WorldWideScience

Sample records for temperature control system

  1. Temperature Control System for Chromel-Alumel Thermocouple

    International Nuclear Information System (INIS)

    Piping Supriatna; Nurhanan; Riswan DJ; Heru K, B.; Edi Karyanta

    2003-01-01

    Nuclear Power Plan Operation Safety needs serious handling on temperature measurement and control. In this report has been done manufacturing Temperature Control System for Chromel-Alumel Thermocouple, accordance to material, equipment and human resource ability in the laboratory. Basic component for the Temperature Control System is LM-741 type of Operation Amplifier, which is functionalized as summer for voltage comparator. Function test for this Control System shown its ability for damping on temperature reference. The Temperature Control System will be implemented on PCB Processing Machine. (author)

  2. Temperature Control System for Mushroom Dryer

    Science.gov (United States)

    Wibowo, I. A.; Indah, Nur; Sebayang, D.; Adam, N. H.

    2018-03-01

    The main problem in mushroom cultivation is the handling after the harvest. Drying is one technique to preserve the mushrooms. Traditionally, mushrooms are dried by sunshine which depends on the weather. This affects the quality of the dried mushrooms. Therefore, this paper proposes a system to provide an artificial drying for mushrooms in order to maintain their quality. The objective of the system is to control the mushroom drying process to be faster compared to the natural drying at an accurate and right temperature. A model of the mushroom dryer has been designed, built, and tested. The system comprises a chamber, heater, blower, temperature sensor and electronic control circuit. A microcontroller is used as the controller which is programmed to implement a bang-bang control that regulates the temperature of the chamber. A desired temperature is inputted as a set point of the control system. Temperature of 45 °C is chosen as the operational drying temperature. Several tests have been carried out to examine the performance of the system including drying speed, the effects of ambient conditions, and the effects of mushroom size. The results show that the system can satisfy the objective.

  3. Photoirradiation system with temperature control

    International Nuclear Information System (INIS)

    Yonadab Lopez, F.; Stolik, S.; La Rosa, J. M. de; Moreno, E.

    2012-01-01

    During application of phototherapy is possible to induce a significant increase in tissue temperature and generate a localized hyperthermia state if the power density of incident light is high enough. We present a controlled temperature phototherapy system, this allows the application of optical radiation at a wavelength of 630nm using a light emitting diode (LED) of high power. The system automatically controls the irradiation time and power which allows irradiating the tissue with an appropriate energy density. A thermocouple is placed in the irradiated tissue to measure and control the temperature by varying the parameters of power density and time. From results of irradiations made in nu / nu mice using doses of 150 J/cm 2 energy and 250 J/cm 2 shows that the temperature control allows the study of photodynamic therapy in synergy with thermo therapy in different diseases external tissues. (Author)

  4. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  5. Fuzzy Logic Temperature Control System For The Induction Furnace

    Directory of Open Access Journals (Sweden)

    Lei Lei Hnin

    2015-08-01

    Full Text Available This research paper describes the fuzzy logic temperature control system of the induction furnace. Temperature requirement of the heating system varies during the heating process. In the conventional control schemes the switching losses increase with the change in the load. A closed loop control is required to have a smooth control on the system. In this system pulse width modulation based power control scheme for the induction heating system is developed using the fuzzy logic controller. The induction furnace requires a good voltage regulation to have efficient response. The controller controls the temperature depending upon weight of meat water and time. This control system is implemented in hardware system using microcontroller. Here the fuzzy logic controller is designed and simulated in MATLAB to get the desire condition.

  6. Design of PID temperature control system based on STM32

    Science.gov (United States)

    Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru

    2018-03-01

    A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.

  7. Control system for Fermilab's low temperature upgrade

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel's 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down

  8. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  9. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  10. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  11. Reactivity control system of the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Sawahata, Hiroaki; Iyoku, Tatsuo; Nakazawa, Toshio

    2004-01-01

    The reactivity control system of the high temperature engineering test reactor (HTTR) consists of a control rod system and a reserve shutdown system. During normal operation, reactivity is controlled by the control rod system, which consists of 32 control rods (16 pairs) and 16 control rod drive mechanisms except for the case when the center control rods are removed to perform an irradiation test. In an unlikely event that the control rods fail to be inserted, reserve shutdown system is provided to insert pellets of neutron-absorbing material into the core. Alloy 800H is chosen for the metallic parts of the control rods. Because the maximum temperature of the control rods reaches about 900 deg. C at reactor scrams, structural design guideline and design material data on Alloy 800H are needed for the high temperature design. The design guideline for the HTTR control rod is based on ASME Code Case N-47-21. Design material data is also determined and shown in this paper. Observing the guideline, temperature and stress analysis were conducted; it can be confirmed that the target life of the control rods of 5 years can be achieved. Various tests conducted for the control rod system and the reserve shutdown system are also described

  12. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  13. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  14. The PLC-based Industrial Temperature Control System: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Wei Fanjie

    2017-01-01

    Full Text Available Targeting at the problem of slow response and low accuracy of the automatic temperature control system for material processing and boiler heating, a new design method is proposed to work with the PLC-based temperature control system, where the box temperature control may be achieved through the fan and the heating plate. The hardware design and software design of the system are analyzed in detail. In this paper, a combination of the traditional PID control and the more popular fuzzy control is taken as the control program to achieve the overall design of the control algorithm. Followed by the simulation in the MATLAB software, the designed system is highlighted by its the characteristics of impressive stability, precision and robustness.

  15. Hot roller embossing system equipped with a temperature margin-based controller

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung, E-mail: seyoungkim@kimm.re.kr; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin [Department of Robotics and Mechatronics, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2014-08-15

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process.

  16. Hot roller embossing system equipped with a temperature margin-based controller

    International Nuclear Information System (INIS)

    Kim, Seyoung; Son, Youngsu; Lee, Sunghee; Ham, Sangyong; Kim, Byungin

    2014-01-01

    A temperature control system was proposed for hot roller embossing. The roll surface was heated using induction coils and cooled with a circulating chilled water system. The temperature of the roll surface was precisely controlled by a temperature margin-based control algorithm that we developed. Implementation of the control system reduced deviations in the roll surface temperature to less than ±2 °C. The tight temperature control and the ability to rapidly increase and decrease the roll temperature will allow optimum operating parameters to be developed quickly. The temperature margin-based controller could also be used to optimize the time course of electrical power and shorten the cooling time by choosing an appropriate temperature margin, possibly for limited power consumption. The chiller-equipped heating roll with the proposed control algorithm is expected to decrease the time needed to determine the optimal embossing process

  17. Control system for Fermilab`s low temperature upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  18. The development of Gallstone solvent temperature adaptive PID control system

    Institute of Scientific and Technical Information of China (English)

    MA; BING; QIAO; BO; YAN

    2012-01-01

    The paper expatiated the work principle,general project,and the control part of the corresponding program of the temperature system in the gallstone dissolving instrument.Gallstone dissolving instrument adopts automatic control solvent cycle of direct solution stone treatment,replacing the traditional external shock wave rock row stone and gallblad-der surgery method.PID control system to realize the gall stone solvent temperature intelligent control,the basic principle of work is as solvent temperature below the set temperature,the relay control heater to solvent to be heated,conversely,no heating,achieve better able to dissolve the the rapeutic effect of gallstones.

  19. Transient performance of integrated SOFC system including spatial temperature control

    OpenAIRE

    Mueller, F; Fardadi, M; Shaffer, B; Brouwer, J; Jabbari, F

    2010-01-01

    Spatial temperature feedback control has been developed for a simulated integrated non-pressurized simple cycle solid oxide fuel cell (SOFC) system. The fuel cell spatial temperature feedback controller is based on (1) feed-forward set-points that minimize temperature variation in the fuel cell electrode-electrolyte solid temperature profile for the system operating power range, and (2) decentralized proportional-integral based feedback to maintain the fuel cell spatial temperature profile du...

  20. Fuzzy Logic Applied to an Oven Temperature Control System

    Directory of Open Access Journals (Sweden)

    Nagabhushana KATTE

    2011-10-01

    Full Text Available The paper describes the methodology of design and development of fuzzy logic based oven temperature control system. As simple fuzzy logic controller (FLC structure with an efficient realization and a small rule base that can be easily implemented in existing underwater control systems is proposed. The FLC has been designed using bell-shaped membership function for fuzzification, 49 control rules in its rule base and centre of gravity technique for defuzzification. Analog interface card with 16-bits resolution is designed to achieve higher precision in temperature measurement and control. The experimental results of PID and FLC implemented system are drawn for a step input and presented in a comparative fashion. FLC exhibits fast response and it has got sharp rise time and smooth control over conventional PID controller. The paper scrupulously discusses the hardware and software (developed using ‘C’ language features of the system.

  1. Feedwater temperature control methods and systems

    Science.gov (United States)

    Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip

    2014-04-22

    A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.

  2. Automatic Incubator-type Temperature Control System for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    An automatic air-cooling incubator is proposed to replace the manual water-cooling blanket to control the brain tissue temperature for brain hypothermia treatment. Its feasibility is theoretically discussed as follows: First, an adult patient with the cooling incubator is modeled as a linear dynamical patient-incubator biothermal system. The patient is represented by an 18-compartment structure and described by its state equations. The air-cooling incubator provides almost same cooling effect as the water-cooling blanket, if a light breeze of speed around 3 m/s is circulated in the incubator. Then, in order to control the brain temperature automatically, an adaptive-optimal control algorithm is adopted, while the patient-blanket therapeutic system is considered as a reference model. Finally, the brain temperature of the patient-incubator biothermal system is controlled to follow up the given reference temperature course, in which an adaptive algorithm is confirmed useful for unknown environmental change and/or metabolic rate change of the patient in the incubating system. Thus, the present work ensures the development of the automatic air-cooling incubator for a better temperature regulation of the brain hypothermia treatment in ICU.

  3. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  4. Study on Temperature Control System Based on SG3525

    Science.gov (United States)

    Cheng, Cong; Zhu, Yifeng; Wu, Junfeng

    2017-12-01

    In this paper, it uses the way of dry bath temperature to heat the microfluidic chip directly by the heating plate and the liquid sample in microfluidic chip is heated through thermal conductivity, thus the liquid sample will maintain at target temperature. In order to improve the reliability of the whole machine, a temperature control system based on SG3525 is designed.SG3525 is the core of the system which uses PWM wave produced by itself to drive power tube to heat the heating plate. The bridge circuit consisted of thermistor and PID regulation ensure that the temperature can be controlled at 37 °C with a correctness of ± 0.2 °C and a fluctuation of ± 0.1 °C.

  5. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    Science.gov (United States)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  6. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    International Nuclear Information System (INIS)

    Jang, Yu Jin

    2013-01-01

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  7. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yu Jin [Dongguk University, GyeongJu (Korea, Republic of)

    2013-07-15

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  8. Design of laser diode driver with constant current and temperature control system

    Science.gov (United States)

    Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang

    2017-10-01

    A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.

  9. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  10. Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

    OpenAIRE

    Shengqi Yu; Jinwei Zhao

    2017-01-01

    This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output p...

  11. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    Directory of Open Access Journals (Sweden)

    Juliang Cao

    2015-12-01

    Full Text Available The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  12. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  13. Design of high precision temperature control system for TO packaged LD

    Science.gov (United States)

    Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan

    2017-10-01

    Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.

  14. Temperature measurement and control system for transtibial prostheses: Functional evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2018-01-01

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  15. Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection.

    Science.gov (United States)

    Metzner, Julia; Luckert, Katrin; Lemuth, Karin; Hämmerle, Martin; Moos, Ralf

    2018-04-24

    The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide⁻hydroquinone⁻horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.

  16. Automatic Thermal Control System with Temperature Difference or Derivation Feedback

    Directory of Open Access Journals (Sweden)

    Darina Matiskova

    2016-02-01

    Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.

  17. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    International Nuclear Information System (INIS)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-01-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)

  18. Modeling and simulation of control system response to temperature disturbances in a coupled heat exchangers-AHTR system

    International Nuclear Information System (INIS)

    Skavdahl, I.; Utgikar, V.P.; Christensen, R.; Sabharwall, P.; Chen, M.; Sun, X.

    2016-01-01

    Highlights: • Control architecture defined for nuclear reactor-coupled heat exchangers system. • MATLAB code developed for simulation of system response for various temperature disturbances in the system. • Control system effective in maintaining controlled variables at desired set points. • New equilibrium steady state established using controllers. • Adaptive control system capable of switching manipulated variables based on system constraints. - Abstract: An effective control strategy is essential for maintaining optimum operational efficiency of the Advanced High Temperature Reactor (AHTR)-intermediate heat exchanger (IHX)-secondary heat exchanger (SHX) system for power conversion or process heat applications. A control system design is presented in this paper for the control of the coupled intermediate and secondary heat exchangers. The cold side outlet temperature of the SHX (T_c_o) and the hot side outlet temperature of the IHX (T_h_o_2) were identified as the controlled variables that were maintained at their set points by manipulating the flow rates of heat exchange media. Transfer functions describing the relationships between the controlled variables and the manipulated and load variables were developed and the system response to various temperature disturbances was simulated using a custom-developed MATLAB program. It was found that a step disturbance of ±10 °C in the process loop changed the thermal duty by ±650 kW, equal to 6.5% of the initial duty. Similar disturbances in the primary loop had a higher impact on the system. The control system design included a provision for the switching of manipulated variables to limit the adjustment in the magnitudes of the primary manipulated variables. Simulation results indicate that the controlled variables are maintained successfully at their desired points by the control system.

  19. Modeling and simulation of control system response to temperature disturbances in a coupled heat exchangers-AHTR system

    Energy Technology Data Exchange (ETDEWEB)

    Skavdahl, I. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Utgikar, V.P., E-mail: vutgikar@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Christensen, R. [Nuclear Engineering Program, University of Idaho, Idaho Falls, ID 83402 (United States); Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Chen, M.; Sun, X. [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2016-04-15

    Highlights: • Control architecture defined for nuclear reactor-coupled heat exchangers system. • MATLAB code developed for simulation of system response for various temperature disturbances in the system. • Control system effective in maintaining controlled variables at desired set points. • New equilibrium steady state established using controllers. • Adaptive control system capable of switching manipulated variables based on system constraints. - Abstract: An effective control strategy is essential for maintaining optimum operational efficiency of the Advanced High Temperature Reactor (AHTR)-intermediate heat exchanger (IHX)-secondary heat exchanger (SHX) system for power conversion or process heat applications. A control system design is presented in this paper for the control of the coupled intermediate and secondary heat exchangers. The cold side outlet temperature of the SHX (T{sub co}) and the hot side outlet temperature of the IHX (T{sub ho2}) were identified as the controlled variables that were maintained at their set points by manipulating the flow rates of heat exchange media. Transfer functions describing the relationships between the controlled variables and the manipulated and load variables were developed and the system response to various temperature disturbances was simulated using a custom-developed MATLAB program. It was found that a step disturbance of ±10 °C in the process loop changed the thermal duty by ±650 kW, equal to 6.5% of the initial duty. Similar disturbances in the primary loop had a higher impact on the system. The control system design included a provision for the switching of manipulated variables to limit the adjustment in the magnitudes of the primary manipulated variables. Simulation results indicate that the controlled variables are maintained successfully at their desired points by the control system.

  20. Improved energy performance of ammonia recycling system using floating condensing temperature control

    International Nuclear Information System (INIS)

    Lu, Wei; Meng, Zhuo; Sun, Yize; Zhong, Qianwen; Zhu, Helei

    2016-01-01

    Highlights: • Thermodynamic models for the compressor and evaporative condenser were developed. • An evaluation index was proposed to determine the optimal set point. • An algorithm was presented to compute the optimal set point. • Strategies for operating ammonia recycling system were proposed. - Abstract: Aiming at reducing the energy-consumption of ammonia recycling system, we presented floating condensing temperature control to maximize the coefficient of performance (COP) of the system. Firstly, thermodynamic models for the compressor and evaporative condenser were developed respectively. Then, an evaluation index and a solution scheme were proposed to determine the optimal set point of condensing temperature and the corresponding compressor speed. It is found that the system COP can be maximized by controlling the compressor speed to adjust the set point based on any given operating conditions. When the wet-bulb temperature is 22 °C, the system COP could be improved by 19.2–27.6% under floating condensing temperature control.

  1. Evaporator Superheat Control With One Temperature Sensor Using Qualitative System Knowledge

    DEFF Research Database (Denmark)

    Vinther, Kasper; Hillerup Lyhne, Casper; Baasch Sørensen, Erik

    2012-01-01

    This paper proposes a novel method for superheat control using only a single temperature sensor at the outlet of the evaporator, while eliminating the need for a pressure sensor. An inner loop controls the outlet temperature and an outer control loop provides a reference set point, which is based...... filling of the evaporator, with only one temperature sensor. No a priori model knowledge was used and it is anticipated that the method is applicable on a wide variety of refrigeration systems....

  2. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  3. Fermilab linac upgrade side coupled cavity temperature control system

    International Nuclear Information System (INIS)

    Crisp, J.; Satti, J.

    1991-05-01

    Each cavity section has a temperature control system which maintains the resonant frequency by exploiting the 17.8 ppm/degree C frequency sensitivity of the copper cavities. Each accelerating cell has a cooling tube brazed azimuthally to the outside surface. Alternate supply and return connection to the water manifolds reduce temperature gradients and maintain physical alignment of the cavity string. Special tubing with spiral inner fins and large flow rate are used to reduce the film coefficient. Temperature is controlled by mixing chilled water with the water circulating between the cavity and the cooling skid located outside the radiation enclosure. Chilled water flow is regulated with a valve controlled by a local microcomputer. The temperature loop set point will be obtained from a slower loop which corrects the phase error between the cavity section and the rf drive during normal beam loaded conditions. Time constants associated with thermal gradients induced in the cavity with the rf power require programming it to the nominal 7.1 MW level over a 1 minute interval to limit the reverse power. 4 refs., 4 figs

  4. Control of supply temperature

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, H; Nielsen, T S; Soegaard, H T

    1996-09-01

    For many district heating systems, e.g. the system in Hoeje Taastrup, it is desirable to minimize the supply temperature from the heat production unit(s). Lower supply temperature implies lower costs in connection with the production and distribution of heat. Factors having impact on the heat demand are for instance solar radiation, wind speed, wind direction and a climate independent part, which is a function of the time of the day/week/year. By applying an optimization strategy, which minimizes the supply temperature, it is assumed that optimal economical operation can be obtained by minimizing the supply temperature and thereby the heat losses in the system. The models and methods described in this report take such aspects into account, and can therefore be used as elements in a more efficient minimization of the supply temperature. The theoretical part of this report describes models and methods for optimal on-line control of the supply temperature in district heating systems. Some of the models and methods have been implemented - or are going to be implemented - in the computer program PRESS which is a tool for optimal control of supply temperature and forecasting of heat demand in district heating systems. The principles for using transfer function models are briefly described. The ordinary generalized predictive control (OGPC) method is reviewed, and several extensions of this method are suggested. New controller, which is called the extended generalized predictive controller (XGPC), is described. (EG) 57 refs.

  5. Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator

    Science.gov (United States)

    Shafiudin, S.; Kholis, N.

    2018-04-01

    Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).

  6. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  7. Versatile microcomputer-based temperature controller

    International Nuclear Information System (INIS)

    Yarberry, V.R.

    1980-09-01

    The wide range of thermal responses required in laboratory and scientific equipment requires a temperature controller with a great deal of flexibility. While a number of analog temperature controllers are commercially available, they have certain limitations, such as inflexible parameter control or insufficient precision. Most lack digital interface capabilities--a necessity when the temperature controller is part of a computer-controlled automatic data acquisition system. We have developed an extremely versatile microcomputer-based temperature controller to fulfill this need in a variety of equipment. The control algorithm used allows optimal tailoring of parameters to control overshoot, response time, and accuracy. This microcomputer-based temperature controller can be used as a standalone instrument (with a teletype used to enter para-meters), or it can be integrated into a data acquisition system

  8. Neuro-PID tracking control of a discharge air temperature system

    International Nuclear Information System (INIS)

    Zaheer-uddin, M.; Tudoroiu, N.

    2004-01-01

    In this paper, the problem of improving the performance of a discharge air temperature (DAT) system using a PID controller and augmenting it with neural network based tuning and tracking functions is explored. The DAT system is modeled as a SISO (single input single output) system. The architecture of the real time neuro-PID controller and simulation results obtained under realistic operating conditions are presented. The neural network assisted PID tuning method is simple to implement. Results show that the network assisted PID controller is able to track both constant and variable set point trajectories efficiently in the presence of disturbances acting on the DAT system

  9. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  10. Simulation of the fuzzy-smith control system for the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Li Deheng; Xu Xiaolin; Zheng Jie; Guo Renjun; Zhang Guifen

    1997-01-01

    The Fuzzy-Smith pre-estimate controller to solve the control of the big delay system is developed, accompanied with the development of the mathematical model of the 10 MW high temperature gas cooled test reactor (HTR-10) and the design of its control system. The simulation results show the Fuzzy-Smith pre-estimate controller has the advantages of both fuzzy control and Smith pre-estimate controller; it has better compensation to the delay and better adaptability to the parameter change of the control object. So it is applicable to the design of the control system for the high temperature gas cooled reactor

  11. Realization of the Energy Saving of the Environmental Examination Device Temperature Control System in Consideration of Temperature Characteristics

    Science.gov (United States)

    Onogaki, Hitoshi; Yokoyama, Shuichi

    The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.

  12. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  13. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  14. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    Science.gov (United States)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  15. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    International Nuclear Information System (INIS)

    Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type

  16. Novel temperature control technique for a medicinal herb dryer system powered by a photovoltaic array

    International Nuclear Information System (INIS)

    Abd El-Shafy A Nafeh; Hanaa M Fargali; Faten H Fahmy; Mohamed A Hassan

    2006-01-01

    Each plant has its own optimal drying temperature, especially for the medicinal herbs, because they are sensitive to heat. If the drying temperature becomes more than the optimal value, some chemical reactions will occur and influence the quality of the dried herb, such as color, taste, and aroma. While if the drying temperature becomes lower than the optimal value, the drying process will slow down; and consequently an expected degradation in the quality of the herb may occur, due to insects and fungi infestation which increase in moist conditions. This paper presents a new temperature control technique for a medicinal herb dryer system. The technique fixes the drying temperature of the medicinal herbs at 40 degree C, even in cases of rapidly changing atmospheric conditions. The control of the dryer temperature is achieved through using the proportional integral (PI) controller. The designed dryer contains two systems, which are the thermal and the electrical systems. The thermal system is designed to heat the drying air by using the solar energy and bio-gas fuel. Whereas, the electrical system, which contains a photovoltaic (PV) modules and a battery, is designed to supply the different electrical loads of the dryer system. The control technique is investigated through simulation work by using MATLAB-SIMULINK. The simulation results indicate the high capability of the proposed technique in controlling the drying temperature, even in cases of rapidly changing atmospheric conditions

  17. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    Science.gov (United States)

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  18. Design of automatic control system of temperature in radon chamber controlled by air-condition based on 485 BUS

    International Nuclear Information System (INIS)

    Man Zaigang; Wang Renbo; Zhang Xiongjie; Zhu Zhifu; Tang Bin

    2009-01-01

    Radon chamber can be widely used in various radon measurement instruments for calibration, testing and radon environment experiment. According to requisition, radon chamber temperature should be controllable from +10 degree C to +30 degree C, and the temperature control accuracy of the system reaches ±1 degree C. The design of automatic temperature controlled by air-condition based on 485 BUS is introduced. The software and hardware techniques of how the ATMEL89S52 micro controller controls air-condition and communicates with computer are elaborated on. (authors)

  19. Automation Of An Analogue Temperature Control System For Chlorination Process Of Zircon Sand In A Bricket Form

    International Nuclear Information System (INIS)

    Triyono; Wasito, Bangun; Aryadi

    2000-01-01

    Automation of an analogue temperature control system for chlorination process of zircon sand in a bricket form has been carried out. Principally, automation of an analogue temperature control is a simple and a closed loop system model controller. The used controller system is an ON-OFF model thermocople probe as a sensor. The output system is in the form of ON-OFF relay which is connected to contactor relay, so that it is able to serve the chlorination furnace. The prepared automatic temperature control system for chlorination process of zircon sand has been continuously tested at temperatures between 800 to 1050 o C. This required heating times between 8 to 17 minutes

  20. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    Temperature changes in PEM fuel cell stacks are considerably higher during load variations and have a negative impact as they generate thermal stresses and stack degradation. Cell hydration is also of vital importance in fuel cells and it is strongly dependent on operating temperature....... A combination of high temperature and reduced humidity increases the degradation rate. Stack thermal management and control are, thus, crucial issues in PEM fuel cell systems especially in automotive applications such as forklifts. In this paper we present a control–oriented dynamic model of a liquid–cooled PEM...... fuel cell system for studying temperature variations over fast load changes. A temperature dependent cell polarization and hydration model integrated with the compressor, humidifier and cooling system are simulated in dynamic condition. A feedback PID control was implemented for stack cooling...

  1. Temperature control of an automotive engine cooling system utilizing a magneto-rheological fan clutch

    International Nuclear Information System (INIS)

    Kim, Eun-Seok; Choi, Seung-Bok; Park, Young-Gee; Lee, Soojin

    2010-01-01

    In this note, the temperature control of an automotive engine cooling system is undertaken using a magneto-rheological (MR) fluid-based fan clutch (MR fan clutch in short). In order to achieve this goal, an appropriate size of controllable fan clutch using an MR fluid is firstly devised by considering the design parameters of a conventional fan clutch to reflect the practical application. Then, the principal design parameters of the MR fan clutch such as the length of the disc are optimally determined through finite element analysis. The drum-type MR fan clutch is manufactured and its time response to input current is experimentally evaluated. A robust sliding mode controller is then formulated by treating the time constant of the fan clutch system as an uncertain parameter. After identifying the relationship between angular velocity of the MR fan clutch and the temperature of the cooling system, the sliding mode controller is experimentally realized for the cooling system. It has been clearly demonstrated that the proposed sliding mode controller follows well the desired temperature with a small regulating error. It is expected from this feasibility work that the proposed control system associated with an MR fan clutch can be effectively utilized for the automotive cooling system to improve the fuel efficiency. (technical note)

  2. Analysis of maizena drying system using temperature control based fuzzy logic method

    Science.gov (United States)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  3. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  4. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  5. Simulations of adaptive temperature control with self-focused hyperthermia system for tumor treatment.

    Science.gov (United States)

    Hu, Jiwen; Ding, Yajun; Qian, Shengyou; Tang, Xiangde

    2013-01-01

    The control problem in ultrasound therapy is to destroy the tumor tissue while not harming the intervening healthy tissue with a desired temperature elevation. The objective of this research is to present a robust and feasible method to control the temperature distribution and the temperature elevation in treatment region within the prescribed time, which can improve the curative effect and decrease the treatment time for heating large tumor (≥2.0cm in diameter). An adaptive self-tuning-regulator (STR) controller has been introduced into this control method by adding a time factor with a recursive algorithm, and the speed of sound and absorption coefficient of the medium is considered as a function of temperature during heating. The presented control method is tested for a self-focused concave spherical transducer (0.5MHz, 9cm aperture, 8.0cm focal length) through numerical simulations with three control temperatures of 43°C, 50°C and 55°C. The results suggest that this control system has adaptive ability for variable parameters and has a rapid response to the temperature and acoustic power output in the prescribed time for the hyperthermia interest. There is no overshoot during temperature elevation and no oscillation after reaching the desired temperatures. It is found that the same results can be obtained for different frequencies and temperature elevations. This method can obtain an ellipsoid-shaped ablation region, which is meaningful for the treatment of large tumor. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Temperature Control Diagnostics for Sample Environments

    International Nuclear Information System (INIS)

    Santodonato, Louis J.; Walker, Lakeisha M.H.; Church, Andrew J.; Redmon, Christopher Mckenzie

    2010-01-01

    In a scientific laboratory setting, standard equipment such as cryocoolers are often used as part of a custom sample environment system designed to regulate temperature over a wide range. The end user may be more concerned with precise sample temperature control than with base temperature. But cryogenic systems tend to be specified mainly in terms of cooling capacity and base temperature. Technical staff at scientific user facilities (and perhaps elsewhere) often wonder how to best specify and evaluate temperature control capabilities. Here we describe test methods and give results obtained at a user facility that operates a large sample environment inventory. Although this inventory includes a wide variety of temperature, pressure, and magnetic field devices, the present work focuses on cryocooler-based systems.

