WorldWideScience

Sample records for temperature control system

  1. Variable temperature seat climate control system

    Science.gov (United States)

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  2. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  3. Temperature control of cryogenic systems

    International Nuclear Information System (INIS)

    Lessard, P.A.; Bartlett, A.J.; Peterson, J.F.

    1987-01-01

    A cryogenic refrigerator is described comprising: a refrigerator heat sink; a source of refrigerant gas under pressure; gas expansion means including a reciprocating piston in a cylinder for expanding the refrigerant gas in a gas expansion space within the cylinder to cool the gas and the refrigerator heat sink to cryogenic temperatures; means for selectively diverting refrigerant gas away from the gas expansion means; and a heat exchanger in thermal communication with the refrigerator heat sink for receiving diverted gas and conducting heat from the refrigerant gas into the refrigerator heat sink to warm the heat sink while keeping the diverted gas out of fluid communication with the gas expansion space

  4. Passive environmental temperature control system

    Science.gov (United States)

    Corliss, John M.; Stickford, George H.

    1981-01-01

    Passive environmental heating and cooling systems are described, which utilize heat pipes to transmit heat to or from a thermal reservoir. In a solar heating system, a heat pipe is utilized to carry heat from a solar heat absorber plate that receives sunlight, through a thermal insulation barrier, to a heat storage wall, with the outer end of the pipe which is in contact with the solar absorber being lower than the inner end. The inclining of the heat pipe assures that the portion of working fluid, such as Freon, which is in a liquid phase will fall by gravity to the outer end of the pipe, thereby assuring diode action that prevents the reverse transfer of heat from the reservoir to the outside on cool nights. In a cooling system, the outer end of the pipe which connects to a heat dissipator, is higher than the inner end that is coupled to a cold reservoir, to allow heat transfer only out of the reservoir to the heat dissipator, and not in the reverse direction.

  5. Temperature Control System for Mushroom Dryer

    Science.gov (United States)

    Wibowo, I. A.; Indah, Nur; Sebayang, D.; Adam, N. H.

    2018-03-01

    The main problem in mushroom cultivation is the handling after the harvest. Drying is one technique to preserve the mushrooms. Traditionally, mushrooms are dried by sunshine which depends on the weather. This affects the quality of the dried mushrooms. Therefore, this paper proposes a system to provide an artificial drying for mushrooms in order to maintain their quality. The objective of the system is to control the mushroom drying process to be faster compared to the natural drying at an accurate and right temperature. A model of the mushroom dryer has been designed, built, and tested. The system comprises a chamber, heater, blower, temperature sensor and electronic control circuit. A microcontroller is used as the controller which is programmed to implement a bang-bang control that regulates the temperature of the chamber. A desired temperature is inputted as a set point of the control system. Temperature of 45 °C is chosen as the operational drying temperature. Several tests have been carried out to examine the performance of the system including drying speed, the effects of ambient conditions, and the effects of mushroom size. The results show that the system can satisfy the objective.

  6. Remote System of Temperature Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Vítor Carvalho

    2008-11-01

    Full Text Available This paper presents a system capable of monitoring and control remotely the temperature of a physical space. This work was part of a final year graduation of the Industrial Informatics Course at the Polytechnic Institute of Cávado and Ave. It was developed by an undergraduate student using a LabVIEW custom application with a methodology of on-off control. The local user can use a touch screen display to configure the system setpoint temperature and for overall monitoring. For remote access it can be used any device supporting LabVIEW environment.

  7. Programmable temperature control system for biological materials

    Science.gov (United States)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  8. Feedwater temperature control methods and systems

    Science.gov (United States)

    Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip

    2014-04-22

    A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.

  9. Control system for Fermilab's low temperature upgrade

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel's 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down

  10. An Integrated Expert Controller for the Oven Temperature Control System

    Directory of Open Access Journals (Sweden)

    Nagabhushana KATTE

    2011-03-01

    Full Text Available Paper presents a methodology for design of integrated fuzzy logic based an expert controller and its implementation for a real time oven temperature control system. Integrated expert controller (IEC is composed by cascading fuzzy logic controller with improved PID controller. Wherein, fuzzy controller evaluates the supplemental control actions and PID evaluates the final control actions. Temperature measurement of the oven with a precision of 16-bits is achieved through Pt100, instrumentation amplifier, and A/D converter and fuzzy plus PID computed control actions are given to the actuator via D/A converter (16-bits and PWM generator. Paper experimentally demonstrated the performance of IEC for oven temperature control application. The performance indexes of the system are presented in a comparative fashion with the conventional PID and expert controllers. Control algorithms are developed using C language.

  11. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  12. Temperature Control System for Chromel-Alumel Thermocouple

    International Nuclear Information System (INIS)

    Piping Supriatna; Nurhanan; Riswan DJ; Heru K, B.; Edi Karyanta

    2003-01-01

    Nuclear Power Plan Operation Safety needs serious handling on temperature measurement and control. In this report has been done manufacturing Temperature Control System for Chromel-Alumel Thermocouple, accordance to material, equipment and human resource ability in the laboratory. Basic component for the Temperature Control System is LM-741 type of Operation Amplifier, which is functionalized as summer for voltage comparator. Function test for this Control System shown its ability for damping on temperature reference. The Temperature Control System will be implemented on PCB Processing Machine. (author)

  13. Parasitic load control system for exhaust temperature control

    Science.gov (United States)

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  14. Temperature Control of Autothermal Reformer System with Coefficient Diagram Method

    Science.gov (United States)

    Srisiriwat, N.; Wutthithanyawat, C.

    2017-10-01

    The objective of this paper is to design the autothermal reformer (ATR) temperature control by using a coefficient diagram method (CDM). The adiabatic temperature is a main controlled variable of the ATR which is a combination of endothermic and exothermic reactions. The simulation results of control parameters were calculated to maintain the ATR reaction temperature by manipulating air feed flow rate. In this work, two strategies of ATR temperature controller system with and without the feed temperature control of a preheater unit are compared to investigate the appropriate controller system when the change of surrounding temperature is considered as a key disturbance. The results showed that by using the CDM, the stability and robustness for controlling the ATR temperature system were considered to offer the proper control parameters and the designed temperature control of ATR system gave a good performance to maintain the controlled variables and reject the disturbance. Moreover, the ATR control system design with the feed temperature controller can compensate the surrounding temperature better than that without the feed temperature control.

  15. Temperature control system for water-perfused suits

    Science.gov (United States)

    Brengelmann, G. L.; Mckeag, M.; Rowell, L. B.

    1977-01-01

    A system used to control skin temperature in human subjects wearing water-perfused garments is described. It supplies 8 l/min at 10 psi with water temperature controlled within plus or minus 0.1 C. Temperature control is facilitated by a low circulating thermal mass and a fast responding heater based on a commercially available quartz heat lamp. The system is open so that hot or cold water can be added from the building mains to produce rates of change of water temperature exceeding 5 C/min. These capabilities allow semiautomatic control of skin temperature within plus or minus 0.1 C of desired wave forms.

  16. Fuzzy Logic Temperature Control System For The Induction Furnace

    Directory of Open Access Journals (Sweden)

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  17. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  18. Temperature control system for liquid-fed ceramic melters

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process.

  19. Design of PID temperature control system based on STM32

    Science.gov (United States)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  20. Control system maintains compartment at constant temperature

    Science.gov (United States)

    Lindberg, J. G.

    1966-01-01

    Gas-filled permeable insulating material maintains an enclosed compartment at a uniform temperature. The material is interposed between the two walls of a double-walled enclosure surrounding the compartment.

  1. Design of multifunctional temperature controller for NPP ventilation system

    International Nuclear Information System (INIS)

    Xiao Xipeng; He Li; Yin Xiaolong; Gong Jianjun

    2014-01-01

    Based on full study on the original analog temperature controller of ventilation system in nuclear power plant, for the interface definition fixation, parameters preset as well as multiple output combination of the temperature controller circuit, a digital temperature circuit based on the front-end input conditioning module + multi channel ADC+STM32 architecture is proposed. The hardware structure and software process are described in details. The sampling data processing, phase-cut voltage output as well as control principle are focused, and some part of software program is presented. The experimental results show that the temperature controller can stably and reliably control the temperature of ventilation system and display digital parameters, and it can completely replace and upgrade the original analog controller. (authors)

  2. Reactivity control system of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio

    2004-01-01

    The reactivity control system of the high temperature engineering test reactor (HTTR) consists of a control rod system and a reserve shutdown system. During normal operation, reactivity is controlled by the control rod system, which consists of 32 control rods (16 pairs) and 16 control rod drive mechanisms except for the case when the center control rods are removed to perform an irradiation test. In an unlikely event that the control rods fail to be inserted, reserve shutdown system is provided to insert pellets of neutron-absorbing material into the core. Alloy 800H is chosen for the metallic parts of the control rods. Because the maximum temperature of the control rods reaches about 900 deg. C at reactor scrams, structural design guideline and design material data on Alloy 800H are needed for the high temperature design. The design guideline for the HTTR control rod is based on ASME Code Case N-47-21. Design material data is also determined and shown in this paper. Observing the guideline, temperature and stress analysis were conducted; it can be confirmed that the target life of the control rods of 5 years can be achieved. Various tests conducted for the control rod system and the reserve shutdown system are also described

  3. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  4. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  5. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    Science.gov (United States)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  6. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  7. Fuzzy Logic Applied to an Oven Temperature Control System

    Directory of Open Access Journals (Sweden)

    Nagabhushana KATTE

    2011-10-01

    Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.

  8. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  9. Experimental Investigation of Temperature Feedback Control Systems Applicable to Turbojet-engine Control

    Science.gov (United States)

    Hart, C E; Wenzel, L M; Craig, R T

    1957-01-01

    Temperature - fuel-flow and temperature-area feedback control systems were investigated as means of controlling tailpipe gas temperature of a turbojet engine during transient operation in the high-speed region. Proportional-plus-integral control was used in both systems, but in the temperature-area control system it was necessary to add nonlinear components to the basic proportional-plus-integral control to provide satisfactory transient response to a desired step increase in temperature. Time integral of temperature-error functions were used as criteria for determining optimum transient response. A description of engine dynamics was obtained from frequency-response data.

  10. Study on Temperature Control System Based on SG3525

    Science.gov (United States)

    Cheng, Cong; Zhu, Yifeng; Wu, Junfeng

    2017-12-01

    In this paper, it uses the way of dry bath temperature to heat the microfluidic chip directly by the heating plate and the liquid sample in microfluidic chip is heated through thermal conductivity, thus the liquid sample will maintain at target temperature. In order to improve the reliability of the whole machine, a temperature control system based on SG3525 is designed.SG3525 is the core of the system which uses PWM wave produced by itself to drive power tube to heat the heating plate. The bridge circuit consisted of thermistor and PID regulation ensure that the temperature can be controlled at 37 °C with a correctness of ± 0.2 °C and a fluctuation of ± 0.1 °C.

  11. Temperature control system with a pulse width modulated bridge

    Science.gov (United States)

    Heyser, R. C. (Inventor)

    1973-01-01

    A temperature control system, which includes a modified wheatstone bridge with a resistive-capacitive (RC) circuit in one leg of the bridge, is disclosed. The RC circuit includes a resistor which provides an effective resistance as a function of its absolute resistance and the on-time to off-time ratio of pulses supplied to a switch connected across it. A sawtooth voltage is produced across the RC circuit. The voltage is compared with the voltage across a temperature sensor with heat being applied during each pulse period portion when the sawtooth voltage exceeds the voltage across the temperature sensor.

  12. Intelligent Temperature Controller for Water-Bath System

    OpenAIRE

    Om Prakash Verma; Rajesh Singla; Rajesh Kumar

    2013-01-01

    Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temp...

  13. Control system for Fermilab`s low temperature upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  14. Steam temperature control of essential oil extraction system using ...

    African Journals Online (AJOL)

    This research proposed a closed-loop temperature control using a self-tuning fuzzy fractional-order PI (FOPI) controller to overcome the problem. The controller will regulate the steam temperature at a desired level to protect the oil from excessive heat. Self capability of fuzzy rules was found to facilitate the tuning using only ...

  15. Thermal control systems for low temperature Shuttle payloads

    Science.gov (United States)

    Wright, J. P.; Trucks, H.

    1976-01-01

    Greater sensitivity and longer life for future space sensor systems place more stringent demands on cooling system technology. Results are presented for a study designed to determine and evaluate low-temperature thermal control system concepts for various cooling categories in the range 3-200 K and to generate hardware development plans for undeveloped viable system concepts. The study considered Shuttle launched payloads in the 1980-1991 time frame, with 1-5 yr of life. Cooling concepts are categorized as open-cycle (expendable), closed-cycle (mechanical), solid-state, and radiative. Particular attention is given to the concepts of multistage heat pipe radiator, diode heat pipe radiator, and radiator guarded cryostat. Results are given for parametric analyses of the Vuilleumier refrigerator, the rotary reciprocating refrigerator, the solid hydrogen refrigerator, the solid hydrogen/multistage radiator hybrid cooler, and the magneto-Peltier hybrid cooler.

  16. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  17. Development of age-estimation system using thermoluminescence. Constant rising temperature control with optimal digital control

    International Nuclear Information System (INIS)

    Tamaki, Shiro; Oshiro, Naoki; Yamamoto, Tetsuhiko; Kinjo, Hiroshi; Taira, Hatsuo; Tanahara, Akira.

    1994-01-01

    Thermoluminescence (TL) is a calorescence phenomenon observed while heating minerals. TL intensity depends on the total quantity of radiation dose in the past. Due to this characteristic, measuring of TL intensity of natural minerals has been paid much attention as a useful method of age-estimation in archaeological and geological fields. Since TL intensity depends on the heating rate of the specimen, a constant rising temperature control system is necessary. But, even a commercial apparatus for TL measurement usually fails the rising temperature characteristic. This paper progress a new TL age-estimating method. To establish for this, a temperature control system is designed and a measurement system for TL intensity is developed. The optimal digital feedback control algorithm based on impulse response of the system is applied to this temperature control system. The control result shows that the system can precisely control the constant rising temperature within permissible error of 1 degree for the temperature range of 150-400 degree centigrade. Then the system is introduced to TL age-estimation system of fossil-oyster. The age is estimated by calculating the proportion of the annual cumulative dose at sampling area to the sum of natural cumulative dose that obtained by integrated TL intensity measured at a constant rising temperature. This result is reasonable. (author)

  18. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reforme...

  19. Recycling temperature elevation device and temperature control method for control rod driving system

    International Nuclear Information System (INIS)

    Okamura, Hajime.

    1996-01-01

    The present invention concerns a device for and a method of controlling a recycling temperature control device for control rod drives (CRD) of a nuclear power plant, which can prevent occurrence of cavitation and keep the amount of cooling water to be transferred to a water source transfer pipeline thereby improving maintenanciability, operationability and reliability. Namely, a supply pipeline supplies cooling water required for the control rod drives from a water source. A CRD pump elevates the pressure of the cooling water. A recycling pipeline is branched from the downstream of the CRD pump of the supply pipeline and connected to the supply pipeline at the upstream of the CRD pump. A first pressure element and a restricting valve disposed at the upstream thereof are connected to the upstream of the CRD pump and the water source transfer pipeline. The water source transfer pipeline is branched from the recycling pipeline and connected to the water source. A second pressure element is disposed to a recycling pipeline at the downstream of the branched point from the water source transfer pipeline. (I.S.)

  20. Temperature control system for a J-module heat exchanger

    Science.gov (United States)

    Basdekas, Demetrios L.; Macrae, George; Walsh, Joseph M.

    1978-01-01

    The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.

  1. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    International Nuclear Information System (INIS)

    Jang, Yu Jin

    2013-01-01

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  2. Cooled, temperature controlled electrometer

    Science.gov (United States)

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  3. The realization of temperature controller for small resistance measurement system

    Science.gov (United States)

    Sobecki, Jakub; Walendziuk, Wojciech; Idzkowski, Adam

    2017-08-01

    This paper concerns the issues of construction and experimental tests of a temperature stabilization system for small resistance increments measurement circuits. After switching the system on, a PCB board heats up and the long-term temperature drift altered the measurement result. The aim of this work is reducing the time of achieving constant nominal temperature by the measurement system, which would enable decreasing the time of measurements in the steady state. Moreover, the influence of temperatures higher than the nominal on the measurement results and the obtained heating curve were tested. During the working process, the circuit heats up to about 32 °C spontaneously, and it has the time to reach steady state of about 1200 s. Implementing a USART terminal on the PC and an NI USB-6341 data acquisition card makes recording the data (concerning temperature and resistance) in the digital form and its further processing easier. It also enables changing the quantity of the regulator settings. This paper presents sample results of measurements for several temperature values and the characteristics of the temperature and resistance changes in time as well as their comparison with the output values. The object identification is accomplished due to the Ziegler-Nichols method. The algorithm of determining the step characteristics parameters and examples of computations of the regulator settings are included together with example characteristics of the object regulation.

  4. Closed fluid system without moving parts controls temperature

    Science.gov (United States)

    Stenger, F. J.

    1965-01-01

    Closed fluid system maintains a constant temperature in an insulated region without the use of any moving parts. Within the system, the energy for thermodynamic cycling of two-phase heat transfer fluid and a hydraulic fluid is entirely supplied by the heat generated in the thermally insulated region.

  5. FUZZY LOGIC BASED TEMPERATURE CONTROL SYSTEM USING A MICROCONTROLLER

    OpenAIRE

    FİDAN, Uğur; BAY, Ö.FARUK

    2002-01-01

    This paper is aimed to illustrate the design and the implementation of a fuzzy logic controller(FLC) for an incubator using an AT89C205 microcontroller. The basis for fuzzy control and the general structure of the fuzzy logic controllers are illustrated. Then design and implementation steps of the FLC are explained. Experimental results are also included. The incubator temperature can be adjusted at any point between 25oC – 40 oC . The use of fuzzy logic controller in this application has pot...

  6. High Temperature Evaluation of an Active Clearance Control System Concept

    Science.gov (United States)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2006-01-01

    A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal.

  7. Hot roller embossing system equipped with a temperature margin-based controller

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung, E-mail: seyoungkim@kimm.re.kr; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin [Department of Robotics and Mechatronics, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  8. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  9. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  10. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    demands for this. A 1kW fuel cell stack with optimized  ow plates was heated in 5 minutes using the introduction of an electrical air pre-heater. Using pure hydrogen in compressed form is problematic due to the very small density of hydrogen, even at high pressures. Hydrogen is a very energy e-cient gas...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...... or life time losses. In order to evaluate the performance of using HTPEM fuel cells for electricity production in electrical applications, a 400 W fuel cell system is initially designed using a cathode air cooled 30 cell HTPEM stack. The stack runs on pure hydrogen in a deadend anode configuration...

  11. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    Science.gov (United States)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  12. [Design of a miniaturized blood temperature-varying system based on computer distributed control].

    Science.gov (United States)

    Xu, Qiang; Zhou, Zhaoying; Peng, Jiegang; Zhu, Junhua

    2007-10-01

    Blood temperature-varying has been widely applied in clinical practice such as extracorporeal circulation for whole-body perfusion hyperthermia (WBPH), body rewarming and blood temperature-varying in organ transplantation. This paper reports a novel DCS (Computer distributed control)-based blood temperature-varying system which includes therapy management function and whose hardware and software can be extended easily. Simulation results illustrate that this system provides precise temperature control with good performance in various operation conditions.

  13. High temperature electrically conducting ceramic heating element and control system

    Science.gov (United States)

    Halbach, C. R.; Page, R. J.

    1975-01-01

    Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.

  14. Test results of the reactor inlet coolant temperature control system of HTTR

    International Nuclear Information System (INIS)

    Saito, Kenji; Nakagawa, Shigeaki; Hirato, Yoji

    2004-04-01

    The reactor control system of HTTR is composed of the reactor power control system, the reactor inlet coolant temperature control system, the primary coolant flow rate control system and so on. The reactor control system of HTTR achieves reactor power 30 MW, reactor outlet coolant temperature 850degC, reactor inlet coolant temperature 395degC under the condition that primary coolant flow rate is fixed. In the Rise-to-Power Test, the performance test of the reactor inlet coolant temperature control system was carried out in order to confirm the control capability of this control system. This report shows the test results of performance test. As a result, the control parameters, which can control the reactor inlet coolant temperature stably during the reactor operation, were successfully selected. And it was confirmed that the reactor inlet coolant temperature control system has the capability of controlling the reactor inlet coolant temperature stably against any disturbances on the basis of operational condition of HTTR. (author)

  15. Design of high precision temperature control system for TO packaged LD

    Science.gov (United States)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  16. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    Science.gov (United States)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  17. Simulation of the fuzzy-smith control system for the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Li Deheng; Xu Xiaolin; Zheng Jie; Guo Renjun; Zhang Guifen

    1997-01-01

    The Fuzzy-Smith pre-estimate controller to solve the control of the big delay system is developed, accompanied with the development of the mathematical model of the 10 MW high temperature gas cooled test reactor (HTR-10) and the design of its control system. The simulation results show the Fuzzy-Smith pre-estimate controller has the advantages of both fuzzy control and Smith pre-estimate controller; it has better compensation to the delay and better adaptability to the parameter change of the control object. So it is applicable to the design of the control system for the high temperature gas cooled reactor

  18. Design of laser diode driver with constant current and temperature control system

    Science.gov (United States)

    Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang

    2017-10-01

    A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.

  19. Design of matrix irradiation system for external tissue phototherapy with temperature control

    Science.gov (United States)

    López S., F. Yonadab; Stolik Isakina, Suren; de La Rosa Vázquez, José Manuel

    2013-11-01

    This paper presents the design and development of a matrix irradiation system for studies and application of dermatological phototherapies with temperature control. The developed system has a power control to irradiate the target tissue with an adequate power density. Also, the irradiation time it is automated. Temperature infrared sensor is used in the irradiated sample to control the temperature. The temperature control allows the study of photodynamic therapy effects in synergy with the thermotherapy effects in the treatment of different diseases in external tissue.

  20. An Improved Tumour Temperature Measurement and Control Method for Superficial Tumour Ultrasound Hyperthermia Therapeutic System

    Energy Technology Data Exchange (ETDEWEB)

    Shen, G F; Chen, Y Z; Ren, G X [Biomedical Instrument Institute, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-10-15

    In tumour hyperthermia therapy, the research on measurement and control of tumour temperature is very important. Based on the hardware platform of superficial tumour ultrasound hyperthermia therapeutic system, an improved tumour temperature measurement and control method is presented in this paper. The experiment process, data and results are discussed in detail. The improved method will greatly reduce the pain and dread of the patients during the therapy period on the tumour temperature measurement and control by using the pinhead sensor.

  1. Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions

    International Nuclear Information System (INIS)

    Ye, Hong; Wang, Zijun; Wang, Liwei

    2017-01-01

    Highlights: • Phase change thermal control with under periodic ambient condition was studied. • Influences of PCM on thermal control effects were explored. • The simulated results agreed well with the experimental results. • Conditions of achieving the optimal thermal control effects were proposed. • An optimal phase change range can be obtained according to TMY data. - Abstract: Thermal control systems operating under periodic outdoor ambient conditions have numerous important applications in industrial fields. Reducing system energy consumption and enhancing temperature control effects are crucial to improving the performance of these systems. To this end, the application of phase change material (PCM) in the envelope of a thermal control system was investigated through experiment and simulation. A simulation model of an active ventilated thermal control system was constructed and verified with experimental results, and the influences of PCM incorporated in the envelope on the power consumption and temperature control effects were discussed in two time scales. The results for typical meteorological days indicate that excellent thermal control effects can be achieved when the phase change range of PCM brackets the temperature control setpoint and is consistent with the fluctuation range of the ambient temperature. The results for a typical meteorological year (TMY) demonstrate that an optimal phase change range can be determined according to TMY data to realize the optimal thermal control effects of PCM. When the required temperature control setpoint is not within the optimal phase change range, the phase change range bracketing the temperature control setpoint is recommended.

  2. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    Science.gov (United States)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  3. The PLC-based Industrial Temperature Control System: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Wei Fanjie

    2017-01-01

    Full Text Available Targeting at the problem of slow response and low accuracy of the automatic temperature control system for material processing and boiler heating, a new design method is proposed to work with the PLC-based temperature control system, where the box temperature control may be achieved through the fan and the heating plate. The hardware design and software design of the system are analyzed in detail. In this paper, a combination of the traditional PID control and the more popular fuzzy control is taken as the control program to achieve the overall design of the control algorithm. Followed by the simulation in the MATLAB software, the designed system is highlighted by its the characteristics of impressive stability, precision and robustness.

  4. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    Directory of Open Access Journals (Sweden)

    Juliang Cao

    2015-12-01

    Full Text Available The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  5. The temperature and humidity measurement and control system for radon chamber based on SHT75

    International Nuclear Information System (INIS)

    Wu Yue; Fang Fang; Zhou Wei; Cheng Wei

    2008-01-01

    The operational principle, internal structure, measurement resolution and measurement range, operation command and interface timing of SHT75 digital temperature and humidity sensor are introduced. The strategies of hardware composition and software design are put forward to the temperature and humidity measurement and control system for radon chamber which is composed of SHT75 digital temperature and humidity sensor and ATmega128 microcontroller. The temperature and humidity measurement and control system for radon chamber based on SHT75 enjoys a simple electric circuit and features timeliness, precision, stability. (authors)

  6. Novel temperature control technique for a medicinal herb dryer system powered by a photovoltaic array

    International Nuclear Information System (INIS)

    Abd El-Shafy A Nafeh; Hanaa M Fargali; Faten H Fahmy; Mohamed A Hassan

    2006-01-01

    Each plant has its own optimal drying temperature, especially for the medicinal herbs, because they are sensitive to heat. If the drying temperature becomes more than the optimal value, some chemical reactions will occur and influence the quality of the dried herb, such as color, taste, and aroma. While if the drying temperature becomes lower than the optimal value, the drying process will slow down; and consequently an expected degradation in the quality of the herb may occur, due to insects and fungi infestation which increase in moist conditions. This paper presents a new temperature control technique for a medicinal herb dryer system. The technique fixes the drying temperature of the medicinal herbs at 40 degree C, even in cases of rapidly changing atmospheric conditions. The control of the dryer temperature is achieved through using the proportional integral (PI) controller. The designed dryer contains two systems, which are the thermal and the electrical systems. The thermal system is designed to heat the drying air by using the solar energy and bio-gas fuel. Whereas, the electrical system, which contains a photovoltaic (PV) modules and a battery, is designed to supply the different electrical loads of the dryer system. The control technique is investigated through simulation work by using MATLAB-SIMULINK. The simulation results indicate the high capability of the proposed technique in controlling the drying temperature, even in cases of rapidly changing atmospheric conditions

  7. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling....... A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...

  8. Temperature Control. Honeywell Planning Guide.

    Science.gov (United States)

    Honeywell, Inc., Minneapolis, Minn.

    Presents planning considerations in selecting proper temperature control systems. Various aspects are discussed including--(1) adequate environmental control, (2) adequate control area, (3) control system design, (4) operators rate their systems, (5) type of control components, (6) basic control system, (7) automatic control systems, and (8)…

  9. Design of automatic control system of temperature in radon chamber controlled by air-condition based on 485 BUS

    International Nuclear Information System (INIS)

    Man Zaigang; Wang Renbo; Zhang Xiongjie; Zhu Zhifu; Tang Bin

    2009-01-01

    Radon chamber can be widely used in various radon measurement instruments for calibration, testing and radon environment experiment. According to requisition, radon chamber temperature should be controllable from +10 degree C to +30 degree C, and the temperature control accuracy of the system reaches ±1 degree C. The design of automatic temperature controlled by air-condition based on 485 BUS is introduced. The software and hardware techniques of how the ATMEL89S52 micro controller controls air-condition and communicates with computer are elaborated on. (authors)

  10. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    Science.gov (United States)

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  11. Temperature control simulation for a microwave transmitter cooling system. [deep space network

    Science.gov (United States)

    Yung, C. S.

