WorldWideScience

Sample records for temperature ceramic membrane

  1. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  2. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  3. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  4. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  5. Porous ceramic membranes

    OpenAIRE

    Biesheuvel, P. M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined with micro-electronic devices. Ceramic membranes have a large potential over their polymer counterparts for applications at high temperature, pressure and in aggressive environments. Ceramic membra...

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  7. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  8. Development of ceramic membrane reactors for high temperature gas cleanup. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

    1993-06-01

    The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

  9. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  11. High temperature seals between ceramic separation membranes and super-alloy housing

    Science.gov (United States)

    Honea, G.; Sridhar, K. R.

    1991-01-01

    One of the concepts for oxygen production from Martian atmospheric carbon dioxide involves the use of tubular electrochemical membranes for oxygen separation. The tubular configuration offers the advantage of being able to separate the oxygen at pressures of up to 500 psi, thereby eliminating the need for a pre-liquefaction oxygen compressor. A key technology that has to be developed in order for the electrochemical separator to combine as a compressor is a high temperature static seal between the ceramic separation cell and the nickel-based super-alloy tube. Equipment was designed and fabricated to test the seals. Efforts are under way to develop a finite element model to study the thermal stresses at the joints and on the seal, and the optimal shape of the seal. The choice of seal materials and the technique to be used to fabricate the seals are also being investigated.

  12. Microporous alumina ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  13. Supported microporous ceramic membranes

    Science.gov (United States)

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  14. Doped ceria-chloride composite electrolyte for intermediate temperature ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Q.X.; Zhang, W.; Peng, R.R.; Peng, D.K.; Meng, G.Y.; Zhu, B. [Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei (China)

    2002-03-01

    A kind of oxide-salt composite electrolyte, gadolinium-doped ceria (GDC)-LiCl-SrCl{sub 2}, prepared with hot-press technique, shows superior ionic conductivity, which is 2-10 times higher than that of GDC itself at the temperature range of 400-600C. More interestingly, not like the GDC electrolyte, which has some extent of electronic conduction under reducing atmosphere, the composite electrolyte is almost a pure ionic conductor, evidenced by the fuel cell's (FC) open circuit voltage (OCV) close to the theoretical one. The fuel cells based on this composite electrolyte show excellent power density output even at temperature as low as 500C (240 mW cm{sup -2} ) in spite of the relatively thick electrolyte (0.4 mm). Such high performance, in combination with its low cost in both raw materials and fabrication process, make this kind of composite electrolyte a good candidate electrolyte material for future ultra-low-cost intermediate temperature ceramic membrane fuel cells (IT-CMFCs)

  15. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henricus J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  16. Performance of ceramic membranes at elevated pressure and temperature. Effect of non-ideal flow conditions in a pilot scale membrane separator

    Energy Technology Data Exchange (ETDEWEB)

    Koukou, M.K.; Papayannakos, N.; Markatos, N.C. [Department of Chemical Engineering, National Technical University of Athens, Athens (Greece); Bracht, M.; Van Veen, H.M.; Roskam, A. [ECN Fuels Conversion and Environment, Petten (Netherlands)

    1998-11-01

    Microporous silica membrane manufacturing technology has been scaled-up and tubes with several hundred cm{sup 2} of membrane surface area have been prepared. Practical problems in applying high-temperature ceramic membrane technology, such as sealing and ceramic metal joining, have been solved successfully on pilot scale. Experiments show that membranes developed are capable of selectively separating hydrogen from a gas mixture containing hydrogen at elevated pressures and temperatures. Permselectivity values for H{sub 2}/CH{sub 4} separation are as high as 28. The gas separation performance of membranes is influenced by the flow conditions at both the feed and permeate side of the membrane separators. By performing high-temperature high-pressure separation experiments and simulation of the non-ideal flow effects around the membrane, the influence of the flow effects is predicted. The operation of the pilot scale membrane separator is simulated by a two-dimensional, one-phase mathematical model which predicts the basic features of the separator from an engineering point of view. A comparison between the experimental data and the modelling results yields the conclusion that the dispersion model predicts much better the membrane separator performance than the simplified model which assumes plug flow on both sides of the membrane separator. 29 refs.

  17. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  19. Ordered ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  20. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  1. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  2. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  3. Proton content and nature in perovskite ceramic membranes for medium temperature fuel cells and electrolysers.

    Science.gov (United States)

    Colomban, Philippe; Zaafrani, Oumaya; Slodczyk, Aneta

    2012-07-25

    Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS), thermogravimetric analysis (TGA), Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1-5 × 10-3 mole/mole), but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  4. Proton Content and Nature in Perovskite Ceramic Membranes for Medium Temperature Fuel Cells and Electrolysers

    Directory of Open Access Journals (Sweden)

    Aneta Slodczyk

    2012-07-01

    Full Text Available Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS, thermogravimetric analysis (TGA, Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1–5 × 10−3 mole/mole, but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  5. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  6. Ceramic membranes for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Vincente-Mingarro, I.M. de; Pitarch, J.A. [Tecnologia y Gestion de la Innovacion, Madrid (Spain)

    1998-11-01

    The project is being carried out jointly by TGI, S.A., CIEMAT and CSIC-ICM to develop and evaluate new inorganic membranes of a ceramic type, with nanometric pore size for separation of contaminants and fuel enrichment, in gas mixtures from coal gasification. In order to achieve both the highest active and selective surface, a candle (150 mm length and 60 mm in diameter), with 30-40 % porosity and pore sizes of {lt}1 {mu}m was developed. The processing steps include the slip-casting of the first layer (porous support) in a way than after thermal treatment (1400-1600{degree}C) the desirable shape dimensions, strength, porosity and pore size were obtained. Then the support was dipped successively (colloidal filtration over the casting porous piece) in an appropriate suspension of alumina with lower grain size. The top layer was obtained by the sol-gel process so that through successive setting and heat treatment the pores were reduced to the nanometre size. CVD and CVI techniques were set up to develop membranes for gas separation with a high selectivity level. Experimental chemical infiltration `Membranes Development` on porous substrates has been achieved on disk and candle-shaped materials. Characterisation was by spectrophotometry (IRS). Kinetic studies of coating in order to find out reproducible conditions at low temperature were also carried out. Uniform recovery over the whole membrane surface is wanted. The CIEMAT`s Hot Gas Separation Plant (HGSP) works with gas mixtures at a maximum design temperature 773 K and pressures up to 50 bar. It comprises: a gas supply unit equipped with flow, temperature and pressure measuring and control systems; a heating system within the membrane which must be leak proof for high pressures; and an in-line gas chromatography system thus allowing the chemical composition of the gas entering, permeated and retained to be measured. 7 figs.

  7. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  8. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  9. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  11. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of

  12. Porous ceramic membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  13. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  14. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  15. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  16. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate......Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...... created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...

  17. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  18. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    Science.gov (United States)

    2015-10-05

    Sep-2014 Approved for Public Release; Distribution Unlimited Final Report: Ceramic Electrolyte Membrane Technology : Enabling Revolutionary...2601 30-Sep-2014 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Ceramic Electrolyte Membrane Technology : Enabling... technology to fabricate larger LLZO ceramic membranes . The goal of this work is to develop ceramic processing technology to fabricate LLZO membranes that

  19. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  20. Proton conducting ceramic membranes for hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  1. PERFORMANCE EVALUATION OF CERAMICS MICROFILTRATION MEMBRANE FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    F.T. Owoeye

    2016-05-01

    Full Text Available Ceramic membranes are especially suitable for processes with high temperatures and harsh chemical environments or for processes where sterilizability of the membrane is important. The main objective of this work is to determine the evaluation of four different ceramic membranes with different material compositions. Ceramic disc type microfiltration membranes were fabricated by the mould and press method from different percentage compositions of clay, kaolin, sawdust and wood charcoal. The fabricated membranes were sintered at a temperature of 1100°C and characterized by an X-ray diffractometer and optical scanner. Compressibility tests and physical properties of the membranes were also examined. It was observed that, as the percentage composition of kaolin increased from 0 to 80% and the percentage composition of clay decreased from 80 to 0% respectively, the compressive stress of all the sample membranes increased, with an increase in compressive strain from 1.8 to 2.4. Sample A had the highest value of compressive stress from 1.8 to 2.2 compressive strain, but sample B had the highest value of compressive stress of 150MPa at a compressive strain of 2.4. Optical micrographs of all membranes showed the presence of uniformly distributed pores and no cracks were seen around them. It was concluded that, with increasing percentage of kaolin and decreasing percentage of clay, there was a decrease in porosity and water absorption, as well as a decrease in the mechanical properties of the fabricated membranes.

  2. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  3. Development of dense ceramic membranes for hydrogen separation.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Lee, T. H.; Zhang, G.; Dorris, S. E.; Rothenberger, K. S.; Martello, D. V.; Cugini, A. V.; Siriwardane, R. V.; Poston, J. A., Jr.; Fisher, E. P.

    2000-11-01

    We developed novel cermet (i.e., ceramic-metal composite) membranes for separating hydrogen from gas mixtures at high temperature and pressure. The hydrogen permeation rate in the temperature range of 600-900 C was determined for three classes of cermet membranes (ANL-1, ANL-2, and ANL-3). Among these membranes, ANL-3 showed the highest hydrogen permeation rate, with a maximum flux of 3.2 cm{sup 3}/min-cm{sup 2} for a 0.23-mm-thick membrane at 900 C. Effects of membrane thickness and hydrogen partial pressure on permeation rate indicated that bulk diffusion of hydrogen is rate-limiting for ANL-3 membranes. The lack of degradation in permeation rate during exposure to a simulated syngas mixture suggests that ANL-3 membranes are chemically stable and suitable for long-term operation.

  4. Fabrication of Ceramic Membrane Chromatography for Biologics Purification

    Directory of Open Access Journals (Sweden)

    Maizirwan Mel

    2011-12-01

    Full Text Available Chromatography is one of the most important separation processes of choice for the recovery/purification of proteins and complex bio-structures. Fabrication of chromatographic membranes and their efficiency in the chromatography process has been the subject of many recent researches. In this study, a coin-like, 13 mm diameter and 3 mm thick, ceramic membrane was fabricated to be used as a chromatographic medium. The membrane is used to replace the conventional resin-based chromatography columns. Hydroxyapatite (HA powder was used as a material for the membrane fabrication. In this project, a HA powder was produced using starch as pore creating agents. Characterization processes were done for the ceramic membrane using the suitable apparatuses. Three parameters of the fabrication process (starch wt %, compaction pressure and sintering temperature were manipulated to optimize the performance of the membrane. The fabricated membrane was placed in a (FPLC system to be tested for its performance as an adsorptive membrane. (IMAC process was run by immobilizing Ni2+ ions at the membrane particles surfaces. NP protein of the (NDV was used to test the membrane's ability to bind Histidine-tagged proteins. The optimum set of process parameters that yielded in the highest porosity and good chromatogram was determined to be 5 wt % starch, 3000 psi compaction pressure and 1100°C sintering temperature.ABSTRAK: Kromatografi merupakan satu daripada proses pengasingan yang penting yang dipilih untuk perolehan/penapisan protein dan biostruktur yang kompleks. Pemfabrikatan membran kromatografi dan kecekapannya dalam proses kromatografi merupakan fokus beberapa kajian terkini. Dalam kajian ini, membran seramik berbentuk duit syiling, berdiameter 13 mm dengan ketebalan 3 mm, direka untuk digunakan sebagai perantara kromatografi. Membran ini digunakan untuk menggantikan turus kromatografi berasaskan resin yang lazim. Serbuk hidroksiapatit (HA digunakan sebagai bahan

  5. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang, Dongsheng; Bu, Xueqin; Sun, Bing; Lin, Guiping; Zhao, Hongtao; Cai, Yan; Fang, Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  6. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  7. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  8. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  9. Low temperature synthesis of porous silicate ceramics

    Directory of Open Access Journals (Sweden)

    Méndez Enríquez Y.

    2007-01-01

    Full Text Available Impregnation of a polyurethane sponge with kaolin, feldspar, silica, fusible glass slurry followed by temperature treatment in air in the temperature range 800-1000 0 C leads to the formation of aluminosilicate ceramics with a set pore size. The low-temperature synthesis of porous ceramics is based on the stage-by-stage formation of low-temperature eutectics and thermodestruction of polyurethane sponge.

  10. Review on Development of Ceramic Membrane From Sol-Gel Route: Parameters Affecting Characteristics of the Membrane

    Directory of Open Access Journals (Sweden)

    M. R. Othman and H. Mukhtar

    2012-08-01

    Full Text Available The importance of laboratory scale ceramic membrane preparation using sol-gel technique with pore sizes in the range of 1-10nm is reviewed. Parameters affecting the characteristics of membrane during membrane development are highlighted and discussed in detail. Experimental results from literatures have shown that the correct amount of acid, water, PVA, appropriate membrane thickness, proper control of drying rate, and appropriate temperature profile selection during sintering process are necessary in order to acquire sufficient strength and reduce the formation of crack in the membrane. The different temperature setting during sintering process also influences the size of pore formed.Key Words: Sol-Gel, Inorganic Membrane, Ceramic Membrane, Gas Permeation, Sintering, Sol Properties, Membrane Morphologies, Pore Size Distribution.

  11. Proton conducting ceramics in membrane separations

    Science.gov (United States)

    Brinkman, Kyle S; Korinko, Paul S; Fox, Elise B; Chen, Frank

    2015-04-14

    Perovskite materials of the general formula SrCeO.sub.3 and BaCeO.sub.3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.

  12. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  13. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  14. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  16. Operational Factors in Membrane Bioreactors Using a Simple Ceramic Filter

    National Research Council Canada - National Science Library

    HASAN, Md. Mahmudul; NAKAJIMA, Jun

    2014-01-01

    To explore the cost reduction of water reclamation and reuse facilities in developing countries, a simple ceramic filter made of local materials, such as clay and rice bran, was used in a membrane bioreactor (MBR) process...

  17. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  18. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  19. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  20. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  1. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  2. CERAMIC MEMBRANES FOR HYDROGEN PRODUCTION FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    George R. Gavalas

    2004-04-01

    The preparation and performance of membranes for application to hydrogen separation from coal-derived gas is described. The membrane material investigated was dense amorphous silica deposited on a suitable support by chemical vapor deposition (CVD). Two types of support materials were pursued. One type consisted of a two-layer composite, zeolite silicalite/{alpha}-Al{sub 2}O{sub 3}, in the form of tubes approximately 0.7 cm in diameter. The other type was porous glass tubes of diameter below 0.2 cm. The first type of support was prepared starting from {alpha}-Al{sub 2}O{sub 3} tubes of 1{micro}m mean pore diameter and growing by hydrothermal reaction a zeolite silicalite layer inside the pores of the alumina at the OD side. After calcination to remove the organic template used in the hydrothermal reaction, CVD was carried out to deposit the final silica layer. CVD was carried out by alternating exposure of the surface with silicon tetrachloride and water vapor. SEM and N2 adsorption measurements were employed to characterize the membranes at several stages during their preparation. Permeation measurements of several gases yielded H{sub 2}:N{sub 2} ideal selectivity of 150-200 at room temperature declining to 110 at 250 C. The second type of support pursued was porous glass tubes prepared by a novel extrusion technique. A thick suspension of borosilicate glass powder in a polyethersulfone solution was extruded through a spinneret and after gelation the glass-polymer tube was heat treated to obtain a gas-tight glass tube. Leaching of the glass tube in hot water yielded connected pores with diameter on the order of 100 nm. CVD of the final silica layer was not carried out on these tubes on account of their large pore size.

  3. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Gas transport efficiency of ceramic membranes: comparison of different geometries

    NARCIS (Netherlands)

    Radosevic-Zivkovic, T.; Benes, Nieck Edwin; Bouwmeester, Henricus J.M.

    2004-01-01

    The effect of support geometry on the performance of asymmetric ceramic membranes for gas separation is analyzed. Flat plate (FP), tubular (TU) and multichannel (MC) geometries are investigated using the dusty gas model (DGM) to describe transport of a multicomponent gas mixture through the

  5. Current status of ceramic-based membranes for oxygen separation from air.

    Science.gov (United States)

    Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash

    2010-10-15

    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  7. Chemically stable ceramic-metal composite membrane for hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin; Fang, Shumin; Brinkman, Kyle S.

    2017-06-27

    A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr.sub.1-x-yY.sub.xT.sub.yO.sub.3-.delta. where 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, (x+y)>0; 0.ltoreq..delta..ltoreq.0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.

  8. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein

  9. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  10. Tribology of selected ceramics at temperatures to 900 C

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1986-01-01

    Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.

  11. Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications

    Science.gov (United States)

    Obada, David O.; Dodoo-Arhin, David; Dauda, Muhammad; Anafi, Fatai O.; Ahmed, Abdulkarim S.; Ajayi, Olusegun A.

    The preparation and characterization of kaolin based ceramic membranes using styrofoam (STY) and sawdust (SD) as pore formers have been prepared by mechano-chemical synthesis using pressureless sintering technique with porogen content between (0-20) wt% by die pressing. Pellets were fired at 1150 °C and soaking time of 4 h. The membranes cast as circular disks were subjected to characterization studies to evaluate the effect of the sintering temperature and pore former content on porosity, density, water absorption and mechanical strength. Obtained membranes show effective porosity with maximum at about 43 and 47% respectively for membranes formulated with styrofoam and sawdust porogens but with a slightly low mechanical strength that does not exceed 19 MPa. The resultant ceramic bodies show a fine porous structure which is mainly caused by the volatilization of the porogens. The fabricated membrane exhibited high N2 gas flux, hence, these membranes can be considered as efficient for potential application for gas separation by reason of the results shown in the gas flux tests.

  12. PERFORMANCE AND SELECTIVITY OF CERAMIC MEMBRANES IN THE ULTRAFILTRATION OF MODEL EMULSION IN SALINE

    Directory of Open Access Journals (Sweden)

    Konrad ĆWIRKO

    2017-04-01

    Full Text Available Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application – significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  13. Performance and Selectivity of Ceramic Membranes in the Ultrafiltration of Model Emulsion in Saline

    Science.gov (United States)

    Ćwirko, Konrad; Kalbarczyk-Jedynak, Agnieszka

    2017-06-01

    Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application - significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  14. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    Science.gov (United States)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  15. PROCESSING AND CHARACTERIZATION OF TUBULAR CERAMIC SUPPORT FOR MICROFILTRATION MEMBRANE PREPARED FROM PYROPHYLLITE CLAY

    Directory of Open Access Journals (Sweden)

    Abedallah Talidi

    2011-09-01

    Full Text Available Tubular macroporous support for ceramic microfiltration membranes were prepared by extrusion followed by sintering of the low cost pyrophyllite clay. Clay powders mixed with some organic additives can be extruded to form a porous tubular support. The average pore size of the membrane is observed to increase from 5 µm to 10.8 µm when sintering temperature increase from 900 °C to 1200 °C. However, with the increase in temperature from 900 °C to 1200 °C, the support porosity is reduced from 47% to 30% and flexural strength is increased from 4 MPa to 17 MPa. The fabricated macro-porous supports are expected to have potential applications in the pre-treatment and also can be used like support for membranes of ultra-filtration.

  16. Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment.

    Science.gov (United States)

    Zebić Avdičević, Maja; Košutić, Krešimir; Dobrović, Slaven

    2017-01-01

    Textile wastewaters are rated as one of the most polluting in all industrial sectors, and membrane separation is the most promising technology for their treatment and reuse of auxiliary chemicals. This study evaluates the performance of three types of tubular ceramic ultrafiltration membranes differing by mean pore size (1, 2 and 500 kDa) treating textile mercerization wastewater from a textile mill at different operating conditions: cross-flow velocity (CFV) and temperature. Acceptable results were obtained with 1 kDa ceramic membrane, with rejection efficiencies 92% for suspended solids, 98% for turbidity, 98% for color and 53% for total organic carbon at 20°C and 3 m s-1 CFV. Highest fouling effect was observed for 500 kDa membrane and lowest CFV. According to the observed results, 1 kDa membrane could be used for the treatment of wastewater from the textile mercerization process in terms of permeate quality.

  17. Ceramic Membrane Enabling Technology for Improved IGCC Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John Sirman; Bart vanHassel

    2005-06-01

    This final report summarizes work accomplished in the program from October 1, 1999 through December 31,2004. While many of the key technical objectives for this program were achieved, after a thorough economic and OTM (Oxygen Transport Membrane) reliability analysis were completed, a decision was made to terminate the project prior to construction of a second pilot reactor. In the program, oxygen with purity greater than 99% was produced in both single tube tests and multi-tube pilot plant tests for over 1000 hours. This demonstrated the technical viability of using ceramic OTM devices for producing oxygen from a high pressure air stream. The oxygen fluxes that were achieved in single tube tests exceeded the original target flux for commercial operation. However, extended testing showed that the mean time to failure of the ceramics was insufficient to enable a commercially viable system. In addition, manufacturing and material strength constraints led to size limitations of the OTM tubes that could be tested. This has a severe impact on the cost of both the ceramic devices, but also the cost of assembling the OTM tubes in a large reactor. As such and combined with significant progress in cost reduction of large cryogenic oxygen separation devices, an economic gain that justifies continued development could not be derived.

  18. Reactive sintering of ceramic lithium ion electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia

    2017-06-06

    Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.

  19. Preparation and Characterization of Microfiltration Ceramic Membranes Based on Natural Quartz Sand

    Directory of Open Access Journals (Sweden)

    Andrei Ivanets

    2017-06-01

    Full Text Available The effect of phase and chemical composition of natural quartz sand, binder and burnable additives was studied. The conditions of application of the membrane and biocide layers on the formation of porous ceramic and microfiltration membranes were investigated. It is shown that a crystalline oxide of Si(IV is determinant for obtaining the ceramic materials. The presence of carbonates (calcite, dolomite, aragonite, etc. and crystalline aluminosilicates (microcline, albite, phlogopit, etc. leads to a decrease in mechanical strength of ceramics. The biocide coating designed to protect the ceramic membrane surfaces from biofouling was applied and its anti-bacterial activity was shown.

  20. Hydraulically irreversible fouling on ceramic MF/UF membranes: Comparison of fouling indices, foulant composition and irreversible pore narrowing

    NARCIS (Netherlands)

    Shang, Ran; Vuong, Francois; Hu, Jingyi; Li, Sheng; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.; Cornelissen, Emile R.; Heijman, Sebastiaan G.J.; Rietveld, Luuk C.

    2015-01-01

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect

  1. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  2. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  3. Dynamic hyperfiltration membranes for high-temperature spacecraft wash water recycle

    Science.gov (United States)

    Gaddis, J. L.; Brandon, C. A.

    1978-01-01

    The effect of operating parameters on the performance of the hyperfiltration membrane when operating on washwater was examined. The parameters were pressure, temperature, velocity, and concentration. Data taken included rejections of organic materials, ammonia, urea, and an assortment of ions. The membrane used was a dual layer, polyacrylic acid over zirconium oxide, deposited in situ on a porcelain ceramic substrate.

  4. Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling.

    Science.gov (United States)

    Shokrkar, H; Salahi, A; Kasiri, N; Mohammadi, T

    2011-01-01

    In this paper, results of an experimental and modeling of separation of oil from industrial oily wastewaters (desalter unit effluent of Seraje, Ghom gas wells, Iran) with mullite ceramic membranes are presented. Mullite microfiltration symmetric membranes were synthesized from kaolin clay and alpha-alumina powder. The results show that the mullite ceramic membrane has a high total organic carbon and chemical oxygen demand rejection (94 and 89%, respectively), a low fouling resistance (30%) and a high final permeation flux (75 L/m2 h). Also, an artificial neural network, a predictive tool for tracking the inputs and outputs of a non-linear problem, is used to model the permeation flux decline during microfiltration of oily wastewater. The aim was to predict the permeation flux as a function of feed temperature, trans-membrane pressure, cross-flow velocity, oil concentration and filtration time, using a feed-forward neural network. Finally the structure of hidden layers and nodes in each layer with minimum error were reported leading to a 4-15 structure which demonstrated good agreement with the experimental measurements with an average error of less than 2%.

  5. Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality.

    Science.gov (United States)

    Cimini, Alessio; Moresi, Mauro

    2016-10-01

    In this work, the crossflow microfiltration performance of rough beer samples was assessed using ceramic hollow-fiber (HF) membrane modules with a nominal pore size ranging from 0.2 to 1.4 μm. Under constant operating conditions (that is, transmembrane pressure difference, TMP = 2.35 bar; feed superficial velocity, vS = 2.5 m/s; temperature, T = 10 °C), quite small steady-state permeation fluxes (J* ) of 32 or 37 L/m2 /h were achieved using the 0.2- or 0.5-μm symmetric membrane modules. Both permeates exhibited turbidity beer quality parameters. Moreover, it exhibited J* values of the same order of magnitude of those claimed for the polyethersulfone HF membrane modules currently commercialized. The 1.4-μm asymmetric membrane module yielded quite a high steady-state permeation flux (196 ± 38 L/m2 /h), and a minimum decline in permeate quality parameters, except for the high levels of turbidity at room temperature and chill haze. In the circumstances, such a membrane module might be regarded as a real valid alternative to conventional powder filters on condition that the resulting permeate were submitted to a final finishing step using 0.45- or 0.65-μm microbially rated membrane cartridges prior to aseptic bottling. A novel combined beer clarification process was thus outlined. © 2016 Institute of Food Technologists®.

  6. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  7. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    OpenAIRE

    Mehrdad Ebrahimi; Nadine Busse; Steffen Kerker; Oliver Schmitz; Markus Hilpert; Peter Czermak

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluen...

  8. Ceramic membrane ozonator for soluble organics removal from produced water

    Science.gov (United States)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  9. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  10. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  11. Ceramic membranes by electrochemical vapor deposition of zirconia-yttria-terbia layers on porous substrates

    NARCIS (Netherlands)

    Brinkman, H.W.; Brinkman, Hendrik W.; Burggraaf, Anthonie; Burggraaf, Anthonie J.

    1995-01-01

    By means of electrochemical vapor deposition (EVD), it is possible to grow thin, dense layers of zirconia/yttria/terbiasolid solution (ZYT) on porous ceramic substrates. These layers can be used as ceramic membranes for oxygen separation.The kinetics of the EVD process, the morphology of the grown

  12. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb2+, Cu2+, and Cd2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  13. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  14. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. The development of manganese oxide coated ceramic membranes for combined catalytic ozonation and ultrafiltration of drinking water

    Science.gov (United States)

    Corneal, Lindsay Marie

    A novel method for the preparation of hydrated MnO2 by the ozonation of MnCl2 in water is described. The hydrated MnO 2 was used to coat titania water filtration membranes using a layer-by-layer technique. The coated membranes were then sintered in air at 500°C for 45 minutes. Upon sintering, the MnO2 is converted to alpha-Mn 2O3 (as characterized by x-ray and electron diffraction). Atomic force microscopy (AFM) imaging showed no significant change in the roughness or height of the surface features of coated membranes, while scanning electron microscopy (SEM) imaging showed an increase in grain size with increasing number of coating layers. Energy dispersive x-ray spectroscopy (EDS) mapping and line scans revealed manganese present throughout the membrane, indicating that manganese dispersed into the porous membrane during the coating process and diffused into the titania grains during sintering. Selected area diffraction (SAD) of the coated and sintered membrane was used to index the surface layer as alpha-Mn2O3. The surface layer was uneven, although there was a trend of increasing thickness with increasing coating layers. The coating acts as a catalyst for the oxidation of organic matter when coated membranes are used in a hybrid ozonation-membrane filtration system. A trend of decreasing total organic carbon (TOC) in the permeate water was observed with increasing number of coating layers. The catalytic activity also manifests itself as improved recovery of the water flux due to oxidation of foulants on the membrane surface. Ceramic nanoparticle coatings on ceramic water filtration membranes must undergo high temperature sintering. However, this means that the underlying membrane, which has been engineered for a given molecular weight cut-off (MWCO), also undergoes a high temperature heat treatment that serves to increase pore size that have resulted in increases in permeability of titania membranes. Coating the titania membrane with manganese oxide followed

  16. Comparison of porosity assessment techniques for low-cost ceramic membranes

    Directory of Open Access Journals (Sweden)

    Maria-Magdalena Lorente-Ayza

    2017-01-01

    Full Text Available Several characterization methods were applied to low cost ceramic membranes developed for wastewater treatment in membrane bioreactors (MBRs and/or tertiary treatments. The membranes were prepared by four different procedures (uniaxial pressing and extrusion, both with and without starch addition to generate pores. The pore size of these symmetric ceramic membranes was measured by two different methods: bubble point and intrusion mercury porosimetry. A good agreement between both methods was achieved, confirming the validity of the bubble point method for the measurement of the mean pore size of membranes. Air and water permeations of these ceramic membranes were also studied. The relationship between the permeation of both fluids is consistent with the ratio of viscosities, according to the Hagen–Poiseuille equation.