  7. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  8. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-10-01

    Full Text Available High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional–integral–derivative (PID neural network (FCPIDNN and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  9. On the temperature control in self-controlling hyperthermia therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Mahyar, E-mail: ebrahimi_m@mehr.sharif.ir

    2016-10-15

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination. - Highlights: • Temperature change pattern in tumor and surrounding tissue are studied. • The model system herein can be useful for treatment strategy determination. • In the work described herein, emphasis is on the effect of low Curie temperature. • If the equilibrium temperature can be tuned appropriately, the stay time will be infinite.

  10. On the temperature control in self-controlling hyperthermia therapy

    International Nuclear Information System (INIS)

    Ebrahimi, Mahyar

    2016-01-01

    In self-controlling hyperthermia therapy, once the desired temperature is reached, the heat generation ceases and overheating is prevented. In order to design a system that generates sufficient heat without thermal ablation of surrounding healthy tissue, a good understanding of temperature distribution and its change with time is imperative. This study is conducted to extend our understanding about the heat generation and transfer, temperature distribution and temperature rise pattern in the tumor and surrounding tissue during self-controlling magnetic hyperthermia. A model consisting of two concentric spheres that represents the tumor and its surrounding tissue is considered and temperature change pattern and temperature distribution in tumor and surrounding tissue are studied. After describing the model and its governing equations and constants precisely, a typical numerical solution of the model is presented. Then it is showed that how different parameters like Curie temperature of nanoparticles, magnetic field amplitude and nanoparticles concentration can affect the temperature change pattern during self-controlling magnetic hyperthermia. The model system herein discussed can be useful to gain insight on the self-controlling magnetic hyperthermia while applied to cancer treatment in real scenario and can be useful for treatment strategy determination. - Highlights: • Temperature change pattern in tumor and surrounding tissue are studied. • The model system herein can be useful for treatment strategy determination. • In the work described herein, emphasis is on the effect of low Curie temperature. • If the equilibrium temperature can be tuned appropriately, the stay time will be infinite.

  11. Controlling LPG temperature for SI engine applications

    International Nuclear Information System (INIS)

    Ceviz, Mehmet Akif; Kaleli, Alirıza; Güner, Erdoğan

    2015-01-01

    In this study, the effects of the LPG temperature on the engine performance and the exhaust emission characteristics have been investigated experimentally on an SI engine. In conventional injection systems, the LPG temperature increases excessively during the phase change in pressure regulator, and reduces the engine volumetric efficiency. According to the test results, engine performance and NO emission characteristics can be improved by controlling the LPG temperature before injecting to the engine intake manifold. A new control system taking into account the results of the study has been developed and tested. In order to control the LPG temperature, the coolant flow rate in pressure regulator circuit was arranged by using a control valve activated by a PID controller unit. Results of the study showed that the engine brake power loss can be increased by about 1.85% and NO emissions can be decreased by about 2% as compared to the operation with the original LPG injection system. - Highlights: • Effects of the LPG temperature have been examined. • Engine performance characteristics and exhaust emissions have been studied. • Results reveal that the LPG temperature should be kept in a range. • A prototype LPG temperature control system has been successfully developed

  12. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    Science.gov (United States)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  13. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  14. Wireless Intelligent Monitoring and Control System of Greenhouse Temperature Based on Fuzzy-PID

    Directory of Open Access Journals (Sweden)

    Mei ZHAN

    2014-03-01

    Full Text Available Control effect is not ideal for traditional control method and wired control system, since greenhouse temperature has such characteristics as nonlinear and longtime lag. Therefore, Fuzzy- PID control method was introduced and radio frequency chip CC1110 was applied to design greenhouse wireless intelligent monitoring and control system. The design of the system, the component of nodes and the developed intelligent management software system were explained in this paper. Then describe the design of the control algorithm Fuzzy-PID. By simulating the new method in Matlab software, the results showed that Fuzzy-PID method small overshoot and better dynamic performance compared with general PID control. It has shorter settling time and no steady-state error compared with fuzzy control. It can meet requirements in greenhouse production.

  15. Design of Water Temperature Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  16. Experiences in control system design aided by interactive computer programs: temperature control of the laser isotope separation vessel

    International Nuclear Information System (INIS)

    Gavel, D.T.; Pittenger, L.C.; McDonald, J.S.; Cramer, P.G.; Herget, C.J.

    1985-01-01

    A robust control system has been designed to regulate temperature in a vacuum vessel. The thermodynamic process is modeled by a set of nonlinear, implicit differential equations. The control design and analysis task exercised many of the computer-aided control systems design software packages, including MATLAB, DELIGHT, and LSAP. The working environment is a VAX computer. Advantages and limitations of the software and environment, and the impact on final controller design is discussed

  17. Experiences in control system design aided by interactive computer programs: Temperature control of the laser isotope separation vessel

    Science.gov (United States)

    Gavel, D. T.; Pittenger, L. C.; McDonald, J. S.; Cramer, P. G.; Herget, C. J.

    A robust control system has been designed to regulate temperature in a vacuum vessel. The thermodynamic process is modeled by a set of nonlinear, implicit differential equations. The control design and analysis task exercised many of the computer-aided control systems design software packages, including MATLAB, DELIGHT, AND LSAP. The working environment is a VAX computer. Advantages and limitations of the software and environment, and the impact on final controller design is discussed.

  18. Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Doaa M. Atia

    2017-05-01

    Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.

  19. Steam temperature control of essential oil extraction system using ...

    African Journals Online (AJOL)

    This research proposed a closed-loop temperature control using a self-tuning fuzzy fractional-order PI (FOPI) controller to overcome the problem. The controller will regulate the steam temperature at a desired level to protect the oil from excessive heat. Self capability of fuzzy rules was found to facilitate the tuning using only ...

  20. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  1. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    Science.gov (United States)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  2. Investigation on multi-variable decoupled temperature control system for enamelling machine with heated air circulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Qin, Le; Zou, Shipeng; Long, Shijun [School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-04-11

    A lots of problems may occur frequently when controlling the temperature of the enamelling machine oven in the real industrial process, such as multi-variable coupled problem. an experimental rig with triple inputs and triple outputs was devised and a simulation modeling was established accordingly in this study,. the temperature control system based on the feedforward compensation algorithm was proposed. Experimental results have shown that the system is of high efficiency, good stability and promising application.

  3. Digital control programmer for temperature control

    International Nuclear Information System (INIS)

    Rajore, S.B.; Kumar, S.V.

    1993-01-01

    This report describes a PC based digital control programmer for controlling and programming temperature of a high vacuum resistance heating furnace and the software developed to control power using PID algorithm. It also describes the amplifier specially developed to suit the input requirement of the non-standard W5 thermocouple and the software and hardware protections introduced in the system. (author). 5 refs., 8 figs., 1 appendix

  4. Temperature measurement and control system for transtibial prostheses: Single subject clinical evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Masoumi, Mehdi; Safari, Mohammad Reza

    2018-01-01

    The snug fit of a prosthetic socket over the residual limb can disturb thermal balance and put skin integrity in jeopardy by providing an unpleasant and infectious environment. The prototype of a temperature measurement and control (TM&C) system was previously introduced to resolve thermal problems related to prostheses. This study evaluates its clinical application in a setting with reversal, single subject design. The TM&C system was installed on a fabricated prosthetic socket of a man with unilateral transtibial amputation. Skin temperature of the residual limb without prosthesis at baseline and with prosthesis during rest and walking was evaluated. The thermal sense and thermal comfort of the participant were also evaluated. The results showed different skin temperature around the residual limb with a temperature decrease tendency from proximal to distal. The TM&C system decreased skin temperature rise after prosthesis wearing. The same situation occurred during walking, but the thermal power of the TM&C system was insufficient to overcome heat build-up in some regions of the residual limb. The participant reported no significant change of thermal sense and thermal comfort. Further investigations are warranted to examine thermography pattern of the residual limb, thermal sense, and thermal comfort in people with amputation.

  5. Method of controlling temperature of a thermoelectric generator in an exhaust system

    Science.gov (United States)

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  6. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  7. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    Sutherland, R.A.; Menard, T.; Perry, J.L.; Penn, D.C.

    1998-01-01

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  8. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  9. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  10. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  11. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  12. Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.

    Science.gov (United States)

    Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng

    2015-07-01

    Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.

  13. Managing Temperature Effects in Nanoscale Adaptive Systems

    CERN Document Server

    Wolpert, David

    2012-01-01

    This book discusses new techniques for detecting, controlling, and exploiting the impacts of temperature variations on nanoscale circuits and systems.  It provides a holistic discussion of temperature management, including physical phenomena (reversal of the MOSFET temperature dependence) that have recently become problematic, along with circuit techniques for detecting, controlling, and adapting to these phenomena. A detailed discussion is also included of the general aspects of thermal-aware system design and management of temperature-induced faults. A new sensor system is described that can determine the temperature dependence as well as the operating temperature to improve system reliability.  A new method is presented to control a circuit’s temperature dependence by individually tuning pull-up and pull-down networks to their temperature-insensitive operating points. This method extends the range of supply voltages that can be made temperature-insensitive, achieving insensitivity at nominal voltage fo...

  14. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  15. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bakerenkov, A.S., E-mail: as_bakerenkov@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Belyakov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Kozyukov, A.E. [Joint-Stock Company Institute of Space Device Engineering (JSC ISDE), Moscow (Russian Federation); Pershenkov, V.S.; Solomatin, A.V.; Shurenkov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-02-11

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented.

  16. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    International Nuclear Information System (INIS)

    Bakerenkov, A.S.; Belyakov, V.V.; Kozyukov, A.E.; Pershenkov, V.S.; Solomatin, A.V.; Shurenkov, V.V.

    2015-01-01

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented

  17. 30 CFR 77.314 - Automatic temperature control instruments.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic temperature control instruments. 77... UNDERGROUND COAL MINES Thermal Dryers § 77.314 Automatic temperature control instruments. (a) Automatic temperature control instruments for thermal dryer system shall be of the recording type. (b) Automatic...

  18. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  19. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  20. Test results of HTTR control system

    International Nuclear Information System (INIS)

    Motegi, Toshihiro; Iigaki, Kazuhiko; Saito, Kenji; Sawahata, Hiroaki; Hirato, Yoji; Kondo, Makoto; Shibutani, Hideki; Ogawa, Satoru; Shinozaki, Masayuki; Mizushima, Toshihiko; Kawasaki, Kozo

    2006-06-01

    The plant control performance of the IHX helium flow rate control system, the PPWC helium flow rate control system, the secondary helium flow rate control system, the inlet temperature control system, the reactor power control system and the outlet temperature control system of the HTTR are obtained through function tests and power-up tests. As the test results, the control systems show stable control response under transient condition. Both of inlet temperature control system and reactor power control system shows stable operation from 30% to 100%, respectively. This report describes the outline of control systems and test results. (author)

  1. Advances on development of suction and temperature controlled oedometer cell

    International Nuclear Information System (INIS)

    Ye Weimin; Zhang Yawei; Chen Bao; Wang Min

    2010-01-01

    Oedometer cells for unsaturated soils can be classified into two types, that is, conventional unsaturated oedometer cells (high-suction unsaturated oedometer cell, high-suction and high-pressure unsaturated oedometer cell) and temperature controlled unsaturated oedometer cells. Among them, the osmotic, vapor equilibrium and axis translation techniques are often employed for suction control. The thermostat bath method and thermostatically controlled heater method are commonly used for temperature control. The lever loading system, hydraulic loading system and air pressure loading system are commonly means used for vertical pressure. Combination of osmotic (or axis translation) technique with vapor equilibrium method employed for the full range suction control, thermostatically liquid temperature control method, and the hydraulic loading system, could be used for suction, temperature and loading control in the design for unsaturated oedometer cells in the future, which can be used for study of buffer/backfill materials under high-temperature, high pressure and full range suction conditions. (authors)

  2. Recycling temperature elevation device and temperature control method for control rod driving system

    International Nuclear Information System (INIS)

    Okamura, Hajime.

    1996-01-01

    The present invention concerns a device for and a method of controlling a recycling temperature control device for control rod drives (CRD) of a nuclear power plant, which can prevent occurrence of cavitation and keep the amount of cooling water to be transferred to a water source transfer pipeline thereby improving maintenanciability, operationability and reliability. Namely, a supply pipeline supplies cooling water required for the control rod drives from a water source. A CRD pump elevates the pressure of the cooling water. A recycling pipeline is branched from the downstream of the CRD pump of the supply pipeline and connected to the supply pipeline at the upstream of the CRD pump. A first pressure element and a restricting valve disposed at the upstream thereof are connected to the upstream of the CRD pump and the water source transfer pipeline. The water source transfer pipeline is branched from the recycling pipeline and connected to the water source. A second pressure element is disposed to a recycling pipeline at the downstream of the branched point from the water source transfer pipeline. (I.S.)

  3. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...

  4. Comparison of two temperature control techniques in a forced water heater solar system

    Science.gov (United States)

    Hernández, E.; E Guzmán, R.; Santos, A.; Cordoba, E.

    2017-12-01

    a study on the performance of a forced solar heating system in which a comparative analysis of two control strategies, including the classic on-off control and PID control is presented. From the experimental results it was found that the two control strategies show a similar behaviour in the solar heating system forced an approximate settling time of 60 min and over-elongation 2°C for the two control strategies. Furthermore, the maximum temperature in the storage tank was 46°C and the maximum efficiency of flat plate collector was 76.7% given that this efficiency is the ratio of the energy of the radiation on the collector and the energy used to heat water. The efficiency obtained is a fact well accepted because the business efficiencies of flat plate collectors are approximately 70%.

  5. Model predictive control of room temperature with disturbance compensation

    Science.gov (United States)

    Kurilla, Jozef; Hubinský, Peter

    2017-08-01

    This paper deals with temperature control of multivariable system of office building. The system is simplified to several single input-single output systems by decoupling their mutual linkages, which are separately controlled by regulator based on generalized model predictive control. Main part of this paper focuses on the accuracy of the office temperature with respect to occupancy profile and effect of disturbance. Shifting of desired temperature and changing of weighting coefficients are used to achieve the desired accuracy of regulation. The final structure of regulation joins advantages of distributed computing power and possibility to use network communication between individual controllers to consider the constraints. The advantage of using decoupled MPC controllers compared to conventional PID regulators is demonstrated in a simulation study.

  6. Temperature control characteristics analysis of lead-cooled fast reactor with natural circulation

    International Nuclear Information System (INIS)

    Yang, Minghan; Song, Yong; Wang, Jianye; Xu, Peng; Zhang, Guangyu

    2016-01-01

    Highlights: • The LFR temperature control system are analyzed with frequency domain method. • The temperature control compensator is designed according to the frequency analysis. • Dynamic simulation is performed by SIMULINK and RELAP5-HD. - Abstract: Lead-cooled Fast Reactor (LFR) with natural circulation in primary system is among the highlights in advance nuclear reactor research, due to its great superiority in reactor safety and reliability. In this work, a transfer function matrix describing coolant temperature dynamic process, obtained by Laplace transform of the one-dimensional system dynamic model is developed in order to investigate the temperature control characteristics of LFR. Based on the transfer function matrix, a close-loop coolant temperature control system without compensator is built. The frequency domain analysis indicates that the stability and steady-state of the temperature control system needs to be improved. Accordingly, a temperature compensator based on Proportion–Integration and feed-forward is designed. The dynamic simulation of the whole system with the temperature compensator for core power step change is performed with SIMULINK and RELAP5-HD. The result shows that the temperature compensator can provide superior coolant temperature control capabilities in LFR with natural circulation due to the efficiency of the frequency domain analysis method.

  7. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Li, M M; Liu, C; Liang, J S; Wu, C B; Xu, Z

    2006-01-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC

  8. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  9. ESBWR power maneuvering via feedwater temperature control

    International Nuclear Information System (INIS)

    Saha, P.; Marquino, W.; Tucker, L. J.

    2008-01-01

    The ESBWR is a Generation III+ Boiling Water Reactor (BWR) driven by natural circulation. For a given geometry/hardware, system pressure, downcomer water level and feedwater temperature, the core flow rate in the ESBWR is only a function of reactor power, controlled through the control blade movement. In order to provide operational flexibility, another method of core-wide or global power maneuvering via feedwater temperature control has been developed. This is independent of power maneuvering via control blade movement, and it lowers the linear heat generation rate (LHGR) changes near the tip of control blades, which improves fuel reliability. All required stability, anticipated operational occurrences (AOOs), infrequent events, special events including anticipated transients without scram (ATWS), and loss-of-coolant accident (LOCA) analyses have been performed for the 4500 MWt ESBWR. Based on the results of these analyses at 'high', nominal and 'low' feedwater temperatures, a safe Power - Feedwater Temperature operating domain has been developed. This paper summarizes the results of these analyses and presents the ESBWR Power - Feedwater Temperature operating domain or map. (authors)

  10. Experimental evaluation of radiator control based on primary supply temperature for district heating substations

    International Nuclear Information System (INIS)

    Gustafsson, Jonas; Delsing, Jerker; Deventer, Jan van

    2011-01-01

    Highlights: → We compared a new radiator system control approach with traditional control. → This is an experimental verification of previous simulation results. → We examine changes in delta-T and indoor comfort. → The indoor comfort were not affected by the introduction of alt. radiator control. → The alternative control method can contribute to an increased delta-T. -- Abstract: In this paper, we evaluate whether the primary supply temperature in district heating networks can be used to control radiator systems in buildings connected to district heating; with the purpose of increasing the ΔT. The primary supply temperature in district heating systems can mostly be described as a function of outdoor temperature; similarly, the radiator supply temperature in houses, offices and industries can also be described as a function of outdoor temperature. To calibrate the radiator control system to produce an ideally optimal radiator supply temperature that produces a maximized ΔT across the substation, the relationship between the primary supply temperature and outdoor temperature must be known. However, even if the relation is known there is always a deviation between the expected primary supply temperature and the actual temperature of the received distribution media. This deviation makes the radiator control system incapable of controlling the radiator supply temperature to a point that would generate a maximized ΔT. Published simulation results show that it is possible and advantageous to utilize the primary supply temperature for radiator system control. In this paper, the simulation results are experimentally verified through implementation of the control method in a real district heating substation. The primary supply temperature is measured by the heat-meter and is shared with the radiator control system; thus no additional temperature sensors were needed to perform the experiments. However additional meters were installed for surveillance purposes

  11. Design of temperature monitoring system based on CAN bus

    Science.gov (United States)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  12. MRI feedback temperature control for focused ultrasound surgery

    International Nuclear Information System (INIS)

    Vanne, A; Hynynen, K

    2003-01-01

    A temperature feedback controller routine using a physical model for temperature evolution was developed for use with focused ultrasound surgery. The algorithm for the controller was a multi-input, single-output linear quadratic regulator (LQR) derived from Pennes' bioheat transfer equation. The controller was tested with simulated temperature data that had the same characteristics as those obtained with magnetic resonance imaging (MRI). The output of the controller was the appropriate power level to be used by the transducer. Tissue parameters estimated prior to the simulated treatments were used to determine the controller parameters. The controller performance was simulated in three dimensions with varying system parameters, and sufficient temperature tracking was achieved. The worst-case overshoot was 7 deg. C and the steady-state error was 5 deg. C. The simulated behaviour of the controller suggests satisfactory performance and that the controller may be useful in controlling the power output during MRI-monitored ultrasound surgery

  13. Development of a DOAS System for ToTAL-DOAS Applications with Temperature Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Javier A; Frins, Erna, E-mail: jramos@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, UdelaR (Uruguay)

    2011-01-01

    The ToTAL -DOAS (Topographic Target Light scattering - Differential optical Absorption Spectroscopy) is a novel atmospheric monitoring technique. The aim of our work has been enhancing a prototype, previously assembled within our research group, adding to it a temperature control and developing specific control software. The whole system offers the possibility of two dimension movement for spectra acquisition with a telescope of a field of view of approximately 0.03{sup 0}, which let in signals in the near-UV and visible spectral range. The enhanced DOAS system is intended to be located on the roof of our faculty building to monitor SO2 and NO2 traces above the city of Montevideo. We are presenting the results of device's characterization.

  14. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tang, Yihuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, and their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.

  15. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  16. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  17. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  18. PID temperature controller in pig nursery: spatial characterization of thermal environment.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-28

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  19. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  20. Changes of NSSS control system setpoint for operation at reduced temperature at YGN 3 and 4

    International Nuclear Information System (INIS)

    Song, I. H.; Son, S. H.; Lee, K. C.; Son, J. J.; Seo, J. T.; Lee, S. H.; Park, W. K.; Hwang, H. C.; Lee, J. H.

    2003-01-01

    The differences of the design operational conditions and best estimate operational conditions, which were expected to be conditions during the plant operation, during the application of operation at reduced temperature at YGN 3 and 4 are larger than those during the construction period. Therefore, each sets of NSSS control system setpoints were generated for ORT design operational condition and for ORT best estimate operational condition. The analytical results shows that the plant performance requirements are satisfied by changing the NSSS control system setpoints for each operational conditions. The NSSS control system setpoints were changed after power operation after application of the ORT due to unexpected mismatch of plant conditions from the best estimate operational conditions. The plant conditions are needed to be monitored cycle by cycle for the detection of such conditions which requires the changing of the NSSS control system

  1. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    Science.gov (United States)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  2. A temperature-controlled cell for X-ray study of liquid systems using a commercial DRON-UM1 diffractometer

    International Nuclear Information System (INIS)

    Petrun'kin, S.P.; Garavina, E.V.; Trostin, V.N.

    1995-01-01

    A container (cell) and a temperature-control system have been designed enabling one to carry out x-ray diffraction study of liquid samples both at a fixed temperature and within a certain temperature range using a commercial DRON-UMl x-ray diffractometer. Special features of the cell and the materials used for it allow one to study both chemically inert and corrosive liquids

  3. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Science.gov (United States)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  4. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  5. A film bulk acoustic resonator-based high-performance pressure sensor integrated with temperature control system

    International Nuclear Information System (INIS)

    Zhang, Mengying; Zhao, Zhan; Du, Lidong; Fang, Zhen

    2017-01-01

    This paper presented a high-performance pressure sensor based on a film bulk acoustic resonator (FBAR). The support film of the FBAR chip was made of silicon nitride and the part under the resonator area was etched to enhance the sensitivity and improve the linearity of the pressure sensor. A micro resistor temperature sensor and a micro resistor heater were integrated in the chip to monitor and control the operating temperature. The sensor chip was fabricated, and packaged in an oscillator circuit for differential pressure detection. When the detected pressure ranged from  −100 hPa to 600 hPa, the sensitivity of the improved FBAR pressure sensor was  −0.967 kHz hPa −1 , namely  −0.69 ppm hPa −1 , which was 19% higher than that of existing sensors with a complete support film. The nonlinearity of the improved sensor was less than  ±0.35%, while that of the existing sensor was  ±5%. To eliminate measurement errors from humidity, the temperature control system integrated in the sensor chip controlled the temperature of the resonator up to 75 °C, with accuracy of  ±0.015 °C and power of 20 mW. (paper)

  6. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector

    International Nuclear Information System (INIS)

    Ceylan, İlhan; Ergun, Alper

    2013-01-01

    Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C

  7. AUTOMATIC CONTROL SYSTEM FOR REGULATED HIGH TEMPERATURE MAIN COMBUSTION CHAMBER OF MANEUVERABLE AIRCRAFT MULTIMODE GAS TURBINE ENGINE

    Directory of Open Access Journals (Sweden)

    T. V. Gras’Ko

    2014-01-01

    Full Text Available The paper describes choosing and substantiating the control laws, forming the appearance the automatic control system for regulated high temperature main combustion chamber of maneuverable aircraft multimode gas turbine engine aimed at sustainable and effective functioning of main combustion chamber within a broad operation range.

  8. Design of a distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, O [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A digital computer is used to evaluate various pressure control systems for a gaseous diffusion cascade. This is an example of a distributed feedback control system. The paper gives a brief discussion of similar cases of distributed or stage wise control systems, which may occur in multiple temperature control of chemical processes. (author) [French] Une calculatrice digitale est utilisee pour evaluer divers systemes de controle de pression pour une cascade de diffusion gazeuse. C'est un exemple de systeme de controle a reaction distribue. Le rapport presente une breve discussion de cas semblables de systemes de controle distribues ou en etage, qui peuvent se presenter dans de nombreux controles de temperature de reactions chimiques. (auteur)

  9. Research on automatic control system of greenhouse

    Science.gov (United States)

    Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng

    2017-03-01

    This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.

  10. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  11. Control System Based on Anode Offgas Recycle for Solid Oxide Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Shuanghong Li

    2018-01-01

    Full Text Available The conflicting operation objectives between rapid load following and the fuel depletion avoidance as well as the strong interactions between the thermal and electrical parameters make the SOFC system difficult to control. This study focuses on the design of the decoupling control for the thermal and electrical characteristics of the SOFC system through anode offgas recycling (AOR. The decoupling control system can independently manipulate the thermal and electrical parameters, which interact with one another in most cases, such as stack temperatures, burner temperature, system current, and system power. Under the decoupling control scheme, the AOR is taken as a manipulation variable. The burner controller maintains the burner temperature without being affected by abrupt power change. The stack temperature controller properly coordinates with the burner temperature controller to independently modulate the stack thermal parameters. For the electrical problems, the decoupling control scheme shows its superiority over the conventional controller in alleviating rapid load following and fuel depletion avoidance. System-level simulation under a power-changing case is performed to validate the control freedom between the thermal and electrical characteristics as well as the stability, efficiency, and robustness of the novel system control scheme.

  12. Application of high precision temperature control technology in infrared testing

    Science.gov (United States)

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  13. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  14. Micro controller based design of digital transmitters for temperature measurements in reactors

    International Nuclear Information System (INIS)

    Nassar, M.A.M.

    2011-01-01

    Temperature transmitter is one of the most important transmitters in the nuclear reactor it is used for RTD (resistance temperature detector) signal conditioning. It has built-in current excitation, instrumentation amplifier, linearization and current output circuitry which amplifies the RTD signal and gives linearization to it. It is a part of a system to get temperature and monitoring it. This system is very cost and complicated. In this work a digital system is implemented by using micro controller techniques that replaces the existing system, one chip (PIC16f877) is used to build a digital system, which is more accurate and give more performance and low costs . RTD is the sensing element of temperature, its resistance increases with temperature. There are many types of transmitters in the reactor such as temperature, pressure, level and flow but temperature one is chosen because of temperature is one of the most important parameters in process control.

  15. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  16. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  17. In-situ thermoelectric temperature monitoring and "Closed-loop integrated control" system for concentrator photovoltaic-thermoelectric hybrid receivers

    Science.gov (United States)

    Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao

    2017-09-01

    This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.

  18. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  19. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2017-11-07

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  20. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  1. Programmed temperature control of capsule in irradiation test with personal computer at JMTR

    International Nuclear Information System (INIS)

    Saito, H.; Uramoto, T.; Fukushima, M.; Obata, M.; Suzuki, S.; Nakazaki, C.; Tanaka, I.

    1992-01-01

    The capsule irradiation facility is one of various equipments employed at the Japan Materials Testing Reactor (JMTR). The capsule facility has been used in irradiation tests of both nuclear fuels and materials. The capsule to be irradiated consists of the specimen, the outer tube and inner tube with a annular space between them. The temperature of the specimen is controlled by varying the degree of pressure (below the atmospheric pressure) of He gas in the annular space (vacuum-controlled). Beside this, in another system the temperature of the specimen is controlled with electric heaters mounted around the specimen (heater-controlled). The use of personal computer in the capsule facility has led to the development of a versatile temperature control system at the JMTR. Features of this newly-developed temperature control system lie in the following: the temperature control mode for a operation period can be preset prior to the operation; and the vacuum-controlled irradiation facility can be used in cooperation with the heater-controlled. The introduction of personal computer has brought in automatic heat-up and cool-down operations of the capsule, setting aside the hand-operated jobs which had been conducted by the operators. As a result of this, the various requirements seeking a higher accuracy and efficiency in the irradiation can be met by fully exploiting the capabilities incorporated into the facility which allow the cyclic or delicate changes in the temperature. This paper deals with a capsule temperature control system with personal computer. (author)

  2. Prediction models and control algorithms for predictive applications of setback temperature in cooling systems

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung

    2017-01-01

    Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature

  3. Central control of body temperature [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Shaun F. Morrison

    2016-05-01

    Full Text Available Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  4. Control methodologies based on geothermal recirculating aquaculture system

    International Nuclear Information System (INIS)

    Farghally, Hanaa M.; Atia, Doaa M.; El-madany, Hanaa T.; Fahmy, Faten H.

