results are the values of the decision variables that lead to a minimum cost, according to the model. The total production cost is evaluated. The influence of the various variables and constraints is also pointed out. (authors)

  19. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  20. Transient studies of low temperature catalysts for methane conversion. Final report, [September 1992--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E.E.

    1996-09-30

    The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to study the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.

  1. Medium-temperature supermarket refrigeration conversion from CFC-12 to HCFC-22 (R-12 to R-22)

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.H.

    1992-12-01

    The Electric Power Research Institute (EPRI) has undertaken a project to investigate the best approach for the conversion of medium-temperature supermarket refrigeration from R-12 (CFC) to R-22 (HCFC) so that the maximum energy-savings benefit can be realized by its member utilities and their customers. Such conversions will be necessary as CFCs are phased out. In this report, two medium temperature display case circuits at the EPRI/Safeway test store were converted. Single, large semihermetic, and open-drive compressors were tested. The large semihermetic and open-drive compressors were also equipped with cylinder unloaders and variable-speed drive so that either method of capacity control could be employed. The results of the testing showed that conversion to R-22 produced energy savings and that large semihermetic compressors with re-expansion unloaders were a viable alternative to single compressors in this application. Computer model results suggested that conversion of all medium-temperature refrigeration from R-12 to R-22 would result in peak demand savings of 5.3 kw (9.3%) and annual energy savings of 37,595 kWh (10.5%). Additional savings are possible by incorporating energy-efficient features such as floating head pressure control, condenser resizing to enable it to operate at a lower temperature, and high-efficiency condenser fan motors. Guidelines and procedures for energy-efficient retrofit are outlined.

  2. Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals

    International Nuclear Information System (INIS)

    Carlucci, A.P.; Laforgia, D.; Motz, S.; Saracino, R.; Wenzel, S.P.

    2014-01-01

    Highlights: • We have proposed an in-cylinder pressure-based closed loop combustion control. • We have tested the control on an engine at the test bench. • We have tested the control on the engine equipping a Euro 6-compliant vehicle. • The control is effective in increasing torque stability and reduce engine noise. - Abstract: The adoption of diesel LTC combustion concepts is widely recognised as a practical way to reduce simultaneously nitric oxides and particulate emission levels from diesel internal combustion engines. However, several challenges have to be faced up when implementing diesel LTC concepts in real application vehicles. In particular, achieving acceptable performance concerning the drivability comfort, in terms of output torque stability and combustion noise during engine dynamic transients, is generally a critical point. One of the most promising solutions to improve the LTC combustion operation lays in the exploitation of closed loop combustion control, based on in-cylinder pressure signals. In this work, the application of an in-cylinder pressure-based closed loop combustion control to a Euro 6-compliant demonstrator vehicle has been developed. The main challenges deriving from the control of the LTC combustion, directly affecting the engine/vehicle performance, have been analysed in detail. In order to overcome these drawbacks, a new control function, integrated into the base closed loop system, has been designed. The performance of the new function have been experimentally tested at the engine test bench. Results showed a significant enhancement of the LTC operation, in terms of both combustion stability and noise reduction during engine transients. The new function was also implemented on a real vehicle, thus proving the potential of the new control concept in realistic operating conditions

  3. R and D on the power conversion system for gas turbine high temperature reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Takada, Shoji; Yan Xing; Kosugiyama, Shinichi; Katanishi, Shoji; Kunitomi, Kazuhiko

    2004-01-01

    surely validate the GTHTR300 power conversion system design and the results will be incorporated in the design in the upgrading stage. The R and D program as a whole will well demonstrate the technical feasibility of the high-efficiency gas-turbine system for high-temperature gas-cooled reactor plants

  4. Design study on evaluation for power conversion system concepts in high temperature gas cooled reactor with gas turbine

    International Nuclear Information System (INIS)

    Minatsuki, Isao; Mizokami, Yorikata

    2007-01-01

    The design studies on High Temperature Gas Cooled Reactor with Gas Turbine (HTGR-GT) have been performed, which were mainly promoted by Japan Atomic Energy Agency (JAEA) and supported by fabricators in Japan. HTGR-GT plant feature is almost determined by selection of power conversion system concepts. Therefore, plant design philosophy is observed characteristically in selection of them. This paper describes the evaluation and analysis of the essential concepts of the HTGR-GT power conversion system through the investigations based on our experiences and engineering knowledge as a fabricator. As a result, the following concepts were evaluated that have advantages against other competitive one, such as the horizontal turbo machine rotor, the turbo machine in an individual vessel, the turbo machine with single shaft, the generator inside the power conversion vessel, and the power conversion system cycle with an intercooler. The results of the study can contribute as reference data when the concepts will be selected. Furthermore, we addressed reasonableness about the concept selection of the Gas Turbine High Temperature Reactor GTHTR300 power conversion system, which has been promoted by JAEA. As a conclusion, we recognized the GTHTR300 would be one of the most promising concepts for commercialization in near future. (author)

  5. Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    Aluminium is extensively used as a structural material due to its excellent strength to weight ratio and corrosion resistance properties. The surface of aluminium under normal conditions has a thin oxide film (1-10nm) which provides corrosion resistance. However due to lower thickness, flaws...... and heterogeneity of native oxide layer does not provide long time corrosion resistance and adhesion of organic coating for a particular function in different environments. In order to enhance the corrosion resistance and adhesion of organic coating, the aluminium native oxide layer is treated to transform...... or convert to a functional conversion coating. In the last several decades chromate conversion coating (CrCCs) have been the most common conversion coatings used for aluminium alloys. Due to the toxicity of the hexavalent chrome, however, environmental friendly alternatives to CrCCs have been investigated...

  6. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins.

    Science.gov (United States)

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.

  7. Basic policy of maintenance for the power conversion system of the gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Kosugiyama, Shinichi; Takizuka, Takakazu; Kunitomi, Kazuhiko; Yan, Xing; Katanishi, Shoji; Takada, Shoji

    2003-01-01

    Basic policy of maintenance was determined for major equipment in the power conversion system of the Gas Turbine High Temperature Reactor 300 (GTHTR300). It was developed based on the current maintenance practice in Light Water Reactors (LWRs), High Temperature Engineering Test Reactor (HTTR) and conventional combined cycle power plants while taking into account of unique design features of GTHTR300. First, potential degradation phenomena in operations were identified and corresponding maintenance approaches were proposed for the equipment. Such degradations encountered typically in LWRs as corrosion, erosion and stress corrosion cracking are unlikely to occur since the working fluid of GTHTR300 is inert helium. Main causes of the degradations are high operating temperature and pressure. The gas turbine, compressor, generator, control valves undergo opening and dismantling maintenance in a suitable time interval. The power conversion vessel, heat exchanger vessel, primary system piping and heat exchanging tubes of precooler are subjected to in-service inspections similar to those done in LWRs. As turbine blades represent the severest material degradation because of their high-temperature and high-stress operating conditions, a lifetime management scheme was suggested for them. The longest interval of open-casing maintenance of the gas turbine is estimated to be six to seven years from technical point of view. Present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  8. Inverse CeO2sbnd Fe2O3 catalyst for superior low-temperature CO conversion efficiency

    Science.gov (United States)

    Luo, Yongming; Chen, Ran; Peng, Wen; Tang, Guangbei; Gao, Xiaoya

    2017-09-01

    The paper presents a rational design of highly efficient and affordable catalysts for CO oxidation with a low operating temperature. A series of ceria-iron catalysts were inversely built via a co-precipitation method. The catalytic activity of low-temperature CO oxidation was much higher with CeO2-modified Fe2O3 (CeO2sbnd Fe2O3) than with Fe2O3-modified CeO2 (Fe2O3sbnd CeO2). In particular, the 7.5% CeO2sbnd Fe2O3 catalyst had the highest activity, reaching 96.17% CO conversion at just 25 °C. Catalyst characterization was carried out to explore the cause of the significantly different CO conversion efficiencies between the Fe2O3sbnd CeO2 and Fe2O3sbnd CeO2 catalysts. HRTEM showed a significant inhomogeneous phase in 7.5% CeO2sbnd Fe2O3 with small CeO2 nanoparticles highly dispersed on the rod-shaped Fe2O3 surface. Furthermore, the 7.5% CeO2sbnd Fe2O3 composite catalyst exhibited the highest ratios of Fe2+/Fe3+ and Ce3+/Ce4+ as well as the largest pore volume. These properties are believed to benefit the CO conversion in 7.5% CeO2sbnd Fe2O3.

  9. Low-temperature affected LC-PUFA conversion and associated gene transcript level in Nannochloropsis oculata CS-179

    Science.gov (United States)

    Ma, Xiaolei; Zhang, Lin; Zhu, Baohua; Pan, Kehou; Li, Si; Yang, Guanpin

    2011-09-01

    Nannochloropsis oculata CS-179, a marine eukaryotic unicellular microalga, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs). Culture temperature affected cell growth and the composition of LC-PUFAs. At an initial cell density of 1.5 × 106 cell mL-1, the highest growth was observed at 25°C and the cell density reached 3 × 107 cell mL-1 at the beginning of logarithmic phase. The content of LC-PUFAs varied with culture temperature. The highest content of LC-PUFAs (43.96%) and EPA (36.6%) was gained at 20°C. Real-time PCR showed that the abundance of Δ6-desaturase gene transcripts was significantly different among 5 culture temperatures and the highest transcript level (15°C) of Nanoc-D6D took off at cycle 21.45. The gene transcript of C20-elongase gene was higher at lower temperatures (10, 15, and 20°C), and the highest transcript level (20°C) of Nanoc-E took off at cycle 21.18. The highest conversion rate (39.3%) of Δ6-desaturase was also gained at 20°C. But the conversion rate of Nanoc-E was not detected. The higher content of LC-PUFAs was a result of higher gene transcript level and higher enzyme activity. Compared with C20-elongase gene, Δ6-desaturase gene transcript and enzyme activity varied significantly with temperature. It will be useful to study the mechanism of how the content of LC-PUFAs is affected by temperature.

  10. Facile synthesis of unique NiO nanostructures for efficiently catalytic conversion of CH{sub 4} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yucheng; Zhao, Yanting; Ni, Liuliu; Jiang, Kedan; Tong, Guoxiu, E-mail: tonggx@zjnu.cn; Zhao, Yuling; Teng, Botao, E-mail: tbt@zjnu.cn

    2016-01-30

    Graphical abstract: - Highlights: • A simple one-pot thermal decomposition approach for NiO nanostructures. • Revealing the mechanism of morphological evolution. • Investigating the morphology-dependence of catalytic properties. - Abstract: A simple one-pot thermal decomposition approach to the selective synthesis of NiO nanomaterials was developed. The morphologies of the NiO nanomaterials were nanoparticle-based sheets, octahedra, nanosheet-built agglomerates, and nanoparticle-based microspheres. The samples were characterized by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and N{sub 2} adsorption analyses. The morphology, crystal size, and texture properties of the products can be easily modulated by selecting various decomposition temperatures and precursors. Samples with high specific surface area and small crystal size were found to easily form at low sintering temperatures and when basic nickel carbonate and nickel oxalate dihydrate were used as precursors. Reduction property and CH{sub 4} conversion, as functions of decomposition temperature and precursor type, were systematically investigated. When NiCO{sub 3}·2Ni(OH){sub 2}·4H{sub 2}O and NiC{sub 2}O{sub 4}·2H{sub 2}O were used as precursors, the as-obtained nanosheet-built agglomerates and nanoparticle-based sheets presented a high CH{sub 4} conversion rate because of the small crystal size and large specific surface area.

  11. Critical Temperature for the Conversion from Wurtzite to Zincblende of the Optical Emission of InAs Nanowires

    KAUST Repository

    Rota, Michele B.

    2017-07-12

    One hour annealing at 300 degrees C changes the optical emission characteristics of InAs nanowires (NWs) from the wurtzite (WZ) phase into that of zincblende (ZB). These results are accounted for by the conversion of a small fraction of the NW WZ metastable structure into the stable ZB structure. Several paths toward the polytype transformation in the configuration space are also demonstrated using first-principles calculations. For lower annealing temperatures, emission which is likely related to WZ polytypes is observed at energies that agree with theoretical predictions. These results demonstrate severe constraints on thermal processes to which devices made from InAs WZ NWs can be exposed.

  12. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    for the sustainable production of chemicals 4-6. A novel type of alkaline electrochemical cell that can operate at elevated temperature and pressure has been developed that relies on corrosion resistant high temperature diaphragms, based on mesoporous ceramic membranes where aqueous KOH is immobilized by capillary...... densities. This work will provide an overview of our efforts to develop components of such high temperature alkaline electrochemical reactors for different applications. Low-cost large-scale production methods have been successfully employed for the production of ceramic diaphragms and full cells...

  13. Temperature dependence of bioelectrochemical CO2conversion and methane production with a mixed-culture biocathode.

    Science.gov (United States)

    Yang, Hou-Yun; Bao, Bai-Ling; Liu, Jing; Qin, Yuan; Wang, Yi-Ran; Su, Kui-Zu; Han, Jun-Cheng; Mu, Yang

    2018-02-01

    This study evaluated the effect of temperature on methane production by CO 2 reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO 2 reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh -1 , respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO 2 reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature. Copyright © 2017. Published by Elsevier B.V.

  14. Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production.

    Science.gov (United States)

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-11-01

    Sorbitol and xylitol yields can be improved by converting cellulose and xylan simultaneously, due to a synergetic effect between both substrates. Furthermore, both yields can be greatly enhanced by simply adjusting the reaction conditions regarding the optimum for the production of each product, since xylitol (from xylan) and sorbitol (from cellulose) yields are maximized when the reaction is carried out at 170 and 205°C, respectively. Therefore, the combination of a simultaneous conversion of cellulose and xylan with a two-step temperature approach, which consists in the variation of the reaction temperature from 170 to 205°C after 2h, showed to be a good strategy for maximizing the production of sorbitol and xylitol directly from mixture of cellulose and xylan. Using this new and environmentally friendly approach, yields of sorbitol and xylitol of 75 and 77%, respectively, were obtained after 6h of reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of an integrated system for classification, assessment and comparison of services for long-term care in Europe: the eDESDE-LTC study.

    Science.gov (United States)

    Salvador-Carulla, Luis; Alvarez-Galvez, Javier; Romero, Cristina; Gutiérrez-Colosía, Mencia R; Weber, Germain; McDaid, David; Dimitrov, Hristo; Sprah, Lilijana; Kalseth, Birgitte; Tibaldi, Giuseppe; Salinas-Perez, Jose A; Lagares-Franco, Carolina; Romá-Ferri, Maria Teresa; Johnson, Sonia

    2013-06-15

    The harmonization of European health systems brings with it a need for tools to allow the standardized collection of information about medical care. A common coding system and standards for the description of services are needed to allow local data to be incorporated into evidence-informed policy, and to permit equity and mobility to be assessed. The aim of this project has been to design such a classification and a related tool for the coding of services for Long Term Care (DESDE-LTC), based on the European Service Mapping Schedule (ESMS). The development of DESDE-LTC followed an iterative process using nominal groups in 6 European countries. 54 researchers and stakeholders in health and social services contributed to this process. In order to classify services, we use the minimal organization unit or "Basic Stable Input of Care" (BSIC), coded by its principal function or "Main Type of Care" (MTC). The evaluation of the tool included an analysis of feasibility, consistency, ontology, inter-rater reliability, Boolean Factor Analysis, and a preliminary impact analysis (screening, scoping and appraisal). DESDE-LTC includes an alpha-numerical coding system, a glossary and an assessment instrument for mapping and counting LTC. It shows high feasibility, consistency, inter-rater reliability and face, content and construct validity. DESDE-LTC is ontologically consistent. It is regarded by experts as useful and relevant for evidence-informed decision making. DESDE-LTC contributes to establishing a common terminology, taxonomy and coding of LTC services in a European context, and a standard procedure for data collection and international comparison.

  16. Maintenance for power conversion system of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Kosugiyama, Shinichi; Takada, Shoji; Katanishi, Shoji; Yan, Xing; Takizuka, Takakazu; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-11-01

    In order to be a suitable next generation nuclear power plant from reliable and economical points of view, it is necessary for GTHTR300 to have good maintenability and inspectability. Appropriate maintenance concept for the power conversion system of GTHTR300 consisting of a gas turbine, a compressor, a generator, a recuperator, a precooler and so on was studied based on results of the basic design of GTHTR300 in fiscal 2001. Considering degradation phenomena which could occur on each objective equipment, it is technically possible to reduce several maintenance items and extend maintenance interval for some equipment compared to those for existing LWR power plants and combined cycle fossil power plants. But owing to structural feature and installed location of each equipment, and fission product plate-out on each equipment, it became clear that some problems must be solved for making the maintenance works realistic and efficient. Solving the problems and confirming appropriateness of the proposed maintenance concept and plans will be done in coming detailing work of GTHTR300 design. (author)

  17. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.

    Science.gov (United States)

    Miandad, R; Nizami, A S; Rehan, M; Barakat, M A; Khan, M I; Mustafa, A; Ismail, I M I; Murphy, J D

    2016-12-01

    This paper aims to investigate the effect of temperature and reaction time on the yield and quality of liquid oil produced from a pyrolysis process. Polystyrene (PS) type plastic waste was used as a feedstock in a small pilot scale batch pyrolysis reactor. At 400°C with a reaction time of 75min, the gas yield was 8% by mass, the char yield was 16% by mass, while the liquid oil yield was 76% by mass. Raising the temperature to 450°C increased the gas production to 13% by mass, reduced the char production to 6.2% and increased the liquid oil yield to 80.8% by mass. The optimum temperature and reaction time was found to be 450°C and 75min. The liquid oil at optimum conditions had a dynamic viscosity of 1.77mPas, kinematic viscosity of 1.92cSt, a density of 0.92g/cm 3 , a pour point of -60°C, a freezing point of -64°C, a flash point of 30.2°C and a high heating value (HHV) of 41.6MJ/kg this is similar to conventional diesel. The gas chromatography with mass spectrophotometry (GC-MS) analysis showed that liquid oil contains mainly styrene (48%), toluene (26%) and ethyl-benzene (21%) compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Fridh, Katja; Johannesson, Björn

    2015-01-01

    Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting measureme...

  19. Converse magnetoelectric experiments on a room-temperature spirally ordered hexaferrite

    Science.gov (United States)

    Ebnabbasi, Khabat; Vittoria, Carmine; Widom, Allan

    2012-07-01

    Magnetoelectric properties of room-temperature spirally ordered Sr3Co2Fe24O41 hexaferrite slabs have been measured. A physical model in this paper referred to as the “slinky helix” model is presented to explain the experimental data. The measured properties include the magnetic permeability and the strain, all as a function of the electric field E. Upon application of an electric field to slabs of Sr Z-type hexaferrite, it exhibits broken symmetries for time reversal and parity. This is the central feature of these magnetoelectric materials.

  20. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion

    Science.gov (United States)

    Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S.; Chen, Gang

    2015-01-01

    Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect—a coupling phenomenon between electrons and nonequilibrium phonons—in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons. PMID:26627231

  1. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  2. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light.

    Science.gov (United States)

    Hwang, Kuo Chu; Sagadevan, Arunachalam

    2014-12-19

    Nitric acid oxidation of cyclohexane accounts for ~95% of the worldwide adipic acid production and is also responsible for ~5 to 8% of the annual worldwide anthropogenic emission of the ozone-depleting greenhouse gas nitrous oxide (N2O). Here we report a N2O-free process for adipic acid synthesis. Treatment of neat cyclohexane, cyclohexanol, or cyclohexanone with ozone at room temperature and 1 atmosphere of pressure affords adipic acid as a solid precipitate. Addition of acidic water or exposure to ultraviolet (UV) light irradiation (or a combination of both) dramatically enhances the oxidative conversion of cyclohexane to adipic acid. Copyright © 2014, American Association for the Advancement of Science.

  3. The Effect of Deposit Temperature on the Catalytic SO2-to-SO3 Conversion in a Copper Flash Smelting Heat Recovery Boiler

    Science.gov (United States)

    Lehmusto, Juho; Vainio, Emil; Laurén, Tor; Lindgren, Mari

    2018-02-01

    The aim of the work was to study the catalytic role of copper flash smelter deposit in the SO2-to-SO3 conversion. In addition, the effect of process gas temperature at 548 K to 1173 K (275 °C to 900 °C) on the amount of SO3 formed was addressed both in the absence and presence of genuine copper flash smelter deposit. The SO3 conversion rate changed as a function of process gas temperature, peaking at 1023 K (750 °C). A dramatic increase in the SO2-to-SO3 conversion was observed when process dust was present, clearly indicating that process dust catalyzes the SO2-to-SO3 conversion. Based on these results, the catalytic ability of the deposit may lead to sulfuric acid dew point corrosion.

  4. Electrochemical Studies of Corrosion in Liquid Electrolytes for Energy Conversion Applications at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina; Bjerrum, Niels J.

    2016-01-01

    Stainless steels (AISI 316, 321 and 347), high-nickel alloys (Hasteloy®C-276 and Inconel®625), tantalum, nickel, titanium, tungsten, molybdenum, niobium, platinum, and gold were tested for corrosion resistance in molten KH2PO4 (or KH2PO4-K2H2P2O7) as a promising electrolyte for the intermediate......-temperature (200–400°C) water electrolysis. Pt, Ta, Nb, Ti, Inconel®625, and Ni demonstrated high corrosion resistance. Au and the rest of the tested materials were not corrosion resistant. It means that Ni, Ti and Inconel®625 may be used as relatively cheap construction materials for the intermediate...

  5. Assessing the validity and intra-observer agreement of the MIDAM-LTC; an instrument measuring factors that influence personal dignity in long-term care facilities

    Science.gov (United States)

    2014-01-01

    Background Patients who are cared for in long-term care facilities are vulnerable to lose personal dignity. An instrument measuring factors that influence dignity can be used to better target dignity-conserving care to an individual patient, but no such instrument is yet available for the long-term care setting. The aim of this study was to create the Measurement Instrument for Dignity AMsterdam - for Long-Term Care facilities (MIDAM-LTC) and to assess its validity and intra-observer agreement. Methods Thirteen items specific for the LTC setting were added to the earlier developed, more general MIDAM. The MIDAM-LTC consisted of 39 symptoms or experiences for which presence as well as influence on dignity were asked, and a single item score for overall personal dignity. Questionnaires containing the MIDAM-LTC were administered face-to-face at two moments (with a 1-week interval) to 95 nursing home residents residing on general medical wards of six nursing homes in the Netherlands. Constructs related to dignity (WHO Well-Being Five Index, quality of life and physical health status) were also measured. Ten residents answered the questions while thinking aloud. Content validity, construct validity and intra-observer agreement were examined. Results Nine of the 39 items barely exerted influence on dignity. Eight of them could be omitted from the MIDAM-LTC, because the thinking aloud method revealed sensible explanations for their small influence on dignity. Residents reported that they missed no important items. Hypotheses to support construct validity, about the strength of correlations between on the one hand personal dignity and on the other hand well-being, quality of life or physical health status, were confirmed. On average, 83% of the scores given for each item’s influence on dignity were practically consistent over 1 week, and more than 80% of the residents gave consistent scores for the single item score for overall dignity. Conclusion The MIDAM-LTC has good

  6. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

    Science.gov (United States)

    Shi, Lei; Yang, Guohui; Tao, Kai; Yoneyama, Yoshiharu; Tan, Yisheng; Tsubaki, Noritatsu

    2013-08-20

    converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.

  7. Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. P.; Edwards, M. S.

    1978-06-01

    In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

  8. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    sequestration easier. One complication of oxyfuel coal combustion is that corrosion problems can be exacerbated due to flue gas recycling, which is employed to dilute the pure O2 feed and reduce the flame temperature. Refractory metal diffusion coatings of Ti and Zr atop P91 steel were created and tested for their ability to prevent corrosion in an oxidizing atmosphere at elevated temperature. Using pack cementation, diffusion coatings of thickness approximately 12 and 20 microm are obtained for Ti and Zr, respectively. The effects of heating to 950°C for 24 hr in 5% O2 in He are studied in situ by thermogravimetric analyses (TGA), and ex situ by SEM analyses and depth profiling by EDX. For Ti-coated, Zr-coated and uncoated P91 samples, extended heating in an oxidizing environment causes relatively thick oxide growth, but extensive oxygen penetration greater than 2.7 mm below the sample surface, and eventual oxide exfoliation, are observed only for the uncoated P91 sample. For the Ti- and Zr-coated samples, oxygen penetrates approximately 16 and 56 microm, respectively, below the surface. in situ TGA verifies that Ti-and Zr-coated P91 samples undergo far smaller mass changes during corrosion than uncoated samples, reaching close to steady state mass after approximately four hours.

  9. (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Emmett E.; Simon, John; Friedman, Daniel J.; Jain, Nikhil; Sharps, Paul; McPheeters, Claiborne; Sun, Yukun; Lee, Minjoo L.; Steiner, Myles A.

    2018-03-01

    We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure a power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.

  10. Reduced bed temperature at thermo-chemical conversion of difficult fuels; Saenkt baeddtemperatur vid termokemisk omvandling av svaara braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Niklasson, Fredrik; Haraldsson, Conny; Johansson, Andreas; Claesson, Frida; Baefver, Linda; Ryde, Daniel

    2010-05-15

    needed to obtain reliable quantitative results. Under pyrolysis (in nitrogen), a strong coupling was found between temperature and measured concentrations of alkali and zinc in the flue gas, especially between 750 and 850 deg C. These findings imply that reactors for gasification (or pyrolysis) of waste and biofuels will benefit from being operated at temperatures below 850 deg C to reduce the alkali content in the product gas. On the other hand, there could be other advantages of operating a gasifier at higher temperatures. The influence of the reactor temperature on the release of alkali metals was found to be less pronounced during combustion as compared to pyrolysis. The reason for this could be that oxygen takes part in the reaction scheme controlling the release of the alkali metals, but it could also be a consequence of locally higher temperatures in the fuel particle while burning. The tests showed that a larger fraction of zinc was released during devolatilisation, compared to the alkali metals of which typically less than 10 % was found to be released during devolatilisation. Some additional tests where HCl was added to the fluidizing gas showed, as expected, that the presence of HCl increases the release of alkali metals from the bottom ash. Agglomeration temperatures were determined for two bed sand samples that had been extracted under operating bed temperatures of 870 and 750 deg C in a commercial waste fired FB-boiler. While sand samples were heated in order to find the agglomeration temperature, considerably more alkali metals were released from the sand sampled at 750 deg C. The agglomeration temperature was somewhat lower for this sand, but it was still considerably higher than normal operating bed temperature of the boiler. The present lab-scale study shows that the release of alkali metals and zinc into the flue gas from waste is reduced, or at least considerably decelerated, by a lowered fuel conversion temperature. However, the atmosphere and bed

  11. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  12. Degree of conversion and temperature increase of a composite resin light cured with an argon laser and blue LED

    Science.gov (United States)

    Rastelli, A. N. S.; Jacomassi, D. P.; Bagnato, V. S.

    2008-12-01

    Different light sources and power densities used on the photoactivation process may provide changes in the degree of conversion (DC%) and temperature ( T) of the composite resins. Thus, the purpose of this study was to evaluate the DC (%) and T (°C) of the microhybrid composite resin (Filtek™ Z-250, 3M/ESPE) photoactivated with one argon laser and one LED (light-emitting diode) with different power densities. For the KBr pellet technique, the composite resin was placed into a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated as follows: a continuous argon laser (CW) and LED LCUs with power density values of 100, 400, 700, and 1000 mW/cm2 for 20 s. The measurements for DC (%) were made in a FTIR spectrometer Bomen (model MB 102, Quebec, Canada). Spectroscopy (FTIR) spectra for both uncured and cured samples were analyzed using an accessory of the reflectance diffusion. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm-1 resolution, 300 to 4000-cm-1 wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1638 cm-1) against an internal standard before and after the curing of the specimen: aromatic C-C (peak at 1608 cm-1). For T (°C), the samples were created in a metallic mould (2-mm thickness, 4-mm diameter) and photoactivated for 20 s. The thermocouple was attached to the multimeter allowing temperature readings. The DC (%) and T (°C) were submitted to ANOVA and Tukey’s test ( p units.

  13. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species during Methanol-to-Olefins Conversion over H-SAPO-34

    NARCIS (Netherlands)

    Borodina, E.; Sharbini Harun Kamaluddin, H.; Meirer, F.; Mokhtar, M.; Asiri, Abdullah M.; Al-Thabaiti, S.A.; Basahel, Suliman N.; Ruiz-Martinez, J.; Weckhuysen, B. M.

    2017-01-01

    The selectivity toward lower olefins during the methanol-to-olefins conversion over H-SAPO-34 at reaction temperatures between 573 and 773 K has been studied with a combination of operando UV-vis diffuse reflectance spectroscopy and online gas chromatography. It was found that the selectivity toward

  14. Comprehensive inter-laboratory calibration of reference materials for delta O-18 versus VSMOW using various on-line high-temperature conversion techniques

    NARCIS (Netherlands)

    Brand, Willi A.; Coplen, Tyler B.; Aerts-Bijma, Anita T.; Böhlke, J.K.; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Jansen, Henk G.; Meijer, Harro A. J.; Mroczkowski, Stanley J.; Qi, Haiping; Soergel, Karin; Stuart-Williams, Hilary; Weise, Stephan M.; Werner, Roland A.

    2009-01-01

    Internationally distributed organic and inorganic oxygen isotopic reference materials have been calibrated by six laboratories carrying out more than 5300 measurements using a variety of high-temperature conversion techniques (HTC)a in an evaluation sponsored by the International Union of Pure and

  15. Heat-Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46-x Clathrate with Au Compositional Gradient

    Science.gov (United States)

    Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko

    2018-02-01

    Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.

  16. What are the beliefs, attitudes and practices of front-line staff in long-term care (LTC) facilities related to osteoporosis awareness, management and fracture prevention?