  17. Comparison of porosity assessment techniques for low-cost ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Ayza, M.M.; Perez-Fernandez, O.; Alcala, R.; Sanchez, A.; Mestre, S.; Coronas, J.; Menendez, M.

    2017-07-01

    Several characterization methods were applied to low cost ceramic membranes developed for wastewater treatment in membrane bioreactors (MBRs) and/or tertiary treatments. The membranes were prepared by four different procedures (uniaxial pressing and extrusion, both with and without starch addition to generate pores). The pore size of these symmetric ceramic membranes was measured by two different methods: bubble point and intrusion mercury porosimetry. A good agreement between both methods was achieved, confirming the validity of the bubble point method for the measurement of the mean pore size of membranes. Air and water permeations of these ceramic membranes were also studied. The relationship between the permeation of both fluids is consistent with the ratio of viscosities, according to the Hagen–Poiseuille equation. (Author)

  18. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  19. High-Temperature, Self-Lubricating Ceramic/Metal Composites

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Bogdanski, Michael S.; Edwards, Philip

    1994-01-01

    Four documents provide detailed information on ceramic/metal composite materials that are self-lubricating at temperatures as high as 900 degrees C. Materials used in bearings and seals for turbomachines, new energy-efficient automotive engines, power generators, pumps, and furnaces.

  20. Fabrication of ceramic membrane tubes for direct conversion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Morissette, S.L.; Picciolo, J.J.; Dusek, J.T.; Poeppel, R.B. [Argonne National Lab., IL (United States); Pei, S.; Kleefisch, M.S.; Mieville, R.L.; Kobylinski, T.P.; Udovich, C.A. [Amoco Research Center, Naperville, IL (United States)

    1992-05-01

    Several perovskite-type oxides that contain transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed conducting oxides are promising materials for oxygen permeating membranes that can operate without the need of electrodes or external electrical circuitry. SrCo{sub 0.8}Fe{sub 0.2}O{sub x} perovskite is known to exhibit very high oxygen permeabilities and one could use this material for producing value added products by direct conversion of methane, the most abundant component of natural gas. This paper deals with the processing and fabrication by plastic extrusion of long lengths ({approx}30 cm) of hollow SrCo{sub 0.8}Fe{sub 0.2}O{sub x} ceramic tubes. These tubes are characterized by scanning electron microscopy, X-ray diffraction (XRD) and their thermodynamic stability is evaluated using room temperature XRD on samples equilibrated at high temperatures in different gas environment.

  1. Development of ceramic membranes for conversion of methane into syngas.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Ma, B.

    1999-09-23

    The abundantly available natural gas (mostly methane) discovered in remote areas has stimulated considerable research on upgrading this gas to high-value-added clean-burning fuels such as dimethyl ether and alcohols and to pollution-fighting fuel additives. Of the two routes to convert methane to valuable products, direct and indirect, the indirect route involving partial oxidation of methane to syngas (a mixture of CO and H{sub 2}) is preferred. Syngas is used as feedstock to produce a variety of petrochemicals and transportation fuels. A mixed-conducting dense ceramic membrane was developed from Sr-Fe-Co oxide. Extruded and sintered tubes of SrFeCoO{sub 0.5}O{sub x} have been evaluated in a reactor operating at {approx}850 C for conversion of methane into syngas in the presence of a reforming catalyst. Some of the reactor tubes have been run for more than 1000 h, and methane conversion efficiencies of {approx}98% and CO selectivities of >96% were observed.

  2. A Model of Temperature-Dependent Young's Modulus for Ultrahigh Temperature Ceramics

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2011-01-01

    Full Text Available Based on the different sensitivities of material properties to temperature between ultrahigh temperature ceramics (UHTCs and traditional ceramics, the original empirical formula of temperature-dependent Young's modulus of ceramic materials is unable to describe the temperature dependence of Young's modulus of UHTCs which are used as thermal protection materials. In this paper, a characterization applied to Young's modulus of UHTC materials under high temperature which is revised from the original empirical formula is established. The applicable temperature range of the characterization extends to the higher temperature zone. This study will provide a basis for the characterization for strength and fracture toughness of UHTC materials and provide theoretical bases and technical reserves for the UHTC materials' design and application in the field of spacecraft.

  3. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    Science.gov (United States)

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  4. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  5. Ceramic membrane as a pretreatment for reverse osmosis: Interaction between marine organic matter and metal oxides

    KAUST Repository

    Dramas, Laure

    2013-02-01

    Scaling and (bio)fouling phenomena can severely alter the performance of the reverse osmosis process during desalination of seawater. Pretreatments must be applied to efficiently remove particles, colloids, and also precursors of the organic fouling and biofouling. Ceramic membranes offer a lot of advantages for micro and ultrafiltration pretreatments because their initial properties can be recovered using more severe cleaning procedure. The study focuses on the interaction between metal oxides and marine organic matter. Experiments were performed at laboratory scale. The first series of experiments focus on the filtration of different fractions of natural organic matter and model compounds solutions on flat disk ceramic membranes (47 mm of diameter) characterized with different pore size and composition. Direct filtration experiments were conducted at 0.7 bar or 2 bars and at room temperature (20 ± 0.5 °C). The efficiency of backflush and alkaline cleaning were eval, and titanium oxides. Each metal oxide corresponds to a specific pore size for the disk ceramic membranes: 80, 60, and 30 nm. Different sizes of metal oxide particles are used to measure the impact of the surface area on the adsorption of the organic matter. Seawaters from the Arabian Gulf and from the Red Sea were collected during algal blooms. Cultures of algae were also performed in the laboratory and in cooperation with woods hole oceanographic institute. Solutions of algal exudates were obtained after a couple of weeks of cultivation followed by sonication. Solutions were successively filtered through GFF (0.7 lm) and 0.45 lm membrane filters before use. The dissolved organic carbon (DOC) concentration of final solution was between 1 and 4 mg/L and showed strong hydrophilic character. These various solutions were prepared with the objective to mimic the dissolved organic matter composition of seawater subjected to algal bloom. Characterization of the solutions of filtration experiments (feed

  6. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  7. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  8. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  9. Reliability and life prediction of ceramic composite structures at elevated temperatures

    Science.gov (United States)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1994-01-01

    Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.

  10. High temperature alkali corrosion of ceramics in coal gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  11. Reactive Processing and Co-Extrusion of Ultra-High Temperature Ceramics and Composites

    Science.gov (United States)

    2006-02-28

    Faenza, Italy. Ultra-high temperature ceramics (UHTCs) are a unique class of materials with melting temperatures in excess of 3000’C. The borides ...composites with silicon carbide (SiC) and molybdenum disilicide (MoSi 2) were examined. Two main approaches were pursued: 1) the use of reactive processing...Diboride- Molybdenum Disilicide Ceramics," pp. 299-308 in Advances in Ceramic Matrix Composites IX, Ceramic Transactions, Volume 153, ed. by N.P. Bansal, J.P

  12. High temperature behaviour of a zircon ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Carbonneau, X.; Olagnon, C.; Fantozzi, G. [INSA, Villeurbanne (France). GEMMPM; Hamidouche, M. [Lab. Science des Materiaux, Univ. de Setif (Algeria); Torrecillas, R. [Inst. Nacional del Carbon, Oviedo (Spain)

    1997-12-31

    The high temperature properties of a sintered zircon material has been tested up to 1200 C. A significant creep rate is observed, mainly attributed to the presence of glassy phase. The sub-critical crack growth measured in double torsion showed that above 1000 C, the crack velocity is reduced either by stress relaxation or by crack healing. The thermal shock analysis under a heat exchange coefficient of 600 W/m{sup 2}/K showed a regular decrease rather that a sudden fall off of properties. (orig.) 3 refs.

  13. Ceramic membrane filters for fine particulate removal in coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Makris, P.; Krecker, J.; Jung, G.; Stubblefield, D.J.

    1998-07-01

    Strategies are being developed at Penn Sate to produce ultralow emissions when firing coal-based fuel, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The research is being conducted at the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Specific activities are identifying/developing a low-temperature NO{sub x} reduction catalyst, studying the occurrence of nitrogen in coal and the fundamental mechanisms of NO{sub x} production, characterizing air toxic emissions, investigating the use of BioLime{trademark} for simultaneous SO{sub 2}/NO{sub x} reduction, and evaluating a ceramic filter for fine particulate control. Results from trace element and polynuclear aromatic hydrocarbon emissions testing when firing coal-based fuels are reported elsewhere in these proceedings. This paper discusses the preliminary results obtained using ceramic membrane filters for fine particulate removal when firing micronized coal in a package boiler.

  14. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  15. Research results on productivity stabilization by ultrasonic camera (plant) with membrane ceramic elements during vine processing

    OpenAIRE

    V. T. Antufyev; M.A. Ivanova; A. A. Ponedelchenko

    2016-01-01

    The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing b...

  16. Use of nanofiltration membrane technology for ceramic industry wastewater treatment

    Directory of Open Access Journals (Sweden)

    Moliner-Salvador, R.

    2012-04-01

    Full Text Available A study has been undertaken of an advanced wastewater treatment approach using polymer nanofiltration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD and the most representative ions present in the wastewater, such as Na+, Mg2+, Cl- y SO42-. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nanofiltration process using the NanoFlux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

    Este estudio ha sido emprendido con el fin de acercar la nanofiltración a través de membranas poliméricas al tratamiento de las aguas residuales industriales de la industria cerámica, esperando obtener un agua con la suficiente calidad como para ser reutilizada en el propio proceso productivo o, alternativamente, poder verterla. El estudio se ha centrado en la eliminación de materia orgánica (reducción de D.Q.O y algunos iones presentes en las aguas residuales, tales como Na+, Mg2+, Cl- y SO42-. En primer lugar, se ha realizado una simulación del proceso de nanofiltración usando el software Nano

  17. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  18. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  19. Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents

    Directory of Open Access Journals (Sweden)

    W. Misrar

    2017-06-01

    Full Text Available Cordierite ceramic membranes were manufactured from natural clay, oxides and organic wastes as pore forming agents. Mixtures aforementioned materials with the pore-forming agents (up to 10 wt.% were investigated in the range 1000–1200 °C using thermal analysis, X-ray diffraction, scanning electron microscopy, mercury porosimetry and filtration tests. Physical properties (density, water absorption and bending strength were correlated to the processing factors (pore-forming agent addition, firing temperature and soaking time. The results showed that cordierite together with spinel, diopside and clinoenstatite neoformed. SEM analysis revealed heterogeneous aspects. The results of the response surface methodology showed that the variations of physical properties versus processing parameters were well described by the used polynomial model. The addition of pore forming agent and temperature were the most influential factors. Filtration tests were performed on the best performing sample. The results allowed to testify that these membranes could be used in waste water treatment.

  20. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  1. Tympanic Membrane Temperature and Hemispheric Cognitive Style.

    Science.gov (United States)

    Genovese, Jeremy E C; Sparks, Kenneth E; Little, Kathleen D

    2017-01-01

    The authors tested the hypothesis that there is a correlation between hemispheric cognitive style and ear temperature. A sample of 100 participants completed a measure of hemispheric cognitive style, the Hemispheric Consensus Prediction Profile. Ear temperatures were taken in 2 sessions, 2 times for each ear at each session. Average left ear temperature was subtracted from average right ear temperature as an index of dominant temperature. Only 56 of the participants showed a stable dominant ear temperature. For these 56 participants, there was a statistically significant positive correlation between scores on the Hemispheric Consensus Prediction Profile and tympanic member temperature (Spearman's  ρ =.29, 95% CI [.04,.51]). Individuals with a left hemispheric cognitive style tended to have a warmer left tympanic membrane temperature while those with a right hemispheric cognitive style tended to have a warmer right tympanic membrane temperature. Tympanic membrane temperatures are easily obtained using inexpensive and noninvasive technology. The relationship suggested by these findings may open new opportunities for the study of cerebral asymmetry.

  2. Evaluation of clayey masses compositions starting from the residue incorporation of the red ceramic industry to obtain tubular ceramic membranes; Avaliacao das composicoes de massas argilosas a partir da incorporacao de residuo da industria de ceramica vermelha na obtencao de membranas ceramicas tubulares

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Lima da; Chaves, Alexsandra Cristina; Luna, Carlos Bruno Barreto; Neves, Gelmires de Araujo; Lira, Helio de Lucena, E-mail: adrianolimadasilva@hotmail.com, E-mail: alexsandra.chaves@ifap.edu.br, E-mail: brunobarretodemaufcg@hotmail.com, E-mail: gelmires@ufcg.edu.br, E-mail: helio@ufcg.edu.br [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2017-01-15

    The inappropriate residue disposal of red ceramic industry is very high. Nowadays, one of the major challenges is the investigation of processes to obtain alternative materials, enabling the use of these residues to manufacture new materials. This work's objective is to study clayey masses' compositions starting from the residue incorporation of the red ceramic industry to be used in tubular ceramic membranes. Two compositions of ceramic masses were established, composition A (50% of residue) and composition B (70% of residue). Granulometric analysis of the ceramic masses presented an average size of particles, what indicates membranes in the microfiltration scale. Another observed factor is related to the increase of residue amount, what favored a decrease in the ceramic mass' plasticity. A rise in the apparent porosity was also observed, probably because of a possible growing in the bigger pores numbers, due to the sintering high temperature and the elevation of residue quantity itself. (author)

  3. High-temperature-pressure polymerized resin-infiltrated ceramic networks.

    Science.gov (United States)

    Nguyen, J F; Ruse, D; Phan, A C; Sadoun, M J

    2014-01-01

    The aim of this study was to produce composite blocks (CB) for CAD/CAM applications by high-temperature-pressure (HT/HP) polymerization of resin-infiltrated glass-ceramic networks. The effect of network sintering and the absence/presence of initiator was investigated. Mechanical properties were determined and compared with those of Paradigm MZ100 (3M ESPE) blocks and HT/HP polymerized experimental "classic" CB, in which the filler had been incorporated by conventional mixing. The networks were made from glass-ceramic powder (VITA Zahnfabrik) formed by slip casting and were either sintered or not. They were silanized, infiltrated by urethane dimethacrylate, with or without initiator, and polymerized under HT/HP (300 MPa, 180°C) to obtain resin-infiltrated glass-ceramic network (RIGCN) CB. HT/HP polymerized CB were also made from an experimental "classic" composite. Flexural strength (σf), fracture toughness (KIC), and Vickers hardness were determined and analyzed by one- or two-way analysis of variance (ANOVA), Scheffé multiple-means comparisons (α = 0.05), and Weibull statistics (for σf). Fractured surfaces were characterized with scanning electron microscopy. The mechanical properties of RIGCN CB were significantly higher. Sintering induced significant increases in σf and hardness, while the initiator significantly decreased hardness. The results suggested that RIGCN and HT/HP polymerization could be used to obtain CB with superior mechanical properties, suitable for CAD/CAM applications.

  4. Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Kwok, Kawai

    2016-01-01

    The possibility of joining dense ceramic BCSF tubular membranes to metal alloys using a silver braze was investigated. Four different alloys (Crofer 22 APU (R), Kanthal APM (R), Haynes 214 (R) and EN 1.4841) were considered and the influence of their oxide scale stability/reactivity and their the...

  5. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  6. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2012-03-30

    An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Cake layers and long filtration times protect ceramic micro-filtration membranes for fouling

    NARCIS (Netherlands)

    Lu, J.

    2013-01-01

    The objective of this research was to decrease membrane fouling of a ceramic microfiltration system and at the same time increase the recovery. A conventional operation in micro- and ultrafiltration is an in-line coagulation and a frequent hydraulic backwash. The idea about these frequent backwashes

  8. Fabrication of silica ceramic membrane via sol-gel dip-coating method at different nitric acid amount

    Science.gov (United States)

    Kahlib, N. A. Z.; Daud, F. D. M.; Mel, M.; Hairin, A. L. N.; Azhar, A. Z. A.; Hassan, N. A.

    2018-01-01

    Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

  9. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  10. Characterization of Carbon Molecular Sieve Membranes Supported on Ceramic Tubes

    OpenAIRE

    Briceño, Kelly; Silvestre Albero, Joaquín; Silvestre Albero, Ana; Calvo Díaz, José Ignacio; Montané, Daniel; Garcia-Valls, Ricard; Hernández Giménez, Antonio; Rodríguez Reinoso, Francisco

    2013-01-01

    Carbon molecular sieve membranes have been analyzed in supported and unsupported configurations in this experimental study. The membranes were used to adsorb CO2, N2 and CH4, and their adsorption data were analyzed to establish differences in rate and capacity of adsorption between the two types of samples (supported and unsupported). Experimental results show an important effect of the support, which can be considered as an additional parameter to tailor pore size on these carbon membranes. ...

  11. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC) Technology

    OpenAIRE

    Chen Li; Qiulin Tan; Wendong Zhang; Chenyang Xue; Yunzhi Li; Jijun Xiong

    2014-01-01

    In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC) technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the se...

  12. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  13. Viscoelastic properties, gelation behavior and percolation theory model for the temperature induced forming (TIF) ceramic slurries

    Science.gov (United States)

    Yang, Yunpeng

    Controlled ceramic processing is required to produce ceramic parts with few strength-limiting defects and the economic forming of near net shape components. Temperature induced forming (TIF) is a novel ceramic forming process that uses colloidal processing to form ceramic green bodies by physical gelation. The dissertation research shows that TIF alumina suspensions (>40vol%) can be successfully fabricated by using 0.4wt% of ammonium citrate powder and ceramic parts have been successfully fabricated by direct casting using the TIF alumina suspensions, which has a relative density of ˜65%. The sintered sample at 1550°C for 2h is translucent and has a uniform grain size.

  14. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR).

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-01-01

    In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.

  16. Comprehensive Study on Ceramic Membranes for Low‐Cost Microbial Fuel Cells

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John

    2016-01-01

    Abstract Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low‐cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m−3, respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m−3, respectively. The results indicate the dependence of bio‐film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X‐ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m−2, respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries. PMID:26692569

  17. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis

    2016-01-08

    Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m(-3), respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m(-3), respectively. The results indicate the dependence of bio-film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X-ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m(-2), respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma

    2013-05-30

    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  19. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  20. Ultra high temperature ceramics for hypersonic vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

    2006-01-01

    HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

  1. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  2. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nonaqueous slip casting of high temperature ceramic superconductors using an investment casting technique

    Science.gov (United States)

    Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)

    1993-01-01

    A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.

  4. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.

    Science.gov (United States)

    Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul

    2015-03-01

    The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.

  5. Hot gas cleanup using ceramic cross flow membrane filters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ciliberti, D.F.; Smeltzer, E.E.; Alvin, M.A.; Keairns, D.L.; Bachovchin, D.M.

    1983-12-01

    The single unresolved technical issue in the commercialization of pressurized fluid-bed combustion (PPBC) for electric power production is the hot gas cleaning problem. In this technology, high-temperature and -pressure (HTHP), dust-laden flue gases from the combustor must be cleaned enough to reduce expansion turbine blade erosion to an economically acceptable level. Additionally, the level of particulate emission must be compatible with the New Source Performance Standards (NSPS) for environmental acceptability. The Department of Energy (DOE) has sponsored a wide range of research and development programs directed at the solution of this problem. These programs were divided into two classifications, one dealing with more advanced concepts where testing was to be done at relatively large scale and a second group of less advanced, novel concepts where the testing was to be carried out at a bench scale. The cross-flow ceramic membrane filter program described in this report is a member of the small-scale, novel concept group.

  6. Membranes ceramic by PDMS/SLC containing groups phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.O.; Guimaraes, D.H.; Santa Rosa, L.O.; Silva da, L.T.F.; Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This study investigated the use of a hybrid material developed for proton exchange membrane fuel cell (PEMFC) applications. The materials were comprised of polydimethylsiloxane reticulated with tetrathylorthosilicate and reinforced with silicon carbide (SiC) and phosphotungstic acid. PDMS and TEOS were reacted in a 70-30 mass proportion. Al203 and PWA were then incorporated in mass proportions of 5, 10, 15, 20, and 25 per cent. The membranes were then analyzed using X-ray diffraction (XRD), thermogravimetric (TG), direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) techniques. The study showed that the addition of SiC and PWA altered both the organization of the material as well as its crystallinity. Load incorporation increased the thermal stability of the material in relation to the pure matrix. The membranes did not exhibit any phase separation. It was concluded that the materials are suitable for PEMFC applications.

  7. Development of mixed-conducting ceramic membranes for converting methane to syngas

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Maiya, P.S.; Ma, B.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1997-04-01

    The abundantly available natural gas (mostly methane) discovered in remote areas has stimulated considerable research on upgrading this gas to high-value-added clean-burning fuels such as dimethyl ether and alcohols and to pollution-fighting additives. Of the two routes to convert methane to valuable products direct and indirect, the direct route involving partial oxidation of methane to syngas (CO + H{sub 2}) by air is preferred. Syngas is the key intermediate product used to form a variety of petrochemicals and transportation fuels. This paper is concerned with the selective transport of oxygen from air for converting methane to syngas by means of a mixed-conducting ceramic oxide membrane prepared from Sr-Fe-Co-O oxide. While both perovskite and nonperovskite type Sr-Fe-Co-O oxides permeate large amounts of oxygen when the membrane tube is subjected to oxygen pressure gradients, the work shows that the nonperovskite SrFeCo{sub 0.5}O{sub x} exhibits remarkable stability during oxygen permeation. More particularly, extruded and sintered tubes from SrFeCo{sub 0.5}O{sub x} have been evaluated in a reactor operating at {approx} 850 C for conversion of methane into syngas in the presence of a reforming catalyst. Methane conversion efficiencies of {approx} 99% were observed. In addition, oxygen permeability of SrFeCo{sub 0.5}O{sub x} was measured as a function of oxygen partial pressure gradient and temperature in a gas-tight electrochemical cell. Oxygen permeability has also been calculated from conductivity data and the results are compared and discussed.

  8. CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2005-07-15

    A high temperature membrane reactor (MR) has been developed to enhance the water-gas-shift (WGS) reaction efficiency with concomitant CO{sub 2} removal for sequestration. This improved WGS-MR with CO{sub 2} recovery capability is ideally suitable for integration into the Integrated Gasification Combined-Cycle (IGCC) power generation system. Two different CO{sub 2}-affinity materials were selected in this study. The Mg-Al-CO{sub 3}-layered double hydroxide (LDH) was investigated as an adsorbent or a membrane for CO{sub 2} separation. The adsorption isotherm and intraparticle diffusivity for the LDH-based adsorbent were experimentally determined, and suitable for low temperature shift (LTS) of WGS. The LDH-based membranes were synthesized using our commercial ceramic membranes as substrate. These experimental membranes were characterized comprehensively in terms of their morphology, and CO{sub 2} permeance and selectivity to demonstrate the technical feasibility. In parallel, an alternative material-base membrane, carbonaceous membrane developed by us, was characterized, which also demonstrated enhanced CO{sub 2} selectivity at the LTS-WGS condition. With optimization on membrane defect reduction, these two types of membrane could be used commercially as CO{sub 2}-affinity membranes for the proposed application. Based upon the unique CO{sub 2} affinity of the LDHs at the LTS/WGS environment, we developed an innovative membrane reactor, Hybrid Adsorption and Membrane Reactor (HAMR), to achieve {approx}100% CO conversion, produce a high purity hydrogen product and deliver a concentrated CO{sub 2} stream for disposal. A mathematical model was developed to simulate this unique one -step process. Finally a benchtop reactor was employed to generate experimental data, which were consistent with the prediction from the HAMR mathematical model. In summary, the project objective, enhancing WGS efficiency for hydrogen production with concomitant CO{sub 2} removal for

  9. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC Technology

    Directory of Open Access Journals (Sweden)

    Chen Li

    2014-06-01

    Full Text Available In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the sensitivity membrane is smaller. The proposed sensor also demonstrates a greater responsivity, which reaches as high as 13 kHz/kPa in range of 0–100 kPa. During experiments, the newly fabricated sensor, which is only about 6.5 cm2, demonstrated very good performance: the repeatability error, hysteresis error, and nonlinearity of the sensor are about 4.25%, 2.13%, and 1.77%, respectively.

  10. CO2 sorption of a ceramic separation membrane

    NARCIS (Netherlands)

    Wormeester, Herbert; Benes, Nieck Edwin; Spijksma, G.I.; Verweij, H.; Poelsema, Bene

    2004-01-01

    The ellipsometric characterization of the CO2 sorption of a silica membrane provides a fast and accurate technique for the characterization of maximum sorption and the heat of adsorption. Both parameters are evaluated for the 73 nm thick silica layer as well as the 1650 nm thick supporting γ-layer.

  11. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  12. Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes

    NARCIS (Netherlands)

    He, Wei; Huang, Hua; Gao, Jianfeng; Winnubst, Aloysius J.A.; Chen, Chusheng

    2014-01-01

    A variant of tape casting, involving phase inversion, was explored for the preparation of supported ceramic oxygen separation membranes in one step. A slurry of Zr0.84Y0.16O1.92 (YSZ) andLa0.8Sr0.2MnO3 δ (LSM) powders in a N-methyl-2-pyrrolidone solution of polyethersulfone was tape cast, and

  13. Dense ceramic membranes: A review of the state of the art

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V.

    1999-02-01

    Full Text Available During the past several years the concepts of oxygen permeation through mixed valency ceramic membranes possess special interest. In this context, a classification and brief review of the major membrane ceramic materials will be presented. The focus will be on dense ceramic membranes as elements for advanced application. A discussion will be proposed for mixed conductor ceramics as perovskite ABO3 compounds. Dense membranes on perovskite base are the object of the present review and some details about processing and characterization of double (A- and B-site substituted La1-x Sr(BaxCo0.8Fe0.2O3-d perovskites will be presented.

    El concepto de permeación de oxígeno a través de membranas cerámicas de valencia mixta, ha venido adquiriendo especial relevancia a lo largo de los últimos años. En este contexto se hace se efectúa una clasificación y breve revisión de los materiales cerámicos más relevantes utilizados como membranas. En particular se orienta la descripción hacia las membranas cerámicas densas para aplicaciones avanzadas. Se propone un análisis de los conductores cerámicos mixtos, como los compuestos de tipo perovskita ABO3. Se realiza una revisión de los materiales de este tipo existentes, así como se describen algunos aspectos sobre el procesamiento y caracterización de las perovskitas tipo La1-x Sr(BaxCo0.8Fe0.2O3-d doblemente sustituidas (lugares A- y B-.

  14. Treatment of wastewater containing phenol using a tubular ceramic membrane bioreactor.

    Science.gov (United States)

    Ersu, C B; Ong, S K

    2008-02-01

    The performance of a membrane bioreactor (MBR) with a tubular ceramic membrane for phenol removal was evaluated under varying hydraulic retention times (HRT) and a fixed sludge residence time (SRT) of 30 days. The tubular ceramic membrane was operated with a mode of 15 minutes of filtration followed by 15 seconds of permeate backwashing at a flux of 250 l m(-2)hr(-1) along with an extended backwashing of 30 seconds every 3 hours of operation, which maintained the transmembrane pressure (TMP) below 100 kPa. Using a simulated municipal wastewater with varying phenol concentrations, the chemical oxygen demand (COD) and phenol removals observed were greater than 88% with excellent suspended solids (SS) removal of 100% at low phenol concentrations (approx. 100 mg l(-1) of phenol). Step increases in phenol concentration showed that inhibition was observed between 600 to 800 mg l(-1) of phenol with decreased sludge production rate, mixed liquor suspended solids (MLSS) concentration, and removal performance. The sludge volume index (SVI) of the biomass increased to about 450 ml g(-1) for a phenol input concentration of 800 mg l(-1). When the phenol concentration was decreased to 100 mg l(-1), the ceramic tubular MBR was found to recover rapidly indicating that the MBR is a robust system retaining most of the biomass. Experimental runs using wastewater containing phenol indicated that the MBR can be operated safely without upsets for concentrations up to 600 mg l(-1) of phenol at 2-4 hours HRT and 30 days SRT.