    2014-01-01

    One of the most common uses of geothermal heat is in RAS (recirculation aquaculture systems) where the water temperature is accurately controlled for optimum growing conditions for sustainable and intensive rearing of marine and freshwater fish. This paper presents a design for RAS rearing tank and plate type heat exchanger to be used with geothermal energy as a source of heating water. A well at Umm Huweitat on the Red Sea is used as a source of geothermal energy. The heat losses from the RAS tank are calculated using Geo Heat Center Software. Then a plate type heat exchanger is designed using the epsilon–NTU (number of transfer units) analysis method. For optimal growth and abundance of production, a different techniques of control system are applied to control the water temperature. The total system is built in MATLAB/SIMULINK to study the overall performance of control unit. Finally, a comparison between PI, Fuzzy-PID, and Fuzzy Logic Control has been done. - Highlights: • Design recirculating aquaculture system using geothermal energy. • Design a PI controller for water temperature control. • Design a Fuzzy logic controller for water temperature control. • Design a Fuzzy-PID controller for water temperature control. • Comparison between different control systems

  5. Study on computer-aided control system design platform of 10MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Feng Yan; Shi Lei; Sun Yuliang; Luo Shaojie

    2004-01-01

    the 10 MW high temperature gas-cooled test reactor (HTR-10) is the first modular pebble bed reactor built in China, which needs to be researched on engineering design, control study, safety analysis and operator training. An integrated system for simulation, control design and online assistance of the HTR-10 (HTRSIMU) has been developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University. The HTRSIMU system is based on a high-speed local area network, on which a computer-aided control system design platform (CDP) is developed and combined with the simulating subsystem in order to provide a visualized and convenient tool for the HTR-10 control system design. The CDP has friendly man-machine interface and good expansibility, in which eighteen types of control items are integrated. These control items are divided into two types: linear and non-linear control items. The linear control items include Proportion, Integral, Differential, Inertial, Leed-lag, Oscillation, Pure-lag, Common, PID and Fuzzy, while the non-linear control items include Saturation, Subsection, Insensitive, Backlash, Relay, Insensi-Relay, Sluggish-Relay and Insens-Slug. The CDP provides a visualized platform for control system modeling and the control loop system can be automatically generated and graphically simulated. Users can conveniently design control loop, modify control parameters, study control method, and analyze control results just by clicking mouse buttons. This kind of control system design method can provide a powerful tool and good reference for the actual system operation for HTR-10. A control scheme is also given and studied to demonstrate the functions of the CDP in this article. (author)

  6. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    Science.gov (United States)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  7. On subcooler design for integrated two-temperature supermarket refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, No. 4800, Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    The energy saving opportunity of supermarket refrigeration systems using subcooler between the medium-temperature (MT) refrigeration system and the low-temperature (LT) refrigeration system has been identified in the previous work. This paper presents a model-based comprehensive analysis on the subcooler design. The optimal subcooling control is discussed as well. With optimal subcooler size and subcooling control, the maximum energy savings of integrated two-temperature supermarket refrigeration system using R404A or R134a as working fluid can achieve 27% or 20%, respectively. The load ratio of MT to LT system and the operating conditions have considerable impact on the energy savings. (author)

  8. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  9. Modeling and control of temperature of heat-calibration wind tunnel

    Directory of Open Access Journals (Sweden)

    Li Yunhua

    2012-01-01

    Full Text Available This paper investigates the temperature control of the heat air-flow wind tunnel for sensor temperature-calibration and heat strength experiment. Firstly, a mathematical model was established to describe the dynamic characteristics of the fuel supplying system based on a variable frequency driving pump. Then, based on the classical cascade control, an improved control law with the Smith predictive estimate and the fuzzy proportional-integral-derivative was proposed. The simulation result shows that the control effect of the proposed control strategy is better than the ordinary proportional-integral-derivative cascade control strategy.

  10. Effectiveness of a temperature control system in home induction hobs to reduce acrylamide formation during pan frying

    DEFF Research Database (Denmark)

    Guillen, S.; Oria, R.; Salvador, M. L.

    2017-01-01

    Three trials were conducted to determine the influence of the use of temperature control systems on physico-chemical characteristics and acrylamide formation in the domestic preparation of potatoes. French fries were pre-treated by soaking in water or acidified water, and then they were cooked...

  11. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  12. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  13. Heating systems with PLC and frequency control

    International Nuclear Information System (INIS)

    Abdallah, Salah; Abu-Mallouh, Riyad

    2008-01-01

    In this work, medium capacity controlled heating system is designed and constructed. The programming method of control of heating process is achieved by means of integrated programmable logic controller (PLC) and frequency inverter (FI). The PLC main function is to determine the required temperatures levels and the related time intervals of the heating hold time in the furnace. FI is used to control the dynamic change of temperature between various operating points. The designed system shows the capability for full control of temperature from zero to maximum for any required range of time in case of increasing or decreasing the temperature. All variables of the system will be changed gradually until reaching their needed working points. An experimental study was performed to investigate the effect of tempering temperature and tempering time on hardness and fatigue resistance of 0.4% carbon steel. It was found that increasing tempering temperature above 550 deg. C or tempering time decreases the hardness of the material. It was also found that there is a maximum number of cycles to which the specimen can survive what ever the applied load was

  14. Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new algorithm is proposed for the sensor-less control of methanol concentration. • Two different strategies are used depending on the ambient temperatures. • Energy efficiency of the DMFC system has been improved by using the new algorithm. - Abstract: A new version of an algorithm is used to control the methanol concentration in the feed of DMFC systems without using methanol sensors under varying ambient temperatures. The methanol concentration is controlled indirectly by controlling the temperature of the DMFC stack, which correlates well with the methanol concentration. Depending on the ambient temperature relative to a preset reference temperature, two different strategies are used to control the stack temperature: either reducing the cooling rate of the methanol solution passing through an anode-side heat exchanger; or, lowering the pumping rate of the pure methanol to the depleted feed solution. The feasibility of the algorithm is evaluated using a DMFC system that consists of a 200 W stack and the balance of plant (BOP). The DMFC system includes a sensor-less methanol controller that is operated using a LabView system as the central processing unit. The algorithm is experimentally confirmed to precisely control the methanol concentration and the stack temperature at target values under an environment of varying ambient temperatures

  15. The CEBAF separator cavity resonance control system

    International Nuclear Information System (INIS)

    M. Wissmann; C. Hovater; A. Guerra; T. Plawski

    2005-01-01

    The CEBAF energy upgrade will increase the maximum beam energy from 6 GeV to 12 GeV available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three halls. The resulting increase in RF separator cavity gradient and subsequent increase in RF power needed for these higher energies will require the cavities to have active resonance control. Currently, at the present 4 to 6 GeV energies, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW) which is maintained at a constant temperature of 95 Fahrenheit. This approach is no longer feasible and an active resonance control system that controls both water temperature and flow has been designed and built. The system uses a commercial PLC with embedded PID controls to regulate water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately, closed loop control will be maintained by monitoring each cavity's reflected power. This paper describes this system

  16. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  17. Electronic control system for irradiation probes

    International Nuclear Information System (INIS)

    Gluza, E.; Neumann, J.; Zahalka, F.

    1980-01-01

    The EROS-78 system for the supply and power control of six heating sections of the irradiation probe of the CHOUCA type placed in the reactor vessel is described. The system allows temperature control at the location of the heat sensor with an accuracy of +-1% of the rated value within the region of 100 to 1000 degC. The equipment is provided with its own quartz controlled clock. The temperature is picked up by a chromel-alumel jacket thermocouple. The power input of the heating elements is thyristor controlled. (J.B.)

  18. Enhanced Temperature Control Method Using ANFIS with FPGA

    Directory of Open Access Journals (Sweden)

    Chiung-Wei Huang

    2014-01-01

    Full Text Available Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS using a field-programmable gate array (FPGA to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV inductively-coupled plasma- (ICP- type etcher.

  19. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  20. Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.

    Science.gov (United States)

    Kaya, Azmi

    1982-01-01

    Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…

  1. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  2. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  3. High-throughput reactor system with individual temperature control for the investigation of monolith catalysts

    Science.gov (United States)

    Dellamorte, Joseph C.; Vijay, Rohit; Snively, Christopher M.; Barteau, Mark A.; Lauterbach, Jochen

    2007-07-01

    A high-throughput parallel reactor system has been designed and constructed to improve the reliability of results from large diameter catalysts such as monoliths. The system, which is expandable, consists of eight quartz reactors, 23.5mm in diameter. The eight reactors were designed with separate K type thermocouples and radiant heaters, allowing for the independent measurement and control of each reactor temperature. This design gives steady state temperature distributions over the eight reactors within 0.5°C of a common setpoint from 50to700°C. Analysis of the effluent from these reactors is performed using rapid-scan Fourier transform infrared (FTIR) spectroscopic imaging. The integration of this technique to the reactor system allows a chemically specific, truly parallel analysis of the reactor effluents with a time resolution of approximately 8s. The capabilities of this system were demonstrated via investigation of catalyst preparation conditions on the direct epoxidation of ethylene, i.e., on the ethylene conversion and the ethylene oxide selectivity. The ethylene, ethylene oxide, and carbon dioxide concentrations were calibrated based on spectra from FTIR imaging using univariate and multivariate chemometric techniques. The results from this analysis showed that the calcination conditions significantly affect the ethylene conversion, with a threefold increase in the conversion when the catalyst was calcined for 3h versus 12h at 400°C.

  4. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  5. Controlling systems of cogeneration blocks

    International Nuclear Information System (INIS)

    Suriansky, J.; Suriansky, J. Ml.; Puskajler, J.

    2007-01-01

    In this article the main parts of cogeneration unit control system are described. Article is aimed on electric power measurement with electricity protection as with temperature system regulation. In conclusion of the article, the control algorithm with perspective of cogeneration solve is indicated. (authors)

  6. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  7. Embedded DAQ System Design for Temperature and Humidity Measurement

    International Nuclear Information System (INIS)

    Memon, T.R.

    2013-01-01

    In this work, we have proposed a cost effective DAQ (Data Acquisition) system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench). The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity). Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays. (author)

  8. Application of phosphor thermometry to a Galvanneal Temperature Measurement System

    International Nuclear Information System (INIS)

    Allison, S.W.; Andrews, W.H.; Beshears, D.L.; Cates, M.R.; Childs, R.M.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.

    1999-01-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 450 to 700 degrees C with an accuracy of better than +/-5 Degrees C. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control

  9. Temperature-gated thermal rectifier for active heat flow control.

    Science.gov (United States)

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  10. Automated Temperature Control with Adjusting Outlet Valve of Fuel in the Process of Cooking Palm Sugar

    Science.gov (United States)

    Aripin, H.; Hiron, Nurul; Priatna, Edvin; Busaeri, Nundang; Andang, Asep; Suhartono; Sabchevski, Svilen

    2018-04-01

    In this paper, a real-time temperature control system for coconut sugar cooking is presented. It is based on a thermocouple temperature sensor. The temperature in the closed evaporator is used as a control variable of the DC servo control system for opening and closing of a valve embedded in a gas burner. The output power level, which is necessary in order to reach the target temperature is controlled by the microcontroller ATMega328P. A circuit module for control of the valve and temperature sensors as well as software for data acquisition have been implemented. The test results show that the system properly stabilizes the temperature in the closed evaporator for coconut sugar cooking in the range from room temperature to 110°C. A set point can be reached and held with an accuracy of ±0.75°C at a temperature of 110°C for 60 minutes.

  11. Development of mathematical model and optimal control system of internal temperatures of hot-blast stove process in staggered parallel operation; Netsufuro sushiki model to parallel sofu ni okeru ronai ondo saiteki seigyo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matoba, Y. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Otsuka, K.

    1998-07-01

    A mathematical model and an optimal control system of hot-blast stove process are described. A precise mathematical simulation model of the hot-blast stove was developed and the accuracy of the model has been confirmed. An optimal control system of the thermal conditions of the hot-blast stoves in staggered parallel operation was also developed. By the use of the multivariable optimal regulator and the feedforward compensations for the change of the aimed blast temperature and blast volume, the system is able to control the hot blast temperature and the brick temperature efficiently. The system has been applied to Kashima works. The variations of the blast temperature and the silica brick temperature have been decreased. The ultimate low heat level operations have been realized and the thermal efficiency furthermore has been raised by about 1%. 8 refs., 14 figs., 1 tab.

  12. TEMPERATURE DISTRIBUTION MONITORING AND ANALYSES AT DIFFERENT HEATING CONTROL PRINCIPLES

    DEFF Research Database (Denmark)

    Simone, Angela; Rode, Carsten; Olesen, Bjarne W.

    2010-01-01

    under different control strategies of the heating system (Pseudo Random Binary Sequence signal controlling all the heaters (PRBS) or thermostatic control of the heaters (THERM)). A comparison of the measured temperatures within the room, for the five series of experiments, shows a better correlation...

  13. Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller

    Science.gov (United States)

    Wang, Wei-Cheng; Tai, Cheng-Chi

    2017-07-01

    The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.

  14. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  15. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  16. Temperature controlled formation of lead/acid batteries

    Science.gov (United States)

    Bungardt, M.

    At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.

  17. Evaluation of RTD and thermocouple for PID temperature control in ...

    African Journals Online (AJOL)

    Evaluation of RTD and thermocouple for PID temperature control in distributed control system laboratory. D. A. A. Nazarudin, M. K. Nordin, A. Ahmad, M. Masrie, M. F. Saaid, N. M. Thamrin, M. S. A. M. Ali ...

  18. Precision rectifier detectors for ac resistance bridge measurements with application to temperature control systems for irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M. G.

    1977-05-01

    The suitability of several temperature measurement schemes for an irradiation creep experiment is examined. It is found that the specimen resistance can be used to measure and control the sample temperature if compensated for resistance drift due to radiation and annealing effects. A modified Kelvin bridge is presented that allows compensation for resistance drift by periodically checking the sample resistance at a controlled ambient temperature. A new phase-insensitive method for detecting the bridge error signals is presented. The phase-insensitive detector is formed by averaging the magnitude of two bridge voltages. Although this method is substantially less sensitive to stray reactances in the bridge than conventional phase-sensitive detectors, it is sensitive to gain stability and linearity of the rectifier circuits. Accuracy limitations of rectifier circuits are examined both theoretically and experimentally in great detail. Both hand analyses and computer simulations of rectifier errors are presented. Finally, the design of a temperature control system based on sample resistance measurement is presented. The prototype is shown to control a 316 stainless steel sample to within a 0.15/sup 0/C short term (10 sec) and a 0.03/sup 0/C long term (10 min) standard deviation at temperatures between 150 and 700/sup 0/C. The phase-insensitive detector typically contributes less than 10 ppM peak resistance measurement error (0.04/sup 0/C at 700/sup 0/C for 316 stainless steel or 0.005/sup 0/C at 150/sup 0/C for zirconium).

  19. Embedded DAQ System Design for Temperature and Humidity Measurement

    Directory of Open Access Journals (Sweden)

    Tarique Rafique Memon

    2016-05-01

    Full Text Available In this work, we have proposed a cost effective DAQ (Data Acquisition system design useful for local industries by using user friendly LABVIEW (Laboratory Virtual Instrumentation Electronic Workbench. The proposed system can measure and control different industrial parameters which can be presented in graphical icon format. The system design is proposed for 8-channels, whereas tested and recorded for two parameters i.e. temperature and RH (Relative Humidity. Both parameters are set as per upper and lower limits and controlled using relays. Embedded system is developed using standard microcontroller to acquire and process the analog data and plug-in for further processing using serial interface with PC using LABVIEW. The designed system is capable of monitoring and recording the corresponding linkage between temperature and humidity in industrial unit's and indicates the abnormalities within the process and control those abnormalities through relays

  20. Distributed computer control system for reactor optimization

    International Nuclear Information System (INIS)

    Williams, A.H.

    1983-01-01

    At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management

  1. Electronic temperature control and measurements reactor fuel rig circuits

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC).

  2. A master-follower type distributed scheme for reactor inlet temperature control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Dean, E.M.; Vilim, R.B.

    1995-01-01

    This paper describes the implementation of a computer-based controller for regulating reactor inlet temperature in a pool-type power plant. The elements of the control system are organized in a master-follower hierarchical architecture that takes advantage of existing in-plant hardware and software to minimize the need for plant modifications. Low level control algorithms are executed on existing local digital controllers (followers) with the high level algorithms executed on a new plant supervisory computer (master). A distributed computing strategy provides integration of the existing and additional computer platforms. The control system operates by having the master controller first estimate the secondary sodium flow needed to achieve a given reactor inlet temperature. The estimated flow is then used as a setpoint by the follower controller to regulate sodium flow using a motor-generator pump set. The control system has been implemented in a Hardware-In-the-Loop (FM) setup and qualified for operation in the Experimental Breader reactor 11 of Argonne National Laboratory. Some HIL results are provided

  3. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  4. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M; Vitale, V [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB{sup TM} and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized.

  5. The liquid lithium limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Di Donna, M.; Panella, M.; Vitale, V.

    2007-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB TM and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized

  6. A feedforward IMC structure for controlling the charging temperature of a TES system of a solar cooker

    International Nuclear Information System (INIS)

    Mawire, A.; McPherson, M.

    2008-01-01

    A feedforward internal model control (IMC) structure for controlling and maintaining the outlet charging temperature of a thermal energy storage (TES) system of a solar cooker is presented. The TES system consists of a packed pebble bed in thermal contact with a heat transfer oil contained in a storage tank. An electrical hot plate simulates the collector/concentrator which heats up the oil circulating in a hollow copper spiral coil thus charging the storage. A model for the collector/concentrator system is developed to enable simulation of the feedforward IMC structure. Using a Simulink block model, the simulation results reveal that a feedforward IMC structure performs better than a feedforward structure. The feedforward IMC structure is tested experimentally and the performance of the control structure is acceptable within a few degrees of the set temperatures. Experimental results are also compared with the simulation results. The simulated responses are found to relate closely to the experimental ones and any discrepancies between the two are discussed. Furthermore, the feedforward IMC structure is also compared experimentally with a combined feedforward and PID feedback structure. Results of the comparison indicate that the feedforward IMC structure performs better than the combined feedforward and PID feedback structure. The thermal profile of the storage during the charging experiment with the feedforward IMC structure is also presented and the results obtained from the storage profile indicate that the storage tank is thermally stratified

  7. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  8. Monochromator for synchrotron light with temperature controlled by electrical current on silicon crystal

    Energy Technology Data Exchange (ETDEWEB)

    Cusatis, Cesar; Souza, Paulo E.N. [Universidade Federal do Parana (LORXI/UFPR), Curitiba, PR (Brazil). Dept. de Fisica. Lab. de Optica de Raios X e Instrumentacao; Franco, Margareth Kobayaski; Kakuno, Edson [Laboratorio Nacional de Luz Sincroton (LNLS), Campinas, SP (Brazil); Gobbi, Angelo; Carvalho Junior, Wilson de [Centro de Pesquisa e Desenvolvimento em Telecomunicacoes (CPqD), Campinas, SP (Brazil)

    2011-07-01

    Full text. doped silicon crystal was used simultaneously as a monochromator, sensor and actuator in such way that its temperature could be controlled. Ohmic contacts allowed resistance measurements on a perfect silicon crystal, which were correlated to its temperature. Using the ohmic contacts, an electrical current caused Joule heating on the monochromator that was used to control its temperature. A simple stand-alone electronic box controlled the system. The device was built and tested with white beam synchrotron light on the double crystal monochromator of the XRD line of LNLS, Laboratorio Nacional de Luz Sincrotron, Campinas. The first crystal of a double crystal monochromator determines the energy that is delivered to a synchrotron experimental station and its temperature instability is a major source of energy and intensity instability. If the (333) silicon monochromator is at theta Bragg near 45 degree the variation of the diffraction angle is around one second of arc per degree Kelvin. It may take several minutes for the first crystal temperature to stabilize at the beginning of the station operation when the crystal and its environment are cold. With water refrigeration, the average overall temperature of the crystal may be constant, but the temperature of the surface changes with and without the white beam. The time used to wait for stabilization of the beam energy/intensity is lost unless the temperature of the crystal surface is kept constant. One solution for keeping the temperature of the monochromator and its environment constant or nearly constant is Joule heating it with a controlled small electrical current flowing on the surface of a doped perfect crystal. When the white beam is on, this small amount of extra power will be more concentrated at the beam footpath because the resistance is lower in this region due to the higher temperature. In addition, if the crystal itself is used to detect the temperature variation by measuring the electrical

  9. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  10. System for enrichment by dual temperature exchange

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1975-01-01

    In dual temperature isotope exchange systems utilizing different fluid substances in liquid and gas phases separable from and soluble in each other (for example H 2 O and H 2 S), the phases are passed countercurrent to each other in towers maintained at relatively hot and cold temperatures. Combinations of method and means are provided by which the gas is raised to hot tower temperature and humidity conditions principally by heat derived from the cooling and dehumidification of the gas leaving the hot tower as it is being reduced in temperature and humidity to cold tower conditions. Special provisions are made in the combinations for transferring this heat and for completing the conditioning of the gas to the respective tower conditions with high efficiency, for economically controlling the temperature of the condensate to adapt it for transfer to different parts of the system, and for economically stripping dissolved gas and heat from the effluent liquid and returning it to the system in manners that aid the thermal conditioning of the main gas stream

  11. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent...... of the working point. The model also gives a method for control of the evaporation temperature. The proposed method is validated by experimental results....

  12. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...... to conventional PEM fuel cells, that use liquid water as a proton conductor and thus operate at temperatures below 100oC. The HTPEM fuel cell membrane in focus in this work is the BASF Celtec-P polybenzimidazole (PBI) membrane that uses phosphoric acid as a proton conductor. The absence of water in the fuel cells...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...

  13. Demonstration of the improved PID method for the accurate temperature control of ADRs

    International Nuclear Information System (INIS)

    Shinozaki, K.; Hoshino, A.; Ishisaki, Y.; Mihara, T.

    2006-01-01

    Microcalorimeters require extreme stability (-bar 10μK) of thermal bath at low temperature (∼100mK). We have developed a portable adiabatic demagnetization refrigerator (ADR) system for ground experiments with TES microcalorimeters, in which we observed residual temperature between aimed and measured values when magnet current was controlled with the standard Proportional, Integral, and Derivative control (PID) method. The difference increases in time as the magnet current decreases. This phenomenon can be explained by the theory of the magnetic cooling, and we have introduced a new functional parameter to improve the PID method. With this improvement, long-term stability of the ADR temperature about 10μK rms is obtained up to the period of ∼15ks down to almost zero magnet current. We briefly describe our ADR system and principle of the improved PID method, showing the temperature control result. It is demonstrated that the controlled time of the aimed temperature can be extended by about 30% longer than the standard PID method in our system. The improved PID method is considered to be of great advantage especially in the range of small magnet current

  14. Cascade control of superheated steam temperature with neuro-PID controller.

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Self-adjusting house-heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, O; Ott, M

    1983-01-01

    Only small expenditure in terms of hard- and software is needed for the heating-control system described here to keep the house-room temperature in day- and night (reduced temperature)-operation precisely at the desired degree C. No control adjustment is needed as the computer - in this case an EMUF-model - adapts itself to changing conditions like type of house, weather conditions etc. Perfect control and good control dynamic lead to considerable savings of energy.

  16. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    Science.gov (United States)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  17. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  18. A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.

  19. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  20. Single temperature sensor based evaporator filling control using excitation signal harmonics

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    An important aspect of efficient and safe operation of refrigeration and air conditioning systems is superheat control for evaporators. This is conventionally controlled with a pressure sensor, a temperature sensor, an expansion valve and Proportional-Integral (PI) controllers or more advanced...

  1. The Liquid Lithium Limiter control system on FTU

    International Nuclear Information System (INIS)

    Bertocchi, A.; Panella, M.; Vitale, V.; Sinibaldi, S.

    2006-01-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 o C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17 o International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22 TM modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink TM tool - has been realized. (author)

  2. Temperature control of power semiconductor devices in traction applications

    Science.gov (United States)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  3. Research on Vehicle Temperature Regulation System Based on Air Convection Principle

    Science.gov (United States)

    Zhuge, Muzi; Li, Xiang; Liang, Caifeng

    2018-03-01

    The long time parking outdoors in the summer will lead to too high temperature in the car, and the harmful gas produced by the vehicle engine will stay in the confined space for a long time during the parking process, which will do great harm to the human body. If the air conditioning system is turned on before driving, the cooling rate is slow and the battery loss is large. To solve the above problems, we designed a temperature adjusting system based on the principle of air convection. We can choose the automatic mode or manual mode to achieve control of a convection window. In the automatic mode, the system will automatically detect the environmental temperature, through the sensor to complete the detection, and the signal is transmitted to the microcontroller to control the window open or close, in manual mode, the remote control of the window can be realized by Bluetooth. Therefore, the system has important practical significance to effectively regulate temperature, prolong battery life, and improve the safety and comfort of traffic vehicles.

  4. Study on simulation, control and online assistance integrated system of 10 MW high temperature gas-cooled test reactor

    International Nuclear Information System (INIS)

    Luo, S.; Shi, L.; Zhu, S.

    2004-01-01

    In order to provide a convenient tool for engineering designed, safety analysis, operator training and control system design of the high temperature gas-cooled test reactor (HTR), an integrated system for simulation, control and online assistance of the HTR-10 has been designed and is still under development by the Institute of Nuclear Energy Technology (INET) of Tsinghua University in China. The whole system is based on a network environment and includes three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four parts: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. The SIMUSUB is intended to analyze and calculate the physical processes of the reactor core, the main loop system and the stream generator, etc., as well as to simulate the normal operation and transient accidents, and the result data can be graphically displayed through the RGDC dynamically. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameter, which are difficult to measure. This whole system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online supports for operators in the main control room, or as a convenient powerful tool for the control system design. (authors)

  5. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  6. Quench monitoring and control system and method of operating same

    Science.gov (United States)

    Ryan, David Thomas; Laskaris, Evangelos Trifon; Huang, Xianrui

    2006-05-30

    A rotating machine comprising a superconductive coil and a temperature sensor operable to provide a signal representative of superconductive coil temperature. The rotating machine may comprise a control system communicatively coupled to the temperature sensor. The control system may be operable to reduce electric current in the superconductive coil when a signal representative of a defined superconducting coil temperature is received from the temperature sensor.

  7. Study on parameter identification and control of ground temperature

    International Nuclear Information System (INIS)

    Kojima, Keiichi; Suzuki, Seiichi; Kawahara, Mutsuto.

    1995-01-01

    A numerical thermal management system for ground structure is presented. The system consists of two parts, i.e. the identification analysis of the thermal conductivity and the thermal control analysis for the ground. The former is carried out by using the nonlinear least squares method and the latter is based on the optimal control theory. The formulations of these methods are presented and they are applied to an laboratory test. A reasonable thermal conductivity of the ground is identified by parameter estimation method and the ground temperature is actually controled as illustrated by numerical and experimental study. (author)

  8. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  9. Temperature modelling and prediction for activated sludge systems.

    Science.gov (United States)

    Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K

    2009-01-01

    Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.