    1980-01-01

    The thermal performance of a temperature control system for the antenna microwave transmitter (klystron tube) of the Deep Space Network antenna tracking system is discussed. In particular the mathematical model is presented along with the details of a computer program which is written for the system simulation and the performance parameterization. Analytical expressions are presented.

  12. Effects of substrate bias voltage on plasma parameters in temperature control using a grid system

    International Nuclear Information System (INIS)

    Bai, K.H.; Hong, J.I.; You, S.J.; Chang, H.Y.

    2001-01-01

    In this paper we investigate the effects of substrate bias voltage on plasma parameters in temperature control using a grid system in inductively coupled plasma. Electron temperature can be controlled from 2.5 eV to 0.5 eV at 1 mTorr Ar plasma using grid bias voltage, and the electron temperature is a strong function of substrate bias voltage. The main control parameter determining the electron temperature is the potential difference between grid-biased voltage and the plasma potential in the temperature controlled region (Δφ II,g ). When substrate bias voltage is negative, plasma parameters do not vary with substrate bias voltage due to constant Δφ II,g

  13. The design of an embedded system for controlling humidity and temperature room

    Science.gov (United States)

    Dwi Teguh, R.; Didik Eko, S.; Laksono, Pringgo D.; Jamaluddin, Anif

    2016-11-01

    The aim of the system is to design an embedded system for maintenance confortable room. The confortable room was design by controlling temperature (on range 18 - 34 °C) and humidity (on range 40% - 70%.) of room condition. Temperature and humidity of room were maintained using four variable such as lamp for warm, water pump for distributing water vapour, a fan for air circullation and an exhaust-fan for air cleaner. The system was constucted both hardware (humidity sensor, microcontroller, pump, lamp, fan) and software (arduino IDE). The result shows that the system was perfectly performed to control room condition.

  14. Evaporator Superheat Control With One Temperature Sensor Using Qualitative System Knowledge

    DEFF Research Database (Denmark)

    Vinther, Kasper; Hillerup Lyhne, Casper; Baasch Sørensen, Erik

    2012-01-01

    This paper proposes a novel method for superheat control using only a single temperature sensor at the outlet of the evaporator, while eliminating the need for a pressure sensor. An inner loop controls the outlet temperature and an outer control loop provides a reference set point, which is based...... at low superheat. The parameters in the proposed controller structure can automatically be chosen based on two open loop tests. Results from tests on two different refrigeration systems indicate that the proposed controller can control the evaporator superheat to a low level giving close to optimal...... filling of the evaporator, with only one temperature sensor. No a priori model knowledge was used and it is anticipated that the method is applicable on a wide variety of refrigeration systems....

  15. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  16. Effectiveness of cutaneous warming systems on temperature control: meta-analysis.

    Science.gov (United States)

    Galvão, Cristina Maria; Liang, Yuanyuan; Clark, Alexander M

    2010-06-01

    This paper is a report of a meta-analysis to identify the effectiveness of different types of cutaneous warming systems in temperature control for patients undergoing elective surgery. Hypothermia is a common and serious complication of surgery. Different cutaneous warming systems are used to prevent hypothermia during surgery but there have been no previous meta-analyses of the effectiveness of different warming systems in controlling temperature. We conducted a search of the CINAHL (2000 to April 2009), Medline (2000 to April 2009), Embase (2000 to April 2009) and the Cochrane Register of Controlled Trials (2000 to April 2009) databases for randomized controlled trials published in English, Spanish and Portuguese. The primary outcome measure of interest was core body temperature. A systematic review incorporating meta-analysis was carried out. From 329 papers, 23 trials compared warming systems. Forced-air warming systems had a strong tendency towards superior temperature control over passive insulation via cotton blankets (mean difference: 0.29 degrees C; 95% confidence interval: -0.02 to 0.59, three trials 292 patients) and radiant warming systems (mean difference: 0.16 degrees C; 95% confidence interval: -0.01 to 0.33, three trials, 161 patients). However, circulating water garments tended to be more effective than forced-air warming systems (mean difference: -0.73 degrees C; 95% confidence interval: -1.51 to 0.05, I(2) = 97%; four trials, 198 patients). Pooled results approached statistical significance and indicated clinically meaningful differences in temperature control. Current evidence suggests that circulating water garments offer better temperature control than forced-air warming systems, and both are more effective than passive warming devices.

  17. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  18. System and method for temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  19. High energy efficiency desiccant assisted automobile air-conditioner and its temperature and humidity control system

    International Nuclear Information System (INIS)

    Nagaya, K.; Senbongi, T.; Li, Y.; Zheng, J.; Murakami, I.

    2006-01-01

    The energy efficiency is of importance in air conditioning systems for automobiles. The present article provides a new type air conditioning system for automobiles in which energy loss is small in comparison with the previous system. In the system, a desiccant is installed in the air conditioning system for controlling both temperature and humidity. The control is performed by an electromagnetic control valve, which controls an inclination of the rotating plate of a compressor. It is difficult to control both temperature and humidity precisely, because there are some delays in the control due to the time of heat exchange and that of coolant flow from the actuator (electromagnetic valve) to the evaporator. In order to have precise control, this article also presents a method of control with consideration of control delays. The energy of our system is compared with that in the previous conventional system in the same condition. It is shown that our controlled results and energy efficiency are better than those in the previous system

  20. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    International Nuclear Information System (INIS)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-01-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)

  1. Modeling and simulation of control system response to temperature disturbances in a coupled heat exchangers-AHTR system

    International Nuclear Information System (INIS)

    Skavdahl, I.; Utgikar, V.P.; Christensen, R.; Sabharwall, P.; Chen, M.; Sun, X.

    2016-01-01

    Highlights: • Control architecture defined for nuclear reactor-coupled heat exchangers system. • MATLAB code developed for simulation of system response for various temperature disturbances in the system. • Control system effective in maintaining controlled variables at desired set points. • New equilibrium steady state established using controllers. • Adaptive control system capable of switching manipulated variables based on system constraints. - Abstract: An effective control strategy is essential for maintaining optimum operational efficiency of the Advanced High Temperature Reactor (AHTR)-intermediate heat exchanger (IHX)-secondary heat exchanger (SHX) system for power conversion or process heat applications. A control system design is presented in this paper for the control of the coupled intermediate and secondary heat exchangers. The cold side outlet temperature of the SHX (T co ) and the hot side outlet temperature of the IHX (T ho2 ) were identified as the controlled variables that were maintained at their set points by manipulating the flow rates of heat exchange media. Transfer functions describing the relationships between the controlled variables and the manipulated and load variables were developed and the system response to various temperature disturbances was simulated using a custom-developed MATLAB program. It was found that a step disturbance of ±10 °C in the process loop changed the thermal duty by ±650 kW, equal to 6.5% of the initial duty. Similar disturbances in the primary loop had a higher impact on the system. The control system design included a provision for the switching of manipulated variables to limit the adjustment in the magnitudes of the primary manipulated variables. Simulation results indicate that the controlled variables are maintained successfully at their desired points by the control system.

  2. Wireless Intelligent Monitoring and Control System of Greenhouse Temperature Based on Fuzzy-PID

    Directory of Open Access Journals (Sweden)

    Mei ZHAN

    2014-03-01

    Full Text Available Control effect is not ideal for traditional control method and wired control system, since greenhouse temperature has such characteristics as nonlinear and longtime lag. Therefore, Fuzzy- PID control method was introduced and radio frequency chip CC1110 was applied to design greenhouse wireless intelligent monitoring and control system. The design of the system, the component of nodes and the developed intelligent management software system were explained in this paper. Then describe the design of the control algorithm Fuzzy-PID. By simulating the new method in Matlab software, the results showed that Fuzzy-PID method small overshoot and better dynamic performance compared with general PID control. It has shorter settling time and no steady-state error compared with fuzzy control. It can meet requirements in greenhouse production.

  3. Variable interval time/temperature (VITT) defrost-control-system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-12

    Two variable-interval-time/temperature (VITT) heat pump defrost control systems are analyzed to determine if systems manufactured by Honeywell and Ranco qualify for credit for heat pumps with demand defrost control. The operation of the systems is described. VITT controls are not demand defrost control systems but utilize demand defrost control as backup systems in most Ranco models and all Honeywell models. The evaluations and results, intended to provide DOE information in making its determinations regarding credits for the control systems are discussed. The evaluation methodology utilizes a modified version of the Heat Pump Seasonal Performance Model (HPSPM) and the important modifications are discussed in Appendix A. Appendix B contains a detailed listing and discussion of the HPSPM output. (MCW)

  4. Single-Mask Fabrication of Temperature Triggered MEMS Switch for Cooling Control in SSL System

    NARCIS (Netherlands)

    Wei, J.; Ye, H.; Van Zeijl, H.W.; Sarro, P.M.; Zhang, G.Q.

    2012-01-01

    A micro-electro-mechanical-system (MEMS) based, temperature triggered, switch is developed as a cost-effective solution for smart cooling control of solid-state-lighting systems. The switch (1.0x0.4 mm2) is embedded in a silicon substrate and fabricated with a single-mask 3D micro-machining process.

  5. Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Doaa M. Atia

    2017-05-01

    Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.

  6. Neuro-PID tracking control of a discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    In this paper, the problem of improving the performance of a discharge air temperature (DAT) system using a PID controller and augmenting it with neural network based tuning and tracking functions is explored. The DAT system is modeled as a SISO (single input single output) system. The architecture of the real time neuro-PID controller and simulation results obtained under realistic operating conditions are presented. The neural network assisted PID tuning method is simple to implement. Results show that the network assisted PID controller is able to track both constant and variable set point trajectories efficiently in the presence of disturbances acting on the DAT system

  7. Modeling and temperature regulation of a thermally coupled reactor system via internal model control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Coronella, C.J.; Bhadkamkar, A.S.; Seader, J.D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1993-12-01

    A two-stage, thermally coupled fluidized-bed reactor system has been developed for energy-efficient conversion of tar-sand bitumen to synthetic crude oil. Modeling and temperature control of a system are addressed in this study. A process model and transfer function are determined by a transient response technique and the reactor temperature are controlled by PI controllers with tuning settings determined by an internal model control (IMC) strategy. Using the IMC tuning method, sufficiently good control performance was experimentally observed without lengthy on-line tuning. It is shown that IMC strategy provides a means to directly use process knowledge to make a control decision. Although this control method allows for fine tuning by adjusting a single tuning parameter, it is not easy to determine the optimal value of this tuning parameter, which must be specified by the user. A novel method is presented to evaluate that parameter, which must be specified by the user. A novel method is presented to evaluate that parameter in this study. It was selected based on the magnitude of elements on the off-diagonal of the relative gain array to account for the effect of thermal coupling on control performance. It is shown that this method provides stable and fast control of reactor temperatures. By successfully decoupling the system, a simple method of extending the IMC tuning technique to multiinput/multioutput systems is obtained.

  8. Holes help control temperature

    Science.gov (United States)

    Chhatpar, C. K.

    1981-01-01

    Study of passive thermal control for the Solar Terrestrial Subsatellite (STSS) has found that array of "see through" holes substantially improves performance of system. Holes in payload mounting plates allow line of sight radiative heat transfer between hot and cold ends of spacecraft and between mounting plates and ends. Temperature gradients between plates are thereby reduced, as is temperature of each plate. Holes and selected exterior paints and finishes keep payload cool for all orientations and operating modes of STSS.

  9. High Precision Temperature Control and Analysis of RF Deionized Cooling Water System

    CERN Document Server

    Tsai, Zong-Da; Chen June Rong; Liu, Chen-Yao

    2005-01-01

    Previously, the Taiwan Light Source (TLS) has proven the good beam quality mainly depends on the utility system stability. A serial of efforts were devoted to these studies. Further, a high precision temperature control of the RF deionized cooling water system will be achieved to meet the more critical stability requirement. The paper investigates the mixing mechanism through thermal and flow analysis and verifies the practical influences. A flow mixing mechanism and control philosophy is studied and processed to optimize temperature variation which has been reduced from ±0.1? to ±0.01?. Also, the improvement of correlation between RF performance and water cooling stability will be presented.

  10. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment.

    Science.gov (United States)

    Hu, Jiwen; Ding, Yajun; Qian, Shengyou; Tang, Xiangde

    2013-01-01

    The control problem in ultrasound therapy is to destroy the tumor tissue while not harming the intervening healthy tissue with a desired temperature elevation. The objective of this research is to present a robust and feasible method to control the temperature distribution and the temperature elevation in treatment region within the prescribed time, which can improve the curative effect and decrease the treatment time for heating large tumor (≥2.0cm in diameter). An adaptive self-tuning-regulator (STR) controller has been introduced into this control method by adding a time factor with a recursive algorithm, and the speed of sound and absorption coefficient of the medium is considered as a function of temperature during heating. The presented control method is tested for a self-focused concave spherical transducer (0.5MHz, 9cm aperture, 8.0cm focal length) through numerical simulations with three control temperatures of 43°C, 50°C and 55°C. The results suggest that this control system has adaptive ability for variable parameters and has a rapid response to the temperature and acoustic power output in the prescribed time for the hyperthermia interest. There is no overshoot during temperature elevation and no oscillation after reaching the desired temperatures. It is found that the same results can be obtained for different frequencies and temperature elevations. This method can obtain an ellipsoid-shaped ablation region, which is meaningful for the treatment of large tumor. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Automatic Incubator-type Temperature Control System for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    An automatic air-cooling incubator is proposed to replace the manual water-cooling blanket to control the brain tissue temperature for brain hypothermia treatment. Its feasibility is theoretically discussed as follows: First, an adult patient with the cooling incubator is modeled as a linear dynamical patient-incubator biothermal system. The patient is represented by an 18-compartment structure and described by its state equations. The air-cooling incubator provides almost same cooling effect as the water-cooling blanket, if a light breeze of speed around 3 m/s is circulated in the incubator. Then, in order to control the brain temperature automatically, an adaptive-optimal control algorithm is adopted, while the patient-blanket therapeutic system is considered as a reference model. Finally, the brain temperature of the patient-incubator biothermal system is controlled to follow up the given reference temperature course, in which an adaptive algorithm is confirmed useful for unknown environmental change and/or metabolic rate change of the patient in the incubating system. Thus, the present work ensures the development of the automatic air-cooling incubator for a better temperature regulation of the brain hypothermia treatment in ICU.

  12. Temperature control of an automotive engine cooling system utilizing a magneto-rheological fan clutch

    International Nuclear Information System (INIS)

    Kim, Eun-Seok; Choi, Seung-Bok; Park, Young-Gee; Lee, Soojin

    2010-01-01

    In this note, the temperature control of an automotive engine cooling system is undertaken using a magneto-rheological (MR) fluid-based fan clutch (MR fan clutch in short). In order to achieve this goal, an appropriate size of controllable fan clutch using an MR fluid is firstly devised by considering the design parameters of a conventional fan clutch to reflect the practical application. Then, the principal design parameters of the MR fan clutch such as the length of the disc are optimally determined through finite element analysis. The drum-type MR fan clutch is manufactured and its time response to input current is experimentally evaluated. A robust sliding mode controller is then formulated by treating the time constant of the fan clutch system as an uncertain parameter. After identifying the relationship between angular velocity of the MR fan clutch and the temperature of the cooling system, the sliding mode controller is experimentally realized for the cooling system. It has been clearly demonstrated that the proposed sliding mode controller follows well the desired temperature with a small regulating error. It is expected from this feasibility work that the proposed control system associated with an MR fan clutch can be effectively utilized for the automotive cooling system to improve the fuel efficiency. (technical note)

  13. Potential energy savings using dynamically optimizing control in refrigeration systems under daily variations in ambient temperature

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal

    2007-01-01

    The objective of this study is to investigate the energy saving potential for refrigeration systems by refrigeration more at the colder night time than at the warmer day time. The potential is evaluated using an optimal control policy and illustrated on a simulation example. The results show...... that the significant potential savings depends on two system parameters and the variation of the outdoor temperature. The system dependency is illustrated in a parameter study....

  14. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    International Nuclear Information System (INIS)

    Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type

  15. Temperature control using a heat exchanger of a cardioplegic system in cardiopulmonary bypass model for rats.

    Science.gov (United States)

    Kim, Won Gon; Choi, Se Hun; Kim, Jin Hyun

    2008-12-01

    Small animal cardiopulmonary bypass (CPB) model would be a valuable tool for investigating pathophysiological and therapeutic strategies on bypass. However, the rat CPB models have a number of technical limitations. Effective maintenance and control of core temperature by heat exchanger (HE) is among them. The purpose of this study was to confirm the effect of rectal temperature maintenance and hypothermic control using a HE of cardioplegia system in CPB model for rats. The miniature circuit consisted of a reservoir, HE, membrane oxygenator, and roller pump; the static priming volume was 40 cc. In the first stage of experiment, 10 male Sprague-Dawley rats were divided into two groups; HE group was subjected to CPB with HE from a cardioplegia system, and control group was subjected to CPB with warm water circulating around the reservoir. Partial CPB was conducted at a flow rate of 40 mg/kg/min for 20 min after venous cannulation (via the internal jugular vein) and arterial cannulation (via the femoral artery). Rectal temperature was measured after anesthetic induction, after cannulation, 5, 10, 15, and 20 min after CPB. Arterial blood gas with hematocrit was also analyzed, 5 and 15 min after CPB. In the second stage with the same experimental setting, rectal temperatures were lowered in 10 rats to the target temperature of 32 degrees C. After reaching the target temperature, animals were rewarmed. Rectal temperature was measured after cannulation, 5, 10, 15, 20, 25, and 30 min after CPB. Arterial blood gas with hematocrit was also analyzed, 5 and 15 min after CPB. Rectal temperature change differed between the two groups (P temperatures of the HE group were well maintained during CPB, whereas the control group was under progressive hypothermia. Rectal temperature 20 min after CPB was 36.16 +/- 0.32 degrees C in the HE group and 34.22 +/- 0.36 degrees C in the control group. In the second set of experiments, the hypothermia targeted (32 degrees C) was reached in 15

  16. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  17. Analysis of maizena drying system using temperature control based fuzzy logic method

    Science.gov (United States)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  18. Improved energy performance of ammonia recycling system using floating condensing temperature control

    International Nuclear Information System (INIS)

    Lu, Wei; Meng, Zhuo; Sun, Yize; Zhong, Qianwen; Zhu, Helei

    2016-01-01

    Highlights: • Thermodynamic models for the compressor and evaporative condenser were developed. • An evaluation index was proposed to determine the optimal set point. • An algorithm was presented to compute the optimal set point. • Strategies for operating ammonia recycling system were proposed. - Abstract: Aiming at reducing the energy-consumption of ammonia recycling system, we presented floating condensing temperature control to maximize the coefficient of performance (COP) of the system. Firstly, thermodynamic models for the compressor and evaporative condenser were developed respectively. Then, an evaluation index and a solution scheme were proposed to determine the optimal set point of condensing temperature and the corresponding compressor speed. It is found that the system COP can be maximized by controlling the compressor speed to adjust the set point based on any given operating conditions. When the wet-bulb temperature is 22 °C, the system COP could be improved by 19.2–27.6% under floating condensing temperature control.

  19. Intraoperative temperature control using the Thermogard system during off-pump coronary artery bypass grafting.

    Science.gov (United States)

    Allen, Gary S

    2009-01-01

    Normothermia during off-pump coronary bypass (OPCAB) grafting reduces metabolic derangements and contributes to improved clinical outcomes. Thus study examined the feasibility and efficacy of intraoperative temperature control using a novel endovascular heating system during OPCAB. Thirty-eight consecutive patients undergoing OPCAB were prospectively randomized to receive conventional warming (elevated room temperature, warmed intravenous fluids, warming blanket) or the Thermogard system (Alsius Corp, Irvine, CA). The triple-lumen temperature control Icy catheter (Alsius Corp) was inserted percutaneously into the inferior vena cava through common femoral vein. The catheter was removed after all wounds were closed. Temperature measurements (bladder, nasopharyngeal, and blood) were recorded at 5-minute intervals and compared between groups. Patient demographics did not significantly differ between groups. The 17 Thermogard patients warmed at a significantly faster rate than the 21 control patients (0.28 degrees vs 0.11 degrees C/h, p = 0.03). Furthermore, Thermogard patients received more bypass grafts (3.4 +/- 0.6 vs 2.6 +/- 0.9, p temperatures. The Thermogard system compared favorably with conventional methods for warming during OPCAB.

  20. Thermal control systems for low-temperature heat rejection on a lunar base

    Science.gov (United States)

    Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

    1993-01-01

    One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

  1. Control system of reverse side bead width by surface temperature monitoring of TIG weld

    International Nuclear Information System (INIS)

    Kozono, Yuzoo; Kokura, Satoshi; Onuma, Akira

    1986-01-01

    An experimental model of a reverse side bead width control system which employs a fiber-optic thermal sensor and a microcomputer has been developed. The system is worked by monitoring infrared radiation emitted from the surface of the workpiece. In this system, infrared rays emitted from the surface of the weld are picked up and transmitted via optical fiber to a photodiode which converts them into electrical signals. The welding current is controlled by an 8-bit microcomputer in accordance with fluctuations in these signals so as to ensure the optimum surface temperature is obtained for a high quality reverse side bead. (author)

  2. Changes of NSSS control system setpoint for operation at reduced temperature at YGN 3 and 4

    International Nuclear Information System (INIS)

    Song, I. H.; Son, S. H.; Lee, K. C.; Son, J. J.; Seo, J. T.; Lee, S. H.; Park, W. K.; Hwang, H. C.; Lee, J. H.

    2003-01-01

    The differences of the design operational conditions and best estimate operational conditions, which were expected to be conditions during the plant operation, during the application of operation at reduced temperature at YGN 3 and 4 are larger than those during the construction period. Therefore, each sets of NSSS control system setpoints were generated for ORT design operational condition and for ORT best estimate operational condition. The analytical results shows that the plant performance requirements are satisfied by changing the NSSS control system setpoints for each operational conditions. The NSSS control system setpoints were changed after power operation after application of the ORT due to unexpected mismatch of plant conditions from the best estimate operational conditions. The plant conditions are needed to be monitored cycle by cycle for the detection of such conditions which requires the changing of the NSSS control system

  3. Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference

    International Nuclear Information System (INIS)

    Liu, Xue-feng; Liu, Jin-ping; Lu, Ji-dong; Liu, Lei; Zou, Wei

    2012-01-01

    Terminal load distribution and pipe network structure are the key factors that affect the energy-saving potential of central air-conditioning chilled water systems, nonlinear thermodynamic performance of an air-conditioning system with large inertia will mainly exert influence on the stability and reliability of energy-saving operation control. Unreasonable variable flow control strategy can neither achieve an ideal energy-saving effect nor meet the air-conditioning comfortableness requirements. With a direct-return chilled water system as study object, this paper built a hydraulic calculation model of pipe network topology, bypass loop hydraulic calculation model, AHU thermodynamic model, and water pump variable frequency operation model. Operating frequency of a water pump for different flow ratio, pump power, temperature difference of pipe network supply and return water, pressure difference of pipe network supply and return water, bypass control valve characteristics, system adjustability coefficient, and pipe network resistance characteristics of a chilled water system are studied under the condition of given supply water temperature, and pipe network’s AHU node thermal and humid load. And energy consumption characteristics of constant temperature difference control and variable temperature difference control are also analyzed with comparison. The results can provide theoretical guidance for the stable and reliable energy-saving operation of a chilled water system. -- Highlights: ► AHU thermodynamic model has been built to solve the heat/humidity balance problem. ► Hydraulic calculation models of direct-return pipe network topology has been built. ► Bypass loop has been considered to the analysis for variable flow operation. ► The universal problems for variable flow operation have been analyzed theoretically. ► Energy-saving operation strategies have been researched.

  4. Optimized temperature control system integrated into a micro direct methanol fuel cell for extreme environments

    Science.gov (United States)

    Zhang, Qian; Wang, Xiaohong; Zhu, Yiming; Zhou, Yan'an; Qiu, Xinping; Liu, Litian

    This paper reports a micro direct methanol fuel cell (μDMFC) integrated with a heater and a temperature sensor to realize temperature control. A thermal model for the μDMFC is set up based on heat transfer and emission mechanisms. Several patterns of the heater are designed and simulated to produce a more uniform temperature profile. The μDMFC with optimized temperature control system, which has better temperature distribution, is fabricated by using MEMS technologies, assembled with polydimethylsiloxane (PDMS) material and polymethylmethacrylate (PMMA) holders, and characterized in two methods, one with different currents applied and another with different methanol velocities. A μDMFC integrated with the heater of different pattern and another one with aluminum holders, are assembled and tested also to verify the heating effect and temperature maintaining of packaging material. This work would make it possible for a μDMFC to enhance the performance by adjusting to an optimal temperature and employ in extreme environments, such as severe winter, polar region, outer space, desert and deep sea area.

  5. Comparison of two temperature control techniques in a forced water heater solar system

    Science.gov (United States)

    Hernández, E.; E Guzmán, R.; Santos, A.; Cordoba, E.

    2017-12-01

    a study on the performance of a forced solar heating system in which a comparative analysis of two control strategies, including the classic on-off control and PID control is presented. From the experimental results it was found that the two control strategies show a similar behaviour in the solar heating system forced an approximate settling time of 60 min and over-elongation 2°C for the two control strategies. Furthermore, the maximum temperature in the storage tank was 46°C and the maximum efficiency of flat plate collector was 76.7% given that this efficiency is the ratio of the energy of the radiation on the collector and the energy used to heat water. The efficiency obtained is a fact well accepted because the business efficiencies of flat plate collectors are approximately 70%.

  6. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  7. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Satomi, Junkichi [Kobe City College of Technology, Kobe (Japan); Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun [Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Graduate School of Medicine, Osaka (Japan); Watabe, Hiroshi; Kanai, Yasukazu, E-mail: s-yama@kobe-kosen.ac.jp [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan)

    2011-05-07

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within {+-}8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  8. Design of Water Temperature Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  9. The prototype of a thermoregulatory system for measurement and control of temperature inside prosthetic socket.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Hing, Louis Lee Tat; Safari, Mohammad Reza; Leung, Aaron Kl

    2016-12-01

    Thermal related problems with prostheses are common complaints of amputee people. This article aims to introduce a thermoregulatory technique as a potential solution for those problems in prostheses wearers. A smart thermoregulatory system was designed, manufactured, and installed on a phantom model of a prosthetic socket. It captured temperature data from 16 sensors positioned at the interface between the phantom model and a silicone liner and used their average for comparison with a defined set temperature to select required heating or cooling functions for thermal equilibrium. A thin layer of Aluminum was used to transfer temperature between thermal pump and different sites around the phantom model. The feasibility of this thermoregulatory technique was confirmed by its ability to provide thermal equilibrium. Further investigations to improve the design of thermoregulatory system are necessary including temperature transfer element and power consumption based on thermal capacity and thermal inertia of the residual limb. The smart thermoregulatory system by providing thermal equilibrium between two sides of a prosthetic silicone liner can control residual limb skin temperature and sweating. Consequently, it can improve quality of life in amputee people. © The International Society for Prosthetics and Orthotics 2015.