  15. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  16. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  17. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  18. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    Science.gov (United States)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  19. Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-02-15

    We prepared a novel adsorptive membrane by implanting carbon nanotubes (CNTs) in pore channels of ceramic (α-alumina) support via chemical vapor deposition (CVD) method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. Optimization of CNTs growth conditions resulted in uniform distribution of the CNTs in the pore channels of the support. The optimized CNTs-ceramic membrane was oxidized with concentrated nitric acid, and chitosan was employed for filling intertube-CNT gaps. The modified CNTs-ceramic membrane was used for copper ion removal from water, and the effects of the modification steps (oxidation and filling intertube-CNT gaps with chitosan) and pH on permeation flux and rejection of the prepared adsorptive membrane were investigated. Moreover, static adsorption was also investigated and Langmuir and Freundlich isotherms and two kinetics models were used to describe adsorption behavior of copper ions by the prepared adsorptive membrane.

  20. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    OpenAIRE

    Oligny, Laurent; B?rub?, Pierre R.; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the...

  1. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    -TiO2 and ALD-SnO2 modified membranes were tested for alginate fouling inhibition performance in a dead-end constant-pressure filtration system. This is the first report on the application of SnO2-modified ceramic membrane for testing its alginate fouling potential; which was determined to be nearly-same for both modified membranes with a negligible amount of difference. This revealed SnO2 as a potential future anti-foulant to be tested for membrane modification/fabrication for application in water/wastewater treatment systems.

  2. High temperature, low expansion, corrosion resistant ceramic and gas turbine

    Science.gov (United States)

    Rauch, Sr., Harry W.

    1981-01-01

    The present invention relates to ZrO.sub.2 -MgO-Al.sub.2 O.sub.3 -SiO.sub.2 ceramic materials having improved thermal stability and corrosion resistant properties. The utilization of these ceramic materials as heat exchangers for gas turbine engines is also disclosed.

  3. Fracture Toughness of Ceramics Fired at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Peter SIN

    2012-03-01

    Full Text Available The fracture toughness test was performed at room temperature on sets of 5 ceramic samples made from material for high voltage insulators (kaolin 36 wt. %, Al2O3 30 wt. %, clay 12 wt. % and feldspar 22 wt. % fired at temperatures 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500 °C at heating and cooling rate of 5 °C/min. The precrack was made to each sample by indentation under the loads 10 N – 200 N, the dwell time was 45 s and the loading rate was 10 N/s. Results of the fracture toughness tests were in accordance with changes of structure of the samples after the partial firings. Fracture toughness from 20 °C to 500 °C is almost constant and it varies between 0.1 MPa·m0.5and 0.2 MPa·m0.5. Dehydroxylation (420 °C – 600 °C does not influence the value of fracture toughness. At temperature interval where we assume sintering (700 °C – 1250 °C we observe exponential dependence of fracture toughness up to 1.5 MPa·m0.5. From comparison of the fracture toughness, Young’s modulus and flexural strength follows a correlation and proporcionality of these mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1349

  4. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  5. Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.

  6. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    OpenAIRE

    Kanchapogu Suresh; Pugazhenthi, G.

    2017-01-01

    The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived fro...

  7. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    Science.gov (United States)

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-09-01

    An aluminum dioxide (Al2O3) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m(2)h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m(3), which is only about 17% of the electrical energy that could be generated with the methane produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    Science.gov (United States)

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  9. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    Science.gov (United States)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  10. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  11. High-Temperature Proton-Conducting Ceramics Developed

    Science.gov (United States)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  12. EFFICIENCY OF ULTRAFILTRATION CERAMIC MEMBRANES FOR TOXIC ELEMENTS REMOVAL FROM WASTEWATERS

    Directory of Open Access Journals (Sweden)

    S. Alami Younssi

    2010-07-01

    Full Text Available The preparation and characterization of porous ceramics multilayer ultrafiltration membrane is described. The first step consisted to prepare high-quality macroporous support in Moroccan clay. The choice of this material is based on its natural abundance and thermal stability.The microporous interlayer was then prepared by slip casting from zirconia commercial powders and finally the active UF toplayers was obtained by sol-gel route using ZnAl2O4 and TiO2 mixed sols. The performance of ultrafiltration membrane (TiO2 (50�20– ZnAl2O4 (50� was evaluated by pores diameter, water flux, thickness and molecular weight cut off (MWCO. The water permeability measured for this composite membrane is 9.42 L/(m2•h•bar, the thickness is less than 700 nm, the pore diameter is centered near 5 nm and the MWCO was about 4500 Da.

  13. Solid/liquid lubrication of ceramics at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Erck, R.A.; Fenske, G.R. [Argonne National Lab., IL (United States); Hong, H. [Lubrizol Corp., Wickliffe, OH (United States)

    1996-04-01

    This study investigates the effect of solid and liquid lubrication on friction and wear performance of silicon nitride (Si{sub 3}N{sub 4}) and cast iron. The solid lubricant was a thin silver film ({approx}2 {mu}m thick) produced on Si{sub 3}N{sub 4} by ion-beam-assisted deposition. A high-temperature polyol-ester-base synthetic oil served as the liquid lubricant. Friction and wear tests were performed with pin-on-disk and oscillating-slider wear test machines at temperatures up to 300{degrees}C. Without the silver films, the friction coefficients of Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4} test pairs were 0.05 to 0.14, and the average wear rates of Si{sub 3}N{sub 4} pins were {approx}5 x 10{sup -8} mm{sup 3} N{sup -1}. The friction coefficients of Si{sub 3}N{sub 4}/cast iron test pairs ranged from 0.08 to 0.11, depending on test temperature. The average specific wear rates of cast iron pins were {approx}3 x 10{sup -7} mm{sup 3} N{sup -1} m{sup -1}. However, simultaneous use of the solid-lubricant silver and synthetic oil on the sliding surfaces reduced friction coefficients to 0.02 to 0.08. Moreover, the wear of Si{sub 3}N{sub 4} pins and silver-coated Si{sub 3}N{sub 4} disks was so low that it was difficult to assess by a surface profilometer. The wear rates of cast iron pins were {approx}7 x 10{sup -9} mm{sup 3} N{sup -1} m{sup -1} up to 250{degrees}C, but showed a tendency to increase slightly at much higher temperatures. In general, the test results demonstrated that the solid/liquid lubrication of ceramic and/or metallic components is both feasible and effective in controlling friction and wear.

  14. Research results on productivity stabilization by ultrasonic camera (plant with membrane ceramic elements during vine processing

    Directory of Open Access Journals (Sweden)

    V. T. Antufyev

    2016-01-01

    Full Text Available The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing by the proposed method it was made an experimental installation on the basis of pilot machine MRp-1/2 for bottling of quiet liquids and an ultrasonic device "Volna– M" UZTA-1/22-OM with a firmly, waveguide which transmits sound, fixed filter frame on the ultrasound emitter. To stabilize the performance of ultrasonic units with ceramic membrane elements without quality deterioration of wines it was empirically determined rational parameters of power of ultrasound input and pressure in the system. The given derived dependencies and graphs allow to define the time of relatively stable operating filter regime. It was revealed a significant cost reduction on filtration, as it allows escape from the contamination of the product by various preservatives, and increasing of storage duration in a sealed container during aseptic filling without a thermal sterilization. Ultrasonic emitter contact by superposition wave vibrations on the ceramic filter increases not only the efficiency of gas removal, but also improves the organoleptic characteristics, stabilizes the filters, improves their productivity. Gas removal creates unfavorable conditions for development of the yeast, which in turn increases the shelf life of semisweet wine.

  15. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    Science.gov (United States)

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  17. High-temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  18. Fabrication and characterization of iron oxide ceramic membranes for arsenic removal.

    Science.gov (United States)

    Sabbatini, P; Yrazu, F; Rossi, F; Thern, G; Marajofsky, A; Fidalgo de Cortalezzi, M M

    2010-11-01

    Nanoscale iron oxide particles were synthesized and deposited on porous alumina tubes to develop tubular ceramic adsorbers for the removal of arsenic, which is an extremely toxic contaminant even in very low concentrations. Its natural presence affects rural and low-income populations in developing countries in Latin America and around the world, which makes it essential to develop a user-friendly, low energy demanding and low cost treatment technology. The fabricated ceramic membranes can be operated with minimal trans-membrane pressure difference and do not require pumping. The support tubes and final membrane have been characterized by surface area and porosity measurements, permeability tests and scanning electron microscopy (SEM) imaging. Arsenic concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Due to its low cost and simple operation, the system can be applied as a point of use device for the treatment of arsenic contaminated groundwaters in developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Priscilla dos Santos Gaschi

    2014-04-01

    Full Text Available In the present study, the sugar cane juice from COCAFE Mill, was clarified using tubular ceramic membranes (α-Al2O3/TiO2 with pore size of 0.1 and 0.3 µm, and membrane area of 0.005 m2. Experiments were performed in batch with sugar cane juice, in a pilot unit of micro and ultrafiltration using the principle of tangential filtration. The sugar cane juice was settled for one hour and the supernatant was treated by microfiltration. After that, the MF permeate was ultrafiltered. The experiments of micro and ultrafiltration were carried out at 65ºC and 1 bar. The ceramic membranes were able to remove the colloidal particles, producing a limpid permeated juice with color reduction. The clarification process with micro- followed by ultrafiltration produced a good result with an average purity rise of 2.74 units, 99.4% lower turbidity and 44.8% lighter color in the permeate.

  20. High Temperature Membrane with Humidification-Independent Cluster Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-07-10

    The objective of this project was to develop high temperature membranes to facilitate the wide-spread deployment of hydrogen fuel cells. High temperature membranes offer significant advantages in PEM system operation, overall capital and operating costs. State-of-the-art Nafion-based membranes are inadequate for the high temperature operation. These conventional membranes become unstable at higher temperatures (90-120°C) and lose their conductivity, particularly at low relative humidity. In this program, alternate materials were developed to enable fabrication of novel high performance composite membranes. FCE’s concept for the multi-component composite membrane, named mC2, has been used in the design of more conductive membranes.

  1. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane

    Directory of Open Access Journals (Sweden)

    Kanchapogu Suresh

    2017-09-01

    Full Text Available The main objective of this work is to study the effect of cross flow filtration conditions on the separation of oily wastewater using ceramic support and TiO2 membrane. Firstly, the low cost clay based ceramic membrane support was prepared by uniaxial compaction method using combination of pyrophyllite, quartz, feldspar, kaolin, ball clay and calcium carbonate along with PVA as a binder. Subsequently, TiO2 composite membrane was fabricated via hydrothermal route employing TiO2 sol derived from TiCl4 and NH4OH solution. Cross flow microfiltration investigations were carried out by utilizing oil-water emulsion concentration of 200 mg/L at three distinct applied pressures (69–207 kPa and three cross flow velocities (0.0885, 0.1327, and 0.1769 m/s. Compared to ceramic support, TiO2 composite membrane demonstrates better performance in terms of flux and removal efficiency of oil and also the rate of flux decline during filtration operation is lower due to highly hydrophilic surface of the TiO2 membrane. TiO2 membrane displays the oil removal efficiency of 99% in the entire range of applied pressures investigation, while ceramic support shows 93–96% of oil removal.

  2. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.

    Science.gov (United States)

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-09-08

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  3. Process for making ceramic hot gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  4. Fundamental studies of ceramic/metal interfacial reactions at elevated temperatures.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-12-14

    This work characterizes the interfaces resulting from exposing oxide and non-oxide ceramic substrates to zirconium metal and stainless steel-zirconium containing alloys. The ceramic/metal systems together were preheated at about 600 C and then the temperatures were increased to the test maximum temperature, which exceeded 1800 C, in an atmosphere of high purity argon. Metal samples were placed onto ceramic substrates, and the system was heated to elevated temperatures past the melting point of the metallic specimen. After a short stay at the peak temperature, the system was cooled to room temperature and examined. The chemical changes across the interface and other microstructural developments were analyzed with energy dispersive spectroscopy (EDS). This paper reports on the condition of the interfaces in the different systems studied and describes possible mechanisms influencing the microstructure.

  5. Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX) for metal recovery.

    Science.gov (United States)

    Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming

    2010-01-01

    In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.

  6. Respiratory hazard from removal of ceramic fiber insulation from high temperature industrial furnaces.

    Science.gov (United States)

    Gantner, B A

    1986-09-01

    Ceramic fiber insulation is being used increasingly as a refractory lining for heat treating and preheating furnaces in the iron and steel industry. This is largely due to its superior thermal resistance per unit thickness when compared to insulating fire brick, which was the previous mainstay of refractory linings. Although toxicity data to date have found these ceramic fibers to be innocuous, recent studies have shown the fibers to devitrify and undergo partial conversion to cristobalite when exposed to elevated temperatures. This paper presents the exposure hazards to cristobalite found during the removal of various brands of ceramic fiber insulation from heat treat furnaces and the extent of fiber transformation to cristobalite.

  7. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    Science.gov (United States)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  8. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  9. Characterization of Low Firing Temperature Ceramic Glaze Using Phuket MSW and Soda Lime Cullet

    Energy Technology Data Exchange (ETDEWEB)

    Ketboonruang, P; Jinawat, S; Kashima, D P; Wasanapiarnpong, T; Sujaridworakun, P; Traipol, N; Jiemsirilers, S [Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Buggakuptav, W, E-mail: sirithan.j@chula.ac.t

    2011-10-29

    The normal firing temperature of ceramic products is around 1200 deg. C. In order to reduce firing temperature, industrial wastes were utilized in ceramic glaze. Phuket municipal solid waste (MSW), soda lime cullet, and borax were used as raw materials for low firing temperature glazes. The glaze compositions were designed using a triaxial diagram. Stoneware ceramic body was glazed then fired at 1000 and 1150 deg. C for 15 minutes. Morphology and phase composition of glazes were analyzed by Scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Thermal expansion compatibility of Stoneware body and glazes were investigated using a dilatometer. Melting behaviour of selected glaze was analyzed by heating stage microscopy. Phuket MSW and Soda lime glass cullet can be used in high percentage as major raw materials for low firing temperature ceramic glaze that show good texture and vitrified at lower firing temperature without using any commercial ceramic frits. The firing temperature can be reduced up to 150 deg. C in this study.

  10. Sol-gel synthesis of carbon based materials reinforced ultra high temperature ceramic composites

    OpenAIRE

    Wang, Xiaojing

    2017-01-01

    This Ph.D. research is based on the development of novel sol-gel techniques for synthesis of nanostructured ultra high temperature ceramics (UHTCs) and subsequent spark plasma sintering (SPS) for densifying the UHTC composites. The liquid nature of the sol-gel process offers advantages such as high purity and ability for mixing and infiltration, and thus it can overcome some shortcomings of the conventional power processing of ceramics. SPS delivers microstructures with good density and fine ...

  11. A High-Performance LC Wireless Passive Pressure Sensor Fabricated Using Low-Temperature Co-Fired Ceramic (LTCC Technology

    Directory of Open Access Journals (Sweden)

    Chen Li

    2014-12-01

    Full Text Available An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized according to small-deflection-plate theory, which allows the sensor to operate in high-pressure environments. The sensor is fabricated using low-temperature co-fired ceramic (LTCC technology, and a fugitive film is used to create a completed sealed embedded cavity without an evacuation channel. The experimental results show that the frequency drift of the sensor versus the temperature is approximately 0.75 kHz/°C, and the responsivity of the sensor can be up to 31 kHz/bar within the pressure range from atmospheric pressure to 60 bar.

  12. Design of Ultra-High Temperature Ceramics for Improved Performance

    Science.gov (United States)

    2009-02-28

    University. China) 16:10 H070 The intluenee of multiple firing on wear behavior of dental veneering ceramic Q.P, (iao {CentralSouth I niversity...Microstructure and mechanical properties of freeze cast alumina/ zirconia layered composites .1 \\1 Lee (Pusan University, Korea) 203] iSHDIHi Research offiN AU

  13. The application of ceramic membranes for treating effluent water from closed-circuit fish farming

    Directory of Open Access Journals (Sweden)

    Bonisławska Małgorzata

    2016-06-01

    Full Text Available The aim of the study was to analyze and assess the possibility of using a two-stage filtration system with ceramic membranes: a 3-tube module with 1.0 kDa cut-off (1st stage and a one-tube module with 0.45 kDa cut-off (2nd stage for treating effluent water from a juvenile African catfish aquaculture. The study revealed that during the 1st filtration stage of the effluent water, the highest degrees of retention were obtained with respect to: suspended solids SS (rejection coefficient RI=100%, turbidity (RI=99.40%, total iron (RI=89.20%, BOD5 (RI=76.0%, nitrite nitrogen (RI=62.30%, and CODCr (RI=41.74%. The 2nd filtration stage resulted in a lower reduction degree of the tested indicators in comparison to the 1st filtration stage. At the 2nd stage, the highest values of the rejection coefficient were noted in for the total iron content (RIV=100%, CODCr (RIV=59.52%; RV=64.28%, RVI=63.49% and turbidity (RIV and RV = 45.0%, RVI=50.0%. The obtained results indicate that ceramic membranes (with 1.0 and 0.45 kDa cut-offs may be used in recirculation aquaculture systems as one of the stages of effluent water treatment.

  14. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  15. Pervaporation study for the dehydration of tetrahydrofuran-water mixtures by polymeric and ceramic membranes.

    Science.gov (United States)

    McGinness, Colleen A; Slater, C Stewart; Savelski, Mariano J

    2008-12-01

    Pervaporation technology can effectively separate a tetrahydrofuran (THF) solvent-water waste stream at an azeotropic concentration. The performance of a Sulzer 2210 polyvinyl alcohol (PVA) membrane and a Pervatech BV silica membrane were studied, as the operating variables feed temperature and permeate pressure, were varied. The silica membrane was found to exhibit a flux of almost double that of the PVA membrane, but both membranes had comparable separation ability in purifying the solvent-water mixture. At benchmark feed conditions of 96 wt% THF and 4 wt% water, 50 degrees C and 10 torr permeate pressure, the silica membrane flux was 0.276 kg/m(2)hr and selectivity was 365. For both membranes, flux was found to increase at an exponential rate as the feed temperature increased from 20 to 60 degrees C. The flux through the silica membrane increases at a 6% faster rate than the PVA membrane. Flux decreased as permeate pressure was increased from 5 to 25 torr for both membranes. The amount of water in the permeate decreased exponentially as the permeate pressure was increased, but increased linearly with increasing temperature. Optimum conditions for flux and selectivity are at low permeate pressure and high feed temperature. When a small amount of salt is added to the feed solution, an increase in flux is observed. Overall models for flux and permeate concentration were created from the experimental data. The models were used to predict scale-up performance in separating an azeotropic feed waste to produce dehydrated THF solvent for reuse and a permeate stream with a dilute THF concentration.

  16. Construction and testing of a system for the electrical characterization of ceramic thermistors at low temperatures

    Directory of Open Access Journals (Sweden)

    F. C. S. Luz

    2014-03-01

    Full Text Available A high-precision and low cost system was built for the electrical characterization of ceramic thermistors at low temperatures, using components readily available in materials research laboratories. The system presented excellent reproducibility in the electrical characterization of NTC ceramic sensors from -75 ºC (195 K to 23 ºC (296 K. The behavior of the NTC sensor was comparable to that of commercial thermistors only below room temperature (α = -3.2%/K, demonstrating the importance of fully characterizing these materials at both low and high temperatures.

  17. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  18. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  19. Desolventizing of Jatropha curcas oil from azeotropes of solvents using ceramic membranes.

    Science.gov (United States)

    Carniel, Naira; Zabot, Giovani L; Paliga, Marshall; Mignoni, Marcelo L; Mazutti, Marcio A; Priamo, Wagner L; Oliveira, J V; Di Luccio, Marco; Tres, Marcus V

    2017-12-01

    The separation of Jatropha curcas oil from azeotropes of ethyl alcohol-n-hexane and isopropyl alcohol-n-hexane using ceramic membranes with different cutoffs (5, 10 and 20 kDa) is presented. The mass ratios of oil:azeotropes (O:S) studied were 1:3 for feeding pressures of 0.1, 0.2 and 0.3 MPa, and 1:1 for the feeding pressure of 0.1 MPa. Isopropyl alcohol was the best solvent for the membranes conditioning to permeate n-hexane (240 kg/m 2  h). In the separation of J. curcas oil and azeotropes of solvents, both membranes showed oil retention and total flux decreases with time. Overall, the lowest decrease in the retentions was reached in the 5 kDa membrane, while the lowest decrease in the total flux was reached in the 20 kDa. In the separation of oil and ethyl alcohol-n-hexane azeotrope, the best retention at 60 min of the process was equal to 17.3 wt% in the 20 kDa membrane at 0.3 MPa and O:S ratio equalled to 1:3. In this condition, the total permeate flux was 17.5 kg/m 2  h. Different retentions and permeabilities are provided when changing the O:S ratio, the feeding pressure and the molecular weight cutoff of membranes.

  20. Effect of Sintering Temperature on the Properties of Fused Silica Ceramics Prepared by Gelcasting

    Science.gov (United States)

    Wan, Wei; Huang, Chun-e.; Yang, Jian; Zeng, Jinzhen; Qiu, Tai

    2014-07-01

    Fused silica ceramics were fabricated by gelcasting, by use of a low-toxicity N' N-dimethylacrylamide gel system, and had excellent properties compared with those obtained by use of the low-toxicity 2-hydroxyethyl methacrylate and toxic acrylamide systems. The effect of sintering temperature on the microstructure, mechanical and dielectric properties, and thermal shock resistance of the fused silica ceramics was investigated. The results showed that sintering temperature has a critical effect. Use of an appropriate sintering temperature will promote densification and improve the strength, thermal shock resistance, and dielectric properties of fused silica ceramics. However, excessively high sintering temperature will greatly facilitate crystallization of amorphous silica and result in more cristobalite in the sample, which will cause deterioration of these properties. Fused silica ceramics sintered at 1275°C have the maximum flexural strength, as high as 81.32 MPa, but, simultaneously, a high coefficient of linear expansion (2.56 × 10-6/K at 800°C) and dramatically reduced residual flexural strength after thermal shock (600°C). Fused silica ceramics sintered at 1250°C have excellent properties, relatively high and similar flexural strength before (67.43 MPa) and after thermal shock (65.45 MPa), a dielectric constant of 3.34, and the lowest dielectric loss of 1.20 × 10-3 (at 1 MHz).

  1. Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Jegatheesan, Veeriah; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-05-01

    The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO 2 /UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO 2 /UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO 2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO 2 /UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.

  2. Field-scale electrolysis/ceramic membrane system for the treatment of sewage from decentralized small communities.

    Science.gov (United States)

    Son, Dong-Jin; Kim, Woo-Yeol; Yun, Chan-Young; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2017-07-05

    The electrolysis process adopting copper electrodes and ceramic membrane with pore sizes of 0.1-0.2 μm were consisted to a system for the treatment of sewage from decentralized small communities. The system was operated under an HRT of 0.1 hour, voltage of 24 V, and TMP of 0.05 MPa. The system showed average removals of organics, nitrogen, phosphorus, and solids of up to 80%, 52%, 92%, and 100%, respectively. Removal of organics and nitrogen dramatically increased in proportion to increment of influent loading. Phosphorus and solids were remarkably eliminated by both electro-coagulation and membrane filtration. The residual particulate constituents could also be removed successfully through membrane process. A system composed of electrolysis process with ceramic membrane would be a compact, reliable, and flexible option for the treatment of sewage from decentralized small communities.

  3. Fracture toughness of advanced ceramics at room temperature

    Science.gov (United States)

    Quinn, George D.; Salem, Jonathan; Bar-On, Isa; Cho, Kyu; Foley, Michael; Fang, HO

    1992-01-01

    Results of round-robin fracture toughness tests on advanced ceramics are reported. A gas-pressure silicon nitride and a zirconia-toughened alumina were tested using three test methods: indentation fracture, indentation strength, and single-edge precracked beam. The latter two methods have produced consistent results. The interpretation of fracture toughness test results for the zirconia alumina composite is shown to be complicated by R-curve and environmentally assisted crack growth phenomena.

  4. In-situ High Temperature Phase Transformations in Ceramics

    Science.gov (United States)

    2009-07-28

    achieved, since the propagating crack needs to do work to overcome the nucleation barrier and cause transformation, and onset of the other synergistic...the thermal expansion tensor components. The direct approach is recommended, however, for reasons of the propagation of errors.97 The experimental...in Enstatite," Annual Conference on Composites, Advanced Ceramics, Materials, and Structures - A, 20th, Cocoa Beach, FL, Proceedings; USA; 7-11 Jan

  5. High Temperature Interactions of Metallic Matrices with Ceramic Reinforcements

    Science.gov (United States)

    1990-12-31

    temperatura range were extensive; various metal silicides, metalIcarbides, ternary metal-slilcon-carbides, and unreacted carbon were formed as layered...Couples 3.2.1 Preparation of SiC Ceramic: The polycrystalline SiC substrates, designated as Hexoloy, were obtained from the Carborundum Corporation ...and was received from Engelhard Corporation . The metal pieces were cut into a similar size to that of the SiC, mechanically ground with #600 SiC papers

  6. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  7. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  8. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k......Da with good solubility in organic solvents. Membranes fabricated from the polymers were systematically characterized in terms of oxidative stability, acid doping and swelling, conductivity, mechanical strength and fuel cell performance and durability. With increased molecular weights the polymer membranes...

  9. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Laurent Oligny

    2016-07-01

    Full Text Available This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP due to the export of powdered activated carbon (PAC fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW, chemically enhanced backwashing (CEB and Clean-in-Place (CIP. The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  10. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment.

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R; Barbeau, Benoit

    2016-07-07

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  11. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance

    NARCIS (Netherlands)

    Zhu, Li; Dong, Yingchao; Hampshire, Stuart; Cerneaux, Sophie; Winnubst, Aloysius J.A.

    2015-01-01

    Different from traditional particle packing structure, a porous structure of ceramic membrane support was fabricated, featuring elongated mullitewhiskers with enhanced porosity, permeance and sufficient mechanical strength. The effect of additives (MoO3and AlF3) and sintering procedureon open

  12. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  13. Use of nano filtration membrane technology for ceramic industry wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moliner-Salvador, R.; Deratani, A.; Palmeri, J.; Sanchez, E.

    2012-07-01

    A study has been undertaken of an advanced wastewater treatment approach using polymer nano filtration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD) and the most representative ions present in the wastewater, such as Na{sup +}, Mg{sup 2}+, Cl{sup -}, and SO{sub 4}{sup 2}. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nano filtration process using the Nano Flux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

  14. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  15. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  16. High-Temperature Ceramic Matrix Composite with High Corrosion Resistance

    Science.gov (United States)

    2010-06-02

    individual zirconium boride and, especially, molybdenum disilicide. STCU PROJECT P286 – FINAL REPORT PAGE 16 02-Jun-10 2...Fragment of XRD pattern for molybdenum silicide. Fig. 2.5. XRD pattern for USS-22+ 2 vol.% TaB2 hot-pressed samples. Fig. 2.6. XRD pattern for USS-22...P286 – FINAL REPORT PAGE 12 02-Jun-10 1. Introduction Ceramic borides , such as hafnium diboride (HfB2) and zirconium diboride (ZrB2

  17. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optimization of the flux values in multichannel ceramic membrane microfiltration of Baker`s yeast suspension

    Directory of Open Access Journals (Sweden)

    Milović Nemanja R.

    2016-01-01

    Full Text Available The objective of this work was to estimate the effects of the operating parameters on the baker's yeast microfiltration through multichannel ceramic membrane. The selected parameters were transmembrane pressure, suspension feed flow, and initial suspension concentration. In order to investigate the influence and interaction effects of these parameters on the microfiltration operation, two responses have been chosen: average permeate flux and flux decline. The Box-Behnken experimental design and response surface methodology was used for result processing and process optimization. According to the obtained results, the most important parameter influencing permeate flux during microfiltration is the initial suspension concentration. The maximum average flux value was achieved at an initial concentration of 0.1 g/L, pressure around 1.25 bars and a flow rate at 16 L/h. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  19. Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering.

    Science.gov (United States)

    Guo, Hanzheng; Guo, Jing; Baker, Amanda; Randall, Clive A

    2016-08-17

    Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures. This method is basically modified from the cold sintering process (CSP) we developed very recently by specifically incorporating the hydrothermal precursor solutions into the particles. BaTiO3 nano polycrystalline ceramics are exemplified for demonstration due to their technological importance and normally high processing temperature under conventional sintering routes. The presented technique could also be extended to a much broader range of material systems than previously demonstrated via a hydrothermal synthesis using water or volatile solutions. Such a methodology is of significant importance, because it provides a chemical roadmap for cost-effective inorganic processing that can enable broad practical applications.