  10. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  11. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  12. The Liquid Lithium Limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A; Panella, M; Vitale, V [Associazione EURATOM- ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati (RM) (Italy); Sinibaldi, S [Rome University ' ' Tor Vergata ' ' , Informatics, Systems and Production Dept., Via del Politecnico 1, 00133 Rome (Italy)

    2006-07-01

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system configuration was installed for testing on the FTU tokamak. The liquid lithium flows through capillaries from a reservoir to the side facing the plasma to form a thin liquid lithium film. The system is composed of three stainless steel sections, which contain two thermocouples each. A heating system brings the Li temperature to about 200 {sup o}C allowing the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. [M. Apicella, G. Mazzitelli et al., First experiment with Lithium Limiter on FTU, 17{sup o} International Conference on Plasma Surface Interaction in Controlled Fusion Devices, 22 - 26 May 2006, Hefei Anhui, China]. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture [A. Bertocchi, S. Podda, V. Vitale, Fusion Eng. Des. 74 (2005) 787-791]. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLab and Java environments respectively to monitor the lithium temperature coming from thermocouples - have been also implemented. The control system allows regulating the heater temperature in each section of the LLL to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During plasma operations the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized. (author)

  13. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    Science.gov (United States)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  14. Fiber Bragg Grating Based System for Temperature Measurements

    Science.gov (United States)

    Tahir, Bashir Ahmed; Ali, Jalil; Abdul Rahman, Rosly

    In this study, a fiber Bragg grating sensor for temperature measurement is proposed and experimentally demonstrated. In particular, we point out that the method is well-suited for monitoring temperature because they are able to withstand a high temperature environment, where standard thermocouple methods fail. The interrogation technologies of the sensor systems are all simple, low cost and effective as well. In the sensor system, fiber grating was dipped into a water beaker that was placed on a hotplate to control the temperature of water. The temperature was raised in equal increments. The sensing principle is based on tracking of Bragg wavelength shifts caused by the temperature change. So the temperature is measured based on the wavelength-shifts of the FBG induced by the heating water. The fiber grating is high temperature stable excimer-laser-induced grating and has a linear function of wavelength-temperature in the range of 0-285°C. A dynamic range of 0-285°C and a sensitivity of 0.0131 nm/°C almost equal to that of general FBG have been obtained by this sensor system. Furthermore, the correlation of theoretical analysis and experimental results show the capability and feasibility of the purposed technique.

  15. Temperature uniformity control in RTP using multivariable adaptive control

    Energy Technology Data Exchange (ETDEWEB)

    Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.

    1995-12-31

    In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.

  16. Peltier cells as temperature control elements: Experimental characterization and modeling

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio

    2014-01-01

    The use of Peltier cells to realize compact and precise temperature controlled devices is under continuous extension in recent years. In order to support the design of temperature control systems, a simplified modeling of heat transfer dynamics for thermoelectric devices is presented. By following a macroscopic approach, the heat flux removed at the cold side of Peltier cell can be expressed as Q . c =γ(T c −T c eq ), where γ is a coefficient dependent on the electric current, T c and T c eq are the actual and steady state cold side temperature, respectively. On the other hand, a microscopic modeling approach was pursued via finite element analysis software packages. To validate the models, an experimental apparatus was designed and build-up, consisting in a sample vial with the surfaces in direct contact with Peltier cells. Both modeling approaches led to reliable prediction of transient and steady state sample temperature. -- Highlights: • Simplified modeling of heat transfer dynamics in Peltier cells. • Coupled macroscopic and microscopic approach. • Experimental apparatus: temperature control of a sample vial. • Both modeling approaches predict accurately the transient and steady state sample temperature

  17. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  18. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  19. Control and Experimental Characterization of a Methanol Reformer for a 350 W High Temperature Polymer Electrolyte Membrane Fuel Cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    , i.e. cathode and anode gas flows and temperature by using mass flow controllers and controlled heaters. Using this system the methanol reformer is characterized in its different operating points, both steady-state but also dynamically. Methanol steam reforming is a well known process, and provides...... and burner and the behaviour of the CO concentration of the reformate gas....... the high temperature waste gas from a cathode air cooled 45 cell HTPEM fuel cell stack. The MEAs used are BASF P2100 which use phosphoric acid doped polybenzimidazole type membranes; an MEA with high CO tolerance and no complex humidity requirements. The methanol reformer used is integrated into a compact...

  20. Verification test of control rod system for HTR-10

    International Nuclear Information System (INIS)

    Zhou Huizhong; Diao Xingzhong; Huang Zhiyong; Cao Li; Yang Nianzu

    2002-01-01

    There are 10 sets of control rods and driving devices in 10 MW High Temperature Gas-cooled Test Reactor (HTR-10). The control rod system is the controlling and shutdown system of HTR-10, which is designed for reactor criticality, operation, and shutdown. In order to guarantee technical feasibility, a series of verification tests were performed, including room temperature test, thermal test, test after control rod system installed in HTR-10, and test of control rod system before HTR-10 first criticality. All the tests data showed that driving devices working well, control rods running smoothly up and down, random position settling well, and exactly position indicating

  1. The electronic temperature control and measurements reactor fuel rig circuits

    International Nuclear Information System (INIS)

    Glowacki, S.W.

    1980-01-01

    The electronic circuits of two digital temperature meters developed for the thermocouple of Ni-NiCr type are described. The output thermocouple signal as converted by means of voltage-to-freguency converter. The frequency is measured by a digital scaler controled by quartz generator signals. One of the described meter is coupled with digital temperature controler which drives the power stage of the reactor rig heater. The internal rig temperature is measured by the thermocouple providing the input signal to the mentioned voltage-to-frequency converter, that means the circuits work in the negative feedback loop. The converter frequency-to-voltage ratio is automatically adjusted to match to thermocouple sensitivity changes in the course of the temperature variations. The accuracy of measuring system is of order of +- 1degC for thermocouple temperature changes from 523 K up to 973 K (50degC up to 700degC). (author)

  2. Research on precise control of 3D print nozzle temperature in PEEK material

    Science.gov (United States)

    Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei

    2017-10-01

    3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.

  3. A multi-channel humidity control system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhang Aiwu; Xie Yuguang; Liu Hongbang; Liu Yingbiao; Cai Xiao; Yu Boxiang; Lu Junguang; Zhou Li

    2011-01-01

    A real time multi-channel humidity control system was designed based on LabVIEW, using the dry air branch of BESⅢ drying system. The hardware of this control system consist of mini humidity and temperature sensors, intelligent collection module, switch quantity controller and electromagnetic valves. The humidity can be controlled at arbitrary value from air humidity to 3% with accuracy better than 2%. Multi microenvironment with different humidity can be easily controlled and monitored in real time by this system. It can also be extended to hybrid control of multi channel humidity and temperature. (authors)

  4. Studies on preparation and adaptive thermal control performance of novel PTC (positive temperature coefficient) materials with controllable Curie temperatures

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Yuan, Shuai; Song, Jia-liang

    2014-01-01

    PTC (positive temperature coefficient) material is a kind of thermo-sensitive material. In this study, a series of novel PTC materials adapted to thermal control of electron devices are prepared. By adding different low-melting-point blend matrixes into GP (graphite powder)/LDPE (low density polyethylene) composite, the Curie temperatures are adjusted to 9 °C, 25 °C, 34 °C and 41 °C, and the resistance–temperature coefficients are enhanced to 1.57/°C–2.15/°C. These PTC materials remain solid in the temperature region of PTC effect, which makes it possible to be used as heating element to achieve adaptive temperature control. In addition, the adaptive thermal control performances of this kind of materials are investigated both experimentally and theoretically. The result shows that the adaptive effect becomes more significant while the resistance–temperature coefficient increases. A critical heating power defined as the initial heating power which makes the equilibrium temperature reach terminal temperature is presented. The adaptive temperature control will be effective only if the initial power is below this value. The critical heating power is determined by the Curie temperature and resistance–temperature coefficient of PTC materials, and a higher Curie temperature or resistance–temperature coefficient will lead to a larger critical heating power. - Highlights: • A series of novel PTC (positive temperature coefficient) materials were prepared. • The Curie point of PTC material can be adjusted by choosing different blend matrixes. • The resistance–temperature coefficient of PTC materials is enhanced to 2.15/°C. • The material has good adaptive temperature control ability with no auxiliary method. • A mathematical model is established to analyze the performance and applicability

  5. A multipoint feedback control system for scanned focussed ultrasound hyperthermia

    International Nuclear Information System (INIS)

    Johnson, C.; Kress, R.; Roemer, R.; Hynynen, K.

    1987-01-01

    A multipoint feedback control system has been developed and tested for use with a scanned focussed ultrasound hyperthermia system. Extensive in-vivo tests (using a perfused organ model) have been made to evaluate the basic performance characteristics of the feedback control scheme for control of temperature in perfused media. The results of these tests are presented and compared with the predictions of a simulation routine. The control scheme was also tested in vivo using dogs' thighs and kidneys. Thigh experiments show the control scheme responds well to the affects of vasodilation and is able to maintain the targeted temperatures. In kidney experiments, where the rate of perfusion was controllable, the power adjusting algorithm successfully maintained uniform temperature distributions across regions of varying rates of perfusion. As a conclusion, the results show that this multipoint feedback controller scheme induces uniform temperature distributions when used with scanned focussed ultrasound systems

  6. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  7. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  8. Linear parameter-varying modeling and control of the steam temperature in a Canadian SCWR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Peiwei, E-mail: sunpeiwei@mail.xjtu.edu.cn; Zhang, Jianmin; Su, Guanghui

    2017-03-15

    Highlights: • Nonlinearity of Canadian SCWR is analyzed based on step responses and Nyquist plots. • LPV model is derived through Jacobian linearization and curve fitting. • An output feedback H{sub ∞} controller is synthesized for the steam temperature. • The control performance is evaluated by step disturbances and wide range operation. • The controller can stabilize the system and reject the reactor power disturbance. - Abstract: The Canadian direct-cycle Supercritical Water-cooled Reactor (SCWR) is a pressure-tube type SCWR under development in Canada. The dynamics of the steam temperature have a high degree of nonlinearity and are highly sensitive to reactor power disturbances. Traditional gain scheduling control cannot theoretically guarantee stability for all operating regions. The control performance can also be deteriorated when the controllers are switched. In this paper, a linear parameter-varying (LPV) strategy is proposed to solve such problems. Jacobian linearization and curve fitting are applied to derive the LPV model, which is verified using a nonlinear dynamic model and determined to be sufficiently accurate for control studies. An output feedback H{sub ∞} controller is synthesized to stabilize the steam temperature system and reject reactor power disturbances. The LPV steam temperature controller is implemented using a nonlinear dynamic model, and step changes in the setpoints and typical load patterns are carried out in the testing process. It is demonstrated through numerical simulation that the LPV controller not only stabilizes the steam temperature under different disturbances but also efficiently rejects reactor power disturbances and suppresses the steam temperature variation at different power levels. The LPV approach is effective in solving control problems of the steam temperature in the Canadian SCWR.

  9. Heat-flow and temperature control in Tian–Calvet microcalorimeters: toward higher detection limits

    International Nuclear Information System (INIS)

    Vilchiz-Bravo, L E; Pacheco-Vega, A; Handy, B E

    2010-01-01

    Strategies based on the principle of heat flow and temperature control were implemented, and experimentally tested, to increase the sensitivity of a Tian–Calvet microcalorimeter for measuring heats of adsorption. Here, both heat-flow and temperature control schemes were explored to diminish heater-induced thermal variations within the heat sink element, hence obtaining less noise in the baseline signal. PID controllers were implemented within a closed-loop system to perform the control actions in a calorimetric setup. The experimental results demonstrate that the heat flow control strategy provided a better baseline stability when compared to the temperature control. The effects on the results stemming from the type of power supply used were also investigated

  10. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  11. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  12. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  13. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator

    International Nuclear Information System (INIS)

    Qu Xiaohua; Shi Junye; Qi Zhaogang; Chen Jiangping

    2011-01-01

    In this paper, a newly developed frost control system is proposed. System bench tests and vehicle test in wind tunnel have been carried out to explore the anti-frosting performance of automotive air conditioning system with microchannel evaporator. The experimental results are compared with the baseline conventional laminated evaporator system. The test results show that the installation position of temperature sensor can dramatically affect the anti-frosting performance. The clutch switching on/off temperature range of the microchannel evaporator is also experimentally studied. The test results show that, with a proper installation position and on/off temperature range, the system COP can be improved, and meanwhile the panel vents' air off temperature can be reduced, and temperature swing can be reduced. - Highlights: → The frost control systems were tested with microchannel and laminated evaporators separately. → The installation position of temperature sensor affects the anti-frosting performance. → Temperature control range affects the anti-frosting performance. → The panel vents' air off temperature and swing can be reduced by proper control parameters. → The system COP can be improved by proper control parameters.

  14. Use of fuzzy logic to control a gasifier biomass ventilation system and maintenance of the temperature in the oxidation zone; Uso da logica fuzzy para controle do sistema de ventilacao de um gaseificador de biomassa e manutencao da temperatura da zona de oxidacao

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Oscar L.T.; Kulitz, Hans H. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Silva, Jadir N.; Galvarro, Svetlana F.S.; Machado, Cassio [Universidade Federal de Vicosa (UFV), MG (Brazil)], E-mail: oscar@ifes.edu.br

    2012-11-01

    This study aims at developing a fuzzy-based algorithm to control the frequency applied to the motor of a gasifier ventilation system in order to ensure adequate temperature in the oxidation zone and produce good quality gas. The input variables of the fuzzy controller were: error, which determines the difference between the desired temperature and the temperature at a given instant; and temperature variation, which will inform if it is increasing or decreasing at a given instant. The response variable was the operation frequency of the ventilation system motor. The rule base was built based on experimental data. The tests with the control algorithm allowed us to see that it is possible to control the oxidation zone temperature - producing gas in a stable way, which does not occur in gasification processes without ventilation system control. (author)

  15. Feedback control of primary pump using midplane temperature of lower density lock for a PIUS-type reactor

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Haga, Katsuhiro; Tamaki, Masayoshi

    1993-01-01

    A new automatic pump speed control system, using a measurement of the temperature distribution in the lower density lock, is proposed for the PIUS-type reactor. This control system maintains the fluid temperature at the axial center of the lower density lock at the average of the fluid temperatures below and above the lower density lock in order to prevent the poison water from penetrating into the core during normal operation. In a startup test, the effectiveness of this control system to bring the system quickly to the stable state from a very small initial temperature difference between top and bottom of the lower density lock has been confirmed. The effectiveness of the primary pump trip at the limit speed in the control system to shutdown the core power safely in an accident such as a loss-of-feedwater accident with and without the primary loop isolation has also been proved

  16. High Precision Infrared Temperature Measurement System Based on Distance Compensation

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2017-01-01

    Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.

  17. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  18. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  19. Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace

    Directory of Open Access Journals (Sweden)

    Hari S. Ganesh

    2016-12-01

    Full Text Available Quench hardening is the process of strengthening and hardening ferrous metals and alloys by heating the material to a specific temperature to form austenite (austenitization, followed by rapid cooling (quenching in water, brine or oil to introduce a hardened phase called martensite. The material is then often tempered to increase toughness, as it may decrease from the quench hardening process. The austenitization process is highly energy-intensive and many of the industrial austenitization furnaces were built and equipped prior to the advent of advanced control strategies and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the furnace and the part temperature profile as a function of time and position within the furnace under temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace for a batch of forty parts under heuristic temperature set points suggested by the operators of the plant. A model predictive control (MPC system is then developed and deployed to control the the part temperature at the furnace exit thereby preventing the parts from overheating. An energy efficiency gain of 5.3 % was obtained under model predictive control compared to operation under heuristic temperature set points tracked by a regulatory control layer.

  20. Temperature lowering in cryogenic chemical-synthesis techniques and system

    International Nuclear Information System (INIS)

    Martinez, H.E.; Nelson, T.O.; Vikdal, L.N.

    1993-01-01

    When evaluating a chemical synthesis process for a reaction that occurs on the cryogenically cooled walls, it is sometimes necessary to reduce the wall temperatures to enhance the chemical process. To evaluate the chemical process at lower than atmospheric boiling of liquid nitrogen, we built a system and used it to reduce the temperature of the liquid nitrogen. The technique of lowering the liquid nitrogen temperature by reducing the pressure of the boil-off is established knowledge. This paper presents the engineering aspects of the system, design features, equipment requirements, methods of control, and results of the chemical synthesis. The heat input to the system was ∼400 watts, placing a relatively large demand on the pumping system. Our system is a scale-up of the small laboratory experiment, and it provides the information needed to design an effective system. The major problem encountered was the large quantity of liquid escaping the system during the processing, placing a large gas load on the vacuum system

  1. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...

  2. Engine Cylinder Temperature Control

    Science.gov (United States)

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  3. Assistance system 2000: Intelligent control system from DANOTEK; Assistanceordning 2000: Intelligent styresystem fra DANOTEK

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, S.

    2001-07-01

    are able to predict their hot water consumption (both volume and temperature) relatively well. If the consumers overestimate their hot water consumption by more than 50% the thermal performance will make a drastic decrease and the same will happen if the consumers - to be on the safe side - set a too high desired hot water temperature. While the first version of the smart control system from Danotek is controlled by temperatures of the hot water the second version is controlled by the energy content of the hot water. The difference in the thermal performance between using a temperature controlled or an energy controlled smart control system was investigated by using the simulation program, Kappesol. If the users are able to predict their hot water consumption reasonable well there is no difference in the thermal performance by using either of the two smart control systems. (au)

  4. Heat pipes for temperature control

    International Nuclear Information System (INIS)

    Groll, M.

    1978-01-01

    Heat pipes have known for years as effective constructional elements for temperature control. With the aid of special techniques (gas, liquid, steam, and voltage control), special operating characteristics can be obtained, e.g. variable heat conduction or diode behaviour. Their main field of application is in spacecraft technology and in nuclear technology in the isothermalisation of irradiation capsules. The different control techniques are presented and critically evaluated on the basis of characteristic properties like heat transfer capacity, volume and mass requirements, complexity of structure and production, reliability, and temperature control characteristics. Advantages and shortcomings of the different concepts are derived and compared. The state of the art of these control techniques is established on the basis of four development levels. Finally, the necessity and direction of further R + D activities are discussed, and suggestions are made for further work. (orig./HP) [de

  5. A new temperature collection system

    International Nuclear Information System (INIS)

    Kong Wenchuang; Wang Daihua; Zhang Zhijie

    2011-01-01

    According to the characteristics of explosion field temperature testing, a new temperature collection system based on complex programmable logic device (CPLD), single chip microcontroller (SCM) and static ram (SRAM) is proposed. The system adopts the NANMAC E12 type of thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation, with rapid synchronous collection, trigger and working parameters adjustable characteristics. The system used SCM combined with USB communication interface, easy operation and reliable. (authors)

  6. Biofeedback systems and adaptive control hemodialysis treatment

    Directory of Open Access Journals (Sweden)

    Azar Ahmad

    2008-01-01

    Full Text Available On-line monitoring devices to control functions such as volume, body temperature, and ultrafiltration, were considered more toys than real tools for routine clinical application. However, bio-feedback blood volume controlled hemodialysis (HD is now possible in routine dialysis, allowing the delivery of a more physiologically acceptable treatment. This system has proved to reduce the incidence of intra-HD hypotension episodes significantly. Ionic dialysance and the patient′s plasma conductivity can be calculated easily from on-line measurements at two different steps of dialysate conductivity. A bio-feedback system has been devised to calculate the patient′s plasma conductivity and modulate the conductivity of the dialysate continuously in order to achieve a desired end-dialysis patient plasma conductivity corresponding to a desired end-dialysis plasma sodium concentration. Another bio-feedback system can control the body tempe-rature by measuring it at the arterial and venous lines of the extra-corporeal circuit, and then modulating the dialysate temperature in order to stabilize the patients′ temperature at constant values that result in improved intra-HD cardiovascular stability. The module can also be used to quantify vascular access recirculation. Finally, the simultaneous computer control of ultrafiltration has proven the most effective means for automatic blood pressure stabilization during hemo-dialysis treatment. The application of fuzzy logic in the blood-pressure-guided biofeedback con-trol of ultrafiltration during hemodialysis is able to minimize HD-induced hypotension. In con-clusion, online monitoring and adaptive control of the patient during the dialysis session using the bio-feedback systems is expected to render the process of renal replacement therapy more physiological and less eventful.

  7. Development and implementation of flowing liquid lithium limiter control system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, XiaoLin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230031 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, JianSheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, JianGang; Zuo, GuiZhong; Ren, Jun; Zhou, Yue; Li, ChangZheng; Sun, Zheng; Xu, Wei; Meng, XianCai; Huang, Ming; Zheng, XingWei; Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Development of a FLiLi remote control system for EAST. • Intelligent instruments are used to realize FLiLi remote control. • Good operating results of the control system were obtained in the EAST campaign. - Abstract: A control system of a flowing liquid lithium (FLiLi) limiter for the Experimental Advanced Superconducting Tokamak (EAST) was developed and implemented. The control system is not only able to control the direct current (DC) electromagnetic pump and heating power but can also set scanning parameters, receive the shot number, acquire the temperature, etc. The system consists of multifunctional LAN eXtensions for Instrumentation (LXI) instrument, temperature-acquisition module, programmable DC power supply, and programmable logic controller (PLC). The multi-range DC power supply is programmed to meet the operational requirements of the DC electromagnetic pump. The LXI instrument and temperature-acquisition module are used to obtain temperature data. The PLC is adopted to control the temperature of the FLiLi limiter. A safety interlock and protection function was developed for the FLiLi limiter control system. The software was designed by using LabVIEW to achieve data interaction between multiple protocols. The FLiLi limiter control system can acquire experimental data at a speed of 100 S/s and store it for later analysis. The control system was successfully applied to a FLiLi limiter to study the interaction between plasma and a fixed wall in the EAST campaign. This paper presents the framework, the implementation details, and results of the control system.

  8. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  9. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  10. Direct digital temperature control of the A-1 nuclear reactor

    International Nuclear Information System (INIS)

    Karpeta, C.

    1975-01-01

    The application is described of one of the modern control methods for designing an experimental digital temperature control system for heavy water moderated gas cooled reactors. The synthesis of the optimal stochastic regulator for reactor control in the area of the rated steady state was carried out using the method of dynamic programming and the Kalman filter technique. The analysis of the feedback circuit was conducted using control simulation on a universal digital computer. Results and experience are summed up. (author)

  11. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    Science.gov (United States)

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  12. Automatic temperature control method of shipping can

    International Nuclear Information System (INIS)

    Nishikawa, Kaoru.

    1992-01-01

    The present invention provides a method of rapidly and accurately controlling the temperature of a shipping can, which is used upon shipping inspection for a nuclear fuel assembly. That is, a measured temperature value of the shipping can is converted to a gas pressure setting value in a jacket of the shipping can by conducting a predetermined logic calculation by using a fuzzy logic. A gas pressure control section compares the pressure setting value of a fuzzy estimation section and the measured value of the gas pressure in the jacket of the shipping can, and conducts air supply or exhaustion of the jacket gas so as to adjust the measured value with the setting value. These fuzzy estimation section and gas pressure control section control the gas pressure in the jacket of the shipping can to control the water level in the jacket. As a result, the temperature of the shipping can is controlled. With such procedures, since the water level in the jacket can be controlled directly and finely, temperature of the shipping can is automatically controlled rapidly and accurately compared with a conventional case. (I.S.)

  13. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  14. Variable-temperature sample system for ion implantation at -192 to +5000C

    International Nuclear Information System (INIS)

    Fuller, C.T.

    1978-04-01

    A variable-temperature sample system based on exchange-gas coupling was developed for ion-implantation use. The sample temperature can be controlled from -192 0 C to +500 0 C with rapid cooling. The system also has provisions for focusing and alignment of the ion beam, electron suppression, temperature monitoring, sample current measuring, and cryo-shielding. Design considerations and operating characteristics are discussed. 5 figures

  15. Control of boiler temperature with explicit MPC; Panntemperaturreglering med explicit MPC

    Energy Technology Data Exchange (ETDEWEB)

    Slaetteke, Ola; Velut, Stefan; Raaberg, Martin

    2012-02-15

    MPC is the multivariable controller that has been most successful in the process industry and particularly the petrochemical industry. It has been described as one of the most significant developments in process control and the main reasons for this are: 1. It handles multivariable control problems in a natural manner. 2. It is relative easy to understand the structure of the controller, which is the same whether it is a simple loop or a multivariable system. 3. It handles limitations of both the process and other practical constraints in a systematic way. Examples of this is that a valve can only work between 0 and 100 %, but also that the CO-level in the flue gas must not exceed a certain level. 4. It allows for operating conditions near critical process boundaries, which in many cases is synonymous with increased production rates, reduced raw material consumption, better energy utilization, and faster process transitions. The aim of the project is to evaluate the potential of multivariable control in the form of explicit MPC in a boiler at Stora Enso Hylte Bruk. This research task can be divided into two sub-tasks: 1. General evaluation of explicit MPC. 2. Evaluation of multivariable control of boiler temperature The purpose of subtask one is to evaluate what is required of a facility owner to implement explicit MPC in a control system. This includes everything from available calculation tools, what is important to consider during the design phase of the controller, different pitfalls that exist, management of different operating modes, to how the controller should be implemented and commissioned. Subtask two is intended to evaluate the multivariable control of a boiler of CFB type (circulating fluidized bed). MPC controller will regulate the temperature in the boiler. In order to maintain the waste incineration directive, the temperature in the upper part of the boiler is controlled. This is done by means of changes in the flow of natural gas injection and

  16. In-the-loop simulation of electronic automatic temperature control systems: HVAC modeling

    Energy Technology Data Exchange (ETDEWEB)

    Domschke, R.; Matthes, M. [Visteon Deutschland GmbH, Kerpen (Germany)

    2006-07-01

    The Electronic Automatic Temperature Control (EATC) ensures the occupant comfort and provides safety features like rapid defrost and demist protection. Doing this, the EATC controller provides a direct interface to the end consumer and has a considerable impact on customer satisfaction. The In-the-loop (IL) simulation process is an integral part of Visteons model-based development process. It helps to design and calibrate the EATC controller. It consists of several IL simulation techniques like Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL). In this article, we will focus on MIL/SIL Simulations. MIL/SIL allows simulation of the EATC controller in a virtual vehicle environment from the early states of and throughout the development process. This ensures a rapid, high quality and robust development process. The MIL/SIL model contains a thermal vehicle model, a heating, ventilation and air conditioning (HVAC) unit model and a model of the EATC controller itself. The thermal vehicle model simulates transient temperature and humidity conditions in the passenger compartment of a vehicle, settings from the controller, heat fluxes through the vehicle shell and windows, solar load and several further boundary conditions. Whereas the thermal vehicle model of a specific vehicle can be adapted from a default data base, one has to pay special attention to the HVAC unit model. Visteon has developed a special, physically based HVAC unit model to be adapted and implemented into the MIL/SIL simulation. This HVAC model enables a straightforward implementation of different HVAC architectures into the MIL/SIL simulation. Moreover, changes in the HVAC settings (i.e. different blower/scroll assemblies) can be assessed and the influence on passenger comfort can be quantified. Examples of the MIL/SIL simulation demonstrate the benefits of this approach. Results are discussed and a further outlook provided. (orig.)

  17. Study on explosion field temperature testing system based on wireless data transmission

    International Nuclear Information System (INIS)

    Wang Xinling; Sun Yunqiang

    2011-01-01

    The accurate measurement of the transient temperature value produced by explosive blasting may provide the basis for distinguishing the types of the explosive, the power contrast of the explosive and the performance evaluation in the weapons research process. To solve the problems of the Universal Test System emplaced inconveniently and the stored testing system need to be recycled, it has designed the explosion field application in wireless sensor system of temperature measurement. The system based on PIC16F877A micro controller, CPLD complex programmable logic devices and nRF24L01 wireless transmission chip sensor. The system adopts the Tungsten-Rhenium Thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation. This system has arrangement convenient, high-speed data acquisition, trigger and working parameters of adjustable characteristics, has been successfully applied in a test system. (authors)

  18. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  20. Design of measurement system for Doppler broadening profiles of annihilation radiations as a function of controlled specimen temperature and its applications for a study of metals in the thermal equilibrium state

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao.