  10. System properties, feedback control and effector coordination of human temperature regulation.

    Science.gov (United States)

    Werner, Jürgen

    2010-05-01

    The aim of human temperature regulation is to protect body processes by establishing a relative constancy of deep body temperature (regulated variable), in spite of external and internal influences on it. This is basically achieved by a distributed multi-sensor, multi-processor, multi-effector proportional feedback control system. The paper explains why proportional control implies inherent deviations of the regulated variable from the value in the thermoneutral zone. The concept of feedback of the thermal state of the body, conveniently represented by a high-weighted core temperature (T (c)) and low-weighted peripheral temperatures (T (s)) is equivalent to the control concept of "auxiliary feedback control", using a main (regulated) variable (T (c)), supported by an auxiliary variable (T (s)). This concept implies neither regulation of T (s) nor feedforward control. Steady-states result in the closed control-loop, when the open-loop properties of the (heat transfer) process are compatible with those of the thermoregulatory processors. They are called operating points or balance points and are achieved due to the inherent property of dynamical stability of the thermoregulatory feedback loop. No set-point and no comparison of signals (e.g. actual-set value) are necessary. Metabolic heat production and sweat production, though receiving the same information about the thermal state of the body, are independent effectors with different thresholds and gains. Coordination between one of these effectors and the vasomotor effector is achieved by the fact that changes in the (heat transfer) process evoked by vasomotor control are taken into account by the metabolic/sweat processor.

  11. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  12. Prediction models and control algorithms for predictive applications of setback temperature in cooling systems

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung

    2017-01-01

    Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature

  13. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  14. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    Science.gov (United States)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  15. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  16. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bakerenkov, A.S., E-mail: as_bakerenkov@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Belyakov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Kozyukov, A.E. [Joint-Stock Company Institute of Space Device Engineering (JSC ISDE), Moscow (Russian Federation); Pershenkov, V.S.; Solomatin, A.V.; Shurenkov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-02-11

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented.

  17. Development of a DOAS System for ToTAL-DOAS Applications with Temperature Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Javier A; Frins, Erna, E-mail: jramos@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, UdelaR (Uruguay)

    2011-01-01

    The ToTAL -DOAS (Topographic Target Light scattering - Differential optical Absorption Spectroscopy) is a novel atmospheric monitoring technique. The aim of our work has been enhancing a prototype, previously assembled within our research group, adding to it a temperature control and developing specific control software. The whole system offers the possibility of two dimension movement for spectra acquisition with a telescope of a field of view of approximately 0.03{sup 0}, which let in signals in the near-UV and visible spectral range. The enhanced DOAS system is intended to be located on the roof of our faculty building to monitor SO2 and NO2 traces above the city of Montevideo. We are presenting the results of device's characterization.

  18. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  19. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  20. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined...

  1. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature...... is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  2. Controlled experimental aquarium system for multi-stressor investigation: carbonate chemistry, oxygen saturation, and temperature

    Science.gov (United States)

    Bockmon, E. E.; Frieder, C. A.; Navarro, M. O.; White-Kershek, L. A.; Dickson, A. G.

    2013-02-01

    As the field of ocean acidification has grown, researchers have increasingly turned to laboratory experiments to understand the impacts of increased CO2 on marine organisms. However, other changes such as ocean warming and deoxygenation are occurring concurrently with the increasing CO2 concentrations, complicating the anthropogenic impact on organisms. This experimental aquarium design allows for independent regulation of CO2 concentration, O2 levels, and temperature in a controlled environment to study the impacts of multiple stressors. The system has the flexibility for a wide range of treatment chemistry, seawater volumes, and study organisms. Control of the seawater chemistry is achieved by equilibration of a chosen gas mixture with seawater using a Liqui-Cel® membrane contactor. Included as examples, two experiments performed using the system have shown control of CO2 between approximately 500-1400 μatm and O2 from 80-240 μmol kg-1. Temperature has been maintained to 0.5 °C or better in the range of 10-17 °C. On a weeklong timescale, control results in variability in pH of less than 0.007 pH units and in oxygen concentration less than 3.5 μmol kg-1. Longer experiments, over a month, have been completed with reasonable but lessened control, still better than 0.08 pH units and 13 μmol kg-1 O2. The ability to study the impacts of multiple stressors in the laboratory simultaneously, as well as independently, will be an important part of understanding the response of marine organisms to a high-CO2 world.

  3. High-throughput reactor system with individual temperature control for the investigation of monolith catalysts

    Science.gov (United States)

    Dellamorte, Joseph C.; Vijay, Rohit; Snively, Christopher M.; Barteau, Mark A.; Lauterbach, Jochen

    2007-07-01

    A high-throughput parallel reactor system has been designed and constructed to improve the reliability of results from large diameter catalysts such as monoliths. The system, which is expandable, consists of eight quartz reactors, 23.5mm in diameter. The eight reactors were designed with separate K type thermocouples and radiant heaters, allowing for the independent measurement and control of each reactor temperature. This design gives steady state temperature distributions over the eight reactors within 0.5°C of a common setpoint from 50to700°C. Analysis of the effluent from these reactors is performed using rapid-scan Fourier transform infrared (FTIR) spectroscopic imaging. The integration of this technique to the reactor system allows a chemically specific, truly parallel analysis of the reactor effluents with a time resolution of approximately 8s. The capabilities of this system were demonstrated via investigation of catalyst preparation conditions on the direct epoxidation of ethylene, i.e., on the ethylene conversion and the ethylene oxide selectivity. The ethylene, ethylene oxide, and carbon dioxide concentrations were calibrated based on spectra from FTIR imaging using univariate and multivariate chemometric techniques. The results from this analysis showed that the calcination conditions significantly affect the ethylene conversion, with a threefold increase in the conversion when the catalyst was calcined for 3h versus 12h at 400°C.

  4. Maintenance of normothermia during burn surgery with an intravascular temperature control system: a non-randomised controlled trial.

    Science.gov (United States)

    Prunet, Bertrand; Asencio, Yves; Lacroix, Guillaume; Bordes, Julien; Montcriol, Ambroise; D'Aranda, Erwan; Pradier, Jean-Philippe; Dantzer, Eric; Meaudre, Eric; Goutorbe, Philippe; Kaiser, Eric

    2012-05-01

    Hypothermia remains one of the major factors limiting surgery in extensively burned patients. We evaluated the effectiveness of an intravascular rewarming technique using CoolGard 3000™ system and Icy™ catheter to maintain normothermia during surgeries of severe burned patients and compared these findings to a historical control group. This was a controlled non-randomised trial conducted between March 2008 and August 2009. Patients with burns greater than or equal to 40% of the total body surface area were included. Before the first burn excision, the Icy™ catheter was placed in the inferior vena cava via the femoral vein. Warming was then initiated and maintained until the bladder temperature reached over 37.5°C. The bladder temperature was recorded every 30min during surgery and for the first hour post-operatively and compared to a historical control group. We enrolled 4 patients and 11 surgeries in the CoolGard™ group and compared them to 3 patients and 10 surgeries in the historical cohort. All intraoperative bladder temperatures from T=30 were statistically different in the two groups. In the CoolGard™ group, no patient became hypothermic and no surgery was aborted because the patient's temperature had rapidly fallen below the threshold temperature (35.5°C). No device-related complication was reported. The use of an intravenous warming catheter is a novel approach to maintain normothermia during surgery in burn victims and may be more effective than traditional methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  6. Radiation in Space and Its Control of Equilibrium Temperatures in the Solar System

    Science.gov (United States)

    Juhasz, Albert J.

    2004-01-01

    The problem of determining equilibrium temperatures for reradiating surfaces in space vacuum was analyzed and the resulting mathematical relationships were incorporated in a code to determine space sink temperatures in the solar system. A brief treatment of planetary atmospheres is also included. Temperature values obtained with the code are in good agreement with available spacecraft telemetry and meteorological measurements for Venus and Earth. The code has been used in the design of space power system radiators for future interplanetary missions.

  7. Effectiveness of a temperature control system in home induction hobs to reduce acrylamide formation during pan frying

    DEFF Research Database (Denmark)

    Guillen, S.; Oria, R.; Salvador, M. L.

    2017-01-01

    Three trials were conducted to determine the influence of the use of temperature control systems on physico-chemical characteristics and acrylamide formation in the domestic preparation of potatoes. French fries were pre-treated by soaking in water or acidified water, and then they were cooked...... and acrylamide than similar pan-fried potatoes. Potatoes butter fried at 140 °C had an acrylamide concentration similar to that of potatoes fried in oil at 180 °C, but this value was reduced by 71% when the frying was carried out using a temperature control system. Controlling the frying temperature reduced...... using a range of home-cooking procedures. Soaking raw potatoes in acidified water (pH=3.17) before frying at a controlled temperature (180 °C) was the most efficient pretreatment for reducing acrylamide formation (76%). For the same temperature, roasted frozen par-fried potatoes contained less fat...

  8. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  9. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  10. Analysis and Design of the Adsorbent Sample Temperature Control in the Volumetric Isotherm System

    National Research Council Canada - National Science Library

    Croft, David

    1997-01-01

    .... is discussed as well as modifications to the apparatus to reduce errors. Investigators found that errors in temperature measurement and/or control may affect vapor-phase and adsorbed-phase concentrations in a complex but predictable manner...

  11. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function.

    Directory of Open Access Journals (Sweden)

    William P Inskeep

    Full Text Available The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14-15,000 Sanger reads per site was obtained for five high-temperature (>65 degrees C chemotrophic microbial communities sampled from geothermal springs (or pools in Yellowstone National Park (YNP that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3 Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in

  12. Fuzzy Logic Controller for Low Temperature Application

    Science.gov (United States)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  13. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Science.gov (United States)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  14. Spatial temperature control with a 27 MHz current source interstitial hyperthermia system

    NARCIS (Netherlands)

    Kaatee, R. S.; Crezee, H.; Kanis, B. P.; Lagendijk, J. J.; Levendag, P. C.; Visser, A. G.

    1997-01-01

    This article gives an overview of the properties of a 27 MHz current source interstitial hyperthermia system, affecting temperature uniformity. Applicators can be inserted in standard flexible afterloading catheters. Maximum temperatures are measured with seven-point constantan-manganin thermocouple

  15. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  16. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    Sutherland, R.A.; Menard, T.; Perry, J.L.; Penn, D.C.

    1998-01-01

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  17. Verification of Energy Reduction Effect through Control Optimization of Supply Air Temperature in VRF-OAP System

    Directory of Open Access Journals (Sweden)

    Je Hyeon Lee

    2017-12-01

    Full Text Available This paper developed an algorithm that controls the supply air temperature in the variable refrigerant flow (VRF, outdoor air processing unit (OAP system, according to indoor and outdoor temperature and humidity, and verified the effects after applying the algorithm to real buildings. The VRF-OAP system refers to a heating, ventilation, and air conditioning (HVAC system to complement a ventilation function, which is not provided in the VRF system. It is a system that supplies air indoors by heat treatment of outdoor air through the OAP, as a number of indoor units and OAPs are connected to the outdoor unit in the VRF system simultaneously. This paper conducted experiments with regard to changes in efficiency and the cooling capabilities of each unit and system according to supply air temperature in the OAP using a multicalorimeter. Based on these results, an algorithm that controlled the temperature of the supply air in the OAP was developed considering indoor and outdoor temperatures and humidity. The algorithm was applied in the test building to verify the effects of energy reduction and the effects on indoor temperature and humidity. Loads were changed by adjusting the number of conditioned rooms to verify the effect of the algorithm according to various load conditions. In the field test results, the energy reduction effect was approximately 15–17% at a 100% load, and 4–20% at a 75% load. However, no significant effects were shown at a 50% load. The indoor temperature and humidity reached a comfortable level.

  18. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    This work involves the an experimental characterisation and the development of control strategies for the methanol reformer system used in the Serenergy Serenus H3 E-350 high temperature polymer electrolyte membrane (HTPEM) fuel cell system. The system consists of a fuel evaporator utilizing...... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact......, i.e. cathode and anode gas flows and temperature by using mass flow controllers and controlled heaters. Using this system the methanol reformer is characterized in its different operating points, both steady-state but also dynamically. Methanol steam reforming is a well known process, and provides...

  19. Digital control programmer for temperature control

    International Nuclear Information System (INIS)

    Rajore, S.B.; Kumar, S.V.

    1993-01-01

    This report describes a PC based digital control programmer for controlling and programming temperature of a high vacuum resistance heating furnace and the software developed to control power using PID algorithm. It also describes the amplifier specially developed to suit the input requirement of the non-standard W5 thermocouple and the software and hardware protections introduced in the system. (author). 5 refs., 8 figs., 1 appendix

  20. Dural reconstruction by fascia using a temperature-controlled CO2 laser soldering system

    Science.gov (United States)

    Forer, Boaz; Vasilyev, Tamar; Brosh, Tamar; Kariv, Naam; Gil, Ziv; Fliss, Dan M.; Katzir, Abraham

    2005-04-01

    Conventional methods for dura repair are normally based on sutures or stitches. These methods have several disadvantages: (1) The dura is often brittle, and the standard procedures are difficult and time consuming. (2) The seal is leaky. (3) The introduction of a foreign body (e.g. sutures) may cause an inflammatory response. In order to overcome these difficulties we used a temperature controlled fiber optic based CO2 laser soldering system. In a set of in vitro experiments we generated a hole of diameter 10 mm in the dura of a pig corpse, covered the hole with a segment of fascia, and soldered the fascia to the edges of the hole, using 47% bovine albumin as a solder. The soldering was carried out spot by spot, and each spot was heated to 65° C for 3-6 seconds. The soldered dura was removed and the burst pressure of the soldered patch was measured. The average value for microscopic muscular side soldering was 194 mm Hg. This is much higher than the maximal physiological pressure of the CSF fluid in the brain, which is 15 mm Hg. In a set of in vivo experiments, fascia patches were soldered on holes in five farm pigs. The long term results of these experiments were very promising. In conclusion, we have developed an advanced technique for dural reconstruction, which will find important clinical applications.

  1. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  2. Engine Cylinder Temperature Control

    Science.gov (United States)

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  3. Real-time temperature control system based on the finite element method for liver radiofrequency ablation: effect of the time interval on control.

    Science.gov (United States)

    Isobe, Yosuke; Watanabe, Hiroki; Yamazaki, Nozomu; Lu, XiaoWei; Kobayashi, Yo; Miyashita, Tomoyuki; Hashizume, Makoto; Fujie, Masakatsu G

    2013-01-01

    Radiofrequency (RF) ablation is increasingly being used to treat liver cancer because it is minimally invasive. However, it is difficult for operators to control the size of the coagulation zones precisely, because no method has been established to form an adequate and suitable ablation area. To overcome this limitation, we propose a new system that can control the coagulation zone size. The system operates as follows: 1) the liver temperature is estimated using a temperature-distribution simulator to reduce invasiveness; 2) the output power of the RF generator is controlled automatically according to the liver temperature. To use this system in real time, both the time taken to calculate the temperature in the simulation and the control accuracy are important. We therefore investigated the relationship between the time interval required to change the output voltage and temperature control stability in RF ablation. The results revealed that the proposed method can control the temperature at a point away from the electrode needle to obtain the desired ablation size. It was also shown to be necessary to reduce the time interval when small tumors are cauterized to avoid excessive treatment. In contrast, such high frequency feedback control is not required when large tumors are cauterized.

  4. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  5. Effectiveness of a temperature control system in home induction hobs to reduce acrylamide formation during pan frying

    OpenAIRE

    Guillen, S.; Oria, R.; Salvador, M. L.; martorell, I.; Corrales, A.; Granby, Kit

    2017-01-01

    Three trials were conducted to determine the influence of the use of temperature control systems on physico-chemical characteristics and acrylamide formation in the domestic preparation of potatoes. French fries were pre-treated by soaking in water or acidified water, and then they were cooked using a range of home-cooking procedures. Soaking raw potatoes in acidified water (pH=3.17) before frying at a controlled temperature (180 °C) was the most efficient pretreatment for reducing acrylamide...

  6. Cryogenic system of controlled temperature for the study of neutron inelastic scattering.in a magnetic field

    International Nuclear Information System (INIS)

    Demishev, A.G.; Suplin, V.Z.; Najmushin, E.A.; Gurtyak, A.A.; Sil'chenko, V.A; Pelikh, N.I.

    1981-01-01

    Developed, produced and successfully operated is the cryogenic system with control in the temperature range from 4.2 to 270 K for investigation of inelastic neutron scattering in magnetic field up to 2.3 T. It consists of a crystal with a built-in superconducting solenoid, current source and electron regulator of temperature. Cylindrical specimens with 10-40 mm diameter with working part height of 50 mm are placed in the operation chamber vertically. 4.2 K temperature is provided by filling up of operation chamber with liquid helium, and in the interval from 5 to 270 K - by gas blowing with heating at constant waste and is stabilized by two-circuit temperature regulator. Instability of the established value of temperature in the range of 5-70 K is not more than +-0.1 K and in the 70-270 K range - not more than +-0.2 K. Magnetic field is directed along the specimen axis, irradiation with a hotizontal beam of neutrons is carried out in span of angle up to 150 deg. Control system is stable in the whole range of temperatures without rebuilding of regulator coefficients. The crystal scheme and functional scheme of the regulator are presented [ru

  7. Temperature controlling cloth

    International Nuclear Information System (INIS)

    Fujiwara, Kyoko.

    1995-01-01

    In a radiation protective cloth of the present invention, liquid channels made of a porous material which does not permeate liquid but permeate steams are formed, and a moisture absorbing cooling medium solution is flown to the channels to control temperature of a human body. Accordingly, the human body is cooled by the moisture absorbing cooling medium solution itself, and at the same time, sweat from the human body can be absorbed. If the liquid channels are composed of porous resin tubes or porous resin panels, those can be formed to clothes easily, and improve athletic performance since they are flexible. Further, use of an aqueous solution of lithium chloride, for example, as the moisture absorbing cooling medium solution, can provide merits of high moisture absorbing property, capability of dewatering by heating, and repeated use. (T.M.)

  8. In-situ thermoelectric temperature monitoring and "Closed-loop integrated control" system for concentrator photovoltaic-thermoelectric hybrid receivers

    Science.gov (United States)

    Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao

    2017-09-01

    This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.

  9. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  10. A randomized controlled trial of the Arctic Sun Temperature Management System versus conventional methods for preventing hypothermia during off-pump cardiac surgery.

    Science.gov (United States)

    Grocott, Hilary P; Mathew, Joseph P; Carver, Elizabeth H; Phillips-Bute, Barbara; Landolfo, Kevin P; Newman, Mark F

    2004-02-01

    In this trial we compared the hypothermia avoidance abilities of the Arctic Sun Temperature Management System (a servo-regulated system that circulates temperature-controlled water through unique energy transfer pads adherent to the patient's body) with conventional temperature control methods. Patients undergoing off-pump coronary artery bypass (OPCAB) surgery were randomized to either the Arctic Sun System alone (AS group) or conventional methods (control group; increased room temperature, heated IV fluids, convective forced air warming system) for the prevention of hypothermia (defined by a temperature temperature servo-regulated to a target of 36.8 degrees C. Temperature was recorded throughout the operative period and comparisons were made between groups for both the time and area under the curve (AUC) for a temperature control group = 15) were studied. The AS group had significantly less hypothermia than the control group, both for duration of time control group; P = 0.0008) as well as for AUCcontrol group; P = 0.002). The Arctic Sun Temperature Management System significantly reduced intraoperative hypothermia during OPCAB surgery. Importantly, this was achieved in the absence of any other temperature modulating techniques, including the use of IV fluid warming or increases in the ambient operating room temperature. The Arctic Sun Temperature Management System was more effective than conventional methods in preventing hypothermia during off-pump coronary artery bypass graft surgery.

  11. Study on simulation, control and online assistance integrated system of 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Luo, S.; Shi, L.; Zhu, S.

    2004-01-01

    In order to provide a convenient tool for engineering designed, safety analysis, operator training and control system design of the high temperature gas-cooled test reactor (HTR), an integrated system for simulation, control and online assistance of the HTR-10 has been designed and is still under development by the Institute of Nuclear Energy Technology (INET) of Tsinghua University in China. The whole system is based on a network environment and includes three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four parts: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. The SIMUSUB is intended to analyze and calculate the physical processes of the reactor core, the main loop system and the stream generator, etc., as well as to simulate the normal operation and transient accidents, and the result data can be graphically displayed through the RGDC dynamically. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameter, which are difficult to measure. This whole system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online supports for operators in the main control room, or as a convenient powerful tool for the control system design. (authors)

  12. Versatile microcomputer-based temperature controller

    International Nuclear Information System (INIS)

    Yarberry, V.R.

    1980-09-01

    The wide range of thermal responses required in laboratory and scientific equipment requires a temperature controller with a great deal of flexibility. While a number of analog temperature controllers are commercially available, they have certain limitations, such as inflexible parameter control or insufficient precision. Most lack digital interface capabilities--a necessity when the temperature controller is part of a computer-controlled automatic data acquisition system. We have developed an extremely versatile microcomputer-based temperature controller to fulfill this need in a variety of equipment. The control algorithm used allows optimal tailoring of parameters to control overshoot, response time, and accuracy. This microcomputer-based temperature controller can be used as a standalone instrument (with a teletype used to enter para-meters), or it can be integrated into a data acquisition system

  13. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  14. Precision rectifier detectors for ac resistance bridge measurements with application to temperature control systems for irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M. G.

    1977-05-01

    The suitability of several temperature measurement schemes for an irradiation creep experiment is examined. It is found that the specimen resistance can be used to measure and control the sample temperature if compensated for resistance drift due to radiation and annealing effects. A modified Kelvin bridge is presented that allows compensation for resistance drift by periodically checking the sample resistance at a controlled ambient temperature. A new phase-insensitive method for detecting the bridge error signals is presented. The phase-insensitive detector is formed by averaging the magnitude of two bridge voltages. Although this method is substantially less sensitive to stray reactances in the bridge than conventional phase-sensitive detectors, it is sensitive to gain stability and linearity of the rectifier circuits. Accuracy limitations of rectifier circuits are examined both theoretically and experimentally in great detail. Both hand analyses and computer simulations of rectifier errors are presented. Finally, the design of a temperature control system based on sample resistance measurement is presented. The prototype is shown to control a 316 stainless steel sample to within a 0.15/sup 0/C short term (10 sec) and a 0.03/sup 0/C long term (10 min) standard deviation at temperatures between 150 and 700/sup 0/C. The phase-insensitive detector typically contributes less than 10 ppM peak resistance measurement error (0.04/sup 0/C at 700/sup 0/C for 316 stainless steel or 0.005/sup 0/C at 150/sup 0/C for zirconium).

  15. A lab-based study of subground passive cooling system for indoor temperature control

    Science.gov (United States)

    Chok, Mun-Hong; Chan, Chee-Ming

    2017-11-01

    Passive cooling is an alternative cooling technique which helps to reduce high energy consumption. Respectively, dredged marine soil (DMS) is either being dumped or disposed as waste materials. Dredging works had resulted high labor cost, therefore reuse DMS as to fill it along the coastal area. In this study, DMS chosen to examine the effectiveness of passive cooling system by model tests. Soil characterization were carried out according to BS1377: Part 2: 1990. Model were made into scale of 3 cm to 1 m. Heat exchange unit consists of three pipe designs namely, parallel, ramp and spiral. Preliminary tests including flow rate test and soil sample selection were done to select the best heat exchange unit to carry out the model test. Model test is classified into 2 conditions, day and night, each condition consists of 4 configurations which the temperature results are determined. The result shows that window left open and fan switched on (WO/FO) recorded the most effective cooling effects, from 29 °C to 27 °C with drop of 6.9 %.

  16. Concept for passive system to control gas flow independently of temperature

    Science.gov (United States)

    Chavez, E. S.; Milleman, S. E.; Rickeman, E. C.

    1966-01-01

    Volumetric flow rate of gas is maintained at a constant value independent of temperature by passing the gas through a parallel or series combination of turbulent flow and laminar flow restrictors. By proper combination of restrictors, the flow rate may be automatically made to vary as an increasing or decreasing function of temperature.

  17. Transmission final lenses in the HiPER laser fusion power plant: system design for temperature control

    Science.gov (United States)

    Páramo, A. R.; Sordo, F.; Garoz, D.; Le Garrec, B.; Perlado, J. M.; Rivera, A.

    2014-12-01

    The European laser fusion project HiPER is developing technologically feasible components for a laser fusion power plant with an evacuated dry wall chamber which is likely to operate with a shock ignition scheme and direct targets. One of the key components is the final optics. In this work, we consider silica transmission final lenses and address the major issues regarding the unavoidable neutron irradiation they must withstand. For pre-commercial power plants (150 MJ target yield at 10 Hz) a distance of 16 m between the final lenses and target leads to maximum lens temperatures within tolerable limits. However, a non-uniform steady-state temperature profile is a major concern because it is the origin of unacceptable aberrations that severely affect the target spots. We have devised an active intervention system based on a heat-transfer fluid to keep the temperature profile as smooth as possible. The main characteristics of the temperature control system are defined throughout this work and enable the operation of the plant, both for the start-up procedure and for normal operation.

  18. The preliminary design of bearings for the control system of a high-temperature lithium-cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Waldron, W. D.; Walowit, J. A.

    1973-01-01

    The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200 F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.

  19. Temperature-controlled resistor

    Science.gov (United States)

    Perkins, T. G.

    1969-01-01

    Electrical resistance of a carbon-pile resistor is controlled by the compression or relaxation of a pile of carbon disks by a thermally actuated bimetallic spring. The concept is advantageous in that it is direct-acting, can cover a wide range of controllable characteristics, and can handle considerable power directly.

  20. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  1. Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components

    International Nuclear Information System (INIS)

    Dobre, Tanase; Parvulescu, Oana Cristina; Stoica, Anicuta; Iavorschi, Gustav

    2010-01-01

    The use of cooling systems based on heat pipe principle to control operation temperature of electronic components is very efficient. They have an excellent miniaturizing capacity and this fact creates adaptability for more practical situations. Starting from the observation that these cooling systems are not precisely characterized from the thermal efficiency point of view, the present paper proposes a methodology of data acquisition for their thermal characterization. An experimental set-up and a data processing algorithm are shown to describe the cooling of a heat generating electronic device using heat pipes. A Thermalright SI-97 PC cooling system is employed as a case-study to determine the heat transfer characteristics of a fins cooler.

  2. Technical Note: Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature

    Directory of Open Access Journals (Sweden)

    E. E. Bockmon

    2013-09-01

    Full Text Available As the field of ocean acidification has grown, researchers have increasingly turned to laboratory experiments to understand the impacts of increased CO2 on marine organisms. However, other changes such as ocean warming and deoxygenation are occurring concurrently with the increasing CO2 concentrations, complicating the understanding of the impacts of anthropogenic changes on organisms. This experimental aquarium design allows for independent regulation of CO2 concentration, O2 levels, and temperature in a controlled environment to study the impacts of multiple stressors. The system has the flexibility for a wide range of treatment chemistry, seawater volumes, and study organisms. Control of the seawater chemistry is achieved by equilibration of a chosen gas mixture with seawater using a Liqui-Cel® membrane contactor. Included as examples, two experiments performed using the system have shown control of CO2 at values between approximately 500 and 1400 μatm and O2 at values from 80 to 240 μmol kg−1. Temperature has been maintained to 0.5 °C or better in the range of 10–17 °C. On a weeklong timescale, the system has achieved variability in pH of less than 0.007 pH units and in oxygen concentration of less than 3.5 μmol kg−1. Longer experiments, over a month in duration, have been completed with control to better than 0.08 pH units and 13 μmol kg−1 O2. The ability to study the impacts of multiple stressors in the laboratory simultaneously, as well as independently, will be an important part of understanding the response of marine organisms to a high-CO2 world.