    Science.gov (United States)

    Lau, Arthur N; Ioannidis, George; Potts, Yelena; Giangregorio, Lora M; Van der Horst, Mary-Lou; Adachi, Jonathan D; Papaioannou, Alexandra

    2010-10-08

    Compared to the general elderly population, those institutionalized in LTC facilities have the highest prevalence of osteoporosis and subsequently have higher incidences of vertebral and hip fractures. The goal of this study is to determine how well nurses at LTC facilities are educated to properly administer bisphosphonates. A secondary question assessed was the nurse's and PSW's attitudes and beliefs regarding the role and benefits of vitamin D for LTC patients. Eight LTC facilities in Hamilton were surveyed, and all nurses were offered a survey. A total 57 registered nurses were surveyed. A 21 item questionnaire was developed to assess existing management practices and specific osteoporosis knowledge areas. The questionnaire assessed the nurse's and personal support worker's (PSWs) education on how to properly administer bisphosphonates by having them select all applicable responses from a list of options. These options included administering the drug before, after or with meals, given with or separate from other medications, given with juice, given with or without water, given with the patient sitting up, or finally given with the patient supine. Only 52% of the nurses and 8.7% of PSWs administered the drug properly, where they selected the options: (given before meals, given with water, given separate from all other medications, and given in a sitting up position). If at least one incorrect option was selected, then it was scored as an inappropriate administration. Bisphosphonates were given before meals by 85% of nurses, given with water by 90%, given separately from other medication by 71%, and was administered in an upright position by 79%. Only 52% of the nurses and 8.7% of PSWs surveyed were administering the drug properly. Regarding the secondary question, of the 57 nurses surveyed, 68% strongly felt their patients should be prescribed vitamin D supplements. Of the 124 PSWs who completed the survey, 44.4% strongly felt their patients should be prescribed

  17. What are the beliefs, attitudes and practices of front-line staff in long-term care (LTC facilities related to osteoporosis awareness, management and fracture prevention?

    Directory of Open Access Journals (Sweden)

    Adachi Jonathan D

    2010-10-01

    Full Text Available Abstract Background Compared to the general elderly population, those institutionalized in LTC facilities have the highest prevalence of osteoporosis and subsequently have higher incidences of vertebral and hip fractures. The goal of this study is to determine how well nurses at LTC facilities are educated to properly administer bisphosphonates. A secondary question assessed was the nurse's and PSW's attitudes and beliefs regarding the role and benefits of vitamin D for LTC patients. Methods Eight LTC facilities in Hamilton were surveyed, and all nurses were offered a survey. A total 57 registered nurses were surveyed. A 21 item questionnaire was developed to assess existing management practices and specific osteoporosis knowledge areas. Results The questionnaire assessed the nurse's and personal support worker's (PSWs education on how to properly administer bisphosphonates by having them select all applicable responses from a list of options. These options included administering the drug before, after or with meals, given with or separate from other medications, given with juice, given with or without water, given with the patient sitting up, or finally given with the patient supine. Only 52% of the nurses and 8.7% of PSWs administered the drug properly, where they selected the options: (given before meals, given with water, given separate from all other medications, and given in a sitting up position. If at least one incorrect option was selected, then it was scored as an inappropriate administration. Bisphosphonates were given before meals by 85% of nurses, given with water by 90%, given separately from other medication by 71%, and was administered in an upright position by 79%. Only 52% of the nurses and 8.7% of PSWs surveyed were administering the drug properly. Regarding the secondary question, of the 57 nurses surveyed, 68% strongly felt their patients should be prescribed vitamin D supplements. Of the 124 PSWs who completed the survey

  18. Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata

    Czech Academy of Sciences Publication Activity Database

    Doležal, Petr; Habuštová, Oxana; Sehnal, František

    2007-01-01

    Roč. 53, - (2007), s. 849-857 ISSN 0022-1910 R&D Projects: GA ČR GA522/05/0151; GA ČR(CZ) GA522/06/1591 Institutional research plan: CEZ:AV0Z50070508 Keywords : colorado potato beetle * food conversion * insect development Subject RIV: ED - Physiology Impact factor: 2.294, year: 2007

  19. Temperature dependence of He(2 3PJ) reactions: Collision-induced mixing and conversion to He2( 3Πg) molecules

    International Nuclear Information System (INIS)

    Zhao, X.; Soletsky, P.A.; Bryan, W.H.; Dunning, F.B.; Walters, G.K.

    1993-01-01

    The rate coefficients for mixing between He(2 3 P J, MJ) levels during collisions with ground-state helium atoms and for conversion of He(2 3 P J ) atoms to He 2 (b 3 Π g ) molecules via three-body reactions in helium gas have been investigated over the temperature range 1.6--300 K. The measured rate coefficients for collisionally induced P-state mixing decrease slowly with decreasing temperature, from (1.8±0.5)x10 -9 cm 3 s -1 at 300 K to (4.5±0.5)x10 -10 cm 3 s -1 at 4.2 K. The rate coefficients for the production of He 2 (b 3 Π g ) molecules via three-body reactions are observed to increase with decreasing temperature and are described by the relation k P congruent(2.5+267T -1 )x10 -32 cm 6 s -1 . This behavior, which is very different from that noted in earlier studies of the conversion of He(2 3 S 1 ) atoms to He 2 (a 3 Σ u + ) molecules through three-body reactions, suggests that the reaction is not thermally activated

  20. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review

    International Nuclear Information System (INIS)

    Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Rizwanul Fattah, I.M.

    2014-01-01

    Highlights: • Various low-temperature combustion strategies have been discussed briefly. • Effect on emissions has been discussed under low temperature combustion strategies. • Low-temperature combustion reduces NO x and PM simultaneously. • Higher CO, HC emissions with lower performance are the demerits of these strategies. • Biodiesels are also potential to attain low temperature combustion conditions. - Abstract: Simultaneous reduction of particulate matter (PM) and nitrogen oxides (NO x ) emissions from diesel exhaust is the key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction techniques of PM and NO x like low temperature combustion (LTC) will continue to be an important field in research and development of modern diesel engines. Furthermore, increasing prices and question over the availability of diesel fuel derived from crude oil have introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. Being a significant technology to reduce emissions, LTC deserves a critical analysis of emission characteristics for both diesel and biodiesel. This paper critically investigates both petroleum diesel and biodiesel emissions from the view point of LTC attaining strategies. Due to a number of differences of physical and chemical properties, petroleum diesel and biodiesel emission characteristics differ a bit under LTC strategies. LTC strategies decrease NO x and PM simultaneously but increase HC and CO emissions. Recent attempts to attain LTC by biodiesel have created a hope for reduced HC and CO emissions. Decreased performance issue during LTC is also being taken care of by latest ideas. However, this paper highlights the emissions separately and analyzes the effects of significant factors thoroughly under LTC regime

  1. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  2. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  3. Utilizing Crochet to Showcase Temporal Patterns in Temperature Records from One Location and to Spark a Climate Conversation

    Science.gov (United States)

    Guertin, L. A.

    2017-12-01

    Scientists that seek to show temperature changes over time will typically select a line graph as the tool for data communication. However, one non-traditional way to showcase variations in data can be through an artistic visualization created with yarn. For several years, amateur and professional artisans have been using needlework (crocheting/knitting) to represent weather/climate records in scarves and blankets, sharing their work in online communities. Since the Sky Scarf project in 2011, a temporal record of data represented in yarn can include precipitation/snowfall to the air quality index. Here is an example of how crochet is being utilized to show maximum air temperature records over time for one location. Maximum daily temperature values have been collected for January through April in Philadelphia in fifty-year intervals (1917, 1967, 2017). This four-month interval was selected to match with the location and timing of a university's spring semester, as the target audience for this particular visualization is undergraduate students. Instead of trying to read differences in temperature across line graphs plotted for each year, three mini-temperature tapestries have been crocheted. A temperature scale has been developed with rainbow colors of yarn, where the purple and blue represent the coldest temperatures, and the orange and red represent the warmest temperatures. By using the same yarn temperature scale across the three mini-tapestries, the increase in daily maximum temperature in Philadelphia for a set time period can quickly and easily be observed. This form of science art, when presented to students, generates a series of questions, stories and predictions of a scientific and personal nature that are not typically part of a climate science instructional unit.

  4. Spin to Charge Conversion at Room Temperature by Spin Pumping into a New Type of Topological Insulator: α-Sn Films.

    Science.gov (United States)

    Rojas-Sánchez, J-C; Oyarzún, S; Fu, Y; Marty, A; Vergnaud, C; Gambarelli, S; Vila, L; Jamet, M; Ohtsubo, Y; Taleb-Ibrahimi, A; Le Fèvre, P; Bertran, F; Reyren, N; George, J-M; Fert, A

    2016-03-04

    We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.

  5. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  6. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    Science.gov (United States)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  7. Gaseous byproducts from high-temperature thermal conversion elemental analysis of nitrogen- and sulfur-bearing compounds with considerations for δ2H and δ18O analyses.

    Science.gov (United States)

    Hunsinger, Glendon B; Tipple, Christopher A; Stern, Libby A

    2013-07-30

    High-temperature, conversion-reduction (HTC) systems convert hydrogen and oxygen in materials into H2 and CO for δ(2)H and δ(18)O measurements by isotope ratio mass spectrometry. HTC of nitrogen- and sulfur-bearing materials produces unintended byproduct gases that could affect isotope analyses by: (1) allowing isotope exchange reactions downstream of the HTC reactor, (2) creating isobaric or co-elution interferences, and (3) causing deterioration of the chromatography. This study characterizes these HTC byproducts. A HTC system (ThermoFinnigan TC/EA) was directly connected to a gas chromatograph/quadrupole mass spectrometer in scan mode (m/z 8 to 88) to identify the volatile products generated by HTC at conversion temperatures of 1350 °C and 1450 °C for a range of nitrogen- and sulfur-bearing solids [keratin powder, horse hair, caffeine, ammonium nitrate, potassium nitrate, ammonium sulfate, urea, and three nitrated organic explosives (PETN, RDX, and TNT)]. The prominent HTC byproduct gases include carbon dioxide, hydrogen cyanide, methane, acetylene, and water for all nitrogen-bearing compounds, as well as carbon disulfide, carbonyl sulfide, and hydrogen sulfide for sulfur-bearing compounds. The 1450 °C reactor temperature reduced the abundance of most byproduct gases, but increased the significant byproduct, hydrogen cyanide. Inclusion of a post-reactor chemical trap containing Ascarite II and Sicapent, in series, eliminated the majority of byproducts. This study identified numerous gaseous HTC byproducts. The potential adverse effects of these gases on isotope ratio analyses are unknown but may be mitigated by higher HTC reactor temperatures and purifying the products with a purge-and-trap system or with chemical traps. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Room-Temperature High-Efficiency Solid-State Triplet-Triplet Annihilation Up-Conversion in Amorphous Poly(olefin sulfone)s.

    Science.gov (United States)

    Turshatov, Andrey; Busko, Dmitry; Kiseleva, Natalia; Grage, Stephan L; Howard, Ian A; Richards, Bryce S

    2017-03-08

    Triplet-triplet annihilation up-conversion (TTA-UC) is a developing technology that can enable spectral conversion under sunlight. Previously, it was found that efficient TTA-UC can be realized in polymer hosts for temperatures above the polymer's glass transition (T > T g ). In contrast, TTA-UC with high quantum yield for temperatures below T g is rarely reported. In this article, we report new polymer hosts in which efficient TTA-UC is observed well below T g , when the polymer is in a fully solid state. The four poly(olefin sulfone) hosts were loaded with upconversion dyes, and absolute quantum yields of TTA-UC (η TTA-UC ) were measured. The highest value of η TTA-UC = 2.1% was measured for poly(1-dodecene sulfone). Importantly, this value was the same in vacuum and at ambient conditions, indicating that the host material acts as a good oxygen barrier. We performed time-resolved luminescence experiments in order to elucidate the impact of elementary steps of TTA-UC. In addition to optical characterization, we used magic angle spinning solid-state NMR experiments to estimate the T2 transverse relaxation time. Relatively long T2 times measured for poly(olefin sulfone)s indicate an enhanced nanoscale fluidity in the studied (co)polymers, which unexpectedly coexists with a rigidity on the macroscale. This would explain the exceptional triplet energy transfer between the guest molecules, despite the macroscopic rigidity.

  9. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels

    Science.gov (United States)

    Yan, Jingbo; Chen, Hao; Dogdibegovic, Emir; Stevenson, Jeffry W.; Cheng, Mojie; Zhou, Xiao-Dong

    2014-04-01

    Electrochemical reduction of carbon dioxide in the intermediate temperature region was investigated by utilizing a reversible solid oxide electrolysis cell (SOEC). The current-potential (i-V) curve exhibited a nonlinear characteristic at low current density. Differentiation of i-V curves revealed that the cell area specific resistance (ASR) was current-dependent and had its maximum in electrolysis mode and minimum in fuel cell mode. Impedance measurements were performed under different current densities and gas compositions, and the results were analyzed by calculating the distribution of relaxation times. The ASR variation resulted from the difference in electrochemical reactions occurring on the Ni-YSZ electrode, i.e., Ni-YSZ is a better electrode for CO oxidation than for CO2 reduction. Coke formation on Ni-YSZ played a crucial role in affecting its electrolysis performance in the intermediate temperature region. The ASR apex was associated with a decrease in cell temperature during electrolysis due to the endothermic nature of CO2 reduction reaction. It was postulated that such a decrease in temperature and rise in CO concentration led to coke formation. As a consequence, higher temperature (>700 °C), higher CO2 concentration (>50%), and the presence of hydrogen or steam are recommended for efficient CO2 reduction in solid oxide electrochemical cells.

  10. Influences of Temperature on the Conversion of Ammonium Tungstate Pentahydrate to Tungsten Oxide Particles with Controllable Sizes, Crystallinities, and Physical Properties

    Directory of Open Access Journals (Sweden)

    Asep Bayu Dani Nandiyanto

    2016-08-01

    Full Text Available The purpose of this study was to investigate influences of temperature on the conversion of ammonium tungstate pentahydrate (ATP powder to tungsten trioxide (WO3 particles with controllable sizes, crystallinities, and physicochemical properties. In this study, we used a simple thermal decomposition method. In the experimental procedure, we explored the effect of temperature on the physicochemical properties of ATP by testing various heating temperatures (from 100 to 900 °C. The heated ATP samples were then characterized by a physical observation (i.e. color and various analysis methods (i.e. a thermal gravimetric and differential thermal analysis, infrared spectroscopy, an X-ray diffraction, and a scanning electron microscope. Experimental results showed that increases in temperature had an impact to the decreases in particle size, the change in material crystallinity, and the change in physical properties (e.g. change of color from white, orange, to yellowish green. The relationships between the reaction temperatures and the physicochemical properties of the ATP were also investigated in detail along with the theoretical consideration and the proposal of the WO3 particle formation mechanism. In simplification, the phenomena can be described into three zones of temperatures. (1 Below 250 °C (release of water molecules and some ammonium ions.; (2 At 250-400 °C (release of water molecules and ammonium ions, restructurization of tungsten and oxygen elements, and formation of amorphous tungsten trioxide. (3 At higher than 400 °C (crystallization of tungsten trioxide. Since ATP possessed reactivity on temperature, its physicochemical properties changing could be observed easily, and the experimental procedure could be done easily. The present study will benefit not only for “chemistry and material science” but also potentially to be used as a model material for explaining the thermal behavior of material to undergraduate students (suitable

  11. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxomethalates at Low Temperatures

    Science.gov (United States)

    Xuebing Zhao; Junyong Zhu

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuelcelI (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3PMo12O40 (PMo12) was used as the electron and...

  12. On the Interpretation of Low Temperature Calorimetry Data

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2008-01-01

    The effect of selected factors and phenomena on Low Temperature Calorimetry (LTC) results has been investigated, in order to determine the possibilities and limitations of using LTC for characterisation of the porosity of cement-based materials. LTC was carried out on a model material with mono......-sized pores of approximately 14 nm saturated with either distilled water or a sodium chloride solution, as well as on water, the salt solution, and an artificial pore solution, alone. It was found that supercooling is unavoidable during the liquid-solid phase transition, and that even at low temperature...... to limit transport of liquid, whereas heating should be undertaken at a low rate to limit the effect of non-equilibrium....

  13. Multiple temperature effects on up-conversion fluorescences of Er3+-Y b3+-Mo6+ codoped TiO2 and high thermal sensitivity

    Directory of Open Access Journals (Sweden)

    B. S. Cao

    2015-08-01

    Full Text Available We report multiple temperature effects on green and red up-conversion emissions in Er3+-Y b3+-Mo6+ codoped TiO2 phosphors. With increasing temperature, the decrease of the red emission from 4F9/2→4I15/2, the increase of green emission from 2H11/2→4I15/2 and another unchanged green emission from 4S3/2→4I15/2 were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (Smax and optimum operating temperature (Tmax are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  14. Mal-distribution of temperature in an industrial dual-bed reactor for conversion of CO2 to methanol

    International Nuclear Information System (INIS)

    Mirvakili, A.; Rahimpour, M.R.

    2015-01-01

    Design of dual type methanol reactor includes a gas cooled reactor for methanol synthesis. The gas cooled reactor faces with the problem of gas condensate formation and two phase flow in the practical operating conditions owing to a high temperature drop in the last 2 m of the reactor length. In this study, three strategies are proposed in order to prevent gas condensate formation in the gas cooled reactor which is designed based on dual type design. The first strategy is utilization of a partial condenser before the gas cooled reactor, the second strategy is injection of hot synthesis gas (HGS) to the last 2 m of the reactor and the third is warming the shell side of the reactor with steam in a jacket (JS) around the last 2 m of the reactor. Simulation results show that, the most effective strategy (ES) is application of a partial condenser to separate the methanol and water in the inlet of the gas cooled reactor by condensation. In ES, the dew point temperature in the porous media reduces via in-situ methanol and water removal at the inlet of the gas cooled reactor and gas temperature ascends along the length of the reactor. Moreover, methanol production enhances about 7.9% and CO 2 decreases 2.6% in ES rather than in the conventional methanol synthesis reactor (CR). The elimination of the gas condensate formation on one hand and enhancing the methanol production and decreasing CO 2 emission on the other hand can be considered as the superiority of the suggested ES to the CR and other strategies. - Graphical abstract: Schematic diagram of heating process in ES (self-heat recuperation technology). Display Omitted - Highlights: • Gas cooled reactor of dual type methanol faces with a significant problem. • Temperature drop in the last of the reactor increased drastically. • Temperature is less than dew point temperature in the porous media. • Methanol and water are condensed at the last of the reactor. • Self-heat recuperation technology is developed to

  15. Calibration on MEPDG Low Temperature Cracking Model and Recommendation on Asphalt Pavement Structures in Seasonal Frozen Region of China

    Directory of Open Access Journals (Sweden)

    Hongyan Ma

    2015-01-01

    Full Text Available In order to implement the Mechanistic-Empirical Pavement Design Guide (MEPDG to design and maintain asphalt pavements in China, it is necessary to calibrate transfer functions of distresses in MEPDG with local conditions, including traffics, environment, and materials as well as measured pavement distresses data in field. Comprehensive single factor sensitivity analyses of factors that influence thermal cracking of asphalt pavements were conducted utilizing the MEPDG low temperature cracking (LTC model. Additionally, multiple factor sensitivity analyses were carried out as well, based on which pavement structures with sound thermal cracking resistance were recommended for seasonal frozen regions in China. Finally, the field data of thermal cracks on typical asphalt pavements in China was utilized to calibrate the LTC model in MEPDG. An improvement was proposed on MEPDG LTC model, after which was applied, the predicted thermal cracking from MEPDG LTC model agrees well with measured thermal cracking in China.

  16. Development of a high temperature solar receiver for high-efficient thermionic conversion systems; Fukugo netsuden henkan system yo chokoon taiyo junetsuki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Umeoka, T.; Naito, H.; Yugami, H.; Arashi, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-27

    For thermionic conversion systems (TIC) using concentrated sunlight as heat source, the newly developed solar receiver was tested. Concentrated sunlight aims at the inner surface of the cavity type solar receiver. The emitter of TIC installed in the rear of the solar receiver is uniformly heated over 1700K by thermal radiation from the rear of the solar receiver, emitting thermion. Electric power is generated by collecting the thermion by collector. Mo is used as emitter material, however, because of poor heat absorption of Mo, high-absorptive TiC is used for heat absorption surface to heat Mo by thermal conduction from high-temperature TiC. Functionally gradient material (FGM) with an intermediate layer of gradient TiC/Mo ratios between TiC and Mo is used as emitter material. The emitter is thus uniformly heated at high temperatures of 1723{plus_minus}12K. As a result, the developed solar receiver is applicable to heat the emitter of TIC. Heat flux measurement at the graphite cavity clarified that cavity temperature of as high as 1780K and heat flow of 50W/cm{sup 2} are obtained at 4.7kW in input. 6 figs.

  17. Development of a highly efficient conversion electron Moessbauer spectroscopy (CEMS) detector for low temperature (xPb1-x)Te bilayers

    International Nuclear Information System (INIS)

    Pombo, Carlos Jose da Silva Matos

    2006-01-01

    The 57 Fe Moessbauer spectroscopy is a nuclear, non-destructive technique used for the investigation of structural, magnetic and hyperfine properties of several materials. It is a powerful tool in characterizing materials in physics, metallurgy, geology and biology field areas, especially magnetic materials, alloys and minerals containing Fe. Lately, the Conversion Electron Moessbauer Spectroscopy (CEMS) is widely used in making studies on ultra-thin magnetic films, as well as other nanostructured materials. In case of magnetic nanostructures, low temperature (LT) studies are especially important due to the possibility of dealing with superparamagnetic effects. In this work it was developed a CEMS measurement system for low temperatures ( R ) and an optical cryostat (Model SVT-400, Janis Research Co, USA), from which the project was originally conceived at the Applied Physics / Moessbauer spectroscopy Department from University of Duisburg-Essen, Germany. The LT-CEMS system was fully built, tested and successfully applied in a preliminary characterization of Fe/(Eu x Pb 1-x )Te(111) bilayers with use of a 15 angstrom, 57 Fe probe layer, with reasonable results at sample temperatures as low as 8 K. (author)

  18. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  19. EFFECT OF TEMPERATURE AND SPEED OF STIRRER TO BIODIESEL CONVERSION FROM COCONUT OIL WITH THE USE OF PALM EMPTY FRUIT BUNCHES AS A HETEROGENEOUS CATALYST

    Directory of Open Access Journals (Sweden)

    Luthfi Pratama

    2010-06-01

    Full Text Available Biodiesel synthesis by transesterification reaction of coconut oil with methanol by using ash of palm empty fruit bunches (EFB as base catalyst has been conducted. Sample of ash was prepared through heating, screening, reashing, and finally determining of potassium content. Sample of coconut oil was analyzed by GC-MS. A certain amount of ash was extracted in methanol with mixing for about 1 h at room temperature and a result was used for reaction of transesterification. The studied variables were effect of temperature and speed of stirrer. The composition of the methyl esters (biodiesel was analyzed using GC-MS and 1H NMR, whereas characters of biodiesel were analyzed using ASTM methods. The results showed that potassium content in ash of EFB could be extracted by methanol and it could be used as base catalyst in the biodiesel synthesis. The value increasing of both variables enhanced the biodiesel conversion. The properties of biodiesel were relatively conformed to specification of biodiesel.   Keywords: biodiesel, coconut oil, base catalyst, temperature, stirring

  20. Conversion disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000954.htm Conversion disorder To use the sharing features on this page, please enable JavaScript. Conversion disorder is a mental condition in which a person ...

  1. Mesoporous upconversion nanoparticles modified with a Tb(III) complex to display both green upconversion and down conversion luminescence for in vitro bioimaging and sensing of temperature

    International Nuclear Information System (INIS)

    Ge, Xiaoqian; Sun, Lining; Liu, Jinliang; Xu, Yanxia; Wei, Zuwu; Shi, Liyi; Dang, Song; Zhang, Hongjie

    2015-01-01

    A new multifunctional nanocomposite is described that displays both upconversion and down conversion luminescence. It is based on upconversion nanoparticles (UCNPs) with a mesoporous coating that is boned with a terbium(III) complex. The modified mesoporous nanocomposite was characterized by transmission electron microscopy, X-ray powder diffraction, nitrogen adsorption-desorption isotherms, and photoluminescence spectra. They display dual (green and red) fluorescence under 980-nm excitation, and green fluorescence under 365-nm excitation. Both emissions can be easily detected by bare eyes. The material has low cytotoxicity and good biocompatibility as proven by the methyl thiazolyltetrazolium (MTT) assay. The nanocomposite was successfully applied to upconversion luminescence based in-vitro confocal imaging of the cytosol of murine macrophage cells (RAW264.7), and this resulted in images of excellent contrast. In addition, the particles display strongly temperature-dependent luminescence in the range from 280 K to 330 K. (author)

  2. Modelling Chemical Kinetics of Soybean Oil Transesterification Process for Biodiesel Production: An Analysis of Molar Ratio between Alcohol and Soybean Oil Temperature Changes on the Process Conversion Rate

    Directory of Open Access Journals (Sweden)

    Maicon Tait

    2006-12-01

    Full Text Available A mathematical model describing chemical kinetics of transesterification of soybean oil for biodiesel production has been developed. The model is based on the reverse mechanism of transesterification reactions and describes dynamics concentration changes of triglycerides, diglycerides, monoglycerides, biodiesel, and glycerol production. Reaction rate constants were written in the Arrhenius form. An analysis of key process variables such as temperature and molar ratio soybean oil- alcohol using response surface analysis was performed to achieve the maximum soybean conversion rate to biodiesel. The predictive power of the developed model was checked for the very wide range of operational conditions and parameters values by fitting different experimental results for homogeneous catalytic and non-catalytic processes published in the literature. A very good correlation between model simulations and experimental data was observed.

  3. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.

    Science.gov (United States)

    Zhao, Xuebing; Zhu, J Y

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative study in LTC Combustion between a short HP EGR loop without cooler and a variable lift and duration system

    Energy Technology Data Exchange (ETDEWEB)

    Bression, Guillaume; Pacaud, Pierre; Soleri, Dominique; Cessou, Jerome [IFP (France); Azoulay, David [Renault Powertrain Div. (France); Lawrence, David [Mechadyne (United Kingdom); Doradoux, Laurent; Guerrassi, Noureddine [Delphi Diesel Systems (France)

    2008-07-01

    In order to reach future Diesel emission standards such as Euro 6 or Tier 2 Bin 5, NO{sub x} emissions need to be dramatically reduced. Advanced technologies and engine settings such as higher EGR rates, reduced compression ratio, EGR cooler and low-pressure EGR loop - depending on vehicle application - may help to reach this target whilst maintaining low CO{sub 2} emissions and fuel consumption. However, the resulting low combustion temperatures and the low air-fuel ratios lead to a significant increase in HC and CO emissions, especially during the start-up phase prior to catalyst light-off. Moreover, high levels of EGR make transient operation even more difficult. So HC-CO emissions and EGR transient operation represent two key issues that could limit the extension of this alternative combustion mode. Consequently, an in-depth investigation of a variable lift and duration (VLD) system was performed to overcome these problems on a 4-cylinder engine, which was also equipped with a dual HP-LP EGR loop. The VLD system tested in this paper produces a variable camshaft-operated exhaust valve re-opening, which is controlled by a hydraulic rotary actuator, ensuring quick and accurate regulation of the internal gas recirculation (IGR). By increasing gas temperature in the combustion chamber, this advanced technology allows us to reduce HC-CO emissions by 50% under 3 bar BMEP. Although efficient, this technology has to be compared with other solutions from a cost-to-value point of view. The aim of this paper is firstly to compare the double lift exhaust system with a short route high-performance EGR loop without cooler by quantifying their respective gains on steady state points of the NEDC cycle, then by evaluating their potential performances during transient conditions. With the short-route EGR, the potential in HC-CO emission reduction remains significant on a large scale of engine temperatures representative of engine warm up. However, the VLD system allows us to

  5. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  6. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    Science.gov (United States)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  7. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate

    Directory of Open Access Journals (Sweden)

    Guang-Chao eYang

    2016-03-01

    Full Text Available CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in Carbon Dioxide Capture and Storage (CDCS facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form (0~90 mM with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  8. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses

    Science.gov (United States)

    Sobczyk, Marcin

    2013-04-01

    Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm

  9. Conversion frequence

    International Nuclear Information System (INIS)

    Sauteret, C.

    1987-03-01

    The experimental evidence of short wavelength for laser inertial confinement has strongly increased the interest in high efficiency harmonic conversion of powerful Nd: glass lasers. This work describes our high power harmonic conversion experiments performed using the same laser apparatus for doubling, tripling the three high power 1064 nm P102, OCTAL and PHEBUS lasers. In addition to the understanding the physics of harmonic conversion, this work includes the basic concepts allows us to improve the technique such as non colinear schemes, to extend this method to other frequencies (fourth generation) and to predict some physical limits [fr

  10. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    International Nuclear Information System (INIS)

    Hall, M.M. Jr.

    1993-01-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates

  11. Strategic conversation

    Directory of Open Access Journals (Sweden)

    Nicholas Asher

    2013-08-01

    Full Text Available Models of conversation that rely on a strong notion of cooperation don’t apply to strategic conversation — that is, to conversation where the agents’ motives don’t align, such as courtroom cross examination and political debate. We provide a game-theoretic framework that provides an analysis of both cooperative and strategic conversation. Our analysis features a new notion of safety that applies to implicatures: an implicature is safe when it can be reliably treated as a matter of public record. We explore the safety of implicatures within cooperative and non cooperative settings. We then provide a symbolic model enabling us (i to prove a correspondence result between a characterisation of conversation in terms of an alignment of players’ preferences and one where Gricean principles of cooperative conversation like Sincerity hold, and (ii to show when an implicature is safe and when it is not. http://dx.doi.org/10.3765/sp.6.2 BibTeX info

  12. Direct Conversion of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1964-01-01

    Topics include: direct versus dynamic energy conversion; laws governing energy conversion; thermoelectricity; thermionic conversion; magnetohydrodynamic conversion; chemical batteries; the fuel cell; solar cells; nuclear batteries; and advanced concepts including ferroelectric conversion and thermomagnetic conversion.

  13. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2014-01-01

    Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused...... compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited. (C) 2014 Elsevier B.V. All rights reserved....... by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement...

  14. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  15. Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.; Aerts-Bijma, Anita T.; Bohlke, John Karl; Gehre, Matthias; Geilmann, Heike; Groning, Manfred; Jansen, Henk G.; Meijer, Harro A. J.; Mroczkowski, Stanley J.; Qi, Haiping; Soergel, Karin; Stuart-Williams, Hilary; Weise, Stephan M.; Werner, Roland A.