    1992-01-01

    The measurement system for Doppler broadening profiles of annihilation radiation was developed. This system reads out data for energies of γ-rays from an analog to digital converter and those for specimen temperature from a digital-voltmeter coupled to a thermocouple. These two types of digital-quantities were stored in a memory matrix of 512 channels (energy) x 128 channels (temperature) x 4 byte (count). For this purpose, a memory board of 256 kbyte with 32-dynamic RAMs (64 kbits) was used. The data acquisition was controlled by a microcomputer. Temperature of the specimen was controlled by a programmable temperature controller, thus it can be varied in a desired way. This was useful for measurements in repeated temperature cycles. A sample heater with a compact size was developed in order to obtain a homogeneous temperature distribution in the specimen. Application of this system for a study of thermal vacancies in Al-dilute alloys was also shown. (author)

  1. Remote Multi-layer Soil Temperature Monitoring System Based on GPRS

    Directory of Open Access Journals (Sweden)

    Ming Kuo CHEN

    2014-02-01

    Full Text Available There is the temperature difference between the upper and lower layer of the shallow soil in the forest. It is a potential energy that can be harvested by thermoelectric generator for the electronic device in the forest. The temperature distribution at different depths of the soil is the first step for thermoelectric generation. A remote multi-layer soil temperature monitoring system based on GPRS is proposed in this paper. The MSP430F149 MCU is used as the main controller of multi-layer soil temperature monitoring system. A temperature acquisition module is designed with DS18B20 and 4 core shielded twisted-pair cable. The GPRS module sends the measured data to remote server through wireless communication network. From the experiments in the campus of Beijing Forestry University, the maximum error of measured temperature in this system is 0.2°C by comparing with professional equipment in the same condition. The results of the experiments show that the system can accurately realize real-time monitoring of multi-layer soil temperature, and the data transmission is stable and reliable.

  2. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications

    International Nuclear Information System (INIS)

    Beyhan, Beyza; Paksoy, Halime; Daşgan, Yıldız

    2013-01-01

    Highlights: • PCM based passive root zone temperature control system was developed. • The system was tested with zucchinis and peppers in a greenhouse in Turkey. • Two different fatty acids and mixtures were determined as suitable PCMs. • The optimum temperature levels necessary for growth of vegetables were maintained. - Abstract: A new root zone temperature control system based on thermal energy storage in phase change materials (PCM) has been developed for soilless agriculture greenhouses. The aim was to obtain optimum growing temperatures around the roots of plants. The candidate PCMs were 40% oleic acid–60% decanoic acid mixture and oleic acid alone. Field experiments with these PCMs were carried out in November 2009 with Cucurbite Pepo and March 2010 with Capsicum annum plants. No additional heating system was used in the greenhouse during these periods. In the November 2009 tests with zucchini, 40% oleic acid + 60% capric acid mixture was the PCM and a temperature increase in the PCM container (versus the control container) was measured as 1.9 °C. In our March 2010 tests with peppers, both PCMs were tried and the PCM mixture was found to be more effective than using oleic acidalone. A maximum temperature difference achieved by the PCM mixture around the roots of peppers was 2.4 °C higher than that near the control plants

  3. Application of fuzzy control in cooling systems save energy design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.L.; Liang, H.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A fuzzy logic programmable logic controller (PLC) was used to control the cooling systems of frigorific equipment. Frigorific equipment is used to move unwanted heat outside of building in order to control indoor temperatures. The aim of the fuzzy logic PLC was to improve the energy efficiency of the cooling system. Control of the cooling pump and cooling tower in the system was based on the water temperature of the condenser during frigorific system operation. A human computer design for the cooling system control was used to set speeds and to automate and adjust the motor according to the fuzzy logic controller. It was concluded that if fuzzy logic controllers are used with all components of frigorific equipment, energy efficiency will be significantly increased. 5 refs., 3 tabs., 9 figs.

  4. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Haddam Neck Nuclear Power Plant

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Haddam Neck Nuclear Power Plant is presented. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  5. Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components

    International Nuclear Information System (INIS)

    Dobre, Tanase; Parvulescu, Oana Cristina; Stoica, Anicuta; Iavorschi, Gustav

    2010-01-01

    The use of cooling systems based on heat pipe principle to control operation temperature of electronic components is very efficient. They have an excellent miniaturizing capacity and this fact creates adaptability for more practical situations. Starting from the observation that these cooling systems are not precisely characterized from the thermal efficiency point of view, the present paper proposes a methodology of data acquisition for their thermal characterization. An experimental set-up and a data processing algorithm are shown to describe the cooling of a heat generating electronic device using heat pipes. A Thermalright SI-97 PC cooling system is employed as a case-study to determine the heat transfer characteristics of a fins cooler.

  6. A furnace and temperature controller for optical absorption studies with a spectrophotometer

    International Nuclear Information System (INIS)

    Mariani Rogat, F.

    1975-01-01

    The design and main features of a furnace with a temperature controller and programmer are shown. This system allows to measure the optical absorption spectrum of a sample from room temperature to 400 deg C, in a double beam spectrophotometer Perkin Elmer 350. The sample temperature can be linearly increased at different heating rates between 4 and 38 deg C/min. The temperature ramp can be stopped at any desired point and the sample temperature shall be stabilized in less than one minute. This temperature shall be kept constant within 0.5 deg C for hours. The sample is heated in vacuum. (author)

  7. Boundary control of nonlinear coupled heat systems using backstepping

    KAUST Repository

    Bendevis, Paul

    2016-10-20

    A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.

  8. PID temperature controller in pig nursery: improvements in performance, thermal comfort, and electricity use.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Sartor, Karina

    2016-08-01

    The use of smarter temperature control technologies in heating systems can optimize the use of electric power and performance of piglets. Two control technologies of a resistive heating system were assessed in a pig nursery: a PID (proportional, integral, and derivative) controller and a thermostat. The systems were evaluated regarding thermal environment, piglet performance, and use of electric power for 99 days. The heating system with PID controller improved the thermal environment conditions and was significantly (P PID-controlled heating system is more efficient in electricity use and provides better conditions for thermal comfort and animal performance than heating with thermostat.

  9. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  10. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    Science.gov (United States)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  11. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  12. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  13. Numerical examination of temperature control in helium-cooled high flux test module of IFMIF

    International Nuclear Information System (INIS)

    Ebara, Shinji; Yokomine, Takehiko; Shimizu, Akihiko

    2007-01-01

    For long term irradiation of the International Fusion Materials Irradiation Facility (IFMIF), test specimens are needed to retain constant temperature to avoid change of its irradiation characteristics. The constant temperatures control is one of the most challenging issues for the IFMIF test facilities. We have proposed a new concept of test module which is capable of precisely measuring temperature, keeping uniform temperature with enhanced cooling performance. In the system according to the new design, cooling performances and temperature distributions of specimens were examined numerically under diverse conditions. Some transient behaviors corresponding to the prescribed temperature control mode were perseveringly simulated. It was confirmed that the thermal characteristics of the new design satisfied the severe requirement of IFMIF

  14. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  15. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.

    Science.gov (United States)

    Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H

    2018-01-01

    Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.

  16. Temperature and Humidity Control in Livestock Stables

    DEFF Research Database (Denmark)

    Hansen, Michael; Andersen, Palle; Nielsen, Kirsten M.

    2010-01-01

    The paper describes temperature and humidity control of a livestock stable. It is important to have a correct air flow pattern in the livestock stable in order to achieve proper temperature and humidity control as well as to avoid draught. In the investigated livestock stable the air flow...

  17. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  18. Automatic Control of Reactor Temperature and Power Distribution for a Daily Load following Operation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [Korea Hydro and Nuclear Power Institute, Daejeon (Korea, Republic of)

    2010-10-15

    An automatic control method of reactor power and power distribution was developed for a daily load following operation of APR1400. This method used a model predictive control (MPC) methodology having second-order plant data. And it utilized a reactor power ratio and axial shape index as control variables. However, the reactor regulating system of APR1400 is operated by the difference between the average temperature of the reactor core and the reference temperature, which is proportional to the turbine load. Thus, this paper reports on the model predictive control methodology using fourth-order plant data and a reactor temperature instead of the reactor power shape. The purpose of this study is to develop a revised automatic controller and analyze the behavior of the nuclear reactor temperature (Tavg) and the axial shape index (ASI) using the MPC method during a daily load following operation

  19. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Yankee Rowe nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Yankee Rowe nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  20. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Maine Yankee nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Maine Yankee nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  1. Regulation of flow through a T-Shaped open cavity by temperature dependent P, PI, and PID controllers

    International Nuclear Information System (INIS)

    Saha, Sourav; Mojumder, Satyajit; Saha, Sumon

    2016-01-01

    P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k p ), integral gain (k i ), and derivative gain (k d ) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.

  2. Regulation of flow through a T-Shaped open cavity by temperature dependent P, PI, and PID controllers

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{sub p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.

  3. Temperature and pH Responsive Microfibers for Controllable and Variable Ibuprofen Delivery

    Directory of Open Access Journals (Sweden)

    Toan Tran

    2015-01-01

    Full Text Available Electrospun microfibers (MFs composed of pH and temperature responsive polymers can be used for controllable and variable delivery of ibuprofen. First, electrospinning technique was employed to prepare poly(ε-caprolactone (PCL and poly(N-isopropylacrylamide-co-methacrylic acid (pNIPAM-co-MAA MFs containing ibuprofen. It was found that drug release rates from PCL MFs cannot be significantly varied by either temperature (22–40°C or pH values (1.7–7.4. In contrast, the ibuprofen (IP diffusion rates from pNIPAM-co-MAA MFs were very sensitive to changes in both temperature and pH. The IP release from pNIPAM-co-MAA MFs was highly linear and controllable when the temperature was above the lower critical solution temperature (LCST of pNIPAM-co-MAA (33°C and the pH was lower than the pKa of carboxylic acids (pH 2. At room temperature, however, the release rate was dramatically increased by nearly ten times compared to that at higher temperature and lower pH. Such a unique and controllable drug delivery system could be naturally envisioned to find many practical applications in biomedical and pharmaceutical sciences such as programmable transdermal drug delivery.

  4. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    Science.gov (United States)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  5. Rotating disk electrode system for elevated pressures and temperatures.

    Science.gov (United States)

    Fleige, M J; Wiberg, G K H; Arenz, M

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  6. Rotating disk electrode system for elevated pressures and temperatures

    International Nuclear Information System (INIS)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-01-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells

  7. Rotating disk electrode system for elevated pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)

    2015-06-15

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  8. Rotating disk electrode system for elevated pressures and temperatures

    Science.gov (United States)

    Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.

    2015-06-01

    We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.

  9. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  10. Development of a low-temperature two-stage fluidized bed incinerator for controlling heavy-metal emission in flue gases

    International Nuclear Information System (INIS)

    Peng, Tzu-Huan; Lin, Chiou-Liang; Wey, Ming-Yen

    2014-01-01

    This study develops a low-temperature two-stage fluidized bed system for treating municipal solid waste. This new system can decrease the emission of heavy metals, has low construction costs, and can save energy owing to its lower operating temperature. To confirm the treatment efficiency of this system, the combustion efficiency and heavy-metal emission were determined. An artificial waste containing heavy metals (chromium, lead, and cadmium) was used in this study. The tested parameters included first-stage temperature and system gas velocity. Results obtained using a thermogravimetric analyzer with a differential scanning calorimeter indicated that the first-stage temperature should be controlled to at least 400 °C. Although, a large amount of carbon monoxide was emitted after the first stage, it was efficiently consumed in the second. Loss of the ignition values of ash residues were between 0.005% and 0.166%, and they exhibited a negative correlation with temperature and gas velocity. Furthermore, the emission concentration of heavy metals in the two-stage system was lower than that of the traditional one-stage fluidized bed system. The heavy-metal emissions can be decreased by between 16% and 82% using the low-temperature operating process, silica sand adsorption, and the filtration of the secondary stage. -- Graphical abstract: Heavy-metal emission concentrations in flue gases under different temperatures and gas velocities (dashed line: average of the heavy-metal emission in flue gases in the one-stage fluidized-bed incinerator). Highlights: • Low temperature two-stage system is developed to control heavy metal. • The different first-stage temperatures affect the combustion efficiency. • Surplus CO was destroyed efficiently by the secondary fluidized bed combustor. • Metal emission in two-stage system is lower than in the traditional system. • Temperature, bed adsorption, and filtration are the main control mechanisms

  11. Biotelemetry system for Epilepsy Seizure Control

    Energy Technology Data Exchange (ETDEWEB)

    Smith, LaCurtise; Bohnert, George W.

    2009-07-02

    The Biotelemetry System for Epilepsy Seizure Control Project developed and tested an automated telemetry system for use in an epileptic seizure prevention device that precisely controls localized brain temperature. This project was a result of a Department of Energy (DOE) Global Initiatives for Proliferation Prevention (GIPP) grant to the Kansas City Plant (KCP), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL) to partner with Flint Hills Scientific, LLC, Lawrence, KS and Biophysical Laboratory Ltd (BIOFIL), Sarov, Russia to develop a method to help control epileptic seizures.

  12. Study of system dynamics model and control of a high-power LED lighting luminaire

    International Nuclear Information System (INIS)

    Huang, B.-J.; Hsu, P.-C.; Wu, M.-S.; Tang, C.-W.

    2007-01-01

    The purpose of the present study is to design a current control system which is robust to the system dynamics uncertainty and the disturbance of ambient temperature to assure a stable optical output property of LED. The system dynamics model of the LED lighting system was first derived. A 96 W high-power LED luminaire was designed and built in the present study. The linearly perturbed system dynamics model for the LED luminaire is derived experimentally. The dynamics model of LED lighting system is of a multiple-input-multiple-output (MIMO) system with two inputs (applied voltage and ambient temperature) and two outputs (forward current and heat conducting body temperature). A step response test method was employed to the 96 W LED luminaire to identify the system dynamics model. It is found that the current model is just a constant gain (resistance) and the disturbance model is of first order, both changing with operating conditions (voltage and ambient temperature). A feedback control system using PI algorithm was designed using the results of the system dynamics model. The control system was implemented on a PIC microprocessor. Experimental results show that the control system can stably and accurately control the LED current to a constant value at the variation of ambient temperature up to 40 o C. The control system is shown to have a robust property with respect to the plant uncertainty and the ambient temperature disturbance

  13. Phase-insensitive detectors for ac resistance bridges with application to temperature control systems

    International Nuclear Information System (INIS)

    Duncan, M.G.

    1977-01-01

    A method of detecting AC resistance bridge error signals with low sensitivity to stray reactances is presented. The detector, which compares magnitudes of two bridge signals, can be used in a fast resistance temperature control to maintain constant resistance to better than 2 ppM at resistances down to 5 milliohms

  14. Modelling and Control of Thermal System

    Directory of Open Access Journals (Sweden)

    Vratislav Hladky

    2014-01-01

    Full Text Available Work presented here deals with the modelling of thermal processes in a thermal system consisting of direct and indirect heat exchangers. The overal thermal properties of the medium and the system itself such as liquid mixing or heat capacity are shortly analysed and their features required for modelling are reasoned and therefore simplified or neglected. Special attention is given to modelling heat losses radiated into the surroundings through the walls as they are the main issue of the effective work with the heat systems. Final part of the paper proposes several ways of controlling the individual parts’ temperatures as well as the temperature of the system considering heating elements or flowage rate as actuators.

  15. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    Science.gov (United States)

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  16. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  17. Temperature control in a continuously mixed bioreactor for solid-state fermentation

    NARCIS (Netherlands)

    Nagel, F.J.J.I.; Tramper, J.; Bakker, M.S.N.; Rinzema, A.

    2001-01-01

    A continuously mixed, aseptic paddle mixer was used successfully for solid-state fermentation (SSF) with Aspergillus oryzae on whole wheat kernels. Continuous mixing improved temperature control and prevented inhomogeneities in the bed. Respiration rates found in this system were comparable to those

  18. Control of dental prosthesis system with microcontroller.

    Science.gov (United States)

    Kapidere, M; Müldür, S; Güler, I

    2000-04-01

    In this study, a microcontroller-based electronic circuit was designed and implemented for dental prosthesis curing system. Heater, compressor and valve were controlled by 8-bit PIC16C64 microcontroller which is programmed using MPASM package. The temperature and time were controlled automatically by preset values which were inputted from keyboard while the pressure was kept constant. Calibration was controlled and the working range was tested. The test results showed that the system provided a good performance.

  19. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  20. Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles

    Science.gov (United States)

    Wilcox, Zachary Donald

    The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed

  1. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  2. Importance of temperature control for HEFLEX, a biological experiment for Spacelab 1. [plant gravitational physiology study

    Science.gov (United States)

    Chapman, D. K.; Brown, A. H.

    1979-01-01

    The importance of temperature control to HEFLEX, a Spacelab experiment designed to measure kinetic properties of Helianthis nutation in a low-g environment, is discussed. It is argued that the development of the HEFLEX experiment has been severely hampered by the inadequate control of ambient air temperature provided by the spacecraft module design. A worst case calculation shows that delivery of only 69% of the maximum yield of useful data from the HEFLEX system is guaranteed; significant data losses from inadequate temperature control are expected. The magnitude of the expected data losses indicates that the cost reductions associated with imprecise temperature controls may prove to be a false economy in the long term.

  3. A decentralized control method for direct smart grid control of refrigeration systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    . No model information is required in this method. The temperature limits/constraints are respected. A novel adaptive saturation filter is also proposed to increase the system flexibility in storing and delivering the energy. The proposed control strategy is applied to a simulation benchmark that fairly......A decentralized control method is proposed to govern the electrical power consumption of supermarket refrigeration systems (SRS) for demand-side management in the smart grid. The control structure is designed in a supervisory level to provide desired set-points for distributed level controllers...

  4. Wide-range nuclear reactor temperature control using automatically tuned fuzzy logic controller

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Edwards, R.M.; Lee, K.Y.

    1992-01-01

    In this paper, a fuzzy logic controller design for optimal reactor temperature control is presented. Since fuzzy logic controllers rely on an expert's knowledge of the process, they are hard to optimize. An optimal controller is used in this paper as a reference model, and a Kalman filter is used to automatically determine the rules for the fuzzy logic controller. To demonstrate the robustness of this design, a nonlinear six-delayed-neutron-group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed-neutron-group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  5. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  6. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  7. Microcomputer-based monitoring and control system

    International Nuclear Information System (INIS)

    Talaska, D.

    1979-03-01

    This report describes a microcomputer-based monitoring and control system devised within, and used by, the Cryogenic Operations group at SLAC. Presently, a version of it is operating at the one meter liquid hydrogen bubble chamber augmenting the conventional pneumatic and human feedback system. Its use has greatly improved the controlled tolerances of temperature and pulse shape, and it has nearly eliminated the need for operating personnel to adjust the conventional pneumatic control system. The latter is most important since the rapid cycling machine can demand attentions beyond the operator's skill. Similar microcomputer systems are being prepared to monitor and control cryogenic devices situated in regions of radiation which preclude human entry and at diverse locations which defy the dexterity of the few operators assigned to maintain them. An IMSAI 8080 microcomputer is basic to the system. The key to the use of the IMSAI 8080 in this system was in the development of unique interface circuitry, and the report is mostly concerned with this

  8. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  9. Thermoluminescent system for low temperatures

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.; Leite, N.G.

    1988-09-01

    A system for measurements of the thermoluminescent glow curve, the thermoluminescent emission spectrum and the optical absorption spectrum of solid samples, from liquid nitrogen temperature up to 473 K, is reported. A specially designed temperature programmer provides a linear heating of the sample at a wide range of selectable heating rates, as also long term steady-state temperatures for annealing and isothermal decay studies. The system operates at a pressure of 1.33 x 10 -3 Pa. Presently it is being used for lithium fluoride low temperature thermoluminescent studies. (author) [pt

  10. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  11. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  12. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    Science.gov (United States)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  13. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    Energy Technology Data Exchange (ETDEWEB)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id [Instrumentation System and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Jalan Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java (Indonesia)

    2016-03-11

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  14. Internal Temperature Control For Vibration Testers

    Science.gov (United States)

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  15. Comparison of axillary and rectal temperatures for healthy Beagles in a temperature- and humidity-controlled environment.

    Science.gov (United States)

    Mathis, Justin C; Campbell, Vicki L

    2015-07-01

    To compare axillary and rectal temperature measurements obtained with a digital thermometer for Beagles in a temperature- and humidity-controlled environment. 26 healthy Beagles (17 sexually intact males and 9 sexually intact females). Dogs were maintained in a temperature- and humidity-controlled environment for 56 days before rectal and axillary temperatures were measured. Axillary and rectal temperatures were obtained in triplicate for each dog by use of a single commercially available manufacturer-calibrated digital thermometer. Mean rectal and axillary temperatures of Beagles maintained in a temperature- and humidity-controlled environment were significantly different, with a median ± SD difference of 1.4° ± 0.15°C (range, 0.7° to 2.1°C). Mean rectal and axillary temperatures were 38.7°C (range, 37.6° to 39.5°C) and 37.2°C (range, 36.6° to 38.3°C), respectively. Results of this study indicated that the historical reference of a 0.55°C gradient between rectal and axillary temperatures that has been clinically used for veterinary patients was inaccurate for healthy Beagles in a temperature- and humidity-controlled environment. Rectal and axillary temperatures can be measured in veterinary patients. Reliable interpretation of axillary temperatures may accommodate patient comfort and reduce patient anxiety when serial measurement of temperatures is necessary. Further clinical studies will be needed.

  16. Automated Cryocooler Monitor and Control System Software

    Science.gov (United States)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  17. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water......) and Desulfotomaculum (system with nitrate). In samples from the untreated site, the presence of active SRP was supported by demonstrating their activity (incubations with 35S-sulfate) and growth in batch cultures at pipeline temperature. No SRP activity was detected at reservoir temperature and in samples from...

  18. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    Science.gov (United States)

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  19. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    Science.gov (United States)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  20. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  1. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  2. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  3. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  4. Control system pre-feedbacked for the super heated steam temperature in heat recovering units; Sistema de control pre-retroalimentado para la temperatura de vapor sobrecalentado en recuperadores de calor

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, Hilario; Madrigal Espinosa, Guadalupe [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The study that is presented corresponds to the analysis, design and development of a pre-feedbacked control system for the superheated steam temperature regulation in the heat recovery units of a combined cycle thermoelectric power plant. The designs of the feedback controller and the pre-feedback control system were implemented based in a linear model of the tempering zone. This linear model was obtained through the application of parametric identification techniques to the non-linear mathematical model of a combined cycle power plant. [Espanol] El estudio que se presenta corresponde al analisis, diseno y desarrollo de un sistema de control pre-retroalimentado para regular la temperatura de vapor sobrecalentado en los recuperadores de calor de una central termoelectrica de ciclo combinado. Los disenos del controlador retroalimentado y del sistema de control prealimentado se realizaron con base en un modelo lineal de la zona de atemperacion. Este modelo lineal se obtuvo aplicando tecnicas de identificacion parametrica al modelo matematico no-lineal de una central de ciclo combinado.

  5. EMPLACEMENT DRIFT ISOLATION DOOR CONTROL SYSTEM

    International Nuclear Information System (INIS)

    N.T. Raczka

    1998-01-01

    The purpose of this analysis is to review and refine key design concepts related to the control system presently under consideration for remotely operating the emplacement drift isolation doors at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis will discuss the key design concepts of the control system that may be utilized for remotely monitoring, opening, and closing the emplacement drift isolation doors. The scope and primary objectives of this analysis are to: (1) Discuss the purpose and function of the isolation doors (Presented in Section 7.1). (2) Review the construction of the isolation door and other physical characteristics of the doors that the control system will interface with (Presented in Section 7.2). (3) Discuss monitoring and controlling the operation of the isolation doors with a digital control system (either a Programmable Logic Controller (PLC) system or a Distributed Control System (DCS)) (Presented in Section 7.3). (4) Discuss how all isolation doors can be monitored and controlled from a subsurface central control center (Presented in Section 7.4). This analysis will focus on the development of input/output (I/O) counts including the types of I/O, redundancy and fault tolerance considerations, and processor requirements for the isolation door control system. Attention will be placed on operability, maintainability, and reliability issues for the system operating in the subsurface environment with exposure to high temperatures and radiation

  6. Temperature measurement systems in wearable electronics

    Science.gov (United States)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  7. Application of the DTC control in the photovoltaic pumping system

    International Nuclear Information System (INIS)

    Moulay-Idriss, Chergui; Mohamed, Bourahla

    2013-01-01

    Highlights: ► To improve the efficiency of PV systems, under different temperature and irradiance conditions. ► The MPPT and different control method for the induction motor were applied. ► The DTC in PV pumping system introduced and performance studied. ► The introductions of DTC in PV systems are very promising. ► Optimizing the water pumping system speed response characteristic by DTC. - Abstract: We aim to find a better control and optimization among the different functions of a solar pumping system. The photovoltaic panel can provide a maximum power only for defined output voltage and current. In addition, the operation to get the maximum power depends on the terminals of load, mostly a non-linear load like induction motor. In this work, we propose an intelligent control method for the maximum power point tracking of a photovoltaic system under variable temperature and irradiance conditions. The system was tested without maximum power point tracking, with the use of Scalar-Based control motor, but we cannot maintain the speed optimal. Next, we developed several methods for the control. Finally, we have chosen the Direct Torque Control.

  8. Monitoring system for accuracy and reliability characteristics of standard temperature measurements in WWER-440 reactors

    International Nuclear Information System (INIS)

    Stanc, S.; Repa, M.

    2001-01-01

    Description of a monitoring system for accuracy and reliability characteristics of standard temperature measurements in WWER-440 reactors and benefits obtained from its use are shown in the presentation. As standard reactor temperature measurement, coolant temperature measurement at fuel assembly outlets and in loops, entered into the In-Reactor Control System , are considered. Such systems have been implemented at two V-230 reactors and are under implementation at other four V-213 reactors. (Authors)

  9. Design and Implementation of a Discrete-Time Proportional Integral (PI) Controller for the Temperature Control of a Heating Pad.

    Science.gov (United States)

    Khan, Pathan Fayaz; Sengottuvel, S; Patel, Rajesh; Gireesan, K; Baskaran, R; Mani, Awadhesh

    2018-05-01

    Contact heat evoked potentials (CHEPs) are recorded from the brain by giving thermal stimulations through heating pads kept on the surface of the skin. CHEP signals have crucial diagnostic implications in human pain activation studies. This work proposes a novel design of a digital proportional integral (PI) controller based on Arduino microcontroller with a view to explore the suitability of an electric heating pad for use as a thermode in a custom-made, cost-effective CHEP stimulator. The purpose of PI controller is to set, regulate, and deliver desired temperatures on the surface of the heating pad in a user-defined pattern. The transfer function of the heating system has been deduced using the parametric system identification method, and the design parameters of the controller have been identified using the root locus technique. The efficiency of the proposed PI controller in circumventing the well-known integrator windup problem (error in the integral term builds excessively, leading to large transients in the controller output) in tracking the reference input and the controller effort (CE) in rejecting output disturbances to maintain the set temperature of the heating pad have been found to be superior compared with the conventional PI controller and two of the existing anti-windup models.

  10. Design of control system for profile gauge

    International Nuclear Information System (INIS)

    Huang Yibin; Zhang Yu'ai

    2013-01-01

    The profile gauge can on-line get the cross section in the steel strip, so it has been widely used in hot continuous rolling production-line. The structure of profile gauge and its distributed hardware structure based on PLC and software design of its control subsystem were introduced. The method of temperature and humidity measurement was analyzed. The time response of X-ray machine control based on RS232 communication was researched. It is proved that the control system meets the requirements of the profile gauge system. (authors)

  11. Voltammetry under a Controlled Temperature Gradient

    Directory of Open Access Journals (Sweden)

    Jan Krejci, Jr.

    2010-07-01

    Full Text Available Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference.

  12. Control of climatics environments to enhance reliability of electronics systems

    International Nuclear Information System (INIS)

    Sekhon, K.S.

    1979-01-01

    The techniques to control temperature and humidity to reduce failures in semiconductor devices are presented. The maximum operating junction temperature affects the electronic system reliability, and the equation for the junction temperature of the device shows that internal and external thermal resistances affect component life. Junction temperature reductions up to 60 C were achieved by the development of heat pipes for microcircuits, which will enhance electronics life by 32 times. Humidity control by improved sealing and use of heaters to prevent moisture condensation proved difficult and costly, and high pressure dehydrators were heavy and expensive. Therefore, low pressure dehydrator was developed which is smaller, lighter, and less expensive. The development of low pressure dehumidifying system including test data is presented

  13. The Setup Design for Selective Laser Sintering of High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition

    Directory of Open Access Journals (Sweden)

    Alexey Nazarov

    2018-03-01

    Full Text Available This paper presents the design of an additive setup for the selective laser sintering (SLS of high-temperature polymeric materials, which is distinguished by an original control system for aligning the device for depositing layers of polyether ether ketone (PEEK powder. The kinematic and laser-optical schemes are given. The main cooling circuits are described. The proposed technical and design solutions enable conducting the SLS process in different types of high-temperature polymer powders. The principles of the device adjustment for depositing powder layers based on an integral thermal analysis are disclosed. The PEEK sinterability was shown on the designed installation. The physic-mechanical properties of the tested 3D parts were evaluated in comparison with the known data and showed an acceptable quality.