  3. Technical Note: Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature

    Science.gov (United States)

    Bockmon, E. E.; Frieder, C. A.; Navarro, M. O.; White-Kershek, L. A.; Dickson, A. G.

    2013-09-01

    As the field of ocean acidification has grown, researchers have increasingly turned to laboratory experiments to understand the impacts of increased CO2 on marine organisms. However, other changes such as ocean warming and deoxygenation are occurring concurrently with the increasing CO2 concentrations, complicating the understanding of the impacts of anthropogenic changes on organisms. This experimental aquarium design allows for independent regulation of CO2 concentration, O2 levels, and temperature in a controlled environment to study the impacts of multiple stressors. The system has the flexibility for a wide range of treatment chemistry, seawater volumes, and study organisms. Control of the seawater chemistry is achieved by equilibration of a chosen gas mixture with seawater using a Liqui-Cel® membrane contactor. Included as examples, two experiments performed using the system have shown control of CO2 at values between approximately 500 and 1400 μatm and O2 at values from 80 to 240 μmol kg-1. Temperature has been maintained to 0.5 °C or better in the range of 10-17 °C. On a weeklong timescale, the system has achieved variability in pH of less than 0.007 pH units and in oxygen concentration of less than 3.5 μmol kg-1. Longer experiments, over a month in duration, have been completed with control to better than 0.08 pH units and 13 μmol kg-1 O2. The ability to study the impacts of multiple stressors in the laboratory simultaneously, as well as independently, will be an important part of understanding the response of marine organisms to a high-CO2 world.

  4. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  5. Replacement of Autoclave ME-24 Temperature Controller

    International Nuclear Information System (INIS)

    Acmad-Suntoro

    2008-01-01

    Autoclave ME-24 which is used as a passivity equipment of metal in order to prevent its rate of corrosion has four heating systems including their temperature controllers. Replacement of the temperature controllers are inevitably implemented because the controllers were defective. Repair of the controllers or replacement with exactly the same controllers is impossible because of both expire in component and module level of the controllers. Therefore replacement with similar type and performance has to be implemented. This paper describes technical consideration, steps of design, and result of test measurement in the controller replacement so that the autoclave can work normally as before. (author)

  6. Basic materials and protocols documenting of control system for temperature measurements in the reactor of the Mochovce Unit 1

    International Nuclear Information System (INIS)

    Stanc, S.; Tomik, J.; Hubinsky, B.; Vanco, P.; Repa, M.; Capuska, J.

    1998-06-01

    Analysis of accuracy in measurements by means of standard thermocouples at WWER 440 reactors at the break of seventies and eighties showed that the accuracy of standard measurements of temperatures and temperature differences does not comply fully with increasing requirements on nuclear safety, reliability, and economy of operation of these reactors. At the beginning of eighties, proposal for making the standard temperature measurements in WWER reactors were thus elaborated in the Nuclear Power Plants Research Institute Trnava, Inc. . These proposals were based on the establishment of an accurate system for measurement of reactor coolant temperatures and temperature differences. The accurate measurement system for reactor coolant temperatures and temperature differences started to be used at WWER 440 reactors at the beginning of eighties and has been upgraded gradually. Such systems have been implemented at 10 units with WWER 440 reactors

  7. Temperature Control Diagnostics for Sample Environments

    International Nuclear Information System (INIS)

    Santodonato, Louis J.; Walker, Lakeisha M.H.; Church, Andrew J.; Redmon, Christopher Mckenzie

    2010-01-01

    In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environment inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.

  8. Temperature Controlled Radiofrequency Ablation

    Directory of Open Access Journals (Sweden)

    Olaf J. Eick

    2002-07-01

    Full Text Available Since its introduction in 1987, radiofrequency (RF ablation has developed to become the treatment of choice for symptoms caused by atrio ventricular (AV reentrant tachycardia, isthmus related atrial flutter, AV-nodal reentrant tachycardia and to some extent also for certain types of ventricular tachycardias. The introduction of new cardiac activation mapping systems has further contributed to the successful and safe application of RF ablation for various tachyarrhythmias.

  9. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  10. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2017-03-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  11. Controlling LPG temperature for SI engine applications

    International Nuclear Information System (INIS)

    Ceviz, Mehmet Akif; Kaleli, Alirıza; Güner, Erdoğan

    2015-01-01

    In this study, the effects of the LPG temperature on the engine performance and the exhaust emission characteristics have been investigated experimentally on an SI engine. In conventional injection systems, the LPG temperature increases excessively during the phase change in pressure regulator, and reduces the engine volumetric efficiency. According to the test results, engine performance and NO emission characteristics can be improved by controlling the LPG temperature before injecting to the engine intake manifold. A new control system taking into account the results of the study has been developed and tested. In order to control the LPG temperature, the coolant flow rate in pressure regulator circuit was arranged by using a control valve activated by a PID controller unit. Results of the study showed that the engine brake power loss can be increased by about 1.85% and NO emissions can be decreased by about 2% as compared to the operation with the original LPG injection system. - Highlights: • Effects of the LPG temperature have been examined. • Engine performance characteristics and exhaust emissions have been studied. • Results reveal that the LPG temperature should be kept in a range. • A prototype LPG temperature control system has been successfully developed

  12. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  13. Temperature control apparatus

    Science.gov (United States)

    Northrup, M. Allen

    2003-08-05

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  14. Dual temperature concentration system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In a dual temperature isotope exchange system--exemplified by exchange of deuterium and protium between water and hydrogen sulfide gas in hot and cold towers, in which the feed stream (water) containing the desired isotope is passed through a pair of towers maintained at different temperatures wherein it effects isotope exchange with countercurrently circulated auxiliary fluid (H 2 S) and is impoverished in said isotope and then disposed of, e.g. discharged to waste,--the flow of isotope enriched auxiliary fluid between said towers (hot H 2 S saturated with water vapor) is divided and a part thereof is adjusted in its temperature (to cold tower conditions) and then passed to the auxiliary fluid impoverishing (cold) tower, while the remainder of the divided flow of such enriched auxiliary fluid is passed through a subsequent isotope concentration treatment to produce a product more highly enriched in the desired isotope and wherein it is also adjusted in its temperature and is impoverished in said isotope during said subsequent treatment before it is delivered to the said auxiliary fluid impoverishing (cold) tower. Certain provisions are made for returning to the hot tower liquid carried as vapor by the remainder of the divided flow to the subsequent isotope concentration treatment, for recovering sensible and latent heat, and for reducing passage of auxiliary fluid to waste

  15. On the temperature control in self-controlling hyperthermia therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Mahyar, E-mail: ebrahimi_m@mehr.sharif.ir

    2016-10-15

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination. - Highlights: • Temperature change pattern in tumor and surrounding tissue are studied. • The model system herein can be useful for treatment strategy determination. • In the work described herein, emphasis is on the effect of low Curie temperature. • If the equilibrium temperature can be tuned appropriately, the stay time will be infinite.

  16. On the temperature control in self-controlling hyperthermia therapy

    International Nuclear Information System (INIS)

    Ebrahimi, Mahyar

    2016-01-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination. - Highlights: • Temperature change pattern in tumor and surrounding tissue are studied. • The model system herein can be useful for treatment strategy determination. • In the work described herein, emphasis is on the effect of low Curie temperature. • If the equilibrium temperature can be tuned appropriately, the stay time will be infinite.

  17. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  18. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  19. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Yankee Rowe nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Yankee Rowe nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  20. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Maine Yankee nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Maine Yankee nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  1. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    OpenAIRE

    Andreasen, Søren Juhl; Sahlin, Simon Lennart; Justesen, Kristian Kjær; Kær, Søren Knudsen

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. Hightemperature PEM (HTPEM) fuel cells offer the possibility of using liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydroge...

  2. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Sahlin, Simon Lennart; Justesen, Kristian Kjær

    is polybenzimidazole (PBI), doped with phosphoric acid for proton conduction. The work will present a few different methanol reformer concepts, some experimental results of details related to reformer gas quality, control of burner temperature and the aspects of implementing advanced modeling based control approaches...

  3. Temperature control transport system

    Science.gov (United States)

    Schabron, John F; Sorini-Wong, Susan S

    2014-12-09

    Embodiments of the inventive technology may involve the use of layered, insulated PCM assemblage that itself comprises: modular insulating foam material 8 that, upon establishment as part of the assemblage, defines inner foam material sides 9 and outer foam material sides 10; thin reflective material 11 established against (whether directly in contact with or not) at least either the inner foam material sides or the outer foam materials sides, and modular, enclosed PCM sections 12 established between the modular insulating foam material and the interior center.

  4. CONTROL SYSTEM

    Science.gov (United States)

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  5. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  6. The Game of Temperature Control.

    Science.gov (United States)

    Paine, Clair

    1980-01-01

    Describes a game intended as a laboratory exercise to help students understand temperature control in higher animals, discover how endotherms and ectotherms deal with gains and/or losses of heat, and discover the habits and habitats of higher animals and their influence on thermal regulation. (Author/SA)

  7. Simulation of the performance of a hybrid ground-coupled heat pump system on the basis of wet bulb temperature control

    International Nuclear Information System (INIS)

    Han, Zongwei; Ju, Xiaomei; Ma, Xiao; Zhang, Yanhong; Lin, Min

    2016-01-01

    Highlights: • A wet bulb temperature control strategy for heat pump system is proposed. • A method of determining the control parameters is introduced. • Performance of the new strategy and two common strategies is compared. - Abstract: Considering the characteristics of a cold source of air and soil, an operation control strategy of a hybrid ground-coupled heat pump system (HGCHPS) was proposed based on wet bulb temperature control. A method of determining the control parameters was introduced, and a mathematical model of the main components of the system was developed. Dynamic simulation of the system performance was studied under this operation strategy and two additional commonly used control strategies. The results showed that the system had good heating and air conditioning safeguards under the control of the wet bulb temperature. The annual average coefficients of performance (COPs) of the cooling and heating system were 3.93 and 4.09, respectively. The annual average COP of heating and air conditioning was 3.96. The long-running performance of this operation strategy was better than those of the two additional control strategies and was able to maintain the soil’s thermal balance around soil heat exchangers (SHEs) with an annual cycle.

  8. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  9. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  10. A Proposed Methodology to Control Body Temperature in Patients at Risk of Hypothermia by means of Active Rewarming Systems

    Directory of Open Access Journals (Sweden)

    Silvia Costanzo

    2014-01-01

    Full Text Available Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient’s internal temperature (Tcore decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body’s thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.. Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket’s effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia.

  11. A proposed methodology to control body temperature in patients at risk of hypothermia by means of active rewarming systems.

    Science.gov (United States)

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (Tcore) decreases by 0.5-1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature Tskin and, as a consequence, on Tcore temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia.

  12. PRESSURE SYSTEM CONTROL

    Science.gov (United States)

    Esselman, W.H.; Kaplan, G.M.

    1961-06-20

    The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.

  13. Commonality Study of the Pressure-Volume-Temperature Based Propellant Gaging Software Modules for the Auxiliary Power Unit, Reaction Control System, and Orbital Maneuvering System

    Science.gov (United States)

    Duhon, D. D.

    1975-01-01

    Computer storage requirements can be reduced if areas of commonality exist in two or more programs placed in the same computer and identical code can be used by more than one program. The pressure-volume-temperature (P-V-T) relationship for the propellant tank pressurant agent is utilized as the basis for either a primary of a backup propellant gaging program for the auxiliary power unit (APU), the reaction control system (RCS), and the orbital maneuvering system (OMS). These three propellant gaging programs were investigated. It was revealed that a very limited degree of software commonality exits among them. An examination of this common software indicated that only the computation of the helium compressibility factor in an external function subprogram accessible to both the RCS and OMS propellant gaging programs appears to offer a savings in computer storage requirements.

  14. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    Science.gov (United States)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  15. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance......, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  16. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  17. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  18. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Haddam Neck Nuclear Power Plant

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Haddam Neck Nuclear Power Plant is presented. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  19. 30 CFR 77.314 - Automatic temperature control instruments.

    Science.gov (United States)

    2010-07-01

    ... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic temperature control instruments. 77...

  20. Test results of HTTR control system

    International Nuclear Information System (INIS)

    Motegi, Toshihiro; Iigaki, Kazuhiko; Saito, Kenji; Sawahata, Hiroaki; Hirato, Yoji; Kondo, Makoto; Shibutani, Hideki; Ogawa, Satoru; Shinozaki, Masayuki; Mizushima, Toshihiko; Kawasaki, Kozo

    2006-06-01

    The plant control performance of the IHX helium flow rate control system, the PPWC helium flow rate control system, the secondary helium flow rate control system, the inlet temperature control system, the reactor power control system and the outlet temperature control system of the HTTR are obtained through function tests and power-up tests. As the test results, the control systems show stable control response under transient condition. Both of inlet temperature control system and reactor power control system shows stable operation from 30% to 100%, respectively. This report describes the outline of control systems and test results. (author)

  1. Investigation of the Ce-O system by X-ray diffraction at high temperatures in a controlled atmosphere

    International Nuclear Information System (INIS)

    Touzelin, B.

    1981-01-01

    By means of X-ray diffraction at high temperature and in controlled atmosphere, variations of the crystal parameter of cerium oxides have been investigated in dependence of their composition at temperatures between 971 and 1080 0 C. The wide non-stoichiometric domain of CeOsub(2-x), the domain of oxides with a C-type structure, and the Ce 2 O 3 phase have been observed, the oxide Ce 7 O 12 was not found at 971 0 C. In the CeOsub(2-x) domain the crystal parameter does not deviate much from linearity as the O/Ce ratio is lowered; for this reason, it is assumed that oxygen vacancies occur which cause the deviations. (orig.)

  2. Instrumentation system for improvement of temperature sensor ...

    African Journals Online (AJOL)

    Instrumentation system for improvement of temperature sensor performance. ... techniques with thermistors, an electronic circuit is developed that is reducing considerably the thermistor non-linearity, its self-heating effect and is increasing its sensitivity in a wider temperature range of measurements and control. The circuit ...

  3. High temperature control rod assembly

    Science.gov (United States)

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  4. Advanced control system for temperature control in the pressurized fluid bed of Escatron Thermal Plant Power; Sistema de Control Avanzado para Control de la Temperatura del Lecho Fluido a Presion de la Central Termica de Escatron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the P. F-B. C a small problem appears, particularly in Escatron the bed temperature gradient is very high. Such gradient very occasionally reaches 50 degree centigree in a same plane. With the reduction of bed difference of temperature, the average bed temperature could be increased with the result steam cycle benefit, at the same time combustion gases would go at a higher temperature to the gas turbine, increasing therefore its performance. The SCAP system will allow to face the resolution of the injection of combustible problem and in this manner achieve the homogenization of bed temperature in Escatron PFBC Thermal Power Station. (Author)

  5. Thermoluminescent system for low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.; Leite, N.G.

    1988-09-01

    A system for measurements of the thermoluminescent glow curve, the thermoluminescent emission spectrum and the optical absorption spectrum of solid samples, from liquid nitrogen temperature up to 473 K, is reported. A specially designed temperature programmer provides a linear heating of the sample at a wide range of selectable heating rates, as also long term steady-state temperatures for annealing and isothermal decay studies. The system operates at a pressure of 1.33 x 10 -3 Pa. Presently it is being used for lithium fluoride low temperature thermoluminescent studies. (author) [pt

  6. Biological control of Otiorhynchus sulcatus by insect parasitic nematodes, Heterorhabditis spp., at low temperatures : a systems analytical approach

    NARCIS (Netherlands)

    Westerman, P.R.

    1997-01-01

    The black vine weevil, Otiorhynchus sulcatus, is an important pest in ornamentals and nursery stock in The Netherlands. The larvae, which feed on the root system of the plant, can be controlled by insect parasitic nematodes, Heterorhabditis.

  7. Temperature-Controlled Chameleonlike Cloak

    Science.gov (United States)

    Peng, Ruiguang; Xiao, Zongqi; Zhao, Qian; Zhang, Fuli; Meng, Yonggang; Li, Bo; Zhou, Ji; Fan, Yuancheng; Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; Soukoulis, Costas M.

    2017-01-01

    Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.

  8. Temperature-Controlled Chameleonlike Cloak

    Directory of Open Access Journals (Sweden)

    Ruiguang Peng

    2017-03-01

    Full Text Available Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO_{3} ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.

  9. Temperature control of a microspectrophotometer system for monitoring the redox reactions of respiratory pigments in small volumes

    Science.gov (United States)

    Kavanagh, Karen Y.; Walsh, James E.; Murphy, J.; Harmey, M.; Farrell, M. A.; Hardimann, O.; Perryman, R.

    1998-05-01

    We report the development of a microspectrophotometer system for use on micro samples of mitochondrial respiratory pigments. A novel optical fiber set-up uses visible spectrophotometry to monitor the reduction of mitochondrial electron carriers. Data is presented for the reduction of cytochrome-c and for the effect of temperature on the levels of complex II/III activity from the mitochondria of rat liver. This in-vivo simulation of the reduction of cytochrome-c can be observed using a fiber optic probe which requires less than twenty (mu) l of sample for analysis. The key features of the system are: front end adaptability, high sensitivity and fast multispectral acquisition which are essential for the biological reactions which are observed.

  10. Proposed fast-response oxygen monitoring and control system for the Langley 8-foot high-temperature tunnel

    Science.gov (United States)

    Singh, J. J.; Davis, W. T.; Puster, R. L.

    1983-01-01

    A fast-response oxygen monitoring and control system, based on a Y2O3-stabilized ZrO2 sensor, was developed and tested in the laboratory. The system is capable of maintaining oxygen concentration in the CH4-O2-air combustion product gases at 20.9 + or - 1.0 percent. If the oxygen concentration in the exhaust stream differs from that in normal air by 25 percent or more, an alarm signal is provided for automatic tunnel shutdown. The overall prototype system response time was reduced from about 1 sec in the original configuration to about 0.2 sec. The basis of operation and the results of laboratory tests of the system are described.

  11. Advances on development of suction and temperature controlled oedometer cell

    International Nuclear Information System (INIS)

    Ye Weimin; Zhang Yawei; Chen Bao; Wang Min

    2010-01-01

    Oedometer cells for unsaturated soils can be classified into two types, that is, conventional unsaturated oedometer cells (high-suction unsaturated oedometer cell, high-suction and high-pressure unsaturated oedometer cell) and temperature controlled unsaturated oedometer cells. Among them, the osmotic, vapor equilibrium and axis translation techniques are often employed for suction control. The thermostat bath method and thermostatically controlled heater method are commonly used for temperature control. The lever loading system, hydraulic loading system and air pressure loading system are commonly means used for vertical pressure. Combination of osmotic (or axis translation) technique with vapor equilibrium method employed for the full range suction control, thermostatically liquid temperature control method, and the hydraulic loading system, could be used for suction, temperature and loading control in the design for unsaturated oedometer cells in the future, which can be used for study of buffer/backfill materials under high-temperature, high pressure and full range suction conditions. (authors)

  12. Evaluation of RTD and thermocouple for PID temperature control in ...

    African Journals Online (AJOL)

    Evaluation of RTD and thermocouple for PID temperature control in distributed control system laboratory. D. A. A. Nazarudin, M. K. Nordin, A. Ahmad, M. Masrie, M. F. Saaid, N. M. Thamrin, M. S. A. M. Ali ...

  13. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    Science.gov (United States)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  14. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    Science.gov (United States)

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  15. On controllability of thermocapillary instability by local temperature control

    Science.gov (United States)

    Shiomi, Junichiro

    Thermally nonequilibrium liquid processing and experiments in microgravity or microscale of-ten suffer from dominant thermocapillary convection and its instability. While the instability can be utilized to promote mixing, there are certainly situations where it is desirable to atten-uate the fluid motion. Here, we theoretically investigate the possibility to control the unstable thermocapillary convection by taking a simple model system, i.e. a liquid-filled open cavity. The system is closely related to the liquid bridge and annular systems, which have been investi-gated extensively over the last few decades, being motivated by the crystal growth application. Such system is suitable for flow control target since they usually have strong mode selectivity, and hence, the observability and controllability can be satisfied by small number of controllers. In addition, since the convection is driven by the temperature distribution at the free surface, the entire flow field can be influenced by perturbing the scalar quantity (temperature). Fur-thermore, the relatively slow timescales of the phenomena (e.g. compared with turbulent flow) allow us to apply advanced real-time control laws. The author and coworkers have demon-strated the possibility of stabilizing the convective instability by applying mode-selective linear and weakly nonlinear feedback control schemes with only a few pairs of local temperature sen-sors and actuators (heaters) [1]. In this work, with an aim to develop a practical control scheme that is applicable to various degrees of nonlinearity and number of modes, an optimal control problem has been formulated. Based on the reduced toy model of the open cavity system [2] with 6 oscillatory modes, the linear optimal control was applied with only 2 actuators. The performance of the control was quantified for different strengths of nonlinearity. Dependences of the control performance on the actuator position and size were also investigated. The result shows

  16. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  17. Pressure Controlled Heat Pipe for Precise Temperature Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research project will develop Pressure Controlled Heat Pipes (PCHPs) for precise temperature control (milli-Kelvin level). Several...

  18. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  19. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  20. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  1. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...... is controlled using wall mounted ventilation flaps. In the paper an algorithm for air flow control is presented meeting the needs for temperature and humidity while taking the air flow pattern in consideration. To obtain simple and realisable controllers a model based control design method is applied....... In the design dynamic models for temperature and humidity are very important elements and effort is put into deriving and testing the models. It turns out that non-linearities are dominating in both models making feedback linearization the natural design method. The air controller as well as the temperature...

  2. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  3. Dual temperature isotope exchange system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1976-01-01

    Improvements in the method for isotope concentration by dual temperature exchange between feed and auxiliary fluids in a multistage system are described. In a preferred embodiment the first is a vaporizable liquid and the auxiliary fluid a gas, comprising steps for improving the heating and/or cooling and/or humidifying and/or dehumidifying operations

  4. Special coatings control temperature of structures

    Science.gov (United States)

    Fulk, M. M.; Mayer, R. W.

    1965-01-01

    Special coatings in the form of paints that exhibit controlled ratios of sunlight absorptivity to grey-body emissivity control the temperature of structures in space flight. These finishes exhibit good resistance to ultraviolet radiation and do not discolor.

  5. The Setup Design for Selective Laser Sintering of High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition

    Directory of Open Access Journals (Sweden)

    Alexey Nazarov

    2018-03-01

    Full Text Available This paper presents the design of an additive setup for the selective laser sintering (SLS of high-temperature polymeric materials, which is distinguished by an original control system for aligning the device for depositing layers of polyether ether ketone (PEEK powder. The kinematic and laser-optical schemes are given. The main cooling circuits are described. The proposed technical and design solutions enable conducting the SLS process in different types of high-temperature polymer powders. The principles of the device adjustment for depositing powder layers based on an integral thermal analysis are disclosed. The PEEK sinterability was shown on the designed installation. The physic-mechanical properties of the tested 3D parts were evaluated in comparison with the known data and showed an acceptable quality.

  6. Design optimization for main control room temperature and humidity control of digital nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yujuan; Mao Hongwei; Liu Dongbo; Chen Donglei

    2014-01-01

    The main control room (MCR) temperature and humidity control system of nuclear power plant has major capacity lag and some interference factors. In order to meet the human factor requirements of MCR's operators and the control panels' environmental requirements, the improved temperature and humidity control scheme was designed based on the provided temperature cascade control system and the humidity cascade control system. In order to overcome the PID controller's shortcoming heavily depending on the accurate mathematical model, an intelligent PID parameter setting method was provided with the improved particle swarm optimization (PSO) algorithm. (authors)

  7. Fractional-order integral and derivative controller for temperature ...

    Indian Academy of Sciences (India)

    moulding processes (http://www.manufacturing.net/ctl/article/CA408369.html) and Dihac et al (1992) used PID controller for a rapid thermal processor control. Lin et al (1999) pro- posed a neural fuzzy inference network for the temperature control of a water bath system and compared the performance with the PID control.

  8. Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.

    Science.gov (United States)

    Kaya, Azmi

    1982-01-01

    Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…

  9. Phase Change Fabrics Control Temperature

    Science.gov (United States)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  10. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  11. Application of high precision temperature control technology in infrared testing

    Science.gov (United States)

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  12. Design of measurement system for Doppler broadening profiles of annihilation radiations as a function of controlled specimen temperature and its applications for a study of metals in the thermal equilibrium state

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao.

    1992-01-01

    The measurement system for Doppler broadening profiles of annihilation radiation was developed. This system reads out data for energies of γ-rays from an analog to digital converter and those for specimen temperature from a digital-voltmeter coupled to a thermocouple. These two types of digital-quantities were stored in a memory matrix of 512 channels (energy) x 128 channels (temperature) x 4 byte (count). For this purpose, a memory board of 256 kbyte with 32-dynamic RAMs (64 kbits) was used. The data acquisition was controlled by a microcomputer. Temperature of the specimen was controlled by a programmable temperature controller, thus it can be varied in a desired way. This was useful for measurements in repeated temperature cycles. A sample heater with a compact size was developed in order to obtain a homogeneous temperature distribution in the specimen. Application of this system for a study of thermal vacancies in Al-dilute alloys was also shown. (author)

  13. Proposal for the award of a contract for the supply of electronics for the temperature control of cavity windows and helium gas return lines for the superconducting cavities of the LEP200 radio frequency system

    CERN Document Server

    1991-01-01

    Proposal for the award of a contract for the supply of electronics for the temperature control of cavity windows and helium gas return lines for the superconducting cavities of the LEP200 radio frequency system

  14. Automated Greenhouse : Temperature and soil moisture control

    OpenAIRE

    Attalla, Daniela; Tannfelt Wu, Jennifer

    2015-01-01

    In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is ...

  15. Intelligent control system for the temperature regulation in a gas turbine of a combined cycle fossil fuel power plant; Sistema de control inteligente para regular la temperatura en la turbina de gas de una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Espindola Vasquez, Agustin

    2004-11-15

    In the Turbogas Units (UTG short for Spanish acronym) of a Thermoelectric Power station of Combined Cycle (CTCC short for Spanish acronym), from an operative, as well as a safety standpoint the turbine blade temperature is a critical variable. The best performance of a turbogas unit based in the electrical generation is obtained when the greatest thermal efficiency is reached. From the point of view of safety, it is desirable to keep the blades temperature at the limit established by the manufacturer, guaranteeing with this, the integrity of the UTG internal parts; avoiding that great thermal efforts decrease their useful life. In order to keep the blades temperature at the established limit, the UTG control system have a supervision system of blades temperature, that system modifies the controllers reference of the speed or power PI's which regulate the fuel valve of the UTG combustion chamber. This supervision system is based on logic conditions to generate its exit signal. In the process plants whose operation is complex and its dynamic behavior is nonlinear, the strategies of control of single loop do not provide the wished performance when they are applied in control loops to regulate critical variables; thing doing necessary the design of structures with two hierarchical levels; one with direct control and the other with supervisory control. The fuzzy logic has found a wide acceptance [Chiu, 1998] when is used to handle control functions of high level which are outside of the dominion of the conventional control methods. One of these cases is the application of the fuzzy logic to the supervisory control. In this thesis document is presented the accomplishment of a temperature fuzzy supervision system in a turbogas unit, whose purpose is to keep the turbine blades temperature within the established limits, conserving a satisfactory performance from an operative, as well as a safety standpoint. The temperature supervisor was designed with base on fuzzy

  16. Internal Temperature Control For Vibration Testers

    Science.gov (United States)

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  17. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  18. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  19. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  20. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  1. Research on automatic control system of greenhouse

    Science.gov (United States)

    Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng

    2017-03-01

    This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.