    2009-01-01

    Internationally distributed organic and inorganic oxygen isotopic reference materials have been calibrated by six laboratories carrying out more than 5300 measurements using a variety of high-temperature conversion techniques (HTC) in an evaluation sponsored by the International Union of Pure and Applied Chemistry (IUPAC). To aid in the calibration of these reference materials, which span more than 125‰, an artificially enriched reference water (δ18O of +78.91‰) and two barium sulfates (one depleted and one enriched in 18O) were prepared and calibrated relative to VSMOW2 and SLAP reference waters. These materials were used to calibrate the other isotopic reference materials in this study, which yielded:Reference materialδ18O and estimated combined uncertainty IAEA-602 benzoic acid+71.28 ± 0.36‰USGS35 sodium nitrate+56.81 ± 0.31‰IAEA-NO-3 potassium nitrate+25.32 ± 0.29‰IAEA-601 benzoic acid+23.14 ± 0.19‰IAEA-SO-5 barium sulfate+12.13 ± 0.33‰NBS 127 barium sulfate+8.59 ± 0.26‰VSMOW2 water0‰IAEA-600 caffeine−3.48 ± 0.53‰IAEA-SO-6 barium sulfate−11.35 ± 0.31‰USGS34 potassium nitrate−27.78 ± 0.37‰SLAP water−55.5‰The seemingly large estimated combined uncertainties arise from differences in instrumentation and methodology and difficulty in accounting for all measurement bias. They are composed of the 3-fold standard errors directly calculated from the measurements and provision for systematic errors discussed in this paper. A primary conclusion of this study is that nitrate samples analyzed for δ18O should be analyzed with internationally distributed isotopic nitrates, and likewise for sulfates and organics. Authors reporting relative differences of oxygen-isotope ratios (δ18O) of nitrates, sulfates, or organic material should explicitly state in their reports the δ18O values of two or more internationally distributed nitrates (USGS34, IAEA-NO-3, and USGS35), sulfates (IAEA-SO-5, IAEA

  16. Conversion Disorder

    Directory of Open Access Journals (Sweden)

    Yacov Rofé

    2013-11-01

    Full Text Available Conversion disorder remains a mystery that has only become more complicated with the decline of the scientific status of psychoanalysis (e.g., Piper, Lillevik, & Kritzer, 2008; Rofé, 2008 and recent neurological findings suggest that this behavior is controlled by biological mechanisms (van Beilen, Vogt, & Leenders, 2010. Moreover, existing theories have difficulty explaining the efficacy of various interventions, such as psychoanalysis, behavior therapy, drug therapy and religious therapy. This article reviews research and clinical evidence pertaining to both the development and treatment of conversion disorder and shows that this seemingly incompatible evidence can be integrated within a new theory, the Rational-Choice Theory of Neurosis (RCTN; Rofé, 2010. Despite the striking differences, RCTN continues Freud's framework of thinking as it employs a new concept of repression and replaces the unconscious with self-deception. Moreover, it incorporates Freud's idea, implicitly expressed in his theory, that neurotic disorders are, in fact, rational behaviors.

  17. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  18. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  19. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  20. Textiles: Some technocal information and data II: Conversion factors, fibre properties, spinning limits, typical twist factors, weaving performannce and transfer printing temperatures.

    CSIR Research Space (South Africa)

    Hunter, L

    1978-07-01

    Full Text Available to compile some facts and figures which are often required in the textile industry. CONVERSION FACTORS AND OTHER DATA The trend throughout the world is towards the use of metric units, or more particularly the SI units. Some of the units commonly...

  1. Compound-specific hydrogen isotope analysis of fluorine-, chlorine-, bromine- and iodine-bearing organics using gas chromatography-chromium-based high-temperature conversion (Cr/HTC) isotope ratio mass spectrometry.

    Science.gov (United States)

    Renpenning, Julian; Schimmelmann, Arndt; Gehre, Matthias

    2017-07-15

    The conventional high-temperature conversion (HTC) approach towards hydrogen compound-specific isotope analysis (CSIA) of halogen-bearing (F, Cl, Br, I) organics suffers from incomplete H 2 yields and associated hydrogen isotope fractionation due to generation of HF, HCl, HBr, and HI byproducts. Moreover, the traditional off-line combustion of highly halogenated compounds results in incomplete recovery of water as an intermediary compound for hydrogen isotope ratio mass spectrometry (IRMS), and hence also leads to isotope fractionation. This study presents an optimized chromium-based high-temperature conversion (Cr/HTC) approach for hydrogen CSIA of various fluorinated, chlorinated, brominated and iodinated organic compounds. The Cr/HTC approach is fast, economical, and not affected by low H 2 yields and associated isotope fractionation. The performance of the modified gas chromatography/chromium-based high-temperature conversion (GC-Cr/HTC) system was monitored and optimized using an ion trap mass spectrometer. Quantitative conversion of organic hydrogen into H 2 analyte gas was achieved for all halogen-bearing compounds. The corresponding accuracy of CSIA was validated using (i) manual dual-inlet (DI)-IRMS after off-line conversion into H 2 , and (ii) elemental analyzer (EA)-Cr/HTC-IRMS (on-line conversion). The overall hydrogen isotope analysis of F-, Cl-, Br- and I-bearing organics via GC-Cr/HTC-IRMS achieved a precision σ ≤ 3 mUr and an accuracy within ±5 mUr along the VSMOW-SLAP scale compared with the measured isotope compositions resulting from both validation methods, off-line and on-line. The same analytical performance as for single-compound GC-Cr/HTC-IRMS was achieved compound-specifically for mixtures of halogenated organics following GC separation to baseline resolution. GC-Cr/HTC technology can be implemented in existing analytical equipment using commercially available materials to provide a versatile tool for hydrogen CSIA of halogenated and

  2. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  3. Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Tudose, I.V.; Vernardou, D.; Lygeraki, M.I.; Anastasiadis, S.H.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Photo-induced hydrophilicity of titanium dioxide makes this material one of the most suitable for various coating applications in antifogging mirrors and self-cleaning glasses. The field of functional titanium dioxide coatings is expanding rapidly not only in applications for glass but also in applications for polymer, metal and ceramic materials. The high hydrophilic surface of TiO 2 is interesting for understanding also the basic photon-related surface science of titanium dioxide. In doing so, it is inevitably necessary to understand the relationship between the photoreaction and the surface properties. In this work, photo-induced hydrophilic conversion was evaluated on amorphous pure and niobium oxide-doped titanium dioxide thin films on Corning 1737F glass grown by dc magnetron sputtering technique at room temperature. This study is focused on the influence of the Ar:O ratio during sputtering plasma deposition on thin film surface morphology and subsequent photo-induced hydrophilic conversion results. Structural characterization carried out by X-ray diffraction and atomic force microscopy (AFM) has shown that our films are amorphous and extremely smooth with a surface roughness bellow 1 nm. Contact angle measurements were performed on as-deposited and during/after 10 min UV exposure. We present evidence that the photo-induced hydrophilic conversion of film surface is directly correlated with surface morphology and can be controlled by growth conditions

  4. Benefits of Silica Core-Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles.

    Science.gov (United States)

    Savchuk, Oleksandr A; Carvajal, Joan J; Cascales, C; Aguiló, M; Díaz, F

    2016-03-23

    We studied the temperature-dependent luminescence of GdVO4 nanoparticles co-doped with Er(3+) (1 mol %) and Yb(3+) (20 mol %) and determined their thermal sensing properties through the fluorescence intensity ratio (FIR) technique. We also analyzed how a silica coating, in a core-shell structure, affects the temperature sensing properties of this material. Spectra were recorded in the range of biological temperatures (298-343 K). The absolute sensitivity for temperature determination calculated for the core-shell nanoparticles is double the one calculated for bare nanoparticles, achieving a thermal resolution of 0.4 K. Moreover, silica-coated nanoparticles show good dispersibility in different solvents, such as water, DMSO, and methanol. Also, they show good luminescence stability without interactions with solvent molecules. Furthermore, we also observed that the silica coating shell prevents progressive heating of the nanoparticles during prolonged excitation periods with the 980 nm laser, preventing effects on their thermometric applications.

  5. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    Martine, J.F.; Siband, P.; Bonhomme, R.

    1999-01-01

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m -2 ·d -1 ), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author) [fr

  6. Temperature-controlled down-conversion luminescence behavior of Eu3+ -doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics.

    Science.gov (United States)

    Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F

    2017-03-01

    Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4  K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.

  7. The effects of light curing units and environmental temperatures on C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C conversion of commercial and experimental bonding agents.

    Science.gov (United States)

    Jafarzadeh-Kashi, Tahereh Sadat; Erfan, Mohmmad; Kalbasi, Salmeh; Ghadiri, Malihe; Rakhshan, Vahid

    2014-10-01

    Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA. Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode). The EP (%) was measured using differential scanning calorimetry, and analyzed using the t-test, two- and three-way analyses of variance (ANOVA), and the Bonferroni test (α = 0.05). There were significant differences between the EP results between the two BAs (P = 0.012) and due to the different temperatures (P = 0.001), but not between the different light-curing units (P = 0.548). The interaction between BA and temperature was significant (P light-curing units had similar effects on the EP. The EP values were better when curing was performed at human body temperature.

  8. Brønsted Acid Ionic Liquids (BAILs) as Efficient and Recyclable Catalysts in the Conversion of Glycerol to Solketal at Room Temperature

    DEFF Research Database (Denmark)

    Gui, Zhenyou; Zahrtmann, Nanette; Shunmugavel, Saravanamurugan

    2016-01-01

    Brønsted acid ionic liquids (BAILs) have been prepared and applied for the first time - to the best of our knowledge - as efficient catalysts in the acetylation of glycerol with acetone to form solketal ((2,2-dimethyl-1,3-dioxolan-4-yl)methanol) at very mild reaction conditions (room temperature...

  9. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  10. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  11. Novel silver-tubing method for quantitative introduction of water into high-temperature conversion systems for stable hydrogen and oxygen isotopic measurements.

    Science.gov (United States)

    Qi, Haiping; Gröning, Manfred; Coplen, Tyler B; Buck, Bryan; Mroczkowski, Stanley J; Brand, Willi A; Geilmann, Heike; Gehre, Matthias

    2010-07-15

    A new method to seal water in silver tubes for use in a TC/EA (thermal conversion/elemental analyzer) reduction unit using a semi-automated sealing apparatus can yield reproducibilities (1 standard deviation) of delta(2)H and delta(18)O measurements of 1.0 per thousand and 0.06 per thousand, respectively. These silver tubes containing reference waters may be preferred for the calibration of H- and O-bearing materials analyzed with a TC/EA reduction unit. The new sealing apparatus employs a computer-controlled stepping motor to produce silver tubes identical in length. The reproducibility of the mass of water sealed in tubes (in a range of 200-400 microg) can be as good as 1%. Approximately 99% of the sealed silver tubes are satisfactory (leak free). Although silver tubes sealed with reference waters are robust and can be shaken or heated to 110 degrees C with no loss of integrity, they should not be frozen because the expansion during the phase transition of water to ice will break the cold seals and all the water will be lost. The tubes should be shipped in insulated containers. This new method eliminates air inclusions and isotopic fractionation of water associated with the loading of water into capsules using a syringe. The method is also more than an order of magnitude faster than preparing water samples in ordinary Ag capsules. Nevertheless, some laboratories may prefer loading water into silver capsules because expensive equipment is not needed, but users of this method are cautioned to apply the necessary corrections for evaporation, back exchange with laboratory atmospheric moisture, and blanks. Copyright 2010 John Wiley & Sons, Ltd.

  12. EFFECT OF THE REDUCTION TEMPERATURE INTO CATALYTIC ACTIVITY OF Ni SUPPORTED BY TiO2, AL2O2 AND TiO2/AL2O3 FOR CONVERSION CO2 INTO METHANE

    Directory of Open Access Journals (Sweden)

    Hery Haerudin

    2010-06-01

    Full Text Available Nickel catalysts, containing 6% (w/w of nickel, have been prepared using TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9. The catalysts were used for CO2 conversion into methane. The characteristics of catalysts were studied by determination of its specific surface area, temperature programmed reaction technique and X-ray diffraction. The specific surface area were varied slightly by different temperature of reduction, namely after reduction at 300°C it was 39, 120 and 113 m2/g and after reduction at 400°C it was 42, 135  and 120 m2/g for 6% nickel catalysts supported on TiO2, Al2O3 and mixture of TiO2-Al2O3 (1:9 respectively. Temperature program reaction studies (TPO and TPR showed that NiTiOx species were possibly formed during the pretreatments which has shown by the shift of its peak to the lower temperature on Ni catalyst, that supported on mixture of TiO2-Al2O3 compared with catalysts supported on individual TiO2 or Al2O3. The nickel species on reduced Ni catalysts supported on TiO2 and on mixture of TiO2-Al2O3 could be detected by X-ray diffraction. The catalyst's activities toward CH4 formation were affected by the reduction temperature. Activity for CH4 formation was decreased in the following order: Ni/ TiO2 > Ni/ TiO2: Al2O3 > Ni/ Al2O3 and Ni/ TiO2: Al2O3 > Ni/ TiO2> Ni/ Al2O3, when catalysts were reduced at 300°C or 400°C respectively. The CO2 conversion was decreased in the following order: Ni/ Al2O3 > Ni/ TiO2: Al2O3 > Ni/ TiO2 when catalysts were reduced at 300°C or 400°C respectively.   Keywords: nickel catalyst, carbondioxide, methane

  13. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  14. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  15. Physics of energy conversion

    International Nuclear Information System (INIS)

    Rax, Jean-Marcel

    2015-01-01

    This book gathers courses on the physics of energy conversion proposed in France and abroad, and mainly in the Orsay Faculty of Science and in the Ecole Polytechnique. It more particularly addresses the study of concepts and methods related to the physics of irreversible processes, within a perspective of identification and analysis of mechanisms of entropy production, and the description and physical analysis of principles and limitations of magneto-hydrodynamic, thermoelectric, thermo-ionic, photovoltaic and electrochemical generators. The chapters address the following issues and themes: conversion and dissipation (conservation and conversion, collisions, fluctuations and transport), energy and entropy (conservation and evolution, Boltzmann and Gibbs factors), Markovian evolutions (Markovian processes, energy conversion and transitions, Boltzmann and Fokker-Planck kinetic equations), dissipative flows (thermodynamic flows and forces, energy conversion and linear transport), heat and chemical engines (Carnot heat engine, Van't Hoff heat engine, endo-reversible heat engines), magneto hydrodynamic conversion (electro-hydrodynamic conversion, Alfven-Saha plasma model, magneto-hydrodynamic coupling, Hall and Faraday converters), thermo-ionic conversion (Lorentz-Sommerfeld models of metals, Richardson-Dushman relationship, Langmuir and Schottky diodes), thermo-electric conversion (conventional semiconductor model, thermo-electric effects, thermo-electric engines), photovoltaic conversion (Planck model of heat radiation, photovoltaic conversion, photovoltaic P-N junction), and electrochemical conversion (Nernst model of redox equilibrium, over-voltage and polarizations, fuel cells)

  16. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  17. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  18. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Min, E-mail: miwu@byg.dtu.dk [Department of Civil Engineering, Technical University of Denmark, Building 118, 2800 Lyngby (Denmark); Johannesson, Björn [Department of Civil Engineering, Technical University of Denmark, Building 118, 2800 Lyngby (Denmark); Geiker, Mette [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim (Norway)

    2014-08-10

    Highlights: • Ionic concentrations in cement pore solution at freezing temperatures were simulated. • Effects of ions in determining pore sizes by low temperature calorimetry were studied. • Ions in cement pore solution affect the pore size determination to a limited extent. - Abstract: Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement pastes prepared by two types of cements, i.e., CEM I 32.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited.

  19. A preliminary study of the influence of ions in the pore solution of hardened cement pastes on the porosity determination by low temperature calorimetry

    International Nuclear Information System (INIS)

    Wu, Min; Johannesson, Björn; Geiker, Mette

    2014-01-01

    Highlights: • Ionic concentrations in cement pore solution at freezing temperatures were simulated. • Effects of ions in determining pore sizes by low temperature calorimetry were studied. • Ions in cement pore solution affect the pore size determination to a limited extent. - Abstract: Thermodynamic modeling was used to predict the ionic concentrations in the pore solution of cement pastes at different temperatures during a freezing and melting measurement in low temperature calorimetry (LTC) studies. By using the predicted ionic concentrations, the temperature depressions caused by the ions presented in the pore solution were determined. The influence of the freezing/melting point depression caused by the ions on the determined pore size distribution by LTC was demonstrated. Thermodynamic modeling using the program PHREEQC was performed on the cylinder and powder samples of cement pastes prepared by two types of cements, i.e., CEM I 32.5 R and CEM III/B 42.5 N. Using the modeled ionic concentrations, the calculated differential pore size distributions for the studied samples with and without considering the temperature depression caused by the ions in the pore solution were compared. The results indicate that for the studied cement paste samples, the influence of the temperature depression caused by the presence of the ions in the pore solution on the determination of the pore size distribution by LTC is limited

  20. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  1. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  2. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin

    2015-01-01

    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  3. Overview of fuel conversion

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1991-01-01

    The conversion of solid fuels to cleaner-burning and more user-friendly solid liquid or gaseous fuels spans many technologies. In this paper, the authors consider coal, residual oil, oil shale, tar sends tires, municipal oil waste and biomass as feedstocks and examine the processes which can be used in the production of synthetic fuels for the transportation sector. The products of mechanical processing to potentially usable fuels include coal slurries, micronized coal, solvent refined coal, vegetable oil and powdered biomall. The thermochemical and biochemical processes considered include high temperature carbide production, liquefaction, gasification, pyrolysis, hydrolysis-fermentation and anaerobic digestion. The products include syngas, synthetic natural gas, methanol, ethanol and other hydrocarbon oxygenates synthetic gasoline and diesel and jet engine oils. The authors discuss technical and economic aspects of synthetic fuel production giving particular attention and literature references to technologies not discussed in the five chapters which follow. Finally the authors discuss economic energy, and environmental aspects of synthetic fuels and their relationship to the price of imported oil

  4. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer

    Science.gov (United States)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Wang, Yuan-Ting

    2015-12-01

    We have demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a room temperature (RT) sputtered ZnO electron transport layer by adding fullerene (C60) interlayer. ZnO exhibits a better matched conduction band level with perovskite and Al work function and around energy offset of 2.2 eV between highest occupied molecular orbital level of CH3NH3PbI3 perovskite and valance band level of ZnO. However, the CH3NH3PbI3 perovskite layer will be damaged during direct RT sputtering deposition of ZnO. Therefore, the C60 interlayer having matched conduction band level with ZnO and CH3NH3PbI3 perovskite added between the CH3NH3PbI3 perovskite and RT sputtered ZnO layers for protection prevents sputtering damages on the CH3NH3PbI3 perovskite layer. The short-circuit current density (JSC, 19.41 mA/cm2) and open circuit voltage (VOC, 0.91 V) of the SCs with glass/ITO/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS)/perovskite/C60/RT sputtered ZnO/Al structure is higher than the JSC (16.23 mA/cm2) and VOC (0.90 V) of the reference SC with glass/ITO/PEDOT:PSS/perovskite/C60/bathocuproine (BCP)/Al structure. Although the SCs with the former structure has a lower fill factor (FF%) than the SCs with the latter structure, its conversion efficiency η% (10.93%) is higher than that (10.6%) of the latter.

  5. Dissenting in Reflective Conversations

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Boulus, Nina

    2011-01-01

    a methodological reflective approach that provides space for taking seriously uncertainties experienced in the field as these can be a catalyst for learning and sharpening our theoretical and empirical skills as action researchers. Through first-person inquiry, we investigate how our reflective conversations...... gradually evolved into second-person inquiry. We argue that enacting second-person reflective conversations renders alternative strategies for handling uncertainties through articulation of the tacit assumptions within particular empirical situations. Finally, we argue that reflective conversations should...

  6. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  7. Conversation et Television (Conversation and Television)

    Science.gov (United States)

    Vadde, Jean-Pierre

    1977-01-01

    Czechosovakian television has just presented a series of French Conversation Classes using audiovisual techniques and starring Czech actors and actresses. The setting of each dialog is in Czechoslovakia, and the situations are those in which a Czech would use French in his or her native land. (Text is in French.) (AMH)

  8. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  9. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  10. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  11. The Conversation Class

    Science.gov (United States)

    Jackson, Acy L.

    2012-01-01

    The conversation class occupies a unique place in the process of learning English as a second or foreign language. From the author's own experience in conducting special conversation classes with Persian-speaking adults, he has drawn up a number of simple but important guidelines, some of which he hopes may provide helpful suggestions for the…

  12. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  13. Conversion efficiency improvement of inverted CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells with room temperature sputtered ZnO by adding the C{sub 60} interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wei-Chih, E-mail: weilai@mail.ncku.edu.tw; Chen, Peter [Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, Kun-Wei; Wang, Yuan-Ting [Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (China); Guo, Tzung-Fang, E-mail: guotf@mail.ncku.edu.tw [Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2015-12-21

    We have demonstrated the performance of inverted CH{sub 3}NH{sub 3}PbI{sub 3} perovskite-based solar cells (SCs) with a room temperature (RT) sputtered ZnO electron transport layer by adding fullerene (C{sub 60}) interlayer. ZnO exhibits a better matched conduction band level with perovskite and Al work function and around energy offset of 2.2 eV between highest occupied molecular orbital level of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite and valance band level of ZnO. However, the CH{sub 3}NH{sub 3}PbI{sub 3} perovskite layer will be damaged during direct RT sputtering deposition of ZnO. Therefore, the C{sub 60} interlayer having matched conduction band level with ZnO and CH{sub 3}NH{sub 3}PbI{sub 3} perovskite added between the CH{sub 3}NH{sub 3}PbI{sub 3} perovskite and RT sputtered ZnO layers for protection prevents sputtering damages on the CH{sub 3}NH{sub 3}PbI{sub 3} perovskite layer. The short-circuit current density (J{sub SC}, 19.41 mA/cm{sup 2}) and open circuit voltage (V{sub OC}, 0.91 V) of the SCs with glass/ITO/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS)/perovskite/C{sub 60}/RT sputtered ZnO/Al structure is higher than the J{sub SC} (16.23 mA/cm{sup 2}) and V{sub OC} (0.90 V) of the reference SC with glass/ITO/PEDOT:PSS/perovskite/C{sub 60}/bathocuproine (BCP)/Al structure. Although the SCs with the former structure has a lower fill factor (FF%) than the SCs with the latter structure, its conversion efficiency η% (10.93%) is higher than that (10.6%) of the latter.

  14. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  15. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  16. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  17. Postoperative conversion disorder.

    Science.gov (United States)

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...... of design. Three distinctions are drawn through which to develop this discussion of models in an architectural context. An examination of these distinctions serves to nuance particular characteristics and roles of models, the modelling activity itself and those engaged in it....

  19. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  20. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  1. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  2. Direct energy conversion

    International Nuclear Information System (INIS)

    Chalupa, Z.; Kramar, J.

    1975-01-01

    The current state of research of direct energy conversion is briefly discussed and a more detailed description is given of MHD and thermionic energy conversion. Current and prospective values of characteristic variables of various energy conversion methods are listed. MHD generators produce terminal voltage of the same order as turbogenerators while other generators for direct energy conversion only produce voltages of 0.1 to 1.5 V so that the respective elements must be parallel-connected. From the point of view of current density, thermionic conversion having the emitter surface value in the order of 10 A/cm 2 ranks first. As for MHD generators, main attention is devoted to open-cycle generators with combustion products as the working medium. It is envisaged that after 1980 MHD power plants will be commissioned having an electric output of up to 500 MW. By 1990, the construction should be started of basic MHD power plants with a total thermal efficiency of about 55%. The research of thermionic conversion focused on practical applications has mainly been concentrated on nuclear power converters. Nuclear or isotope converters have already been built and used in a number of specific applications as low-power sources, e.g., in space exploration, etc. Preparations are under way for applying high-power sources in telecommunication satellites (USSR, USA). (Z.S.)

  3. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  4. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  5. Maximum conversion efficiency of thermionic heat to electricity ...

    African Journals Online (AJOL)

    ... for a Pure Tungsten, W metal surface. The results show that low value of collector voltage is required for a high efficiency; low radiation heat loss is required for a high conversion efficiency and relatively low values of emitter work function are required for maximum conversion efficiency at ordinary emitter temperature.

  6. Freely flowing conversations

    DEFF Research Database (Denmark)

    Aakjær, Marie Kirstejn; Andrade, David; Dexters, Peter

    the following referred to as UDI) effort was launched in 2008 as an attempt to improve prison life by inviting inmates to participate in organizational development together with staff. The effort has improved prisons by decreasing tension between inmates and guards and by creating more meaningful jobs...... relations by changing conversations. Through the theoretical framework of the complexity approach, we discuss how this may lead to organizational change. Finally we suggest that inviting inmates to take part in conversations about core organizational development may be a fundamental strategy in trying...

  7. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  8. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  9. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...... singular points nor closed orbits. In this paper, we redefine the standard notion of safety to comply with dynamical systems with multiple singular elements. Hereafter, we prove the converse barrier certificate theorems and highlight the differences between our results and previous work by a number...

  10. Internal conversion of gamma radiation

    International Nuclear Information System (INIS)

    Dragoun, O.

    1982-01-01

    The process of the gamma-ray internal conversion is reviewed. The principle of the calculations of the internal conversion coefficients is outlined and methods of conversion electron measurements are described. The extensive utilization of internal conversion in nuclear physics, as well as several applications in chemistry and solid state physics are also discussed. (author)

  11. Leadership is a conversation.

    Science.gov (United States)

    Groysberg, Boris; Slind, Michael

    2012-06-01

    Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.

  12. Physics of energy conversion

    CERN Document Server

    Krischer, Katharina

    2015-01-01

    Covers the physical basis of the most important energy conversion processes used for energy supply. Provides the fundamentals and a scientific understanding of the physics behind thermal power plants, solar cells and power plants, batteries and fuels cells as well as energy storage devices.

  13. Predicting AD conversion

    DEFF Research Database (Denmark)

    Liu, Yawu; Mattila, Jussi; Ruiz, Miguel �ngel Mu�oz

    2013-01-01

    To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI...

  14. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  15. Our Digital Conversion

    Science.gov (United States)

    Edwards, Mark

    2012-01-01

    In this article, the author describes their digital conversion initiative at Mooresville Graded School District. The project has placed a MacBook Air laptop in the hands of every 3rd through 12th grader and their teachers in the district over the past four years, with over 5,000 computers distributed. But they believe their academic successes have…

  16. Conversational English Program, 1.

    Science.gov (United States)

    Instituto de Idiomas Yazigi, Sao Paulo (Brazil). Centro de Linguistica Aplicada.

    This first book of a conversational English program for adults contains an introductory section in Portuguese and exercises in English. The text centers around an English-speaking family from the United States that goes to live in Brazil. It contains color photographs with captions followed by exercises. The exercises are in English and involve…

  17. Conversational English Program, 2.

    Science.gov (United States)

    Instituto de Idiomas Yazigi, Sao Paulo (Brazil). Centro de Linguistica Aplicada.

    This second book of a conversational English program for adults contains an introductory section in Portuguese and exercises in English. The text centers around an English-speaking family from the United States that goes to live in Brazil. It contains color photographs with captions followed by exercises. The exercises are in English and involve…

  18. Conversational Involvement and Loneliness.

    Science.gov (United States)

    Bell, Robert A.

    1985-01-01

    Assessed the relationship of conversational involvement and loneliness among college students. Found that lonely participants in this study had lower rates of talkativeness, interruptions, and attention than the nonlonely; they were also perceived as less involved and less interpersonally attractive. (PD)

  19. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  20. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  1. Kinetics of Scheelite Conversion in Sulfuric Acid

    Science.gov (United States)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.

  2. Clinical linguistics: conversational reflections.

    Science.gov (United States)

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  3. Conversations with Miss Jane

    Directory of Open Access Journals (Sweden)

    Geneviève Fabre

    2006-05-01

    Full Text Available Considering the wide range of conversations in the autobiography, this essay will attempt to appraise the importance of these verbal exchanges in relation to the overall narrative structure of the book and to the prevalent oral tradition in Louisiana culture, as both an individual and communal expression. The variety of circumstances, the setting and staging, the interlocutors , and the complex intersection of time and place, of stories and History, will be examined; in these conversations with Miss Jane many actors participate, from  the interviewer-narrator, to most characters; even the reader becomes involved.Speaking, hearing, listening, keeping silent is an elaborate ritual that performs many functions; besides conveying news or rumors, it imparts information on the times and on the life of a “representative” woman whose existence - spanning a whole century- is both singular and emblematic. Most importantly this essay will analyse the resonance of an eventful and often dramatic era on her sensibility and conversely show how her evolving sensibility informs that history and draws attention to aspects that might have passed unnoticed or be forever silenced. Jane’s desire for liberty and justice is often challenged as she faces the possibilities of life or death.Conversations build up a complex, often contradictory, but compelling portrait: torn between silence and vehemence, between memories and the urge to meet the future, Jane summons body and mind to find her way through the maze of a fast changing world; self-willed and obstinate she claims her right to speak, to express with wit and wisdom her firm belief in the word, in the ability to express deep seated convictions and faith and a whole array of feelings and emotions.

  4. Molecular spin conversion in solid deuterated methane.

    Science.gov (United States)

    Stachowiak, Piotr

    2011-02-28

    The spin conversion of methane molecules in pure deuterated methane crystals and CD(4)-Kr solid solution for a wide range of concentrations of krypton was investigated in the temperature range 1.5-10 K. The experiment was performed by use of a steady-state heat flow experimental setup for determination of the thermal conductivity, utilized in an unconventional way. The obtained results were discussed in the frame of the spin conversion model taking into account direct one-phonon processes and indirect librationally-activated processes. It was found that the conversion, both for pure and krypton doped crystals, is dominated by the one-phonon mechanism. However, the importance of the indirect processes increases rapidly with the temperature. The obtained results indicate that the krypton admixture does not change the values of energy levels of the spin-librational (spin-rotational) spectrum of the crystal. The presence of Kr in the structure of CD(4) enhances the intensity of the direct one-phonon spin conversion processes and weakens the indirect librationally-activated ones.