  20. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    OpenAIRE

    Belavic, D.; Hrovat, M.; G. Dolanc; M. Santo Zarnik; Holc, J.; K. Makarovic

    2012-01-01

    The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM) fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s), mixer(s), reformer and combustor. Low-temperature co-fired ceramic (LTCC) technology was used to fabricate the ceramic structures with buried cavities and...

  1. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1...... at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m...

  2. A review of advanced metallic and ceramic materials suitable for high temperature use in space structures

    Science.gov (United States)

    Bashford, David

    Spacecraft, satellites and launch vehicles require efficient, lightweight structural materials. At present, the structural requirements can be largely met by aluminium alloys and polymeric matrix composites based on carbon fibres. However, increasingly there will be a need to specify materials capable of sustaining operational use at temperatures in excess of 250°C and towards 2000°C. Ambitious spaceplane projects such as Hermes, HOTOL, Sanger, HOPE and NASP have highlighted this need. Within the operational temperature band 250°C to 2000°C various metallic and ceramic materials are appropriate for consideration, either in alloy or composite form. This review paper identifies the status of technology on the following: i) Aluminium and titanium alloys and their composites. ii) Superalloys and their composites. iii) Carbon, glass-ceramic and ceramic matrix composites. The development of more weight efficient and thermally stable metallic and ceramic materials has centred on a number of key areas (1). For metallics, improved alloy composition and grain refinement from Rapidly Solidified Powders have given improvements in strength retention at high temperatures (a). The introduction of reinforcements, either particulate, whisker or continuous fibre, have improved the basic alloys by reducing density, increasing stiffness and strength and extending thermal capabilities. Monolithic ceramics possess thermal stability but are inherently brittle and crack sensitive. The addition of ceramic fibres and whiskers has the effect of modifying fracture characteristics by introducing "pseudo-ductility" to raise apparent toughness. In the foreseeable future the emerging high temperature materials will find uses in: Spaceplane substructures and control surfaces; Thermal protection systems and insulation; Propulsion plants and thruster units; Air breathing engines.

  3. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  4. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  5. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.

    Science.gov (United States)

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  6. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  7. High-temperature high-pressure gas cleanup with ceramic bag filters. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    Shackleton, M.; Chang, R.; Sawyer, J.; Kuby, W.; Turner-Tamiyasu, E.

    1982-12-06

    Advanced processes designed for the efficient use of coal in the production of energy will benefit from, or even depend upon, highly efficient, economical, high-temperature removal systems for fine particulates. In the case of pressurized fluidized-bed combustion (PFBC), the hot gas cleanup device must operate at approximately 1600/sup 0/F. Existing commercial filter systems are temperature limited due to the filter material, but ceramic fibers intended for refractory insulation offer the promise of a practical high-temperature filter media if they can be incorporated into a design which combines filter performance with acceptable durability. The current work was initiated to further develop and demonstrate on a larger-scale basis, a ceramic fiber filtration system for application to coal-fired PFBC's. The development effort centered around the need to replace the knit metal wire scrim, used in earlier designs as support for the fine fiber ceramic mat filtration medium, with a corrosion-resistant material. This led to the selection of woven ceramic cloth for support of the mat layer. Because of the substantial difference in strength and other material properties between the metal and ceramic cloth, tests were necessary to optimize the filter; pulse parameters such as pulse duration, pulse pressure, and pulse injection orifice size; woven cloth mesh configuration; the technique for clamping the bag to the support; and similar structural, fluid, and control parameters. The demonstration effort included both tests to prove this concept in a real application and a systems analysis to show commercial feasibility of the ceramic filtration approach for hot gas cleanup in PFBC's. 12 references, 57 figures, 23 tables.

  8. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former ...

  9. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeonghwan [Department of Environmental Engineering, INHA University, Nam-gu, Yonghyun-dong 253, Incheon 402-751 (Korea, Republic of); Van der Bruggen, Bart, E-mail: bart.vanderbruggen@cit.kuleuven.b [K.U. Leuven, Department of Chemical Engineering, Laboratory for Applied Physical Chemistry and Environmental Technology, W. de Croylaan 46, B-3001 Leuven (Belgium)

    2010-07-15

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  10. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2017-11-01

    Full Text Available This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na2SO4 remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.

  11. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf

    2007-01-01

    Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...

  12. Structural changes in high-temperature synthesis of luminescent alumina ceramics

    Science.gov (United States)

    Zvonarev, S. V.; Kortov, V. S.; Ryabinina, M. V.; Kiryakov, A. N.

    2016-08-01

    Scanning electron microscopy was used to study structural changes in luminescent alumina ceramics which was synthesized from nanopowder at high temperatures in reducing environment. An effect of synthesis parameters on size-distribution of grains, their shape and a number of pores in the samples under study was determined. It was found that in a certain temperature range grains are the same ones in the precursor nanopowder, which is associated with the emergence of nanoparticles of lower aluminum oxides.

  13. Oily wastewater treatment by adsorption-membrane filtration hybrid process using powdered activated carbon, natural zeolite powder and low cost ceramic membranes.

    Science.gov (United States)

    Rasouli, Yaser; Abbasi, Mohsen; Hashemifard, Seyed Abdollatif

    2017-08-01

    In this research, four types of low cost and high performance ceramic microfiltration (MF) membranes have been employed in an in-line adsorption-MF process for oily wastewater treatment. Mullite, mullite-alumina, mullite-alumina-zeolite and mullite-zeolite membranes were fabricated as ceramic MF membranes by low cost kaolin clay, natural zeolite and α-alumina powder. Powdered activated carbon (PAC) and natural zeolite powder in concentrations of 100-800 mg L(-1) were used as adsorbent agent in the in-line adsorption-MF process. Performance of the hybrid adsorption-MF process for each concentration of PAC and natural zeolite powder was investigated by comparing quantity of permeation flux (PF) and total organic carbon (TOC) rejection during oily wastewater treatment. Results showed that by application of 400 mg L(-1) PAC in the adsorption-MF process with mullite and mullite-alumina membranes, TOC rejection was enhanced up to 99.5% in comparison to the MF only process. An increasing trend was observed in PF by application of 100-800 mg L(-1) PAC. Also, results demonstrated that the adsorption-MF process with natural zeolite powder has higher performance in comparison to the MF process for all membranes except mullite-alumina membranes in terms of PF. In fact, significant enhancement of PF and TOC rejection up to 99.9% were achieved by employing natural zeolite powder in the in-line adsorption-MF hybrid process.

  14. Acute Associations between Outdoor Temperature and Premature Rupture of Membranes.

    Science.gov (United States)

    Ha, Sandie; Liu, Danping; Zhu, Yeyi; Sherman, Seth; Mendola, Pauline

    2017-10-30

    Extreme ambient temperatures have been linked to preterm birth. Preterm premature rupture of membranes is a common precursor to preterm birth but is rarely studied in relation to temperature. We linked 15 381 singleton pregnancies with premature rupture of membranes from a nationwide US obstetrics cohort (2002-2008) to local temperature. Case-crossover analyses compared daily temperature during the week preceding delivery and the day of delivery to two control periods, before and after the case period. Conditional logistic regression models calculated the odds ratio (OR) and 95% confidence intervals (CI) of preterm and term premature rupture of membranes for a 1˚C increase in temperature during the warm (May-September) and cold (October-April) season separately after adjusting for humidity, barometric pressure, ozone and particulate matter. During the warm season, 1˚C increase during the week before delivery was associated with a 5% (95% CI: 3-6%) increased preterm premature rupture of membranes risk, and a 4% (95% CI: 3-5%) increased term premature rupture of membranes risk. During the cold season, 1˚C increase was associated with a 2% decreased risk for both preterm (95% CI: 1-3%) and term premature rupture of membranes (95% CI: 1-3%). The day-specific associations for the week before delivery were similar, but somewhat stronger for days closer to delivery. Relatively small ambient temperature changes were associated with the risk of both preterm and term premature of membranes. Given the adverse consequences of premature rupture of membranes and concerns over global climate change, these findings merit further investigation.

  15. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  16. New fuel cells system for portable application with low temperature cofired ceramic (LTCC) technology

    Science.gov (United States)

    Gao, Yong

    Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol

  17. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  18. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    Energy Technology Data Exchange (ETDEWEB)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  19. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2013-07-01

    Full Text Available Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS and single gas (He or N2 permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa. The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82% for a NaCl feed solution with a TDS (total dissolved solids of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1 and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection.

  20. Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane

    Science.gov (United States)

    Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel

    2013-01-01

    Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943

  1. Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

    KAUST Repository

    Hamad, Juma Z.

    2013-08-29

    Ceramic membranes (CM) are robust membranes attributed with high production, long life span and stability against critical conditions. While capital costs are high, these are partially offset by lower operation and maintenance costs compared to polymeric membranes. Like any other low-pressure membrane (LPM), CM faces problems of fouling, low removal of organic matter and poor removal of trace organic compounds (TOrCs). Current pretreatment approaches that are mainly based on coagulation and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOrCs to higher level is required. Submicron powdered activated carbon (SPAC), obtained after crushing commercial activated carbon into very fine particle, and novel activated carbon (KCU 6) which is characterized with larger pores and high surface area were employed. A pre-coating approach, which provides intimated contact between PAC and contaminants, was adopted for wastewater and (high DOC) surface water treatment. For seawater, in-line coagulation with iron III chloride was adopted. Both SPAC and KCU 6 showed good removal of biopolymers at a dose of 30 mg/L with > 85 % and 90 %, respectively. A dose of 40 mg/L of SPAC and 30 mg/L KCU 6 pre-coats were successful used in controlling membrane fouling. SPAC is suggested to remove biopolymers by physical means and adsorption while KCU 6 removed biopolymers through adsorption. Both KCU 6 and SPAC attained high removal of TOrCs whereas KCU 6 showed outstanding performance. Out of 29 TOrCs investigated, KCU 6 showed > 87 % TOrCs rejection for 28 compounds. In seawater pretreatment, transparent exopolymer particles (TEP) were found to be an important foulant. TEP promoted both reversible and irreversible fouling. TEP are highly electronegative while alumina CM is positively charged which

  2. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics

    Science.gov (United States)

    Snetkov, I. L.; Palashov, O. V.

    2016-12-01

    The dependence of the Verdet constant on temperature in the (80-300 K) range for a promising magneto-active material terbium sesquioxide Tb2O3 at the wavelengths of 405-1064 nm is considered. For each of the studied wavelengths, the Verdet constant of the material cooled down to the liquid nitrogen temperature increased by more than a factor of 3.2 as compared to the room temperature value. Similarly to the other paramagnetics, the increase follows the law ∼1/T. Approximations for the temperature dependence of the Verdet constant have been obtained and the value of 1/V·(dV/dT) has been estimated. This information is needed to determine the angle of rotation as well as the variation of the extinction ratio of a Faraday isolator with temperature and extremely important at creation a cryogenic Faraday devices.

  3. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  4. The influence of waste chromia-alumina catalyst and burning temperature on physicomechanical properties of ceramics based on fusible clay

    Directory of Open Access Journals (Sweden)

    Khuzin Airat

    2017-01-01

    Full Text Available Effect of waste Cr/Al2O3 catalyst addition to fusible charge and firing temperature on the basic properties of the fired ceramics is studied. The dependence of strength, density and water absorption on firing temperature on 960, 1060 and 1160°C is established. It is proven that increasing firing temperature up to 1160°C provides less leachability of Cr(VI from samples and increased environmental safety of ceramics.

  5. Vacuum membrane distillation by microchip with temperature gradient.

    Science.gov (United States)

    Zhang, Yaopeng; Kato, Shinji; Anazawa, Takanori

    2010-04-07

    A multilayered microchip (25 x 95 mm) used for vacuum distillation is designed, fabricated and tested by rectification of a water-methanol mixture. The polymer chip employs a cooling channel to generate a temperature gradient along a distillation channel below, which is separated into a channel (72 microm deep) for liquid phase and a channel (72 microm deep) for vapor phase by an incorporated microporous poly(tetrafluoroethylene) (PTFE) membrane. The temperature gradient is controlled by adjusting hotplate temperature and flow rate of cooling water to make the temperatures in the stripping section higher than the increasing boiling points of the water-enriched liquids and the temperatures in the rectifying section lower than the decreasing dew points of the methanol-enriched vapors. The effects of temperature gradient, feed composition, feed flow rate and membrane pore size on the micro distillation are also investigated. A theoretical plate number up to 1.8 is achieved at the optimum conditions.

  6. Research on High Temperature Ceramic Insulation for Electrical Conductors

    Science.gov (United States)

    Kreidler, Eric R.; Bhallamudi, Vidya Praveen

    2001-01-01

    Three methods for applying ceramic coatings to wires were examined in depth and a fourth (chemical vapor deposition) was studied briefly. CVD coatings were not reported in the thesis because it was realized early in the study that the deposition rate of the coatings was too slow to be used in a commercial process. Of the methods reported in the thesis, slurry coating was the most promising. This method consists of slowly drawing a platinum wire through a thixotropic slurry of alumina in a vehicle composed of polyvinyl butyral, methyl ethyl ketone, and toluene. The coatings produced by this method were continuous and free of cracks after sintering. The sintered coatings crack when the wire is bent around sharp corners, but most of the coating remains in place and still provides electrical insulation between the wire and any metallic structure to which the wire may be attached. The coating thickness was 0.61 mm (16 micrometers). The electrical resistivity of the intact coating was 340 M-Ohm-cm at 800 C and 23 M-Ohm-cm at 1050 C. Therefore, these coatings more than meet the electrical requirements for use in turbine engines. Although adherence of the coating to the wire was generally excellent, a problem was noted in localized areas where the coating flaked off. Further work will be needed to obtain good coating adherence along the entire length of the wire. The next most promising coatings were made by electrophoretic deposition (EPD) of Al2O3 onto platinum wires, using mixtures of ethanol and acetone as the suspending liquid. These EPD coatings were made only on short lengths of wire because the coating is too fragile to allow spooling of the wire. The worst coatings were those made by electrophoretic deposition from aqueous suspensions. Continuous slurry coating of wire was achieved, but due to lack of suitable equipment, the wire had to be cut into short lengths for sintering.

  7. Development of a mixed-conductive ceramic membrane for syngas production; Developpement d'une membrane ceramique conductrice mixte pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, G

    2005-10-15

    Natural gas conversion into syngas (H{sub 2}+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  8. Fabrication of ceramic membrane tubes for direct conversion of natural gas. [SrCo[sub 0. 8]Fe[sub 0. 2]O[sub x] perosvskite

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Morissette, S.L.; Picciolo, J.J.; Dusek, J.T.; Poeppel, R.B. (Argonne National Lab., IL (United States)); Pei, S.; Kleefisch, M.S.; Mieville, R.L.; Kobylinski, T.P.; Udovich, C.A. (Amoco Research Center, Naperville, IL (United States))

    1992-05-01

    Several perovskite-type oxides that contain transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed conducting oxides are promising materials for oxygen permeating membranes that can operate without the need of electrodes or external electrical circuitry. SrCo[sub 0.8]Fe[sub 0.2]O[sub x] perovskite is known to exhibit very high oxygen permeabilities and one could use this material for producing value added products by direct conversion of methane, the most abundant component of natural gas. This paper deals with the processing and fabrication by plastic extrusion of long lengths ([approx]30 cm) of hollow SrCo[sub 0.8]Fe[sub 0.2]O[sub x] ceramic tubes. These tubes are characterized by scanning electron microscopy, X-ray diffraction (XRD) and their thermodynamic stability is evaluated using room temperature XRD on samples equilibrated at high temperatures in different gas environment.

  9. Test Standard Developed for Determining the Slow Crack Growth of Advanced Ceramics at Ambient Temperature

    Science.gov (United States)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM

  10. Efficiency and temperature dependence of water removal by membrane dryers

    Science.gov (United States)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  11. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis

    2013-11-01

    The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Intrapulpal Temperature Increase During Er:YAG Laser-Aided Debonding of Ceramic Brackets.

    Science.gov (United States)

    Yilanci, Hilal; Yildirim, Zeynep Beyza; Ramoglu, Sabri Ilhan

    2017-04-01

    The purpose of this study was to evaluate the temperature changes in the pulp chamber while using a newly introduced application of Er:YAG laser to debond ceramic brackets in a study model with a pulpal circulation with and without thermocycled samples. An esthetic alternative to stainless steel brackets, ceramic brackets have been proposed. However, because of their low fracture resistance and high bond strengths, ceramic brackets can cause a problem when they are being removed using conventional techniques. Experimental Groups A and B were established for samples with or without thermocycling. The same 20 maxillary central incisor and 20 premolar teeth were used in both groups. Pulpal blood microcirculation was simulated using an apparatus described in a previous study. Monocrystalline brackets were bonded by using Transbond XT. In Group A, brackets were debonded using the Er:YAG laser (600 mJ, 2 Hz, long pulse, and no air or water spray) after being stored in distilled water for 24 h. In Group B, brackets were debonded using the same laser system as that used in Group A after being stored in distilled water for 24 h and then thermocycled for a total of 5000 cycles between 5°C and 55°C. The laser irradiation duration and intrapulpal temperature changes were measured. In Group B, the intrapulpal temperature increase of the central incisors was significantly higher than that of the premolar teeth. In the central incisor and premolar teeth groups, there were no statistically significant difference between Groups A and B (p > 0.05). A positive correlation was found between laser irradiation duration and temperature increase (p laser is an effective method for debonding the monocrystalline ceramic brackets. This method can be used safely under the consideration of intrapulpal temperature changes.

  13. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  14. DC CONDUCTIVITY OF CERAMICS WITH CALCITE WASTE IN THE TEMPERATURE RANGE 20 - 1050C

    Directory of Open Access Journals (Sweden)

    Jan Ondruska

    2015-06-01

    Full Text Available The temperature dependences of the electrical DC conductivity of calcite waste, kaolinite and illite based ceramics were measured in the temperature range of 20 - 1050oC. The ceramic mass that was used was a mixture of 60 wt. % kaolinitic-illitic clay, 20 - 40 wt. % of this clay was fired at 1000oC for 90 min and 0, 10 and 20 wt. % of calcite waste. During heating, several processes take place - the release of the physically bound water, the burning of organic impurities, the dehydroxylation of kaolinite and illite, the decomposition of calcite, and the creation of anorthite and mullite. All of these processes were checked by means of differential thermal analysis (DTA, derivative thermogravimetry (DTG and thermodilatometry (TDA. At low temperatures (20 - 200oC, due to the release and decomposition of physically bound water, H+ and OH- are dominant charge carriers. After completion of release of physically bound water, up to the start of dehydroxylation at the temperature of ~ 450oC, the DC conductivity is dominated by a transport of Na+, K+, and Ca2+ ions. During dehydroxylation, H+ and OH- ions, which are released from kaolinite and illite lattices, contribute to the DC conductivity. Decomposition of calcite runs between ~ 700oC and 900oC. The glassy phase has a dominant influence on the DC conductivity in the fired ceramics. Its high conductivity is determined by the high mobility of Na+, K+, and Ca2+ ions.

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  16. Develpment of Higher Temperature Membrane and Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell Devices

    Energy Technology Data Exchange (ETDEWEB)

    Susan Agro, Anthony DeCarmine, Shari Williams

    2005-12-30

    Our work will fucus on developing higher temperature MEAs based on SPEKK polymer blends. Thse MEAs will be designed to operatre at 120 degrees C Higher temperatures, up to 200 degrees C will also be explored. This project will develop Nafion-free MEAs using only SPEKK blends in both membrane and catalytic layers.

  17. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  18. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  19. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  20. A new high temperature resistant glass–ceramic coating for gas ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A new high temperature and abrasion resistant glass–ceramic coating system (based on MgO–. Al2O3–TiO2 and ZnO–Al2O3–SiO2 based glass systems) for gas turbine engine components has been developed. Thermal shock resistance, adherence at 90°-bend test and static oxidation resistance at the required ...

  1. Simulation of temperature distribution for large sized ceramic substrates in vertical type sintering furnace; Tategata denkiro shosei deno ogata seramikkusu kiban no ondo bunpu shumyureshon

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, M.; Ami, N.; Hirasawa, S. [Hitachi, Ltd., Tokyo (Japan)

    2000-01-01

    The temperature distribution in large sized ceramic substrates at 1600 degree C sintered by vertical type furnace was simulated by using a model of heat conduction and radiation heat transfer. The temperature distribution at the center of each ceramic substrate is larger than that in each ceramic substrate at steady state in the case of 3 substrates were fired. The temperature distribution becomes narrow by using a high thermal conductivity material setter or inserting heat insulating material between the bottom setter and the furnace floor. The temperature distribution in each ceramic substrate is closely related to the distance between the surface of the ceramic substrate and the bottom of the upper setter. (author)

  2. A high temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  3. The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites

    Science.gov (United States)

    Rajesh, S.; Murali, K. P.; Jantunen, H.; Ratheesh, R.

    2011-11-01

    High permittivity and low-loss ceramic fillers have been prepared by means of the solid state ceramic route. Ceramic-filled composites were prepared by the Sigma Mixing, Extrusion, Calendering, which was followed by the Hot pressing (SMECH) process. The microwave dielectric properties of the composites were studied using X-band waveguide cavity perturbation technique. The temperature coefficient of the relative permittivity of the composites was investigated in the 0-100 °C temperature range using a hot and cold chamber coupled with an impedance analyzer. The temperature coefficient of the relative permittivity of the composites showed strong dependence on the temperature coefficient of the relative permittivity of the filler material. In the present study, a high-permittivity polymer/ceramic composite, having τεr ∼63 ppm/K, has been realized. This composite is suitable for outdoor wireless applications.

  4. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation.

    Science.gov (United States)

    Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna

    2017-02-22

    Four main tasks were presented: (i) ceramic membrane functionalization (TiO2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).

  5. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    Science.gov (United States)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  6. Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.

    Science.gov (United States)

    Leal, Mônica Barbosa; Pagnano, Valéria Oliveira; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukey's HSD test (α=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (pcasting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (pcasting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.

  7. High temperature fracture and fatigue of ceramics. Annual technical progress report No. 6, August 15, 1994--August 14, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.

    1996-04-01

    This report covers work done in the first year of our new contract {open_quotes}High Temperature Fracture and Fatigue of Ceramics,{close_quotes} which commenced in August, 1995 as a follow-on from our prior contract {open_quotes}Mechanisms of Mechanical Fatigue in Ceramics.{close_quotes} Our activities have consisted mainly of studies of the failure of fibrous ceramic matrix composites (CMCs) at high temperature; with a little fundamental work on the role of stress redistribution in the statistics of fracture and cracking in the presence of viscous fluids.

  8. Development of 2.7-μm Er:Y2O3 ceramic laser operated at room temperature

    Science.gov (United States)

    Mužík, Jiří; Yasuhara, Ryo; Smrž, Martin; Jelínek, Michal; Kubeček, Václav; Endo, Akira; Mocek, Tomáš

    2017-05-01

    In this paper, we investigated laser performance of Er:Y2O3 ceramics at room temperature. With pulsed pumping with duty cycle of 1%, 1.02 W of peak output power was obtained at wavelength of 2.7 μm with slope efficiency of 3%. Furthermore, absorption spectra of the ceramics and temperature evolution for different pumping conditions were examined.

  9. Membranes

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  10. Current hurdles to the success of high temperature membrane reactors

    NARCIS (Netherlands)

    Saracco, G.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1994-01-01

    High-temperature catalytic processs performed using inorganic membranes have been in recent years a fast growing area of research, which seems to have not yet reached its peak. Chemical engineers, catalysts and materials scientists have addressed this topic from different viewpoint in a common

  11. High temperature properties of manganese modified CaBi 4Ti 4O 15 ferroelectric ceramics

    Science.gov (United States)

    Zhang, Shujun; Kim, Namchul; Shrout, Thomas R.; Kimura, Masahiko; Ando, Akira

    2006-10-01

    The dielectric, piezoelectric and electromechanical properties of manganese modified CaBi 4Ti 4O 15 (CBT) bismuth layer-structured ferroelectric ceramics were determined in the range of room temperature to ˜800 ∘C. The room temperature dielectric permittivity and dielectric loss were found to be 148 and 0.2%, respectively. The piezoelectric coefficients, d33 and d15, were 14 pC/N and 9 pC/N, with electromechanical coupling factors k33'=8.4% and k15=5.5%. The mechanical quality factor Q (sliver extensional mode) was 4300 at room temperature, decreasing with increasing temperature. The remnant polarization and coercive field were found to be 5.2 μC/cm 2 and 88 kV/cm, respectively. The excellent piezoelectric, mechanical properties, together with its high Curie temperature (˜800 ∘C) and high electrical resistivity ( 1×107 Ω cm at 500 ∘C), demonstrated the potential of manganese modified CBT ceramics for ultra-high temperature sensing applications.

  12. The separation efficiency of ceramic barrier filters determined at high temperatures by optical particle size and concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hemmer, G.; Umhauer, H.; Kasper, G. [Univ. Karlsruhe, Inst. fuer Mechanische Verfahrenstechnik und Mechanik, Karlsruhe (Germany); Berbner, S. [Freudenberg Nonwovens, Filtration Div., Hopkinsville, KY (United States)

    1999-07-01

    Based on the experiences of earlier investigations a special optical particle counter was developed capable of recording size and quantity (concentration) of the particles directly within a given gas particle stream under the prevailing conditions (true in-situ measurements at high temperatures). In addition to earlier investigations [1], a second type of ceramic filter media with much smaller porosity and a membrane layer on the filtration side was tested. The candles with a length of 1.5 m which are used in industrial applications were mounted in the same hot gas filtration unit already used before. Measurements on the clean gas side at temperatures of up to 1000 C have been conducted using a fraction of quartz particles as test dust. The particle size ranged between 0.3 {mu}m and 10 {mu}m. Filtration velocity (1.5 cm/s) and final pressure drop of dust cake {delta}p (1000 Pa) were kept constant. As a main result the fractional efficiency as function of temperature is discussed and compared with that obtained before for a filter media of type I: The fractional efficiency values of filter type II are at least 100 times higher than that of filter type I. (orig.)

  13. The insulating-to-superconducting transition in europium high-temperature superconducting ceramics

    CERN Document Server

    Rosenbaum, R

    1997-01-01

    Experiment resistivity data on high-temperature superconducting ceramics of fully oxygenated EuBa sub 2 Cu sub 3 sub - sub x Co sub x O sub y show that the insulating-to-superconducting transitions take place at liquid-helium temperature, provided that the cobalt fraction x exceeds 0.3. The resistivity follows a simple power-law dependence rho propor to T sup - sup 1 sup / sup 2 , attributed to electron-electron interactions. A model based upon intrinsic Josephson tunnelling junctions is suggested to explain the transition from insulating to superconducting states. (author)

  14. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  15. Development of Sensors for Ceramic Components in Advanced Propulsion Systems. Phase 2; Temperature Sensor Systems Evaluation

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.

  16. Low temperature direct propane polymer electrolyte membranes fuel cell (DPFC)

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O.; Varela, F. J. R. [Ecole Polytechnique, Laboratoire d' electrochimie et de materiaux energetiques, Montreal, PQ (Canada)

    2001-04-01

    A low-temperature direct propane polymer electrolyte membrane fuel cell (DPFC) is demonstrated. The propane is fed into the fuel cell directly, eliminating the need for reforming. The key elements of the DPFC system are an appropriate catalyst for the anodes, an appropriate membrane and a propane humidifier. Overall, the system consists of a propane container, an oxygen container, a propane humidifier, and oxygen humidifier, a proton exchange membrane fuel cell (PEMFC), and a fuel cell station monitored by a computer. The membranes are Nafion 117, doped with heteropolyacids (HPAs) or polybenzimidazole (PBI). The fuel cell was built of graphite blocks in which flow fields were engraved, one for humidified propane, the other for oxygen. The anode was based on platinum, platinum-ruthenium, or platinum-chromium oxide electrocatalysts; the cathode was based on a platinum electrocatalyst. Results showed that polymer electrolyte membranes can be directly fed by propane gas to make direct propane fuel cell (DPFC). This has many advantages compared to methanol, such as lower cost, greater operating temperature range, easy handling, simpler infrastructure requirements, and higher energy than those of methanol. However, like methanol, DPFC also has the disadvantage that its reaction product is carbon dioxide. 22 refs., 2 tabs., 5 figs.