  2. System for enrichment by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In dual temperature isotope exchange systems utilizing different fluid substances in liquid and gas phases separable from and soluble in each other (for example H 2 O and H 2 S), the phases are passed countercurrent to each other in towers maintained at relatively hot and cold temperatures. Combinations of method and means are provided by which the gas is raised to hot tower temperature and humidity conditions principally by heat derived from the cooling and dehumidification of the gas leaving the hot tower as it is being reduced in temperature and humidity to cold tower conditions. Special provisions are made in the combinations for transferring this heat and for completing the conditioning of the gas to the respective tower conditions with high efficiency, for economically controlling the temperature of the condensate to adapt it for transfer to different parts of the system, and for economically stripping dissolved gas and heat from the effluent liquid and returning it to the system in manners that aid the thermal conditioning of the main gas stream

  3. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  4. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  5. Fault-Tolerant, Multiple-Zone Temperature Control

    Science.gov (United States)

    Granger, James; Franklin, Brian; Michalik, Martin; Yates, Phillip; Peterson, Erik; Borders, James

    2008-01-01

    A computer program has been written as an essential part of an electronic temperature control system for a spaceborne instrument that contains several zones. The system was developed because the temperature and the rate of change of temperature in each zone are required to be maintained to within limits that amount to degrees of precision thought to be unattainable by use of simple bimetallic thermostats. The software collects temperature readings from six platinum resistance thermometers, calculates temperature errors from the readings, and implements a proportional + integral + derivative (PID) control algorithm that adjusts heater power levels. The software accepts, via a serial port, commands to change its operational parameters. The software attempts to detect and mitigate a host of potential faults. It is robust to many kinds of faults in that it can maintain PID control in the presence of those faults.

  6. Design of temperature monitoring system based on CAN bus

    Science.gov (United States)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  7. Model predictive control of room temperature with disturbance compensation

    Science.gov (United States)

    Kurilla, Jozef; Hubinský, Peter

    2017-08-01

    This paper deals with temperature control of multivariable system of office building. The system is simplified to several single input-single output systems by decoupling their mutual linkages, which are separately controlled by regulator based on generalized model predictive control. Main part of this paper focuses on the accuracy of the office temperature with respect to occupancy profile and effect of disturbance. Shifting of desired temperature and changing of weighting coefficients are used to achieve the desired accuracy of regulation. The final structure of regulation joins advantages of distributed computing power and possibility to use network communication between individual controllers to consider the constraints. The advantage of using decoupled MPC controllers compared to conventional PID regulators is demonstrated in a simulation study.

  8. Automatic temperature control method of shipping can

    International Nuclear Information System (INIS)

    Nishikawa, Kaoru.

    1992-01-01

    The present invention provides a method of rapidly and accurately controlling the temperature of a shipping can, which is used upon shipping inspection for a nuclear fuel assembly. That is, a measured temperature value of the shipping can is converted to a gas pressure setting value in a jacket of the shipping can by conducting a predetermined logic calculation by using a fuzzy logic. A gas pressure control section compares the pressure setting value of a fuzzy estimation section and the measured value of the gas pressure in the jacket of the shipping can, and conducts air supply or exhaustion of the jacket gas so as to adjust the measured value with the setting value. These fuzzy estimation section and gas pressure control section control the gas pressure in the jacket of the shipping can to control the water level in the jacket. As a result, the temperature of the shipping can is controlled. With such procedures, since the water level in the jacket can be controlled directly and finely, temperature of the shipping can is automatically controlled rapidly and accurately compared with a conventional case. (I.S.)

  9. Temperature control in interstitial laser cancer immunotherapy

    Science.gov (United States)

    Bandyopadhyay, Pradip K.; Holmes, Kyland; Burnett, Corinthius; Zharov, Vladimir P.

    2003-07-01

    Positive results of Laser-Assisted Cancer Immunotherapy (LACI) have been reported previously in the irradiation of superficial tumors. This paper reports the effect of LACI using laser interstitial therapy approach. We hypothesize that the maximum immuno response depends on laser induced tumor temperature. The measurement of tumor temperature is crucial to ensure necrosis by thermal damage and immuno response. Wister Furth female rats in this study were inoculated with 13762 MAT B III rat mammary adinocarcinoma. LACI started seven to ten days following inoculation. Contrary to surface irradation, we applied laser interstitial irradiation of tumor volume to maximize the energy deposition. A diode laser with a wavelength of 805 nm was used for tumor irradiation. The laser energy was delivered inside the tumor through a quartz fiber. Tumor temperature was measured with a micro thermocouple (interstitial), while the tumor surface temperature was controlled with an IR detector. The temperature feedback demonstrates that it is possible to maintain the average tumor temperature at the same level with reasonable accuracy in the desired range from 65°C-85°C. In some experiments we used microwave thermometry to control average temperature in deep tissue for considerable period of time, to cause maximum thermal damage to the tumor. The experimental set-up and the different temperature measurement techniques are reported in detail, including the advantages and disadvantages for each method.

  10. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  11. Implementation of Temperature Sequential Controller on Variable Speed Drive

    Science.gov (United States)

    Cheong, Z. X.; Barsoum, N. N.

    2008-10-01

    There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.

  12. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  13. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent...... of the working point. The model also gives a method for control of the evaporation temperature. The proposed method is validated by experimental results....

  14. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration:Proceedings CD

    OpenAIRE

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart; Justesen, Kristian Kjær

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. Hightemperature PEM (HTPEM) fuel cells offer the possibility of using liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydroge...

  15. Wisdom Appliance Control System

    Science.gov (United States)

    Hendrick; Jheng, Jyun-Teng; Tsai, Chen-Chai; Liou, Jia-Wei; Wang, Zhi-Hao; Jong, Gwo-Jia

    2017-07-01

    Intelligent appliances wisdom involves security, home care, convenient and energy saving, but the home automation system is still one of the core unit, and also using micro-processing electronics technology to centralized and control the home electrical products and systems, such as: lighting, television, fan, air conditioning, stereo, it composed of front-controller systems and back-controller panels, user using front-controller to control command, and then through the back-controller to powered the device.

  16. Improved PID method of temperature control for adiabatic demagnetization refrigerators

    International Nuclear Information System (INIS)

    Hoshino, A.; Shinozaki, K.; Ishisaki, Y.; Mihara, T.

    2006-01-01

    We report a new method of precise temperature control for an adiabatic demagnetization refrigerator (ADR). Temperature of the experimental stage of ADRs is usually controlled with the standard PID (Proportional, Integral, and Derivative control) method by decreasing the magnet current of the superconducting solenoid surrounding the paramagnetic salt inside the ADR. In controlling the temperature of our portable ADR system, we found a small residual between the aimed and measured temperatures, which gradually increased in time as the magnet current decreases. This phenomenon is explained by the magnetic cooling theory, and we have introduced a new functional parameter to improve the standard PID method. Applying this improvement to our system, highly stabilized temperature of 10μK rms at 100mK up to the period of ∼15ks is presented. It is demonstrated that the temperature controlled time was increased by ∼30% in our experiment. Our improved PID method is useful to maintain the long-term temperature stability down to almost zero magnet current with a relatively small ADR

  17. Control of temperature for health and productivity inoffices

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli; Fisk, William J.; Faulkner, David

    2004-06-01

    Indoor temperature is one of the fundamental characteristics of the indoor environment. It can be controlled with different accuracy depending on the building and its HVAC system. The purpose of this study was to evaluate the potential benefits of improved temperature control, and apply the information for a cost-benefit analyses. The indoor temperature affects several human responses, including thermal comfort, perceived air quality, sick building syndrome symptoms and performance in work. In this study we focused on the effects of temperature on performance in work. We collected and analyzed the literature relating the performance in work and temperature. The results of multiple studies are relatively consistent and show an average relationship of 2% decrement in work performance per degree C when the temperature is above 25 C. Less data were available on the performance in low temperatures. However, studies show a strong effect on manual tasks with temperatures below thermal neutrality as soon as the temperature of hands decreased due to control of blood flow. When the estimated productivity decrement from elevated temperatures was applied to data from a study of night-time ventilative cooling, the estimated value of productivity improvements were 32 to 120 times greater than the cost of energy to run fans during the night.

  18. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  19. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    of the system, in order to achieve a realistic test environment. A new scheme for controlling the inlet air temperature was suggested and designed as a part of a cascade control strategy. The control scheme developed can be used in general for control of the inlet air temperature in an air handling unit. A room...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...... as the system was recognised as a nonlinear first order system. A new tuning method was suggested, based on the results from the flow temperature controller. A supervisor for the demanded controller ventilation system was designed and implemented. The functionality of the supervisor was partly validated through...

  20. Personal exposure control system

    International Nuclear Information System (INIS)

    Tanabe, Ken-ichi; Akashi, Michio

    1994-01-01

    Nuclear power stations are under strict radiation control. Exposure control for nuclear workers is the most important operation, and so carefully thought out measures are taken. This paper introduces Fuji Electric's personal exposure control system that meets strict exposure control and rationalizes control operations. The system has a merit that it can provide required information in an optimum form using the interconnection of a super minicomputer and exposure control facilities and realizes sophisticated exposure control operations. (author)

  1. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  2. Enhanced Temperature Control Method Using ANFIS with FPGA

    Directory of Open Access Journals (Sweden)

    Chiung-Wei Huang

    2014-01-01

    Full Text Available Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS using a field-programmable gate array (FPGA to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV inductively-coupled plasma- (ICP- type etcher.

  3. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    Science.gov (United States)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  4. Design of Temperature Measuring Instrument of The Primary Cooling System Bearing Motor At The RSG-GAS Based on Micro controller ATMEGA 8535

    International Nuclear Information System (INIS)

    Ranji Gusman; Cahyana; Heri Suherkiman; Sukino

    2012-01-01

    Controlling on the bearing of an electric motor is the thing that important to do, to know the performance of an electric motor is staying awake. One of the parameters that can be controlled is temperature of bearing electric motor. The bearing of an electric motors has three areas of work, namely the normal working temperature area(<45 °C), working area (45-50 °C) and critical shutdown area (<50 °C). On the design of this tool-making, we are going to control the electric motor on that condition. The micro controller ATMEGA 8535 is used as a controller. Micro controller serve control the input in the form of temperature bearing motor then cultivate it and will be displayed to output devices such as the LCD viewer, lights indicators and buzzer. On this design has the design of casing, power supply circuit, micro controller port, buzzer driver circuit, indicator light and relay circuits, as well as the LCD viewer circuit and flow chart. On the next activity, the design will be submitted to the manufacturing stage. (author)

  5. Efficiency of N2 Gas Flushing Compared to the Lactoperoxidase System at Controlling Bacterial Growth in Bovine Raw Milk Stored at Mild Temperatures

    Science.gov (United States)

    Munsch-Alatossava, Patricia; Quintyn, Romanie; De Man, Ingrid; Alatossava, Tapani; Gauchi, Jean-Pierrre

    2016-01-01

    To prevent excessive bacterial growth in raw milk, the FAO recommends two options: either cold storage or activation of the lactoperoxidase system (LPs/HT) in milk with the addition of two chemical preservatives, hydrogen peroxide (H) and thiocyanate (T). N2 gas flushing of raw milk has shown great potential to control bacterial growth in a temperature range of 6–12°C without promoting undesired side effects. Here, the effect of N2 gas (N) was tested as a single treatment and in combination with the lactoperoxidase system (NHT) on seven raw milk samples stored at 15 or 25°C. For the ratio defined as bacterial counts from a certain treatment/counts on the corresponding control, a classical Analyse of Variance (ANOVA) was performed, followed by mean comparison with the Ryan-Einot-Gabriel-Welsch multiple range test (REGWQ). Altogether, the growth inhibition was slightly but significantly higher at 25°C than at 15°C. Except for one sample, all ratios were lower for HT than for N alone; however, these differences were not judged to be significant for five samples by the REGWQ test; in the remaining two samples, N was more effective than HT in one case and less effective in the other case. This study shows that N2 gas flushing, which inhibited bacterial growth in raw milk at 15 and 25°C for 24 and 12 h, respectively, could constitute an alternative to LPs where no cold storage facilities exist, especially as a replacement for adulterating substances. PMID:27313575

  6. Controlled temperature grinding under modified atmosphere for ...

    African Journals Online (AJOL)

    Controlled temperature grinding under modified atmosphere for Almond (Prunus Dulcis) paste production. ... incremental gain of 27% and 21% in the protein and fat content, respectively. Keywords: Almonds; Food Processing Aspects; Lipid Oxidation International Journal of Engineering, Science and Technology, Vol. 2, No.

  7. The remote control system

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.

    1988-01-01

    The remote-control system is applied in order to control various signals in the car of the spectrometer at distance. The construction (hardware and software) as well as the operation of the system is described. (author). 20 figs

  8. Control and automation systems

    International Nuclear Information System (INIS)

    Schmidt, R.; Zillich, H.

    1986-01-01

    A survey is given of the development of control and automation systems for energy uses. General remarks about control and automation schemes are followed by a description of modern process control systems along with process control processes as such. After discussing the particular process control requirements of nuclear power plants the paper deals with the reliability and availability of process control systems and refers to computerized simulation processes. The subsequent paragraphs are dedicated to descriptions of the operating floor, ergonomic conditions, existing systems, flue gas desulfurization systems, the electromagnetic influences on digital circuits as well as of light wave uses. (HAG) [de

  9. Distributed System Control

    National Research Council Canada - National Science Library

    Berea, James

    1997-01-01

    Global control in distributed systems had not been well researched. Control had only been addressed in a limited manner, such as for data-update consistency in distributed, redundant databases or for confidentiality controls...

  10. FINANCIAL CONTROL SYSTEM IMPROVEMENT

    OpenAIRE

    L. V. Kurmaeva

    2012-01-01

    Forms and methods of external and internal financial control are discussed. The system of the state and municipal financial control in Russia is described. Changes to organization of internal financial control and audit are proposed.

  11. Instrumentation and control system design

    International Nuclear Information System (INIS)

    Saito, Kenji; Sawahata, Hiroaki; Homma, Fumitaka; Kondo, Makoto; Mizushima, Toshihiko

    2004-01-01

    The instrumentation and control system of the high temperature engineering test reactor consists of the instrumentation, control equipments and safety protection systems. There are not many differences in the instrumentation and control equipments design between the HTTR and light water reactors except for some features. Various kinds of R and D of reactor instrumentation were performed taking into account the HTTR operational conditions, and a plant dynamic analysis was carried out considering the operational conditions of the HTTR in order to design the control system. These systems are required to have a high reliability in respect to safety. In the rise-to-power test it was confirmed that the instrumentation has a high reliability and the control system has a high stability and reasonable damped characteristics for various disturbances

  12. Dynamics of control systems

    Science.gov (United States)

    Zubov, V. I.

    Papers are presented on mathematical methods for the analysis of control systems for technical plants and manufacturing processes. Particular attention is given to the mechanics of controlled space flight, the design of automatic control systems, flexible automated complexes, control applications in biomedical research, and chemical technology for the production of new types of materials.

  13. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  14. A temperature controller board for the ARC controller

    Science.gov (United States)

    Tulloch, Simon

    2016-07-01

    A high-performance temperature controller board has been produced for the ARC Generation-3 CCD controller. It contains two 9W temperature servo loops and four temperature input channels and is fully programmable via the ARC API and OWL data acquisition program. PI-loop control is implemented in an on-board micro. Both diode and RTD sensors can be used. Control and telemetry data is sent via the ARC backplane although a USB-2 interface is also available. Further functionality includes hardware timers and high current drivers for external shutters and calibration LEDs, an LCD display, a parallel i/o port, a pressure sensor interface and an uncommitted analogue telemetry input.

  15. The electronic temperature control and measurements reactor fuel rig circuits

    International Nuclear Information System (INIS)

    Glowacki, S.W.

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC). (author)

  16. Reactor control system. PWR

    International Nuclear Information System (INIS)

    2009-01-01

    At present, 23 units of PWR type reactors have been operated in Japan since the start of Mihama Unit 1 operation in 1970 and various improvements have been made to upgrade operability of power stations as well as reliability and safety of power plants. As the share of nuclear power increases, further improvements of operating performance such as load following capability will be requested for power stations with more reliable and safer operation. This article outlined the reactor control system of PWR type reactors and described the control performance of power plants realized with those systems. The PWR control system is characterized that the turbine power is automatic or manually controlled with request of the electric power system and then the nuclear power is followingly controlled with the change of core reactivity. The system mainly consists of reactor automatic control system (control rod control system), pressurizer pressure control system, pressurizer water level control system, steam generator water level control system and turbine bypass control system. (T. Tanaka)

  17. Remote temperature-set-point controller

    Science.gov (United States)

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  18. Performance of a flight qualified, thermoelectrically temperature controlled QCM sensor with power supply, thermal controller and signal processor

    Science.gov (United States)

    Wallace, D. A.

    1980-01-01

    A thermoelectrically temperature controlled quartz crystal microbalance (QCM) system was developed for the measurement of ion thrustor generated mercury contamination on spacecraft. Meaningful flux rate measurements dictated an accurately held sensing crystal temperature despite spacecraft surface temperature variations from -35 C to +60 C over the flight temperature range. An electronic control unit was developed with magentic amplifier transformer secondary power supply, thermal control electronics, crystal temperature analog conditioning and a multiplexed 16 bit frequency encoder.

  19. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...... temperatures are estimated by reduced order observers and evaporation temperature is regulated by an algorithmic suction pressure control scheme. The method is applied to a validated simulation benchmark. The results show that even with the thermostatic control valves, there exists significant potential...

  20. Temperature uniformity control in RTP using multivariable adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.

    1995-12-31

    In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.

  1. Intelligent control systems 1990

    International Nuclear Information System (INIS)

    Shoureshi, R.

    1991-01-01

    The field of artificial intelligence (Al) has generated many useful ideas and techniques that can be integrated into the design of control systems. It is believed and, for special cases, has been demonstrated, that integration of Al into control systems would provide the necessary tools for solving many of the complex problems that present control techniques and Al algorithms are unable to do, individually. However, this integration requires the development of basic understanding and new fundamentals to provide scientific bases for achievement of its potential. This book presents an overview of some of the latest research studies in the area of intelligent control systems. These papers present techniques for formulation of intelligent control, and development of the rule-based control systems. Papers present applications of control systems in nuclear power plants and HVAC systems

  2. Temperature and pressure control in the discharge of refrigeration systems cooled by shell and tube condensers; Control de presion y temperatura de descarga en sistemas de refrigeracion enfriados por condensadores de casco y tubo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Martinez, R. [Asociacion de Ingenieros Egresados de la Universidad Autonoma Metropolitana, Mexico D. F. (Mexico)

    1995-12-31

    In the selection of a refrigeration equipment, the evaporator and condenser load conditions must be perfectly known, that is, the amount of heat energy that we have to reject from our space to cool in base to the temperature and mass to refrigerate. This situation carries on to the selection of the adequate compressor. But nevertheless the temperature conditions of the environment play an important roll in the behavior of the entire refrigeration system, altering in many cases the working conditions of each one of the components and therefore the functioning of the refrigeration system. This paper presents a method for controlling the behavior of each one of the components of the refrigeration system that perform in accordance with their design characteristics. [Espanol] En la seleccion de un equipo de refrigeracion, se deben conocer perfectamente las condiciones de carga del evaporador y del condensador, es decir la cantidad de calor que debemos de eliminar de nuestro medio a refrigerar, en base a la temperatura y masa a refrigerar. Esta situacion conlleva a la eleccion del compresor adecuado. Mas sin embargo, las condiciones de temperatura ambiente, juegan un papel importante en el comportamiento de todo el sistema de refrigeracion, alterando en muchos casos las condiciones de trabajo de cada uno de los componentes y por ende el funcionamiento del sistema de refrigeracion. El presente trabajo presenta un metodo para controlar el comportamiento de cada uno de los componentes dentro del sistema de refrigeracion para que trabajen de acuerdo a su diseno.

  3. Temperature-Control Apparatus For Hydrogen Maser

    Science.gov (United States)

    Vessot, R. F. C.; Mattison, E. M.

    1994-01-01

    Thermal-control apparatus maintains hydrogen maser at nearly constant temperature during long-term operational test. Designed to maintain, in small cylindrical vacuum tank containing maser, nearly isothermal condition when test conducted in air. Provides approximation of more nearly isothermal condition expected to be maintained in intended application, in which maser operated in vacuum environment and losses of heat reduced further by multilayer reflective insulation.

  4. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  5. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  6. Junction Temperature Control for More Reliable Power Electronics

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Buticchi, Giampaolo

    2018-01-01

    are the focus of this paper. Possible approaches to control the semiconductor junction temperature are discussed in this paper, along with the implementation in several emerging applications. The modification of the control variables at different levels (modulation, control, and system) to alter the loss...... generation or distribution is analyzed. Some of the control solutions presented in the literature, which showed experimentally that the thermal stress can be effectively reduced, are reviewed in detail. These results are often mission-profile dependent and the controller needs to be tuned to reach...

  7. Precision cryogenic temperature data acquisition system

    International Nuclear Information System (INIS)

    Farah, Y.; Sondericker, J.H.

    1985-01-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of +-25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors

  8. Use of fuzzy logic to control a gasifier biomass ventilation system and maintenance of the temperature in the oxidation zone; Uso da logica fuzzy para controle do sistema de ventilacao de um gaseificador de biomassa e manutencao da temperatura da zona de oxidacao

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Oscar L.T.; Kulitz, Hans H. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Silva, Jadir N.; Galvarro, Svetlana F.S.; Machado, Cassio [Universidade Federal de Vicosa (UFV), MG (Brazil)], E-mail: oscar@ifes.edu.br

    2012-11-01

    This study aims at developing a fuzzy-based algorithm to control the frequency applied to the motor of a gasifier ventilation system in order to ensure adequate temperature in the oxidation zone and produce good quality gas. The input variables of the fuzzy controller were: error, which determines the difference between the desired temperature and the temperature at a given instant; and temperature variation, which will inform if it is increasing or decreasing at a given instant. The response variable was the operation frequency of the ventilation system motor. The rule base was built based on experimental data. The tests with the control algorithm allowed us to see that it is possible to control the oxidation zone temperature - producing gas in a stable way, which does not occur in gasification processes without ventilation system control. (author)

  9. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  10. Controlling the temperature in Canadian homes

    International Nuclear Information System (INIS)

    Dewis, G.

    2008-01-01

    Programmable thermostats can be used to optimize the operation of heating and cooling systems by reducing system usage when occupants are asleep or when dwellings are unoccupied. This paper used the results of a 2006 households and the environment survey to examine how programmable thermostats are currently being used in Canadian households. The demographic factors associated with thermostat use were discussed, as well as how their usage varied in different areas of Canada. The study showed that most Canadian households set their temperature at between 20 to 22 degrees C during times when they are home and awake. Home temperatures were reduced to between 16 and 18 degrees C when household members were away or asleep. Only 4 out of 10 households used programmable thermostats. Of those who used programmable thermostats, only 7 in 10 programmed the thermostat to lower the temperature when occupants were asleep. Senior citizens and people with lower levels of education were less likely to use programmable thermostats. It was concluded that incentive programs and the distribution of free programmable thermostats will increase their use in households. Assistance in programming during the installation process should also be provided. Factor analyses must also be conducted to examine the influence of age, education, and income and the decisions made by households in relation to temperature regulation. 7 tabs

  11. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  12. A modular control system

    International Nuclear Information System (INIS)

    Cruz, B.; Drexler, J.; Olcese, G.; Santome, D.

    1990-01-01

    The main objective of the modular control system is to provide the requirements to most of the processes supervision and control applications within the industrial automatization area. The design is based on distribution, modulation and expansion concepts. (Author) [es

  13. A hypothalamic circuit that controls body temperature.

    Science.gov (United States)

    Zhao, Zheng-Dong; Yang, Wen Z; Gao, Cuicui; Fu, Xin; Zhang, Wen; Zhou, Qian; Chen, Wanpeng; Ni, Xinyan; Lin, Jun-Kai; Yang, Juan; Xu, Xiao-Hong; Shen, Wei L

    2017-02-21

    The homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD). Activation of GABAergic neurons in the vLPO using optogenetics reduced body temperature, along with a decrease in physical activity. Optogenetic inhibition of these neurons resulted in fever-level hyperthermia. These GABAergic neurons project from the vLPO to the DMD and optogenetic stimulation of the nerve terminals in the DMD also reduced body temperature and activity. Electrophysiological recording revealed that the vLPO GABAergic neurons suppressed neural activity in DMD neurons, and fiber photometry of calcium transients revealed that DMD neurons were activated by cold. Accordingly, activation of DMD neurons using designer receptors exclusively activated by designer drugs (DREADDs) or optogenetics increased body temperature with a strong increase in energy expenditure and activity. Finally, optogenetic inhibition of DMD neurons triggered hypothermia, similar to stimulation of the GABAergic neurons in the vLPO. Thus, vLPO GABAergic neurons suppressed the thermogenic effect of DMD neurons. In aggregate, our data identify vLPO→DMD neural pathways that reduce core temperature in response to a thermal challenge, and we show that outputs from the DMD can induce activity-induced thermogenesis.

  14. Intelligent Control Systems Research

    Science.gov (United States)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  15. Control and optimization system

    Science.gov (United States)

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  16. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  17. Throttling Cryogen Boiloff To Control Cryostat Temperature

    Science.gov (United States)

    Cunningham, Thomas

    2003-01-01

    An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

  18. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  19. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  20. 46 CFR 154.701 - Cargo pressure and temperature control: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pressure and temperature control: General. 154.701... Equipment Cargo Pressure and Temperature Control § 154.701 Cargo pressure and temperature control: General... the MARVS under § 154.405; or (b) Be refrigerated by a system meeting § 154.702, and each refrigerated...

  1. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  2. Control rod shutdown system

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiyuki; Higashigawa, Yuichi.

    1996-01-01

    The present invention provides a control rod terminating system in a BWR type nuclear power plant, which stops an induction electric motor as rapidly as possible to terminate the control rods. Namely, the control rod stopping system controls reactor power by inserting/withdrawing control rods into a reactor by driving them by the induction electric motor. The system is provided with a control device for controlling the control rods and a control device for controlling the braking device. The control device outputs a braking operation signal for actuating the braking device during operation of the control rods to stop the operation of the control rods. Further, the braking device has at least two kinds of breaks, namely, a first and a second brakes. The two kinds of brakes are actuated by receiving the brake operation signals at different timings. The brake device is used also for keeping the control rods after the stopping. Even if a stopping torque of each of the breaks is small, different two kinds of brakes are operated at different timings thereby capable of obtaining a large stopping torque as a total. (I.S.)

  3. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. Systems and Control Engineering - Control Systems-Analysis and Design. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 5 May 1999 pp 88-94 ...

  4. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  5. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Systems and Control Engineering. 1. Notions of Control. A Rama Kalyan and J R Vengateswaran. To control an object means to influence its behaviour so as to achieve a desired goal. To implement this influence, engineers build various devices that incorporate several mathematical techniques. The study of these devices ...