  5. Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends

    International Nuclear Information System (INIS)

    Zhou, Nan; Huo, Ming; Wu, Han; Nithyanandan, Karthik; Lee, Chia-fon F.; Wang, Qingnian

    2014-01-01

    Highlights: • Combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends. • Feasibility of ABE to be blended directly with diesel in engine. • Conventional and low temperature combustion in constant volume chamber. • ABE–diesel blends can suppress the soot formation and achieve better combustion. - Abstract: The combustion characteristics of acetone–butanol–ethanol (ABE) and diesel blends were studied in a constant volume chamber under both conventional diesel combustion and low temperature combustion (LTC) conditions. In this work, 20 vol.% ABE without water (ABE20) was mixed with diesel and the vol.% of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The advantageous combustion characteristics of ABE-diesel include higher oxygen content which promotes soot oxidation compared to pure diesel; longer ignition delay and soot lift-off length allowing more air entrainment upstream of the spray jet thus providing better air–fuel mixing. Based on the analysis, it is found that at low ambient temperature of 800 K and ambient oxygen of 11%, ABE20 presented close-to-zero soot luminosity with better combustion efficiency compared to D100 suggesting that ABE, an intermediate product during ABE fermentation, is a very promising alternative fuel to be directly used in diesel engines especially under LTC conditions. Meanwhile, ABE–diesel blends contain multiple components possessing drastically different volatilities, which greatly favor the occurrence of micro-explosion. This feature may result in better atomization and air–fuel mixing enhancement, which all contribute to the better combustion performance of ABE20 at LTC conditions

  6. Conversion of Questionnaire Data

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC and A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC and A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC and A tasks performed in the facility. If a specific material protection, control, and accountability (MPC and A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC and A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC and A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A

  7. Direct conversion of algal biomass to biofuel

    Science.gov (United States)

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  8. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  9. The FLIC conversion codes

    International Nuclear Information System (INIS)

    Basher, J.C.

    1965-05-01

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  10. Moodle 20 Course Conversion

    CERN Document Server

    Wild, Ian

    2011-01-01

    With clear instructions and plenty of screenshots, this book provides all the support and guidance you will need as you begin to convert your teaching to Moodle. Step-by-step tutorials use real-world examples to show you how to convert to Moodle in the most efficient and effective ways possible. Moodle Course Conversion carefully illustrates how Moodle can be used to teach content and ideas and clearly demonstrates the advantages of doing so. This book is for teachers, tutors, and lecturers who already have a large body of teaching material and want to use Moodle to enhance their course, rathe

  11. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  12. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  13. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  14. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    with the production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were....... The synthesis of these by the cycloaddition of ethylene to furanic compounds, followed by dehydrative aromatization, was demonstrated in good yields, using a strong Brønsted acidic catalyst, WOx/ZrO2. As both ethylene and furanics can be derived from carbohydrates by known processes, this constitutes...

  15. A Blogal Conversation

    OpenAIRE

    García Landa, José Ángel

    2009-01-01

    Reseña, en español, de BLOGS: A GLOBAL CONVERSATION, de James Torio, sobre la revolución en las comunicaciones de los blogs, las redes sociales y la Web 2.0, y sus implicaciones para las estrategias de márketing, en especial la nueva disponibilidad de nuevos nichos de márketing en la economía de la larga cola, así como la transformación de las estrategias de imagen y relaciones públicas de las empresas.

  16. Resonant interaction of a single atom with single photons from a down-conversion source

    Science.gov (United States)

    Schuck, C.; Rohde, F.; Piro, N.; Almendros, M.; Huwer, J.; Mitchell, M. W.; Hennrich, M.; Haase, A.; Dubin, F.; Eschner, J.

    2010-01-01

    We observe the interaction of a single trapped calcium ion with single photons produced by a narrow-band, resonant down-conversion source [A. Haase , Opt. Lett. 34, 55 (2009)], employing a quantum jump scheme. Using the temperature dependence of the down-conversion spectrum and the tunability of the narrow source, absorption of the down-conversion photons is quantitatively characterized.

  17. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  18. Methanol-to-hydrocarbons conversion over MoO3/H-ZSM-5 catalysts prepared via lower temperature calcination: a route to tailor the distribution and evolution of promoter Mo species, and their corresponding catalytic properties.

    Science.gov (United States)

    Liu, Bonan; France, Liam; Wu, Chen; Jiang, Zheng; Kuznetsov, Vladimir L; Al-Megren, Hamid A; Al-Kinany, Mohammed; Aldrees, Saud A; Xiao, Tiancun; Edwards, Peter P

    2015-09-01

    A series of MoO 3 /H-ZSM-5 (Si/Al = 25) catalysts were prepared via calcination at a lower-than-usual temperature (400 °C) and subsequently evaluated in the methanol-to-hydrocarbon reaction at that same temperature. The catalytic properties of those catalysts were compared with the sample prepared at the more conventional, higher temperature of 500 °C. For the lower temperature preparations, molybdenum oxide was preferentially dispersed over the zeolite external surface, while only the higher loading level of MoO 3 (7.5 wt% or higher) led to observable inner migration of the Mo species into the zeolite channels, with concomitant partial loss of the zeolite Brønsted acidity. On the MoO 3 modified samples, the early-period gas yield, especially for valuable propylene and C 4 products, was noticeably accelerated, and is gradually converted into an enhanced liquid aromatic formation. The 7.5 wt% MoO 3 /H-ZSM-5 sample prepared at 400 °C thereby achieved a balance between the zeolite surface dispersion of Mo species, their inner channel migration and the corresponding effect on the intrinsic Brønsted acidity of the acidic zeolite. That loading level also possessed the highest product selectivity (after 5 h reaction) to benzene, toluene and xylenes, as well as higher early-time valuable gas product yields in time-on-stream experiments. However, MoO 3 loading levels of 7.5 wt% and above also resulted in earlier catalyst deactivation by enhanced coke accumulation at, or near, the zeolite channel openings. Our research illustrates that the careful adoption of moderate/lower temperature dispersion processes for zeolite catalyst modification gives considerable potential for tailoring and optimizing the system's catalytic performance.

  19. Apparatus and method for pyroelectric power conversion

    Science.gov (United States)

    Olsen, R.B.

    1984-01-10

    Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

  20. FY 1998 annual summary report on International Clean Energy Network Using Hydrogen Conversion (WE-NET) system technology. Subtask 6. Development of cryogenic temperature materials technologies; 1998 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 6 (teion zairyo gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Summarized herein are the cryogenic temperature materials technologies for the International Clean Energy Network Using Hydrogen Conversion (WE-NET) project, developed in FY 1998. The R and D programs have been implemented continuously since 1994. For stainless steel, the base and TIG weld metals were evaluated for their material characteristics in liquid hydrogen. The items investigated included the influences of hydrogen charge, 20% of stretch working on the base metal, welding methods, and ?-ferrite content on the characteristics. Fatigue strength of the base metal was found to increases as temperature decreases, but remain unchanged in a range from 20 to 77K. No significant difference was observed between 304L and 316L. For aluminum alloy, mechanical characteristics, centered by fatigue characteristics, were investigated for the base and weld metals. The sample of higher tensile strength showed a higher fatigue strength, at room temperature, 77 and 4K. The other tested items investigated included embrittlement characteristics in a hydrogen atmosphere, phase transformation, hydrogen diffusion and fracture toughness, for establishing the databases of cryogenic temperature materials. (NEDO)

  1. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  2. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO₂, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C₁₂{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO₂, allene, C₂–C₆ olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water

  3. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  4. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  5. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  6. Thermal Energy Conversion Branch

    Science.gov (United States)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  7. Hydrothermal conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D.

    2009-09-03

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of water and high energy consumption that it requires can be avoided. The main focus of this work was HTC process aiming at production of transportation fuel intermediates. For this study, a new experimental technique using quartz capillary batch reactors has been developed, allowing determination of the yields of gas, liquid and solid products, and their subsequent analysis. The study was performed using glucose, a biomass model compound, and complex feedstocks, wood and pyrolysis oil. Important HTC features have been studied such as, undesired char formation, deoxygenation, and mechanism and kinetics of formation of different lumped product classes. Special attention is also given to products of the initial glucose decomposition and the kinetics of their formation. Complete mass and elemental balances obtained in this work significantly complement the literature findings on the reaction mechanism of HTC. Two distinct mechanisms of char formation are identified and two mechanisms of deoxygenation (dehydration and decarboxylation) are discussed. The observed trends in the product formation rates and yields are used to obtain an engineering reaction model for decomposition of glucose, which can be adapted for the use with complex feedstocks. Finally, a bench scale continuous reactor setup for HTC is proposed and several features of the setup have been tested separately in cold-flow, such as, feeding of biomass water slurries with a piston autoclave and a lifting fluidized bed, heat transfer, fluid bed operation and state of mixing of liquid and solid phases in continuous operations.

  8. The Role of Conversation Policy in Carrying Out Agent Conversations

    International Nuclear Information System (INIS)

    Link, Hamilton E.; Phillips, Laurence R.

    1999-01-01

    Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word ''policy'' connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification

  9. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  10. Paradoxical therapy in conversion disorder

    OpenAIRE

    ATAOĞLU, Ahmet

    1998-01-01

    Paradoxical therapy consists of suggesting that the patient intentionally engages in the unwanted behaviour, such as performing complusive ritual or bringing on a conversion attack. In this study paradoxical intention (PI) was used with to half of the patients with conversion disorders, while the other half were treated with diazepam in order to examine the efficiency of the PI versus diazepam in conversion disorder. Patients treated with PI appeared to have a greater improvement r...

  11. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  12. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  13. Nanomaterials for photovoltaic conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Ltaief, A.; Barlier, V.; Boiteux, G.; Bouazizi, A.

    2008-01-01

    A promising route for photovoltaic conversion has emerged from the combination of electroactive nanomaterials and small bandgap polymers. The formation of bulk heterojunctions resulting from the extended interfaces leads to efficient dissociation of the charge pairs generated under sunlight shown by the rapid extinction of the polymer photoluminescence for increasing contents of fullerenes or TiO 2 nanoparticles in MEH-PPV or PVK. Unconventional elaboration routes of the blends have been developed to increase the nanofiller dispersion and inhibit phase separation at high concentration. The size reduction of the acceptor domains led to a complete quenching of the radiative recombinations, obtained by specific solvent processing of MEH-PPV / C 60 nanocomposites or sol gel elaboration of TiO 2 nanoparticles in a PVK film. A simultaneous increase of the photocurrents could be achieved by the dispersion and size optimisation of the nanofillers. In situ generation of silver particles in MEH-PPV provides an example of enhanced charge separation induced by the plasmon resonance at the metal/polymer interface. The strong influence of the molecular morphology on the nanocomposite properties emphasizes the large improvements which can still be gained on the performances of organic solar cells

  14. GPU color space conversion

    Science.gov (United States)

    Chase, Patrick; Vondran, Gary

    2011-01-01

    Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.

  15. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  16. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudey, S.E.; Fedorak, P.M.

    1983-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. Previous work indicating that only phenol and p-cresol are readily fermented to methane has been confirmed along with the evidence of highly selective removal of these substrate mixtures. A quantitative method for measuring absolute quantities of methane produced has been refined and applied to draw and feed cultures maintained on phenol and p-cresol. Ultimate production stoichiometry from batch cultures has been measured and applied to draw and feed experiments to provide a valuable basis for predicting methane generation potential for these substrates. Oxidative pretreatment studies with peroxide and ozone have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Evaluation of alternate sources of anaerobic sources of anaerobic bacteria has not yet provided phenolic degradation potential beyond that available from the municipal digester sludge being used. Although mixed cultures of anaerobic bacteria have been sustained in draw and feed culture for over 15 months with phenol as sole carbon source, it has not been possible to isolate the phenol degraders in pure culture. 3 refs., 12 refs., 3 tabs.

  17. Conversing Life: An Autoethnographic Construction

    Science.gov (United States)

    Hoelson, Christopher N.; Burton, Rod

    2012-01-01

    This autoethnography is a constructed account of a co-exploration into the nature and effects of a longitudinal dyadic conversation process from a relational constructionist perspective. The conversations, between me as participant autoethnographer and a co-participant, aimed at maximising personal learning for both. Through co-created contexts of…

  18. Conversational Competence in Academic Settings

    Science.gov (United States)

    Bowman, Richard F.

    2014-01-01

    Conversational competence is a process, not a state. Ithaca does not exist, only the voyage to Ithaca. Vibrant campuses are a series of productive conversations. At its core, communicative competence in academic settings mirrors a collective search for meaning regarding the purpose and direction of a campus community. Communicative competence…

  19. [Neuropsychological assessment in conversion disorder].

    Science.gov (United States)

    Demır, Süleyman; Çelıkel, Feryal Çam; Taycan, Serap Erdoğan; Etıkan, İlker

    2013-01-01

    Conversion disorder is characterized by functional impairment in motor, sensory, or neurovegetative systems that cannot be explained by a general medical condition. Diagnostic systems emphasize the absence of an organic basis for the dysfunction observed in conversion disorder. Nevertheless, there is a growing body of data on the specific functional brain correlates of conversion symptoms, particularly those obtained via neuroimaging and neurophysiological assessment. The present study aimed to determine if there are differences in measures of cognitive functioning between patients with conversion disorder and healthy controls. The hypothesis of the study was that the patients with conversion disorder would have poorer neurocognitive performance than the controls. The patient group included 43 patients diagnosed as conversion disorder and other psychiatric comorbidities according to DSM-IV-TR. Control group 1 included 44 patients diagnosed with similar psychiatric comorbidities, but not conversion diosorder, and control group 2 included 43 healthy individuals. All participants completed a sociodemographic questionnaire and were administered the SCID-I and a neuropsychological test battery of 6 tests, including the Serial Digit Learning Test (SDLT), Auditory Verbal Learning Test (AVLT), Wechsler Memory Scale, Stroop Color Word Interference Test, Benton Judgment of Line Orientation Test (BJLOT), and Cancellation Test. The patient group had significantly poorer performance on the SDLT, AVLT, Stroop Color Word Interference Test, and BJLOT than both control groups. The present findings highlight the differences between the groups in learning and memory, executive and visuospatial functions, and attention, which seemed to be specific to conversion disorder.

  20. Tree value conversion standards revisited

    Science.gov (United States)

    Paul S. DeBald; Martin E. Dale; Martin E. Dale

    1991-01-01

    Updated tree value conversion standards (TVCS) are presented for 12 important hardwood species of the oak-hickory forest. These updated standards-developed for each species by butt-log grade, merchantable height, and diameter at breast height-reflect the changes in lumber prices and in conversion costs which have occurred since 1976 when the original TVCS were...

  1. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    hydro-to-electric power system, which is being strongly recognized as a unique and unconventional renewable energy solution, is the marine and hydrokinetic energy conversion technology [8]. Hydrokinetic (In Stream, or water current) energy conversion implies the utilization of the kinetic energy of rivers, streams, tidal ...

  2. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Andreas Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  3. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudy, S.E.; Fedorak, P.M.

    1984-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. A method for measuring absolute quantities of methane produced has been refined and applied to cultures maintained on both phenol and p-cresol. Oxidative treatment studies have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Long-term experiments conclusively demonstrated the capability of anaerobic cultures to degrade m-cresol; presence of phenol and p-cresol was found to enhance this capability by shortening acclimation. Other long-term experiments indicated that the anaerobic degradability of o-cresol remains in doubt. The kinetics of phenol degradation in batch cultures containing various initial concentrations was also studied; at 43-199 mg/l levels, the final removal rates followed first order kinetics. Molecular hydrogen was identified as a possible limiting factor to the initiation of phenol degradation, and findings suggested phenol degraders prefer propionate over phenol as a substrate. A most probable number method, used for enumerating phenol degraders, estimated numbers too low to account for observed degradation rates, consistent with the hypothesis that phenol degradation depends on a consortium of organisms. Batch cultures could selectively degrade fermentable phenolics (mixed with non-fermentable ones) if the total phenolic concentration was near or below 700 mg/l. As other work has shown that fermentables comprise the majority of coal wastewater phenolics, such waters would be amenable to anaerobic biological treatment. 27 refs., 23 figs., 10 tabs.

  4. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    Science.gov (United States)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  5. Cooperative conversations. The effect of cooperative learning on conversational interaction.

    Science.gov (United States)

    Miller, K J

    1995-03-01

    An ongoing challenge for educators of deaf and hard-of-hearing students is to find opportunities for students to use their language skills in a functional way, that is, through conversation. This study was initiated to determine whether cooperative learning is a viable means of encouraging mainstreamed hard-of-hearing students to engage in conversational interaction with their hearing peers and teachers. A single-subject design utilizing three mainstreamed hard-of-hearing subjects attending middle school was used to examine this question. Results of the study indicated that cooperative learning positively influenced the conversational turns, initiations, moves, and mean length of turn in these hard-of-hearing subjects.

  6. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  7. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    catalysts, and two different experimental methods, namely, a batch system and a continuous flow system. In the batch reaction the process was carried out in the liquid phase using a gold catalyst and atmospheric air as the oxidant. Experiments were conducted at moderate pressures and temperatures (90-200 °C......, 30-45 bar) with an aqueous solution of ethanol. It was possible to produce acetic acid in yields above 90 %. Two different support materials were investigated (MgAl2O4 and TiO2) and there did not seem to be any significant effect in changing the support. The kinetics of the reaction was also...... the major product. In the continuous flow system, the oxidation reaction was carried out as a gas phase reaction using a vanadium based catalyst. For this series of experiments, a 50 wt% aqueous ethanol was oxidized with a diluted gas stream of O2 in helium, the reaction temperature and pressure were kept...

  8. Drivers of wetland conversion: a global meta-analysis.

    Directory of Open Access Journals (Sweden)

    Sanneke van Asselen

    Full Text Available Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability, mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors are also identified as important causes of various types of land change (e.g., deforestation, desertification. Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have

  9. Plasma Thermal Conversion of Methane to Acetylene

    International Nuclear Information System (INIS)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Detering, Brent Alan; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2002-01-01

    This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90-95% range with 2-4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging-diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described

  10. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  11. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  12. Petite fabrique de conversation francaise (Little Factory of French Conversation).

    Science.gov (United States)

    Dubroca, Danielle

    1987-01-01

    A technique using dialogues and realistic prose passages from the works of Georges Simenon and Simone de Beauvoir to teach French conversational skills at the college level is explained and illustrated. (MSE)

  13. Roadmap on optical energy conversion

    Science.gov (United States)

    Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang

    2016-07-01

    For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap

  14. Temperature-controlled formation of Anderson-type compounds and their conversion to [γ-Mo{sub 8}O{sub 26}]{sup 4-}-based variants using pendent ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ai-xiang; Li, Ting-ting; Tian, Yan; Ni, Huai-ping; Ji, Xue-bin; Liu, Jia-ni; Liu, Guo-cheng; Ying, Jun [Bohai Univ., Jinzhou (China). Dept. of Chemistry

    2017-10-01

    By tuning the reaction temperature, two Anderson- and two [γ-Mo{sub 8}O{sub 26}]{sup 4-}-based compounds decorated by pendent organic ligands, [Cu{sup II}{sub 9}(bpz){sub 2}(pz){sub 2}(H{sub 2}O){sub 24}]-[H{sub 2}(Cr(OH){sub 5}Mo{sub 6}O{sub 19}){sub 4}].11H{sub 2}O (1), [Cu{sup II}(bpz){sub 2}(H{sub 2}O){sub 2}(γ-H{sub 4}-Mo{sub 8}O{sub 26})].2H{sub 2}O (2), [Cu{sup II}{sub 2}(tea){sub 2}(H{sub 2}O){sub 6}(HCr(OH){sub 6}Mo{sub 6}O{sub 18}){sub 2}]. 6H{sub 2}O (3) and [Ag{sup I}(bpz)(H{sub 2}O)(γ-H{sub 4}Mo{sub 8}O{sub 26}){sub 0.5}] (4) (bpz=4-butyl-1H-pyrazole, pz=1H-pyrazole, tea=2-[1,2,4]triazol-4-yl-ethylamine), have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis, IR spectra and elemental analyses. In compound 1, there are two kinds of tri-nuclear Cu{sup II} clusters induced by bpz and pz ligands, respectively. Four Anderson-type anions are linked by these tri-nuclear clusters to form a ''W''-type subunit. In compound 2, the [Cu(bpz){sub 2}(H{sub 2}O){sub 2}]{sup 2+} subunits connect the γ-Mo{sub 8} anions to construct a chain. The remaining two non-coordinated N donors in [Cu(bpz){sub 2}(H{sub 2}O){sub 2}]{sup 2+} further link two adjacent γ-Mo{sub 8} anions through Mo-N bonds. In compound 3, there exists a bi-nuclear Cu{sup II} cluster [Cu{sub 2}(tea){sub 2}(H{sub 2}O){sub 6}]{sup 4+}. The discrete bi-nuclear Cu{sup II} clusters and the CrMo{sub 6} anions link each other through abundant hydrogen bonding interactions. In compound 4, the [Ag(bpz)(H{sub 2}O)]{sup +} subunits connect γ-Mo{sub 8} anions to build a zigzag chain. The chains are further fused by other [Ag(bpz)(H{sub 2}O)]{sup +} cations to form a grid-like layer. There still exist Mo-N bonds in 4. We also have investigated the electrochemical and photocatalytic properties of 1-4.

  15. Conversion of Abbandoned Military Areas

    Directory of Open Access Journals (Sweden)

    Daiva Marcinkevičiūtė

    2011-03-01

    Full Text Available The article analyses the situation of abandoned military sites, their value and significance of their conservation. It also reviews their impact on their environment and their potential in tourism, environmental, economic and social spheres. Further the positive experiences in military sites' conversion are studied. The importance of society's involvement in the conversions is discussed. The situation of XIX-XX age's military object's, the significance of their conservation and their potential in tourism market is separately analysed. The results of two researches are introduced, one of which inquires about the Lithuanian military objects' potential in tourism sphere, another one explores the possibilities of conversion. Article in Lithuanian

  16. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...... at the plane of the external image) which is denominated D2 and wherein D1 is larger than a second diameter D2 and wherein the telescope further comprises a third optical component (103) and a fourth optical component (104); arranged for re-imaging the first image into a second image of the back-focal plane...

  17. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...... component (100) has an entrance pupil with a first diameter D1, and an optical component system which is arranged for forming an external image (136) of the back-focal plane (132) of the objective optical component (100), which has a diameter (given by the diameter of a circle enclosing all optical paths...

  18. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...... component (101) has an entrance pupil with a first diameter D1, and an optical component system which is arranged for forming an first image (136) of the back-focal plane (132) of the objective optical component (100), which has a diameter (given by the diameter of a circle enclosing all optical paths...

  19. Thermoelectric power conversion in space

    International Nuclear Information System (INIS)

    Awaya, H.I.; Ewell, R.; Nesmith, B.; Vandersande, J.

    1990-01-01

    This paper discusses how thermoelectric power conversion systems have a broad potential for applicability to a large number of different classes of space missions. As research continues on thermoelectric materials, the potential for significantly improved performance is good. With research also occurring in the power conversion field to improve configurations and specific designs, thermoelectric power conversion continues to show great promise for near- and long-term space missions. The next generation of radioisotope thermoelectric generators will use a radiatively heated multicouple that incorporates 20 individual couples within a single cell

  20. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  1. Effective communication during difficult conversations.

    Science.gov (United States)

    Polito, Jacquelyn M

    2013-06-01

    A strong interest and need exist in the workplace today to master the skills of conducting difficult conversations. Theories and strategies abound, yet none seem to have found the magic formula with universal appeal and success. If it is such an uncomfortable skill to master is it better to avoid or initiate such conversations with employees? Best practices and evidence-based management guide us to the decision that quality improvement dictates effective communication, even when difficult. This brief paper will offer some suggestions for strategies to manage difficult conversations with employees. Mastering the skills of conducting difficult conversations is clearly important to keeping lines of communication open and productive. Successful communication skills may actually help to avert confrontation through employee engagement, commitment and appropriate corresponding behavior

  2. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  3. Conversational topics in transsexual persons.

    Science.gov (United States)

    Van Borsel, John; Cayzeele, Miet; Heirman, Eva; T'sjoen, Guy

    2014-06-01

    Abstract In general, speech language therapy for transsexual persons focuses on pitch and pitch variation and more recently also on resonance. Other communicative aspects are dealt with far less often, especially language. This study investigated to what extent conversational topics might need attention in therapy for transsexual persons. A total of 111 males, 116 females, 28 male-to-female and 18 female-to-male transsexuals were asked to indicate on a list with 34 topics how often they speak about each topic (never, sometimes, often) in conversations with males, with females and in a gender mixed group. Results showed that transsexual persons behave in accordance with the desired gender. However, they also tend to adopt a position depending on the gender of their conversational partner. It can be concluded that in general it is not necessary to pay attention to conversational topics in therapy for transsexual persons.

  4. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  5. A Conversation Well Worth Remembering

    Science.gov (United States)

    Woolven-Allen, John

    2009-01-01

    To mark the 200th anniversary of Charles Darwin's birth, a special event was held at Oxford, which included a "Conversation" between Professor Richard Dawkins and Bishop Richard Harries. Here we present a personal reminiscence of the event.

  6. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  7. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  8. Conversion factors and oil statistics

    International Nuclear Information System (INIS)

    Karbuz, Sohbet

    2004-01-01

    World oil statistics, in scope and accuracy, are often far from perfect. They can easily lead to misguided conclusions regarding the state of market fundamentals. Without proper attention directed at statistic caveats, the ensuing interpretation of oil market data opens the door to unnecessary volatility, and can distort perception of market fundamentals. Among the numerous caveats associated with the compilation of oil statistics, conversion factors, used to produce aggregated data, play a significant role. Interestingly enough, little attention is paid to conversion factors, i.e. to the relation between different units of measurement for oil. Additionally, the underlying information regarding the choice of a specific factor when trying to produce measurements of aggregated data remains scant. The aim of this paper is to shed some light on the impact of conversion factors for two commonly encountered issues, mass to volume equivalencies (barrels to tonnes) and for broad energy measures encountered in world oil statistics. This paper will seek to demonstrate how inappropriate and misused conversion factors can yield wildly varying results and ultimately distort oil statistics. Examples will show that while discrepancies in commonly used conversion factors may seem trivial, their impact on the assessment of a world oil balance is far from negligible. A unified and harmonised convention for conversion factors is necessary to achieve accurate comparisons and aggregate oil statistics for the benefit of both end-users and policy makers

  9. Computer code conversion using HISTORIAN

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kumakura, Toshimasa.

    1990-09-01

    When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)

  10. Modeling of flame lift-off length in diesel low-temperature combustion with multi-dimensional CFD based on the flame surface density and extinction concept

    Science.gov (United States)

    Azimov, Ulugbek; Kim, Ki-Seong; Bae, Choongsik

    2010-07-01

    Low-Temperature Combustion (LTC) is becoming a promising technology for simultaneously reducing soot and NOx emissions from diesel engines. LTC regimes are evaluated by the flame lift-off length - the distance from the injector orifice to the location of hydroxyl luminescence closest to the injector in the flame jet. Various works have been dedicated to successful simulations of lifted flames of a diesel jet by use of various combustion modeling approaches. In this work, flame surface density and flamelet concepts were used to model the diesel lift-off length under LTC conditions. Numerical studies have been performed with the ECFM3Z model, n-Heptane and diesel fuels to determine the flame lift-off length and its correlation with soot formation under quiescent conditions. The numerical results showed good agreement with experimental data, which were obtained from an optically accessible constant volume chamber and presented at the Engine Combustion Network (ECN) of Sandia National Laboratories. It was shown that at a certain distance downstream from the injector orifice, stoichiometric scalar dissipation rate matched the extinction scalar dissipation rate. This computed extinction scalar dissipation rate correlated well with the flame lift-off length. For the range of conditions investigated, adequate quantitative agreement was obtained with the experimental measurements of lift-off length under various ambient gas O2 concentrations, ambient gas temperatures, ambient gas densities and fuel injection pressures. The results showed that the computed lift-off length values for most of the conditions lay in a reasonable range within the quasi-steady lift-off length values obtained from experiments. However, at ambient temperatures lower than 1000 K, the lift-off length values were under-predicted by the numerical analysis. This may be due to the use of the droplet evaporation model as it is believed that evaporation has a strong effect on the lift-off length.

  11. Cellulose sulphuric acid as a biodegradable catalyst for conversion ...

    Indian Academy of Sciences (India)

    Cellulose sulphuric acid as a biodegradable catalyst for conversion of aryl amines into azides at room temperature under mild conditions. Firouzeh Nesmati Ali Elhampour. Volume 124 Issue 4 July 2012 ... Keywords. Cellulose sulphuric acid; aryl azides; diazotization; biodegradable. ... Supplementary Material. supp18.pdf ...

  12. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  13. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  14. Thermoelectric conversion efficiency in IV-VI semiconductors with reduced thermal conductivity

    Directory of Open Access Journals (Sweden)

    Akihiro Ishida

    2015-10-01

    Full Text Available Mid-temperature thermoelectric conversion efficiencies of the IV-VI materials were calculated under the Boltzmann transport theory of carriers, taking the Seebeck, Peltier, and Thomson effects into account. The conversion efficiency was discussed with respect to the lattice thermal conductivity, keeping other parameters such as Seebeck coefficient and electrical conductivity to the same values. If room temperature lattice thermal conductivity is decreased up to 0.5W/mK, the conversion efficiency of a PbS based material becomes as high as 15% with the temperature difference of 500K between 800K and 300K.

  15. Mechanisms of Ectopic Gene Conversion

    Directory of Open Access Journals (Sweden)

    P.J. Hastings

    2010-11-01

    Full Text Available Gene conversion (conversion, the unidirectional transfer of DNA sequence information, occurs as a byproduct of recombinational repair of broken or damaged DNA molecules. Whereas excision repair processes replace damaged DNA by copying the complementary sequence from the undamaged strand of duplex DNA, recombinational mechanisms copy similar sequence, usually in another molecule, to replace the damaged sequence. In mitotic cells the other molecule is usually a sister chromatid, and the repair does not lead to genetic change. Less often a homologous chromosome or homologous sequence in an ectopic position is used. Conversion results from repair in two ways. First, if there was a double-strand gap at the site of a break, homologous sequence will be used as the template for synthesis to fill the gap, thus transferring sequence information in both strands. Second, recombinational repair uses complementary base pairing, and the heteroduplex molecule so formed is a source of conversion, both as heteroduplex and when donor (undamaged template information is retained after correction of mismatched bases in heteroduplex. There are mechanisms that favour the use of sister molecules that must fail before ectopic homology can be used. Meiotic recombination events lead to the formation of crossovers required in meiosis for orderly segregation of pairs of homologous chromosomes. These events result from recombinational repair of programmed double-strand breaks, but in contrast with mitotic recombination, meiotic recombinational events occur predominantly between homologous chromosomes, so that transfer of sequence differences by conversion is very frequent. Transient recombination events that do not form crossovers form both between homologous chromosomes and between regions of ectopic homology, and leave their mark in the occurrence of frequent non-crossover conversion, including ectopic conversion.