  17. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  18. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  19. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C–170 °C, and led to substantial increase in maximum power density of fuel cells by ∼30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ∼150% and ∼160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  20. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  1. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    observed under continuous operation with hydrogen and air at 150-160oC, with a fuel cell performance degradation rate of 5-10 µV/h. Improvement of the membrane performance such as mechanical strength, swelling and oxidative stability has achieved by exploring the polymer chemistry, i.e. covalently......To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...

  2. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  3. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena

    2016-01-01

    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... understanding of organic and biofouling in AnMBR. An AnMBR consisting of external PVDF membrane was operated at 25°C and fed with synthetic dairy wastewater. Intensity, morphology and composition of foulants were determined using Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectrometry...

  4. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i...... group is achieved in 85wt% H3PO4 at room temperature. The membranes exhibit a proton conductivity of 0.015–0.022Scm−1 at 130–150°C under 15mol% water vapor in air, and a tensile strength of 5–6MPa at 130°C under ambient humidity. Fuel cell tests show an open circuit voltage as high as 0.96V and a peak...

  5. Temperature Dependence of Piezoelectric Properties of Grain-Oriented CaBi4Ti4O15 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kimura, Masahiko; Ando, Akira; Sakabe, Yukio

    2001-09-01

    Piezoelectric properties of grain-oriented bismuth layer structured compound CaBi4Ti4O15 ceramics and their temperature dependencies were studied. The grain-oriented CaBi4Ti4O15 ceramics were fabricated by the templated grain growth method. The highly preferentially (00l) oriented CaBi4Ti4O15 ceramics were obtained and their Lotgering (00l) orientation degree was almost 100%. The electromechanical coupling coefficient of the longitudinal vibration mode (k33) was approximately three times as large as that of the nonoriented specimen, and the temperature coefficient of resonant frequency (|fr-TC|) was the same as that of the nonoriented specimen. The 24 vibration mode is separated from the 15 vibration mode in the thickness shear vibration of the grain-oriented ceramics. The electromechanical coupling coefficient k15 of the grain-oriented specimen was twice as large as k15 of the nonoriented ceramics, while, k24 was one-third that of k15 of the nonoriented specimen. The |fr-TC| of the 15 vibration mode of the grain-oriented specimen was half that of the 15 vibration mode in the nonoriented ceramics, and that of the 24 vibration mode of the oriented specimen was much larger than that of the 15 vibration mode in the nonoriented ceramics.

  6. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment.

    Science.gov (United States)

    Kim, Jeonghwan; Van der Bruggen, Bart

    2010-07-01

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Catalytic polymer membranes for high temperature hydrogenation of viscous liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, D.; Bengtson, G. [GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2006-05-15

    Polymeric membranes with high oil fluxes were developed and catalytically activated by a new route of direct calcination of polymeric membranes charged by Pd or Pt catalyst precursors. High concentrations of citric acid mixed with the precursors afforded a decrease of the calcination temperature to 175 C. Membrane reactor tests in the flow through contactor mode displayed high reactivities for sunflower oil hydrogenation. Pt showed a similar activity to Pd catalysts as measured by iodine value and generated about 13% less trans-isomers but 5% more stearic acid at an iodine value of 90. By means of alumina supported catalysts tests of methyl oleate (cis-C18:1) and methyl elaidate (trans-C18:1) hydrogenation exhibited a different pathway of reaction by either isomerization followed by reduction (Pd) or primarily direct reduction to methyl stearate (Pt). (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K. [Southwest Research Inst. (SwRI), San Antonio, TX (United States)

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  9. Design and manufacture of ultra-high temperature ceramics with oriented strengthening and toughening phases

    Science.gov (United States)

    Acosta, Manuel

    The Horizontal Dip-Spin Casting (HDSC) Process, a newly designed method for the fabrication of ceramic composites, affords alignment of a reinforcing high aspect ratio phase while attaining curvature in the specimen. In this process, highly loaded aqueous ceramic suspensions (>50 vol. %) are produced with a minimum amount of polymer (˜1-5 vol. %). During forming, cylindrical foam molds are dipped in the suspension and rotated uniaxially to produce the alignment of the reinforcing phase. Rheological studies using suspensions containing alumina powder and alumina powder/carbon-whiskers, the model material systems for the process design, revealed that suspensions containing Polyvinylpyrrolidone (PVP) as a viscosity modifier follow a yield-pseudoplastic flow behavior. Green bodies have been fabricated with C-whiskers content <30 vol. % and considerable alignment of the strengthening phase has been achieved. Monolithic alumina green bodies fabricated from suspensions containing 2.6 and 5.1 vol. % polymer carrier can be machined and sintered. The same principals of fabrication have been applied to ZrB2 ultrahigh-temperature ceramic composites (UHTCCs). ZrB2 green bodies were produced after careful selection of polymer, dispersant and mold material to demonstrate the applicability of HDSC to UHTCCs.

  10. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells.

    Directory of Open Access Journals (Sweden)

    Mathilde Tassin

    Full Text Available The development of CAD-CAM techniques called for new materials suited to this technique and offering a safe and sustainable clinical implementation. The infiltration of resin in a ceramic network under high pressure and high temperature defines a new class of hybrid materials, namely polymer infiltrated ceramics network (PICN, for this purpose which requires to be evaluated biologically. We used oral stem cells (gingival and pulpal as an in vitro experimental model.Four biomaterials were grinded, immersed in a culture medium and deposed on stem cells from dental pulp (DPSC and gingiva (GSC: Enamic (VITA®, Experimental Hybrid Material (EHM, EHM with initiator (EHMi and polymerized Z100™ composite material (3M®. After 7 days of incubation; viability, apoptosis, proliferation, cytoskeleton, inflammatory response and morphology were evaluated in vitro.Proliferation was insignificantly delayed by all the tested materials. Significant cytotoxicity was observed in presence of resin based composites (MTT assay, however no detectable apoptosis and some dead cells were detected like in PICN materials. Cell morphology, major cytoskeleton and extracellular matrix components were not altered. An intimate contact appeared between the materials and cells.The three new tested biomaterials did not exhibit adverse effects on oral stem cells in our experimental conditions and may be an interesting alternative to ceramics or composite based CAD-CAM blocks.

  11. Development and Evaluation of Novel Metal Reinforced Ceramic Matrix Composites for High Temperature Applications

    Science.gov (United States)

    Mohammadi, Teymoor

    For high temperature applications two novel ceramic-matrix composite (CMC) materials are manufactured, by embedding molybdenum (Mo) and Hastelloy X (HX) wire meshes in 7YSZ ceramic. The mechanical properties and oxidizing behaviour at 1050°C were investigated. The designs, fabrication, assessment of the mechanical strength, cyclic and isothermal oxidation of the CMCs are described in this thesis. After manufacturing meshes, NiCrA1Y bond coats and 7YSZ were applied via plasma spraying. Bonding strength in some CMC samples are improved by vacuum heat treating, then as-sprayed and heat treated CMCs are subjected to three-point bend and impact tests. Mo and HX wire mesh incorporation in 7YSZ increase the strength and the elongation to failure. In particular, Mo wire increases yield load of 7YSZ by at least 3 times and HX wire increases yield by 9 times. Mo/7YSZ CMC degrades and oxidizes after 330 hours at 1050°C tests, but HX/7YSZ shows higher oxidation resistance. The metallographic analysis shows NiCrA1Y bond coat cracks and delaminates from the wires during isothermal tests. Cyclic test, creating larger thermal stresses, worsens the damage. To increase the oxidation and mechanical properties of these composites, a more effective ceramic coating method is recommended. Overall, the advantages of HX/7YSZ composite suggest further testing and investigation.

  12. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  13. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  14. Lateralized Difference in Tympanic Membrane Temperature: Emotion and Hemispheric Activity

    OpenAIRE

    Propper, Ruth E.; Brunyé, Tad T.

    2013-01-01

    We review literature examining relationships between tympanic membrane temperature (TMT), affective/motivational orientation, and hemispheric activity. Lateralized differences in TMT might enable real-time monitoring of hemispheric activity in real-world conditions, and could serve as a corroborating marker of mental illnesses associated with specific affective dysregulation. We support the proposal that TMT holds potential for broadly indexing lateralized brain physiology during tasks demand...

  15. High-temperature Fabry-Perot-based strain sensor for ceramic barrier filters

    Science.gov (United States)

    Weinstein, Shmuel J.; Vuppala, Veerendra B.; Gunther, Michael F.; Wang, Anbo; Murphy, Kent A.; Claus, Richard O.

    1994-02-01

    We report results from a program to develop fiber-optic sensor-based instrumentation methods to allow the in-situ analysis of ceramic barrier filters. The sensor used was an extrinsic Fabry-Perot cavity created between the ends of two longitudinally aligned fibers. Filters instrumented with these fiber sensors were tested in a combustor simulator at the Westinghouse Science and Technology Center. These tests were performed using silica optical fibers capable of withstanding the high temperature and harsh chemical environment of the combustor. The single-ended approach of the reflective Fabry-Perot sensors is well suited for high thermal strain measurements. The results from several tests are presented.

  16. Efficient ceramic anodes infiltrated with binary and ternary electrocatalysts for SOFCs operating at low temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2012-01-01

    Electrocatalyst precursor of various combinations: Pt, Ru, Pd, Ni and Gd-doped CeO2 (CGO) were infiltrated into a porous Sr0.94Ti0.9Nb0.1O3 (STN) backbone, to study the electrode performance of infiltrated ceramic anodes at low temperature ranges of 400–600 °C. The performance of the binary...... the binary Pd–CGO and Pt–CGO due to the particle coarsening of Ni nanoparticles. High resolution transmission electron microscopic analysis on the best performing Ni–Pt–CGO electrocatalyst infiltrated anode reveals the formation of Ni–Pt nanocrystalline alloy and a homogenous distribution of nanoparticles...

  17. The effect of sintering temperature on the structure and properties of corundum/mullite ceramics

    Directory of Open Access Journals (Sweden)

    Yu-Ming T.

    2015-01-01

    Full Text Available In this work, samples are prepared by adding secondary raw bauxite and some suitable amount pure silica. After dry pressing molding, using solid phase sintering method sinter them at 1380ºC,1410ºC,1440ºC,1410ºC,1500ºC,1530ºC, respectively. A performance of the material is characterized by using SEM and XRD, such as microscopic morphology, phase composition and the compressive strength, etc. Combining results of experiments, explore the mechanism of sintering temperature on the properties of ceramic materials.

  18. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  19. Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy.

    Science.gov (United States)

    Slodczyk, Aneta; Zaafrani, Oumaya; Sharp, Matthew D; Kilner, John A; Dabrowski, Bogdan; Lacroix, Olivier; Colomban, Philippe

    2013-10-25

    Ceramics, which exhibit high proton conductivity at moderate temperatures, are studied as electrolyte membranes or electrode components of fuel cells, electrolysers or CO2 converters. In severe operating conditions (high gas pressure/high temperature), the chemical activity towards potentially reactive atmospheres (water, CO2, etc.) is enhanced. This can lead to mechanical, chemical, and structural instability of the membranes and premature efficiency loss. Since the lifetime duration of a device determines its economical interest, stability/aging tests are essential. Consequently, we have developed autoclaves equipped with a sapphire window, allowing in situ Raman study in the 25-620 °C temperature region under 1-50 bar of water vapor/gas pressure, both with and without the application of an electric field. Taking examples of four widely investigated perovskites (BaZr0.9Yb0.1O3-δ, SrZr0.9Yb0.1O3-δ, BaZr0.25In0.75O3-δ, BaCe0.5Zr0.3Y0.16Zn0.04O3-δ), we demonstrate the high potential of our unique set-up to discriminate between good/stable and instable electrolytes as well as the ability to detect and monitor in situ: (i) the sample surface reaction with surrounding atmospheres and the formation of crystalline or amorphous secondary phases (carbonates, hydroxides, hydrates, etc.); and (ii) the structural modifications as a function of operating conditions. The results of these studies allow us to compare quantitatively the chemical stability versus water (corrosion rate from ~150 µm/day to less than 0.25 µm/day under 200-500 °C/15-80 bar PH2O) and to go further in comprehension of the aging mechanism of the membrane.

  20. Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy

    Science.gov (United States)

    Slodczyk, Aneta; Zaafrani, Oumaya; Sharp, Matthew D.; Kilner, John A.; Dabrowski, Bogdan; Lacroix, Olivier; Colomban, Philippe

    2013-01-01

    Ceramics, which exhibit high proton conductivity at moderate temperatures, are studied as electrolyte membranes or electrode components of fuel cells, electrolysers or CO2 converters. In severe operating conditions (high gas pressure/high temperature), the chemical activity towards potentially reactive atmospheres (water, CO2, etc.) is enhanced. This can lead to mechanical, chemical, and structural instability of the membranes and premature efficiency loss. Since the lifetime duration of a device determines its economical interest, stability/aging tests are essential. Consequently, we have developed autoclaves equipped with a sapphire window, allowing in situ Raman study in the 25–620 °C temperature region under 1–50 bar of water vapor/gas pressure, both with and without the application of an electric field. Taking examples of four widely investigated perovskites (BaZr0.9Yb0.1O3−δ, SrZr0.9Yb0.1O3−δ, BaZr0.25In0.75O3−δ, BaCe0.5Zr0.3Y0.16Zn0.04O3−δ), we demonstrate the high potential of our unique set-up to discriminate between good/stable and instable electrolytes as well as the ability to detect and monitor in situ: (i) the sample surface reaction with surrounding atmospheres and the formation of crystalline or amorphous secondary phases (carbonates, hydroxides, hydrates, etc.); and (ii) the structural modifications as a function of operating conditions. The results of these studies allow us to compare quantitatively the chemical stability versus water (corrosion rate from ~150 µm/day to less than 0.25 µm/day under 200–500 °C/15–80 bar PH2O) and to go further in comprehension of the aging mechanism of the membrane. PMID:24957060

  1. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  2. Study of high temperature ceramic turbocharger. ; Basic research on turbine housing materials. Koon ceramic turbocharger no kenkyu. ; Turbine shashitsu zairyo no kiso shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, K.; Miyagi, Y.; Sugihara, H.; Kitagawa, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1991-04-01

    In order to engineer the development of high temperature ceramic turbocharger for the gasoline engine use, characteristics at high temperature were studied of ceramics-made turbine impeller and turbine housing material. Used ceramics is silica nitride, developed for the gas turbine use and sintered under the atmospheric pressure. Prototypically prepared turbine rotors, designed upon studying the centrifugal stress, thermal stress, impeller shape and joint strength between the impellers and metallic shaft, were durable against 1050 centigrade in turbine inlet gas temperature (TIT), as a result of reliability evaluation test thereon. The turbine housing material comprises five categories such as stainless steel, Ni-resist cast iron and N155 (turbocharger housing material for the race use). As a comparative result of high temperature tensile strength, thermal cycle oxidation and thermal fatigue tests, the stainless steel was excellent in oxidation characteristics and at the equal level to the N155 in thermal fatigue strength at 1050 centigrade in TIT. 5 refs., 18 figs., 2 tabs.

  3. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...... the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom...

  4. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Soft ceramics for high temperature lubrication: graphite-free lubricants for hot and warm forging of steel

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.

    2016-01-01

    The main research focus of this thesis is on the development of the next generation of solid lubricants for high temperature forming of steel. These lubricants are based on ceramic nanoparticles which are more resistant to temperature and oxidation than traditional lubricants. Nowadays, the most

  6. Manufacture and optimization of low-cost tubular ceramic supports for membrane filtration: application to algal solution concentration.

    Science.gov (United States)

    Issaoui, Mansour; Limousy, Lionel; Lebeau, Bénédicte; Bouaziz, Jamel; Fourati, Mohieddine

    2017-04-01

    Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone. It has been shown that the addition of an appropriate amount of starch to the ceramic paste leads to obtaining membrane supports with the desired porosity. Indeed, the water permeability increased significantly from 20 to 612 L h(-1) m(-2) bar(-1) for samples without and with 20 wt% of starch, respectively, as well as the open porosity, the apparent porosity, and the pore size distribution. The bending strength decreased slightly and reached about 4 MPa for samples with the highest starch amounts. On the other hand, the incorporation of sand in a mixture of kaolin + 10 wt% starch increased the mechanical strength and the water permeability. The samples containing 3 wt% of sand exhibited a bending strength four times higher than the supports without sand; the water permeability measured was about 221 L h(-1) m(-2) bar(-1). These elaborated tubular supports for membrane are found to be suitable for solution concentration; they were applied for algal solution and are also easily cleaned by water.

  7. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study.

    Science.gov (United States)

    Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui

    2013-01-01

    This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.

  8. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  9. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhang

    2018-02-01

    Full Text Available The influence of the interaction between aquatic humic substances and the algal organic matter (AOM derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA, and fulvic acid (FA. The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged, which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance.

  10. Temperature driven annealing of perforations in bicellar model membranes.

    Science.gov (United States)

    Nieh, Mu-Ping; Raghunathan, V A; Pabst, Georg; Harroun, Thad; Nagashima, Kazuomi; Morales, Hannah; Katsaras, John; Macdonald, Peter

    2011-04-19

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing. © 2011 American Chemical Society

  11. Temperature Driven Annealing of Perforations in Bicellar Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, Mu-Ping [University of Connecticut, Storrs; Raghunathan, V. A. [Raman Research Institute, India; Pabst, Georg [Austrian Academy of Sciences, Graz; Harroun, Thad [Brock University, Canada; Nagashima, K [University of Toronto, Canada; Morales, H [University of Toronto, Canada; Katsaras, John [ORNL; Macdonald, P [University of Toronto, Canada

    2011-01-01

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), {sup 31}P NMR, and {sup 1}H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. {sup 31}P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the 'mixed bicelle model' (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, {sup 31}P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.

  12. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    Science.gov (United States)

    Peng, Dengfeng; Wang, Xusheng; Xu, Chaonan; Yao, Xi; Lin, Jian; Sun, Tiantuo

    2012-05-01

    Er3+ doped CaBi2Ta2O9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er3+ doped CBT ceramics were investigated as a function of Er3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4S3/2 and 4F9/2 to 4I15/2, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  13. Surfactant and temperature effects on paraben transport through silicone membranes.

    Science.gov (United States)

    Waters, Laura J; Dennis, Laura; Bibi, Aisha; Mitchell, John C

    2013-08-01

    This study investigates the effects of two surfactants (one anionic and one non-ionic) and controlled modifications in temperature (298-323K) on the permeation of two structurally similar compounds through a silicone membrane using a Franz diffusion cell system. In all cases the presence of an anionic surfactant, namely sodium dodecyl sulphate (SDS), reduced the permeation of both compounds (methylparaben and ethylparaben) over a period of 24h. The degree of permeation reduction was proportional to the concentration of surfactant with a maximum effect observed, with an average reduction of approximately 50%, at the highest surfactant concentration of 20mM. Differences were seen around the critical micelle concentration (CMC) of SDS implying the effect was partially connected with the favoured formation of micelles. In contrast, the presence of non-ionic surfactant (Brij 35) had no effect on the permeation of methylparaben or ethylparaben at any of the concentrations investigated, both above and below the CMC of the surfactant. From these findings the authors conclude that the specific effects of SDS are a consequence of ionic surfactant-silicone interactions retarding the movement of paraben through the membrane through indirect modifications to the surface of the membrane. As expected, an increase in experimental temperature appeared to enhance the permeation of both model compounds, a finding that is in agreement with previously reported data. Interestingly, in the majority of cases this effect was optimum at the second highest temperature studied (45°C) which suggests that permeation is a temperature-dependent phenomenon. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Preparação e caracterização de membranas cerâmicas de cordierita Preparation and characterization of cordierite ceramic membranes

    Directory of Open Access Journals (Sweden)

    F. A. Silva

    2006-12-01

    sinterizadas a 1280 ºC obtiveram maior permeabilidade, seguindo-se das de 1250 ºC, 1200 ºC e as de 1150 ºC. Os valores médios dos fluxos encontrados nas membranas sinterizadas nas temperaturas de 1150, 1200, 1250 e 1280 ºC foram de aproximadamente 68, 143, 378 e 587 kg/h.m², respectivamente.Membrane separation processes find large applications. Ceramic membranes are applied in several processes, mainly in application above 250 ºC, as well as in separation of solutions with pH extremely acid and even in systems with organic solvents. On the other hand, ceramic membranes show high cost of fabrication, mainly in relation to the raw synthetic materials (zirconia, alumina, titania and silica. Therefore, the main concern in the development of these membranes is to optimize the cost using natural non-expensive raw materials and more efficient ceramic processing, such as extrusion. The fabrication of ceramic membranes by extrusion gives the possibility to use cross flow system, which is very useful in microfiltration and ultrafiltration separation processes. The aim of this work is to prepare tubular cordierite membranes from raw materials such as clays and talc and by extrusion processing. Four sintering temperatures (1150, 1200, 1250 and 1280 ºC were used to show the effect on the morphological characteristics of the membranes. The membranes were characterized by X-ray diffraction, scanning electron microscopy and mercury intrusion porosimetry. The results showed the formation of cordierite phase at all sintering temperatures. The membranes presented pore size of 1.4, 2.2, 3.3 and 4.1 µm and porosity content of 28.7, 29.1, 27.7 and 24.3% for sintering temperaturesf 1150, 1200, 1250 and 1280 ºC, respectively. These values show that these membranes are suitable to be applied in microfiltration separation processes. The results of water flux, at steady state, show that the membrane sintered at 1280 ºC presented the highest value, 587.3 kg/m².h, followed by 377.7 kg

  15. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    the selectivity for platinum loading. Fuel cell durability tests in term of performance degradation were performed with acid doped polybenzimidazole membrane fuel cells at temperatures of up to 160°C. The tests were focused on catalyst degradation by means of a potential cycling protocol. The electrochemical......Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... mode of PEMFCs. Under idle, load-cycling or start-up/shutdown modes of operation, which are prerequisite for automobile applications, the cathode will experience significantly higher potentials and therefore suffer from serious carbon corrosion, especially at the presence of platinum. The carbon...

  16. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    Science.gov (United States)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm‑1. When E increased to 0.3 kV mm‑1 and 0.4 kV mm‑1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  17. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system...... is managed by running the stack at a high stoichiometric air flow. This is possible because of the polybenzimidazole (PBI) fuel cell membranes used and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle, and end....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...

  18. Effects of B2O3 content and sintering temperature on crystallization and microstructure of CBS glass-ceramic coatings

    Science.gov (United States)

    Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang

    2015-11-01

    Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  19. Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2011-01-01

    Full Text Available Taking the hafnium diboride ceramic as an example, the effects of heating rate, cooling rate, thermal shock initial temperature, and external constraint on the thermal shock resistance (TSR of ultra-high temperature ceramics (UHTCs were studied through numerical simulation in this paper. The results show that the external constraint has an approximately linear influence on the critical rupture temperature difference of UHTCs. The external constraint prepares a compressive stress field in the structure because of the predefined temperature field, and this compressive stress field relieves the tension stress in the structure when it is cooled down and then it improves the TSR of UHTCs. As the thermal shock initial temperature, a danger heating rate (or cooling rate exists where the critical temperature difference is the lowest.

  20. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    Science.gov (United States)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  1. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The

  2. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  3. Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater.

    Science.gov (United States)

    Wang, Xia; Zhang, Luyan; Chen, Gang

    2011-11-01

    As a self-regulating heating device, positive temperature coefficient ceramic heater was employed for hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chip because it supplied constant-temperature heating without electrical control circuits. To emboss a channel plate, a piece of poly(methyl methacrylate) plate was sandwiched between a template and a microscopic glass slide on a positive temperature coefficient ceramic heater. All the assembled components were pressed between two elastic press heads of a spring-driven press while a voltage was applied to the heater for 10 min. Subsequently, the embossed poly(methyl methacrylate) plate bearing negative relief of channel networks was bonded with a piece of poly(methyl methacrylate) cover sheet to obtain a complete microchip using a positive temperature coefficient ceramic heater and a spring-driven press. High quality microfluidic chips fabricated by using the novel embossing/bonding device were successfully applied in the electrophoretic separation of three cations. Positive temperature coefficient ceramic heater indicates great promise for the low-cost production of poly(methyl methacrylate) microchips and should find wide applications in the fabrication of other thermoplastic polymer microfluidic devices.

  4. Influence of temperature and composition in the mechanical resistance and porosity of ceramic pieces

    Directory of Open Access Journals (Sweden)

    Jordán Vidal, M. M.

    2001-03-01

    Full Text Available We have tried to establish a relationship between the raw material and the mechanical properties of ceramic pieces subjected to different firing processes, so under the determinant of the thermal process we have done a follow up on the petrogenetic process that the manufacture of ceramics represents. This is evaluated in terms of the mechanical behaviour of the ceramic tile bodies, which have been normalised and submitted to tests for flexion. The principal objective is to be able to indicate what the optimum firing temperature for each sample is, and to determine what it is in the ceramic body which offers the greatest resistance when a specific force is applied. The study of the texture of the ceramic body will be considered mainly in relation to the existent porosity, as well as its distribution, which conditions its characteristics and specifications. The relation between porosity and the parameters that describe the porous texture of the ceramic tile pieces studied is complicated because of the fact that these have many pores with a complex and irregular spatial disposition, with a broad distribution of forms and sizes, and as such they do not fit into established empirical equations.

    Se ha tratado de establecer la relación entre materia prima y propiedades mecánicas de piezas cerámicas sometidas a procesos de cocción diversos. Bajo el condicionante del proceso térmico se realiza un seguimiento del proceso petrogenético que representa la fabricación cerámica y se evalúa a través del comportamiento mecánico de probetas cerámicas normalizadas y sometidas a ensayos de flexión. El objetivo principal es poder indicar cuál es la temperatura óptima de cocción para cada muestra y determinar cuál es aquélla en que la probeta cerámica ofrece una mayor resistencia al aplicarle una determinada carga. El estudio de la textura de la matriz cerámica es de gran interés en relación con la porosidad, asi como su distribuci

  5. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  6. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  7. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    Science.gov (United States)

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  8. Conditioning of the membrane fatty acid profile of Escherichia coli during periodic temperature cycling.

    Science.gov (United States)

    Ivancic, Tina; Vodovnik, Masa; Marinsek-Logar, Romana; Stopar, David

    2009-10-01

    The membrane fatty acid composition of Escherichia coli becomes conditioned during periodic temperature cycling between 37 and 8 degrees C. After several cycles of temperature change, the bacteria become locked into a low-temperature physiology. Even after a prolonged incubation at high temperature the membrane fatty acid composition of conditioned cells was similar to that of cold-stressed cells.

  9. Oxygen permeability of transition metal-containing La(Sr,PrGa(MgO3-δ ceramic membranes

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-08-01

    Full Text Available Acceptor-type doping of perovskite-type La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni leads to significant enhancement of ionic conductivity and oxygen permeability due to increasing oxygen vacancy concentration. The increase in strontium and magnesium content is accompanied, however, with increasing role of surface exchange kinetics as permeation-limiting factor. At temperatures below 1223 K, the oxygen permeation fluxes through La(SrGa(Mg,MO3-δ membranes with thickness less than 1.5 mm are predominantly limited by the exchange rates at membrane surface. The oxygen transport in transition metal-containing La(SrGa(MgO3-δ ceramics increase in the sequence Co El dopado aceptor de cerámicas tipo perovskita La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni da lugar a una mejora significativa de la conductividad iónica y de la permeabilidad al oxígeno debido al aumento de la concentración de vacantes de oxígeno. Sin embargo, el aumento de la cantidad de estroncio y magnesio viene acompañado de un aumento de la participación de las cinéticas de intercambio superficial como factor limitante de la permeabilidad. A temperaturas por debajo de 1223 K la permeabilidad al flujo de oxígeno a través de las membranas de La(SrGa(Mg,MO3-δ con espesor menor de 1.5 mm está limitado principalmente por las velocidades de intercambio en la superficie de la membrana. El transporte de oxígeno en las cerámicas La(SrGa(MgO3-δ que contienen M aumenta en la secuencia Co < Fe < Ni. La conductividad iónica en estas fases es, sin embargo, menor que en la de los compuestos La1-xSrxGa1-yMgyO3-δ. El mayor nivel de permeabilidad de oxígeno, comparable a la de las fases basadas en La(SrFe(CoO3 y La2NiO4, se observa para las membranas de La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3-δ. Los coeficientes de dilatación térmica medios de las cerámicas La(SrGa(Mg,MO3-δ en aire son del orden de (11.6–18.4 × 10-6 K-1 a 373

  10. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes.