  6. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  7. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  8. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  9. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  10. Peltier cells as temperature control elements: Experimental characterization and modeling

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio

    2014-01-01

    The use of Peltier cells to realize compact and precise temperature controlled devices is under continuous extension in recent years. In order to support the design of temperature control systems, a simplified modeling of heat transfer dynamics for thermoelectric devices is presented. By following a macroscopic approach, the heat flux removed at the cold side of Peltier cell can be expressed as Q . c =γ(T c −T c eq ), where γ is a coefficient dependent on the electric current, T c and T c eq are the actual and steady state cold side temperature, respectively. On the other hand, a microscopic modeling approach was pursued via finite element analysis software packages. To validate the models, an experimental apparatus was designed and build-up, consisting in a sample vial with the surfaces in direct contact with Peltier cells. Both modeling approaches led to reliable prediction of transient and steady state sample temperature. -- Highlights: • Simplified modeling of heat transfer dynamics in Peltier cells. • Coupled macroscopic and microscopic approach. • Experimental apparatus: temperature control of a sample vial. • Both modeling approaches predict accurately the transient and steady state sample temperature

  11. The control system

    International Nuclear Information System (INIS)

    1988-01-01

    The present control system has matured both in terms of age and capacity. Thus a new system based on a local area network (LAN) is being developed. A pilot project has been started but, owing to difficulties encountered with the present operating system used with the microprocessors, it has become necessary to reconsider the choice of operating system. A recently-released multi-tasking operating system that runs on the existing hardware has been chosen. 1 fig

  12. Magnetic spectrometer control system

    International Nuclear Information System (INIS)

    Lecca, L.A.; Di Paolo, Hugo; Fernandez Niello, Jorge O.; Marti, Guillermo V; Pacheco, Alberto J.; Ramirez, Marcelo

    2003-01-01

    The design and implementation of a new computerized control system for the several devices of the magnetic spectrometer at TANDAR Laboratory is described. This system, as a main difference from the preexisting one, is compatible with almost any operating systems of wide spread use available in PC. This allows on-line measurement and control of all signals from any terminal of a computer network. (author)

  13. Drone Control System

    Science.gov (United States)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  14. System control and communication

    International Nuclear Information System (INIS)

    Bindner, H.; Oestergaard, J.

    2005-01-01

    Rapid and ongoing development in the energy sector has consequences for system control at all levels. In relation to system control and communication the control system is challenged in five important ways: 1) Expectations for security of supply, robustness and vulnerability are becoming more stringent, and the control system plays a big part in meeting these expectations. 2) Services are becoming increasingly based on markets that involve the transmission system operators (TSOs), generators and distribution companies. Timely, accurate and secure communication is essential to the smooth running of the markets. 3) Adding large amounts of renewable energy (RE) to the mix is a challenge for control systems because of the intermittent availability of many RE sources. 4) Increasing the number of active components in the system, such as small CHP plants, micro-CHP and intelligent loads, means that the system control will be much more complex. 5) In the future it is likely that power, heat, gas, transport and communication systems will be tighter coupled and interact much more. (au)

  15. System Controls and Measures Oxygen Fugacity

    Science.gov (United States)

    Williams, R. J.

    1982-01-01

    System developed at Johnson Space Center controls and measures oxygen fugacity in high-temperature chemical research. A ceramic-electrolyte cell is the sensing element. All hardware needed to control gas flow and temperature and to measure cell electromotive force is included. An analytic balance allows in situ thermogravimetric sample analysis.

  16. The CEBAF control system

    International Nuclear Information System (INIS)

    Watson, W.A. III.

    1995-01-01

    CEBAF has recently upgraded its accelerator control system to use EPICS, a control system toolkit being developed by a collaboration among laboratories in the US and Europe. The migration to EPICS has taken place during a year of intense commissioning activity, with new and old control systems operating concurrently. Existing CAMAC hardware was preserved by adding a CAMAC serial highway link to VME; newer hardware developments are now primarily in VME. Software is distributed among three tiers of computers: first, workstations and X terminals for operator interfaces and high level applications; second, VME single board computers for distributed access to hardware and for local control processing; third, embedded processors where needed for faster closed loop operation. This system has demonstrated the ability to scale EPICS to controlling thousands of devices, including hundreds of embedded processors, with control distributed among dozens of VME processors executing more than 125,000 EPICS database records. To deal with the large size of the control system, CEBAF has integrated an object oriented database, providing data management capabilities for both low level I/O and high level machine modeling. A new callable interface which is control system independent permits access to live EPICS data, data in other Unix processes, and data contained in the object oriented database

  17. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  18. 14 CFR 23.1157 - Carburetor air temperature controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 23... Powerplant Powerplant Controls and Accessories § 23.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature control for each engine. ...

  19. ISTTOK control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-10-15

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel{sup ®} Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators.

  20. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  1. A study on a precision temperature control unit using thermoelectric module

    International Nuclear Information System (INIS)

    Park, Kyung Seo; Song, Young Joog; Im, Hong Jae; Jang, Si Yeol; Lee, Kee Sung; Jeong, Jae IIl; Shin, Dong Hoon

    2007-01-01

    During a process of a nanoimprint for manufacturing LCD, a small temperature variation on the LCD glass can cause thermal stress and generate unexpected displacement. To avoid this trouble, a precision temperature control unit using thermoelectric modules is appropriate for nanoimprint processes. The unit consists of an air control system, a cooling water control system, and a power control system. The air control system includes a thermoelectric module, thermocouples measuring temperatures of air and a duct-stale fin, and two air fans. The heat generated by the thermoelectric module is absorbed by the cooling water control system. The power control system catches the temperature of the thermoelectric module, and a PID controller with SCR controls the input power of the thermoelectric module. Temperature control performance is evaluated by experiment and simulation. The temperature control unit is able to control the exit temperature about ± 2 .deg. C from the incoming fluid temperature, and the error range is ± 0.1 . However, the control time is approximately 30 minute, which needs further study of active control

  2. Automated Temperature Control with Adjusting Outlet Valve of Fuel in the Process of Cooking Palm Sugar

    Science.gov (United States)

    Aripin, H.; Hiron, Nurul; Priatna, Edvin; Busaeri, Nundang; Andang, Asep; Suhartono; Sabchevski, Svilen

    2018-04-01

    In this paper, a real-time temperature control system for coconut sugar cooking is presented. It is based on a thermocouple temperature sensor. The temperature in the closed evaporator is used as a control variable of the DC servo control system for opening and closing of a valve embedded in a gas burner. The output power level, which is necessary in order to reach the target temperature is controlled by the microcontroller ATMega328P. A circuit module for control of the valve and temperature sensors as well as software for data acquisition have been implemented. The test results show that the system properly stabilizes the temperature in the closed evaporator for coconut sugar cooking in the range from room temperature to 110°C. A set point can be reached and held with an accuracy of ±0.75°C at a temperature of 110°C for 60 minutes.

  3. The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: importance of longitudinal control

    NARCIS (Netherlands)

    van der Koijk, J. F.; Lagendijk, J. J.; Crezee, J.; de Bree, J.; Kotte, A. N.; van Leeuwen, G. M.; Battermann, J. J.

    1997-01-01

    The quality of temperature distributions that can be generated with the Multi Electrode Current Source (MECS) interstitial hyperthermia (IHT) system, which allows 3D control of the temperature distribution, has been investigated. For the investigations, computer models of idealised anatomies

  4. PCIe40 temperature protection system

    CERN Document Server

    Romero Aguilar, Angel

    2017-01-01

    PCIe40 is a high-throughput data-acquisition card based on PCI Express that is currently under development for the next upgrade of the LHCb experiment readout system. As part of this development, SMBus is intended to be used as a lightweight, out-of-band protocol to monitor the health of each data acquisition board. Starting from a simple prototype, the student will work on enabling SMBus communication between a COTS linux host and various on-board sensors, on top of existing linux facilities.

  5. The Epicure Control System

    International Nuclear Information System (INIS)

    Dambik, E.; Kline, D.; West, R.

    1993-09-01

    The Epicure Control System supports the Fermilab fixed target physics program. The system is distributed across a network of many different types of components. The use of multiple layers on interfaces for communication between logical tasks fits the client-server model. Physical devices are read and controlled using symbolic references entered into a database with an editor utility. The database system consists of a central portion containing all device information and optimized portions distributed among many nodes. Updates to the database are available throughout the system within minutes after being requested

  6. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  7. Applications of the PID control. Temperature and position servo-control; Applications de la commande PID. Asservissement temperature et position

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D. [Institut Universitaire de Technologie, 86 - Poitiers (France)

    2004-09-15

    The proportional integral derived function (PID) control is certainly not the most efficient but it is the most widely control used in regulation systems. The implementation of a PID regulator does not offer all adjustment possibilities of modern methods and it is in general impossible to make open-loop tests to identify the regulated system. This paper presents two concrete applications of PID control systems: one for a temperature regulation and the other for the servo-control of a mechanical system driven by a brush-less motor. The adjustment is performed using the classical momentum and frequency methods: 1 - PID control; 2 - efficiencies obtained in close loop configuration; 3 - principle of the experimental adjustment method of PID systems; 4 - experimental identification in close-loop configuration; 5 - calculation principle of a PID corrector; 6 - PID control for a class 0 system; 7 - calculation of a PID corrector for a class 1 system; 8 - PID position regulation of a brush-less motor; 9 - remarks about the numerical calculation of the control; 10 - summary of the models presented. (J.S.)

  8. Control and Information Systems

    OpenAIRE

    Jiri Zahradnik; Karol Rastocny; Juraj Spalek

    2003-01-01

    The article deals with main tends of scientific research activities of Department of Control and Information Systems at the Faculty of Electrical Engineering of University of Zilina and its perspectives in this area.

  9. Control and Information Systems

    Directory of Open Access Journals (Sweden)

    Jiri Zahradnik

    2003-01-01

    Full Text Available The article deals with main tends of scientific research activities of Department of Control and Information Systems at the Faculty of Electrical Engineering of University of Zilina and its perspectives in this area.

  10. Pulse-width-modulated device for precision temperature control

    Science.gov (United States)

    Heyser, R. C.

    1972-01-01

    Temperature controller is described which reduces difference between temperature oscillations about control point. Standard temperature-sensitive resistor element is utilized which is highly stable and reproducible. Temperature sensing circuitry is conventional dc bridge with power supplied by battery or highly regulated supply source.

  11. Tautological control systems

    CERN Document Server

    Lewis, Andrew D

    2014-01-01

    This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be—and shown to be—feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research.

  12. Reset Control Systems

    CERN Document Server

    Baños, Alfonso

    2012-01-01

    Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given comprehensive coverage. The text opens with an historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material dealing with notation, basic definitions and results, and with the definition of the control problem under study is also included. The fo...

  13. Drinking Water Temperature Modelling in Domestic Systems

    OpenAIRE

    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  14. Lighting Control System (ILCS)

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... ABSTRACT. An Intelligent Lighting Control System (I ergonomic setting and energy efficiency. T and National Instrument Laboratory V. LabVIEW) 2012 as a platform to design an as integrating components within the sy controller programmed in NI LabVIEW pr of the light-emitting diode (LED conducted ...

  15. Controlling Uncertain Dynamical Systems

    Indian Academy of Sciences (India)

    ... Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 9. Controlling Uncertain Dynamical Systems - Basic Ideas of Adaptive Control. N Ananthkrishnan Rashi Bansal.

  16. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Systems and Control Engineering - Notions of Control. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 1 January 1999 pp 45-52. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. FABRIC QUALITY CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Özlem KISAOĞLU

    2006-02-01

    Full Text Available Woven fabric quality depends on yarn properties at first, then weaving preparation and weaving processes. Defect control of grey and finished fabric is done manually on the lighted tables or automatically. Fabrics can be controlled by the help of the image analysis method. In image system the image of fabrics can be digitized by video camera and after storing controlled by the various processing. Recently neural networks, fuzzy logic, best wavelet packet model on automatic fabric inspection are developed. In this study the advantages and disadvantages of manual and automatic, on-line fabric inspection systems are given comparatively.

  18. Controlled Chemistry Helium High Temperature Materials Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  19. Lighting Control System (ILCS)

    African Journals Online (AJOL)

    2017-08-08

    Aug 8, 2017 ... advanced control system for reducing the energy consumption of public street lighting systems, research by [20] analyzed ... This is accomplished by generating a square wave. The duty cycle of the .... luminosity sensor is an advanced digital light sensor, which ideal for use in a wide range of light situations.

  20. FMIT facility control system

    International Nuclear Information System (INIS)

    Suyama, R.M.; Machen, D.R.; Johnson, J.A.

    1981-01-01

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility, under construction at Richland, Washington, uses current techniques in distributed processing to achieve responsiveness, maintainability and reliability. Developmental experience with the system on the FMIT Prototype Accelerator (FPA) being designed at the Los Alamos National Laboratory is described as a function of the system's design goals and details. The functional requirements of the FMIT control system dictated the use of a highly operator-responsive, display-oriented structure, using state-of-the-art console devices for man-machine communications. Further, current technology has allowed the movement of device-dependent tasks into the area traditionally occupied by remote input-output equipment; the system's dual central process computers communicate with remote communications nodes containing microcomputers that are architecturally similar to the top-level machines. The system has been designed to take advantage of commercially available hardware and software

  1. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  2. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  3. Fractional-order integral and derivative controller for temperature ...

    Indian Academy of Sciences (India)

    For temperature control, it is usually recommended to use full. PID control, but with .... function of the output temperature change from the power input; thus, we use an approximated integer-order transfer ..... Tsai Ching-Chih, Lu Chi-Huang 1998 Multivariable self-tuning temperature control for plastic injec- tionmolding ...

  4. 21 CFR 870.4250 - Cardiopulmonary bypass temperature controller.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass temperature controller. 870.4250 Section 870.4250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Cardiopulmonary bypass temperature controller. (a) Identification. A cardiopulmonary bypass temperature controller...

  5. 14 CFR 29.1157 - Carburetor air temperature controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 29... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  6. 14 CFR 25.1157 - Carburetor air temperature controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor air temperature controls. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1157 Carburetor air temperature controls. There must be a separate carburetor air temperature...

  7. TMX magnet control system

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1978-01-01

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  8. Compensation systems for low temperature applications

    CERN Document Server

    Skoczen, Balzej T

    2004-01-01

    The book is dedicated to the behaviour of ductile materials at cryogenic temperatures, structural stability issues and reliability oriented parametric optimisation of compensation systems containing the corrugated bellows. The problems of local and global stability of systems containing bellows, coupling between the low-cycle fatigue and stability as well as evolution of plastic strain fields, micro-damage and strain induced phase transformation in the corrugated shells at cryogenic temperatures are presented. As a special feature reliability oriented optimum design of compensation systems under strength, stability, fatigue and geometrical constraints is discussed. The relevant applications in the particle accelerators and cryogenic transfer lines are shown.

  9. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  10. Neural Flight Control System

    Science.gov (United States)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  11. System control and display

    International Nuclear Information System (INIS)

    Jacobs, J.

    1977-01-01

    The system described was designed, developed, and installed on short time scales and primarily utilized of-the-shelf military and commercial hardware. The system was designed to provide security-in-depth and multiple security options with several stages of redundancy. Under normal operating conditions, the system is computer controlled with manual backup during abnormal conditions. Sensor alarm data are processed in conjunction with weather data to reduce nuisance alarms. A structured approach is used to order alarmed sectors for assessment. Alarm and video information is presented to security personnel in an interactive mode. Historical operational data are recorded for system evaluation

  12. Micro controller based design of digital transmitters for temperature measurements in reactors

    International Nuclear Information System (INIS)

    Nassar, M.A.M.

    2011-01-01

    Temperature transmitter is one of the most important transmitters in the nuclear reactor it is used for RTD (resistance temperature detector) signal conditioning. It has built-in current excitation, instrumentation amplifier, linearization and current output circuitry which amplifies the RTD signal and gives linearization to it. It is a part of a system to get temperature and monitoring it. This system is very cost and complicated. In this work a digital system is implemented by using micro controller techniques that replaces the existing system, one chip (PIC16f877) is used to build a digital system, which is more accurate and give more performance and low costs . RTD is the sensing element of temperature, its resistance increases with temperature. There are many types of transmitters in the reactor such as temperature, pressure, level and flow but temperature one is chosen because of temperature is one of the most important parameters in process control.

  13. Temperature-controlled two-wavelength laser soldering of tissues.

    Science.gov (United States)

    Gabay, Ilan; Abergel, Avraham; Vasilyev, Tamar; Rabi, Yaron; Fliss, Dan M; Katzir, Abraham

    2011-11-01

    Laser tissue soldering is a method for bonding of incisions in tissues. A biological solder is spread over the cut, laser radiation heats the solder and the underlying cut edges and the incision is bonded. This method offers many advantages over conventional techniques (e.g., sutures). Past researches have shown that laser soldering, using a single laser, does not provide sufficient strength for bonding of cuts in thick (>1 mm) tissues. This study introduces a novel method for laser soldering of thick tissues, under temperature control, using two lasers, emitting two different wavelengths. An experimental system was built, using two lasers: (i) a CO(2) laser, whose radiation heated the upper surface of the tissue and (ii) a GaAs laser that heated an albumin layer under the tissue. An infrared fiber-optic radiometer monitored the temperature of the tissue. All three devices were connected to a computer that controlled the process. A computer simulation was written to optimize the system parameters. The system was tested on tissue phantoms, to validate the simulation and ensure that both the upper and lower sides of the cut were heated, and that the temperature could be controlled on both sides. The system was then used ex vivo to bond longitudinal cuts of lengths ∼12 mm in the esophagi of large farm pigs. The theoretical simulations showed a good stabilization of the temperatures at the upper and lower tissue surfaces at the target values. Experiments on tissue phantom showed a good agreement with these simulations. Incisions in esophagi, removed from large farm pigs, were then successfully bonded. The mean burst pressure was ∼3.6 m of water. This study demonstrated the capability of soldering cuts in thick tissues, paving the way for new types of surgical applications. Copyright © 2010 Wiley Periodicals, Inc.

  14. The TRISTAN control system

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Ishii, Kazuhiro; Kadokura, Eiichi; Katoh, Tadahiko; Kawamoto, Takashi; Kikutani, Eiji; Kimura, Yoshitaka; Koiso, Haruyo; Komada, Ichitaka; Kudo, Kikuo; Naito, Takashi; Oide, Katsunobu; Takeda, Shigeru; Uchino, Kenji; Urakawa, Junji; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    The 8 GeV accumulation ring and the 30 GeV main ring of TRISTAN, an accelerator-storage ring complex at KEK, are controlled by a highly computerized control system. Twenty-four minicomputers are linked by optical fiber cables to form an N-to-N token ring network. The transmission speed on the cables is 10 Mbps. From each minicomputer, a CAMAC serial highway extends to the controlled equipment. At present, twenty minicomputers are connected to the network and are used to control the accumulation ring. The software system is based on the NODAL language devised at the CERN SPS. The KEK NODAL system retains main features of the original NODAL: the interpretive scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following features: (1) fast execution due to the compiler-interpreter method, (2) a multi-computer file system (3), a full-screen editing facility, and (4) a dynamic linkage scheme for data modules and NODAL functions. The accelerators are operated through five operator consoles, each of which is mangaged by one minicomputer in the network. An operator console contains two 20-inch high-resolution color graphic displays, a pair of touch-panels, and ten small TV monitors. One touch-panel is used to select a program and a piece of equipment to be controlled; the other is used mainly to perform the console actions. (orig.)

  15. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  16. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays

  17. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    Science.gov (United States)

    2007-04-01

    there is a corresponding need for control components to work reliably in harsh environments and at higher temperatures. The high temperature actuator control...suppliers. The high temperature actuator control module was identified as the critical component for a distributed engine control system, which

  18. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  19. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  20. Adaptive temperature profile control of a multizone crystal growth furnace

    Science.gov (United States)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1991-01-01

    An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  1. Cascade control of superheated steam temperature with neuro-PID controller.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Temperature control of a cyclotron magnet for stabilization of the JAERI AVF cyclotron beam

    International Nuclear Information System (INIS)

    Okumura, S.; Arakawa, K.; Fukuda, M.; Nakamura, Y.; Yokota, W.; Ishimoto, T.; Kurashima, S.; Ishibori, I.; Nara, T.; Agematsu, T.; Tamura, H.; Matsumura, A.; Sano, M.; Tachikawa, T.

    2001-01-01

    Frequent corrections of the magnetic field of the JAERI AVF cyclotron were required for keeping a beam current constant during long time operation. We observed correlation between the magnetic field and the temperature of the cyclotron magnet yoke by measuring the magnetic field with an NMR probe and the temperature with platinum resistance thermometers. As a result, this instability of a cyclotron beam was induced by temperature-change of the magnet yoke caused mainly by thermal conduction from the main coil. To restrain the thermal conduction to the yoke, we have inserted temperature-controlled copper plates between the yoke and the main coil. In addition, a temperature control system for the cooling water of the trim coils has been installed, which is independent of the total cooling system for controlling the pole tip temperature. An optimum condition of the temperature control systems for stabilizing the magnetic field has been investigated

  3. Nonlinear Control System

    Directory of Open Access Journals (Sweden)

    Jaydeep Jesur

    2000-01-01

    and features are added such a way that it can be also used for design of nonlinear control systems to achieve desired performance. It is very simple to learn this tool. One can easily use it with preliminary knowledge of DF and PPT methods.

  4. HESYRL control system status

    International Nuclear Information System (INIS)

    Yao Chihyuan

    1992-01-01

    HESYRL synchrotron radiation storage ring was completed in 1989 and has been in commissioning since then. Now it has met its design specification and is ready for synchrotron light experiments. Control system of the project was completed in 1989 and some modifications were made during commissioning. This paper describes its present configuration, status and upgrading plan. (author)

  5. Temperature control characteristics analysis of lead-cooled fast reactor with natural circulation

    International Nuclear Information System (INIS)

    Yang, Minghan; Song, Yong; Wang, Jianye; Xu, Peng; Zhang, Guangyu

    2016-01-01

    Highlights: • The LFR temperature control system are analyzed with frequency domain method. • The temperature control compensator is designed according to the frequency analysis. • Dynamic simulation is performed by SIMULINK and RELAP5-HD. - Abstract: Lead-cooled Fast Reactor (LFR) with natural circulation in primary system is among the highlights in advance nuclear reactor research, due to its great superiority in reactor safety and reliability. In this work, a transfer function matrix describing coolant temperature dynamic process, obtained by Laplace transform of the one-dimensional system dynamic model is developed in order to investigate the temperature control characteristics of LFR. Based on the transfer function matrix, a close-loop coolant temperature control system without compensator is built. The frequency domain analysis indicates that the stability and steady-state of the temperature control system needs to be improved. Accordingly, a temperature compensator based on Proportion–Integration and feed-forward is designed. The dynamic simulation of the whole system with the temperature compensator for core power step change is performed with SIMULINK and RELAP5-HD. The result shows that the temperature compensator can provide superior coolant temperature control capabilities in LFR with natural circulation due to the efficiency of the frequency domain analysis method.

  6. PEP computer control system

    International Nuclear Information System (INIS)

    1979-03-01

    This paper describes the design and performance of the computer system that will be used to control and monitor the PEP storage ring. Since the design is essentially complete and much of the system is operational, the system is described as it is expected to 1979. Section 1 of the paper describes the system hardware which includes the computer network, the CAMAC data I/O system, and the operator control consoles. Section 2 describes a collection of routines that provide general services to applications programs. These services include a graphics package, data base and data I/O programs, and a director programm for use in operator communication. Section 3 describes a collection of automatic and semi-automatic control programs, known as SCORE, that contain mathematical models of the ring lattice and are used to determine in real-time stable paths for changing beam configuration and energy and for orbit correction. Section 4 describes a collection of programs, known as CALI, that are used for calibration of ring elements

  7. Electronic control system for irradiation probes

    International Nuclear Information System (INIS)

    Gluza, E.; Neumann, J.; Zahalka, F.

    1980-01-01

    The EROS-78 system for the supply and power control of six heating sections of the irradiation probe of the CHOUCA type placed in the reactor vessel is described. The system allows temperature control at the location of the heat sensor with an accuracy of +-1% of the rated value within the region of 100 to 1000 degC. The equipment is provided with its own quartz controlled clock. The temperature is picked up by a chromel-alumel jacket thermocouple. The power input of the heating elements is thyristor controlled. (J.B.)

  8. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  9. Using fuzzy logic to control the power of a biomass gasifier ventilation system motor to ensure suitable oxidation temperature for tar cracking; Uso da logica fuzzy para controle da potencia do motor do sistema de ventilacao de um gaseificador de biomassa que assegure temperatura de oxidacao adequada para craqueamento do alcatrao

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Oscar L.T.; Kulitz, Hans H. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil)], email: oscar@ifes.edu.br; Silva, Jadir N.; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria

    2011-07-01

    There are several models of biomass gasifier. The one used in this study was the concurrent model, in which fuel is fed through the top and air feed occurs in descending flow through combustion and reduction zones, producing low-tar gas. Nevertheless, total tar burning must be ensured in order to produce a gas, suitable for several applications. This study aimed at developing a fuzzy-based algorithm to control the active power applied to a gasifier ventilation system motor, which can ensure adequate oxidation temperature for cracking tar that may be present in the gas produced. The input variables of the fuzzy controller were oxidation zone temperature and the variation rate of this temperature. The output variable was active power. The rule base was created using experimental data. The tests performed with this algorithm allowed observing that the oxidation temperature can be set to a value desired, which does not occur in gasification processes without ventilation system control. (author)

  10. Access control system operation

    International Nuclear Information System (INIS)

    Barnes, L.D.

    1981-06-01

    An automated method for the control and monitoring of personnel movement throughout the site was developed under contract to the Department of Energy by Allied-General Nuclear Services (AGNS) at the Barnwell Nuclear Fuel Plant (BNFP). These automated features provide strict enforcement of personnel access policy without routine patrol officer involvement. Identification methods include identification by employee ID number, identification by voice verification and identification by physical security officer verification. The ability to grant each level of access authority is distributed over the organization to prevent any single individual at any level in the organization from being capable of issuing an authorization for entry into sensitive areas. Each access event is recorded. As access events occur, the inventory of both the entered and the exited control area is updated so that a current inventory is always available for display. The system has been operated since 1979 in a development mode and many revisions have been implemented in hardware and software as areas were added to the system. Recent changes have involved the installation of backup systems and other features required to achieve a high reliability. The access control system and recent operating experience are described

  11. MEGARA Control System

    Science.gov (United States)

    Castillo-Morales, A.; Eliche-Moral, M. C.; Pascual, S.; Villar, V.; Marino, R. A.; Cardiel, N.; Morales, I.; González, E.; Cedazo, R.; Serena, F.; Gallego, J.; Carrasco, E.; Vílchez, J. M.; Sánchez, F. M.; Gil de Paz, A.; García-Vargas, M. L.; The Megara Team

    2013-05-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. The MEGARA Control System will provide the capabilities to move the different mechanisms of the instrument, to readout the data from the detector controller and the necessary routines for the Inspector Panels, the MEGARA Observing Preparation Software Suite, the Data Factory and the Sequencer strategies.

  12. Temperature Calculations in the Coastal Modeling System

    Science.gov (United States)

    2017-04-01

    with the change of water turbidity in coastal and estuarine systems. Water quality and ecological models often require input of water temperature...of the American Society of Civil Engineers 81(717): 1–11. Sánchez, A., W. Wu, H. Li, M. E. Brown, C. W. Reed, J. D. Rosati, and Z. Demirbilek. 2014

  13. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  14. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  15. The UNK control system

    International Nuclear Information System (INIS)

    Alferov, V.N.; Brook, V.L.; Dunaitsev, A.F.