  16. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  17. Conversion of glycerol to hydrogen rich gas.

    Science.gov (United States)

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas.

  18. Conversion chimique du gaz naturel Chemical Conversion of Natural Gas

    Directory of Open Access Journals (Sweden)

    Chaumette P.

    2006-11-01

    Full Text Available Dans cet article sont passés en revue les travaux de recherche et développement et les procédés existants dans le domaine de la conversion chimique du gaz naturel. Les deux voies possibles, conversion directe du méthane et conversion indirecte, via le gaz de synthèse, sont présentées. Tant la préparation d'hydrocarbures utilisables comme carburants, que celle des composés de bases pour la pétrochimie ou la chimie sont évoquées. L'accent est mis sur l'étape clé du développement de chaque procédé qui, selon le produit visé, consiste en la mise au point d'un nouveau système catalytique, en un changement de la technologie du réacteur, ou en la mise au point d'une section fractionnement moins complexe. This article reviews the research and development work and the existing processes in the area of chemical conversion of natural gas. The two possible methods, direct conversion of methane and indirect conversion via synthesis gas, are discussed. The preparation of hydrocarbons that can be used as fuels and the production of building blocks for the petrochemical and chemical industries are both dealt with. The accent is placed on the key step in developing each process. Depending on the target product, this key step consists in working out a new catalytic system, changing reactor technology or engineering a less complex fractionation section.

  19. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  20. Resonant interaction of a single atom with single photons from a down-conversion source

    International Nuclear Information System (INIS)

    Schuck, C.; Rohde, F.; Piro, N.; Almendros, M.; Huwer, J.; Mitchell, M. W.; Hennrich, M.; Haase, A.; Dubin, F.; Eschner, J.

    2010-01-01

    We observe the interaction of a single trapped calcium ion with single photons produced by a narrow-band, resonant down-conversion source [A. Haase et al., Opt. Lett. 34, 55 (2009)], employing a quantum jump scheme. Using the temperature dependence of the down-conversion spectrum and the tunability of the narrow source, absorption of the down-conversion photons is quantitatively characterized.

  1. Temperature influences on growth of aquatic organisms

    International Nuclear Information System (INIS)

    Coutant, C.C.; Suffern, J.S.

    1977-01-01

    Temperature profoundly affects the growth rates of aquatic organisms, and its control is essential for effective aquaculture. Characteristically, both low and high temperatures produce slow growth rates and inefficient food conversion, while intermediate temperature ranges provide rapid growth and efficient food conversion. Distinct, species-specific optimum temperatures and upper and lower temperatures of zero growth can often be defined. Thermal effects can be greatly modified by amounts and quality of food. These data not only provide the basis for criteria which maintain growth of wild organisms but also for effectively using waste heat to create optimal conditions of temperature and food ration for growing aquatic organisms commercially

  2. Theoretical efficiency limits for thermoradiative energy conversion

    Science.gov (United States)

    Strandberg, Rune

    2015-02-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  3. Four-body conversion of atomic helium ions

    International Nuclear Information System (INIS)

    de Vries, C.P.; Oskam, H.J.

    1980-01-01

    The conversion of atomic helium ions into molecular ions was studied in pure helium and in helium-neon mixtures containing between 0.1 at. % and 50 at. % neon. The experiments showed that the termolecular conversion reaction, He + +2He → He 2 + +He, is augmented by the four-body conversion reaction He + +3He → products, where the products could include either He 2 + or He 3 + ions. Conversion rate coefficients of (5.7 +- 0.8) x 10 -32 cm 6 sec -1 and (2.6 +- 0.4) x 10 -49 cm 9 sec -1 were found for the termolecular and four-body conversion reactions, respectively. In addition, rate coefficients for the following Ne + conversion reactions were measured: Ne + +He+He → (HeNe) + +He, (2.3 +- 0.1) x 10 -32 cm 6 sec -1 ; Ne + +He+Ne → (HeNe) + +Ne or Ne 2 + +He, (8.0 +- 0.8) x 10 -32 cm 6 sec -1 ; and Ne + +Ne+Ne → Ne 2 + +Ne, (5.1 +- 0.3) x 10 -32 cm 6 sec -1 . All rate coefficients are at a gas temperature of 295 K

  4. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  5. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  6. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...... component (100) has an entrance pupil with a first diameter D1, and an optical component system which is arranged for forming an external image (136) of the back-focal plane (132) of the objective optical component (100), which has a diameter (given by the diameter of a circle enclosing all optical paths...... at the plane of the 10 external image) which is denominated D2 and wherein D1 is larger than a second diameter D2....

  7. Keys to methane conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lange, J.P.; De Jong, K.P. [Shell Research, Koninklijke/Shell-Laboratorium, Amsterdam (Netherlands); Ansorge, J. [Shell Internationale Petroleum Maatschappij, The Hague (Netherlands); Tijm, P.J.A. [Shell International Gas Ltd, Shell Center, London (United Kingdom)

    1997-12-31

    Numerous process schemes have been put forward for converting methane to liquid hydrocarbon fuels. A proper selection and design of new or emerging methane conversion processes requires insight into the technical and economic issues that are critical for their viability. Three process requirements will be highlighted here, namely large plant scale, high thermal efficiency and low overall heat and momentum transfer duty. Since the overall heat and momentum transfer duty is strongly affected by the achievable yield per pass, the parameters which seem to rule the maximum yield per pass of methane conversion routes are also investigated. 15 refs.

  8. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices......Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...

  9. Coal conversion wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Hrudey, S.E.; Fedorak, P.M. (University of Alberta, Edmonton, AB (Canada))

    1988-12-01

    Phenolic compounds are one of the major components of coal conversion wastewaters, and their deleterious impact on the environment, particularly in natural water systems, is well documented. Phenols, at higher concentrations, have been shown to inhibit the activity of anaerobic bacteria used to degrade organic compounds. This study examines combined treatment requirements for an authentic, high strength phenolic coal conversion wastewater using both batch and semi- continuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in situ addition of activated carbon during anaerobic treatment were also examined, and proved effective in removing phenol. 61 refs., 34 tabs., 30 figs., 7 append.

  10. A perspective on direct conversion

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1963-10-01

    As flowing energy, electricity is sought for its versatility. Its generation from some other flow or release of energy without mechanical power, or even sometimes heat, as intermediary is called direct conversion. The objective is high electrical output for minimum total cost and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (author)

  11. Wavelength conversion devices and techniques

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Jørgensen, Carsten; Danielsen, Søren Lykke

    1996-01-01

    Wavelength division multiplexed (WDM) networks are currently subject to an immense interest because of the extra capacity and flexibility they provide together with the possibilities for graceful system upgrades. For full network flexibility it is very attractive to be able to translate the chann...... wavelengths in an easy way and preferably without opto-electronic conversion. Here, we will first briefly look at advantages of employing optical wavelength converters in WDM networks and next review the optical wavelength conversion devices with emphasis on recent developments....

  12. Importance of direct energy conversion

    International Nuclear Information System (INIS)

    Pavlicek, Z.

    1973-01-01

    Energy reserves of different types (fossil fuels, nuclear fission and fusion reactions, solar and geothermal energy) are listed and their conversion patterns evaluated with regard to economic and ecological factors and to the siting of power plants. The concepts and economy of different types of power plants are discussed. The magnetohydrodynamic conversion is given detailed analysis being the most promising for nuclear power production. MHD power plants are expected to operate as peak plants. The graphs presented show that the combination of an MHD reactor and gas turbines is the least costly

  13. Cellulose conversion under heterogeneous catalysis.

    Science.gov (United States)

    Dhepe, Paresh L; Fukuoka, Atsushi

    2008-01-01

    In view of current problems such as global warming, high oil prices, food crisis, stricter environmental laws, and other geopolitical scenarios surrounding the use of fossil feedstocks and edible resources, the efficient conversion of cellulose, a non-food biomass, into energy, fuels, and chemicals has received much attention. The application of heterogeneous catalysis could allow researchers to develop environmentally benign processes that lead to selective formation of value-added products from cellulose under relatively mild conditions. This Minireview gives insight into the importance of biomass utilization, the current status of cellulose conversion, and further transformation of the primary products obtained.

  14. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun

    2008-01-01

    BACKGROUND: Gene conversion causes a non-reciprocal transfer of genetic information between similar sequences. Gene conversion can both homogenize genes and recruit point mutations thereby shaping the evolution of multigene families. In the rice genome, the large number of duplicated genes...... increases opportunities for gene conversion. RESULTS: To characterize gene conversion in rice, we have defined 626 multigene families in which 377 gene conversions were detected using the GENECONV program. Over 60% of the conversions we detected were between chromosomes. We found that the inter......-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P conversion on the same chromosome decreased with the physical distance between gene conversion partners. Ka/Ks analysis indicates that gene conversion...

  15. Experimental study on evaluation and optimization of conversion of waste chicken fat into biodiesel

    International Nuclear Information System (INIS)

    Andrade, J.E.; Sebastian, P.J.; Perez, A.

    2009-01-01

    Full text: This study was initiated to evaluate and optimize the conversion of waste chicken fat (WCF) into ethyl and methyl ester called biodiesel. The physical and chemical characteristics of these esters were much closer to those of Diesel fuel than those of fresh vegetable oil or fat, which makes them a good substitute for Diesel fuel. Experiments have been performed to determine the optimum conditions for this conversion process using a three factor factorial design for producing biodiesel. The major variables in the transesterification process are determined from the pre experiments as: reaction temperature, molar ratio of alcohol/oil, alcohol type utilized and catalyst type. Absolute ethanol was found better than absolute methanol, since ethanol gives higher conversion and less viscosity at all levels, mainly at 100% excess concentration. Temperature had no detectable effect on the ultimate conversion ratio and viscosity for both ester products. However, higher temperatures decreases the time required to reach maximum conversion, which will be at the expense of the cost of energy. An interaction between time and temperature was found for all conversions. Therefore, 60 C was found to be the optimum temperature, and one hour is the optimum time for the conversion of WAFs into biodiesel. The obtained product with 97.02% of biodiesel was analyzed and characterized by gas chromatography. (author)

  16. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  17. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION ...

    African Journals Online (AJOL)

    30 juin 2010 ... turbine at optimum speed which corresponds to the maximum power provided by the steady wind turbine. To this end, the object is to preserve the position of any static operating point on the characteristic of optimal. To validate the model and algorithm for optimal conversion of wind energy, a series of.

  19. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  20. Content Themes in Marital Conversations.

    Science.gov (United States)

    Sillars, Alan L.; And Others

    1987-01-01

    Suggests that prominent themes in the conversations of spouses are metacommunication about relationships. Compares content themes of different marital types (traditional, separate, and independent) and more or less satisfied spouses. Finds marital satisfaction tends to be positively associated with communal and impersonal themes and negatively…

  1. Nanoparticles for solar spectrum conversion

    Science.gov (United States)

    van Sark, Wilfried G. J. H. M.; Meijerink, Andries; Schropp, Ruud E. I.

    2010-08-01

    We review the use of nanometer-sized particles (including quantum dots) in the conversion of parts of the solar spectrum incident on solar cells to more usable regions. The modification of the solar spectrum ideally would lead to a narrowbanded incident spectrum at a center wavelength corresponding to an energy that is slightly larger than the band gap of the semiconductor material employed in the solar cell, which would lead to an enhancement of the overall solar energy conversion efficiency. Modification of the spectrum requires down and/or up conversion or shifting of the spectrum, meaning that the energy of photons is modified either to lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss down and up conversion and shifting by quantum dots, luminescent dyes, and lanthanide compounds, and assess their potential in contributing to ultimately lowering the cost per kWh of solar generated power.

  2. Conversation Analysis in Applied Linguistics

    DEFF Research Database (Denmark)

    Kasper, Gabriele; Wagner, Johannes

    2014-01-01

    For the last decade, conversation analysis (CA) has increasingly contributed to several established fields in applied linguistics. In this article, we will discuss its methodological contributions. The article distinguishes between basic and applied CA. Basic CA is a sociological endeavor concerned...

  3. Humor and Embodied Conversational Agents

    NARCIS (Netherlands)

    Nijholt, Antinus

    This report surveys the role of humor in human-to-human interaction and the possible role of humor in human-computer interaction. The aim is to see whether it is useful for embodied conversational agents to integrate humor capabilities in their internal model of intelligence, emotions and

  4. towards sustainable conversation: developing environmental ...

    African Journals Online (AJOL)

    Kim le Roux. Titis paper highlights fhe importance of seeing environmental education as a process and considers fhe value of conversation and storytelling ... ing environmental education processes. As views of fhe concept 'environment' change so do ... fhe organisation was changed from fhe Wildlife. Society to fhe Wildlife ...

  5. The national conversion pilot project

    International Nuclear Information System (INIS)

    Van Der Puy, M.; Francis, G.; Konczal, M.

    1994-01-01

    The Department of Energy is now faced with the prospect of terminating traditional defense production missions at several Department of Energy sites. Because of this, there is a critical need to develop a DOE process to convert former defense production facilities to private use so that underutilized workers and facilities may be used to minimize the impact on the United States economy. The purpose of the National Conversation Pilot Project (NCPP) at Rocky Flats near Denver, Colorado is to explore and demonstrate the feasibility of economic conversion of DOE facilities, in a manner consistent with ongoing site waste management and cleanup activities, and non-prejudicial to future land use planning decisions. The NCPP is divided into three stages: The first stage, now under way, is one of detailed planning for cleanup and building maintenance activities. The second stage involves building cleanup necessary to support the proposed industrial activities, maintenance of equipment and building infrastructure necessary to assure protection of human health and the environment, declassification work, and some small scale research and development activities. Stage III would involve DOE metals recycling. Specific approval from the DOE is required prior to each project stage. To ensure stakeholder involvement, a steering committee will advise the DOE on the desirability to proceed with the project from stage to stage. A key question in the conversion process is whether a competitive economic and regulatory environment can be created on a DOE facility, allowing an onsite conversion business to effectively compete with offsite businesses. If successful, the Rocky Flats project could become the model for economic conversion at other DOE facilities

  6. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  7. Random Number Conversion and LOCC Conversion via Restricted Storage

    OpenAIRE

    Kumagai, Wataru; Hayashi, Masahito

    2014-01-01

    We consider random number conversion (RNC) through random number storage with restricted size. We clarify the relation between the performance of RNC and the size of storage in the framework of first- and second- order asymptotics, and derive their rate regions. Then, we show that the results for RNC with restricted storage recover those for conventional RNC without storage in the limit of storage size. To treat RNC via restricted storage, we introduce a new kind of probability distributions ...

  8. Survey of industrial coal conversion equipment capabilities: rotating components

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W. R.; Horton, J. R.; Boudreau, W. F.; Siman-Tov, M.

    1978-04-01

    At the request of the Major Facilities Project Management Division of the Energy Research and Development Administration, Fossil Energy Division, a study was undertaken to determine the capabilities of U.S. industry to supply the rotating equipment needed for future coal conversion facilities. Furthermore, problem areas were to be identified and research and development needs determined for producing advanced designs of the required equipment: Pumps, compressors, hydraulic turbines, and gas expanders. It has been concluded that equipment for essentially all clean-stream applications likely to be encountered in coal conversion facilities is generally available except high-pressure oxygen compressors. These oxygen compressors as well as slurry pumps need to be developed or significantly upgraded. Also, fans and blower for dirty-gas streams need developmental work, as do expanders for high-temperature service. Hydraulic turbines, which were not specified but which might be used for slurry applications in future coal conversion plants, are not available.

  9. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  10. Rotational energy conversion and thermal evolution of neutron stars

    Science.gov (United States)

    Zhu, Cui; Zhou, Xia; Wang, Na

    2017-12-01

    Pulsars are rapidly spinning, strongly magnetized neutron stars. Their electromagnetic dipole radiation is usually assumed to be at the expense of the rotational energy. In this work, we consider a new channel through which rotational energy could be radiated away directly via neutrinos. With this new energy conversion channel, we can improve the chemical heating mechanism that originates in the deviation from β equilibrium due to spin-down compression. The improved chemical and thermal evolution equations with different magnetic field strengths are solved numerically. The results show that the new energy conversion channel could raise the surface temperature of neutron stars, especially for weak field stars at later stages of their evolution. Moreover, our results indicate that the new energy conversion channel induced by the non-equilibrium reaction processes should be taken into account in the study of thermal evolution. Supported by National Natural Science Foundation of China (11373006) and the West Light Foundation of Chinese Academy of Sciences (ZD201302)

  11. Direct Energy Conversion for Fast Reactors

    International Nuclear Information System (INIS)

    Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

    2000-01-01

    Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated

  12. Progress in understanding conversion disorder

    Science.gov (United States)

    Allin, Matthew; Streeruwitz, Anna; Curtis, Vivienne

    2005-01-01

    Conversion disorder has a history that may reach back into antiquity, and it continues to present a clinical challenge to both psychiatrists and neurologists. This article reviews the current state of knowledge surrounding the prevalence, etiology, and neurobiology of conversion disorder. There have been improvements in the accuracy of diagnosis that are possibly related to improved technologies such as neuroimaging. Once the diagnosis is made, it is important to develop a therapeutic alliance between the patient and the medical team, and where comorbid psychiatric diagnoses have been made, these need to be adequately treated. While there have been no formal trials of medication or psychoanalytic treatments in this disorder, case reports suggest that a combination of antidepressants, psychotherapy, and a multidisciplinary approach to rehabilitation may be beneficial. PMID:18568070

  13. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel

    2017-01-01

    This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-o...

  14. Conversation, speech acts, and memory.

    Science.gov (United States)

    Holtgraves, Thomas

    2008-03-01

    Speakers frequently have specific intentions that they want others to recognize (Grice, 1957). These specific intentions can be viewed as speech acts (Searle, 1969), and I argue that they play a role in long-term memory for conversation utterances. Five experiments were conducted to examine this idea. Participants in all experiments read scenarios ending with either a target utterance that performed a specific speech act (brag, beg, etc.) or a carefully matched control. Participants were more likely to falsely recall and recognize speech act verbs after having read the speech act version than after having read the control version, and the speech act verbs served as better recall cues for the speech act utterances than for the controls. Experiment 5 documented individual differences in the encoding of speech act verbs. The results suggest that people recognize and retain the actions that people perform with their utterances and that this is one of the organizing principles of conversation memory.

  15. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  16. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION ...

    African Journals Online (AJOL)

    30 juin 2010 ... However, the objective of this paper is to present an algorithm for optimal conversion of wind energy based on a criterion .... V : vitesse du vent. Une turbine est typiquement caractérisée par sa courbe Cp = f (λ), avec λ est le coefficient de vitesse réduite exprimé par la relation suivante: v. R ..Ω. =. (5). Où :.

  17. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  18. Neutron scattering and proton spin conversion in solid CH4

    International Nuclear Information System (INIS)

    Lushington, K.J.; Morrison, J.A.

    1977-01-01

    The total neutron cross section of pure and O 2 -doped condensed CH 4 has been measured in the temperature range 0.75< T<100 K. The neutron wave length was sufficiently long (4.7 A) so that changes in cross section could be directly related to changes in γI(I + 1)μ, the mean squared proton nuclear angular momentum per molecule, to a sensitivity of about 1%. The temperature dependences of γI(I + 1)μ for the pure and doped specimens differ considerably in solid phase II(T<20.4 K). For the former specimen, the change in cross section is consistent with conversion occurring between the nuclear spin symmetry species on the orientationally disordered sublattices only. The addition of oxygen enhances the rate of conversion such that the value of γI(I + 1)μ corresponds to conversion on both the disordered and ordered sublattices. The characteristic lifetimes of the catalyzed and uncatalyzed conversion processes have been estimated. (author)

  19. Measurements of weak conversion lines

    International Nuclear Information System (INIS)

    Feoktistov, A.I.; Frantsev, Yu.E.

    1979-01-01

    Described is a new methods for measuring weak conversion lines with the help of the β spectrometer of the π √ 2 type which permits to increase the reliability of the results obtained. According to this method the measurements were carried out by short series with the storage of the information obtained on the punched tape. The spectrometer magnetic field was stabilized during the measuring of the conversion spectra with the help of three nmr recorders. Instead of the dependence of the pulse calculation rate on the magnetic field value was measured the dependence of the calculation rate on the value of the voltage applied between the source and the spectrometer chamber. A short description of the automatic set-up for measuring conversion lines according to the method proposed is given. The main set-up elements are the voltage multiplexer timer, printer, scaler and the pulse analyzer. With the help of the above methods obtained is the K 1035, 8 keV 182 Ta line. It is obtained as a result of the composition of 96 measurement series. Each measurement time constitutes 640 s 12 points are taken on the line

  20. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  1. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  2. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  3. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  4. Conversion Disorder Presenting As Neuritic Leprosy

    Directory of Open Access Journals (Sweden)

    Sayal SK

    2000-01-01

    Full Text Available Conversion disorder is not normally listed amongst the conditions in differential diagnosis of leprosy neuropathy. A case conversion reaction who was initially diagnosed as neuritic leprosy is reported. Patient responded to narcosuggestion and psychotherapy.

  5. Factors leading to conversion in laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Iqbal, P.; Saddique, M.; Baloch, T.A.

    2008-01-01

    To determine the reasons for conversion of Laparoscopic Cholecystectomy to open surgery in our setup. Detailed history, physical examination and investigations were carried out. Patients were operated by a senior surgeon. Cases that required conversion from Laparoscopic to open surgery were analyzed and the factors responsible for such conversion were studied. Out of 340 patients 32 (9.4%) required conversion to open procedure. Factors responsible for these conversion were dense adhesions in 8(2.4%), empyema gall bladder in 4(1.2%), contracted gall bladder in 3(0.9%), haemorrhage in 3(0.9%), and CBD injury and carcinoma gall bladder in 2(0.6%) each. Instrument failure and repeated power breakdowns with backup failure were also recognized as important factors responsible for 10(2.9%) conversions. Conversion of Laparoscopic to open procedure may be life saving in difficult situations. Conversion rate can be reduced by addressing the preventable factors. (author)

  6. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  7. Energy conversion in space. Particular application of gas cycles

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1986-12-01

    Energy conversion for future space power facilities are highly temperature dependent for heat rejection that can be effected only by radiative transfer. The Brayton cycle is one of the solutions. It has been developed in the USA for nearly 20 years. In France it is now studied for preliminary studies based on nuclear heat source systems. It is briefly presented, some characteristics are given. Present studies of the American space power facility give a concrete example of application [fr

  8. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  9. Conversion efficiency of skutterudite-based thermoelectric modules.

    Science.gov (United States)

    Salvador, James R; Cho, Jung Y; Ye, Zuxin; Moczygemba, Joshua E; Thompson, Alan J; Sharp, Jeffrey W; Koenig, Jan D; Maloney, Ryan; Thompson, Travis; Sakamoto, Jeffrey; Wang, Hsin; Wereszczak, Andrew A

    2014-06-28

    Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.

  10. Adaptive Feedback Improving Learningful Conversations at Workplace

    Science.gov (United States)

    Gaeta, Matteo; Mangione, Giuseppina Rita; Miranda, Sergio; Orciuoli, Francesco

    2013-01-01

    This work proposes the definition of an Adaptive Conversation-based Learning System (ACLS) able to foster computer-mediated tutorial dialogues at the workplace in order to increase the probability to generate meaningful learning during conversations. ACLS provides a virtual assistant selecting the best partner to involve in the conversation and…

  11. Reading comprehension interaction – a conversation analysis ...

    African Journals Online (AJOL)

    Such reading comprehension interactions display both a pedagogical structure, with the teacher 'teaching for comprehension', and a conversational structure, with participants interacting and conversing about the text. The focus of this article is on the conversational dimensions of such interactions. The purpose is to use ...

  12. Valproate in Conversion Disorder: A Case Report

    OpenAIRE

    Messina, Antonino; Fogliani, Anna Maria

    2010-01-01

    Few data are in literature about the pharmacological treatment of conversion disorder and there are not any studies about the use of Valproate extended release (ER) in treating conversion disorder. In this article, we are reporting a case of an Italian woman with a diagnosis of conversion disorder treated effectively and quickly by Valproate ER.

  13. 47 CFR 80.761 - Conversion graphs.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is...

  14. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  15. Conversion disorder: a problematic diagnosis.

    Science.gov (United States)

    Nicholson, Timothy R J; Stone, Jon; Kanaan, Richard A A

    2011-11-01

    The diagnosis of conversion disorder is problematic. Since doctors have conceptually and practically differentiated the symptoms from neurological ('organic') disease it has been presumed to be a psychological disorder, but the psychological mechanism, and how this differs from feigning (conscious simulation), has remained elusive. Although misdiagnosis of neurological disease as conversion disorder is uncommon, it remains a concern for clinicians, particularly for psychiatrists who may be unaware of the positive ways in which neurologists can exclude organic disease. The diagnosis is anomalous in psychiatry in that current diagnostic systems require that feigning is excluded and that the symptoms can be explained psychologically. In practice, feigning is very difficult to either disprove or prove, and a psychological explanation cannot always be found. Studies of childhood and adult psychological precipitants have tended to support the relevance of stressful life events prior to symptom onset at the group level but they are not found in a substantial proportion of cases. These problems highlight serious theoretical and practical issues not just for the current diagnostic systems but for the concept of the disorder itself. Psychology, physiology and functional imaging techniques have been used in attempts to elucidate the neurobiology of conversion disorder and to differentiate it from feigning, but while intriguing results are emerging they can only be considered preliminary. Such work looks to a future that could refine our understanding of the disorder. However, until that time, the formal diagnostic requirement for associated psychological stressors and the exclusion of feigning are of limited clinical value. Simplified criteria are suggested which will also encourage cooperation between neurology and psychiatry in the management of these patients.

  16. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  17. Advanced fusion MHD power conversion using the CFAR cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Campbell, R.; Logan, B.G.

    1989-03-01

    The CFAR (compact fusion advanced Rankine) concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high-temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium.

  18. Caring, conversing, and realizing values

    DEFF Research Database (Denmark)

    Hodges, Bert; Steffensen, Sune Vork; Martin, James E.

    2012-01-01

    at Gordon College in June 2009. The conference brought together researchers primarily from three research traditions, dynamical systems theory, distributed language, and ecological psychology, and each of these perspectives is reviewed and illustrated in this special issue. The particular focus...... of this issue, though, is the role of conversations in humans caring for each other and the ecosystems of which they are a part. Emergency medical care, parents and children playing, and students learning a second language, are among the contexts of caring considered. Also considered are ways in which symbol...

  19. A Map Enters the Conversation

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    'modes of mattering'. In this paper I explore what difference digital cartography can make to STS practice. I draw on three examples from my own work where digitally mediated maps have entered the conversation and made critical, often surprising, differences to the research process. In my first example...... the map is brought along as an ethnographic device on a piece of fieldwork, in my second example it serves as the central collaborative object in a participatory design project, and in my third example the map becomes the object of contestation as it finds itself centre stage in the controversy...

  20. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  1. Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshikawa

    2009-09-01

    Full Text Available Spray and combustion submodels used in a Computational Fluid Dynamics (CFD code, KIVACHEMKIN, were validated for Low Temperature Combustion (LTC in a diesel engine by comparing measured and model predicted fuel spray penetrations, and in-cylinder distributions of OH and soot. The conditions considered were long ignition delay, early and late fuel injection cases. It was found that use of a grid independent spray model, called the GASJET model, with an improved n-heptane chemistry mechanism can well predict the heat release rate, not only of the main combustion stage, but also of the cool flame stage. Additionally, the GASJET model appropriately predicts the distributions of OH and soot in the cylinder even when the resolution of the computational mesh is decreased by half, which significantly reduces the required computational time.

  2. Development of a highly efficient conversion electron Moessbauer spectroscopy (CEMS) detector for low temperature (<20 K) measurements and tests on Fe / (Eu{sub x}Pb{sub 1-x})Te bilayers; Desenvolvimento de um detector de alta eficiencia para espectroscopia Moessbauer de eletrons de conversao (CEMS) a baixas temperaturas (<20K) e testes em bicamadas Fe / (Eu{sub x}Pb{sub 1-x})Te

    Energy Technology Data Exchange (ETDEWEB)

    Pombo, Carlos Jose da Silva Matos

    2006-07-01

    The {sup 57}Fe Moessbauer spectroscopy is a nuclear, non-destructive technique used for the investigation of structural, magnetic and hyperfine properties of several materials. It is a powerful tool in characterizing materials in physics, metallurgy, geology and biology field areas, especially magnetic materials, alloys and minerals containing Fe. Lately, the Conversion Electron Moessbauer Spectroscopy (CEMS) is widely used in making studies on ultra-thin magnetic films, as well as other nanostructured materials. In case of magnetic nanostructures, low temperature (LT) studies are especially important due to the possibility of dealing with superparamagnetic effects. In this work it was developed a CEMS measurement system for low temperatures (<20 K) based on a solid-state electron multiplier (Channeltron{sup R}) and an optical cryostat (Model SVT-400, Janis Research Co, USA), from which the project was originally conceived at the Applied Physics / Moessbauer spectroscopy Department from University of Duisburg-Essen, Germany. The LT-CEMS system was fully built, tested and successfully applied in a preliminary characterization of Fe/(Eu{sub x}Pb{sub 1-x})Te(111) bilayers with use of a 15 angstrom, {sup 57} Fe probe layer, with reasonable results at sample temperatures as low as 8 K. (author)

  3. Responsive turns in Indonesian informal conversation

    Directory of Open Access Journals (Sweden)

    M.J. van Naerssen

    2015-04-01

    Full Text Available People have all sorts of expectations about how interlocutors will and should behave linguistically when engaged in a conversation. These conversational norms are usually implicit and are sometimes difficult to master in a language that is new to you. This paper presents a model of different types of responses in informal conversation, illustrated with Indonesian examples. It builds upon the conversation analytic notion of preference; distinguishing preferred – or constructive – responses and dispreferred – or competitive – responses. The model is meant as a tool to cross-linguistically compare response behaviour to gain insight in language specific expectations about interaction in informal conversation.