  14. Use of integrity control and automatic start of reserve in a multi-channel temperature and flow rate control device

    International Nuclear Information System (INIS)

    Strzalkowski, L.

    1975-01-01

    A way to increase reliability of process quantity control is control of the integrity of the control plants themselves. The possibilities of integrity control on control devices having simply duplicated control channels or working on the basis of the ''two-from-three'' principle are valued. A highly reliable integrity control is possible by use of test signals. For an appropriate control device, structure and function of the assemblies are described. The integrity control device may be used in the water coolant temperature and flow rate control system for all technological channels of the research reactor ''Maria''

  15. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  16. Temperature control of evaporators in automotive waste heat recovery systems

    NARCIS (Netherlands)

    Oom, M.E.E.; Feru, E.; de Jager, A.G.; de Lange, H.C.; Ouwerkerk, H.

    2017-01-01

    his paper presents a control strategy for the steam generation process in automotive waste heat recovery systems that are based on the subcritical Rankine cycle. The central question is how to regulate the flow of water into the evaporator such that dry steam is generated at its outlet, subject to

  17. Temperature control in interstitial laser cancer immunotherapy

    Science.gov (United States)

    Bandyopadhyay, Pradip K.; Holmes, Kyland; Burnett, Corinthius; Zharov, Vladimir P.

    2003-07-01

    Positive results of Laser-Assisted Cancer Immunotherapy (LACI) have been reported previously in the irradiation of superficial tumors. This paper reports the effect of LACI using laser interstitial therapy approach. We hypothesize that the maximum immuno response depends on laser induced tumor temperature. The measurement of tumor temperature is crucial to ensure necrosis by thermal damage and immuno response. Wister Furth female rats in this study were inoculated with 13762 MAT B III rat mammary adinocarcinoma. LACI started seven to ten days following inoculation. Contrary to surface irradation, we applied laser interstitial irradiation of tumor volume to maximize the energy deposition. A diode laser with a wavelength of 805 nm was used for tumor irradiation. The laser energy was delivered inside the tumor through a quartz fiber. Tumor temperature was measured with a micro thermocouple (interstitial), while the tumor surface temperature was controlled with an IR detector. The temperature feedback demonstrates that it is possible to maintain the average tumor temperature at the same level with reasonable accuracy in the desired range from 65°C-85°C. In some experiments we used microwave thermometry to control average temperature in deep tissue for considerable period of time, to cause maximum thermal damage to the tumor. The experimental set-up and the different temperature measurement techniques are reported in detail, including the advantages and disadvantages for each method.

  18. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  19. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  20. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  1. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  2. Void fraction measurement system for high temperature flows

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A; Aube, F; Champagne, P [Montreal Univ., PQ (Canada). Institut de Genie Energetique

    1992-05-01

    A {gamma}-ray absorption technique has been developed for measuring the axial distribution of the void fraction for high-temperature and high-pressure two-phase flows. The system is mounted on a moving platform driven by a high-power stepping motor. A personal computer (IBM AT) connected to a data acquisition system is used to control the displacement of the {gamma} source and detector, and to read the response of the detector. All the measurement procedures are carried out automatically by dedicated software developed for this purpose. (Author).

  3. Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Thomas Hermans

    2014-08-01

    Full Text Available Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage and heat transport (thermal conductivity and volumetric thermal capacity. Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT, self-potential method (SP and distributed temperature sensing (DTS to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues.

  4. Liquid level control system for vapour generator

    International Nuclear Information System (INIS)

    Singh, G.

    1984-01-01

    A system for regulating the liquid level in a vapor generator, in which the incoming flow of feed liquid is regulated in response to the difference between the measured liquid level and a reference level, the difference between the exiting vapor mass flow rate and the incoming liquid mass flow rate, and a function of the measured incoming liquid temperature. The temperature function produces a gain value, which increases in response to decreasing incoming liquid temperature. The purpose of the temperature function is to stabilize the level control under transient conditions (e.g. sudden lose of load). (author)

  5. Heating control system for nuclear reactor

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1981-01-01

    Purpose: To automatically control reactor heating while keeping the condition of temperature rising rate by determining the deviations based on the reactor water temperature, the aimed temperature and the aimed temperature rising rate and operating control rods. Constitution: Actual temperature in the reactor is measured by a temperature detector and compared with a value from a setter to determine the temperature deviation. While on the other hand, the rising rate for the measured temperature is calculated in a differentiator and compared with a value from a setter to determine the deviation, which is passed through an integrator to calculate the deviation for the temperature rising rate. The signals for the temperature deviation and the temperature rising rate deviation are selected in a lower value preference circuit and the operation amount for the control rod is judged in a control rod operation judging section depending on the deviation amount. The control rod to be operated is determined in a sequence control section for the selection of control rod. The control rod selected and the direction of the operation are displayed on a display and the selected control rod is automatically driven by a control rod drives to thereby carry our reactor heating. (Furukawa, Y.)

  6. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Microcontroller based automatic temperature control for oyster mushroom plants

    Science.gov (United States)

    Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.

    2018-03-01

    In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.

  8. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Nichols, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility. In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.

  9. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  10. Temperature and humidity control in growing of greenhouse muskmelon

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuji; Nakamura, shin' ichi; Toda, Mikihiko; Ozawa, Akihito

    1986-12-25

    At the Shizuoka Agricultural Experiment Station, a control test of muskmelon was carried out wherein the controlled night temperature was automatically lowered by 2 or 4 /sup 0/C from the present temperature when the sunlight level was below the standard, and the humidity was controlled either individually or in combination with the temperature. Concerning the influence of temperature, no bad effect was observed in the constant early half of midnight temperature (18 /sup 0/C) section which was tested from the viewpoint of energy saving. For the test range of 22 - 18 /sup 0/C (winter growing) and 24 - 18 /sup 0/C (autumn growing), there was no significant difference on the fruit weight and shape;but the content of suger was found better in the complex modified temperature section of 22 - 18 /sup 0/C (winter growing) and 24 - 22 /sup 0/C (autumn growing). As for the humidity-added section, the fruit grew bigger, but the sugar content was significantly reduced. Optimal target value of control was estimated at 80 +-5 % daytime and 90 % night-time. (2 figs, 11 tabs, 10 refs

  11. Stability Analysis of Wireless Measurement and Control System Based on Dynamic Matrix

    Directory of Open Access Journals (Sweden)

    Yongxian SONG

    2014-01-01

    Full Text Available Focus on data packet loss and time delay problems in wireless greenhouse measurement and control system, and temperature and humidity were taken as the research objects, the model of temperature and humidity information transmission was set up by decoupling technology according to the characteristics of wireless greenhouse measurement and control system. According to related theory of exponential stability in network control system, the stability conditions judgment of temperature and humidity control model was established, the linear matrix inequality that time delay and packet loss should satisfy was obtained when wireless measurement and control system was stable operation. The feasibility analysis of linear matrix inequality (LMI was implemented Using LMI toolbox in MATLAB, and the critical values of time delay and packet loss rate were obtained when the system was stable operation. The wireless sensor network control system simulation model with time delay and packet loss was set up using TrueTime toolbox. The simulation results have shown that the system was in a stable state when time delay and packet loss rate obtained were less than the critical values in wireless greenhouse sensor network measurement and control system; With the increase of time delay and packet loss rate, and stable performance drops; When time delay and packet loss rate obtained were more than the critical values, the measurement and control system would be in a state of flux, and when it was serious, even can lead to collapse of the whole system. As a result, the critical values determination of time delay and packet loss rate provided a theoretical basis for establishing stable greenhouse wireless sensor network (WSN measurement and control system in practical application.

  12. Nonlinear Power-Level Control of the MHTGR Only with the Feedback Loop of Helium Temperature

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-02-01

    Full Text Available Power-level control is a crucial technique for the safe, stable and efficient operation of modular high temperature gas-cooled nuclear reactors (MHTGRs, which have strong inherent safety features and high outlet temperatures. The current power-level controllers of the MHTGRs need measurements of both the nuclear power and the helium temperature, which cannot provide satisfactory control performance and can even induce large oscillations when the neutron sensors are in error. In order to improve the fault tolerance of the control system, it is important to develop a power-level control strategy that only requires the helium temperature. The basis for developing this kind of control law is to give a state-observer of the MHTGR a relationship that only needs the measurement of helium temperature. With this in mind, a novel nonlinear state observer which only needs the measurement of helium temperature is proposed. This observer is globally convergent if there is no disturbance, and has the L2 disturbance attenuation performance if the disturbance is nonzero. The separation principle of this observer is also proven, which denotes that this observer can recover the performance of both globally asymptotic stabilizers and L2 disturbance attenuators. Then, a new dynamic output feedback power-level control strategy is established, which is composed of this observer and the well-built static state-feedback power-level control based upon iterative dissipation assignment (IDA-PLC. Finally, numerical simulation results show the high performance and feasibility of this newly-built dynamic output feedback power-level controller.

  13. Model based control of refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Larsen, L.F.

    2005-11-15

    with a distributed control structure, the cross-couplings are not naturally incorporated in the design of the controllers. The disturbances caused by the individual subsystems might be insignificant, however if the effect from all of the subsystems is synchronized it might cause a sever deterioration in the system performance. In the part of the thesis covering dynamical optimization, the main emphasis is laid on analyzing the phenomena of synchronization of hysteresis controlled subsystems. The propose method for desynchronization is based on a model predictive control setup. By formulating a cost function that penalizes the effects of synchronization hard, an optimal control sequence for the subsystems can be computed that desynchronizes the operation. A supermarket's refrigeration system consists of a number of refrigerated display cases located in the supermarkets sales area. The display cases are connected to a central refrigeration system, moreover the temperature control in the display cases is carried out by hysteresis controller. Practice however shows that the display cases have a tendency to synchronize the temperature control. This cause periodically high loads on the central refrigeration system and thereby an increased energy consumption and wear. By studying a nonlinear system model it has been analyzed, which parameter that are important for the synchronization. Applying the proposed method on the nonlinear system model has proved that it is capable of desynchronizing the operation of the display cases. (au)

  14. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  15. Ternary Systems Control with Two Recycle Steams

    Directory of Open Access Journals (Sweden)

    Solar–González R

    2010-10-01

    Full Text Available In the literature, the use of parallel control structure to improve the control behavior of plantwide de signs has been study. In this work, we consider the behavior of a plant that consists of a recycle system, a reactor and two distillation columns where the control aim is to improve the disturbance rejection capabilities of the controlled process. The idea is to change the operating conditions in both the reactor and the second distillation column in order to distribute the composition control effort in the face of fresh feed composition disturbances. To this end, a parallel control structure is proposed where the product composition is regulated by means of simultaneous feed back manipulations of the vapor boilup rate of the second column and there actor temperature. In this way, the use of the reactor temperature as a secondary control in put reduces oscillatory behavior and the vapour flowrate us age.

  16. Design method of control system for HTGR fuel handling process with control Petri net

    International Nuclear Information System (INIS)

    Han Zandong; Luo Sheng; Liu Jiguo

    2008-01-01

    As a complex mechanical system,the fuel handling system (FHS) of pebble-bed high temperature gas cooled reactor (HTGR) is with the features of complicated structure, numerous control devices and strict working scheduling. It is very important to precisely describe the function of FHS and effectively design its control system. A design method of control system based on control Petri net (CPN) is introduced in this paper. By associating outputs and operations with places, associating inputs and conditions with transitions, and introducing macro-places and macro-actions, the CPN realizes hierarchy design of complex control system. Based on the analysis of basic functions and working flow of FHS, its control system is described and designed by CPN. According to the firing regulation of transition,the designed CPN can be easily converted into LAD program of PLC, which can be implemented on the FHS simulating control test-bed. Application illuminates that proposed method has the advantages of clear design structure, exact description power and effective design ability of control program, which can meet the requirements of FHS control sys-tem design. (authors)

  17. Development of a remote controlled fatigue testing apparatus at elevated temperature in controlled environment

    International Nuclear Information System (INIS)

    Ohmi, Masao; Mimura, Hideaki; Ishii, Toshimitsu

    1996-02-01

    The fatigue characteristics of reactor structural materials at high temperature are necessary to be evaluated for ensuring the safety of the High Temperature engineering Test Reactor (HTTR). Especially, the high temperature test data on safety research such as low cycle fatigue property and crack propagation property for reactor pressure vessel material are important for the development of the HTTR. Responding to these needs, a remote controlled type fatigue testing machine has been developed and installed in a hot cell of JMTR Hot Laboratory to get the fatigue data of irradiated materials. The machine was developed modifying a commercially available electro-hydraulic servo type fatigue testing machine to withstand radiation and be remotely operated, and mainly consists of a testing machine frame, environment chamber, extensometer, actuator and vacuum exhaust system. It has been confirmed that the machine has good performance to obtain low cycle fatigue data through many demonstration tests on unirradiated and irradiated specimens. (author)

  18. Evaluation of the control system checkout test results for YGN 3

    International Nuclear Information System (INIS)

    Hong, Eon Young; Shon, Suk Whun; Kim, Shim Whan; Sung, Kang Sik; Seo, Jong Tae.

    1996-11-01

    During the Yonggwang Nuclear Power Plant Unit 3 (YGN3) Power Ascension Test (PAT) period, the Control System Checkout tests were performed at 10%, 20%, 50%, 80%, and 100% respectively. This test evaluates the performance of the feedwater control system, reactor regulating system, pressurizer level and pressure control system in controlling their respective parameters within specified control bands at different power levels. The first test evaluates the ability of the FWCS to control steam generator 1 and 2 water levels during steady and transient conditions. The SG level setpoint was changed from normal SG level. The FWCS no.1 and no.2 controlled the SG water level to the new setpoint within the acceptable band. The second test evaluates the ability of the reactor regulating system (RRS) to control reactor coolant system (RCS) average temperature with respect to the reference temperature. The final test evaluates the ability of all of the control systems to work in an integrated manner controlling their respective parameters while the plant is at steady state conditions. The FWCS, RRS, SBCS, PLCS control their respective parameters within the control bands. The tests performed at Unit 3 were successful by meeting all of the test acceptable criteria. The measured test data for the major plant parameters were collected and evaluated. (author). 14 tabs., 217 figs., 7 refs

  19. Reliability analysis of the automatic control of the A-1 power plant coolant temperature

    International Nuclear Information System (INIS)

    Kuklik, B.; Semerad, V.; Chylek, Z.

    Reliability analysis of the automatic control of the A-1 reactor coolant temperature is performed taking into account the effect of both the dependent failures and the routine maintenance of control system components. In a separate supplement, reliability analysis is reported of coincidence systems of the A-1 power plant reactor. Both safe and unsafe failures are taken into consideration as well as the effect of maintenance of the respective branch elements

  20. Modeling, Prediction, and Control of Heating Temperature for Tube Billet

    Directory of Open Access Journals (Sweden)

    Yachun Mao

    2015-01-01

    Full Text Available Annular furnaces have multivariate, nonlinear, large time lag, and cross coupling characteristics. The prediction and control of the exit temperature of a tube billet are important but difficult. We establish a prediction model for the final temperature of a tube billet through OS-ELM-DRPLS method. We address the complex production characteristics, integrate the advantages of PLS and ELM algorithms in establishing linear and nonlinear models, and consider model update and data lag. Based on the proposed model, we design a prediction control algorithm for tube billet temperature. The algorithm is validated using the practical production data of Baosteel Co., Ltd. Results show that the model achieves the precision required in industrial applications. The temperature of the tube billet can be controlled within the required temperature range through compensation control method.

  1. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  2. International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

    Science.gov (United States)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.

  3. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  4. Integrated control of the cooling system and surface openings using the artificial neural networks

    International Nuclear Information System (INIS)

    Moon, Jin Woo

    2015-01-01

    This study aimed at suggesting an indoor temperature control method that can provide a comfortable thermal environment through the integrated control of the cooling system and the surface openings. Four control logic were developed, employing different application levels of rules and artificial neural network models. Rule-based control methods represented the conventional approach while ANN-based methods were applied for the predictive and adaptive controls. Comparative performance tests for the conventional- and ANN-based methods were numerically conducted for the double-skin-facade building, using the MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation) software, after proving the validity by comparing the simulation and field measurement results. Analysis revealed that the ANN-based controls of the cooling system and surface openings improved the indoor temperature conditions with increased comfortable temperature periods and decreased standard deviation of the indoor temperature from the center of the comfortable range. In addition, the proposed ANN-based logic effectively reduced the number of operating condition changes of the cooling system and surface openings, which can prevent system failure. The ANN-based logic, however, did not show superiority in energy efficiency over the conventional logic. Instead, they have increased the amount of heat removal by the cooling system. From the analysis, it can be concluded that the ANN-based temperature control logic was able to keep the indoor temperature more comfortably and stably within the comfortable range due to its predictive and adaptive features. - Highlights: • Integrated rule-based and artificial neural network based logics were developed. • A cooling device and surface openings were controlled in an integrated manner. • Computer simulation method was employed for comparative performance tests. • ANN-based logics showed the advanced features of thermal environment. • Rule

  5. Application of Predictive Control in District Heating Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1993-01-01

    In district heating systems, and in particular if the heat production cakes place at a combined heat and power (CHP) plant, a reasonable control strategy is to keep the supply temperature from the district heating plant as low as possible. However, the control is subject to some restrictions, for...

  6. Operational, control and protective system transient analyses of the closed-cycle GT-HTGR power plant

    International Nuclear Information System (INIS)

    Openshaw, F.L.; Chan, T.W.

    1980-07-01

    This paper presents a description of the analyses of the control/protective system preliminary designs for the gas turbine high-temperature gas-cooled reactor (GT-HTGR) power plant. The control system is designed to regulate reactor power, control electric load and turbine speed, control the temperature of the helium delivered to the turbines, and control thermal transients experienced by the system components. In addition, it provides the required control programming for startup, shutdown, load ramp, and other expected operations. The control system also handles conditions imposed on the system during upset and emergency conditions such as loop trip, reactor trip, or electrical load rejection

  7. Intelligent control system for the temperature regulation in a gas turbine of a combined cycle fossil fuel power plant; Sistema de control inteligente para regular la temperatura en la turbina de gas de una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Espindola Vasquez, Agustin

    2004-11-15

    In the Turbogas Units (UTG short for Spanish acronym) of a Thermoelectric Power station of Combined Cycle (CTCC short for Spanish acronym), from an operative, as well as a safety standpoint the turbine blade temperature is a critical variable. The best performance of a turbogas unit based in the electrical generation is obtained when the greatest thermal efficiency is reached. From the point of view of safety, it is desirable to keep the blades temperature at the limit established by the manufacturer, guaranteeing with this, the integrity of the UTG internal parts; avoiding that great thermal efforts decrease their useful life. In order to keep the blades temperature at the established limit, the UTG control system have a supervision system of blades temperature, that system modifies the controllers reference of the speed or power PI's which regulate the fuel valve of the UTG combustion chamber. This supervision system is based on logic conditions to generate its exit signal. In the process plants whose operation is complex and its dynamic behavior is nonlinear, the strategies of control of single loop do not provide the wished performance when they are applied in control loops to regulate critical variables; thing doing necessary the design of structures with two hierarchical levels; one with direct control and the other with supervisory control. The fuzzy logic has found a wide acceptance [Chiu, 1998] when is used to handle control functions of high level which are outside of the dominion of the conventional control methods. One of these cases is the application of the fuzzy logic to the supervisory control. In this thesis document is presented the accomplishment of a temperature fuzzy supervision system in a turbogas unit, whose purpose is to keep the turbine blades temperature within the established limits, conserving a satisfactory performance from an operative, as well as a safety standpoint. The temperature supervisor was designed with base on fuzzy

  8. A new cryostat for precise temperature control

    Science.gov (United States)

    Dong, B.; Zhou, G.; Liu, L. Q.; Zhang, X.; Xiong, L. Y.; Li, Q.

    2013-09-01

    Gifford-McMahon (GM) cryocoolers are often used in cryostat as cold sources. It has advantages of simple structure and low operating cost as well as disadvantages of vibration and temperature oscillation, which are fatal for some applications that are very sensitive to temperature stability at low temperature. To solve the problem, a thermal analysis model which is used to simulate heat transfer in the cryostat is built and discussed. According to the analysis results, a cryostat that can provide variable temperature (4-20 K) for the accurate temperature control experiments is designed and manufactured. In this cryostat, a polytetrafluoroethylene (PTFE) sheet is used as a thermal damper to reduce the temperature oscillation, with which, the temperature oscillation of the sample cooling holder is less than 4 mK at the 20 K region.

  9. Portable system for temperature monitoring in all phases of wine production.

    Science.gov (United States)

    Boquete, Luciano; Cambralla, Rafael; Rodríguez-Ascariz, J M; Miguel-Jiménez, J M; Cantos-Frontela, J J; Dongil, J

    2010-07-01

    This paper presents a low-cost and highly versatile temperature-monitoring system applicable to all phases of wine production, from grape cultivation through to delivery of bottled wine to the end customer. Monitoring is performed by a purpose-built electronic system comprising a digital memory that stores temperature data and a ZigBee communication system that transmits it to a Control Centre for processing and display. The system has been tested under laboratory conditions and in real-world operational applications. One of the system's advantages is that it can be applied to every phase of wine production. Moreover, with minimum modification, other variables of interest (pH, humidity, etc.) could also be monitored and the system could be applied to other similar sectors, such as olive-oil production. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Characteristics of pressure control system on PWR/PHWR in pile loop facility

    International Nuclear Information System (INIS)

    Sarwani; Hendro, P.; Suwoto; Sutrisno

    1998-01-01

    PWR/PHWR in-pile loop facility is used for testing of fuel element bundle which is correspond to the condition of power reactor operation. So, this facility is designed at 150 bar of pressure and 350 o C of temperature. Pressure control system is one of the components of the facility and it is equipped with 6 electrical heaters (30 KW), water spray, pressure and temperature monitors. The characterization test of pressure control system has been carried out with operating of 2 electrical heaters (10 KW). The K eff calculation value is different 5.2% from pressure in the pressure control system can be increased to 160 bar within 27 hours. After the system pressure reached the nominal pressure, the pressure control system was in the steady state condition

  11. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk [Dept. of Mechanical Engineering, Chung Ang University, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed.

  12. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    International Nuclear Information System (INIS)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk

    2016-01-01

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed

  13. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  14. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  15. Temperature control of a steam generator by means of an hybrid system PID-RLC; Control de las temperaturas de un generador de vapor mediante un sistema hibrido PID-RLC

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Garcia Mendoza, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    A description is made of the design and evaluation of an hybrid control system, formed by a quadratic gaussian linear regulator (QLR) and proportional integral derivative (PID) type regulators. This scheme is used to control the reheater and secondary superheater steam temperatures of a steam generator model with a maximum capacity of 2,150,000 pounds per hour. Once applied to the model of a 300 MW steam power plant, this system showed better results than the traditional schemes and inclusively better than some modern control schemes. This fact characterizes it as a high potential system to be applied to steam power plants. [Espanol] Se describe el diseno y la evaluacion de un sistema de control hibrido, formado por un regulador lineal cuadratico gaussiano (RLC) y reguladores tipo proporcional integral derivativo (PID). Este esquema se utiliza para controlar las temperaturas de vapor del recalentador y sobrecalentador secundario del modelo de un generador de vapor con capacidad maxima de 2,150,000 libras por hora. Una vez aplicado al modelo de una unidad termoelectrica de 300 MW, este sistema produjo mejores resultados que los esquemas tradicionales e incluso mejores que algunos esquemas de control moderno. Esto lo caracteriza como un sistema con un alto potencial para aplicarse a unidades termoelectricas.

  16. JUSTIFICATION OF TEMPERATURE CONTROL FOR PRODUCTION SUPPOSITORIES WITH GLIFAZIN

    Directory of Open Access Journals (Sweden)

    Dmitrievskiy D.I.

    2015-05-01

    Full Text Available The intensive search for new anti-diabetic drugs, carried out in the National pharmaceutical university in recent years led to the creation of complex drug "Glifazin" on base of which the composition and technology of suppositories with hypoglycemic effect were developed. Now comprehensive physicochemical and pharmacological study of the dosage form are going on. This paper presents results of determining the critical parameters of technology of suppositories witn Glifazin produced by molding - temperature control of homogenization and molding of suppository mass. This mode, as shown in the work, grounded on the analysis of rheological behavior of the system in the temperature range in which it is the transition from the liquid state of Newtonian type flow to the plastic-bound state of non- Newtonian flow type. This interval for suppository mass with Glifazin is in the range 45-60 ° C. Materials and methods. As the object of the study the suppositories with Glifazin 0.1 g and polietylenoxide base on which they are prepared were taken. The study of structural and mechanical (rheological properties of suppository base and suppository mass were performed on a rotary viscometer «Reotest-2" (Germany with coaxial cylinders and the temperature range 45-60 °C. Determination of hardening temperature, resistance of suppositories to decay and their dissolution time were measured by methods of the State Pharmacopoeia of Ukraine. Determination of uniformity suppository mass was assessed by quantitative content of Glifazin in selected samples by using UV spectrophotometry method at 271 nm against a standard sample of Onozid. Results and discussion. The analysis of rheogram shows that the suppository mass with Glifazin in the test temperature range has falseplastice type of flow. The presence of hysteresis loops indicates that this system has dispersed thixotropic properties. Thus, an increase in temperature leads to a decrease in the area of the hysteresis

  17. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  18. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    Ali, Syed M Usman; Hussain, Sajid; Siddiqui, Ali Akber; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-01-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  19. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  20. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory.

  1. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach Nuclear Power Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Point Beach nuclear power plant, Units 1 and 2. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Support Program being conducted for the U.S. Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  2. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  3. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Endou, A.

    1994-01-01

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  4. Parquet theory of finite temperature boson systems

    International Nuclear Information System (INIS)

    He, H.W.

    1992-01-01

    In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed

  5. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  6. Design and Implementation of Temperature Controller for a Vacuum Distiller

    OpenAIRE

    Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi

    2014-01-01

    This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...

  7. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  8. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  9. Automated Greenhouse : Temperature and soil moisture control

    OpenAIRE

    Attalla, Daniela; Tannfelt Wu, Jennifer

    2015-01-01

    In this thesis an automated greenhouse was built with the purpose of investigating the watering system’s reliability and if a desired range of temperatures can be maintained. The microcontroller used to create the automated greenhouse was an Arduino UNO. This project utilizes two different sensors, a soil moisture sensor and a temperature sensor. The sensors are controlling the two actuators which are a heating fan and a pump. The heating fan is used to change the temperature and the pump is ...

  10. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control

    International Nuclear Information System (INIS)

    Fan, Hongming; Shao, Shuangquan; Tian, Changqing

    2014-01-01

    Highlights: • A multi-unit heat pump is proposed for simultaneous temperature and humidity control. • Condensation heat is non, partly or fully recovered for temperature regulation. • Highly integrated heat pump for residential cooling, dehumidification and heating. • High energy saving potential for all-year-round operation in wet and warm regions. - Abstract: A multi-unit heat pump is presented for simultaneous humidity and temperature control to improve the energy efficiency and the thermal comfort. Two parallel connected condensers are employed in the system, locating at the back of the indoor evaporator and the outdoor unit, respectively. The heat pump can operate in four modes, including heating, cooling and dehumidification without and/or with partial or total condensing heat recovery. The experimental investigation shows that the temperature control capacity is from 3.5 kW for cooling to 3.8 kW for heating with the cooling and heating efficiency higher than 3.5 kW kW −1 , and the dehumidification rate is about 2.0 kg h −1 with the efficiency about 2.0 kg h −1 kW −1 . The supply air temperature and humidity can be simultaneously regulated with high accuracy and high efficiency by adjusting the indoor and/or outdoor air volumes. It provides an integrated and effective solution for simultaneous indoor air temperature and humidity control for all-year-round operation in residential buildings

  11. Temperature Control in a Franz Diffusion Cell Skin Sonoporation Setup

    Science.gov (United States)

    Robertson, Jeremy; Becker, Sid

    2017-11-01

    In vitro experimental studies that investigate ultrasound enhanced transdermal drug delivery employ Franz diffusion cells. Because of absorption, the temperature of the coupling fluid often increases drastically during the ultrasound application. The current methodologies for controlling the coupling fluid temperature require either replacement of the coupling fluid during the experiment or the application of a time consuming duty cycle. This paper introduces a novel method for temperature control that allows for a wide variety of coupling fluid temperatures to be maintained. This method employs a peristaltic pump to circulate the coupling fluid through a thermoelectric cooling device. This temperature control method allowed for an investigation into the role of coupling fluid temperature on the inertial cavitation that impacts the skin aperture (inertial cavitation is thought to be the main cause of ultrasound induced skin permeability increase). Both foil pitting and passive cavitation detection experiments indicated that effective inertial cavitation activity decreases with increasing coupling fluid temperature. This finding suggests that greater skin permeability enhancement can be achieved if a lower coupling fluid temperature is maintained during skin insonation.