    Science.gov (United States)

    Karnik, Bhavana S; Davies, Simon H R; Chen, Kuan C; Jaglowski, David R; Baumann, Melissa J; Masten, S J

    2005-02-01

    Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 microm glass fiber filter. The application of ozone gas prior to filtration resulted in significant decreases in membrane fouling. The effects of ozonation could not be explained by physical scouring of the filter cake. Decrease in the pH resulted in a concomitant increase in the dissolved ozone concentration in the feed water and in an improvement in permeate flux recovery. Increasing the ozone concentration beyond a threshold value had no beneficial effect on permeate flux recovery. Ozone decomposition, resulting in the formation of OH or other radicals at the membrane surface, is thought to result in the decomposition of organic foulants at the membrane surface and reduce the extent of membrane fouling.

  11. EFFECT OF SINTERING TEMPERATURE ON MICROSTRUCTURE AND IN-VITRO BEHAVIOR OF BIOACTIVE GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    Hashmi M. U.

    2013-12-01

    Full Text Available In this work, powders of the composition (CaO 46- SiO2 34- P2O5 14.5- MgO 4- CaF2 1- MgF2 0.5 (wt. % were thoroughly mixed and melted in a muffle furnace. The melt was quenched in water to form glass. Three glass-ceramics were prepared by sintering glass samples at three different temperatures 850, 900 and 950°C according to the exothermal peaks of DTA. The DTA peaks correspond to the bioactive crystalline phases hydroxyapatite (HA and wollastonite as confirmed by the XRD data. Study of diameter-shrinkage co-efficient and bulk-density of samples revealed higher densification rate for the range 900 - 950°C than that for the range 850 - 900°C.SEM and optical microscope results illustrated a tendency towards closely packed structure and increasing grain size with the increase of sintering temperature. The samples were immersed in SBF for 30 days at room temperature for in-vitro evaluation.EDS analysis, showing the presence of carbon (C along with calcium (Ca and phosphorus (P suggests the formation of hydroxycarbonate-apatite (HCA phase that indicates the bioactivity of the material which increases with the increase of sintering temperature.

  12. Measuring the Flexural Strength of Ceramics at Elevated Temperatures – An Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Štubňa I.

    2014-02-01

    Full Text Available The flexural mechanical strength was measured at room and elevated temperatures on green ceramic samples made from quartz electroporcelain mixture. An apparatus exploited the three-point-bending mechanical arrangement and a magazine for 10 samples that are favorable at the temperature measurements from 20 °C to 1000 °C. A description of the apparatus from the point of possible sources of uncertainties is also given. The uncertainty analysis taking into account thermal expansion of the sample and span between the supports is performed for 600 °C. Friction between the sample and supports as well as friction between mechanical parts of the apparatus is also considered. The value of the mechanical strength at the temperature of 600 °C is 13.23 ± 0.50 MPa, where the second term is an expanded standard uncertainty. Such an uncertainty is mostly caused by inhomogeneities in measured samples. The biggest part of the uncertainty arises from the repeatability of the loading force which reflects a scatter of the sample properties. The influence of the temperature on the uncertainty value is very small

  13. Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Directory of Open Access Journals (Sweden)

    Carla Castiglia Gonzaga

    2008-09-01

    Full Text Available The objective of this work was to evaluate biaxial-flexural-strength (σf, Vickers hardness (HV, fracture toughness (K Ic, Young's modulus (E, Poisson's ratio (ν and porosity (P of two commercial glass-ceramics, Empress (E1 and Empress 2 (E2, as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

  14. High temperature performance evaluation of a hypersonic engine ceramic wafer seal

    Science.gov (United States)

    Steinetz, Bruce M.

    1991-01-01

    Leakage rates of an innovative hypersonic engine seal were measured using a specially developed static high temperature seal test fixture at NASA Lewis Research Center. The three foot long structural panel-edge seal is designed to minimize leakage of high temperature, high pressure gases past the movable panels of advanced ramjet/scramjet engines. The seal is made of a stack of precision machined ceramic wafer pieces that are inserted into a closely conforming seal channel in the movable engine panel. The wafer seal accommodates the significant distortions in the adjacent engine walls through relative sliding between adjacent wafers. Seal leakage rates are presented for engine simulated air temperatures up to 1350 F and for engine pressures up to 100 psi. Leakage rates are also presented for the seal, sealing both a flat wall condition, and an engine simulated distorted wall condition in which the distortion was 0.15 in. in only an 18 in. span. Seal leakage rates were low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure, and wall conditions considered. Comparisons are made between the measured leakage rates and leakage rates predicted using a seal leakage model developed from externally-pressurized gas film bearing theory.

  15. Realization of a Solid-Propellant based Microthruster Using Low Temperature Co-fired Ceramics

    Directory of Open Access Journals (Sweden)

    Jaya THAKUR

    2010-06-01

    Full Text Available The introduction of micro-spacecrafts in the space industry has led to the development of various micro-propulsion techniques. Microthrusters are micropropulsion devices used in a microspacecraft for precise station keeping, orbit adjustment, attitude control, drag compensation and apogee kicking. The principle of operation of a solid propellant thruster is based on the combustion of a solid energetic material stored in a microfabricated chamber. In the current work, Low-Temperature Co-fired Ceramic (LTCC technology has been used for the realization of a solid propellant based microthruster structure. Hydroxyl Terminated Poly-Butadiene/Ammonium Perchlorate (HTPB/AP is used as the propellant. It is shown that geometric and dimensional variations in design, depending on the application requirements, can be easily implemented. Preliminary testing for micro-combustion has been done to verify the basic operation of the microthruster. A thrust value of 19.5 mN has been measured.

  16. Multilayer Stepped-Impedance Resonator Band-Pass Filter Implementing Using Low Temperature Cofired Ceramic Structure

    Science.gov (United States)

    Chen, Lih-Shan; Weng, Min-Hung; Huang, Tsung-Hui; Chen, Han-Jan; Su, Sheng-Fu; Houng, Mau-Phon

    2004-10-01

    A tapped-line stepped-impedance resonator band-pass filter was implemented using a low temperature cofired multilayer-ceramic structure. By constructing a multilayer structure, a compact band-pass filter was realized. Moreover, the multilayer structure demonstrated an extra cross-coupling effect that produced extra transmission zeros in the stopband and, hence, realized a highly steep passband skirt. The center frequency of the fabricated band-pass filter was 6.075 GHz and the 3 dB fractional bandwidth was 18%. The measured insertion loss and return loss of the filter were -0.31 dB and -28 dB, respectively. The measured response of the fabricated band-pass filter was in good agreement with simulated results.

  17. Noise characteristics of resistors buried in low-temperature co-fired ceramics

    CERN Document Server

    Kolek, A; Dziedzic, A

    2003-01-01

    The comparison of noise properties of conventional thick film resistors prepared on alumina substrates and resistors embedded in low-temperature co-fired ceramics (LTCCs) is presented. Both types of resistors were prepared from commercially available resistive inks. Noise measurements of LTCC resistors below 1 kHz show Gaussian 1/f noise. This is concluded from the calculations of the second spectra as well as from studying the volume dependence of noise intensity. It has occurred that noise index of LTCC resistors on average is not worse than that of conventional resistors. A detailed study of co-fired surface resistors and co-fired buried resistors show that burying a resistor within LTCC substrate usually leads to (significant) enhancement of resistance but not of noise intensity. We interpret this behaviour as another argument in favour of tunnelling as the dominant conduction mechanism in LTCC resistors.

  18. Room temperature antiferroelectric-phase stability in BNT-BT lead-free ceramics

    Science.gov (United States)

    Guerra, J. D. S.; Peláiz-Barranco, A.; Calderón-Piñar, F.; Mendez-González, Y.

    2017-11-01

    In this work the electric field dependence of electrical polarization (hysteresis loop) has been investigated as a function of the frequency in the (Bi0.500Na0.500)0.920Ba0.065La0.010TiO3 ceramic system. Results, not previously reported in the current literature, revealed that the magnitude of the electric field, necessary to obtain true domain switching, is strongly dependent of the frequency of the applied electric field. The structural properties, studied from x-ray diffraction and Rietveld's refinement, showed the coexistence of both antiferroelectric (AFE) and ferroelectric (FE) phases at room temperature, confirming the major contribution for the AFE phase. A strong contribution of the AFE phase on the electric field dependence of the polarization has been also evaluated, even at higher frequencies, considering a non-power-law dependence for the coercive field.

  19. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  20. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi0.48La0.02Na0.48Li0.02Ti0.98Zr0.02O3-xNa0.73Bi0.09NbO3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na0.73Bi0.09NbO3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150 °C ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm(3) at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm(3) and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  1. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics

    NARCIS (Netherlands)

    Pereira, G.K.R.; Muller, C.; Wandscher, V.F.; Rippe, M.P.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study evaluated the effect of different protocols of low-temperature degradation simulation on the mechanical behavior (structural reliability and flexural strength), the surface topography (roughness), and phase transformation of a Y-TZP ceramic. Disc-shaped specimens (1.2 mm×12 mm, Lava

  2. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped

  3. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.

    2015-01-01

    The electrical properties and hydrogen permeation flux behavior of the all-ceramic protonic/electronic conductor composite BaCe0.2Zr0.7Y0.1O3-δ/Sr0.95Ti0.9Nb0.1O3-δ (BCZY27/STN95: BS27) are evaluated. Conductivity and hydrogen permeability are examined as a function of phase volume ratios. Total...

  4. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore

    2015-01-01

    on recovery of high value biomolecules such as proteins, fatty acids, minerals, and phenolic compounds. Chemical and biological oxygen demand (COD, BOD5) as well as total suspended solids (TSS) were also measured to follow the performance of the ultrafiltration. The retentates contained 75-82% (95% TSS...... that ceramic ultrafiltration can recover biomolecules from marinated herring brines although pre-filtration optimization is still needed....

  5. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  6. The effect of sintering temperature on electrical characteristics of Fe2TiO5/Nb2O5 ceramics for NTC thermistor

    Science.gov (United States)

    Wiendartun, Risdiana, Fitrilawati, Siregar, R. E.

    2016-02-01

    A study on the fabrication of Iron Titanium Oxide (Fe2TiO5) ceramics for negative temperature coefficient (NTC) thermistors has been carried out, in order to know the effect of sintering temperature on the electrical characteristic of 1.0 % mole Nb2O5 doped Fe2TiO5 ceramics.These ceramics were made by mixing commercial powders of Fe2O3, TiO2 and Nb2O5 with proportional composition to produce Fe2TiO5 based ceramic. The raw pellet was sintered at 1000 °C, 1100 °C and 1200 °C temperature for 2 hours in air. Analysis of the microstructure and crystal structure were performed by using a scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. XRD spectra showed that the crystal structure of all ceramics of Fe2TiO5 made at various sintering temperatures are orthorhombic. The SEM images showed that the grain size of pellet ceramics increase with increasing sintering temperatures. From electrical resistances data that was measured at temperature 30-300 °C, it is found that the value of thermistor constant (B), activation energy (Ea), thermistor sensitivity (α) and room temperature resistance (RRT) decreases with respect to the increasing of sintering temperature. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 6394-6959 K). This can be applied as temperature sensor, and will fulfill the market requirement.

  7. EFFECTS OF OZONATION ON THE PERMEATE FLUX OF NANOCRYSTALLINE CERAMIC MEMBRANES. (R830908)

    Science.gov (United States)

    Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 �m glass fiber filter. The application of ozone gas prior to filtration resulted in signi...

  8. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...

  9. Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes

    NARCIS (Netherlands)

    de Lange, R.S.A.; de Lange, Rob; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1995-01-01

    Sol-gel modification of mesoporous alumina membranes is a very successful technique to improve gas separation performance. Due to the formed microporous top layer, the membranes show activated transport and molecular sieve-like separation factors. This paper concentrates on the mechanism of

  10. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  11. High-Temperature Properties of Ceramic Fibers and Insulations for Thermal Protection of Atmospheric Entry and Hypersonic Cruise Vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations which will operate in the 500C to 1000C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described in this paper consist of ceramic fabrics, insulations, and metal foils quilted together using ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics of these insulations must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of multilayer insulations and are compared to the baseline Advanced Flexible Reusable Surface Insulation

  12. Experimental analysis of temperature profiles in ceramic brickwork elements subjected to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-12-01

    Full Text Available This article discusses heat transfer through a brick element in order to know the thermal behavior of onedimensional brickwork masonry samples exposed to high temperatures. The object of the tests is to build time-temperature curves according to different thermal steps in transient to experimentally determine the temperature profiles in the interior of a wall. Through this study, it is possible to demonstrate absolute moisture of a factory item from 300 °C (variation of temperatures in the interior of the element, avoid the associated phenomenon of evaporation of water during the thermal process as well as to obtain profiles of temperatures that help calculate the cross section of a factory element subjected to high temperatures.En este artículo se analiza la transferencia de calor a través de un elemento de fábrica de ladrillo con el fin de conocer el comportamiento térmico de secciones de fábrica unidimensionales expuestas a altas temperaturas. El objeto de los ensayos es construir curvas tiempo-temperatura en función de diversos escalones térmicos en régimen transitorio para determinar experimentalmente los perfiles de temperatura en el interior de un muro. A través de este estudio es posible evidenciar el contenido de humedad absoluta de un elemento de fábrica a partir de los 300 ºC (variación de las temperaturas en el interior del elemento, evitar el fenómeno asociado de la evaporación del agua durante el proceso térmico así como obtener perfiles de temperaturas que ayuden a calcular la sección eficaz de un elemento de fábrica sometido a altas temperaturas.

  13. Glass formation and crystallization in high-temperature glass-ceramics and Si3N4

    Science.gov (United States)

    Drummond, Charles H., III

    1991-01-01

    The softening of glassy grain boundaries in ceramic matrix composites and Si3N4 at high temperatures reduces mechanical strength and the upper-use temperature. By crystallizing this glass to a more refractory crystalline phase, a material which performs at higher temperatures may result. Three systems were examined: a cordierite composition with ZrO2 as a nucleating agent; celsian compositions; and yttrium silicate glasses both in bulk and intergranular in Si3N4. For the cordierite compositions, a series of metastable phases was obtained. The crystallization of these compositions was summarized in terms of metastable ternary isothermal sections. Zircon formed at the expense of ZrO2 and spinel. In SiC composites, the transformations were slower. In celsian, two polymorphs were crystallized. One phase, hexacelsian, which always crystallized, even when metastable, had an undesirable volume change. The other phase, celsian, was very difficult to crystallize. In yttrium silicate bulk glasses, similar in composition to the intergranular glass in Si3N4, a number of polymorphs of Y2Si2O7 were crystallized. The conditions under which these polymorphs formed are compared with crystallization in Si3N4.

  14. Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes.

    Science.gov (United States)

    Ibanez-Garcia, Nuria; Mercader, Manel Bautista; Mendes da Rocha, Zaira; Seabra, Carlos Antonio; Góngora-Rubio, Mario Ricardo; Chamarro, Julian Alonso

    2006-05-01

    In this paper, the low-temperature co-fired ceramics (LTCC) technology, which has been commonly used for electronic applications, is presented as a useful alternative to construct continuous flow analytical microsystems. This technology enables not only the fabrication of complex three-dimensional structures rapidly and at a realistic cost but also the integration of the elements needed to carry out a whole analytical process, such as pretreatment steps, mixers, and detection systems. In this work, a simple and general procedure for the integration of ion-selective electrodes based on liquid ion exchanger is proposed and illustrated by using ammonium- and nitrate-selective membranes. Additionally, a screen-printed reference electrode was easily incorporated into the microfluidic LTCC structure allowing a complete on-chip integration of the potentiometric detection. Analytical features of the proposed systems are presented.

  15. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  16. Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Low-Cost Light-Weight Proppant Ceramics

    Science.gov (United States)

    Wang, K. Y.; Wang, H. J.; Zhou, Y.; Wu, Y. Q.; Li, G. M.; Tian, Y. M.

    2017-09-01

    In this paper, the low-cost light-weight proppant ceramics were prepared with the solid wastes of coal gangue as the raw materials, and the effect of sintering temperature on the apparent porosity, bulk density, bending strength, microstructure and phase composition were investigated. The results showed that the ceramics, sintered at 1350°C, has the best performance with the bending strength of 85MPa, bulk density of 2.7 g/cm3 and apparent porosity of 18%. These properties of ceramics were very close to that of the bauxite-sintered, and thus the gangue were very probably selected for the preparation of proppants that involved in the exploitation of coalbed methane.

  17. Tm3+ Modified Optical Temperature Behavior of Transparent Er3+-Doped Hexagonal NaGdF4 Glass Ceramics

    Science.gov (United States)

    E, Chengqi; Bu, Yanyan; Meng, Lan; Yan, Xiaohong

    2017-06-01

    Er3+-doped and Er3+-Tm3+-co-doped transparent hexagonal NaGdF4 glass ceramics are fabricated via melt-quenching method. The emissions of Er3+-doped NaGdF4 glass ceramics are adjusted from the green to red by varying the concentration of Tm3+ ion under the excitation of 980 nm. The spectrum, thermal quenching ratio, fluorescence intensity ratios, and optical temperature sensitivity of the transparent glass ceramics are observed to be dependent on the pump power. The maximum value of relative sensitivity reaches 0.001 K-1 at 334 K in Er3+-doped NaGdF4, which shifts toward the lower temperature range by co-doping with Tm3+ ions, and has a maximum value of 0.00081 K-1 at 292 K. This work presents a method to improve the optical temperature behavior of Er3+-doped NaGdF4 glass ceramics. Moreover, the relative sensitivity SR is proved to be dependent on the pump power of 980-nm lasers in Er3+-doped NaGdF4 and Er3+-Tm3+-co-doped NaGdF4.

  18. Tm3+ Modified Optical Temperature Behavior of Transparent Er3+-Doped Hexagonal NaGdF4 Glass Ceramics.

    Science.gov (United States)

    E, Chengqi; Bu, Yanyan; Meng, Lan; Yan, Xiaohong

    2017-12-01

    Er3+-doped and Er3+-Tm3+-co-doped transparent hexagonal NaGdF4 glass ceramics are fabricated via melt-quenching method. The emissions of Er3+-doped NaGdF4 glass ceramics are adjusted from the green to red by varying the concentration of Tm3+ ion under the excitation of 980 nm. The spectrum, thermal quenching ratio, fluorescence intensity ratios, and optical temperature sensitivity of the transparent glass ceramics are observed to be dependent on the pump power. The maximum value of relative sensitivity reaches 0.001 K-1 at 334 K in Er3+-doped NaGdF4, which shifts toward the lower temperature range by co-doping with Tm3+ ions, and has a maximum value of 0.00081 K-1 at 292 K. This work presents a method to improve the optical temperature behavior of Er3+-doped NaGdF4 glass ceramics. Moreover, the relative sensitivity SR is proved to be dependent on the pump power of 980-nm lasers in Er3+-doped NaGdF4 and Er3+-Tm3+-co-doped NaGdF4.

  19. Tough yttria-stabilized zirconia ceramic by low-temperature spark plasma sintering of long-term stored nanopowders.

    Science.gov (United States)

    Bezdorozhev, Oleksii; Borodianska, Hanna; Sakka, Yoshio; Vasylkiv, Oleg

    2011-09-01

    Weakly agglomerated 1.75 and 3 mol% yttria stabilized zirconia nanopowders were used in this study after six years of storage in vacuum-processed plastic containers. The proper storage conditions of the Y-TZP nanopowders avoided the hard agglomeration. Untreated and bead-milled nanopowders were used to obtain dense ceramics by slip casting and subsequent low-temperature sintering. Fully dense nanostructured 1.75Y-TZP and 3Y-YZP ceramics with and without doping of 1 wt% Al2O3 were produced by an optimized spark plasma sintering (SPS) technique at the temperatures of 1050-1150 degrees C at a pressure of 100 MPa. The SPS has revealed the clear advantage of consolidation of the weakly agglomerated nanopowders without preliminary deagglomeration. The Vickers hardness of both the low-temperature and spark plasma sintered samples was found to lie in the range of 10.98-13.71 GPa. A maximum fracture toughness of 15.7 MPa m(1/2) (average 14.23 MPa m(1/2)) was achieved by SPS of the 1.75Y-TZP ceramic doped with 1 wt% Al2O3 whereas the toughness of the 3Y-TZP ceramics with and without alumina doping was found to vary between 3.55 and 5.5 MPa m(1/2).

  20. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang

    2012-12-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  1. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  2. Lateralized Difference in Tympanic Membrane Temperature: Emotion and Hemispheric Activity

    Directory of Open Access Journals (Sweden)

    Ruth E Propper

    2013-03-01

    Full Text Available We review literature examining relationships between tympanic membrane temperature (TMT, affective/motivational orientation, and hemispheric activity. Lateralized differences in TMT might enable real-time monitoring of hemispheric activity in real-world conditions, and could serve as a corroborating marker of mental illnesses associated with specific affective dysregulation. We support the proposal that TMT holds potential for broadly indexing lateralized brain physiology during tasks demanding the processing and representation of emotional and/or motivational states, and for predicting trait-related affective/motivational orientations. The precise nature of the relationship between TMT and brain physiology, however, remains elusive. Indeed the limited extant research has sampled different participant populations and employed largely different procedures and measures, making for seemingly discrepant findings and implications. We propose, however, that many of these discrepancies can be resolved by considering how emotional states map onto motivational systems, and further examining how validated methods for inducing lateralized brain activity might affect TMT.

  3. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis.

    Science.gov (United States)

    Pereira, G K R; Venturini, A B; Silvestri, T; Dapieve, K S; Montagner, A F; Soares, F Z M; Valandro, L F

    2015-03-01

    The aim of this study was to systematically review the literature to assess if low-temperature degradation (LTD) simulation in autoclave promotes deleterious impact on the mechanical properties and superficial characteristics of Y-TZP ceramics compared to the non-aged protocol. The MEDLINE via PubMed electronic database was searched with included peer-reviewed publications in English language and with no publication year limit. From 413 potentially eligible studies, 49 were selected for full-text analysis, 19 were included in the systematic review with 12 considered in the meta-analysis. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. Statistical analysis was performed using RevMan 5.1, with random effects model, at a significance level of ppressure and temperature). Risk of bias analysis showed that only 1 study presented high risk, while the majority showed medium risk. Five meta-analyzes (factor: aging×control) were performed considering global and subgroups analyzes (pressure, time, temperature and m-phase % content) for flexural strength data. In the global analysis a significant difference (p20h. However, for shorter aging times (≤20h), there was no difference between groups. Pressure subgroup analysis presented a statistical difference (ppressure ≥2bar was employed, favoring non-aging group. Temperature subgroup analysis showed a statistical difference (peffect of LTD depends on some methodological parameters indicating that aging time higher than 20h; pressure ≥2bar and temperature of 134°C are ideal parameters to promote LTD effects, and that those effect are only observed when more than 50% m-phase content is observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  5. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Energy Technology Data Exchange (ETDEWEB)

    Sliney, H.E.; Dellacorte, C. (NASA Lewis Research Center, Cleveland, OH (United States))

    1994-07-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  6. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  7. Stress analysis and fail-safe design of bilayered tubular supported ceramic membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin

    2014-01-01

    . Stress distributions in two membrane systems have been analyzed and routes to minimize stress are proposed. For a Ba0.5Sr0.5Co0.8Fe0.2O3−δBa0.5Sr0.5Co0.8Fe0.2O3−δ membrane supported on a porous substrate of the same material under pressure-vacuum operation, the optimal configuration in terms...

  8. Seal between metal and ceramic conduits

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, Richard Paul; Tentarelli, Stephen Clyde

    2015-02-03

    A seal between a ceramic conduit and a metal conduit of an ion transport membrane device consisting of a sealing surface of ceramic conduit, a sealing surface of ceramic conduit, a single gasket body, and a single compliant interlayer.

  9. Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells

    Science.gov (United States)

    Shin, Dong Won; Kang, Na Rae; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Won Hyo; Lee, Young Moo

    2014-09-01

    Inorganic-organic composite membranes are fabricated using zirconium acetylacetonate nanoparticles and biphenol-based sulfonated poly(arylene ether sulfone) as an inorganic, proton conducting nanomaterial and a polymer matrix, respectively. An amphiphilic surfactant (Pluronic®) induces distribution of the inorganic nanoparticles over the entire polymer membrane. The composite membranes are thermally stable up to 200 °C. Zirconium acetylacetonate improves inter-chain interactions and the robustness of polymer membranes resulting in excellent membrane mechanical properties. In addition, composite membranes show outstanding proton conductivity compared to that of the pristine membrane at medium temperatures (80-120 °C) and low relative humidity (<50%) conditions. This improvement is due to the presence of acetylacetonate anions, which bind water molecules and act as an additional proton conducting site and/or medium. Therefore, the composite membranes significantly outperform the pristine membrane in fuel cell performance tests at medium temperatures and low relative humidity.

  10. NATO Advanced Research Workshop on Boron Rich Solids Sensors for Biological and Chemical Detection, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  11. Simulation of the dynamic fracture of ceramic materials based on ZrB2 in a wide temperature range

    Science.gov (United States)

    Fedorov, A. Yu.; Skripnyak, E. G.; Skripnyak, V. V.; Vaganova, I. K.

    2017-12-01

    The damage kinetics and dynamic fracture of nanostructured ZrB2-based ceramics in a wide range of temperatures were studied by the numerical simulation method. 3D models taking into account the distribution of microvoids and inclusions were used for computer simulation of deformation and fracture of ZrB2-based ceramic materials. It was shown that the dynamic fracture of ZrB2-B4C nanocomposites is quasi-brittle in a wide temperature range. The failure is caused by microcrack nucleation and coalescence. The threshold failure stresses for ZrB2-B4C nanocomposites under compression in the strain rate range 10-3-106 s-1 and temperature range from 297 to 1673 K are predicted.

  12. High temperature properties of ceramic fibers and insulations for thermal protection of atmospheric entry and hypersonic cruise vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.

    1988-01-01

    Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.

  13. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  14. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    Science.gov (United States)

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH 4 /g COD removed . Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m -2  h -1 (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m -3  d -1 . On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights

  15. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    Science.gov (United States)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  16. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    Science.gov (United States)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  17. Effects of body formulation and firing temperature to properties of ceramic tile incorporated with electric arc furnace (EAF) slag waste

    Science.gov (United States)

    Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu

    2017-07-01

    Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).

  18. Study of phase development in alumina-spodumene ceramics by high temperature neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, B.K. [University of Technology, Sydney, NSW (Australia). Microstructural Analysis Unit; Latella, B.A.; Hunter, B.A. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); O`Connor, B.H. [Curtin University of Technology, Perth, WA (Australia). Department of Applied Physics

    1999-12-01

    Full text: Melting and crystallisation of minor phases are important in many material systems which contain impurities and/or grain boundary liquid phases. Grain boundary glassy phases are generally not thermodynamically stable, and can devitrify during the sintering process or from other high temperature exposure. Characterising the minor phase assemblage in these types of materials has implications in processing, microstructural design and in-service use, particularly fluctuating thermal environments. An in situ high temperature neutron diffraction (ND) technique was used to follow the phase dynamics on sintering an alumina-spodumene ceramic as well as the crystallisation kinetics of the evolving crystalline phase in real time. The main benefit of using ND analysis in the present work is that it provides bulk specimen character of the material which is important in quantitatively extracting phase composition information. Likewise, most diffraction measurements are conducted with ambient or static temperature data, collected after specimens have been heat-treated and then cooled. Such data may yield misleading information particularly in relation to non-equilibrium phases. Hence dynamic measurements are clearly preferable as a direct means of confirming sintering processes. ND measurements were performed using the High Flux Australian Reactor (HIFAR) neutron source operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights, NSW, Australia. The ND patterns collected on heating the compacts provided relevant information for optimising materials processing and sintering protocols. Similarly, the ND patterns collected for three specific cooling schemes yielded significant details of evolution and crystallisation of the minor phase. The principal aim was to demonstrate the fundamental influence of the minor crystalline phase (and hence glassy phase) on properties and to manipulate and tailor the phase structure by controlled

  19. Evaluation of an innovative high temperature ceramic wafer seal for hypersonic engine applications. Ph.D. Thesis, 1991

    Science.gov (United States)

    Steinetz, Bruce M.