  4. Biomass conversion processes for energy and fuels

    Science.gov (United States)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  5. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  6. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  7. Astrophysicists' conversational connections on Twitter.

    Directory of Open Access Journals (Sweden)

    Kim Holmberg

    Full Text Available Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets. The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  8. [Neurology of hysteria (conversion disorder)].

    Science.gov (United States)

    Sonoo, Masahiro

    2014-07-01

    Hysteria has served as an important driving force in the development of both neurology and psychiatry. Jean Martin Charcot's devotion to mesmerism for treating hysterical patients evoked the invention of psychoanalysis by Sigmund Freud. Meanwhile, Joseph Babinski took over the challenge to discriminate between organic and hysterical patients from Charcot and found Babinski's sign, the greatest milestone in modern neurological symptomatology. Nowadays, the usage of the term hysteria is avoided. However, new terms and new classifications are complicated and inconsistent between the two representative taxonomies, the DSM-IV and ICD-10. In the ICD-10, even the alternative term conversion disorder, which was becoming familiar to neurologists, has also disappeared as a group name. The diagnosis of hysteria remains important in clinical neurology. Extensive exclusive diagnoses and over investigation, including various imaging studies, should be avoided because they may prolong the disease course and fix their symptoms. Psychological reasons that seem to explain the conversion are not considered reliable. Positive neurological signs suggesting nonorganic etiologies are the most reliable measures for diagnosing hysteria, as Babinski first argued. Hysterical paresis has several characteristics, such as giving-way weakness or peculiar distributions of weakness. Signs to uncover nonorganic paresis utilizing synergy include Hoover's test and the Sonoo abductor test.

  9. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J. M

    2013-01-01

    This textbook is appropriate for use in graduate-level curricula in analog to digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters.  It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation.  This book presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, second edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 45-nm technology and the need for a more statistical approach to accuracy.  Pedagogical enhancements to this edition include more than twice the exercises available in the first edition, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate.  Considerable background information and pr...

  10. Bilingualism accentuates children's conversational understanding.

    Directory of Open Access Journals (Sweden)

    Michael Siegal

    Full Text Available BACKGROUND: Although bilingualism is prevalent throughout the world, little is known about the extent to which it influences children's conversational understanding. Our investigation involved children aged 3-6 years exposed to one or more of four major languages: English, German, Italian, and Japanese. In two experiments, we examined the children's ability to identify responses to questions as violations of conversational maxims (to be informative and avoid redundancy, to speak the truth, be relevant, and be polite. PRINCIPAL FINDINGS: In Experiment 1, with increasing age, children showed greater sensitivity to maxim violations. Children in Italy who were bilingual in German and Italian (with German as the dominant language L1 significantly outperformed Italian monolinguals. In Experiment 2, children in England who were bilingual in English and Japanese (with English as L1 significantly outperformed Japanese monolinguals in Japan with vocabulary age partialled out. CONCLUSIONS: As the monolingual and bilingual groups had a similar family SES background (Experiment 1 and similar family cultural identity (Experiment 2, these results point to a specific role for early bilingualism in accentuating children's developing ability to appreciate effective communicative responses.

  11. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  12. Astrophysicists’ Conversational Connections on Twitter

    Science.gov (United States)

    Holmberg, Kim; Bowman, Timothy D.; Haustein, Stefanie; Peters, Isabella

    2014-01-01

    Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists’ activities (i.e., publishing and tweeting frequency) and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions) on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators) and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets). The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions. PMID:25153196

  13. Religious Conversion, Models and Paradigms

    Directory of Open Access Journals (Sweden)

    Tuba Boz

    2011-01-01

    Full Text Available This papers examines the experiences of converts to Islam among Australian women in the milieu of polemic views and debates such as ‘Islam versus the west', which is most visible in the image of the ‘eastern' ‘oppressed' Muslim woman. Employing the experiences of Australian Muslim women converts in Melbourne, issues concerning identity politics, and the individuals and social dimensions of conversion are investigated. While there is an array of literature about Muslim women from various disciplines including anthropology, sociology, politics, cultural studies and gender studies, among others, this paper takes an interdisciplinary approach to examine debates that have based their discussion on the image of the Muslim woman. Marco debates concerning issues such as multiculturalism, integration, Islam and the West debates including the ‘clash of civilizations' have been largely centred on the image of the Muslim women. The debate concerning the inherent conflict between Islam and West intensified after 11th of September 2001 with the terrorist attacks in the United States and the invasion of Afghanistan in 2001 and Iraq in 2002. It is during this critical period I interviewed Muslim converts in order to gain first-hand insight into their experiences as Muslims. This paper employs primary data collected during this historical period to examine issues regarding broader issues of identity politics, religious conversion as well as the everyday life experiences of female converts to Islam.

  14. Energy conversion for megawatt space power systems

    International Nuclear Information System (INIS)

    Ewell, R.

    1983-01-01

    Large nuclear space power systems capable of continuously producing over one megawatt of electrical power for a several year period will be needed in the future. This paper presents the results of a study to compare applicable conversion technologies which were deemed to be ready for a time period of 1995 and beyond. A total of six different conversion technologies were studied in detail and compared on the basis of conversion efficiency, radiator area, overall system mass, and feasibility. Three static, modular conversion technologies were considered; these include: AMTEC, thermionic, and thermoelectric conversion. The other three conversion technologies are heat engines which involve dynamic components. The dynamic systems analyzed were Brayton, Rankine, and the free piston Stirling engine. Each of the conversion techniques was also examined for limiting characteristics and an attempt was made to identify common research needs and enabling technologies

  15. The conversational interface talking to smart devices

    CERN Document Server

    McTear, Michael; Griol, David

    2016-01-01

    This book provides a comprehensive introduction to the conversational interface, which is becoming the main mode of interaction with virtual personal assistants, smart devices, various types of wearables, and social robots. The book consists of four parts: Part I presents the background to conversational interfaces, examining past and present work on spoken language interaction with computers; Part II covers the various technologies that are required to build a conversational interface along with practical chapters and exercises using open source tools; Part III looks at interactions with smart devices, wearables, and robots, and then goes on to discusses the role of emotion and personality in the conversational interface; Part IV examines methods for evaluating conversational interfaces and discusses future directions. · Presents a comprehensive overview of the various technologies that underlie conversational user interfaces; · Combines descriptions of conversational user interface technologies with a gui...

  16. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  17. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  18. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  19. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  20. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  1. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  2. Catalytic conversion of cellulose to levulinic acid by metal chlorides.

    Science.gov (United States)

    Peng, Lincai; Lin, Lu; Zhang, Junhua; Zhuang, Junping; Zhang, Beixiao; Gong, Yan

    2010-08-02

    The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl(3), FeCl(3) and CuCl(2) and a group IIIA metal chloride (AlCl(3)), exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 degrees C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  3. Conversation Simulation and Sensible Surprises

    Science.gov (United States)

    Hutchens, Jason L.

    I have entered the Loebner Prize five times, winning the "most humanlike program" category in 1996 with a surly ELIZA-clone named HeX, but failed to repeat the performance in subsequent years with more sophisticated techniques. Whether this is indicative of an unanticipated improvement in "conversation simulation" technology, or whether it highlights the strengths of ELIZA-style trickery, is as an exercise for the reader. In 2000, I was invited to assume the role of Chief Scientist at Artificial Intelligence Ltd. (Ai) on a project inspired by the advice given by Alan Turing in the final section of his classic paper - our quest was to build a "child machine" that could learn and use language from scratch. In this chapter, I will discuss both of these experiences, presenting my thoughts regarding the Chinese Room argument and Artificial Intelligence (AI) in between.

  4. Power conversion apparatus and method

    Science.gov (United States)

    Su, Gui-Jia [Knoxville, TN

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  5. Tacit to explicit knowledge conversion.

    Science.gov (United States)

    Cairó Battistutti, Osvaldo; Bork, Dominik

    2017-11-01

    The ability to create, use and transfer knowledge may allow the creation or improvement of new products or services. But knowledge is often tacit: It lives in the minds of individuals, and therefore, it is difficult to transfer it to another person by means of the written word or verbal expression. This paper addresses this important problem by introducing a methodology, consisting of a four-step process that facilitates tacit to explicit knowledge conversion. The methodology utilizes conceptual modeling, thus enabling understanding and reasoning through visual knowledge representation. This implies the possibility of understanding concepts and ideas, visualized through conceptual models, without using linguistic or algebraic means. The proposed methodology is conducted in a metamodel-based tool environment whose aim is efficient application and ease of use.

  6. Supported Conversation for hospital staff

    DEFF Research Database (Denmark)

    Forchhammer, Hysse B; Løvholt, Annelise P.; Mathiesen, Lone Lundbak

    in communication and interaction, Supported Conversation for Adults with Aphasia (SCA) was adapted and implemented in a large neurological department at Rigshospitalet-Glostrup in Copenhagen. Method 152 staff members representing different health professionals were assigned to one of eleven courses during a six...... month period. Each course had 10-12 participants and lasted 6 hours, including instruction in the SCA principles, video analysis, interdisciplinary group work, and practice sessions with PWAs. Self-assessed learning outcomes were evaluated with a brief questionnaire filled out by staff members...... in communication, also showed significant improvements across all staff groups. After the course, more time to spend with patients was perceived as the most important factor to further increase communication success with PWA. Conclusion The results show that interdisciplinary SCA-courses successfully increase...

  7. Conversion of Ulba Metallurgy Plant

    International Nuclear Information System (INIS)

    Onoprienko, O.

    1996-01-01

    General Information 'Ulba Metallurgical plant' Joint Stock Company successfully operates for more than 46 years. The plant was established by MINSREDMASH, USSR and at the present moment has finished complexes for production of nuclear fuel for atomic power stations, tantalum and superconducting materials production, beryllium, hydrofluoric acid manufacture and engineering production. Problem Essence In spite of the monopoly possession of tantalum manufacture, beryllium and uranium fuel, superconducting materials in Commonwealth of Independent States countries, company has serious financial problems due to the critical situation in Commonwealth of Independent States countries, production ties collapse and fast market demand decrease for the Ulba Metallurgical Plant Joint Stock Company products. The alternative decision is to create substitute productions, conversion integrating and introducing new products to the world market

  8. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    Science.gov (United States)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  9. Systems modeling for a laser-driven IFE power plant using direct conversion

    International Nuclear Information System (INIS)

    Meier, W R

    2008-01-01

    A variety of systems analyses have been conducted for laser driver IFE power plants being developed as part of the High Average Power Laser (HAPL) program. A key factor determining the economics attractiveness of the power plant is the net power conversion efficiency which increases with increasing laser efficiency, target gain and fusion-to-electric power conversion efficiency. A possible approach to increasing the power conversion efficiency is direct conversion of ionized target emissions to electricity. This study examines the potential benefits of increased efficiency when the expanding plasma is inductively coupled to an external circuit allowing some of the ion energy to be directly converted to electricity. For base case direct-drive targets with approximately 24% of the target yield in ions, the benefits are modest, especially for chamber designs that operate at high temperature and thus already have relatively high thermal conversion efficiencies. The reduction in the projected cost of electricity is ∼5-10%

  10. Comparison of techniques for the determination of conversion during suspension polymerization reactions

    Directory of Open Access Journals (Sweden)

    J. C. Santos

    2008-06-01

    Full Text Available The determination of conversion during suspension polymerization reactions is not an easy task due to the heterogeneity of the reaction medium and the tendency of particles to agglomerate rapidly when stirring is stopped. Usually, bulk polymerization in ampoules is employed to study the kinetics of suspension polymerization reactions. In this work, a comparison of different techniques for the determination of conversion during suspension polymerization reactions is presented. Results showed a good agreement between the conversion obtained by gravimetry during styrene suspension polymerization and on-line conversion monitoring data using fiber-optic based Raman Spectroscopy. Nevertheless, the polymerization rate of styrene bulk polymerization carried out in ampoules was higher than the real reaction rate of styrene suspension polymerization due to slightly higher reaction temperatures. Simulation results using the experimental temperature data in a mathematical model confirmed these results.

  11. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  12. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  13. Cryogenic power conversion: Combining HT superconductors and semiconductors

    Science.gov (United States)

    Mueller, Otward

    1992-04-01

    The availability and use of high-temperature superconductors (HTS) will require and enforce completely new electronic systems concepts. One of many possible applications could and probably will be the field of ac/dc, dc/ac as well as RF power conversion at the multi-kilowatt level. Until HTS high frequency switches able to handle hundreds of volts and tens of amperes are invented and produced commercially existing semiconductor devices such as the power MOS field-effect transistor can be used advantageously in order to implement ultra-high efficiency circuits in combination with HTS components such as high Q inductors and capacitors. This marriage could result in a drastic size, weight and cost reduction for various suitable high power applications. The key to high efficiency power conversion are so-called zero-voltage switching circuits known as single transistor Class E and half-bridge Class D amplifiers. This paper analyzes and discusses some relevant design criteria such as conversion efficiency etc. versus temperature down to 77 K.

  14. Polymer Based Nanocomposites for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

    2005-01-01

    Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

  15. Status of thermoelectronic laser energy conversion, TELEC

    Science.gov (United States)

    Britt, E. J.

    1982-01-01

    A concept known as a thermo-electronic laser energy converter (TELEC), was studied as a method of converting a 10.6 micron CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma were produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt.

  16. A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy

    NARCIS (Netherlands)

    Bos, Martin Johan; Brilman, Derk Willem Frederik

    2015-01-01

    A novel reactor design for the conversion of CO2 and H2 to methanol is developed. The conversion limitations because of thermodynamic equilibrium are bypassed via in situ condensation of a water/methanol mixture. Two temperatures zones inside the reactor ensure optimal catalyst activity (high

  17. The radiation-induced topotactic conversion of di-para anthracene to anthracene: an electron microscopic study

    International Nuclear Information System (INIS)

    Parkinson, G.M.; Goringe, M.J.; Thomas, J.M.

    1977-01-01

    A study was made of single crystals of di-para anthracene, the product of photodimerisation of anthracene. This undergoes an electron-induced topotactic conversion to anthracene, and the study of this reaction using low temperature TEM enabled the identification of separate stages in the conversion and the elucidation of probable mechanistic routes. (author)

  18. Measuring Online Dialogic Conversations: A Scale Development

    DEFF Research Database (Denmark)

    Romenti, Stefania; Valentini, Chiara; Murtarelli, Grazia

    2016-01-01

    Purpose: The scope of this paper is to develop and test a measurement scale for assessing the quality of dialogic conversations among companies and digital publics in social media. It is argued that dialogic conversations are the drivers of dialogic engagement and the result of dialogic interacti...... corporate communication managers a concrete tool for evaluating the quality of their online communications and for identifying those areas of their online communication that need improvement......./methodology/approach: A multidimensional scale for measuring dialogic conversations is developed from relevant literature concerning dialogue and public engagement in the fields of corporate communication, public relations, management studies and conversation analysis. The scale was pre-tested to redefine and purify it from irrelevant...... variables through a mixed method approach to measuring the dialogue orientation of online conversations. Findings: Ten variables are proposed for measuring the quality of online dialogic conversations among companies and their publics. These represent three main dimensions: organisation turn...

  19. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    International Nuclear Information System (INIS)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de

    2014-01-01

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  20. Tribromoisocyanuric acid/triphenylphosphine: a new system for conversion of alcohols into alkyl bromides

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Vitor S.C. de; Mattos, Marcio C.S. de, E-mail: mmattos@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2014-05-15

    An efficient and facile method has been developed for the conversion of alcohols into alkyl bromides under neutral conditions using tribromoisocyanuric acid and triphenylphosphine (molar ratio 1.0:0.7:2.0, alcohol/tribromoisocyanuric acid/triphenylphosphine) in dichloromethane at room temperature. This method can be applied for the conversion of primary, secondary, benzilic and allylic alcohols, and their corresponding bromides are obtained in 67-82 % yield. Tertiary alcohols do not react under these conditions. (author)

  1. Conversion of autoimmune hypothyroidism to hyperthyroidism

    OpenAIRE

    Furqan, Saira; Haque, Naeem-ul; Islam, Najmul

    2014-01-01

    Background Graves’ disease and Hashimoto’s thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. Case presentation We are reporting three cases of middle aged Asian female...

  2. Hermeneutic caring conversations in forensic psychiatric caring.

    Science.gov (United States)

    Rydenlund, Kenneth; Lindström, Unni Å; Rehnsfeldt, Arne

    2017-01-01

    In forensic psychiatric care, a hermeneutic caring conversation between caregivers and patients can improve health outcomes. The hermeneutic approach entails starting from the whole and involves openness for what is shown as well as paying attention to the different parts. One way to deepen these conversations is to take advantage of both the caregivers' and the patients' life experiences. The purpose of the study is to discuss and reflect on what hermeneutic caring conversations can mean for a deepened understanding of the movement in the health processes of patients in forensic care, patients who are in deep suffering. This study uses a hermeneutic methodology. Conversations with patients receiving care in forensic psychiatry are deepened using texts from philosophy, caring science, and poetry. The outcome emerges through a phase of creating patterns. Three patients in forensic care. Ethical considerations: This study builds on a doctoral thesis approved by The Ethical Review Board at the Faculty of Medical and Health Sciences, Linköping, Sweden. Hermeneutic caring conversations provide a possibility for rich caring conversations with patients who are often not given a voice. These conversations are seen as ethical expressions of hermeneutic caring communion that affect patients' health processes in a positive way. It takes courage and responsibility to initiate and conduct these conversations as the patients volunteer to share their suffering. In hermeneutic caring conversations, the caregiver's attitude is crucial for the transference of knowledge. This study provides a preliminary outline for hermeneutic caring conversations. A caring culture that provides time and space to prepare hermeneutic caring conversations is a prerequisite for the implementation of hermeneutic caring conversations.

  3. Conversational Agents in E-Learning

    Science.gov (United States)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  4. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  5. Neurologists' understanding and management of conversion disorder.

    Science.gov (United States)

    Kanaan, Richard A; Armstrong, David; Wessely, Simon Charles

    2011-09-01

    Conversion disorder is largely managed by neurologists, for whom it presents great challenges to understanding and management. This study aimed to quantify these challenges, examining how neurologists understand conversion disorder, and what they tell their patients. A postal survey of all consultant neurologists in the UK registered with the Association of British Neurologists. 349 of 591 practising consultant neurologists completed the survey. They saw conversion disorder commonly. While they endorsed psychological models for conversion, they diagnosed it according to features of the clinical presentation, most importantly inconsistency and abnormal illness behaviour. Most of the respondents saw feigning as entangled with conversion disorder, with a minority seeing one as a variant of the other. They were quite willing to discuss psychological factors as long as the patient was receptive but were generally unwilling to discuss feigning even though they saw it as their responsibility. Those who favoured models in terms of feigning were older, while younger, female neurologists preferred psychological models, believed conversion would one day be understood neurologically and found communicating with their conversion patients easier than it had been in the past. Neurologists accept psychological models for conversion disorder but do not employ them in their diagnosis; they do not see conversion as clearly different from feigning. This may be changing as younger, female neurologists endorse psychological views more clearly and find it easier to discuss with their patients.

  6. Shake effect correction to internal conversion coefficient

    International Nuclear Information System (INIS)

    Karpeshin, F.F.; Trzhaskovskaya, M.B.

    2004-01-01

    The method of calculating the correction to the γ-beams internal conversion originating due to the shake effect, accompanying the internal conversion, is proposed. The shake effect correction is calculated for the conversion on the L 1 -shell by the electrical and magnetic 1 ≤ L ≤ 4 multipolarity transitions with the conversion electron energy of E k ≤ 10 keV for the elements with Z = 30, 50, 70, 92. The identified correction value in the heavy elements does not exceed ∼ 6% but it may reach ∼ 40% for Z = 3 [ru

  7. Spectral light management for solar energy conversion systems

    Science.gov (United States)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  8. Spectral light management for solar energy conversion systems

    Directory of Open Access Journals (Sweden)

    Stanley Cameron

    2016-06-01

    Full Text Available Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  9. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  10. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com [Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, 50229 Semarang, 8508101 (Indonesia); Zainal, Z. A., E-mail: mezainal@usm.my [School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  11. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  12. Keep Meaning in Conversational Coordination

    Directory of Open Access Journals (Sweden)

    Elena Clare Cuffari

    2014-12-01

    Full Text Available Coordination is a widely employed term across recent quantitative and qualitative approaches to intersubjectivity, particularly approaches that give embodiment and enaction central explanatory roles. With a focus on linguistic and bodily coordination in conversational contexts, I review the operational meaning of coordination in recent empirical research and related theorizing of embodied intersubjectivity. This discussion articulates what must be involved in treating linguistic meaning as dynamic processes of coordination. The coordination approach presents languaging as a set of dynamic self-organizing processes and actions on multiple timescales and across multiple modalities that come about and work in certain domains (those jointly constructed in social, interactive, high-order sense-making. These processes go beyond meaning at the level that is available to first-person experience. I take one crucial consequence of this to be the ubiquitously moral nature of languaging with others. Languaging coordinates experience, among other levels of behavior and event. Ethical effort is called for by the automatic autonomy-influencing forces of languaging as coordination.

  13. Clean Fossil Energy Conversion Processes

    Science.gov (United States)

    Fan, L.-S.

    2007-03-01

    Absolute and per-capita energy consumption is bound to increase globally, leading to a projected increase in energy requirements of 50% by 2020. The primary source for providing a majority of the energy will continue to be fossil fuels. However, an array of enabling technologies needs to be proven for the realization of a zero emission power, fuel or chemical plants in the near future. Opportunities to develop new processes, driven by the regulatory requirements for the reduction or elimination of gaseous and particulate pollutant abound. This presentation describes the chemistry, reaction mechanisms, reactor design, system engineering, economics, and regulations that surround the utilization of clean coal energy. The presentation will cover the salient features of the fundamental and process aspects of the clean coal technologies in practice as well as in development. These technologies include those for the cleaning of SO2, H2S, NOx, and heavy metals, and separation of CO2 from the flue gas or the syngas. Further, new combustion and gasification processes based on the chemical looping concepts will be illustrated in the context of the looping particle design, process heat integration, energy conversion efficiency, and economics.

  14. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J M

    2010-01-01

    The design of an analog-to-digital converter or digital-to-analog converter is one of the most fascinating tasks in micro-electronics. In a converter the analog world with all its intricacies meets the realm of the formal digital abstraction. Both disciplines must be understood for an optimum conversion solution. In a converter also system challenges meet technology opportunities. Modern systems rely on analog-to-digital converters as an essential part of the complex chain to access the physical world. And processors need the ultimate performance of digital-to-analog converters to present the results of their complex algorithms. The same progress in CMOS technology that enables these VLSI digital systems creates new challenges for analog-to-digital converters: lower signal swings, less power and variability issues. Last but not least, the analog-to-digital converter must follow the cost reduction trend. These changing boundary conditions require micro-electronics engineers to consider their design choices for...

  15. Tropospheric effects of energy conversion

    International Nuclear Information System (INIS)

    Derwent, R.G.

    1992-01-01

    The tropospheric concentrations of a number of trace gases are increasing due to man's activities. For some trace gases, their atmospheric life cycles are not fully understood and it is difficult to be certain about the role of man's activities. Emissions from the energy industries and energy conversion processes represent an important subset of source terms in these life cycles, along with agriculture, deforestation, cement manufacture, biomass burning, process industries and natural biospheric processes. Global Warming Potentials (GWPs) allow the tropospheric effects of a range of climate forcing trace gases to be assessed on a comparable basis. If a short term view of the commitment to global warming is adopted then the contribution from other trace gases may approach and exceed that of carbon dioxide, itself. Over longer time horizons, the long atmospheric lifetime of carbon dioxide shows through as a major influence and the contributions from the other trace gases appear to be much smaller, representing an additional 13-18% contribution on top of that from CO 2 itself

  16. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  17. Overcoming difficult conversations in clinical supervision

    Directory of Open Access Journals (Sweden)

    Williams B

    2016-06-01

    Full Text Available Brett Williams,1 Christine King,1 Tanya Edlington,21Department of Community Emergency Health and Paramedic Practice, Monash University, Franskton, VIC, 2The Conversation Clinic Pty Ltd, Melbourne, VIC, Australia Background: Clinical supervisors are responsible for managing many facets of clinical learning and face a range of challenges when the need for "difficult" conversations arises, including the need to manage conflict and relationships. Methods: Spotlight on Conversations Workshop was developed to improve the capacity of clinical supervisors to engage in difficult conversations. They were designed to challenge the mindset of clinical supervisors about difficult conversations with students, the consequences of avoiding difficult conversations, and to offer activities for practicing difficult conversations. Preworkshop, postworkshop, and 4-month follow-up evaluations assessed improvements in knowledge, intent to improve, and confidence along with workshop satisfaction. Results: Nine workshops were delivered in a range of locations across Victoria, Australia, involving a total of 117 clinical supervisors. Preworkshop evaluations illustrated that more than half of the participants had avoided up to two difficult conversations in the last month in their workplace. Postworkshop evaluation at 4 months showed very high levels of satisfaction with the workshop's relevancy, content, and training, as well as participants' intention to apply knowledge and skills. Also shown were significant changes in participants' confidence to have difficult conversations not only with students but also with other peers and colleagues. In follow-up in-depth interviews with 20 of the 117 participants, 75% said they had made definite changes in their practice because of what they learned in the workshop and another 10% said they would make changes to their practice, but had not had the opportunity yet to do so. Conclusion: We conclude that the Spotlight on

  18. The Conversion of Wiswesser Line Notations to Ring Codes. I. The Conversion of Ring Systems

    Science.gov (United States)

    Granito, Charles E.; And Others

    1972-01-01

    The computerized conversion of Wiswesser Line Notations to Ring Codes, using a two-part approach, and the set of computer programs generated for the conversion of ring systems are described. (9 references) (Author)

  19. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1962-12-01

    state mid- ERDL TESTING THERMOELECTRIC AIR point temperature rise on DC with Peltier CONDITIONER . Army Res. and Devlpt. and Thomson heating in...type of air conditioner being tested at the U.S. Army 3109 Engineer Research and Development IMPULSE-OPERATION OF COOLING THER- Laboratories. Fort...efficiency and AIR FORCE CAREFULLY EVALUATES cost are lower and the output per unit 1000 PROPOSALS YEARLY, ACCEPTS 10%; weight apears high. INDUSTRY SHOULD

  20. Conversion of light energy in algal culture

    NARCIS (Netherlands)

    Oorschot, van J.L.P.

    1955-01-01

    The conversion of light energy in algal culture was quantitatively studied under various growth conditions. Absorbed light energy during growth and energy fixed in organic material were estimated. The efficiency of the conversion was expressed as percentage of fixed energy (calculated from estimates

  1. Reflection during Portfolio-Based Conversations

    Science.gov (United States)

    Oosterbaan, Anne E.; van der Schaaf, Marieke F.; Baartman, Liesbeth K. J.; Stokking, Karel M.

    2010-01-01

    This study aims to explore the relationship between the occurrence of reflection (and non-reflection) and thinking activities (e.g., orientating, selecting, analysing) during portfolio-based conversations. Analysis of 21 transcripts of portfolio-based conversations revealed that 20% of the segments were made up of reflection (content reflection…

  2. Jensen's operator inequality and its converses

    DEFF Research Database (Denmark)

    Hansen, Frank; Pecaric, Josip; Peric, Ivan

    2007-01-01

    We give a general formulation of Jensen's operator inequality for unital fields of positive linear mappings, and we consider different types of converse inequalities......We give a general formulation of Jensen's operator inequality for unital fields of positive linear mappings, and we consider different types of converse inequalities...

  3. On conversational agents with mental states

    NARCIS (Netherlands)

    Bosse, T.; Provoost, S.

    2015-01-01

    Embodied conversational agents (ECAs) have been put forward as a promising means for the training of social skills. The traditional approach to drive the behaviour of ECAs during human-agent dialogues is to use conversation trees. Although this approach is easy to use and very transparent, an

  4. 42 CFR 414.28 - Conversion factors.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Conversion factors. 414.28 Section 414.28 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 414.28 Conversion factors. CMS establishes CFs in accordance with section 1848(d) of the Act. (a) Base...

  5. Conversion Disorder in Australian Pediatric Practice

    Science.gov (United States)

    Kozlowska, Kasia; Nunn, Kenneth P.; Rose, Donna; Morris, Anne; Ouvrier, Robert A.; Varghese, John

    2007-01-01

    Objectives: To describe the incidence and clinical features of children presenting to Australian child health specialists with conversion disorder. Method: Active, national surveillance of conversion disorder in children younger than 16 years of age during 2002 and 2003. Results: A total of 194 children were reported on. The average age was 11.8…

  6. Conversion Disorder in Stroke: A Case Report

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Chou

    2006-11-01

    Full Text Available Conversion disorder is caused by previous severe stress, emotional conflict, or an associated psychiatric disorder, and usually presents with one or more neurologic symptoms. Clinically, it is challenging to diagnose diseases such as transient ischemia attack, stroke, brain tumor, spinal cord injury, and neuropathy. In this case report, we present a male stroke patient who had a typical conversion disorder.

  7. Hypnotic susceptibility in patients with conversion disorder

    NARCIS (Netherlands)

    Roelofs, K.; Hoogduin, C.A.L.; Keijsers, G.P.J.; Näring, G.W.B.; Moene, F.C.; Sandijck, P.

    2002-01-01

    Conversion disorder has been associated with hypnotic susceptibility for over a century and is currently still believed to be a form of autohypnosis. There is, however. little empirical evidence for the relation between hypnotic susceptibility and conversion symptoms. The authors compared 50

  8. Critical Exchange: Religion and Schooling in Conversation

    Science.gov (United States)

    Stern, Julian

    2017-01-01

    Given the complex and messy contexts of schooling, conversations between religion and schooling can be "admitted" as examples of the sort of situated conversation that goes beyond the "false necessity" of universal state-controlled school-based education. There are distinct claims to be made about religion and schooling in…

  9. Spontaneous conversion of first onset atrial fibrillation

    DEFF Research Database (Denmark)

    Lindberg, Søren Østergaard; Hansen, Sidsel; Nielsen, Tonny

    2011-01-01

    Background  We studied all patients admitted to hospital with first onset atrial fibrillation (AF) to determine the probability of spontaneous conversion to sinus rhythm and to identify factors predictive of such a conversion. Methods and Results  We retrospectively reviewed charts of 438...