    1992-01-01

    The IHEP proton Accelerating and Storage Complex (UNK) includes in its first stage a 400 GeV conventional and a 3000 GeV superconducting ring placed in the same underground tunnel of 20.7 km circumference. The beam will be injected into UNK from the existing 70 GeV accelerator U-70. The experimental programme which is planned to start in 1995, will include 3000 GeV fixed target and 400 + 3000 GeV colliding beams physics. The size and complexity of the UNK dictate a distributed multiprocessor architecture of the control system. About 4000 of 8/16 bit controllers, directly attached to the UNK equipment will perform low level control and data acquisition tasks. The equipment controllers will be connected via the MIL-1553 field bus to VME based 32-bit front end computers. The TCP/IP network will interconnect front end computers in the UNK equipment buildings with UNIX workstations and servers in the Main Control Room. The report presents the general architecture and current status of the UNK control. (author)

  16. Reverse-Acting Temperature-Control Louvers

    Science.gov (United States)

    Stultz, James W.

    1995-01-01

    Louvers configured to accept rather than reject heat. Visually identical to those that open with increasing temperature, only difference being that bimetallic spring actuates open and closing mounted backwards to obtain reverse function.

  17. Method of controlling steam temperature of a fluid heating separation type steam generator

    International Nuclear Information System (INIS)

    Iwashita, Tsuyoshi; Monta, Kazuo.

    1975-01-01

    Object: To keep constant the stability and normal deviation in the entire control system by connecting an element of variable gain substantially in proportion to a preset load in series with the ordinary PID type control system. Structure: Changes in steam temperature at an evaporator outlet due to changes in sodium flow rate are detected by a thermocouple. The resultant detection signal is compared with a preset value of the steam generator output temperature, and a portion proportional to the difference between them is added as an operating signal, the operating signal also being used as a sodium flow rate control signal coupled to a sodium flow rate control means. In this method of control of vapor temperature of a fluid heating separation type steam generator, a control gain variable means is connected in series with a temperature control system to obtain control substantially proportional to the preset load. (Kamimura, M.)

  18. Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

    OpenAIRE

    A. Doaa M. Atia; Faten H. Fahmy; Ninet M. Ahmed; Hassen T. Dorrah

    2011-01-01

    Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature...

  19. Intelligent Lighting Control System

    OpenAIRE

    García, Elena; Rodríguez González, Sara; de Paz Santana, Juan F.; Bajo Pérez, Javier

    2014-01-01

    This paper presents an adaptive architecture that allows centralized control of public lighting and intelligent management, in order to economise on lighting and maintain maximum comfort status of the illuminated areas. To carry out this management, architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA and a Service Oriented Aproach (SOA). It performs optim...

  20. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tang, Yihuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, and their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.

  1. OAJ control system

    Science.gov (United States)

    Antón, J. L.; Yanes-Díaz, A.; Rueda-Teruel, S.; Luis-Simoes, R.; Chueca, S.; Lasso-Cabrera, N. M.; Bello, R.; Jiménez, D.; Suárez, O.; Guillén, L.; López-Alegre, G.; Rodríguez, M. A.; de Castro, S.; Nevot, C.; Sánchez-Artigot, J.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Varela, J.; Valdivielso, L.; Cristóbal-Hornillos, D.; López-Sainz, A.; Hernández-Fuertes, J.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Abril, J.; Lamadrid, J. L.; Maicas, N.; Rodríguez, S.; Tilve, V.; Civera, T.; Muniesa, D. J.

    2015-05-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys leveraging two unprecedented telescopes with unusually large fields of view: the JST/T250, a 2.55 m telescope with a 3 deg field of view, and the JAST/T80, an 83 cm telescope with a 2 deg field of view. The immediate objective of these telescopes for the next years is carrying out two unique photometric surveys covering several thousands square degrees: J-PAS and J-PLUS, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure and exoplanets. JST and JAST will be equipped with panoramic cameras being developed within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (˜10{k}×10{k}) CCDs covering the entire focal plane. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and service the observatory systems, not only astronomical but also infrastructure and other facilities. We will give an overview of OAJ's control system from an engineering point of view.

  2. JUSTIFICATION OF TEMPERATURE CONTROL FOR PRODUCTION SUPPOSITORIES WITH GLIFAZIN

    Directory of Open Access Journals (Sweden)

    Dmitrievskiy D.I.

    2015-05-01

    Full Text Available The intensive search for new anti-diabetic drugs, carried out in the National pharmaceutical university in recent years led to the creation of complex drug "Glifazin" on base of which the composition and technology of suppositories with hypoglycemic effect were developed. Now comprehensive physicochemical and pharmacological study of the dosage form are going on. This paper presents results of determining the critical parameters of technology of suppositories witn Glifazin produced by molding - temperature control of homogenization and molding of suppository mass. This mode, as shown in the work, grounded on the analysis of rheological behavior of the system in the temperature range in which it is the transition from the liquid state of Newtonian type flow to the plastic-bound state of non- Newtonian flow type. This interval for suppository mass with Glifazin is in the range 45-60 ° C. Materials and methods. As the object of the study the suppositories with Glifazin 0.1 g and polietylenoxide base on which they are prepared were taken. The study of structural and mechanical (rheological properties of suppository base and suppository mass were performed on a rotary viscometer «Reotest-2" (Germany with coaxial cylinders and the temperature range 45-60 °C. Determination of hardening temperature, resistance of suppositories to decay and their dissolution time were measured by methods of the State Pharmacopoeia of Ukraine. Determination of uniformity suppository mass was assessed by quantitative content of Glifazin in selected samples by using UV spectrophotometry method at 271 nm against a standard sample of Onozid. Results and discussion. The analysis of rheogram shows that the suppository mass with Glifazin in the test temperature range has falseplastice type of flow. The presence of hysteresis loops indicates that this system has dispersed thixotropic properties. Thus, an increase in temperature leads to a decrease in the area of the hysteresis

  3. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  4. Apparatus for controlling vapor temperature in a nuclear power plant

    International Nuclear Information System (INIS)

    Mega, Tsuneo.

    1975-01-01

    Object: To enable to maintain temperature of vapor from a heater and a reheater in a given allowable range to effect immediate and stable following control in response to variation in load. Structure: Vapor temperature from a superheater entering a high pressure turbine and vapor temperature from a reheater entering a low pressure turbine are detected by a first and a second detectors, respectively, these temperatures being compared and operated with a reference value separately determined to feed a control signal in proportion to flow rate of heating medium to a flow control valve and a double flow valve, thereby controlling the flow rate of the heating medium. (Kamimura, M.)

  5. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, S.; Tang, Yong N.

    1995-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans

  6. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, Susila; Tang, Y.N.

    1994-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans. ((orig.))

  7. NSLS control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.D.; Ramamoorthy, S.; Tang, Yong N.

    1995-12-31

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans.

  8. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  9. The effect of anesthesia on body temperature control.

    Science.gov (United States)

    Lenhardt, Rainer

    2010-06-01

    The human thermoregulatory system usually maintains core body temperature near 37 degrees C. This homeostasis is accomplished by thermoregulatory defense mechanisms such as vasoconstriction and shivering or sweating and vasodilatation. Thermoregulation is impaired during general anesthesia. Suppression of thermoregulatory defense mechanisms during general anesthesia is dose dependant and mostly results in perioperative hypothermia. Several adverse effects of hypothermia have been identified, including an increase in postoperative wound infection, perioperative coagulopathy and an increase of postoperative morbid cardiac events. Perioperative hypothermia can be avoided by warming patients actively during general anesthesia. Fever is a controlled increase of core body temperature. Various causes of perioperative fever are given. Fever is usually attenuated by general anesthesia. Typically, patients develop a fever of greater magnitude in the postoperative phase. Postoperative fever is fairly common. The incidence of fever varies with type and duration of surgery, patient's age, surgical site and preoperative inflammation.

  10. MEMS Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  11. Radiation control system

    International Nuclear Information System (INIS)

    Murao, Mitsuo.

    1985-01-01

    Purpose: To rapidly and suitably performing planning and designation by radiation-working control systems in the radiation controlled area of nuclear power plant. Method: Various informations regarding radiation exposure are arranged and actual exposure data are statistically stored, to thereby perform forecasting calculation for the radiation exposure upon workings in the plurality of working regions in the radiation controlled area. Based on the forecast values and the registered workers' exposure dose in the past workings are alocated successively such that the total exposure does upon conducting the workings is less than the limited value, to prepare working plans in the areas. Further, procedures for preparing a series of documents regarding the workings in the radiation area are automated to rapidly and properly provide the informations serving to the planning and designation for the radiation workings. As a result, the radiation managers' burnden can be mitigated and an efficient working management system can be provided, in view of the exposure management and personal management. (Kamimura, M.)

  12. Crawling the Control System

    International Nuclear Information System (INIS)

    Larrieu, Theodore

    2009-01-01

    Information about accelerator operations and the control system resides in various formats in a variety of places on the lab network. There are operating procedures, technical notes, engineering drawings, and other formal controlled documents. There are programmer references and API documentation generated by tools such as doxygen and javadoc. There are the thousands of electronic records generated by and stored in databases and applications such as electronic logbooks, training materials, wikis, and bulletin boards and the contents of text-based configuration files and log files that can also be valuable sources of information. The obvious way to aggregate all these sources is to index them with a search engine that users can then query from a web browser. Toward this end, the Google 'mini' search appliance was selected and implemented because of its low cost and its simple web-based configuration and management. In addition to crawling and indexing electronic documents, the appliance provides an API that has been used to supplement search results with live control system data such as current values of EPICS process variables and graphs of recent data from the archiver.

  13. Snow and ice control at extreme temperatures.

    Science.gov (United States)

    2011-04-25

    As expected, most state and provincial DOTs that we spoke with are using traditional methods to prevent and : remove snow and ice at very low temperatures. In addition to a review of current research, we spoke with six winter : maintenance profession...

  14. Incoherent control of locally controllable quantum systems

    International Nuclear Information System (INIS)

    Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.

    2008-01-01

    An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.

  15. Control of optical systems

    Science.gov (United States)

    Founds, D.

    1988-01-01

    Some of the current and planned activities at the Air Force Systems Command in structures and controls for optical-type systems are summarized. Many of the activities are contracted to industry; one task is an in-house program which includes a hardware test program. The objective of the in-house program, referred to as the Aluminum Beam Expander Structure (ABES), is to address issues involved in on-orbit system identification. The structure, which appears similar to the LDR backup structure, is about 35 feet tall. The activity to date has been limited to acquisition of about 250 hours of test data. About 30 hours of data per excitation force is gathered in order to obtain sufficient data for a good statistical estimate of the structural parameters. The development of an Integrated Structural Modeling (ISM) computer program is being done by Boeing Aerospace Company. The objective of the contracted effort is to develop a combined optics, structures, thermal, controls, and multibody dynamics simulation code.

  16. Feedwater control system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Excessive swing of the feedwater in nuclear reactor power supply apparatus on the occurrence of a transient is suppressed by injecting an anticipatory compensating signal (δWsub(fw)) into the control for the feedwater. Typical overshoot occurs on removal of a large part of the load, the steam flow is reduced so that the conventional control system reduces the flow of feedwater. At the same time there is a reduction of feedwater level in the steam generator because of the collapse of the bubbles under increased steam pressure. By the time the control responds to the drop in level, the apparatus has begun to stabilize so that there is overshoot. The anticipatory signal is derived from the boiling power (BP) which is a function of the nuclear power (Qsub(N)) developed, the enthalpy of saturated water (hsub(s)) and the enthalpy of the feedwater injected into the steam generator (hsub(fw)). From the boiling power (BP) and the increment in steam pressure resulting from the transient an anticipatory increment of feedwater flow is derived. This increment is added to the other parameters controlling the feedwater. (author)

  17. Chemical and physical processes for integrated temperature control in microfluidic devices

    NARCIS (Netherlands)

    Guijt, Rosanne M.; Dodge, Arash; Van Dedem, Gijs W. K.; De Rooij, Nico F.; Verpoorte, Elisabeth

    2003-01-01

    Microfluidic devices are a promising new tool for studying and optimizing (bio)chemical reactions and analyses. Many (bio)chemical reactions require accurate temperature control, such as for example thermocycling for PCR. Here, a new integrated temperature control system for microfluidic devices is

  18. Adaptive control for chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hua Changchun E-mail: cch@ysu.edu.cn; Guan Xinping

    2004-10-01

    Control problem of chaotic system is investigated via adaptive method. A fairly simple adaptive controller is constructed, which can control chaotic systems to unstable fixed points. The precise mathematical models of chaotic systems need not be known and only the fixed points and the dimensions of chaotic systems are required to be known. Simulations on controlling different chaotic systems are investigated and the results show the validity and feasibility of the proposed controller.

  19. BLTC control system software

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.B., Fluor Daniel Hanford

    1997-02-10

    This is a direct revision to Rev. 0 of the BLTC Control System Software. The entire document is being revised and released as HNF-SD-FF-CSWD-025, Rev 1. The changes incorporated by this revision include addition of a feature to automate the sodium drain when removing assemblies from sodium wetted facilities. Other changes eliminate locked in alarms during cold operation and improve the function of the Oxygen Analyzer. See FCN-620498 for further details regarding these changes. Note the change in the document number prefix, in accordance with HNF-MD-003.

  20. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  1. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  2. Heating systems with PLC and frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Salah; Abu-Mallouh, Riyad [Department of Mechanical and Industrial Engineering, Applied Science University, Amman 11931 (Jordan)

    2008-11-15

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was. (author)

  3. Heating systems with PLC and frequency control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Abu-Mallouh, Riyad

    2008-01-01

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 deg. C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was

  4. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  5. Quality control of 10-min soil temperatures data at RMI

    Science.gov (United States)

    Bertrand, C.; González Sotelino, L.; Journée, M.

    2015-03-01

    Soil temperatures at various depths are unique parameters useful to describe both the surface energy processes and regional environmental and climate conditions. To provide soil temperature observation in different regions across Belgium for agricultural management as well as for climate research, soil temperatures are recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in addition to the bare soil and grass temperature records. Although many methods have been developed to identify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at RMI.

  6. The Design of Temperature and Humidity Chamber Monitor and Controller

    OpenAIRE

    Tibebu, Simachew

    2016-01-01

    The temperature and humidity chamber, (climate chamber) is a device located at the Technobothnia Education and Research Center that simulates different climate conditions. The simulated environment is used to test the capabilities of electrical equipment in different temperature and humidity conditions. The climate chamber, among other things houses a dedicated computer, the control PC, and a control software running in it which together are responsible for running and control-ling these simu...

  7. Design of modular control system for grain dryers

    Science.gov (United States)

    He, Gaoqing; Liu, Yanhua; Zu, Yuan

    In order to effectively control the temperature of grain drying bin, grain ,air outlet as well as the grain moisture, it designed the control system of 5HCY-35 which is based on MCU to adapt to all grains drying conditions, high drying efficiency, long life usage and less manually. The system includes: the control module of the constant temperature and the temperature difference control in drying bin, the constant temperature control of heating furnace, on-line testing of moisture, variety of grain-circulation speed control and human-computer interaction interface. Spatial curve simulation, which takes moisture as control objectives, controls the constant temperature and the temperature difference in drying bin according to preset parameter by the user or a list to reduce the grains explosive to ensure the seed germination percentage. The system can realize the intelligent control of high efficiency and various drying, the good scalability and the high quality.

  8. Automatically controlled training systems

    International Nuclear Information System (INIS)

    Milashenko, A.; Afanasiev, A.

    1990-01-01

    This paper reports that the computer system for NPP personnel training was developed for training centers in the Soviet Union. The system should be considered as the first step in training, taking into account that further steps are to be devoted to part-task and full scope simulator training. The training room consists of 8-12 IBM PC/AT personal computers combined into a network. A trainee accesses the system in a dialor manner. Software enables the instructor to determine the trainee's progress in different subjects of the program. The quality of any trainee preparedness may be evaluated by Knowledge Control operation. Simplified dynamic models are adopted for separate areas of the program. For example, the system of neutron flux monitoring has a dedicated model. Currently, training, requalification and support of professional qualifications of nuclear power plant operators is being emphasized. A significant number of emergency situations during work are occurring due to operator errors. Based on data from September-October 1989, more than half of all unplanned drops in power and stoppages of power plants were due to operator error. As a comparison, problems due to equipment malfunction accounted for no more than a third of the total. The role of personnel, especially of the operators, is significant during normal operations, since energy production costs as well as losses are influenced by the capability of the staff. These facts all point to the importance of quality training of personnel

  9. Definition study for temperature control in advanced protein crystal growth

    Science.gov (United States)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  10. Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Yuan, Shuai; Song, Jia-liang

    2014-01-01

    PTC (positive temperature coefficient) material is a kind of thermo-sensitive material. In this study, a series of novel PTC materials adapted to thermal control of electron devices are prepared. By adding different low-melting-point blend matrixes into GP (graphite powder)/LDPE (low density polyethylene) composite, the Curie temperatures are adjusted to 9 °C, 25 °C, 34 °C and 41 °C, and the resistance–temperature coefficients are enhanced to 1.57/°C–2.15/°C. These PTC materials remain solid in the temperature region of PTC effect, which makes it possible to be used as heating element to achieve adaptive temperature control. In addition, the adaptive thermal control performances of this kind of materials are investigated both experimentally and theoretically. The result shows that the adaptive effect becomes more significant while the resistance–temperature coefficient increases. A critical heating power defined as the initial heating power which makes the equilibrium temperature reach terminal temperature is presented. The adaptive temperature control will be effective only if the initial power is below this value. The critical heating power is determined by the Curie temperature and resistance–temperature coefficient of PTC materials, and a higher Curie temperature or resistance–temperature coefficient will lead to a larger critical heating power. - Highlights: • A series of novel PTC (positive temperature coefficient) materials were prepared. • The Curie point of PTC material can be adjusted by choosing different blend matrixes. • The resistance–temperature coefficient of PTC materials is enhanced to 2.15/°C. • The material has good adaptive temperature control ability with no auxiliary method. • A mathematical model is established to analyze the performance and applicability

  11. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  12. Research on precise control of 3D print nozzle temperature in PEEK material

    Science.gov (United States)

    Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei

    2017-10-01

    3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.

  13. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  14. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  15. Perioperative temperature control: Survey on current practices.

    Science.gov (United States)

    Brogly, N; Alsina, E; de Celis, I; Huercio, I; Dominguez, A; Gilsanz, F

    2016-04-01

    Prevention of perioperative hypothermia decreases morbidity and mortality, as well as hospital costs. This study was conducted to evaluate the level of implementation of protocols in 3 tertiary Spanish University Hospitals. A survey among anaesthesiologists assessed estimated importance and clinical practice in terms of prevention of perioperative hypothermia. Results were compared depending on their experience. Ptemperature than other colleagues (P=.02). The most usual practice was a combination warming the intravenous fluids and an electric blanket (55%). Only 20% of the anaesthesiologists monitored temperature intra-operatively, even though 75% considered it an important parameter. No unit had a written protocol for prevention of perioperative hypothermia. Despite the absence of prevention protocols, the anaesthesiologists were aware of the importance maintaining a normal peri-operative temperature, but this awareness is still not enough to influence their perioperative management to diagnose and prevent hypothermia. A harmonisation of practice at local, regional and national level could improve this practice in the future. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Mass loss controlled thermal pretreatment system to assess the effects of pretreatment temperature on organic matter solubilization and methane yield from food waste.

    Directory of Open Access Journals (Sweden)

    Martha Minale Yeshanew

    2016-09-01

    Full Text Available The effects of thermal pretreatment (TP on the main characteristics of food waste (FW and its biochemical methane potential (BMP and distribution of volatile fatty acids (VFAs under mesophilic condition (35 ⁰C were investigated. The TP experiments were carried out at 80 °C, 100 °C, 120 °C for 2 hour and 140 °C for 1 hour. The designed TP set-up was able to minimize the organic matter loss during the course of the pretreatments. Soluble organic fractions evaluated in terms of chemical oxygen demand (COD and soluble protein increased linearly with pretreatment temperature. In contrast, the carbohydrate solubilization was more enhanced (30 % higher solubilization by the TP at lower temperature (80 °C. A slight increment of soluble phenols was found, particularly for temperatures exceeding 100 °C. Thermally pretreated FW under all conditions exhibited an improved methane yield than the untreated FW, due to the increased organic matter solubilization. The highest cumulative methane yield of 442 (± 8.6 mL/gVSadded, corresponding to a 28.1 % enhancement compared to the untreated FW, was obtained with a TP at 80 °C. No significant variation in the VFAs trends were observed during the BMP tests under all investigated conditions.

  17. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  18. Control of a high temperature DLTS setup

    OpenAIRE

    Marklund, Daniel

    2017-01-01

    This thesis deals with a DLTS-setup and how this can be controlled. The controlling program is constructed in LABVIEW, where a previous built program measuring transients at varying pulses been handled and tried to be implemented for this setup. Parts of the program was implemented successfully, other part needs more work. The heater in the setup has further been connected directly to the sample. This one has been tested to see that the setup can handle the heat and that the difference betwee...

  19. Thermal Switch for Satellite Temperature Control

    Science.gov (United States)

    Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.

    1995-01-01

    An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.

  20. Use of integrity control and automatic start of reserve in a multi-channel temperature and flow rate control device

    International Nuclear Information System (INIS)

    Strzalkowski, L.

    1975-01-01

    A way to increase reliability of process quantity control is control of the integrity of the control plants themselves. The possibilities of integrity control on control devices having simply duplicated control channels or working on the basis of the ''two-from-three'' principle are valued. A highly reliable integrity control is possible by use of test signals. For an appropriate control device, structure and function of the assemblies are described. The integrity control device may be used in the water coolant temperature and flow rate control system for all technological channels of the research reactor ''Maria''

  1. 46 CFR 154.1836 - Vapor venting as a means of cargo tank pressure and temperature control.

    Science.gov (United States)

    2010-10-01

    ... cargo pressure and temperature control system under §§ 154.701 through 154.709 is operating and that venting of cargo is unnecessary to maintain cargo temperature and pressure control, except under emergency... temperature control. 154.1836 Section 154.1836 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  2. A furnace and temperature controller for optical absorption studies with a spectrophotometer

    International Nuclear Information System (INIS)

    Mariani Rogat, F.

    1975-01-01

    The design and main features of a furnace with a temperature controller and programmer are shown. This system allows to measure the optical absorption spectrum of a sample from room temperature to 400 deg C, in a double beam spectrophotometer Perkin Elmer 350. The sample temperature can be linearly increased at different heating rates between 4 and 38 deg C/min. The temperature ramp can be stopped at any desired point and the sample temperature shall be stabilized in less than one minute. This temperature shall be kept constant within 0.5 deg C for hours. The sample is heated in vacuum. (author)

  3. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    Science.gov (United States)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  4. Simultaneous control of drying temperature and superheat for a closed-loop heat pump dryer

    International Nuclear Information System (INIS)

    Yang, Zhao; Zhu, Zongsheng; Zhao, Feng

    2016-01-01

    Highlights: • In a closed-loop heat pump drying system, the drying process is divided into two processes: heating and cooling. • A simultaneous control strategy is proposed to improve the precision of superheat and drying temperature. • Two distinct fuzzy controllers are employed to achieve more stable drying temperature. • The superheat controller is mainly composed of a PID controller and a conversion emergency controller. • The experimental data show that the simultaneous controller decreases the nonlinearities of superheat and drying temperature. - Abstract: Closed-loop heat pump drying system has its particular characteristics, and in this paper a simultaneous control strategy is proposed to improve the precision of superheat and drying temperature. The stability of drying temperature guarantees the quality of drying material. And on the premise, superheat should be accurate and stable to improve energy usage. Two fuzzy controllers employing different membership functions and control rules are used to achieve more stable drying temperature. The superheat controller is mainly composed of a PID controller and a conversion emergency controller which accelerates the response of electronic expansion valve. The experimental results show that the temperatures at the outlet of indoor and outdoor condensers give smaller fluctuations. The variations of superheat are investigated when the temperature of drying chamber changes from ambient temperature to 25/30 °C, from 25 to 30 °C and from 30 to 25 °C, respectively. All the experimental data confirm that the new controller is applicable to decrease the nonlinearities of superheat and drying temperature.

  5. Exercise, performance and temperature control: temperature regulation during exercise and implications for sports performance and training.

    Science.gov (United States)

    Fortney, S M; Vroman, N B

    1985-01-01

    performance is often impaired by high ambient temperatures, but may be improved by programmes of physical training and heat acclimatisation. Both training and heat acclimatisation significantly modify the control systems which regulate skin blood flow and sweating. Only acclimatisation programmes, however, are effective in preventing heat stress during prolonged exercise in hot environments.

  6. Procedure for Substrate Temperature Control Using the Pyrometer During MBE Growth

    National Research Council Canada - National Science Library

    Svensson, Stefan

    2000-01-01

    ...) computer control system that allow a user to automatically outgas and desorb the oxide from substrates before growth, as well as set substrate temperatures based on pyrometer readings during growths...

  7. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  8. A Comparative Study on Temperature Control of CSTR using PI Controller, PID Controller and PID (Two Degree of Freedom) Controller

    OpenAIRE

    Bikash Dey; Lusika Roy

    2014-01-01

    This paper present three different control strategies based on PI Control, PID control and Two degree of freedom PID control for Continuous Stirred Tank Reactor (CSTR).CSTR which offers a diverse range of application in the field of chemical engineering as well as in the control engineering and is an attractive research area for process control researchers. Our objective is to control the temperature of CSTR in presence of the set point. MATLAB SIMULINK software is used for mo...

  9. Microcontroller based automatic temperature control for oyster mushroom plants

    Science.gov (United States)

    Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.

    2018-03-01

    In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.

  10. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  11. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  12. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  13. Generic device controller for accelerator control systems

    International Nuclear Information System (INIS)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described

  14. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  15. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  16. Temperature control and calibration issues in the growth, processing and characterization of electronic materials

    Science.gov (United States)

    Wilson, B. A.

    1989-01-01

    The temperature control and calibration issues encountered in the growth, processing, and characterization of electronic materials are summarized. The primary problem area is identified as temperature control during epitaxial materials growth. While qualitative thermal measurements are feasible and reproducibility is often achievable within a given system, absolute calibration is essentially impossible in many cases, precluding the possibility of portability from one system to another. The procedures utilized for thermal measurements during epitaxial growth are described, and their limitations discussed.

  17. The CEBAF separator cavity resonance control system

    International Nuclear Information System (INIS)

    M. Wissmann; C. Hovater; A. Guerra; T. Plawski

    2005-01-01

    The CEBAF energy upgrade will increase the maximum beam energy from 6 GeV to 12 GeV available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three halls. The resulting increase in RF separator cavity gradient and subsequent increase in RF power needed for these higher energies will require the cavities to have active resonance control. Currently, at the present 4 to 6 GeV energies, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW) which is maintained at a constant temperature of 95 Fahrenheit. This approach is no longer feasible and an active resonance control system that controls both water temperature and flow has been designed and built. The system uses a commercial PLC with embedded PID controls to regulate water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately, closed loop control will be maintained by monitoring each cavity's reflected power. This paper describes this system

  18. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  19. Characterization of gradient control systems

    NARCIS (Netherlands)

    Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  20. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    N.T. Raczka

    1998-09-17

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation.