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the design, development, analytical and experimental evaluation of a new ceramic wafer seal that shows promise of meeting these demands will be addressed. A high temperature seal test fixture was designed and fabricated to measure static seal leakage performance under engine simulated conditions. Ceramic wafer seal leakage rates are presented for engine-simulated air pressure differentials (up to 100 psi), and temperature (up to 1350 F), sealing both flat and distorted wall conditions, where distortions can be as large as 0.15 inches in only an 18 inch span. Seal leakage rates are low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure and wall conditions considered. A seal leakage model developed from externally-pressurized gas film bearing theory is also presented. Predicted leakage rates agree favorably with the measured data for nearly all conditions of temperature and pressure. Discrepancies noted at high engine pressure and temperature are attributed to thermally-induced, non-uniform changes in the size and shape of the leakage gap condition. The challenging thermal environment the seal must operate in places considerable demands on the seal concept and material selection. Of the many high temperature materials considered in the design, ceramics were the only materials that met the many challenging seal material design requirements. Of the aluminum oxide, silicon carbide, and silicon nitride ceramics considered in the material ranking scheme developed herein, the silicon nitride

  20. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    DEFF Research Database (Denmark)

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter

    Nowadays the need for sustainable water treatment is essential because water shortages are increasing. Depending on the wastewater treatment plant (WWTP) effluent constituents, the effluent cannot be simply discharged to environment because it contains toxic ions and organic micropollutants which...... and Vibrio fischeri suggested that effluent polishing with γ-alumina membrane reduced overall acute toxicity of the treated water....

  1. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  2. Production of Ceramic Balls by High Temperature Atomization of Mine Wastes

    Science.gov (United States)

    Park, Hyunsik; Ha, Minchul; Yang, Dong-hyo; Sohn, Jeong-soo; Park, Joohyun

    Gold tailing, red mud and waste limestones are industrial wastes that are mostly landfilled near the process plants. These increase the environmental risks as well as the necessity of waste management. Recycling of materials has been limited due to the fine particle sizes, heavy metals and unique oxide compositions. The authors investigated the potential utilization of these industrial wastes by melting and granulation technique. As quartz, hematite, alumina and lime consist more than 90wt% of mine wastes, CaO-FetO-Al2O3-SiO2 quaternary oxide system was applied to the thermodynamic calculations. Compositions of molten oxides were designed considering the lowest melting temperature and the adequate viscosity for atomization. Samples were melted by high frequency induction furnace then the atomization was carried out by air blowing technique. Viscosities of the melts were measured to quantify the optimum melting and atomization condition. Size distribution of the produced ceramic balls was investigated to estimate potential of the product to be used as abrasive materials.

  3. High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes

    Science.gov (United States)

    Safanama, Dorsasadat; Adams, Stefan

    2017-02-01

    Due to their extremely high specific energy, rechargeable Li-air batteries could meet the demand for large-scale storage systems to integrate renewable sources into the power grid. Li-air batteries with aqueous catholytes with high solubility of discharge products have a higher potential to reach their slightly lower theoretical limits in practical devices. In this work, we demonstrate aqueous and hybrid Li-air batteries with NASICON-type Li1+xAxGe2-x(PO4)3 ceramic as anode-protecting membrane. The LAGP ceramic pellets with room temperature conductivity >10-4 S cm-1 are synthesized by melt quenching and subsequently annealed based on our optimized heat treatment cycle. Hybrid Li-air batteries are assembled by sandwiching LAGP membranes between Li-anode chamber and catholyte solutions (of various pH values) with CNT/Pt as air-cathode. When the two electron reduction mechanism prevails, overpotentials below 0.2 V are achieved for currents up to 0.07 mA cm-2 leading to energy efficiencies exceeding 98%.

  4. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  5. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  6. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining

    Science.gov (United States)

    2015-03-16

    welding was used to join diboride based ceramics . Billets of diborides such as ZrB2, TiB2, and HfB2 were fabricated and machined into smaller...3000 ○ C. The general public thinks of 63 ceramics as sinks, tiles , or plates. Further, ask the average non-materials engineer to describe a...FA9550-12-C-0060 Reactive Fusion W elding for Ultra-High Temperatu re Ceramic Composite Joining 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  8. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2008-07-15

    A sodium (Na) Super Ion Conductor (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane disk containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a 19M NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes. In actual waste tests, average sodium transport rates of 10.3 kg/day/m2 were achieved at average sodium transport efficiencies of 99%. The membrane was found to be highly selective to sodium ions resulting in no detectable cation transport except Na and a small quantity (0.04% to 0.06%) of 137Cs. An average decontamination factor of 2000 was observed with respect to 137Cs. As expected, Gibbsite precipitation was observed as OH- ions were depleted from the tank waste.

  9. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  11. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Directory of Open Access Journals (Sweden)

    D. Belavic

    2012-04-01

    Full Text Available The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s, mixer(s, reformer and combustor. Low-temperature co-fired ceramic (LTCC technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g.

  12. Laser all-ceramic crown removal and pulpal temperature--a laboratory proof-of-principle study.

    Science.gov (United States)

    Rechmann, P; Buu, N C H; Rechmann, B M T; Finzen, F C

    2015-11-01

    The objective of this proof-of-principle laboratory pilot study was to evaluate the temperature increase in the pulp chamber in a worst case scenario during Er:YAG laser debonding of all-ceramic crowns. Twenty extracted molars were prepared to receive all-ceramic IPS E.max CAD full contour crowns. The crowns were bonded to the teeth with Ivoclar Multilink Automix. Times for laser debonding and temperature rise in the pulp chamber using micro-thermocouples were measured. The Er:YAG was used with 560 mJ/pulse. The irradiation was applied at a distance of 5 mm from the crown surface. Additional air-water spray for cooling was utilized. Each all-ceramic crown was successfully laser debonded with an average debonding time of 135 ± 35 s. No crown fractured, and no damage to the underlying dentin was detected. The bonding cement deteriorated, but no carbonization at the dentin/cement interface occurred. The temperature rise in the pulp chamber averaged 5.4° ± 2.2 °C. During 8 out of the 20 crown removals, the temperature rise exceeded 5.5 °C, lasting 5 to 43 s (average 18.8 ± 11.6 s). A temperature rise of 11.5 °C occurred only once, while seven times the temperature rise was limited to 6.8 ± 0.5 °C. Temperature rises above 5.5 °C occurred only when the laser was applied from one side and additional cooling from the side opposite the irradiation. Er:YAG laser energy can successfully be used to efficiently debond all-ceramic crowns from natural teeth. Temperature rises exceeding 5.5 °C only occur when an additional air/water cooling from a dental syringe is inaccurately directed. To avoid possible thermal damage and to allow further heat diffusion, clinically temperature-reduced water might be applied.

  13. Separation of BSA through FAU-type zeolite ceramic composite membrane formed on tubular ceramic support: Optimization of process parameters by hybrid response surface methodology and biobjective genetic algorithm.

    Science.gov (United States)

    Vinoth Kumar, R; Ganesh Moorthy, I; Pugazhenthi, G

    2017-08-09

    In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179 µm and 1.62 × 10-7 m3/m2 s kPa, respectively, which are lower than that of the support (pore size of 0.309 µm and water permeability of 5.93 × 10-7 m3/m2 s kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94-275.79 kPa), concentration of BSA (100-500 ppm), and solution pH (2-4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66 × 10-5 m3/m2 s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100 ppm BSA concentration, 2 pH solution, and 275.79 kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.

  14. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  15. Reliable Direct Bond Copper Ceramic Packages for High Temperature Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop highly reliable, hermetic, Si3N4 ceramic multichip modules to integrate commercially available SiC power devices to build power...

  16. Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale H₂ production plant.

    Science.gov (United States)

    Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin

    2015-03-18

    The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  17. Development of oxygen-permeable ceramic membranes for NOx-sensors

    NARCIS (Netherlands)

    Schulte, Thomas; Waser, Rainer; Romer, E.W.J.; Bouwmeester, Henricus J.M.; Nigge, Ulrich; Wiemhöfer, Hans-Dieter

    2001-01-01

    Several mixed ionic–electronic conductors such as Gd1–xCaxCoO3–d (GCC) and La1–xSrxCo1–yCuyO3–d as well as composite materials like Gd1–xCaxCoO3–d / Ce1–xGdxO2–d (GCCCGO) have been investigated with respect to their use as highly selective membranes within a new amperometric sensor system. Materials

  18. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120/sup 0/C, and was found to be approximately five times greater at -120/sup 0/C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane.

  19. Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration

    KAUST Repository

    Zaouri, Noor A

    2017-03-21

    In the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms.

  20. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  1. Temperature- and magnetic field-dependence of exchange bias in SrCoO2.29 ceramics

    Directory of Open Access Journals (Sweden)

    L. Xie

    2017-01-01

    Full Text Available A cation’s oxidation state in a transition metal oxide may significantly change its physical and chemical properties. In this work, magnetic properties of both cubic SrCoO2.29 and hexagonal SrCoO2.50 ceramics, annealed following a selected yet simple process, have been studied. The SrCoO2.50 ceramics annealed in air displays an unusual paramagnetic property, and the SrCoO2.29 quenched into water shows a short-range ferromagnetic coupling in the antiferromagnetic background. Exchange coupling at the ferromagnetic/antiferromagnetic interfaces brings out an obvious exchange bias effect in the SrCoO2.29 sample. Due to its complicated magnetic states, the exchange bias effect presents strong temperature and cooling field dependences.

  2. Reactive Spark Plasma Sintering and Mechanical Properties of Zirconium Diboride–Titanium Diboride Ultrahigh Temperature Ceramic Solid Solutions

    Directory of Open Access Journals (Sweden)

    Karthiselva N. S.

    2016-09-01

    Full Text Available Ultrahigh temperature ceramics (UHTCs such as diborides of zirconium, hafnium tantalum and their composites are considered to be the candidate materials for thermal protection systems of hypersonic vehicles due to their exceptional combination of physical, chemical and mechanical properties. A composite of ZrB2-TiB2 is expected to have better properties. In this study, an attempt has been made to fabricate ZrB2-TiB2 ceramics using mechanically activated elemental powders followed by reactive spark plasma sintering (RSPS at 1400 °C. Microstructure and phase analysis was carried out using X-ray diffractometer (XRD and electron microscopy to understand microstructure evolution. Fracture toughness and hardness were evaluated using indentation methods. Nanoindentation was used to measure elastic modulus. Compressive strength of the composites has been reported.

  3. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  4. A piezoelectric active mirror suspension system embedded into low-temperature cofired ceramic.

    Science.gov (United States)

    Sobocinski, Maciej; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli

    2012-09-01

    Low-temperature cofired ceramic (LTCC) has proven to be a cost-effective, flexible technology for producing complicated structures such as sensors, actuators, and microsystems. This paper presents a piezoelectric active mirror suspension system embedded into LTCC. In the structure, the LTCC was used as a package, for the passive layers of piezoelectric monomorphs, as support for the mirrors, and as a substrate for the conductors. The active mirror structure, 17 mm in diameter, was made by compiling 20 LTCC layers using common LTCC processing techniques. Each sample contained a laser-micromachined bulk lead zirconate titanate (PZT) structure which formed a monomorph with the LTCC during the firing process. A mirror substrate (diameter 4 mm) was mounted in the middle of the monomorph arms for evaluation of the positioning performance, where each of the three arms had independent signal electrodes and a common ground electrode. Electrical and electromechanical properties were investigated with an LCR meter, network analyzer, and laser vibrometer for the different arms and the mirror. The active mirror structure exhibited more than 1 μm dc displacement for mirror leveling and also allowed small changes in mirror angle up to 0.06°. The first bending resonance frequency of the structure with the mirror was detected at 11.31 kHz with 4.0 μm displacement; 13.02 kHz and 2.7 μm were obtained without the mirror. The structure exhibited characteristics feasible for further utilization in tunable Fabry-Perot filter applications, allowing the mounting of active mirrors on both sides with distance and angle control.

  5. Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration.

    Science.gov (United States)

    Zaouri, Noor; Gutierrez, Leonardo; Dramas, Laure; Garces, Daniel; Croue, Jean-Philippe

    2017-06-01

    In the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular dynamics simulation of membrane in room temperature ionic liquids

    Science.gov (United States)

    Theng, Soong Guan; Jumbri, Khairulazhar bin; Wirzal, Mohd Dzul Hakim

    2017-10-01

    The polyvinylidene difluoride (PVDF) membrane has been a popular material in membrane separation process. In this work, molecular dynamic simulation was done on the PVDF membrane with 100 wt% IL and 50 wt% IL in GROningen MAchine for Chemical Simulations (GROMACS). The results was evaluated based on potential energy, root mean square deviation (RMSD) and radial distribution function (RDF). The stability and interaction of PVDF were evaluated. Results reveal that PVDF has a stronger interaction to [C2bim]+ cation compared to water and bromine anion. Both potential energy and RMSD were lower when the weight percentage of IL is higher. This indicates that the IL is able to stabilize the PVDF structure. RMSD reveals that [C2bim]+ cation is dominant at short distance (less than 1 nm), indicating that strong interaction of cation to PVDF. This understanding of the behavior of PVDF-IL could be used as a reference for future development of stronger membrane.

  7. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  8. The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jinqiao; Zhang, Ling; Xie, Bing; Jiang, Shenglin, E-mail: nanx1013@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-09-28

    Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processes are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.

  9. Development and application of new membranes at high temperatures in order to get hydrogen from fossil fuel. Final report. Entwicklung und Einsatz neuer Membranen bei hohen Temperaturen zur Wasserstoffgewinnung aus fossilen Energietraegern. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, F.; Luecke, L.; Oertel, M.; Pavlidis, S.; Schmitz, J.

    1990-06-01

    The use of membranes in dehydration reactions allows hydrogen to be extracted in one process step; at the same time the yield from the reactions is increased by the product extraction. Metallic membranes of titanium/nickel and coated vanadium as well as ceramic membranes have been developed on the basis of separation layers of aluminium oxide and zeolites. Whereas the permeation rates through TiNi are around one magnitude below those of palladium, the figures for vanadium are equal to, and in some cases even exceed those of Pd. When ceramic membranes are used no high-purity hydrogen is produced, but rather the feed gas is enriched with H{sub 1} Separation factors for H{sub 1}/N{sub 2} of between 2 and 3 are achieved with {gamma}-Al{sub 2}O{sub 3} membranes, and between 3 and 6 with zeolite membranes. The use of metal membranes in a steam reforming plant results in increases in the yield of between 10 and 45% depending on the reaction pressure. The service lives of the membrane modules developed when used in a test plant are currently around 2500 hours. The calculations carried out parallel to this are a good reflection of the test results for commercial plants without membranes and laboratory system with integrated membranes. An economic appraisal has shown that the hydrogen production costs in a conventional steam reforming plant are around 5% lower than those of a system using membranes; the relationship does, however, change in favour of the steam reformer with integrated membranes if high temperatures are used as a source of heat. (orig.) With 61 refs., 16 tabs., 55 figs.

  10. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  11. Electromagnetic interference shielding performance of nano-layered Ti3SiC2 ceramics at high-temperatures

    Directory of Open Access Journals (Sweden)

    Sigong Li

    2018-01-01

    Full Text Available The X-band electromagnetic interference (EMI shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.

  12. Influence of temperature on the dielectric nonlinearity of BaTiO{sub 3}-based multi-layer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok-Hyun, E-mail: seokhyun72.yoon@samsung.com; Kim, Mi-Yang [LCR Materials Group, Corporate R& D Institute, Samsung Electro-Mechanics Co., Ltd., Suwon, Gyunggi-Do 443-743 (Korea, Republic of)

    2016-06-13

    Temperature dependence of the dielectric nonlinearity was investigated for the BaTiO{sub 3} multilayer ceramic capacitor. The decrease in temperature caused a significant increase in the degree of dielectric nonlinearity. The Preisach analysis shows that such effect corresponds to a decrease in reversible and a significant increase in irreversible domain wall contribution to polarization. The magnitude of spontaneous polarization (P{sub S}) was increased with decreasing temperature. It can be associated with phase transition from pseudo-cubic to monoclinic and its resultant change in the polar direction, which was observed through transmission electron microscopy. These results demonstrate that the increase in P{sub S} with the decrease in temperature inhibits domain wall motion in low driving field as it is anticipated to increase the degree of intergranular constraints during domain wall motion. But it results in a more steep increase in the dielectric constants beyond the threshold field where domain wall motion can occur.

  13. Development of low-expansion ceramics with strength retention to elevated temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, D.A.; Brown, J.J. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1994-09-01

    The development of advanced engines has resulted in the need for new ceramic compositions which exhibit thermo-mechanical properties suitable for the engine environment, e.g., low thermal expansion, stability to 1,200 C, and thermal shock resistance. To meet these goals, a two phase research program was instituted. In the first phase, new oxide ceramics were identified in the AlPO{sub 4}-{beta}-eucryptite, {beta}-cristobalite, mullite and zircon systems. This research focused on screening and property characterization of ceramics in the four systems. The most promising compositions in the AlPO{sub 4}-{beta}-eucryptite and zircon systems were then further evaluated and developed in the second phase with the goal of being ready for prototype testing in actual engines. Of the compositions, calcium magnesium zirconium phosphate (zircon system) exhibits the most desirable properties and is presently being developed for commercialization.

  14. Synthesis of Doped and non-Doped Nano MgO Ceramic Membranes

    Directory of Open Access Journals (Sweden)

    Shiraz Labib

    2013-12-01

    Full Text Available Doped and non-doped MgO coated thin films on alumina substrates were prepared using a chelating sol-gel method under controlled conditions to prepare nanomaterials with unprecedented properties. The effect of doping of ZnO on thermal, surface and structural properties was investigated using DTA-TG, BET and XRD respectively. Also microstructural studies and coating thickness measurements of MgO thin film were conducted using SEM. An increase in the thermal stability of MgO with increasing ZnO doping percent was observed. The increase of ZnO doping percent showed a marked decrease in the average particle size of MgO powder as a result of the replacement of some Mg2+ by Zn2+ which has similar ionic radius as Mg2+. This decrease in particle size of MgO was also related to the decrease of the degree of MgO crystalinity. The increase of ZnO doping also showed a marked decrease in coating thickness values of the prepared membranes. This decrease was related to the  mechanism of ZnO doping into a MgO crystal lattice.

  15. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.

    Science.gov (United States)

    Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V

    2009-07-15

    The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.

  16. Preparation and Investigation of Poly (N-isopropylacrylamide-acrylamide Membranes in Temperature Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Elham Khodaverdi

    2010-06-01

    Full Text Available Objective(sPhysiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus–responsive drug delivery has been developed.Materials and MethodsIn this study, a kind of poly (N-isopropylacrylamide-acrylamide membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane were investigated in terms of temperature. On-off regulation of drug permeation through the membrane was then studied at temperatures below and above the phase transition temperature of the membrane. Two drugs, vitamin B12 and acetaminophen were chosen as models of high and low molecular weights here, respectively. ResultsIt was indicated that at temperatures below the phase transition temperature of the membrane, copolymer was in a swollen state. Above the phase transition temperature, water was partially expelled from the functional groups of the copolymer. Permeation of high molecular weight drug models such as vitamin B12 was shown to be much more distinct at temperatures below the phase transition temperature when the copolymer was in a swollen state. At higher temperatures when the copolymer was shrunken, drug permeation through the membrane was substantially decreased. However for acetaminophen, such a big change in drug permeation around the phase transition temperature of the membrane was not observed. ConclusionAccording to the pore mechanism of drug transport through hydrogels, permeability of solutes decreased with increasing molecular size. As a result, the relative permeability, around the phase transition temperature of the copolymer, was higher for solutes of high molecular weight.

  17. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8

    NARCIS (Netherlands)

    Yuan, M.; Cohen, M.A.; Steele, G.A.

    2015-01-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14?mK using a three-dimensional optomechanical cavity. Below 200?mK, high-Q modes of the membranes show a diverging increase of Q with

  18. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  19. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna Klym

    2015-03-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to hundreds nm and nanopores until to a few nm. The studied ceramic elements with electrical resistances ~ 10-2-102 MОhm are high humidity sensitive in the region of 30-95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to achievement near to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity result in lose sensitivity up to 40-50 %.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5189

  20. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  1. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  2. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay; Kara, Ayhan; Korkut, Hatun [Sinop Univ. (Turkey). Dept. of Nuclear Energy Engineering

    2016-12-15

    Ultra High Temperature Ceramics (UHTCs) have low density and high melting point. So they are useful materials in the nuclear industry especially reactor core design. Three UHTCs (silicon carbide, vanadium carbide, and zirconium carbide) were evaluated as the nuclear fuel cladding materials. The SERPENT Monte Carlo code was used to model CANDU, PWR, and VVER type reactor core and to calculate burnup parameters. Some changes were observed at the same burnup and neutronic parameters (keff, neutron flux, absorption rate, and fission rate, depletion of U-238, U-238, Xe-135, Sm-149) with the use of these UHTCs. Results were compared to conventional cladding material zircalloy.

  3. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion.

    Science.gov (United States)

    Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling

    2016-03-01

    Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  5. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Temperature Measurement of a Miniature Ceramic Heater in the Presence of an Extended Interfering Background Radiation Source Using a Multiwavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel

    1999-01-01

    Temperature measurement of small (millimeter size) objects is generally difficult and demanding. Measurement involving ceramic materials using the traditional one- and two-color pyrometer is difficult because of their complex optical properties, such as low emissivity which may vary with both temperature and wavelength. Pyrometry applications in an environment with an interfering radiation source of extended dimension adds extra complexity to the process. We show that the multiwavelength pyrometer successfully measured the temperatures of a millimeter (mm) size ceramic heater under these demanding conditions.

  7. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  8. To the description of the temperature and pressure dependences of the thermal conductivity of sandstone and ceramics

    Science.gov (United States)

    Emirov, S. N.; Beybalaev, V. D.; Gadzhiev, G. G.; Ramazanova, A. E.; Amirova, A. A.; Aliverdiev, A. A.

    2017-11-01

    Here we present the results of an experimental study of the temperature and pressure dependences of the heat conductivity of composite compounds. The thermal conductivity of sandstone was measured by the absolute stationary method for pressures up to 400 MPa in the temperature range 273-523 K. From these experimental data we have proposed the equation describing the dependence of the thermal conductivity from the pressure and temperature. We have found that under the action of hydrostatic pressure the intensive growth of the heat-conductivity of gas-saturated sandstone is mainly up to 100 MPa, and then seamlessly switches to saturation. A comparative analysis is carried out with the experimental dependences of the thermal conductivity of ceramics (lanthanum sulfide LaS1.48).

  9. Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method

    Science.gov (United States)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Linkov, Vladimir; Pasupathi, Sivakumar

    2014-11-01

    In this work, membrane electrode assemblies (MEAs) prepared by catalyst coating membrane (CCM) method are investigated for reduced platinum (Pt) loading and improved Pt utilization of high temperature proton exchange membrane fuel cell (PEMFC) based on phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane. The results show that CCM method exhibits significantly higher cell performance and Pt-specific power density than that of MEAs prepared with conventional gas diffusion electrode (GDE) under a low Pt loading level. In-suit cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) show that the MEAs prepared by the CCM method have a higher electrochemical surface area (ECSA), low cell ohmic resistance and low charge transfer resistance as compared to those prepared with GDEs at the same Pt loading.

  10. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 108

    Science.gov (United States)

    Yuan, Mingyun; Cohen, Martijn A.; Steele, Gary A.

    2015-12-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14 mK using a three-dimensional optomechanical cavity. Below 200 mK, high-Q modes of the membranes show a diverging increase of Q with decreasing temperature, reaching Q =1.27 ×108 at 14 mK, an order of magnitude higher than that reported before. The ultra-low dissipation makes the membranes highly attractive for the study of optomechanics in the quantum regime, as well as for other applications of optomechanics such as microwave to optical photon conversion.

  11. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States); Drury, K. [Corning Inc., Painted Post, NY (United States); Makris [Corning Inc., Acton, MA (United States); Stubblefield, D.J. [Corning Inc., Corning, NY (United States)

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  12. Effect of surfactants and temperature on the hyperfiltration performance of poly(ether/urea) membranes

    Science.gov (United States)

    Leban, M. I.; Wydeven, T. J.

    1984-01-01

    The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.

  13. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner......, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack...

  14. Electrolysis test of different composite membranes at elevated temperatures

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar

    sprayed directly onto the gas diffusion layers (GDLs). For the anode side GDL a tantalum covered stainless steel felt was used, whereas on the cathode side, the GDLs were wet-proofed carbon cloth. The composite membranes were prepared from commercial available Nafion® membranes. They were treated over.......7V for a Nafion® 115 treated with both H3PO4 and ZrP. Variations of the GDL on the anode side were tested. Different kinds of stainless steel felts were examined to find the best candidate for the final electrolysis setup. The felts differed in both tread thickness and overall thickness. The felts...... were covered with tantalum to protect the stainless steel. The felts were covered either once or twice to obtain different thicknesses of the tantalum. Experiments with PTFE treated felt was also preformed to examine if wet-proofing the anode GDL would improve the overall performance of the cell...

  15. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  16. Large electrocaloric efficiency over a broad temperature span in lead-free BaTiO3-based ceramics near room temperature

    Science.gov (United States)

    Li, Tangyuan; Liu, Xinyu; Shi, Sheng; Yin, Yihao; Li, Hongfa; Wang, Qiongyan; Zhang, Yunlu; Bian, Jihong; Rajput, S. S.; Long, Changbai; Peng, Biaolin; Bai, Yang; Wang, Yunzhi; Lou, Xiaojie

    2017-11-01

    We report a large electrocaloric efficiency of 0.029 K cm kV-1 at 303 K and in a wide operating temperature range of 293 K to 313 K in a lead-free Ba0.9Sr0.1(Ti0.9Zr0.1)0.95Sn0.05O3 ceramic by using direct electrocaloric effect (ECE) measurements. Sn4+ doping in Ba0.9Sr0.1Ti0.9Zr0.1O3 not only tunes the rhombohedral-to-paraelectric phase transition temperature to room temperature but also slightly widens the phase transition region, by slightly strengthening the diffuse character and maintaining its good ferroelectricity. Also, polar nanoregions embedded in the matrix facilitate polarization rotation because of a flat energy landscape associated with the relaxor-to-ferroelectric phase transition, inducing enhanced entropy changes and consequently excellent ECE performance.

  17. Elaboration of translucent ZnO ceramics by spark plasma sintering under low temperature

    Science.gov (United States)

    Lin, Debao; Fan, Lingcong; Shi, Ying; Xie, Jianjun; Lei, Fang; Ren, Dudi

    2017-09-01

    ZnO is considered to be a potential ultrafast scintillator. In this work, nanosized ZnO powders were synthesized via thermal decomposition of precursors prepared by indirect-precipitation method from zinc nitrate and urea in aqueous solutions. The resultant single phased ZnO powder calcined at 600 °C for 2 h had a primary grain size of 66.0 nm with good dispersity showing excellent sinterability. Translucent ZnO ceramic with a relative density of 99.2% was fabricated successfully by spark plasma sintering at 850 °C for 10 min under the pressure of 80 MPa. The obtained ZnO ceramic exhibited fully dense and homogenous microstructure with average grain size of ∼1 μm, leading to an in-line optical transmission of 11.8% at a wavelength of 950 nm.

  18. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  19. Creep Performance of Oxide Ceramic Fiber Materials at Elevated Temperature in Air and in Steam

    Science.gov (United States)

    2011-03-24

    boundary etching. Kronenberg et al. [74] and Castaing et al. [19] characterized the hydrogen impurities in hydrothermally annealed ceramics and...performed a TEM examination of the alumina specimens tested by Castaing et al. [19]. In general, the study concluded that small grain size promotes...pp. 257-264, 1987. 19. J. Castaing , A. K. Kronenberg, S. H. Kirby and T. E. Mitchell, "Hydrogen defects in α-Al2O3 and water weakening of

  20. EFFECTS OF SINTERING TEMPERATURE ON THE PERFORMANCE OF SrSc0.1Co0.9O3-δOXYGEN SEMIPERMEABLE MEMBRANE

    Directory of Open Access Journals (Sweden)

    P. Zeng

    2015-09-01

    Full Text Available AbstractOur study investigates the influence of sintering temperature on the microstructure (grain size distribution, grain boundary length, electrical conductivity, and oxygen permeation properties of permeation membranes. For this purpose, SrSc0.1Co0.9O3-δ samples with different microstructures were prepared by varying the sintering temperature from 1100 to 1250 ˚C. The average grain sizes were gradually increased, thus the grain boundary lengths decreased with increased sintering temperatures. The influence of the ceramic microstructure on total electrical conductivity was found to be negligible. The oxygen transport properties of the samples were characterized by permeation measurements as a function of temperature in an air/helium oxygen partial pressure gradient. The decrease of the sintering temperature, meaning a decrease of grain size and thus the increase of grain boundary length, leads to an enhanced oxygen permeation flux and a reduced activation energy. This implies that oxygen exchange and transport in the SrSc0.1Co0.9O3-δ membranes occur more rapidly along grain boundaries than in the grain bulk.