  10. Bilingualism and Conversational Understanding in Young Children

    Science.gov (United States)

    Siegal, Michael; Iozzi, Laura; Surian, Luca

    2009-01-01

    The purpose of the two experiments reported here was to investigate whether bilingualism confers an advantage on children's conversational understanding. A total of 163 children aged 3-6 years were given a Conversational Violations Test to determine their ability to identify responses to questions as violations of Gricean maxims of conversation…

  11. Improving Teamwork through Awareness of Conversational Styles

    Science.gov (United States)

    Rehling, Louise

    2004-01-01

    Conversational styles can sometimes cause conflicts on problem-solving writing teams. In self-defense, students often resort to blaming and shaming around conversational styles, which can just worsen unproductive group behaviors, limiting idea exchanges and deflecting attention from substantive issues and onto what is often labeled "personality…

  12. 38 CFR 9.9 - Conversion privilege.

    Science.gov (United States)

    2010-07-01

    ... LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.9 Conversion privilege. (a) With respect to a... competent authority there shall be no right of conversion unless the insurance is continued in force under... disability incurred or aggravated during such a period of duty. (b) The individual policy of life insurance...

  13. Conversations in African Philosophy | Chimakonam | Filosofia ...

    African Journals Online (AJOL)

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  14. Enhancing Classroom Conversation for All Students

    Science.gov (United States)

    Goldsmith, William

    2013-01-01

    The author, a 5th-grade teacher, offers strategies intended to assist and encourage ELL students to participate in academic conversations. They include insisting that children take part in conversations despite their apprehension and teaching them the language they need to communicate their ideas. One strategy is Think, Pair, Share--a simple…

  15. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  16. Collective Contexts in Conversation: Grounding by Proxy

    Science.gov (United States)

    Eshghi, Arash; Healey, Patrick G. T.

    2016-01-01

    Anecdotal evidence suggests that participants in conversation can sometimes act as a coalition. This implies a level of conversational organization in which groups of individuals form a coherent unit. This paper investigates the implications of this phenomenon for psycholinguistic and semantic models of shared context in dialog. We present a…

  17. BBO sapphire compound for high-power frequency conversion

    Science.gov (United States)

    Rothhardt, Carolin; Rothhardt, Jan; Klenke, Arno; Peschel, Thomas; Eberhardt, Ramona; Limpert, Jens; Tünnermann, Andreas

    2015-02-01

    Lasers used for diverse applications from industry to fundamental science tend to increasing output powers. Some applications require frequency conversion via nonlinear optical crystals, which suffer from the formation of temperature gradients at high power operation which causes thermal lensing or destruction of the crystal due to tensile stresses. To avoid these unwanted effects we joined a beta barium borate (BBO) crystal with sapphire disks serving as effective heat spreaders due to their high thermal conductivity (thermal conductivity κ = 42 W/Km). Therefore, smooth and flat crystal surfaces were joined by plasma-activated bonding. The joining relies on covalent bonds, which are formed via a condensation reaction of the surfaces which are first connected by Van der Waals forces. The cleaned surfaces are activated by plasma and brought into contact, pressed together and heat treated at a temperature of about 100°C. Special attention has been paid to the cleaning of the surfaces. Therefor the surfaces have been evaluated before and after treatment by means of atomic force microscopy. A stable connection has been formed successfully, which has been tested in a proof of principle experiment and demonstrated efficient second harmonic generation at up to 253 W of input power. Compared to a bare single BBO crystal it could be shown that the temperature within the crystal compound is significantly reduced. Such hybrid structures pave the way for frequency conversion at kilowatts of average power for future high power lasers.

  18. Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Fedirchuk, I.I.; Demchina, V.P.; Bortyshevsky, V.A.; Korzh, R.V.

    2016-01-01

    This paper presents the study of the influence that air activation rate and reforming temperature have on the gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy yield at the lower temperatures than traditional conversion technologies

  19. Conversion Disorder- Mind versus Body: A Review.

    Science.gov (United States)

    Ali, Shahid; Jabeen, Shagufta; Pate, Rebecca J; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida

    2015-01-01

    In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder.

  20. Conversion Disorder— Mind versus Body: A Review

    Science.gov (United States)

    Jabeen, Shagufta; Pate, Rebecca J.; Shahid, Marwah; Chinala, Sandhya; Nathani, Milankumar; Shah, Rida

    2015-01-01

    In this article, the authors accentuate the signs and symptoms of conversion disorder and the significance of clinical judgment and expertise in order to reach the right diagnosis. The authors review the literature and provide information on the etiology, prevalence, diagnostic criteria, and the treatment methods currently employed in the management of conversion disorder. Of note, the advancements of neuropsychology and brain imaging have led to emergence of a relatively sophisticated picture of the neuroscientific psychopathology of complex mental illnesses, including conversion disorder. The available evidence suggests new methods with which to test hypotheses about the neural circuits underlying conversion symptoms. In context of this, the authors also explore the neurobiological understanding of conversion disorder. PMID:26155375

  1. [Management of patients with conversion disorder].

    Science.gov (United States)

    Vermeulen, Marinus; Hoekstra, Jan; Kuipers-van Kooten, Mariëtte J; van der Linden, Els A M

    2014-01-01

    The symptoms of conversion disorder are not due to conscious simulation. There should be no doubt that the symptoms of conversion disorder are genuine, even if scans do not reveal any abnormalities. The management of patients with conversion disorder starts with an explanation of the diagnosis. The essence of this explanation is that patients first hear about what the diagnosis actually means and only after this about what they do not have. When explaining the diagnosis it is a good idea to use metaphors. The treatment of patients with conversion disorder is carried out together with a physical therapist. The collaboration of healthcare professionals who are involved in the treatment of a patient with conversion disorder should preferably be coordinated by the patient's general practitioner.

  2. Does pedagogical documentation support maternal reminiscing conversations?

    Directory of Open Access Journals (Sweden)

    Bethany Fleck

    2015-12-01

    Full Text Available When parents talk with their children about lessons learned in school, they are participating in reminiscing of an unshared event. This study sought to understand if pedagogical documentation, from the Reggio Approach to early childhood education, would support and enhance the conversation. Mother–child dyads reminisced two separate times about preschool lessons, one time with documentation available to them and one time without. Transcripts were coded extracting variables indicative of high and low maternal reminiscing styles. Results indicate that mother and child conversation characteristics were more highly elaborative when documentation was present than when it was not. In addition, children added more information to the conversation supporting the notion that such conversations enhanced memory for lessons. Documentation could be used as a support tool for conversations and children’s memory about lessons learned in school.

  3. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  4. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  5. A Conversation with Adam Heller.

    Science.gov (United States)

    Heller, Adam; Cairns, Elton J

    2015-01-01

    Adam Heller, Ernest Cockrell Sr. Chair in Engineering Emeritus of the John J. McKetta Department of Chemical Engineering at The University of Texas at Austin, recalls his childhood in the Holocaust and his contributions to science and technology that earned him the US National Medal of Technology and Innovation in a conversation with Elton J. Cairns, Professor of Chemical and Biomolecular Engineering at the University of California, Berkeley. Dr. Heller, born in 1933, describes the enslavement of his father by Hungarians in 1942; the confiscation of his family's home, business, and all its belongings in 1944; and his incarceration in a brick factory with 18,000 Jews who were shipped by the Hungarians to be gassed by Germans in Auschwitz. Dr. Heller and his immediate family survived the Holocaust and arrived in Israel in 1945. He studied under Ernst David Bergmann at the Hebrew University, and then worked at Bell Laboratories and GTE Laboratories, where he headed Bell Lab's Electronic Materials Research Department. At GTE Laboratories, he built in 1966 the first neodymium liquid lasers and in 1973 with Jim Auborn conceived and engineered the lithium thionyl chloride battery, one of the first to be manufactured lithium batteries, which is still in use. After joining the faculty of engineering of The University of Texas at Austin, he cofounded with his son Ephraim Heller TheraSense, now a major part of Abbott Diabetes Care, which produced a microcoulometer that made the monitoring of glucose painless by accurately measuring the blood glucose concentration in 300 nL of blood. He also describes the electrical wiring of enzymes, the basis for Abbott's state-of-the-art continuous glucose monitoring system. He discusses his perspective of reducing the risk of catastrophic global warming in a wealth-accumulating, more-energy-consuming world and provides advice for students entering careers in science or engineering.

  6. Steam conversion of liquefied petroleum gas and methane in microchannel reactor

    Science.gov (United States)

    Dimov, S. V.; Gasenko, O. A.; Fokin, M. I.; Kuznetsov, V. V.

    2018-03-01

    This study presents experimental results of steam conversion of liquefied petroleum gas and methane in annular catalytic reactor - heat exchanger. The steam reforming was done on the Rh/Al2O3 nanocatalyst with the heat applied through the microchannel gap from the outer wall. Concentrations of the products of chemical reactions in the outlet gas mixture are measured at different temperatures of reactor. The range of channel wall temperatures at which the ratio of hydrogen and carbon oxide in the outlet mixture grows substantially is determined. Data on the composition of liquefied petroleum gas conversion products for the ratio S/C = 5 was received for different GHVS.

  7. Conversion of azides into diazo compounds in water.

    Science.gov (United States)

    Chou, Ho-Hsuan; Raines, Ronald T

    2013-10-09

    Diazo compounds are in widespread use in synthetic organic chemistry but have untapped potential in chemical biology. We report on the design and optimization of a phosphinoester that mediates the efficient conversion of azides into diazo compounds in phosphate buffer at neutral pH and room temperature. High yields are maintained in the presence of common nucleophilic or electrophilic functional groups, and reaction progress can be monitored by colorimetry. As azido groups are easy to install and maintain in biopolymers or their ligands, this new mode of azide reactivity could have substantial utility in chemical biology.

  8. Porous media for catalytic renewable energy conversion

    Science.gov (United States)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  9. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel

    Directory of Open Access Journals (Sweden)

    Farzaneh Amiri

    2016-11-01

    Full Text Available In recent years, the main objective of developing new hydrogel systems has been to convert biomass into environmentally-friendly hydrogels. Hybrid hydrogels are usually prepared by graft copolymerization of acrylic monomers onto natural polymers or biomass. In this study, sugarcane bagasse was used to prepare semi-synthetic hybrid hydrogels without delignification, which is a costly and timeconsuming process. Sugarcane bagasse as a source of polysaccharide was modified using polymer microgels based on acrylic monomers such as acrylic acid, acrylamide and 2-acrylamido-2-methyl propane sulfonic acid which were prepared through inverse emulsion polymerization. By this process, biomass as a low-value by-product was converted into a valuable semi-synthetic hydrogel. In the following, the effect of latex type¸ the aqueous-to-organic phase ratio in the polymer latex, time and temperature of modification reaction on the swelling capacity of the hybrid hydrogel were evaluated. The chemical reaction between sugarcane bagasse and acrylic latex was carried out during heating of the modified bagasse which led to obtain a semisynthetic hydrogel with 60% natural components and 40% synthetic components. Among the latexes with different structures, poly(AA-NaAA-AM-AMPS was the most suitable polymer latex for the conversion of biomass into hydrogel. The bagasse modified with this latex had a water absorption capacity up to 112 g/g, while the water absorption capacity of primary sugarcane bagasse was only equal to 3.6 g/g. The prepared polymer hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR, dynamic-mechanical thermal analysis (DMTA, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and determination of the amount of swelling capacity.

  10. Reactor technology: power conversion systems and reactor operation and maintenance

    International Nuclear Information System (INIS)

    Powell, J.R.

    1977-01-01

    The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He 3 reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored

  11. Lignite chemical conversion in an indirect heat rotary kiln gasifier

    Directory of Open Access Journals (Sweden)

    Hatzilyberis Kostas S.

    2006-01-01

    Full Text Available The results on the gasification of Greek lignite using two indirect heat (allothermal pilot rotary kiln gasifiers are reported in the present work. The development of this new reactor-gasifier concept intended for solid fuels chemical conversion exploits data and experience gained from the following two pilot plants. The first unit A (about 100 kg/h raw lignite demonstrated the production of a medium heating value gas (12-13 MJ/Nm3 with quite high DAF (dry ash free coal conversions, in an indirect heat rotary gasifier under mild temperature and pressure conditions. The second unit B is a small pilot size unit (about 10 kg/h raw lignite comprises an electrically heated rotary kiln, is an operation flexible and exhibits effective phase mixing and enhanced heat transfer characteristics. Greek lignite pyrolysis and gasification data were produced from experiments performed with pilot plant B and the results are compared with those of a theoretical model. The model assumes a scheme of three consecutive-partly parallel processes (i. e. drying, pyrolysis, and gasification and predicts DAF lignite conversion and gas composition in relatively good agreement with the pertinent experimental data typical of the rotary kiln gasifier performance. Pilot plant B is currently being employed in lime-enhanced gasification studies aiming at the production of hydrogen enriched synthesis gas. Presented herein are two typical gas compositions obtain from lignite gasification runs in the presence or not of lime. .

  12. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  13. Temperature measurement

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003400.htm Temperature measurement To use the sharing features on this page, please enable JavaScript. The measurement of body temperature can help detect illness. It can also monitor ...

  14. Thermoelectric Oxide Modules (TOMs for the Direct Conversion of Simulated Solar Radiation into Electrical Energy

    Directory of Open Access Journals (Sweden)

    Petr Tomeš

    2010-04-01

    Full Text Available The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM. These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4 and two n-type (CaMn0.98Nb0.02O3 thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.

  15. Sustained Low Temperature NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Yuhui

    2017-04-05

    Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to

  16. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    Science.gov (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  17. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  18. Energy conversion & storage program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  19. Research into liquid metal MHD energy conversion

    International Nuclear Information System (INIS)

    Bayer, Z.

    1973-01-01

    The state of research into liquid metal MHD conversion and the problems arising from the processes taking place in the liquid metal-gas mixture are described. The possibilities are pointed out of improving multi-stage heat regeneration MHD systems. The expansion of the number of mixing stages contributes to higher energy conversion efficiency up to a certain driving energy. The relations are presented determining optimal conditions and a calculation method derived for finding the optimal energy distribution and the resulting energy conversion efficiency at any number of stages. (Oy)

  20. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  1. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    Science.gov (United States)

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  2. Ecological conversion efficiency and its influencers in twelve species of fish in the Yellow Sea Ecosystem

    Science.gov (United States)

    Tang, Qisheng; Guo, Xuewu; Sun, Yao; Zhang, Bo

    2007-09-01

    The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy ( Engraulis japonicus), rednose anchovy ( Thrissa kammalensis), chub mackerel ( Scomber japonicus), halfbeak ( Hyporhamphus sajori), gizzard shad ( Konosirus punctatus), sand lance ( Ammodytes personatus), red seabream ( Pagrus major), black porgy ( Acanthopagrus schlegeli), black rockfish ( Sebastes schlegeli), finespot goby ( Chaeturichthys stigmatias), tiger puffer ( Takifugu rubripes), and fat greenling ( Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.

  3. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.

    2001-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  4. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    Science.gov (United States)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  5. Influence of tribological test on the global conversion of natural composites

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Correa

    Full Text Available Abstract The vinyl ester resins and natural composites have emerged as a suitable alternative in tribological application due to mechanical behavior, which relates to the conversion of the double bonds. During tribological test the permanent contact between polymeric sample and counterpart can increase the temperature affecting the crosslinking of the samples. These variations have direct implications in the curing rate and the global conversion. In this work, the FTIR evaluation is used to evaluate possible changes on the global conversion of vinyl ester and their composites reinforced with Musaceae fiber bundles and cured using two hardeners, after a specific tribological test. Increments around 15% on global conversion of styrene double bonds were observed for neat matrix and composites using both hardeners, suggesting that during tribology test some alterations on resin structure takes place. These results open alternatives to manipulate the curing conditions in order to control the tribological behavior.

  6. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  7. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  8. Solar spectrum conversion for photovoltaics using nanoparticles

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction

  9. Trends and Challenges in Catalytic Biomass Conversion

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup; Egeblad, Kresten; Taarning, Esben

    2013-01-01

    The conversion of biomass to the plethora of chemicals used in modern society is one of the major challenges of the 21st century. Due to the significant differences between biomass resources and the current feedstock, crude oil, new technologies need to be developed encompassing all steps...... in the value chain, from pretreatment to purification. Heterogeneous catalysis is at the heart of the petrochemical refinery and will likely play an equally important role in the future biomass-based chemical industry. Three potentially important routes to chemicals from biomass are highlighted in this chapter....... The conversion of biomass-derived substrates, such as glycerol, by hydrogenolysis to the important chemicals ethylene glycol and propane diols. Secondly, the conversion of carbohydrates by Lewis acidic zeolites to yield alkyl lactates, and finally the conversion of lignin, an abundant low value source of biomass...

  10. Emotional stimuli and motor conversion disorder

    NARCIS (Netherlands)

    Voon, V.; Brezing, C.; Gallea, C.; Ameli, R.; Roelofs, K.; LaFrance, W.C.; Hallett, M.

    2010-01-01

    Conversion disorder is characterized by neurological signs and symptoms related to an underlying psychological issue. Amygdala activity to affective stimuli is well characterized in healthy volunteers with greater amygdala activity to both negative and positive stimuli relative to neutral stimuli,

  11. Childhood abuse in patients with conversion disorder

    NARCIS (Netherlands)

    Roelofs, K.; Keijsers, G.P.J.; Hoogduin, C.A.L.; Näring, G.W.B.; Moene, F.C.

    2002-01-01

    OBJECTIVE: Despite the fact that the assumption of a relationship between conversion disorder and childhood traumatization has a long history, there is little empirical evidence to support this premise. The present study examined this relation and investigated whether hypnotic susceptibility

  12. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  13. FLOUTING MAXIMS IN INDONESIA LAWAK KLUB CONVERSATION

    Directory of Open Access Journals (Sweden)

    Rahmawati Sukmaningrum

    2017-04-01

    Full Text Available This study aims to identify the types of maxims flouted in the conversation in famous comedy show, Indonesia Lawak Club. Likewise, it also tries to reveal the speakers‘ intention of flouting the maxim in the conversation during the show. The writers use descriptive qualitative method in conducting this research. The data is taken from the dialogue of Indonesia Lawak club and then analyzed based on Grice‘s cooperative principles. The researchers read the dialogue‘s transcripts, identify the maxims, and interpret the data to find the speakers‘ intention for flouting the maxims in the communication. The results show that there are four types of maxims flouted in the dialogue. Those are maxim of quality (23%, maxim of quantity (11%, maxim of manner (31%, and maxim of relevance (35. Flouting the maxims in the conversations is intended to make the speakers feel uncomfortable with the conversation, show arrogances, show disagreement or agreement, and ridicule other speakers.

  14. Entrepreneurship Teaching Conducted as Strategic Reflexive Conversation

    DEFF Research Database (Denmark)

    Kristiansson, Michael

    The paper intends exploring and ascertaining whether the concept of strategic reflexive conversation can profitably be applied to entrepreneurship. As a start, a process of conceptualisation is undertaken, which is instrumental in placing the notion of strategic reflexive conversation...... into a knowledge management perspective. Strategic reflexive conversation is presented in an enhanced and updated version, which is contrasted to entrepreneurship through reflection. The findings indicate and it can be concluded that, with some important reservations, strategic reflexive conversation can...... advantageously, and on a pilot basis, be applied to entrepreneurship in practical environments and within the framework of entrepreneurship-centred teaching. The present theoretical investigation is solely of an introductory nature and steps are considered that can lead to the planning of additional exploratory...

  15. Expertise in Everyday Nurse–Patient Conversations

    Directory of Open Access Journals (Sweden)

    Lindsay M. Macdonald

    2016-04-01

    Full Text Available A great deal of nursing activity is embedded in what is considered to be everyday conversation. These conversations are important to health professionals because communication can affect health outcomes, and they are important to patients who want to know they are being heard and cared for. How do nurses talk with patients and what are the features of effective communication in practice? In this exploratory study, two expert nurses recorded conversations with patients during domiciliary visits. Linguistic discourse analysis, informed by contextual knowledge of domiciliary nursing shows the nurses skillfully used small talk to support their clinical work. In their conversations, nurses elicit specific information, normalize unpleasant procedures, manage the flow of the interaction, and strengthen the therapeutic relationship. Small talk can be big talk in achieving nursing goals. Critically reflecting on recorded clinical interactions can be a useful method of professional development and a way of demonstrating nursing expertise.

  16. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  17. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  18. Light distribution system comprising spectral conversion means

    DEFF Research Database (Denmark)

    2012-01-01

    System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... fibre being operationally connected to the spectral conversion fibre having a length extending from an input end (221, 321)to an output end (222, 322), the spectral conversion fibre comprising a photoluminescent agent (511, 611, 711) for converting light of a first wavelength to light of a second......, longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral...

  19. Informal tourism entrepreneurs’ capital usage and conversion

    NARCIS (Netherlands)

    Çakmak, Erdinç; Lie, Rico; Selwyn, Tom

    2018-01-01

    This article examines informal entrepreneurs’ capital usage and conversion in the Thai tourism sector. On the Bourdieusian assumption that people perpetually transform tangible and intangible forms of capital, this study seeks to answer how informal tourism entrepreneurs transform intangible capital

  20. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  1. Phenomenology of neutron-antineutron conversion

    Science.gov (United States)

    Gardner, Susan; Yan, Xinshuai

    2018-03-01

    We consider the possibility of neutron-antineutron (n -n ¯ ) conversion, in which the change of a neutron into an antineutron is mediated by an external source, as can occur in a scattering process. We develop the connections between n -n ¯ conversion and n -n ¯ oscillation, in which a neutron spontaneously transforms into an antineutron, noting that if n -n ¯ oscillation occurs in a theory with baryon number minus lepton number (B-L) violation, then n -n ¯ conversion can occur also. We show how an experimental limit on n -n ¯ conversion could connect concretely to a limit on n -n ¯ oscillation, and vice versa, using effective field theory techniques and baryon matrix elements computed in the MIT bag model.

  2. Persuasive Conversational Agent with Persuasion Tactics

    Science.gov (United States)

    Narita, Tatsuya; Kitamura, Yasuhiko

    Persuasive conversational agents persuade people to change their attitudes or behaviors through conversation, and are expected to be applied as virtual sales clerks in e-shopping sites. As an approach to create such an agent, we have developed a learning agent with the Wizard of Oz method in which a person called Wizard talks to the user pretending to be the agent. The agent observes the conversations between the Wizard and the user, and learns how to persuade people. In this method, the Wizard has to reply to most of the user's inputs at the beginning, but the burden gradually falls because the agent learns how to reply as the conversation model grows.

  3. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  4. Measuring international relations in social media conversations

    OpenAIRE

    Barnett, GA; Xu, WW; Chu, J; Jiang, K; Huh, C; Park, JY; Park, HW

    2017-01-01

    © 2016 Elsevier Inc. This paper examines international relations as perceived by the public in their social media conversations. It examines over 1.8 billion Facebook postings in English and 51 million Chinese posts on Weibo, to reveal the relations among nations as expressed in social media conversations. It argues that social media represent a transnational electronic public sphere, in which public discussions reveal characteristics of international relations as perceived by a foreign publi...

  5. Teaching communication aid use in everyday conversation

    DEFF Research Database (Denmark)

    Pilesjö, Maja Sigurd; Norén, Niklas

    2017-01-01

    This Conversation Analysis study investigated how a speech and language therapist (SLT) created opportunities for communication aid use in multiparty conversation. An SLT interacted with a child with multiple disabilities and her grandparents in a home setting, using a bliss board. The analyses......’s moves using board indications, vocalisations, gaze, head movements, and smiles. The analysed practice creates opportunities for teaching and possibly also for learning how to use a communication aid....

  6. [Chronic conversion somatic disorder: a case report].

    Science.gov (United States)

    Macrì, Francesco; Minichino, Amedeo; Campi, Sandra; Marino, Marzia; Pannese, Rossella; De Michele, Francesco; Capra, Enrico; Trabucchi, Guido; Bersani, Francesco Saverio

    2013-02-01

    Conversion disorder is characterized by several neurological and internistical symptoms that cannot be explained by an organic cause, exacerbating after stress events. The course of this disorder is typically short: it usually lasts about two weeks, and only 20-25% of patients relapse in the following year. This paper aims to show the clinical history of a patient complaining conversion symptoms from 7 consecutive years.

  7. The Khazar Kingdom's Conversion to Judaism

    OpenAIRE

    Pritsak, Omeljan

    2014-01-01

    The Khazars conversion to Judaism is reevaluated in the light of Byzantine and Islamic sources in this article, which was originally published in Harvard Ukranian Studies in 1978. Pritsak, who interrogates why the Khazars changed their religion and why this case do not so much attest in contemporary Judaic, Islamic and Byzantine sources, focuses on there stories of the term, and claimes that not missionaries but traders were influential in conversion.

  8. The Khazar Kingdom's Conversion to Judaism

    OpenAIRE

    Pritsak, Omeljan

    2007-01-01

    The Khazars conversion to Judaism is reevaluated in the light of Byzantine and Islamic sources in this article, which was originally published in Harvard Ukranian Studies in 1978. Pritsak, who interrogates why the Khazars changed their religion and why this case do not so much attest in contemporary Judaic, Islamic and Byzantine sources, focuses on there stories of the term, and claimes that not missionaries but traders were influential in conversion.

  9. Catalytic conversion of methane to methanol using Cu-zeolites.

    Science.gov (United States)

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  10. Welding technology for energy conversion

    International Nuclear Information System (INIS)

    Wells, A.A.

    1982-01-01

    Quest for efficiency leads to extremes of operating temperature both high and low, at which for reasons of safety there must be adequate strengths and ductilities of materials under transient as well as steady conditions. The demand for large unit plant sizes arises from the need to achieve economies of scale. It has the effect of progressively increasing the section sizes over which such material properties must be sustained, and also leads to a preference for welded joints which approach the homogeneity of parent materials. The economic pressure to use impure sources of fuels creates problems of erosion and corrosion. The approach to materials and joining must be interdisciplinary and must also have regard to the broad classification of components. This paper is concerned with the present development and future prospects of the newer welding processes such as electron beam, friction and diffusion bonding, in comparison with the range of arc fusion processes, together with the joint properties that are obtained. It also makes reference to particular problems such as site construction, repair, remote welding and heat treatment

  11. Steam initiated hydrotalcite conversion coatings

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2018-01-01

    A facile process of exploiting high-temperature steam to deposit nvironmentally friendly hydrotalcite (HT) coatings on Al alloy 6060 was developed in a spray system. Scanning electron microscopy showed the formationf a continuous and conformal coating comprised of a compact mass of crystallites....... A range of coating processesased on the formation of HT surface layers has been developed to examine its effect on the coating's thicknessnd corrosion resistance properties. These varieties include pre-coating cleaning (grid blasting vs. chemicaltching), metal species in HT compounds (Al-Zn HT coating vs....... Al-Li HT coating), oxidizer additives (K2S2O8,a2SO4, NH4NO3, KNO3), and post-coating treatment (Mg(CH3COO)2, Mg(CH3COO)2+Ce(NO3)3+H2O2, MgCH3COO)2+La(NO3)3). Results showed that grid blasting can increase the coating surface area, while chemical etching improves the chemical bonding connection...

  12. Effect of Temperature, Pressure and Equivalence Ratio on Ignition Delay in Ignition Quality Tester (IQT): Diesel,n-Heptane, andiso-Octane Fuels under Low Temperature Conditions

    KAUST Repository

    Yang, Seung Yeon

    2015-11-02

    Effects of temperature, pressure and global equivalence ratio on total ignition delay time in a constant volume spray combustion chamber were investigated for diesel fuel along with the primary reference fuels (PRFs) of n-heptane and iso-octane in relatively low temperature conditions to simulate unsteady spray ignition behavior. A KAUST Research ignition quality tester (KR-IQT) was utilized, which has a feature of varying temperature, pressure and equivalence ratio using a variable displacement fuel pump. A gradient method was adopted in determining the start of ignition in order to compensate pressure increase induced by low temperature heat release. Comparison of this method with other existing methods was discussed. Ignition delay times were measured at various equivalence ratios (0.5-1.7) with the temperatures of initial charge air in the range from 698 to 860 K and the pressures in the range of 1.5 to 2.1 MPa, pertinent to low temperature combustion (LTC) conditions. An attempt to scale the effect of pressure on total ignition delay was undertaken and the equivalence ratio exponent and activation energy in the Arrhenius expression of total ignition delay were determined. Ignition delay results indicated that there were strong correlations of pressure, temperature, and equivalence ratio under most conditions studied except at relatively low pressures. Diesel (DCN 52.5) and n-heptane (DCN 54) fuels exhibited reasonably similar ignition delay characteristics, while iso-octane showed a distinct behavior under low temperature regime having a two-stage ignition, which substantiate the adoption of the gradient method in determining ignition delay.

  13. Conversion of ammonium uranyl carbonate to UO2 in a fluidized bed

    International Nuclear Information System (INIS)

    Zhao Jun; Qiu Lufu; Zhong Xing; Xu Heqing

    1989-11-01

    The conversion of AUC (Ammonium Uranyl Carbonate) to UO 2 was studied in a fluidized bed of 60 mm inner diameter based on the thermodynamics and kinetics data of decomposition-reduction of AUC. The influence of the reaction temperature, composition of fluidization gas and fluidization velocity on conversion were investigated by using N 2 , Ar and circulation gas (mixing gas of H 2 and CO obtained from the exhaust gas of the decomposition of AUC by catalyst crack-conversion) as the fluidization gas. The throughput is up to the high levels (3.32 kg(wet)/h·L) by using circulation gas or mixing of circulation gas and Ar (< 21%) as the fluidization gas when the reaction temperature exceeds 570 deg C

  14. A Conversational Model of art therapy.

    Science.gov (United States)

    Eisdell, Nicolette

    2005-03-01

    This paper illustrates a 'Conversational Model' of art therapy. The Conversational Model was jointly created by Robert Hobson and Russell Meares. It is a developmental theory unique in its clinical application. The focus of the paper is two sessions that altered the course of therapy. In these sessions, variations on Donald Winnicott's "squiggle-game" and Hobson's "party game" were used to engage an isolative, reluctant incarcerated patient. The interventions illustrate the basic tenets of the Conversational Model. The theoretical process--from disruption to repair--is visually recorded in the artwork. The central argument of the paper is that interactive art therapy interventions can be effective, when used appropriately. By engaging the patient in a 'visual' conversation, he/she may develop an emotional vocabulary, a prerequisite for a psychotherapeutic conversation. The paper begins with a brief historical overview of the interface between art and psychoanalysis, the context out of which 'art therapy'--a distinct body of theory--evolved. Theory interweaves with clinical material in a narrative style. What I say and do in therapy is aimed at promoting understanding: a 'conversation', a meeting between two experiencing subjects (an I and a Thou), here and now, in such a way that learning can be effective in other relationships. If, as I believe, psychotherapy is a matter of promoting a personal dialogue, then we need to know how to receive, express, and share feeling: how to learn a language of the heart in its 'minute particulars'.