  1. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    International Nuclear Information System (INIS)

    N.T. Raczka

    1998-01-01

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  2. Development of a remote controlled fatigue testing apparatus at elevated temperature in controlled environment

    International Nuclear Information System (INIS)

    Ohmi, Masao; Mimura, Hideaki; Ishii, Toshimitsu

    1996-02-01

    The fatigue characteristics of reactor structural materials at high temperature are necessary to be evaluated for ensuring the safety of the High Temperature engineering Test Reactor (HTTR). Especially, the high temperature test data on safety research such as low cycle fatigue property and crack propagation property for reactor pressure vessel material are important for the development of the HTTR. Responding to these needs, a remote controlled type fatigue testing machine has been developed and installed in a hot cell of JMTR Hot Laboratory to get the fatigue data of irradiated materials. The machine was developed modifying a commercially available electro-hydraulic servo type fatigue testing machine to withstand radiation and be remotely operated, and mainly consists of a testing machine frame, environment chamber, extensometer, actuator and vacuum exhaust system. It has been confirmed that the machine has good performance to obtain low cycle fatigue data through many demonstration tests on unirradiated and irradiated specimens. (author)

  3. JCMT active surface control system: implementation

    Science.gov (United States)

    Smith, Ian A.

    1998-05-01

    The James Clerk Maxwell Telescope on the summit of Mauna Kea in Hawaii is a 15 meter sub-millimeter telescope which operates in the 350 microns to 2 millimeter region. The primary antenna surface consists of 276 panels, each of which is positioned by 3 stepper motors. In order to achieve the highest possible surface accuracy we are embarking upon a project to actively control the position of the panels adjuster system is based on a 6809 micro connected to the control computer by a GPIB interface. This system is slow and inflexible and it would prove difficult to build an active surface control system with it. Part of the upgrade project is to replace the existing micro with a 68060 VME micro. The poster paper will describe how the temperature of the antenna is monitored with the new system, how a Finite Element Analyses package transforms temperature changes into a series of panel adjuster moves, and how these moves are then applied to the surface. The FEA package will run on a high end Sun workstation. A series of DRAMA tasks distributed between the workstation and the Baja 68060 VxWorks Active Surface Control System micro will control the temperature monitoring, FEA and panel adjustment activities. Users can interact with the system via a Tcl/TK based GUI.

  4. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  5. Thermal Sensor Circuit Using Thermography for Temperature-Controlled Laser Hyperthermia

    Directory of Open Access Journals (Sweden)

    Shinsuke Nomura

    2017-01-01

    Full Text Available Laser hyperthermia is a powerful therapeutic modality that suppresses the growth of proliferative lesions. In hyperthermia, the optimal temperature range is dependent on the disease; thus, a temperature-driven laser output control system is desirable. Such a laser output control system, integrated with a thermal sensor circuit based on thermography, has been established. In this study, the feasibility of the developed system was examined by irradiating mouse skin. The system is composed of a thermograph, a thermal sensor circuit (PC and microcontroller, and an infrared laser. Based on the maximum temperature in the laser-irradiated area acquired every 100 ms during irradiation, the laser power was controlled such that the maximum temperature was maintained at a preset value. Temperature-controlled laser hyperthermia using the thermal sensor circuit was shown to suppress temperature fluctuations during irradiation (SD ~ 0.14°C to less than 1/10 of those seen without the thermal sensor circuit (SD ~ 1.6°C. The thermal sensor circuit was able to satisfactorily stabilize the temperature at the preset value. This system can therefore provide noncontact laser hyperthermia with the ability to maintain a constant temperature in the irradiated area.

  6. Expert systems in process control systems

    International Nuclear Information System (INIS)

    Wittig, T.

    1987-01-01

    To illustrate where the fundamental difference between expert systems in classical diagnosis and in industrial control lie, the work of process control instrumentation is used as an example for the job of expert systems. Starting from the general process of problem-solving, two classes of expert systems can be defined accordingly. (orig.) [de

  7. Drifting temperature climate control for archives and stores

    DEFF Research Database (Denmark)

    Klenz Larsen, Poul; Padfield, Tim; Ryhl-Svendsen, Morten

    2017-01-01

    The climate within museum stores and archives can be regulated by dehumidifying a building whose temperature is allowed to vary seasonally without explicit control. The ground beneath the building provides thermal inertia to hold the annual temperature cycle around 8 – 16°C, in northern Europe...

  8. Evaluation of Artificial Neural Network-Based Temperature Control for Optimum Operation of Building Envelopes

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2014-11-01

    Full Text Available This study aims at developing an indoor temperature control method that could provide comfortable thermal conditions by integrating heating system control and the opening conditions of building envelopes. Artificial neural network (ANN-based temperature control logic was developed for the control of heating systems and openings at the building envelopes in a predictive and adaptive manner. Numerical comparative performance tests for the ANN-based temperature control logic and conventional non-ANN-based counterpart were conducted for single skin enveloped and double skin enveloped buildings after the simulation program was validated by comparing the simulation and the field measurement results. Analysis results revealed that the ANN-based control logic improved the indoor temperature environment with an increased comfortable temperature period and decreased overshoot and undershoot of temperatures outside of the operating range. The proposed logic did not show significant superiority in energy efficiency over the conventional logic. The ANN-based temperature control logic was able to maintain the indoor temperature more comfortably and with more stability within the operating range due to the predictive and adaptive features of ANN models.

  9. System for controlling apnea

    Energy Technology Data Exchange (ETDEWEB)

    Holzrichter, John F

    2015-05-05

    An implanted stimulation device or air control device are activated by an external radar-like sensor for controlling apnea. The radar-like sensor senses the closure of the air flow cavity, and associated control circuitry signals (1) a stimulator to cause muscles to open the air passage way that is closing or closed or (2) an air control device to open the air passage way that is closing or closed.

  10. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  11. Distributed systems status and control

    Science.gov (United States)

    Kreidler, David; Vickers, David

    1990-01-01

    Concepts are investigated for an automated status and control system for a distributed processing environment. System characteristics, data requirements for health assessment, data acquisition methods, system diagnosis methods and control methods were investigated in an attempt to determine the high-level requirements for a system which can be used to assess the health of a distributed processing system and implement control procedures to maintain an accepted level of health for the system. A potential concept for automated status and control includes the use of expert system techniques to assess the health of the system, detect and diagnose faults, and initiate or recommend actions to correct the faults. Therefore, this research included the investigation of methods by which expert systems were developed for real-time environments and distributed systems. The focus is on the features required by real-time expert systems and the tools available to develop real-time expert systems.

  12. Single temperature sensor based evaporator filling control using excitation signal harmonics

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    An important aspect of efficient and safe operation of refrigeration and air conditioning systems is superheat control for evaporators. This is conventionally controlled with a pressure sensor, a temperature sensor, an expansion valve and Proportional-Integral (PI) controllers or more advanced mo...

  13. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  14. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  15. Wide-range temperature controller for use in criogenics

    International Nuclear Information System (INIS)

    Velichkov, L.; Apostolov, A.

    1989-01-01

    A wide range temperature controller capable of working within the 3-300 K range is described. From 3 K to 100 K the controller offers stability from + - 3 0 m u K .h -1 to + - 1 mK.h -1 , correspondingly. It uses a DC resistance bridge with a carbon resistor as a temperature-sensing element. Proportional and integral (PI) type of control is implemented. Special precautions are taken against the transients inherent to the integral control. The adjustments of the PI-regulator for optimum perfomance are straightfoward and convenient. The electronic circuit is built up from available components. 3 figs., 8 refs

  16. Diagnostic, reliablility and control systems

    CERN Document Server

    Leondes

    2014-01-01

    1. Explicit-Model-Based Fault Detection Method in Industrial Plants 2. Soft Sensor: An Effective Approach to Improve Control 3. Techniques in Soft Computing and Their Utilization in Mechatronic Products 4. Techniques in the Control of Interconnected Plants 5. A Mechatronic Systems Approach to Controlling Robotic Systems with Actuator Dynamics 6. Process and Control Design for Fast Coordinate Measuring Machines 7. Techniques in the Stability of Mechatronic Systems with Sensor or Actuator Failure.

  17. Intelligent Model Building and GPC-PID Based Temperature Curve Control Strategy for Metallurgical Industry

    Directory of Open Access Journals (Sweden)

    Shuanghong Li

    2016-01-01

    Full Text Available Laminar cooling process is a large-scale, nonlinear system, so the temperature control of such system is a difficult and complex problem. In this paper, a novel modeling method and a GPC-PID based control strategy for laminar cooling process are proposed to control the global temperature curve to produce high quality steel. First, based on the analysis of the cooling process of laminar flow, a new TS fuzzy model which possesses intelligence and self-learning ability is established to improve the temperature prediction accuracy. Second, the target temperature curve can be divided into several subgoals and each subgoal can be described by a CARIMA type of model. Then, by the decentralized predictive control method, GPC-PID based control strategy is introduced to guarantee the laminar cooling process to achieve subtargets, respectively; in that way the steel plate temperature will drop along the optimal temperature curve. Moreover, by employing the dSPACE control board into the process control system, the matrix process ability is added to the production line without large-scale reconstruction. Finally, the effectiveness and performance of the proposed modeling and control strategy are demonstrated by the industrial data and metallography detection in one steel company.

  18. Temperatura corporal de frangos de corte em diferentes sistemas de climatização Broiler body surface temperature in function of different thermal control systems in broiler housing

    Directory of Open Access Journals (Sweden)

    Janaína Schenatto Welker

    2008-08-01

    Full Text Available Verificou-se o efeito dos sistemas de climatização de aviários sobre a temperatura média corporal de frangos de corte (TMC. Utilizaram-se 610 fêmeas da linhagem Cobb distribuídas em delineamento de blocos ao acaso repetidos no tempo, considerando o dia como critério de bloqueamento, em esquema fatorial 2 × 5, composto de duas orientações solares (Norte-Sul, NS, e Leste-Oeste, LO e cinco sistemas de climatização (ventilador e nebulização, VN; ventilador com nebulização e sombreamento, VNS; apenas ventilador, V; apenas sombreamento, S; e apenas nebulização, N, de modo que cada tratamento teve sete repetições (dias de coleta. Foram coletados dados meteorológicos para o cálculo de carga térmica de radiação (CTR e monitoradas as temperaturas de superfície corporal e retal para cálculo da TMC. A associação de ventilação e nebulização melhora significativamente as condições ambientais dos aviários e as condições fisiológicas das aves. Com a utilização adequada de métodos de climatização, é possível a criação de frangos de corte em aviários com orientações solares diversas.The effect of different thermal control systems on broiler body temperature was evaluated in 610 female broiler chickens, Cobb breed, housed in 10 small scale of aviaries models (treatments. Climate data were collected inside the models and were used to calculate the Thermal Heat Load (THL. Bird surface and rectal temperature were recorded to calculate average body temperature (ABT. Data were always collected from 1:00 and 2:00 pm, the hour of maximum THL inside models. The treatments consisted of a factorial 2 × 5 (two orientations and five models of thermal control and were analyzed as a randomized blocks design, where the days were blocking criteria. Environment and body temperature data were statically analyzed by Duncan test, with 5% of probability level. The use of forced ventilation associated to misting nozzles improved

  19. Ion Temperature Control of the Io Plasma Torus

    Science.gov (United States)

    Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.

    2005-01-01

    We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.

  20. Design of control system for profile gauge

    International Nuclear Information System (INIS)

    Huang Yibin; Zhang Yu'ai

    2013-01-01

    The profile gauge can on-line get the cross section in the steel strip, so it has been widely used in hot continuous rolling production-line. The structure of profile gauge and its distributed hardware structure based on PLC and software design of its control subsystem were introduced. The method of temperature and humidity measurement was analyzed. The time response of X-ray machine control based on RS232 communication was researched. It is proved that the control system meets the requirements of the profile gauge system. (authors)

  1. Biotelemetry system for Epilepsy Seizure Control

    Energy Technology Data Exchange (ETDEWEB)

    Smith, LaCurtise; Bohnert, George W.

    2009-07-02

    The Biotelemetry System for Epilepsy Seizure Control Project developed and tested an automated telemetry system for use in an epileptic seizure prevention device that precisely controls localized brain temperature. This project was a result of a Department of Energy (DOE) Global Initiatives for Proliferation Prevention (GIPP) grant to the Kansas City Plant (KCP), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL) to partner with Flint Hills Scientific, LLC, Lawrence, KS and Biophysical Laboratory Ltd (BIOFIL), Sarov, Russia to develop a method to help control epileptic seizures.

  2. Controlling dynamics in diatomic systems

    Indian Academy of Sciences (India)

    Keywords. Iterative method; optimal control theory; diatomic systems; quantum control. Abstract. Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated ...

  3. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Energy consumption and control response evaluations of AODV routing in WSANs for building-temperature control.

    Science.gov (United States)

    Booranawong, Apidet; Teerapabkajorndet, Wiklom; Limsakul, Chusak

    2013-06-27

    The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.

  5. The ATLAS Detector Control System

    International Nuclear Information System (INIS)

    Lantzsch, K; Braun, H; Hirschbuehl, D; Kersten, S; Arfaoui, S; Franz, S; Gutzwiller, O; Schlenker, S; Tsarouchas, C A; Mindur, B; Hartert, J; Zimmermann, S; Talyshev, A; Oliveira Damazio, D; Poblaguev, A; Martin, T; Thompson, P D; Caforio, D; Sbarra, C; Hoffmann, D

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  6. The ATLAS Detector Control System

    Science.gov (United States)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  7. Framework for control system development

    International Nuclear Information System (INIS)

    Cork, C.; Nishimura, Hiroshi

    1992-01-01

    Control systems being developed for the present generation of accelerators will need to adapt to changing machine and operating state conditions. Such systems must also be capable of evolving over the life of the accelerator operation. In this paper we present a framework for the development of adaptive control systems

  8. Minicomputer controlled test system for process control and monitoring systems

    International Nuclear Information System (INIS)

    Worster, L.D.

    A minicomputer controlled test system for testing process control and monitoring systems is described. This system, in service for over one year, has demonstrated that computerized control of such testing has a real potential for expanding the scope of the testing, improving accuracy of testing, and significantly reducing the time required to do the testing. The test system is built around a 16-bit minicomputer with 12K of memory. The system programming language is BASIC with the addition of assembly level routines for communication with the peripheral devices. The peripheral devices include a 100 channel scanner, analog-to-digital converter, visual display, and strip printer. (auth)

  9. The GSI control system

    International Nuclear Information System (INIS)

    Krause, U.; Schaa, V.; Steiner, R.

    1992-01-01

    The GSI accelerator facility consists of an old linac and two modern machines, a synchrotron and a storage ring. It is operated from one control room. Only three operators at a time have to keep it running with only little assistance from machine specialists in daytime. So the control tools must provide a high degree of abstraction and modeling to relieve the operators from details on the device level. The program structures to achieve this are described in this paper. A coarse overview of the control architecture is given. (author)

  10. Solid-state Distributed Temperature Control for International Space Station

    Science.gov (United States)

    Holladay, Jon B.; Reagan, Shawn E.; Day, Greg

    2004-01-01

    A newly developed solid-state temperature controller will offer greater flexibility in the thermal control of aerospace vehicle structures. A status of the hardware development along with its implementation on the Multi- Purpose Logistics Module will be provided. Numerous advantages of the device will also be discussed with regards to current and future flight vehicle implementations.

  11. Control of a high temperature supercritical pressure light water cooled and moderated reactor with water rods

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki; Oka, Yoshiaki; Koshizuka, Seiichi

    2003-01-01

    The plant system of a supercritical pressure light water reactor (SCR) is once-through direct cycle. The whole coolant from the feedwater pumps is driven to the turbines. The core flow rate is less than 1/7 of that of a boiling water reactor. In the present design of the high temperature thermal reactor (SCLWR-H), the fuel assemblies contain many water rods in which the coolant flows downward. The stepwise responses of the SCLWR-H are analyzed against perturbations without a control system. Based on these analyses, a control system of the SCLWR-H is designed. The pressure is controlled by the turbine control valves. The main steam temperature is controlled by the feedwater pumps. The reactor power is controlled by the control rods. The control parameters are optimized by the test calculations to satisfy the criteria of both fast convergence and stability. The reactor is controlled stably with the designed control systems against various perturbations, such as setpoint change of the pressure, the main steam temperature and the core power, decrease in the feedwater temperature, and decrease in the feedwater flow rate. (author)

  12. Controlling Uncertain Dynamical Systems

    Indian Academy of Sciences (India)

    Author Affiliations. N Ananthkrishnan1 Rashi Bansal2. Head, CAE Analysis & Design Zeus Numerix Pvt Ltd. M-03, SINE, IIT Bombay Powai Mumbai 400076, India. MTech (Aerospace Engineering) with specialization in Dynamics & Control from IIT Bombay.

  13. Thermal control system for SSF sensor/electronics

    Science.gov (United States)

    Akau, R. L.; Lee, D. E.

    1993-01-01

    A thermal control system was designed for the Space Station Freedom (SSF) sensor/electronics box (SSTACK). Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test.

  14. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  15. Control systems with network delay

    OpenAIRE

    Şabanoviç, Asif; Sabanovic, Asif; Ohnishi, Kouhei; Yashiro, Daisuke; Acer, Merve; Ş.-Behliloviç, Nadira; S.-Behlilovic, Nadira

    2009-01-01

    In this paper motion control systems with delay in measurement and control channels are discussed and a new structure of the observer-predictor is proposed. The feature of the proposed system is enforcement of the convergence in both the estimation and the prediction of the plant output in the presence of the variable, unknown delay in both measurement and in the control channels. The estimation is based on the available data – undelayed control input, the delayed measurement of position o...

  16. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  17. Standardization of detector control systems

    International Nuclear Information System (INIS)

    Fukunaga, Chikara

    2000-01-01

    Current and future detectors for high-energy and/or nuclear physics experiments require highly intelligent detector control systems. In order to reduce resources, the construction of a standardized template for the control systems based on the commercially available superviser control and data acquisition (SCADA) system has been proposed. The possibility of constructing this template is discussed and several key issues for evaluation of SCADA as the basis for such a template are presented. (author)

  18. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  19. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging and control and emergency temperatures... Administrator. (5) Control temperature. Column 5 specifies the control temperature in °C. Temperatures are specified only when temperature controls are required (see § 173.21(f)). (6) Emergency temperature. Column 6...

  20. Reactor power control system

    International Nuclear Information System (INIS)

    Tomisawa, Teruaki.

    1981-01-01

    Purpose: To restore reactor-power condition in a minimum time after a termination of turbine bypass by reducing the throttling of the reactor power at the time of load-failure as low as possible. Constitution: The transient change of the internal pressure of condenser is continuously monitored. When a turbine is bypassed, a speed-control-command signal for a coolant recirculating pump is generated according as the internal pressure of the condenser. When the signal relating to the internal pressure of the condenser indicates insufficient power, a reactor-control-rod-drive signal is generated. (J.P.N.)

  1. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    Science.gov (United States)

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  2. Ground Control System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-31

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  3. Ground Control System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  4. An alternate method for achieving temperature control in the -130 C to 75 C range

    Science.gov (United States)

    Johnson, Kenneth R.; Anderson, Mark R.; Lane, Robert W.; Cortez, Maximo G.

    1992-01-01

    Thermal vacuum testing often requires temperature control of chamber shrouds and heat exchangers within the -130 C to 75 C range. There are two conventional methods which are normally employed to achieve control through this intermediate temperature range: (1) single-pass flow where control is achieved by alternately pulsing hot gaseous nitrogen (GN2) and cold LN2 into the feed line to yield the setpoint temperature; and (2) closed-loop circulation where control is achieved by either electrically heating or LN2 cooling the circulating GN2 to yield the setpoint temperature. A third method, using a mass flow ratio controller along with modulating control valves on GN2 and LN2 lines, provides excellent control but equipment for this method is expensive and cost-prohibitive for all but long-term continuous processes. The single-pass method provides marginal control and can result in unexpected overcooling of the test article from even a short pulse of LN2. The closed-loop circulation method provides excellent control but requires an expensive blower capable of operating at elevated pressures and cryogenic temperatures. Where precise control is needed (plus or minus 2 C), single-pass flow systems typically have not provided the precision required, primarily because of overcooling temperature excursions. Where several individual circuits are to be controlled at different temperatures, the use of expensive cryogenic blowers for each circuit is also cost-prohibitive, especially for short duration of one-of-a-kind tests. At JPL, a variant of the single-pass method was developed that was shown to provide precise temperature control in the -130 C to 75 C range while exhibiting minimal setpoint overshoot during temperature transitions. This alternate method uses a commercially available temperature controller along with a GN2/LN2 mixer to dampen the amplitude of cold temperature spikes caused by LN2 pulsing. The design of the GN2/LN2 mixer, the overall control system

  5. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    Ali, Syed M Usman; Hussain, Sajid; Siddiqui, Ali Akber; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-01-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  6. FPGA based Smart Wireless MIMO Control System

    Science.gov (United States)

    Usman Ali, Syed M.; Hussain, Sajid; Akber Siddiqui, Ali; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-12-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input & Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively.

  7. INSTRUCTIONAL QUALITY CONTROL SYSTEMS.

    Science.gov (United States)

    MONROE, BRUCE

    A REVIEW OF THE LITERATURE, A MAIL SURVEY, AND A TEXTUAL ANALYSIS OF JUNIOR COLLEGE DOCUMENTS INDICATE THAT, WHILE CALIFORNIA JUNIOR COLLEGES ARE CONCERNED ABOUT THE QUALITY AND EFFECTIVENESS OF INSTRUCTION, CONTROL OF THAT QUALITY IS RARELY A SYSTEMATIC ROUTINE ENTERPRISE BASED ON EXAMINATION OF BEHAVIOR CHANGES IN STUDENTS FOLLOWING INSTRUCTION.…

  8. Systems and Control Engineering

    Indian Academy of Sciences (India)

    discipline has played critical roles in technological advances over the last few decades. If not for modern control theory, aircraft would not be flying as far or as fast; manufactured goods, from paper to steel to gasoline to Mars Bars, would not be as readily available; Rover would still be just a dog's name; ... the list is endless.

  9. The Use Of Multifrequency Induction Heating For Temperature Distribution Control

    Directory of Open Access Journals (Sweden)

    Smalcerz A.

    2015-06-01

    Full Text Available The paper presents possibilities of controlling temperature field distribution in inductively heated charge. The change of its distribution was obtained using the sequential one-, two-, and three-frequency heating. The study was conducted as a multi-variant computer simulation of hard coupled electromagnetic and temperature fields. For the analysis, a professional calculation software package utilizing the finite element method, Flux 3D, was used. The problem of obtaining an appropriate temperature distribution in the heated charge of a complex shape is very important in many practical applications. A typical example is hardening of gear wheels. For such an application, it is necessary to obtain (on the surface and at a desired depth an uniform temperature distribution on the tooth face, top land and bottom land of the gear. The obtained temperature should have proper distribution and value. Such a distribution is very difficult to achieve.

  10. Biofeedback systems and adaptive control hemodialysis treatment

    Directory of Open Access Journals (Sweden)

    Azar Ahmad

    2008-01-01

    Full Text Available On-line monitoring devices to control functions such as volume, body temperature, and ultrafiltration, were considered more toys than real tools for routine clinical application. However, bio-feedback blood volume controlled hemodialysis (HD is now possible in routine dialysis, allowing the delivery of a more physiologically acceptable treatment. This system has proved to reduce the incidence of intra-HD hypotension episodes significantly. Ionic dialysance and the patient′s plasma conductivity can be calculated easily from on-line measurements at two different steps of dialysate conductivity. A bio-feedback system has been devised to calculate the patient′s plasma conductivity and modulate the conductivity of the dialysate continuously in order to achieve a desired end-dialysis patient plasma conductivity corresponding to a desired end-dialysis plasma sodium concentration. Another bio-feedback system can control the body tempe-rature by measuring it at the arterial and venous lines of the extra-corporeal circuit, and then modulating the dialysate temperature in order to stabilize the patients′ temperature at constant values that result in improved intra-HD cardiovascular stability. The module can also be used to quantify vascular access recirculation. Finally, the simultaneous computer control of ultrafiltration has proven the most effective means for automatic blood pressure stabilization during hemo-dialysis treatment. The application of fuzzy logic in the blood-pressure-guided biofeedback con-trol of ultrafiltration during hemodialysis is able to minimize HD-induced hypotension. In con-clusion, online monitoring and adaptive control of the patient during the dialysis session using the bio-feedback systems is expected to render the process of renal replacement therapy more physiological and less eventful.

  11. Study of frequency-controlled asynchronous motor units temperature versus load and power supply type

    Directory of Open Access Journals (Sweden)

    T.V. Vakaruk

    2014-04-01

    Full Text Available An equivalent thermal circuit is developed to form the basis of a system of heat-balance equations for a frequency-controlled induction motor. With the system of equations, temperatures of АИР 90В2 induction motor stator and rotor windings and cores are calculated and experimentally confirmed. The load dependence of the machine most heated units temperature at different forms of the supply voltage is revealed.

  12. Monochromator for synchrotron light with temperature controlled by electrical current on silicon crystal

    International Nuclear Information System (INIS)

    Cusatis, Cesar; Souza, Paulo E.N.; Gobbi, Angelo; Carvalho Junior, Wilson de

    2011-01-01

    Full text. doped silicon crystal was used simultaneously as a monochromator, sensor and actuator in such way that its temperature could be controlled. Ohmic contacts allowed resistance measurements on a perfect silicon crystal, which were correlated to its temperature. Using the ohmic contacts, an electrical current caused Joule heating on the monochromator that was used to control its temperature. A simple stand-alone electronic box controlled the system. The device was built and tested with white beam synchrotron light on the double crystal monochromator of the XRD line of LNLS, Laboratorio Nacional de Luz Sincrotron, Campinas. The first crystal of a double crystal monochromator determines the energy that is delivered to a synchrotron experimental station and its temperature instability is a major source of energy and intensity instability. If the (333) silicon monochromator is at theta Bragg near 45 degree the variation of the diffraction angle is around one second of arc per degree Kelvin. It may take several minutes for the first crystal temperature to stabilize at the beginning of the station operation when the crystal and its environment are cold. With water refrigeration, the average overall temperature of the crystal may be constant, but the temperature of the surface changes with and without the white beam. The time used to wait for stabilization of the beam energy/intensity is lost unless the temperature of the crystal surface is kept constant. One solution for keeping the temperature of the monochromator and its environment constant or nearly constant is Joule heating it with a controlled small electrical current flowing on the surface of a doped perfect crystal. When the white beam is on, this small amount of extra power will be more concentrated at the beam footpath because the resistance is lower in this region due to the higher temperature. In addition, if the crystal itself is used to detect the temperature variation by measuring the electrical

  13. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  14. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller.

    Science.gov (United States)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  15. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    Science.gov (United States)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  16. Virtualization in control system environment

    International Nuclear Information System (INIS)

    Shen, L.R.; Liu, D.K.; Wan, T.M.

    2012-01-01

    In large scale distributed control system, there are lots of common service composed an environment for the entire control system, such as the server system for the common software base library, application server, archive server and so on. This paper gives a description of a virtualization realization for control system environment including the virtualization for server, storage, network system and application for the control system. With a virtualization instance of the EPICS based control system environment that was built by the VMware vSphere v4, we tested the whole functionality of this virtualization environment in the SSRF control system, including the common server of the NFS, NIS, NTP, Boot and EPICS base and extension library tools, we also have applied virtualization to application servers such as the Archive, Alarm, EPICS gateway and all of the network based IOC. Specially, we test the high availability and VMotion for EPICS asynchronous IOC successful under the different VLAN configuration of the current SSRF control system network. (authors)

  17. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  18. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  19. Defrost Temperature Termination in Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  20. Argonne's atlas control system upgrade

    International Nuclear Information System (INIS)

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-01-01

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system