  12. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  13. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices

    Science.gov (United States)

    Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.

    2013-03-01

    Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.

  14. Does runoff or temperature control chemical weathering rates?

    International Nuclear Information System (INIS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurdur Reynir; Oelkers, Eric H.

    2011-01-01

    Highlights: → The rate chemical weathering is affected by both temperature and runoff. Separating out these two factors is challenging because runoff tends to increase with increasing temperature. → In this study, natural river water samples collected on basaltic catchments over a five year period are used together with experimentally derived dissolution rate model for basaltic glass to pull apart the effects of runoff and temperature. → This study shows that the rate of chemical denudation is controlled by both temperature and runoff, but is dominated by runoff. - Abstract: The rate of chemical denudation is controlled by both temperature and runoff. The relative role of these two factors in the rivers of NE Iceland is determined through the rigorous analysis of their water chemistry over a 5-a period. River catchments are taken to be analogous to laboratory flow reactors; like the fluid in flow reactors, the loss of each dissolved element in river water is the sum of that of the original rainwater plus that added from kinetically controlled dissolution and precipitation reactions. Consideration of the laboratory determined dissolution rate behaviour of basalts and measured water chemistry indicates that the maximum effect of changing temperature on chemical denudation in the NE Icelandic rivers was 5-25% of the total change, whereas that of runoff was 75-95%. The bulk of the increased denudation rates with runoff appear to stem from an increase in reactive surface area for chemical weathering of catchment solids.

  15. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  16. Thermoelectric Control Of Temperatures Of Pressure Sensors

    Science.gov (United States)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  17. Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT

    Directory of Open Access Journals (Sweden)

    Tamás Pardy

    2017-06-01

    Full Text Available Non-instrumented nucleic acid amplification tests (NINAAT are a novel paradigm in portable molecular diagnostics. They offer the high detection accuracy characteristic of nucleic acid amplification tests (NAAT in a self-contained device, without the need for any external instrumentation. These Point-of-Care tests typically employ a Lab-on-a-Chip for liquid handling functionality, and perform isothermal nucleic acid amplification protocols that require low power but high accuracy temperature control in a single well-defined temperature range. We propose temperature control solutions based on commercially available heating elements capable of meeting these challenges, as well as demonstrate the process by which such elements can be fitted to a NINAAT system. Self-regulated and thermostat-controlled resistive heating elements were evaluated through experimental characterization as well as thermal analysis using the finite element method (FEM. We demonstrate that the proposed solutions can support various NAAT protocols, as well as demonstrate an optimal solution for the loop-mediated isothermal amplification (LAMP protocol. Furthermore, we present an Arduino-compatible open-source thermostat developed for NINAAT applications.

  18. Remote Supervision and Control of Air Conditioning Systems in Different Modes

    Science.gov (United States)

    Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree

    2018-01-01

    In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.

  19. A neural network controller for hydronic heating systems of solar buildings.

    Science.gov (United States)

    Argiriou, Athanassios A; Bellas-Velidis, Ioannis; Kummert, Michaël; André, Philippe

    2004-04-01

    An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions.

  20. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  1. A materials test system for static compression at elevated temperatures

    Science.gov (United States)

    Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.

    1992-06-01

    This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.

  2. An optimization strategy for the control of small capacity heat pump integrated air-conditioning system

    International Nuclear Information System (INIS)

    Gao, Jiajia; Huang, Gongsheng; Xu, Xinhua

    2016-01-01

    Highlights: • An optimization strategy for a small-scale air-conditioning system is developed. • The optimization strategy aims at optimizing the overall system energy consumption. • The strategy may guarantee the robust control of the space air temperature. • The performance of the optimization strategy was tested on a simulation platform. - Abstract: This paper studies the optimization of a small-scale central air-conditioning system, in which the cooling is provided by a ground source heat pump (GSHP) equipped with an on/off capacity control. The optimization strategy aims to optimize the overall system energy consumption and simultaneously guarantee the robustness of the space air temperature control without violating the allowed GSHP maximum start-ups number per hour specified by customers. The set-point of the chilled water return temperature and the width of the water temperature control band are used as the decision variables for the optimization. The performance of the proposed strategy was tested on a simulation platform. Results show that the optimization strategy can save the energy consumption by 9.59% in a typical spring day and 2.97% in a typical summer day. Meanwhile it is able to enhance the space air temperature control robustness when compared with a basic control strategy without optimization.

  3. Description of a research reactor control system using a programmable controller

    International Nuclear Information System (INIS)

    Battle, R.E.

    1986-01-01

    This paper describes the design features, testing methods, and operational experience of a programmable controller (PC) installed as a neutron flux controller in the Oak Ridge Research Reactor (ORR) at Oak Ridge National Laboratory (ORNL). The PC was designed to control neutron flux from 1 to 105% for three selectable ranges. The PC generates a flux setpoint under operator control, calculates the reactor heat power from flow and temperature signals, calculates a neutron flux calibration factor based on the heat power, and positions a control rod based on the flux-setpoint difference. The programmable controller was tested by controlling an analog computer model of the ORR. The equipment was installed in August 1985, and except for some startup problems, the system has performed well

  4. Automatic control study of the icing research tunnel refrigeration system

    Science.gov (United States)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  5. Control system implementation for a complex low inventory cryogenic distillation system for Princeton TFTR

    International Nuclear Information System (INIS)

    Busigin, A.; Busigin, C.J.; Adamek, F.; Woodall, K.B.; Robins, J.R.; Bellamy, D.G.; Fong, C.; Kalyanam, K.M.; Sood, S.K.

    1995-01-01

    The TFTR Tritium Purification System (TPS) is based on a Pd/Ag diffuser front-end for separating hydrogen isotopes from inert gas, and a four column cryogenic distillation cascade for separation of hydrogen isotopes. The system has a tritium inventory of approximately 0.5 g while successfully producing pure H 2 , D 2 and T 2 products. The system has recently been built and successfully commissioned with protium and deuterium. Stable automatic control of the cascade has been demonstrated even when feed rate and composition varied. The automatic control scheme maintained stable column inventories and excellent H 2 and D 2 product qualities. The control system employed new control concepts such as real time analysis of mid-column composition using temperature and pressure data for feedback control. Very stable column inventory control was achieved by automatic adjustment of inter-column flows (feed forward and feed back). This paper discusses the control system design and presents performance test results. (orig.)

  6. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    , based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...

  7. Simulation and analysis of main steam control system based on heat transfer calculation

    Science.gov (United States)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  8. On-line temperature control of fluidized bed incinerator using fuzzy algorithm; Fuzzu seigyo donyu ni yoru ryudosogata shokyakuro unten no jidoka

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, S.; Kuratani, T.; Imai, H. [Ajinomoto Co. Inc., Tokyo (Japan)

    1995-03-15

    Automatic control of incinerators for their stable operation has been desired for the preservation of the environment in the factory. An on-line fuzzy control system has been successfully introduced for temperature control of the fluidized bed of incinerator for industrial wastes. In this case, manual control can be applied to the plant instead of a PID control system, because of the complexity of the waste materials and the large delay in detection of the temperature change in the fluidized bed sand. On the basis of analyzing the dynamic performance of the process and the know-how of skilled operators, membership functions and fuzzy control rules are selected, then determined carefully for the system. Introduction of the system resulted in almost the same performance as manual control. Subsequently the operators are freed from manual operation in the control room for an hour. 6 refs., 5 figs., 4 tabs.

  9. Reliable control system for nuclear power plant

    International Nuclear Information System (INIS)

    Okamoto, Tetsuo; Miyazaki, Shiro

    1980-01-01

    The System 1100 for nuclear power plants is the measuring and control system which utilizes the features of the System 1100 for electric power market in addition to the results of nuclear instrumentation with EBS-ZN series, and it has the following features. The maintenance and inspection in operation are easy. The construction of control loops is made flexibly by the combination of modules. The construction of multi-variable control system using mainly feed forward control is easy. Such functions as the automatic switching of control modes can be included. The switching of manual and automatic operations is easy, and if some trouble occurred in a module, the manual operation can be made. The aseismatic ability is improved by rigid structure cubicles. Nonflammable materials are used for wires, multi-core cables, paints and printed boards. The anti-noise characteristics are improved, and the reliability is high. The policy of developing the System 1100 for nuclear power plants, the type approval tests on modules and units and the type approval test on the system are described. The items of the system type approval test were standard performance test, earthquake test, noise isolation test, temperature and humidity test, and drift test. The aseismatic cubicle showed good endurance in its vibration test. (Kako, I.)

  10. New approach for control rod position indication system for light water power reactor

    International Nuclear Information System (INIS)

    Bahuguna, Sushil; Dhage, Sangeeta; Nawaj, S.; Salek, C.; Lahiri, S.K.; Marathe, P.P.; Mukhopadhyay, S.; Taly, Y.K.

    2015-01-01

    Control rod position indication system is an important system in a nuclear power plant to monitor and display control rod position in all regimes of reactor operation. A new approach to design a control rod position indication system for sensing absolute position of control rod in Light Water Power Reactor has been undertaken. The proposed system employs an inductive type, hybrid measurement strategy providing both analog position as well as digital zone indication with built-in temperature compensation. The new design approach meets single failure criterion through redundancy in design without sacrificing measurement resolution. It also provides diversity in measurement technique by indirect position sensing based on analysis of drive coil current signature. Prototype development and qualification at room temperature of the control rod position indication system (CRPIS) has been demonstrated. The article presents the design philosophy of control rod position indication system, the new measurement strategy for sensing absolute position of control rod, position estimation algorithm for both direct and indirect sensing and a brief account associated processing electronics. (author)

  11. Control of temperature distribution in a supercritical gas extraction tower

    International Nuclear Information System (INIS)

    Yoshida, M.; Matsumoto, S.; Honda, G.; Iwama, T.; Suzuki, Y.; Odagiri, S.

    1989-01-01

    A control scheme recently proposed by the authors is applied to the control of axial temperature distribution in a bench-scale supercritical-gas extractor. The extraction unit is constructed from a packed column 3 m long covered by a coaxial cylindrical casing. Although the actual structure of the extractor is very complicated, it is modeled by a simple double-pipe and therefore its mathematical model can be described by a pair of partial differential equations. The models are reduced to a lumped parameter system with a finite dimension by use of the finite Fourier transform technique. The controller is designed on the basis of the reduced model. An extended Kalman filter is used to estimate simultaneously the state variables and the unknown parameters. The results demonstrate that both the state estimation and the controller performance are satisfactory. This implies that the control scheme is very robust in spite of the incompleteness of the model used

  12. Article comprising a garment or other textile structure for use in controlling body temperature

    Science.gov (United States)

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  13. Technology Requirements and Development for Affordable High-Temperature Distributed Engine Controls

    Science.gov (United States)

    2012-06-04

    long lasting, high temperature modules is to use high temperature electronics on ceramic modules. The electronic components are “ brazed ” onto the...Copyright © 2012 by ISA Technology Requirements and Development for Affordable High - Temperature Distributed Engine Controls Alireza Behbahani 1...with regards to high temperature capability. The Government and Industry Distributed Engine Controls Working Group (DECWG) [5] has been established

  14. Voice-Controlled and Wireless Solid Set Canopy Delivery (VCW-SSCD System for Mist-Cooling

    Directory of Open Access Journals (Sweden)

    Yiannis Ampatzidis

    2018-02-01

    Full Text Available California growers in the San Joaquin Valley believe that climate change will affect the pistachio yield dramatically. As the central valley fog disappears, insufficient dormant chill accumulation results in poor flowering synchrony, flower quality, and fruit set in this dioecious species. We have developed a novel, user-friendly, and low-cost Voice-Controlled Wireless Solid Set Canopy Delivery (VCW-SSCD system to increase bud chill accumulation with evaporative cooling on sunny (winter days. This system includes: (i an automated solid-state canopy delivery (SSCD system; (ii a wireless weather-, crop-related data acquisition system; (iii a Voice-Controlled (VC system using Amazon Alexa; (iv a mobile application to visualize the collected data and wirelessly control the SSCD system; and (v a smart control system. The proposed system was deployed and evaluated in a commercial pistachio orchard in Bakersfield, CA. The system worked well with no reported errors. Results demonstrated the system’s ability to cool bud temperatures in a low relative humidity climate. At an ambient temperature of 10–20 °C, bud temperatures were lowered 5–10 °C.

  15. Development of thermal control methods for specialized components and scientific instruments at very low temperatures (follow-on)

    Science.gov (United States)

    Wright, J. P.; Wilson, D. E.

    1976-01-01

    Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.

  16. Development of a Temperature Controller for a Vuilleumier (VM) Cycle Power Cylinder

    Science.gov (United States)

    1975-10-01

    the system in the event of a shorted sensor; both of these actions turn the power section of the controller "off," and it cannot be repowered until...400-Hz power to a low-level DC with the attendant necessity of using a 400-Hz power transformer . Thus use of DC will allow a less compli- cated...N AFFDL.TR-75-99 7? ^0 00 o o o CQ DEVELOPMENT OF A TEMPERATURE CONTROLLER FOR A VUILLEUMIER (VM) CYCLE POWER CYLINDER i ■ L RTHUR D

  17. Implementation of an expert system for xenon spatial control in pressurized-water reactors

    International Nuclear Information System (INIS)

    Chung, S.K.

    1988-01-01

    Control of the axial xenon oscillations is a knowledge- and experience-intensive activity for reactor operators. To aid reactor operators in the control of axial xenon oscillations, an advisory expert system was developed. A rule-based expert system shell, INSIGHT2+, was used to build the expert system which was interfaced with a microcomputer-based core control model of a pressurized-water reactor, graphic engine, and data base. A core control model described by one-group diffusion theory with moderator temperature and xenon feedbacks was used to develop heuristic control rules and to test the system. Full- and part-length control rods, boron concentration, and coolant inlet temperature were considered as control variables of the core control model. This expert system consists of a search space: the set of possible power level and power shape patterns. The search space was made by combining the following core state variables: the sign of relative power and axial offset (AO) error, sign of the rate of change of power level and AO, and magnitude of relative power and AO error

  18. Precision cryogenic temperature data acquisition system

    International Nuclear Information System (INIS)

    Farah, Y.; Sondericker, J.H.

    1985-01-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of +-25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors

  19. The Design of Temperature and Humidity Chamber Monitor and Controller

    OpenAIRE

    Tibebu, Simachew

    2016-01-01

    The temperature and humidity chamber, (climate chamber) is a device located at the Technobothnia Education and Research Center that simulates different climate conditions. The simulated environment is used to test the capabilities of electrical equipment in different temperature and humidity conditions. The climate chamber, among other things houses a dedicated computer, the control PC, and a control software running in it which together are responsible for running and control-ling these simu...

  20. Drifting temperature climate control for archives and stores

    DEFF Research Database (Denmark)

    Klenz Larsen, Poul; Padfield, Tim; Ryhl-Svendsen, Morten

    2017-01-01

    The climate within museum stores and archives can be regulated by dehumidifying a building whose temperature is allowed to vary seasonally without explicit control. The ground beneath the building provides thermal inertia to hold the annual temperature cycle around 8 – 16°C, in northern Europe...

  1. Dynamic Thermal Model And Control Of A Pem Fuel Cell System

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2013-01-01

    the fuel cell system. A PID temperature control is implemented to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. The model allows an assessment of the effect of operating parameters (stack...... power output, cooling water flow rate, air flow rate, and environmental temperature) and parameter interactions on the system thermal performance. The model represents a useful tool to determine the operating temperatures of the various components of the thermal system, and thus to fully assess......A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study...

  2. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  3. MEMS Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  4. Control system and environmental parameters monitoring of the Tandetron Accelerator clean room

    International Nuclear Information System (INIS)

    Mejia V, M.E.; Garcia H, J.M.; Flores M, J.

    2007-01-01

    A control system and monitoring of humidity and temperature implemented by means of a system based on a microcontroller, an intelligent sensor and a stage of power for the actuators handling is described. The change of the levels of reference of the control system and the monitoring of the physical controlled variables can be carried out from any connected computer to a local net or Internet. (Author)

  5. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  6. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    Science.gov (United States)

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  7. MPPT for Photovoltaic System Using Nonlinear Controller

    Directory of Open Access Journals (Sweden)

    Ramsha Iftikhar

    2018-01-01

    Full Text Available Photovoltaic (PV system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP, which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O and fuzzy logic-based controller (FLBC under abrupt changes in environmental conditions.

  8. Feedforward temperature control using a heat flux microsensor

    OpenAIRE

    Lartz, Douglas John

    1993-01-01

    The concept of using heat flux measurements to provide the input for a feedforward temperature control loop is investigated. The feedforward loop is added to proportional and integral feedback control to increase the speed of the response to a disturbance. Comparison is made between the feedback and the feedback plus feedforward control laws. The control law with the feedforward control loop is also compared to the conventional approach of adding derivative control to speed up ...

  9. Management tools for distributed control system in KSTAR

    International Nuclear Information System (INIS)

    Sangil Lee; Jinseop Park; Jaesic Hong; Mikyung Park; Sangwon Yun

    2012-01-01

    The integrated control system of the Korea Superconducting Tokamak Advanced Research (KSTAR) has been developed with distributed control systems based on Experimental Physics and Industrial Control System (EPICS) middle-ware. It has the essential role of remote operation, supervising of tokamak device and conducting of plasma experiments without any interruption. Therefore, the availability of the control system directly impacts on the entire device performance. For the non-interrupted operation of the KSTAR control system, we have developed a tool named as Control System Monitoring (CSM) to monitor the resources of EPICS Input/Output Controller (IOC) servers (utilization of memory, cpu, disk, network, user-defined process and system-defined process), the soundness of storage systems (storage utilization, storage status), the status of network switches using Simple Network Management Protocol (SNMP), the network connection status of every local control sever using Internet Control Message Protocol (ICMP), and the operation environment of the main control room and the computer room (temperature, humidity, electricity) in real time. When abnormal conditions or faults are detected by the CSM, it alerts abnormal or fault alarms to operators. Especially, if critical fault related to the data storage occurs, the CSM sends the simple messages to operator's mobile phone. The operators then quickly restored the problems according to the emergency procedure. As a result of this process, KSTAR was able to perform continuous operation and experiment without interruption for 4 months

  10. Studi Eksperimental Pengontrolan Air Conditioning System Dengan Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Sudirman -

    2012-11-01

    Full Text Available Electrical energy available in Indonesia at this time is not yet sufficient for all existing activities, this can be proved byfrequent occurrence of blackouts in several areas in Indonesia. It is necessary for a saving in electrical energy consumptionin all sectors, it is one of the refrigeration system. Research was conducted by testing AC (3 HP / 3 phase using 2 differentcontrol systems, namely conventional control and FLC. Testing is done by placing the indoor units in cold storage room.Each test performed with varying load in the test room, ie no light burden, lamp 1000 Watt, and lamp 2000 Watt. Testingusing a conventional control system set point temperature 26 ° C and 3 variations of the differential is 1 , 2 and 3 , the FLCusing the temperature setting point 26 ° C. From this research we can conclude that the application of FLC system produceselectric energy consumption of the lowest compared to conventional control in this case is the differential 1. FLC applicationof electrical energy consumption at load 1000 Watt lower 11% and the load 2000 Watt 4% lower compared withconventional control in diffrensial 1.

  11. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  12. Improvement of the image quality of a high-temperature vision system

    International Nuclear Information System (INIS)

    Fabijańska, Anna; Sankowski, Dominik

    2009-01-01

    In this paper, the issues of controlling and improving the image quality of a high-temperature vision system are considered. The image quality improvement is needed to measure the surface properties of metals and alloys. Two levels of image quality control and improvement are defined in the system. The first level in hardware aims at adjusting the system configuration to obtain the highest contrast and weakest aura images. When optimal configuration is obtained, the second level in software is applied. In this stage, image enhancement algorithms are applied which have been developed with consideration of distortions arising from the vision system components and specificity of images acquired during the measurement process. The developed algorithms have been applied in the vision system to images. The influence on the accuracy of wetting angles and surface tension determination are considered

  13. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  14. Energy Analysis for Air Conditioning System Using Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2011-04-01

    Full Text Available Reducing energy consumption and to ensure thermal comfort are two important considerations for the designing an air conditioning system. An alternative approach to reduce energy consumption proposed in this study is to use a variable speed compressor. The control strategy will be proposed using the fuzzy logic controller (FLC. FLC was developed to imitate the performance of human expert operators by encoding their knowledge in the form of linguistic rules. The system is installed on a thermal environmental room with a data acquisition system to monitor the temperature of the room, coefficient of performance (COP, energy consumption and energy saving. The measurements taken during the two hour experimental periods at 5-minutes interval times for temperature setpoints of 20oC, 22oC and 24oC with internal heat loads 0, 500, 700 and 1000 W. The experimental results indicate that the proposed technique can save energy in comparison with On/Off and proportional-integral-derivative (PID control.

  15. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    Science.gov (United States)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  16. Fuzzy logic control of air-conditioning system in residential buildings

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Attia

    2015-09-01

    Full Text Available There has been a rising concern in reducing the energy consumption in building. Heating ventilation and air condition system is the biggest consumer of energy in building. In this study, fuzzy logic control of the air conditioning system of building for efficient energy operation and comfortable environment is investigated. A theoretical model of the fan coil unit (FCU and the heat transfer between air and coolant fluid is derived. The controlled variables are the room temperature and relative humidity and control consequents are the percentage of chilled and hot water flow rates at summer and the percentage of hot water and steam injected flow rates at winter. A computer simulation has been conducted and fuzzy control results are compared with that of conventional Proportional-Integral-Derivative control. It was found that the proposed control strategy satisfies the space load and at the same time to achieve the comfort zone, as defined by the ASHRAE code. Meanwhile PID control fails to adjust the room temperature at part-load operations. It has been demonstrated that fuzzy controller operation is more efficient and consumes less energy than PID control.

  17. Energy Efficiency of Distributed Environmental Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant

  18. Concurrent design of an RTP chamber and advanced control system

    Energy Technology Data Exchange (ETDEWEB)

    Spence, P. [Sandia National Labs., Livermore, CA (United States); Schaper, C. [Microelectronics Control and Sensing, Inc., Mountain View, CA (United States); Kermani, A. [CVC Products, Inc., Fremont, CA (United States)

    1995-12-31

    A concurrent-engineering approach is applied to the development of an axisymmetric rapid-thermal-processing (RTP) reactor and its associated temperature controller. Using a detailed finite-element thermal model as a surrogate for actual hardware, the authors have developed and tested a multi-input multi-output (MIMO) controller. Closed-loop simulations are performed by linking the control algorithm with the finite-element code. Simulations show that good temperature uniformity is maintained on the wafer during both steady and transient conditions. A numerical study shows the effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on system performance.

  19. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  20. Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: → The affine state space control-oriented model is designed and realized for the variant structure control (VSC) strategy. → The VSC with rapid-smooth reaching law and rapid-convergent sliding mode is presented for the PEMFC stack temperature. → Numerical results show that the method can control the operating temperature to reach the target value satisfactorily. - Abstract: Dynamic thermal management of proton exchange membrane fuel cell stack (PEMFC) is a very important aspect, which plays an important role on electro-reaction. Its variation also has a significant influence on the performance and lifespan of PEMFC stack. The temperature of stack should be controlled efficiently, which has great impacts on the performance of PEMFC due to the thermal variation. Based on the control-oriented dynamic thermal affine model identified by optimization algorithm, a novel variable structures control (VSC) with rapid-smooth reaching law (RSRL) and rapid-convergent sliding mode (FCSM) is presented for the temperature control system of PEMFC stack. Numerical test results show that the method can control the operating temperature to reach the target value satisfactorily, which proves the effectiveness and robustness of the algorithm.

  1. Simplified model-based optimal control of VAV air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering

    2005-07-01

    The improvement of Variable Air Volume (VAV) system performance is one of several attempts being made to minimize the high energy use associated with the operation of heating, ventilation and air conditioning (HVAC) systems. A Simplified Optimization Process (SOP) comprised of controller set point strategies and a simplified VAV model was presented in this paper. The aim of the SOP was to determine supply set points. The advantage of the SOP over previous methods was that it did not require a detailed VAV model and optimization program. In addition, the monitored data for representative local-loop control can be checked on-line, after which controller set points can be updated in order to ensure proper operation by opting for real situations with minimum energy use. The SOP was validated using existing monitoring data and a model of an existing VAV system. Energy use simulations were compared to that of the existing VAV system. At each simulation step, 3 controller set point values were proposed and studied using the VAV model in order to select a value for each point which corresponded to the best performance of the VAV system. Simplified VAV component models were presented. Strategies for controller set points were described, including zone air temperature, duct static pressure set points; chilled water supply set points and supply air temperature set points. Simplified optimization process calculations were presented. Results indicated that the SOP provided significant energy savings when applied to specific AHU systems. In a comparison with a Detailed Optimization Process (DOP), the SOP was capable of determining set points close to those obtained by the DOP. However, it was noted that the controller set points determined by the SOP need a certain amount of time to reach optimal values when outdoor conditions or thermal loads are significantly changed. It was suggested that this disadvantage could be overcome by the use of a dynamic incremental value, which

  2. NKK technical report, No. 152, December 1995. Special issue: `Sensing/control system and mechatronics`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    ;Partial Contents: Special Issue `Sensing/Control System and Mechatronics`: A New Control System at Keihin Coke Plant; Theoretical Model for Optimal Control of TAKAHAX Desulfurization Process; Development of Automatic Rod-exchanging Machine for Rod Mill; High Performance Temperature Distribution Optical Fiber Sensor; Temperature Measurement of Molten Metal by Immersion-type Optical Fiber Radiation Thermometer; Application of Robust Control for Iron and Steel Making Process; Automization of No. 6 Slab Caster in Fukuyama Works; The Development of the Control Technology for the Higher Quality Strip; Development of Automatic Flatness Control System in Cluster Type Rolling Mill; Ultrasonic Nondestructive Testing with Digital Signal Processing Aimed for New Quality Assurance; Development of Mobile Grinding Robot; On-site Analysis by Laser Ablation ICP-AES; Development of the Membrane Automatic Welding Machine with Rotating TIG Process; and Automatic Combustion Control System for Refuse Incineration Plant. (Copyright (c) 1995 NKK.)

  3. Temperature feedback control for long-term carrier-envelope phase locking

    Science.gov (United States)

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  4. Outline of operation and control system and analytical investigation of transient behavior of an out-of-pile hydrogen production system for HTTR heat utilization system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hada, Kazuhiko; Nishihara, Tetsuo; Takeda, Tetsuaki; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    The hydrogen production system by steam reforming of natural gas is to be constructed to demonstrate effectiveness of high-temperature nuclear heat utilization systems with the HTTR. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test system is planned to investigate the system characteristics, to develop high-temperature components such as a reformer, a high-temperature isolation valve and so on, and to verify operation and control technologies and safety technology at accidents. This paper presents outline of operation and control systems and analytical review of transient behavior of the out-of-pile hydrogen production system. Main function of the operation and control systems is made not to give disturbance to the HTTR at transient state under start-up and stop operations. The operation modes are separated into two ones, namely normal and accident operation modes, and operation sequences are made for each operation mode. The normal operation sequence includes start-up, steady operation and stop of the out-of-pile system. The accident one deals with accident conditions at which supply of feed gas is stopped and helium gas is cooled passively by the steam generator. Transient behavior of the out-of-pile system was analyzed numerically according as the operation sequences. As the results, it was confirmed that the designed operation and control systems are adequate to the out-of-pile system. (author)

  5. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  6. Potential electricity savings by variable speed control of compressor for air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Nasution, Henry [Bung Hatta University, Department of Mechanical Engineering, Faculty of Industrial Engineering, Padang, West Sumatera (Indonesia); Wan Hassan, Mat Nawi [Universiti Teknologi Malaysia, Faculty of Mechanical Engineering, Skudai, Johor Bahru-Darul Ta' zim (Malaysia)

    2006-05-15

    The potential of a variable-speed compressor running on a controller to provide enhanced load-matching capability, energy saving and thermal comfort for application in air-conditioning system is demonstrated. An air-conditioning system, originally operated on a constant speed mode, is retrofitted with an inverter and a PID controller. The system was installed to a thermal environmental room together with a data acquisition system to monitor energy consumption and temperature of the room. Measurements were taken 2 h daily at a time interval of 5 min for an on/off and an inverter variable-speed conditions. The results indicate that thermal comfort of the room together with energy saving can be obtained through a proper selection of K for the controller. At a temperature setting of 22 C, the energy saving for the system is estimated to reach 25.3% for PID controllers. (orig.)