  15. Using low temperature calorimetry and moisture fixation method to study the pore structure of cement based materials

    DEFF Research Database (Denmark)

    Wu, Min

    consideration of including the model material in this investigation was to validate the applicability of the chosen methods in the context of pore size determination. In addition, data from literature were used. LTC investigations conducted in this PhD study include the ice content determination from measured...... attention was devoted to investigating important factors influencing the analysis of measured LTC data and using LTC to characterize the pore structure of cement based materials. Besides, the moisture fixation method was selected as a comparison and complementary method to the LTC. Attempts have been made...... data, the impact of sample saturation on the detected porosity, the effect of frost damage on the pore size distribution determination by LTC, the effect of preconditioning the cement paste samples on the freezing and melting behavior of the pore solution, the impact of sample crushing...

  16. Science of Nanofluidics and Energy Conversion

    Science.gov (United States)

    Xu, Baoxing

    The emerging subject of nanofluidics, where solids and fluids interact closely at the nanoscale, has exhibited radically different from their macroscopic counterparts (and sometimes counterintuitive), and yet relatively less explored. On the other hand, the resulting unique properties may contribute to a number of innovative functions with fascinating applications. Among various exciting potential applications, an important and ever expanding one is to provide alternative solutions to energy conversion with high efficiency, including energy absorption, actuation and harvesting. In this dissertation, we first report a novel protection mechanism of energy capture through which an intensive impact or blast energy can be effectively mitigated based on a nonwetting liquid-nanoporous material system. The captured energy is stored in nanopores in the form of potential energy of intercalated water molecules for a while, and not necessarily converted to other forms of energy (e.g. heat). At unloading stage, the captured energy will be released gradually due to the hydrophobic inner surfaces of nanopores through the diffusion of water molecules out of nanopores, thus making this system reusable. Several key controlling factors including impacting velocity, nanopore size, nanopore structure, and liquid phase have been investigated on the capacity of energy capture. The molecular mechanism is elucidated through the study of water molecular distributions inside nanpores. These molecular dynamic (MD) findings are quantitatively verified by a parallel blast experiment on a zeolite/water system. During the transport of confined liquid molecules, the friction resistance exerted by solid atoms of nanopores to liquid molecules will dissipate part of energy, and is highly dependent of temperature of liquid molecules and wall morphology of nanopores. Using MD simulations, the effects of temperature and wall roughness on the transport resistance of water molecules inside nanopores are

  17. New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media

    OpenAIRE

    Trashkeev, Sergey I.; Kudryavtsev, Alexey N.

    2012-01-01

    The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though t...

  18. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  19. Efficient ortho-para conversion of H2 on interstellar grain surfaces

    Science.gov (United States)

    Bron, Emeric; Le Petit, Franck; Le Bourlot, Jacques

    2016-04-01

    Context. Fast surface conversion between ortho- and para-H2 has been observed in laboratory studies, and it has been proposed that this mechanism plays a role in the control of the ortho-para ratio in the interstellar medium. Observations of rotational lines of H2 in photo-dissociation regions (PDRs) have indeed found significantly lower ortho-para ratios than expected at equilibrium. The mechanisms controlling the balance of the ortho-para ratio in the interstellar medium thus remain incompletely understood, while this ratio can affect the thermodynamical properties of the gas (equation of state, cooling function). Aims: We aim to build an accurate model of ortho-para conversion on dust surfaces based on the most recent experimental and theoretical results, and to validate it by comparison to observations of H2 rotational lines in PDRs. Methods: We propose a statistical model of ortho-para conversion on dust grains with fluctuating dust temperatures. It is based on a master equation approach. This computation is then coupled to full PDR models and compared to PDR observations. Results: We show that the observations of rotational H2 lines indicate a high conversion efficiency on dust grains and that this high efficiency can be accounted for if taking dust temperature fluctuations into account with our statistical model of surface conversion. Simpler models that neglect the dust temperature fluctuations do not reach the high efficiency deduced from the observations. Moreover, this high efficiency induced by dust temperature fluctuations is very insensitive to the values of the model's microphysical parameters. Conclusions: Ortho-para conversion on grains is thus an efficient mechanism in most astrophysical conditions and can play a significant role in controlling the ortho-para ratio.

  20. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  1. Oxidative Conversion of Hexane to Olefins-Influence of Plasma and Catalyst on Reaction Pathways

    NARCIS (Netherlands)

    Boyadjian, C.A.; Agiral, A.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2011-01-01

    An integrated plasma-Li/MgO system is efficient for the oxidative conversion of hexane. In comparison to the Li/MgO catalytic system, it brings considerable improvements in the yields of light olefins (C 2 = –C 5 = ) at relatively low temperatures indicating synergy from combination of plasma and

  2. Lightweight, High-Temperature Radiator Panels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  3. Lightweight, High-Temperature Radiator Panels, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  4. Terms and definitions of conversion ratio for High Conversion Light Water Reactor

    International Nuclear Information System (INIS)

    Shimada, Shoichiro

    1990-01-01

    Conversion ratio is an important index as a term to indicate fuel source utilization. It was used to indicate breeding ratio in FBR and its definition was discussed in the paper. Studies for High Conversion Light Water Reactor have been started and the conversion ratio has been used as an index of fuel utilization. Its definition is not unique and there are some confusions among the papers. In this data the author tries to review various definitions of conversion ratio and clarify their physical meaning and its relation among the definitions. (author)

  5. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  6. Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media.

    Science.gov (United States)

    dePaula, S M; Huila, M F G; Araki, K; Toma, H E

    2010-12-01

    Conversion of Pomacea lineate shells into hydroxyapatite (HA) bioceramic materials was investigated by their in vitro treatment with phosphate solutions, at room temperature. Confocal Raman microscopy revealed that the conversion proceeds at distinct rates through the nacreous or periostracum sides of the shell. The conversion can be accelerated using powdered samples, yielding biocompatible materials of great interest in biomedicine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Motor inhibition in hysterical conversion paralysis.

    Science.gov (United States)

    Cojan, Yann; Waber, Lakshmi; Carruzzo, Alain; Vuilleumier, Patrik

    2009-09-01

    Brain mechanisms underlying hysterical conversion symptoms are still poorly known. Recent hypotheses suggested that activation of motor pathways might be suppressed by inhibitory signals based on particular emotional situations. To assess motor and inhibitory brain circuits during conversion paralysis, we designed a go-nogo task while a patient underwent functional magnetic resonance imaging (fMRI). Preparatory activation arose in right motor cortex despite left paralysis, indicating preserved motor intentions, but with concomitant increases in vmPFC regions that normally mediate motivational and affective processing. Failure to execute movement on go trials with the affected left hand was associated with activations in precuneus and ventrolateral frontal gyrus. However, right frontal areas normally subserving inhibition were activated by nogo trials for the right (normal) hand, but not during go trials for the left hand (affected by conversion paralysis). By contrast, a group of healthy controls who were asked to feign paralysis showed similar activation on nogo trials and left-go trials with simulated weakness, suggesting that distinct inhibitory mechanisms are implicated in simulation and conversion paralysis. In the patient, right motor cortex also showed enhanced functional connectivity with the posterior cingulate cortex, precuneus, and vmPFC. These results suggest that conversion symptoms do not act through cognitive inhibitory circuits, but involve selective activations in midline brain regions associated with self-related representations and emotion regulation.

  8. Advanced conversion technology review panel report

    International Nuclear Information System (INIS)

    Frazier, T.A.

    1998-01-01

    The Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) established a DOE lead management team and an Advanced Conversion Technology Review Panel. The panel was tasked with providing the management team with an assessment and ranking of the three advanced conversion technologies. The three advanced conversion technologies were alkali metal thermal to electric converter (AMTEC), Stirling engine converter (SEC), and thermophotovoltaic (TPV). To rate and rank these three technologies, five criteria were developed: (1) Performance, (2) Development and Cost/Production and Cost/Schedule Risk, (3) Spacecraft Interface and Operations, (4) Ability to Scale Conversion, and (5) Safety. Discussed are the relative importance of each of these criteria and the rankings of the three advanced conversion technologies. It was the conclusion of the panel that the technology decision should be based on the risk that DOE and NASA are willing to accept. SEC is the most mature technology and would provide the lowest risk option. However, if more risk is acceptable, AMTEC not only provides benefits in the spacecraft interface but is also predicted to outperform the SEC. It was proposed that if AMTEC were selected, funding should be provided at a reasonable level to support back-up technology to be developed in a parallel fashion until AMTEC has proven its capability. The panel report and conclusion were provided to DOE in February 1997

  9. Response inhibition in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  10. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  11. Conversion disorder: towards a neurobiological understanding

    Science.gov (United States)

    Harvey, Samuel B; Stanton, Biba R; David, Anthony S

    2006-01-01

    Conversion disorders are a common cause of neurological disability, but the diagnosis remains controversial and the mechanism by which psychological stress can result in physical symptoms “unconsciously” is poorly understood. This review summarises research examining conversion disorder from a neurobiological perspective. Early observations suggesting a role for hemispheric specialization have not been replicated consistently. Patients with sensory conversion symptoms have normal evoked responses in primary and secondary somatosensory cortex but a reduction in the P300 potential, which is thought to reflect a lack of conscious processing of sensory stimuli. The emergence of functional imaging has provided the greatest opportunity for understanding the neural basis of conversion symptoms. Studies have been limited by small patient numbers and failure to control for confounding variables. The evidence available would suggest a broad hypothesis that frontal cortical and limbic activation associated with emotional stress may act via inhibitory basal ganglia–thalamocortical circuits to produce a deficit of conscious sensory or motor processing. The conceptual difficulties that have limited progress in this area are discussed. A better neuropsychiatric understanding of the mechanisms of conversion symptoms may improve our understanding of normal attention and volition and reduce the controversy surrounding this diagnosis. PMID:19412442

  12. Biomass for thermochemical conversion: targets and challenges

    Directory of Open Access Journals (Sweden)

    Paul eTanger

    2013-07-01

    Full Text Available Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis as well as that of engineers (proximate and ultimate analysis. We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

  13. TFTR power conversion and plasma feedback systems

    International Nuclear Information System (INIS)

    Neumeyer, C.

    1985-01-01

    Major components of the Tokamak Fusion Test Reactor (TFTR) power conversion system include 39 thyristor rectifier power supplies, 12 energy storage capacitor banks, and 6 ohmic heating interrupters. These components are connected in various series/parallel configurations to provide controlled pulses of current to the Toroidal Field (TF), Ohmic Heating (OH), Equilibrium (vertical) Field (EF), and Horizontal Field (HF) magnet coil systems. Real-time control of the power conversion system is accomplished by a centralized dedicated computer; local control is minimal. Power supply firing angles, capacitor bank charge and discharge commands, interrupter commands, etc., are all determined and issued by the central computer. Plasma Position and Current Control (PPCC) reference signals to power conversion (OH, EF, HF) are determined by separate analog electronics but invoked through the power conversion computer. Real-time fault sensing of plasma parameters, gas injection, neutral beams, etc., are monitored by a separate Discharge Fault System (DFS) but routed through the power conversion computer for pre-programmed shutdown response

  14. Study on carbon dioxide conversion by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hyun; Park, Geun Il; Cho, Il Hoon; Choi, Sang Do; Hong, Kwang Hee; Lee, Chang Woo

    1999-09-01

    This study was carried out to investigate the synergistic effects on the CO{sub 2} conversion by the application of semiconductor in the field of gamma-ray. Gamma-ray irradiation was performed to examine the effects of semiconductor application on CO{sub 2} conversion in water and the formation of organic material from carbonate solution. From experimental results it is clear that the supplication of semiconductor in the field of gamma-ray increases the efficiency for CO{sub 2} conversion to organic matter. Based on the obtained experimental results it is obvious that the synergistic effects of semiconductor materials in the gamma-ray field leads to increase of the CO{sub 2} conversion yield to organic matter up to 50 percent compared to the gamma-ray irradiation. The way of achieving higher activity is due to thecatalytic action of semiconductor by gamma-ray irradiation. Zr-doped TiO{sub 2} catalyst prepared by sol-gel method exhibits the higher efficiency for CO{sub 2} conversion in aqueous solution and carbonate containing solution. This effect of Zr-doping can be explained by the formation of additional defects in surface of TiO{sub 2} film. (author)

  15. Biomass for thermochemical conversion: targets and challenges.

    Science.gov (United States)

    Tanger, Paul; Field, John L; Jahn, Courtney E; Defoort, Morgan W; Leach, Jan E

    2013-01-01

    Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

  16. Theoretical efficiency limits for energy conversion devices

    International Nuclear Information System (INIS)

    Cullen, Jonathan M.; Allwood, Julian M.

    2010-01-01

    Using energy more efficiently is a key strategy for reducing global carbon dioxide emissions. Due to limitations on time and resources, actions must be focused on the efficiency measures which will deliver the largest gains. Current surveys of energy efficiency measures assess only known technology options developed in response to current economic and technical drivers. However, this ignores opportunities to deliver long-term efficiency gains from yet to be discovered options. In response, this paper aims to calculate the absolute potential for reducing energy demand by improving efficiency, by finding the efficiency limits for individual conversion devices and overlaying these onto the global network of energy flow. The potential efficiency gains for each conversion device are found by contrasting current energy demand with theoretical minimum energy requirements. Further insight is gained by categorising conversion losses according to the underlying loss mechanisms. The result estimates the overall efficiency of global energy conversion to be only 11 per cent; global demand for energy could be reduced by almost 90 per cent if all energy conversion devices were operated at their theoretical maximum efficiency.

  17. VIOLATION OF CONVERSATION MAXIM ON TV ADVERTISEMENTS

    Directory of Open Access Journals (Sweden)

    Desak Putu Eka Pratiwi

    2015-07-01

    Full Text Available Maxim is a principle that must be obeyed by all participants textually and interpersonally in order to have a smooth communication process. Conversation maxim is divided into four namely maxim of quality, maxim of quantity, maxim of relevance, and maxim of manner of speaking. Violation of the maxim may occur in a conversation in which the information the speaker has is not delivered well to his speaking partner. Violation of the maxim in a conversation will result in an awkward impression. The example of violation is the given information that is redundant, untrue, irrelevant, or convoluted. Advertisers often deliberately violate the maxim to create unique and controversial advertisements. This study aims to examine the violation of maxims in conversations of TV ads. The source of data in this research is food advertisements aired on TV media. Documentation and observation methods are applied to obtain qualitative data. The theory used in this study is a maxim theory proposed by Grice (1975. The results of the data analysis are presented with informal method. The results of this study show an interesting fact that the violation of maxim in a conversation found in the advertisement exactly makes the advertisements very attractive and have a high value.

  18. Abnormal Parietal Function in Conversion Paresis

    Science.gov (United States)

    van Beilen, Marije; de Jong, Bauke M.; Gieteling, Esther W.; Renken, Remco; Leenders, Klaus L.

    2011-01-01

    The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms. PMID:22039428

  19. Evaluation of Low Temperature CO Removal Catalysts

    Science.gov (United States)

    Monje, Oscar

    2015-01-01

    CO removal from spacecraft gas streams was evaluated for three commercial, low temperature oxidation catalysts: Carulite 300, Sofnocat 423, and Hamilton Sundstrand Pt1. The catalysts were challenged with CO concentrations (1-100 ppm) under dry and wet (50% humidity) conditions using 2-3 % O2. CO removal and CO2 concentration were measured at constant feed composition using a FTIR. Water vapor affected the CO conversion of each catalyst differently. An initial screening found that Caulite 300 could not operate in humid conditions. The presence of water vapor affected CO conversion of Sofnocat 423 for challenge concentrations below 40 ppm. The conversion of CO by Sofnocat 423 was 80% at CO concentrations greater than 40 ppm under both dry and moist conditions. The HS Pt1 catalyst exhibited CO conversion levels of 100% under both dry and moist conditions.

  20. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai [Pacific Northwest National Laboratory, Richland Washington 99352; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington 99352; Rice, Jarrett A. [Pacific Northwest National Laboratory, Richland Washington 99352; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington 99352; Riley, Brian J. [Pacific Northwest National Laboratory, Richland Washington 99352; Overman, Nicole R. [Pacific Northwest National Laboratory, Richland Washington 99352; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington 99352; Vance, E.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt was completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.

  1. Capability of the Direct Dimethyl Ether Synthesis Process for the Conversion of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Ainara Ateka

    2018-04-01

    Full Text Available The direct synthesis of dimethyl ether (DME is an ideal process to achieve the environmental objective of CO2 conversion together with the economic objective of DME production. The effect of the reaction conditions (temperature, pressure, space time and feed composition (ternary mixtures of H2 + CO + CO2 with different CO2/CO and H2/COx molar ratios on the reaction indices (COx conversion, product yield and selectivity, CO2 conversion has been studied by means of experiments carried out in a fixed-bed reactor, with a CuO-ZnO-MnO/SAPO-18 catalyst, in order to establish suitable ranges of operating conditions for enhancing the individual objectives of CO2 conversion and DME yield. The optimums of these two objectives are achieved in opposite conditions, and for striking a good balance between both objectives, the following conditions are suitable: 275–300 °C; 20–30 bar; 2.5–5 gcat h (molC−1 and a H2/COx molar ratio in the feed of 3. CO2/CO molar ratio in the feed is of great importance. Ratios below 1/3 are suitable for enhancing DME production, whereas CO2/CO ratios above 1 improve the conversion of CO2. This conversion of CO2 in the overall process of DME synthesis is favored by the reverse water gas shift equation, since CO is more active than CO2 in the methanol synthesis reaction.

  2. Design Thinking and the Deanly Conversation: Reflections on Conversation, Community, and Agency

    Science.gov (United States)

    Campbell, Katy

    2015-01-01

    The article "Conversation as Inquiry: A Conversation with Instructional Designers" (Campbell, Schwier & Kenny 2006) appeared in the "Journal of Learning Design" Volume 1, Issue 3 in 2006. Nine years on, Professor Katy Campbell, Dean of the Faculty of Extension, University of Alberta, reflects upon the arguments articulated…

  3. Balanced program plan. Volume IV. Coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C. R.; Reichle, D. E.; Gehrs, C. W.

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessary to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants. (auth)

  4. Impact of defense conversion and US response

    International Nuclear Information System (INIS)

    Montanarelli, N.

    1994-01-01

    Conversion from military to civilian products due to defense conversion after the end of the Cold War takes a long as 20 years. In USA there are over 50 government programs funded to assist in defence conversion. This paper concentrates on the three major programs that will have the greatest impact on the economy, in the framework of the issues and needs of American industry. Federal government and US industry are making a considerable effort to transform how to do business today. One of the most important emerging themes in the federal program is international competitiveness. Large federal expenditures are made to support research and development that will increase productivity, thereby helping industry in global economic competition. This, in turn will play a key role in absorbing a large quantity od resources affected by the end of the Cold War

  5. Sustainable Process Networks for CO2 Conversion

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, P.; Pavarajam, V.

    , such as methanol (MeOH) have the largest market, this network will include a variety of thermodynamically feasible conversion paths [4]. From reviews of work previously done, there are ranges of possible products that are formed from CO2 and another co-reactant directly. Methanol, dimethyl ether, dimethyl...... the emissions is the conversion of CO2 into useful products, such as methanol [3]. In this work, through a computer-aided framework for process network synthesis-design, a network of feasible conversion processes that all use emitted CO2 is investigated. CO2 is emitted into the environment from various sources......: power generation, industrial processes, transportation and commercial processes. Within these there are high-purity emissions and low-purity emissions. Rather than sending these to the atmosphere, it is possible to collect them and use them for other purposes. In this work, the first step is determining...

  6. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  7. Energy Conversion in Protocells with Natural Nanoconductors

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2012-01-01

    Full Text Available While much nanotechnology leverages solid-state devices, here we present the analysis of designs for hybrid organic-inorganic biomimetic devices, “protocells,” based on assemblies of natural ion channels and ion pumps, “nanoconductors,” incorporated into synthetic supported lipid bilayer membranes. These protocells mimic the energy conversion scheme of natural cells and are able to directly output electricity. The electrogenic mechanisms have been analyzed and designs were optimized using numerical models. The parameters that affect the energy conversion are quantified, and limits for device performance have been found using numerical optimization. The electrogenic performance is compared to conventional and emerging technologies and plotted on Ragone charts to allow direct comparisons. The protocell technologies summarized here may be of use for energy conversion where large-scale ion concentration gradients are available (such as the intersection of fresh and salt water sources or small-scale devices where low power density would be acceptable.

  8. Hydrogen turbine power conversion system assessment

    Science.gov (United States)

    Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.

    1978-01-01

    A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.

  9. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  10. Conversation practices and network structure in Twitter

    DEFF Research Database (Denmark)

    Rossi, Luca; Magnani, Matteo

    2012-01-01

    the participation in the same hashtag based conversation change the follower list of the participants? Is it possible to point out specific social behaviors that would produce a major gain of followers? Our conclusions are based on real data concerning the popular TV show Xfactor, that largely used Twitter......The public by default nature of Twitter messages, together with the adoption of the #hashtag convention led, in few years, to the creation of a digital space able to host worldwide conversation on almost every kind of topic. From major TV shows to Natural disasters there is no contemporary event...... that does not have its own #hashtag to gather together the ongoing Twitter conversation. These topical discussions take place outside of the Twitter network made of followers and friends. Nevertheless this topical network is where many of the most studied phenomena take place. Therefore Twitter based...

  11. The Quality of Conversations in Participatory Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Larsen, Henry

    2010-01-01

    meaning in - often conflictual - conversations. We argue that the meeting of participants with different stakes is crucial precisely because crossing intentions can create new insight and movement of thought and action. We use improvised theatre to investigate what happens in industrial (and other......In co-design there seems to be a widespread understanding that innovation is a planned, goal-oriented activity that can be propelled forward through well-facilitated events in which company employees collaborate with external parties (users in particular) and the conversations aim at consensus......) organizations that embark on participatory activities, and the barriers that prevent them. By analysing improvised scenes and the way the audience reacts, we characterize the quality of conversations that seems to allow new meaning to emerge and thus stimulates innovation. We suggest that we need to develop new...

  12. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  13. Postoperative conversion disorder in a pediatric patient.

    Science.gov (United States)

    Judge, Amy; Spielman, Fred

    2010-11-01

    According to the Diagnostic and Statistical Manual IV (DSM IV), conversion disorder is classified as a somatoform illness and defined as an alteration or loss of physical function because of the expression of an underlying psychological ailment. This condition, previously known as hysteria, hysterical neurosis, or conversion hysteria occurs rarely, with an incidence of 11-300 cases per 100,000 people (American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th edn. Washington, DC: American Psychiatric Association, 1994). Presentation after an anesthetic is exceptional. After thorough review of the literature, fewer than 20 cases have been documented, with only two instances in patients younger than 18 years of age after general anesthesia; both were mild in nature. We present a severe case of postoperative conversion disorder that developed upon emergence from anesthesia in a previously healthy 16-year-old girl following direct laryngoscopy with vocal fold injection. © 2010 Blackwell Publishing Ltd.

  14. Superhydrophobic nanofluidic channels for enhanced electrokinetic conversion

    Science.gov (United States)

    Checco, Antonio; Al Hossain, Aktaruzzaman; Rahmani, Amir; Black, Charles; Doerk, Gregory; Colosqui, Carlos

    2017-11-01

    We present current efforts in the development of novel slit nanofluidic channels with superhydrophobic nanostructured surfaces designed to enhance hydrodynamic conductivity and improve selective transport and electrokinetic energy conversion efficiencies (mechanical-electrical energy conversion). The nanochannels are fabricated on silicon wafers using UV lithography, and their internal surface is patterned with conical nanostructures (feature size and spacing 30 nm) defined by block copolymer self-assembly and plasma etching. These nanostructures are rendered superhydrophobic by passivation with a hydrophobic silane monolayer. We experimentally characterize hydrodynamic conductivity, effective zeta potentials, and eletrokinetic flows for the patterned nanochannels, comparing against control channels with bare surfaces. Experimental observations are rationalized using both continuum-based modeling and molecular dynamics simulations. Scientific and technical knowledge produced by this work is particularly relevant for sustainable energy conversion and storage, separation processes and water treatment using nanoporous materials. The ONR Contract # N000141613178 and NSF-CBET award# 1605809.

  15. Temperature effects on gallium arsenide 63Ni betavoltaic cell.

    Science.gov (United States)

    Butera, S; Lioliou, G; Barnett, A M

    2017-07-01

    A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Fiscal 1999 phase 2 R and D report of WE-NET (International Clean Energy Network Using Hydrogen Conversion). Task 10. Development of low-temperature materials; 1999 nendo suiso riyo kokusai clean energy gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 10. Teion zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on material property test under liquid hydrogen environment, and development of optimum welding material and welding technique for the WE-NET plan. In the study on material properties in a liquid hydrogen temperature range, fatigue strength tests of base metals and weld metals were conducted under liquid hydrogen environment continuously, and further fatigue data were collected. As a result, it was clarified that both SUS304L and SUS316L have extremely high fatigue strength. To improve the tenacity of candidate weld metals under liquid hydrogen environment, material tests of welds were conducted on the laser-welded stainless steel joint and friction stir- welded Al alloy joint prepared by TWI (The Welding Institute) in the U.K. The laser-welded stainless steel joint showed higher low-temperature tenacity and lower ductility than TIG- welded joints. The friction stir-welded Al alloy joint showed extremely improved tensile strength and tenacity in a liquid hydrogen temperature range. For the low-temperature material database, both addition of new data and improvement of software were promoted. (NEDO)

  17. Thermoelectric Powered High Temperature Wireless Sensing

    Science.gov (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  18. Pyroelectric and dielectric energy conversion – A new view of the old problem

    International Nuclear Information System (INIS)

    Poprawski, W.; Gnutek, Z.; Radojewski, J.; Poprawski, R.

    2015-01-01

    The pyroelectric effect is commonly used to construct infrared radiation detectors. In this article we intend to pay attention to a possibility of the pyroelectric effect employment along with the temperature dependence of the dielectric permittivity into a direct conversion of the time-alternating heat flux and the electromagnetic radiation to the electric energy. Converters making use of the mentioned phenomena can be applied in the low-power electric energy generators mounted in autonomous electronic devices. Operation principles for pyroelectric and dielectric generators (PEG and DEG) of the electric energy are presented in this work together with a brief review on ferro- and antiferroelectric materials suitable for the generators. It was shown that for the ferroelectrics with the second-order phase transition the conversion efficiency of PEGs did not depend on temperature in a wide temperature range, and ferroelectrics showing an order–disorder phase transition together with composites and heterostructures based on these ferroelectrics had high conversion efficiency. For the first time ferro- and antiferroelectric materials were extensively reviewed with regard to their applicability in PEGs. It was also shown that ferro- and antiferroelectrics with translation-type phase transition, quantum ferroelectrics, ferro- and antiferroelectric relaxors were good materials for DEGs. Considering literature data the efficiency for the thermal-to-electrical energy conversion was estimated for a few typical material groups. Advantages and disadvantages of the individual groups were presented along with their possible limitations for PEG and DEG usage. - Highlights: • A direct conversion of the alternating heat flux to the electric energy is described. • Order–disorder-type ferroelectrics were found to be suitable for pyroelectric energy generators. • Certain ferro- and antiferroelectrics, quantum ones and relaxors were good for dielectric converters. • The

  19. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    ideal hydrogen binding energies were identified. Bulk alloy electrocatalysts with comparable compositions to the model surfaces were synthesized and tested for performance in alkaline, neutral, and acidic conditions. Cu-Ti was found to exhibit the lowest overpotentials and highest overall performance, and was redesigned as a nanoporous catalyst which achieved higher current at lower overpotentials than even commercial Pt/C, with remarkably high stability. Through applying design principles developed during the HER work, self-supported nanoporous Cu-Co alloy catalysts were synthesized for the improvement of product selectivity and overall conversion of reactants in furfural hydro(deoxy)genation. Under vapor-phase reaction conditions, it was found that adding 1% to 10% oxophilic Co in a solid solution with Cu enhanced overall conversion towards products. In particular, a Cu95Co5 alloy produced 64.9% yield of 2-methylfuran at a high sustained total conversion of 85.0% and under moderate temperature conditions, which is the highest 2-methylfuran production reported for non-precious catalysts. Further analysis at a wider range of temperature conditions and sustained reaction time on stream provided a more detailed understanding of the behavior of these nanoporous materials, and possible mechanistic explanations of the high activity for Cu-Co are proposed to aid in the design of new materials with even higher product selectivities.

  20. Conversion to biofuel based heating systems - local environmental effects

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2003-01-01

    with electricity heating and one area with a large amount of small scale wood burning for heating has been investigated in each municipality. The studied heating systems for conversion are connected to a small-scale district heating system, based on bio fuels, and conversion to pellet techniques. The case studies has been performed as following: Investigation of energy needed for heating; Identification of possible heating systems; A brief assessment of the air quality situation. The contribution of the air pollutants NO x , PM 10 and benzene from bio fuel combustion has been investigated by dispersion calculations in the model ALARM. Wind direction, intensity, temperature and topography are taken into account when making the calculations. Other factors considered are chimney height, diameter, flue gas temperature and width of ambient buildings. An example of an application of the results in a geographical information system has also been made. None of the studied housing areas has shown to be unsuitable for combustion of bio fuels. The national threshold values for the studied air pollutants has not been exceeded after a conversion to studied heating systems. The district heating systems gave lower emissions than pellet techniques but other than that there was no significant differences. The most notably difference was seen between different kind of boilers. Old boilers gave far more emissions than more modern models. In these areas that today have a large supply of heat from small scale wood burning in old boilers, the levels of the studied air pollutants are relatively high. A conversion to pellet techniques show a significant decrease in these levels. As the differences between district heating systems and pellet techniques was low, a suitable heating system has been chosen after the heating density. The limit where it is profitable to connect a housing area to a district heating system has been set at 30 kWh/m 2 /yr