  7. Temperature-Controlled Chameleonlike Cloak

    Science.gov (United States)

    Peng, Ruiguang; Xiao, Zongqi; Zhao, Qian; Zhang, Fuli; Meng, Yonggang; Li, Bo; Zhou, Ji; Fan, Yuancheng; Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; Soukoulis, Costas M.

    2017-01-01

    Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.

  8. Temperature-Controlled Chameleonlike Cloak

    Directory of Open Access Journals (Sweden)

    Ruiguang Peng

    2017-03-01

    Full Text Available Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO_{3} ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.

  9. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO 2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO 2 emission is in progress by thermochemical water splitting. (orig.)

  10. Operating control systems in advanced types of nuclear power plants

    International Nuclear Information System (INIS)

    Jeannot, A.; Quittet, Y.; Bonnemort, P.

    The report presented first gives a general description of operating control of the PHENIX reactor, covering the level of automaticity and the methods of data perception. The authors then describe the control of the core, the supervision of cooling and the detection of cladding rupture. A summary description is given of the evolution of the SUPER-PHENIX reactor from its PHENIX predecessor. As regards high temperature reactors, the report discusses control rods, the regulation of the flow of coolant gas, the system of emergency stoppage and the general systems for safety and output limitation, with special attention being paid to particular aspects of some of the control systems

  11. Temperature control of functionally graded plates using a feedforward-feedback controller based on the inverse solution and proportional-derivative controller

    International Nuclear Information System (INIS)

    Golbahar Haghighi, M.R.; Eghtesad, M.; Necsulescu, D.S.; Malekzadeh, P.

    2010-01-01

    As a first endeavor, an approach for the two- and three-dimensional temperature control of functionally graded (FG) plates by using the inverse solution and the proportional-differential (PD) controller is provided. For this purpose, firstly, having the desired temperatures at different locations and times, heat fluxes at the boundaries of the plates are estimated by inverse solution techniques offline. Then, the estimated heat fluxes as feedforward control inputs are combined with a PD controller to introduce a hybrid feedforward-feedback control input to the FG domain in the presence of disturbance and noise. In order to show the efficiency and accuracy of the proposed (inverse + PD) controller in two- and three-dimensional domains, different distinct examples, which include different boundary conditions, material properties and disturbance sources are presented. It is shown that the presented approach can adjust heat fluxes for control of the temperature accurately; also, the PD controller gains do not need to be re-adjusted for different problems.

  12. Temperature control of functionally graded plates using a feedforward-feedback controller based on the inverse solution and proportional-derivative controller

    Energy Technology Data Exchange (ETDEWEB)

    Golbahar Haghighi, M.R. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2010-01-15

    As a first endeavor, an approach for the two- and three-dimensional temperature control of functionally graded (FG) plates by using the inverse solution and the proportional-differential (PD) controller is provided. For this purpose, firstly, having the desired temperatures at different locations and times, heat fluxes at the boundaries of the plates are estimated by inverse solution techniques offline. Then, the estimated heat fluxes as feedforward control inputs are combined with a PD controller to introduce a hybrid feedforward-feedback control input to the FG domain in the presence of disturbance and noise. In order to show the efficiency and accuracy of the proposed (inverse + PD) controller in two- and three-dimensional domains, different distinct examples, which include different boundary conditions, material properties and disturbance sources are presented. It is shown that the presented approach can adjust heat fluxes for control of the temperature accurately; also, the PD controller gains do not need to be re-adjusted for different problems.

  13. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  14. Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ponton, Lisa M. [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and Eapp on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation of several aromatic sulfonates was achieved in less than 1 min, a reduction of analysis time by more than a factor of 20 as compared to room temperature separations. The use of higher operating temperatures also facilitated the separation of this mixture with an entirely aqueous mobile phase in less than 2 min. This methodology was extended to the difficult separation of polycyclic aromatic hydrocarbons on PGC. This study also brought to light the mechanistic implications of the unique retention behavior of these analytes through variations of the mobile phase composition.

  15. Supervisory control and data acquisition system development for superconducting current feeder system of SST-1

    International Nuclear Information System (INIS)

    Patel, R.; Mahesuria, G.; Gupta, N.C.; Sonara, D.; Panchal, R.; Panchal, P.; Tanna, V.L.; Pradhan, S.

    2014-01-01

    The Current Feeders System (CFS) is essentially an optimized bridge between the power supply at room temperature and Super Conducting Magnet System (SCMS) of the SST-1 machine at 4.5 K.CFS is a complex electrical and cryogenic network which consists of ten pairs of 10 KA rating helium Vapor cooled Conventional Current Leads (VCCLs), superconducting (SC) current feeder and associated components. For the safe and reliable operation of CFS, it is equipped with different physical process parameters measuring instruments like flow, pressure, temperature, level, vacuum, voltage taps and final control element like control valves, heaters, vacuum pumps etc. PLC program is developed in ladder language for acquiring and controlling the process parameters. Independent SCADA applications developed in WonderwareIntouch software for data communication from PLC, front-end Graphical User Interface (GUI), auto-manual interface, real time trends, history trends, events and alarm pages. Time synchronized communication established between CFS control system and Industrial SQL server (InSQL) Historian for centralized storage of CFS process parameters which intern provides the CFS process data to SST-1 central control room. SCADA based data acquisition and data retrieval system is found to be satisfactory during the recent SST-1 cool down experiment. This paper describes the SCADA and PLC application development and their communication to InSQL server. (author)

  16. Experimental Investigation of a Temperature-Controlled Car Seat Powered by an Exhaust Thermoelectric Generator

    Science.gov (United States)

    Du, H.; Wang, Y. P.; Yuan, X. H.; Deng, Y. D.; Su, C. Q.

    2016-03-01

    To improve the riding comfort and rational utilization of the electrical energy captured by an automotive thermoelectric generator (ATEG), a temperature-controlled car seat was constructed to adjust the temperature of the car seat surface. Powered by the ATEG and the battery, the seat-embedded air conditioner can improve the riding comfort using a thermoelectric device to adjust the surface temperature of the seat, with an air duct to regulate the cold side and hot side of the thermoelectric device. The performance of the thermoelectric cooler (TEC) and theoretical analysis on the optimum state of the TEC device are put forward. To verify the rationality of the air duct design and to ensure sufficient air supply, the velocity field of the air duct system was obtained by means of the finite element method. To validate the reliability of the numerical simulation, the air velocity around the thermoelectric device was measured by a wind speed transmitter. The performance of the temperature-controlled car seat has been validated and is in good agreement with bench tests and real vehicle tests.

  17. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  18. A new intelligent curtain control system based on 51 single chip microcomputer

    Science.gov (United States)

    Sun, Tuan; Wang, Yanhua; Wu, Mengmeng

    2017-04-01

    This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.

  19. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  20. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  1. Controlling the temperature in Canadian homes

    International Nuclear Information System (INIS)

    Dewis, G.

    2008-01-01

    Programmable thermostats can be used to optimize the operation of heating and cooling systems by reducing system usage when occupants are asleep or when dwellings are unoccupied. This paper used the results of a 2006 households and the environment survey to examine how programmable thermostats are currently being used in Canadian households. The demographic factors associated with thermostat use were discussed, as well as how their usage varied in different areas of Canada. The study showed that most Canadian households set their temperature at between 20 to 22 degrees C during times when they are home and awake. Home temperatures were reduced to between 16 and 18 degrees C when household members were away or asleep. Only 4 out of 10 households used programmable thermostats. Of those who used programmable thermostats, only 7 in 10 programmed the thermostat to lower the temperature when occupants were asleep. Senior citizens and people with lower levels of education were less likely to use programmable thermostats. It was concluded that incentive programs and the distribution of free programmable thermostats will increase their use in households. Assistance in programming during the installation process should also be provided. Factor analyses must also be conducted to examine the influence of age, education, and income and the decisions made by households in relation to temperature regulation. 7 tabs

  2. Design of Temperature Measuring Instrument of The Primary Cooling System Bearing Motor At The RSG-GAS Based on Micro controller ATMEGA 8535

    International Nuclear Information System (INIS)

    Ranji Gusman; Cahyana; Heri Suherkiman; Sukino

    2012-01-01

    Controlling on the bearing of an electric motor is the thing that important to do, to know the performance of an electric motor is staying awake. One of the parameters that can be controlled is temperature of bearing electric motor. The bearing of an electric motors has three areas of work, namely the normal working temperature area(<45 °C), working area (45-50 °C) and critical shutdown area (<50 °C). On the design of this tool-making, we are going to control the electric motor on that condition. The micro controller ATMEGA 8535 is used as a controller. Micro controller serve control the input in the form of temperature bearing motor then cultivate it and will be displayed to output devices such as the LCD viewer, lights indicators and buzzer. On this design has the design of casing, power supply circuit, micro controller port, buzzer driver circuit, indicator light and relay circuits, as well as the LCD viewer circuit and flow chart. On the next activity, the design will be submitted to the manufacturing stage. (author)

  3. Application of superconducting coils to VAR control in electric power systems: a proposal

    International Nuclear Information System (INIS)

    Boenig, H.J.; Hassenzahl, W.V.

    1979-11-01

    During the last eight years, static VAR-control systems with thyristor-controlled, room-temperature reactors have been used in electrical systems for voltage control and system stabilization. In this proposal, we describe a new static VAR-control system that uses an asymmetrically controlled Graetz bridge and a superconducting dc coil. Preliminary studies indicate that the proposed system will have lower overall losses and that its capital cost and electrical characteristics are comparable to those of a conventional system. Three- and four-year programs for developing the electronic circuitry and superconducting coils for VAR control, culminating in the installation and testing of an approx. 40-MVAR system, are proposed

  4. Design and construction of vacuum control system on EAST

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Hu, Q.S.; Wang, X.M.; Zhang, X.D.; Hu, J.S.; Yang, Y.; Gu, X.M.

    2008-01-01

    The construction of experimental advanced superconducting tokamak (EAST) was finished at the end of 2006 in Hefei, China. Its vacuum system, an important subsystem, has been commissioned in February 2006. The design and construction of this vacuum control system are described in this paper. The requirements for remote automation, distributed control and centralized management, high reliability and expansibility have been taken into account in the design. There are three levels of control in vacuum control system. The bottom level control is performed on the local instruments manually; the medium level control is based on Siemens S7-400 PLC; the top level control is conducted on IPCs with communication through profi b us network. In addition remote handling and centralized monitoring could be realized by a remote control server. The control system could achieve pumping and fueling of the whole vacuum system. Besides that, it also includes the data acquisition of the pressure and temperature. The details are discussed on the monitoring of vacuum system states including cooling water, power and compressed air, etc., safeguards of plasma chamber and cryostat chamber and vacuum equipments, choosing of control modes corresponding to the plasma discharge and wall conditioning. At the end, the parts of EAST device protection system related to vacuum and gas injection system will also be introduced

  5. Development of a control system for shell and tube heat exchanger in Matlab simulink

    International Nuclear Information System (INIS)

    Zeeshan, H.M.

    2014-01-01

    The main objective of this research is to develop a control system for heat exchanger so that the desired outlet temperature can be achieved by controlling the flow rate. For this purpose, shell and tube heat exchanger was chosen and modeled it by using its mathematical equations in MATLAB (Matrix Laboratory) Simulink and calculated the outlet temperature by NTU (Number of Transfer Units) effectiveness method. For the purpose of Control system, MPC (Model Predictive Controller) was used. This research will open a new way of Modeling Equations instead of transfer functions in MATLAB (Matrix Laboratory) Simulink. Using the model, it was developed; with controller, so as to manipulate the output temperature by simply controlling the flow rate. It can be justified weather the design of a new heat exchanger would be feasible or not for the specific requirements. At last this research is very helpful in Industries for the purpose of designing, development and control of new Heat Exchangers. (author)

  6. HYBRID SYSTEM BASED FUZZY-PID CONTROL SCHEMES FOR UNPREDICTABLE PROCESS

    Directory of Open Access Journals (Sweden)

    M.K. Tan

    2011-07-01

    Full Text Available In general, the primary aim of polymerization industry is to enhance the process operation in order to obtain high quality and purity product. However, a sudden and large amount of heat will be released rapidly during the mixing process of two reactants, i.e. phenol and formalin due to its exothermic behavior. The unpredictable heat will cause deviation of process temperature and hence affect the quality of the product. Therefore, it is vital to control the process temperature during the polymerization. In the modern industry, fuzzy logic is commonly used to auto-tune PID controller to control the process temperature. However, this method needs an experienced operator to fine tune the fuzzy membership function and universe of discourse via trial and error approach. Hence, the setting of fuzzy inference system might not be accurate due to the human errors. Besides that, control of the process can be challenging due to the rapid changes in the plant parameters which will increase the process complexity. This paper proposes an optimization scheme using hybrid of Q-learning (QL and genetic algorithm (GA to optimize the fuzzy membership function in order to allow the conventional fuzzy-PID controller to control the process temperature more effectively. The performances of the proposed optimization scheme are compared with the existing fuzzy-PID scheme. The results show that the proposed optimization scheme is able to control the process temperature more effectively even if disturbance is introduced.

  7. Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms....... Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models. Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...

  8. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  9. DACS II - A distributed thermal/mechanical loads data acquisition and control system

    Science.gov (United States)

    Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.

    1987-01-01

    A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.

  10. Coolant and ambient temperature control for chillerless liquid cooled data centers

    Science.gov (United States)

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  11. Elimination of Oscillations in a Central Heating System using Pump Control

    DEFF Research Database (Denmark)

    Andersen, Palle; Pedersen, Tom Søndergaard; Stoustrup, Jakob

    2000-01-01

    In central heating systems with thermostatic valve temperature control it is a well known fact that room temperature oscillations may occur when the heat demand becomes low due to the non-linear behavior of the control loop. This is not only discomforting but it also increases the energy cost...... of heating the room. Using the pump speed as an active part in control is it shown that the room temperature may be stabilized in a wider interval of heat demand. The idea is to control the pump speed in a way that keeps the thermostatic valve within a suitable operating area using an estimate of the valve...... position. The position is estimated from the pump terminals, using the pump flow and the pump differential pressure. The concept is tested on a small central heating test bench. The results show that it is possible to stabilize the room temperature even at part load conditions...

  12. Dynamic Model and Control of a Photovoltaic Generation System using Energetic Macroscopic Representation

    Science.gov (United States)

    Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan

    2016-10-01

    This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.

  13. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  14. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Directory of Open Access Journals (Sweden)

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  15. Units 3 and 4 steam generators new water level control system

    International Nuclear Information System (INIS)

    Dragoev, D.; Genov, St.

    2001-01-01

    The Steam Generator Water Level Control System is one of the most important for the normal operation systems, related to the safety and reliability of the units. The main upgrading objective for the SG level and SGWLC System modernization is to assure an automatic maintaining of the SG level within acceptable limits (below protections and interlocks) from 0% to 100% of the power in normal operation conditions and in case of transients followed by disturbances in the SG controlled parameters - level, steam flow, feedwater flow and/or pressure/temperature. To achieve this objective, the computerized controllers of new SG water level control system follows current computer control technology and is implemented together with replacement of the feedwater control valves and the needed I and C equipment. (author)

  16. The S-1 Spheromak Control System

    International Nuclear Information System (INIS)

    Mathe, P.; Mika, R.; Oliaro, G.

    1983-01-01

    The use of a CAMAC based DEC LSI-11/23 microcomputer to perform all control functions for the S-1 Spheromak is described. The system monitors and controls the three coil systems, Toroidal, Poloidal, and Equilibrium field coils and their associated power sources, the water cooling system, the personnel and machine safety system, the machine and diagnostic timing system and the control room display and operator interface. Future requirements include control of the vacuum system, the gas injection system and interface to the PPPL Data Acquisition System DEC10. The computer is connected to five remotely located CAMAC crates by a fiber-optic serial highway operating at five megahertz. These crates contain interface modules required to control the S-1 experiment. These modules include: D/A and A/D converters, fast transient digitizers, timing modules, temperature sensing modules, CRT alphanumeric display drivers, watchdog timers, and relay and TTL parallel I/O ports. The computer itself resides in crate number0 and consists of an LSI-11/23 with hardware floating post processor, memory management, 256K bytes of memory, four RS-232 serial ports and a 30 megabyte hard disk with a one megabyte floppy disk backup. The majority of software is written in FORTRAN with a few speed critical programs written in PDP-11 MACRO assembly language. The software simulates a sequential state machine which allows easily changeable logic since all logic is represented by standard Boolean Fortran statements. The RSX-11/m operating system allows multiple tasks to be active simultaneously. This provides computing time for operator interactions, editing of critical machine parameters, data analysis and transmission of data to other computers while still maintaining the scan activity which constantly monitors machine parameters

  17. Construction of a remote controlled monitoring system with GPIB devices and EPICS

    International Nuclear Information System (INIS)

    Yoshikawa, Takeshi; Yamamoto, Noboru.

    1995-01-01

    The Experimental Physics and Industrial Control System (EPICS) has been used for the accelerator control system in recent years. EPICS has rich set of tools to create application with Graphical User Interface (GUI). It reduces the load of complex programming for GUI and shortens the application development period. This paper will describe the remote temperature monitoring system using EPICS. (author)

  18. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    International Nuclear Information System (INIS)

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL's Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL's low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans

  19. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  20. Radiation control monitoring system on the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Minowa, Y.; Nakazawa, T.; Sato, K.; Kikuchi, H.; Nomura, T.

    1999-01-01

    Radiation control monitoring system of the HTTR is divided into three subsystems; exhaust monitoring equipment, room air monitoring equipment, dose equivalent rate monitoring equipment. The exhaust monitoring equipment consists of exhaust gas monitors, exhaust dust monitors, and a tritium and carbon sampling device at normal operation of the reactor. Accident gas monitors are also provided for the emergency. The tritium and carbon sampling device uses cupper oxide as a oxidizer, and ethanol amine as a sampling materials which collects continuously tritium and carbon in dust during about one month and is measured by a liquid scintillation counter. The accident gas monitors consist of two channels, for a low and a high range. The high range-gas monitor consists of two ionization chambers: one encloses argon gas and the other encloses xenon gas. Average energy of various gamma-rays, hence, accident exposure dose of the public can be estimated with the comparison of the sensitivity of two kinds of ionization chambers. The dose equivalent rate monitoring equipment consists of silicon semiconductor detectors for gamma-ray, a ionization chamber for gamma-ray, a BF 3 counter for neutron, and accident area monitors which are located in the reactor container. The message of 'check dose !' or 'temporary evacuation !' can be send to the workers in the reactor with a light and a sound. A computer system collects the radiation monitoring data every 10 sec cycle and accumulates them in a server computer. The leakage and the dispersion of helium gas must be taken into account on the radiation control monitoring system of the HTTR. (Suetake, M.)

  1. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  2. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    Science.gov (United States)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  3. Performance of MSRE Nuclear Power Control Systems (MSRE Test Report 5.2.1)

    International Nuclear Information System (INIS)

    Gabbard, C. H.

    1968-01-01

    The nuclear power control systems of the MSRE were evaluated by observing the steady-state operation of the reactor and by conducting a series of transient tests. The temperature servo was found capable of controlling all the transients that were introduced. However, because of the relatively slow response and inherent stability of the reactor system, the temperature servo was found to be relatively inactive during many of the load change transients. The automatic load control operated as expected except that the minimum power available to the automatic control was about 2 Mw instead of l Mw as had been planned. This has not caused a problem in the reactor operation because the load control has normally been operated in 'manual'.

  4. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  5. Friction Stir Welding of Copper Canisters Using Power and Temperature Control

    International Nuclear Information System (INIS)

    Cederqvist, Lars

    2011-01-01

    This thesis presents the development to reliably seal 50 mm thick copper canisters containing the Swedish nuclear waste using friction stir welding. To avoid defects and welding tool fractures, it is important to control the tool temperature within a process window of approximately 790 to 910 deg C. The welding procedure requires variable power input throughout the 45 minute long weld cycle to keep the tool temperature within its process window. This is due to variable thermal boundary conditions throughout the weld cycle. The tool rotation rate is the input parameter used to control the power input and tool temperature, since studies have shown that it is the most influential parameter, which makes sense since the product of tool rotation rate and spindle torque is power input. In addition to the derived control method, the reliability of the welding procedure was optimized by other improvements. The weld cycle starts in the lid above the joint line between the lid and the canister to be able to abort a weld during the initial phase without rejecting the canister. The tool shoulder geometry was modified to a convex scroll design that has shown a self-stabilizing effect on the power input. The use of argon shielding gas reduced power input fluctuations i.e. process disturbances, and the tool probe was strengthened against fracture by adding surface treatment and reducing stress concentrations through geometry adjustments. In the study, a clear relationship was shown between power input and tool temperature. This relationship can be used to more accurately control the process within the process window, not only for this application but for other applications where a slow responding tool temperature needs to be kept within a specified range. Similarly, the potential of the convex scroll shoulder geometry in force-controlled welding mode for use in applications with other metals and thicknesses is evident. The variable thermal boundary conditions throughout the weld

  6. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  7. Temperature-controlled radiofrequency ablation of cardiac tissue

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1999-01-01

    BACKGROUND: A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available for the frequ......BACKGROUND: A variety of basic factors such as electrode tip pressure, flow around the electrode and electrode orientation influence lesion size during radiofrequency ablation, but importantly is dependent on the chosen mode of ablation. However, only little information is available...... for the frequently used temperature-controlled mode. The purpose of the present experimental study was to evaluate the impact during temperature-controlled radiofrequency ablation of three basic factors regarding electrode-tissue contact and convective cooling on lesion size. METHODS AND RESULTS: In vitro strips......-controlled radiofrequency ablation increased external cooling of the electrode tip due to either flow of the surrounding liquid or poor electrode tissue contact, as exemplified by perpendicular versus parallel electrode orientation, increases lesion size significantly. This is in contrast to the impact of these factors...

  8. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    Science.gov (United States)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  9. Computer-based liquid radioactive waste control with plant emergency and generator temperature monitoring

    International Nuclear Information System (INIS)

    Plotnick, R.J.; Schneider, M.I.; Shaffer, C.E.

    1986-01-01

    At the start of the design of the liquid radwaste control system for a nuclear generating station under construction, several serious problems were detected. The solution incorporated a new approach utilizing a computer and a blend of standard and custom software to replace the existing conventionally instrumented benchboard. The computer-based system, in addition to solving the problems associated with the benchboard design, also provided other enhancements which significantly improved the operability and reliability of the radwaste system. The functionality of the computer-based radwaste control system also enabled additional applications to be added to an expanded multitask version of the radwaste computer: 1) a Nuclear Regulatory Commission (NRC) requirement that all nuclear power plants have an emergency response facility status monitoring system; and 2) the sophisticated temperature monitoring and trending requested by the electric generator manufacturer to continue its warranty commitments. The addition of these tasks to the radwaste computer saved the cost of one or more computers that would be dedicated to these work requirements

  10. Baking controller for synchrotron beamline vacuum systems

    International Nuclear Information System (INIS)

    Garg, C.K.; Kane, S.R.; Dhamgaye, V.P.

    2003-01-01

    The 2.5 GeV electron storage ring Indus-2 is a hard X-ray Synchrotron Radiation (SR) Source. Nearly 27 beamlines will be installed on Indus-2 and they will cater to different experiments and applications. Most of the beamlines will be in Ultra High Vacuum (UHV) the only exception being hard X-rays beamlines. However the front ends of all the beamlines will be in UHV. Practicing UHV requires efforts and patience. Evacuating any chamber, volume gases can be removed easily. However, outgassing phenomena like desorption, diffusion and permeation restricts the system to attain UHV. All processes except the volume gas removal are temperature dependent. At ambient temperature, gas pressure decreases so slowly that outgassing limit (i.e. 10 -10 1/s/cm 2 ) can hardly be achieved on a practical time scale. Also there are three orders of magnitude difference in outgassing between baked and unbaked systems. Depending on the vacuum chamber and the components inside it, the thermal outgassing (baking) of system is required and can be done at various temperatures between 150 degC to 450 deg C. For whole baking cycle, constant monitoring and controlling of the systems is required which takes tens of hours. This paper describes the automation for such baking system, which will be used for SR beamlines

  11. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  12. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    Science.gov (United States)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  13. On-chip digital power supply control for system-on-chip applications

    NARCIS (Netherlands)

    Meijer, M.; Pineda de Gyvez, J.; Otten, R.H.J.M.

    2005-01-01

    The authors presented an on-chip, fully-digital, power-supply control system. The scheme consists of two independent control loops that regulate power supply variations due to semiconductor process spread, temperature, and chip's workload. Smart power-switches working as linear voltage regulators

  14. Optimal control of complex atomic quantum systems.

    Science.gov (United States)

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  15. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  16. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegâ n; Cheng, Jim C.; Doyle, Fiona M.; Pisano, Albert P.

    2013-01-01

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating

  17. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  18. Calorimeters for Precision Power Dissipation Measurements on Controlled-Temperature Superconducting Radiofrequency Samples

    International Nuclear Information System (INIS)

    Xiao, Binping P.; Kelley, Michael J.; Reece, Charles E.; Phillips, H. L.

    2012-01-01

    Two calorimeters, with stainless steel and Cu as the thermal path material for high precision and high power versions, respectively, have been designed and commissioned for the surface impedance characterization (SIC) system at Jefferson Lab to provide low temperature control and measurement for CW power up to 22 W on a 5 cm dia. disk sample which is thermally isolated from the RF portion of the system. A power compensation method has been developed to measure the RF induced power on the sample. Simulation and experimental results show that with these two calorimeters, the whole thermal range of interest for superconducting radiofrequency (SRF) materials has been covered. The power measurement error in the interested power range is within 1.2% and 2.7% for the high precision and high power versions, respectively. Temperature distributions on the sample surface for both versions have been simulated and the accuracy of sample temperature measurements have been analysed. Both versions have the ability to accept bulk superconductors and thin film superconducting samples with a variety of substrate materials such as Al, Al 2 O 3 , Cu, MgO, Nb and Si

  19. Adaptive self-correcting control system

    International Nuclear Information System (INIS)

    Ellis, S.H.

    1984-01-01

    A control system for regulating a controlled device or process, such as a turbofan engine, produces independent multiple estimates of one or more controlled variables of the device or process by combining the signals from a plurality of feedback sensors, which provide information related to the controlled variables, in weighted nonordered pairs. The independent multiple estimates of each controlled variable are combined into a weighted average, and individual estimates which differ by more than a specified amount from the weighted average are edited and temporarily removed from consideration. A revised weighted average value of each controlled variable is then produced, and this value is used to limit or control operation of the device or process. Adaptive trim is provided to compensate for changes in the device or process being controlled, such as engine deterioration, by slowly trimming each individual estimate toward the mean, and includes error compensation which constrains the weighted sum of the adaptive trims to equal zero, thereby preventing the adaptive trim from changing the operating level of the device or process. A secondary editing circuit based on a majority rule principle identifies a failed feedback sensor and permanently excludes all individual estimates of the controlled variable based on the failed sensor. Editing boundaries are increased and adaptive trim rate is varied when a transient occurs in the operation of the device or process. Further transient compensation may be required for a system with more severe transient requirements, and this invention includes compensation to selected feedback parameters such as turbine temperature to account for differences between steady state and transient values

  20. Greenhouse intelligent control system based on microcontroller

    Science.gov (United States)

    Zhang, Congwei

    2018-04-01

    As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.