  1. Influence of sintering temperature in red ceramic with addition of mill scale; Influencia da temperatura de sinterizacao em ceramica vermelha com adicao de carepa/residuo de laminacao

    Energy Technology Data Exchange (ETDEWEB)

    Arnt, A.B.C.; Rocha, M.R.; Bernardin, A.M.; Meller, J.G., E-mail: anb@unesc.ne [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Engenharia de Materiais. Lab. de Fenomenos de Superficies e Tratamentos Termicos

    2010-07-01

    This study aimed to evaluate the influence of sintering temperature in a red ceramic body with the addition of mill scale. This residue consists of oxides of iron had to replace the function of pigments used in ceramic materials. After chemical characterization, by X-ray diffraction, X-ray fluorescence and scanning electron microscopy, this residue was added at a rate of 5% in commercial ceramic past. The formulations were subjected to different burn temperatures of around 950 deg C, 1000 deg C and 1200 deg C. The formulations were evaluated for physical loss to fire, linear firing shrinkage, water absorption and flexural strength by 3 and intensity of tone. The results indicate that the different firing temperatures influence the strength and stability of tone in the formulations tested. (author)

  2. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  3. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  4. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  5. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    Science.gov (United States)

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.

  6. Separation of gaseous mixtures using inorganic nanofiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Niezyniecki, G.M.; Anderson, M.A.; Hill, C.G. Jr. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-31

    The use of membranes for gas phase separations dates back to the separation of isotopes of uranium hexafluoride in the 1940`s. Presently, both organic and inorganic membranes are used in a variety of industrial separation processes. Potential advantages of ceramic membranes over polymeric membranes include the ability to perform separations at elevated temperatures and in the presence of organic vapors. Various ceramic membranes have been fabricated via sol-gel techniques. These membranes are characterized by mean pore diameters of less than 15 angstroms. The permeabilities of these membranes have been measured for a variety of gases. In addition, permselectivities have been determined for mixtures of these gases. Increases in permeability are observed with increases in applied pressure. The permeability of these membranes to propylene is as much as thirty times greater than to nitrogen. Experimental results indicate that the transport of gases through these membranes involves a surface transport mechanism in addition to Knudsen diffusion.

  7. Temperature and energy effects on secondary electron emission from SiC ceramics induced by Xe17+ions.

    Science.gov (United States)

    Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng

    2017-07-25

    Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.

  8. Hydrocarbon-based fuel cell membranes: Sulfonated crosslinked poly(1,3-cyclohexadiene) membranes for high temperature polymer electrolyte fuel cells

    OpenAIRE

    Deng, Suxiang; Hassan, Mohammad K.; Kenneth A. Mauritz; Mays, Jimmy W.

    2015-01-01

    High temperature fuel cell membranes based on poly(1,3-cyclohexadiene) were prepared by a Polymerization-Crosslinking-Sulfonation (PCS) approach, and a broad range of membrane compositions were achieved using various sulfonating reagents and reaction conditions. Membranes were characterized for their proton conductivity and thermal degradation behavior. Some of the membranes showed up to a 68% increase in proton conductivity as compared to Nafion under the same conditions (100% relative humid...

  9. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  10. Improvement of strength of carbon nanotube-dispersed Si3N4 ceramics by bead milling and adding lower-temperature sintering aids

    Directory of Open Access Journals (Sweden)

    Mitsuaki Matsuoka

    2014-09-01

    Full Text Available Studies on the dispersion of carbon nanotubes (CNTs in silicon nitride (Si3N4 ceramics to provide the latter with electrical conductivity have been carried out in recent years. The density and the strength of Si3N4 ceramics were degraded, however, because the CNTs prevented Si3N4 from densifying. The CNTs disappeared after firing at high temperatures owing to the reaction between CNTs and Si3N4 or SiO2, or both Si3N4 and SiO2. In order to improve the density and suppress the reaction, sintering aids for lower-temperature densification of Si3N4 are needed. In this study, we added HfO2 as a sintering aid to a Si3N4–Y2O3–Al2O3–AlN–TiO2 system to fabricate CNT-dispersed Si3N4 ceramics at lower temperatures. Furthermore, bead milling was applied to disperse the CNTs homogeneously. Agglomerates of CNTs were pulverized by bead milling without obvious changes in morphology to eliminate larger fracture origins in CNT-dispersed ceramics. As a result of both the addition of HfO2 and bead milling, we successfully fabricated dense CNT-dispersed Si3N4 ceramics with high strength and electrical conductivity.

  11. Effects of different pretreatments on the performance of ceramic ultrafiltration membrane during the treatment of oil sands tailings pond recycle water: a pilot-scale study.

    Science.gov (United States)

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; El-Din, Mohamed Gamal

    2015-03-15

    Membrane filtration is an effective treatment method for oil sands tailings pond recycle water (RCW); however, membrane fouling and rapid decrease in permeate flux caused by colloids, organic matter, and bitumen residues present in the RCW hinder its successful application. This pilot-scale study investigated the impact of different pretreatment steps on the performance of a ceramic ultrafiltration (CUF) membrane used for the treatment of RCW. Two treatment trains were examined: treatment train 1 consisted of coagulant followed by a CUF system, while treatment train 2 included softening (Multiflo™ system) and coagulant addition, followed by a CUF system. The results indicated that minimum pretreatment (train 1) was required for almost complete solids removal. The addition of a softening step (train 2) provided an additional barrier to membrane fouling by reducing hardness-causing ions to negligible levels. More than 99% removal of turbidity and less than 20% removal of total organic carbon were achieved regardless of the treatment train used. Permeate fluxes normalized at 20 °C of 127-130 L/m(2) h and 111-118 L/m(2) h, with permeate recoveries of 90-93% and 90-94% were observed for the treatment trains 1 and 2, respectively. It was also found that materials deposited onto the membrane surface had an impact on trans-membrane pressure and influenced the required frequencies of chemically enhanced backwashes (CEBs) and clean-in-place (CIP) procedures. The CIP performed was successful in removing fouling and scaling materials such that the CUF performance was restored to baseline levels. The results also demonstrated that due to their low turbidity and silt density index values, permeates produced in this pilot study were suitable for further treatment by high pressure membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Temperature-induced plasticity in membrane and storage lipid composition: thermal reaction norms across five different temperatures.

    Science.gov (United States)

    Van Dooremalen, Coby; Koekkoek, Jacco; Ellers, Jacintha

    2011-02-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or biochemical traits. Lipid composition may be an important trait underlying fitness response to temperature, because it affects membrane fluidity as well as availability of stored energy reserves. Here, we investigate the effect of temperature on lipid composition of the springtail Orchesella cincta by measuring thermal reaction norms across five different temperatures after four weeks of cold or warm acclimation. Fatty acid composition in storage and membrane lipids showed a highly plastic response to temperature, but the responses of single fatty acids revealed deviations from the expectations based on HVA theory. We found an accumulation of C(18:2n6) and C(18:3n3) at higher temperatures and the preservation of C(20:4n6) across temperatures, which is contrary to the expectation of decreased unsaturation at higher temperatures. The thermal response of these fatty acids in O. cincta differed from the findings in other species, and therefore shows there is interspecific variation in how single fatty acids contribute to HVA. Future research should determine the consequences of such variation in terms of costs and benefits for the thermal performance of species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Denghao Li

    2014-06-01

    Full Text Available CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior, microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from 1250 °C to 1050 °C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3 ceramic sintered at 1100 °C presented good microwave dielectric properties of εr=7.27, Q×f=16,850 GHz and τf=−39.53 ppm/°C, which is much better than those of pure CaSiO3 ceramic sintered at 1340 oC (Q×f=13,109 GHz. The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.

  14. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Savinell, Robert F

    2009-01-01

    havebeenmadeincluding spectroscopy,wateruptake and acid doping, thermal and oxidative stability, conductivity, electro-osmoticwater drag, methanol crossover, solubility and permeability of gases, and oxygen reduction kinetics. Related fuel cell technologies such as electrode and MEA fabrication have been developed......To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, acid–base polymer membranes represent an effective approach. The phosphoric acid-doped polybenzimidazole membrane seems so far the most successful system in the field. It has...... in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer synthesis, membrane casting, physicochemical characterizations and fuel cell technologies. To optimize the membrane properties, high molecular weight polymers...

  15. Development of Pd-Ag Compostie Membrane for Separation of Hydrogen at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2009-02-28

    Pd-based membrane reactor offers the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. In this project to develop a defect-free and hermally-stable Pd-film on microporous stainless steel (MPSS) support for H2-separation and membrane reactor applications, the electroless plating process was revisited with an aim to improve the membrane morphology. Specifically, this study includes; (a) an improvement f activation step using Pulse Laser Deposition (PLD), (b) development of a novel surfactant induced electroless plating (SIEP) for depositing robust Pd-film on microporous support, and (c) application of Pd-membrane as membrane reactor in steam methanol reforming (SMR) reactions.

  16. A solid ceramic electrolyte system for measuring redox conditions in high temperature gas mixing studies

    Science.gov (United States)

    Williams, R. J.

    1972-01-01

    The details of the construction and operation of a gas mixing furnace are presented. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a standard vertical-quench, gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples. The system also contains the highinput impedance electronics necessary for measurements and a simplified version of standard gas mixing apparatus. The calibration and maintenance of the system are discussed.

  17. On the thermal stability of Co{sub 2}Z hexagonal ferrites for low-temperature ceramic cofiring technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kracunovska, S. [Department of SciTec, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena (Germany); Toepfer, J. [Department of SciTec, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena (Germany)], E-mail: joerg.toepfer@fh-jena.de

    2008-04-15

    Co{sub 2}Z hexaferrite Ba{sub 3}Co{sub 2}Fe{sub 24}O{sub 41} was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 deg. C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 deg. C and the Y-type ferrite at 1230 deg. C. The Z-type material has its stability interval between 1300 and 1350 deg. C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 deg. C, intermediate grinding and sintering at 1330 deg. C. The permeability of Co{sub 2}Z-type ferrite of about {mu}=20 is stable up to several 100 MHz, with maximum losses {mu}'' around 700 MHz. Addition of 3 wt% Bi{sub 2}O{sub 3} as sintering aid shifts the temperature of maximum shrinkage down to 950 deg. C and enables sintering of Z-type ferrite powders at 950 deg. C. However, the permeability is reduced to {mu}=3. It is shown here for the first time that Co{sub 2}Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co{sub 2}Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 deg. C.

  18. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Rudbeck, Hans Christian; Chromik, Andreas

    2010-01-01

    Polybenzimidazoles (PBIs) with synthetically modified structures and their blends with a partially fluorinated sulfonated aromatic polyether have been prepared and characterized for high temperature proton exchange membrane fuel cells. Significant improvement in the polymer chemical stability...... to further improve the polymer stability and assist maintaining the membrane integrity. Upon acid doping the membrane swelling was reduced for the modified PBI and their blend membranes, which, in turn, results in enhancement of the mechanical strength, proton conductivity and high temperature fuel cell...

  19. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, V.; Di Blasi, A.; Baglio, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Ornelas, R.; Matteucci, F. [Tozzi Apparecchiature Elettriche SpA, Via Zuccherificio, 10-48010 Mezzano (RA) (Italy); Ledesma-Garcia, J.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico)

    2008-10-15

    The high temperature behaviour of a solid polymer electrolyte (SPE) water electrolyser based on a composite Nafion-SiO{sub 2} membrane was investigated and compared to that of a commercial Nafion membrane. The SPE water electrolyser performance was studied from 80 to 120{sup o}C with an operating pressure varying between 1 and 3 bar abs. IrO{sub 2} and Pt were used as oxygen and hydrogen evolution catalysts, respectively. The assemblies were manufactured by using a catalyst-coated membrane (CCM) technique. The performance was significantly better for the composite Nafion-SiO{sub 2} membrane than commercial Nafion 115. Furthermore, the composite membrane allowed suitable water electrolysis at high temperature under atmospheric pressure. The current densities were 2 and 1.2 A cm{sup -2} at a terminal voltage of 1.9 V for Nafion-SiO{sub 2} and Nafion 115, respectively, at 100{sup o}C and atmospheric pressure. By increasing the temperature up to 120{sup o}C, the performance of Nafion 115 drastically decreased; whereas, the cell based on Nafion-SiO{sub 2} membrane showed a further increase of performance, especially when the pressure was increased to 3 bar abs (2.1 A cm{sup -2} at 1.9 V). (author)

  20. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... m thick layer of TFTCs on 75 mu m thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 mu m liquid Kapton layer using spin coating technique to protect them from environmental...

  1. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  2. Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation

    KAUST Repository

    Alsaadi, Ahmad Salem

    2014-08-13

    This paper discusses the effect of temperature polarization in Vacuum Membrane Distillation (VMD). The main motivation for using VMD in this work is that this module configuration is much simpler and more suitable for this kind of investigation than the other MD configurations such as Direct Contact Membrane Distillation (DCMD). The coupling between heat and mass transfer mechanisms at the feed-membrane interface is presented from a theoretical point of view. In addition, a new simple graphical method and a mathematical model for determining VMD flux are presented. The two methods used in evaluating the extent of temperature polarization effect on water vapor flux (flux sensitivity factors and temperature polarization coefficient (TPC)) are also analyzed and compared. The effect of integrating a heat recovery system in a large scale module on the TPC coefficient has also been studied and presented in this paper. © 2014 Elsevier B.V.

  3. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed an......V higher than that of methanol, indicating less fuel crossover.......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  4. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Science.gov (United States)

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  5. Effects of B{sub 2}O{sub 3} content and sintering temperature on crystallization and microstructure of CBS glass–ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials and Engneering, Beihang University, Beijing 100191 (China); Liu, Jianggao; Feng, Mengjie; Yang, Xinwang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: (a) TEM photogram of CG3 sintered at 800 °C, crystals are obvious; (b) the XRD patterns of CG3 glass samples sintered at various temperatures; (c) SEM photogram of CG3 sintered at 800 °C; (d) Kissinger, Augis–Bennett and Ozawa kinetics plots of CG3 glass samples. - Highlights: • Combining sol–gel method with direct sintering method to reduce the temperature of coatings formation. • Characterizing CaO–SiO{sub 2}–B{sub 2}O{sub 3} glass–ceramic coatings on porous substrates. • Surface crystallization of CBS glass–ceramic coatings: nucleation and kinetics. • Activation energies for crystal growth in CBS glass–ceramics with different contents of B{sub 2}O{sub 3}. - Abstract: Borosilicate glass–ceramics precursors with varying compositional ratios in the CaO–SiO{sub 2}–B{sub 2}O{sub 3} (CBS) system were synthesized by sol–gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass–ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass–ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (E{sub c}) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass–ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The E{sub c} values of CBS glasses and glass–ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B{sub 2}O{sub 3} content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  6. Development of metal-ceramic brazed joints for high temperature applications: example of SiC-Inconel joints

    Energy Technology Data Exchange (ETDEWEB)

    Baffie, T. [CEA/LITEN-DTH, Lab. of Hydrogen Technologies, Grenoble (France); Ziombra, A. [RWTH Aachen (Germany); Schicktanz, R. [BURGMANN Industries, Wolfratshausen (Germany)

    2007-07-01

    For many applications, sintered silicon carbide SiC, used in high temperature and corrosive environments, has to be brazed to a metal. Nowadays, there is still no tight solution for SiC/metal joints working higher than 400 C; this is mainly explained by chemical (high reactivity) and thermomechanical (high thermal expansion mismatch) incompatibilities between ceramics and metals. These two key points were addressed through the use of a low-active filler metal and interlayer materials. Numerical simulation was employed to optimise the design of the joints and the shape of the parts and thus, reduce stresses on SiC. SiC/metal brazed prototypes of industrial parts were fabricated and tested up to 400 C and failure. (orig.)

  7. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3....... A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers...... will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity....

  8. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contracts

    Energy Technology Data Exchange (ETDEWEB)

    Sliney, H.E.; Dellacorte, C. [NASA Lewis Research Center, Cleveland, OH (United States)

    1994-07-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900{degrees}C (in a few cases to 1200{degrees}C) were measured for a hemispherically-tipped pin on a flat sliding contract geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal. 12 refs., 6 figs., 1 tab.

  9. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  10. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    Comparison of the two different fiberglass tabs used during tensile testing...10,000 B.C. and became a means for transporting water and food storage. Eventually, ceramics were used to create thermal and electrical insulators [3...The high strength, electrical insulation properties and the ability to handle relatively high temperature compared to many metallic materials have

  11. Study on high temperature sintering processes of selective laser sintered Al2O3/ZrO2/TiC ceramics

    Directory of Open Access Journals (Sweden)

    Bai P.

    2009-01-01

    Full Text Available High temperature sintering processes of selective laser sintered Al2O3/ZrO2/TiC ceramics were studied. The effects of the sintering temperature and the sintering time on the relative density, strength and fracture toughness of Al2O3/ZrO2/TiC ceramics were investigated. The results showed that the sintering temperature and sintering time had a great effect on the relative density and the mechanical properties of Al2O3/ZrO2/TiC ceramics. The mechanical strength increased from 120MPa to 360MPa and KIC increased from 3.7 J/m2 to 6.9 J/m2 when the sintering temperature increased from 1400ºC to 1600ºC, however, the mechanical strength decreased rapidly from 370MPa to 330MPa and KIC decreased from 6.9 J/m2 to 6.1 J/m2 when the sintering time increased from 30min to 90min. Furthermore, the addition of TiC and ZrO2 in the Al2O3 matrix significantly improved mechanical strength and fracture toughness of the Al2O3 matrix ceramics.

  12. Characteristics of the IR spectra of YBa(2-x)La(x)Cu3O(7-delta) high-temperature superconducting ceramics

    Science.gov (United States)

    Dovgii, Ia. O.; Kityk, I. V.; Lutsiv, R. V.; Malinich, S. Z.; Nosan, A. V.

    1990-09-01

    Experimentally determined Raman scattering spectra are presented for YBa(2-x)La(x)Cu3O(7-delta) superconducting ceramics for different values of x. An analysis of the spectra shows an anomalous temperature dependence of the 150/cm mode. This indicates that heavy rare earth ions may interact with the original lattice and control superconductor parameters.

  13. A high temperature potentiometric CO{sub 2} sensor mixed with binary carbonate and glassy ceramic oxide

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana, L. [Indian Institute of Chemical Technology, Hyderabad, 500-007 (India); Noh, Whyo Sup; Lee, Woon Young [Research Institute of Energy Resources Technology, Chosun University, Gwangju, 501-759 (Korea, Republic of); Jin, Gwang Hu [Department of Advanced Materials and Engineering, Chosun University, Gwangju, 501-759 (Korea, Republic of); Park, Jin Seong [Department of Advanced Materials and Engineering, Chosun University, Gwangju, 501-759 (Korea, Republic of)], E-mail: jsepark@chosun.ac.kr

    2009-04-15

    A high temperature (700 deg. C) lithium ion-based CO{sub 2} sensor was fabricated using Li{sub 2}CO{sub 3}-BaCO{sub 3} binary carbonate and SiO{sub 2}:B{sub 2}O{sub 3}:P{sub 2}O{sub 5} (1:2:1 mol%) amorphous glassy ceramic oxide as sensing electrode. The sensor works efficiently at 700 deg. C without any degradation of the sensing material. The electro motive force (EMF) of the sensor is very stable and follows perfect Nernstian behavior with the logarithm of CO{sub 2} concentration in the range 500-5000 ppm. It is revealed that Li{sub 2}Si{sub 2}O{sub 5}, Ba{sub 3}(PO{sub 4}){sub 2} and quartz were formed at high temperatures (500-700 deg. C) due to the reaction of Li{sub 2}CO{sub 3} and BaCO{sub 3} with glassy ceramic oxide. The time taken by the sensor to reach a change in 90% CO{sub 2} is 10 s. The sensor does not show significant cross-sensitivity to the interfering gases like NO{sub 2} and SO{sub 2} at 500 deg. C. TG-DTA, XRD, SEM and FT-IR studies were employed to characterize and suggest a probable mechanism. The increase in EMF of the sensor may be due to the easier movement of Lithium ion in to the glass in the sensing electrode.

  14. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  15. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae

    Science.gov (United States)

    Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.

    2013-01-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519

  16. Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae.

    Science.gov (United States)

    Henderson, Clark M; Zeno, Wade F; Lerno, Larry A; Longo, Marjorie L; Block, David E

    2013-09-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at "normal" temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.

  17. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    Science.gov (United States)

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy.

    Science.gov (United States)

    Bag, Nirmalya; Yap, Darilyn Hui Xin; Wohland, Thorsten

    2014-03-01

    The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered(Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase.The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics.In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion,which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So–Ldphase are static and large while they are small and dynamic in the Lo–Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells.The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity.

  19. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  20. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  1. Composite Nafion membranes based on PWA-Zirconia for PEFCs operating at medium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, A.; Sacca, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy); Casciola, M.; Cavalaglio, S.; Costantino, U. [University of Perugia, Chemistry Department, Perugia (Italy); Ornelas, R.; Fodale, I. [Nuvera Fuel Cells Europe Srl, Milano (Italy)

    2004-01-01

    Nafion membranes based on phosphotungstic acid (PWA) were immobilized as Zr(IV) phospho-tungstate, and the solid obtained was used as a filler to recast Nafion. Composite membranes, containing different filler percentages were prepared and characterized for their ion exchange capacity, water uptake and proton conductivity. Results showed that the hydrophilic characteristics of the composite membranes was higher than that of pure Nafion membranes, allowing an increase in fuel cell efficiency above 80 degrees C. This ability to work at temperatures higher than classical proton exchange membranes made it possible to reduce the carbon monoxide poisoning and to feed the cell with processed hydrogen, in effect to extend the operating temperature range of the fuel cell to 120 degrees C. As a general rule, Nafion-based membranes give the best performance at 100 degrees C, yielding a very high power density when compared with results at 120 degrees C. When the synthetic fuel, containing 10 parts per million of carbon monoxide was fed at the platinum-based anode, a power density of 350 mW/sq cm was recorded, which is 70 mW/sq cm lower than pure hydrogen. 22 refs., 3 tabs., 2 figs.

  2. A High-Performance LC Wireless Passive Pressure Sensor Fabricated Using Low-Temperature Co-Fired Ceramic (LTCC) Technology

    OpenAIRE

    Chen Li; Qiulin Tan; Chenyang Xue; Wendong Zhang; Yunzhi Li; Jijun Xiong

    2014-01-01

    An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized according to small-deflection-plate theory, which allows the sensor to operate in high-pressure environments. The sensor is fabricated usi...

  3. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  4. Study and optimization of the ultrasound-enhanced cleaning of an ultrafiltration ceramic membrane through a combined experimental-statistical approach.

    Science.gov (United States)

    Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I

    2014-05-01

    Membrane fouling is one of the main drawbacks of ultrafiltration technology during the treatment of dye-containing effluents. Therefore, the optimization of the membrane cleaning procedure is essential to improve the overall efficiency. In this work, a study of the factors affecting the ultrasound-assisted cleaning of an ultrafiltration ceramic membrane fouled by dye particles was carried out. The effect of transmembrane pressure (0.5, 1.5, 2.5 bar), cross-flow velocity (1, 2, 3 ms(-1)), ultrasound power level (40%, 70%, 100%) and ultrasound frequency mode (37, 80 kHz and mixed wave) on the cleaning efficiency was evaluated. The lowest frequency showed better results, although the best cleaning performance was obtained using the mixed wave mode. A Box-Behnken Design was used to find the optimal conditions for the cleaning procedure through a response surface study. The optimal operating conditions leading to the maximum cleaning efficiency predicted (32.19%) were found to be 1.1 bar, 3 ms(-1) and 100% of power level. Finally, the optimized response was compared to the efficiency of a chemical cleaning with NaOH solution, with and without the use of ultrasound. By using NaOH, cleaning efficiency nearly triples, and it improves up to 25% by adding ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  6. Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xue-Min; Mei, Ping; Mi, Yuanzhu; Gao, Lin; Qin, Shaoxiong [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China)

    2009-01-15

    Novel water-retention proton exchange membrane of Nafion-phosphotungstic acid/mesoporous silica with hydrophilic capillaries has been fabricated to improve the elevated temperature performance of the PEM fuel cells. Due to the hydrophilic capillarity of the HPW/meso-SiO{sub 2} mesoporous structure, the Nafion-HPW/meso-SiO{sub 2} composite membrane retained 23.7 wt% of water after being dried in 100 C for 2 h and then exposed in 25 RH% gas for 2 h. As a result, under the condition of elevated temperature of 120 C and low humidity of 25 RH%, the Nafion-HPW/meso-SiO{sub 2} composite membrane showed a steady performance. (author)

  7. Current hurdles to the success of high-temperature membrane reactors

    NARCIS (Netherlands)

    Saracco, G.; Versteeg, G.F.; Swaaij, W.P.M. van

    1994-01-01

    High-temperature catalytic processes performed using inorganic membranes have been in recent years a fast growing area of research, which seems to have not yet reached its peak. Chemical engineers, catalysts and materials scientists have addressed this topic from different viewpoints in a common

  8. Phosphoric acid doped AB-PBI membranes and its applications in high temperature PEMFC

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Bjerrum, Niels

    2005-01-01

    Poly(2,5-benzimidazole) (ab-PBI) was prepared from 3,4-diaminobenzoic acid via a polymerisation reaction. The obtained polymer exhibits excellent thermal stability in a temperature range ….. The membrane of ab-PBI when doped with phosphoric acid at room temperaturepresents high proton conductivity...

  9. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?

    NARCIS (Netherlands)

    Simons-Fischbein, K.; Nijmeijer, Dorothea C.; Bara, J.B.; Noble, R.D.; Wessling, Matthias

    2010-01-01

    Room-temperature ionic liquids (RTILs) are a class of organic solvents that have been explored as novel media for CO2 separations. Polymerized RTILs (poly(RTILs)) can be synthesized from RTIL monomers to form dense, solid gas selective membranes. It is of interest to understand the permeation

  10. Solid polymer electrolyte water electrolyser based on Nafion-TiO{sub 2} composite membrane for high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Matteucci, F.; Martina, F.; Zama, I. [Tozzi Renewable Energy SpA, Mezzano (Italy); Ciccarella, G. [National Nanotechnology Laboratory (NNL) of INFM-CNR, Distretto Tecnologico ISUFI, Innovazione, Universita del Salento, Lecce (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro Sanfandila (Mexico); Ornelas, R.

    2009-06-15

    A composite Nafion-TiO{sub 2} membrane was manufactured by a recast procedure, using an in-house prepared TiO{sub 2}. This membrane has shown promising properties for high temperature operation in an SPE electrolyser allowing to achieve higher performance with respect to a commercial Nafion 115 membrane. This effect is mainly due to the water retention properties of the TiO{sub 2} filler. A promising increase in electrical efficiency was recorded at low current densities for the composite membrane-based SPE electrolyser at high temperature compared to conventional membrane-based devices. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  12. Non-Contact Tabletop Mechanical Testing of Ultra-High Temperature Ceramics

    Science.gov (United States)

    2012-05-01

    and reflecting some of the radiation from the sample from reaching the pyrometer . The pyrometer works by measuring the thermal irradiance from the...Figure 12. Temperature Control Loop with pyrometer to measure the temperature of ribbon and feed it to PID controller that sends corresponding error...vjgBHHHBat transfer conditions-fay oonductiohT convection, and radiation . For very long ribbons in a vacuum where radiation dominates, the temperature

  13. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  14. Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C

    Science.gov (United States)

    2015-12-01

    their structural integrity and environmental durability must be assured, which requires a thorough understanding and characterization of their creep and oxidation behavior at relevant service temperatures.

  15. Effect of sintering temperature on the morphology and mechanical properties of PTFE membranes as a base substrate for proton exchange membrane

    Directory of Open Access Journals (Sweden)

    Nor Aida Zubir

    2002-11-01

    Full Text Available This paper reports the development of PTFE membranes as the base substrates for producing proton exchange membrane by using radiation-grafting technique. An aqueous dispersion of PTFE, which includes sodium benzoate, is cast in order to form suitable membranes. The casting was done by usinga pneumatically controlled flat sheet membrane-casting machine. The membrane is then sintered to fuse the polymer particles and cooled. After cooling process, the salt crystals are leached from the membrane by dissolution in hot bath to leave a microporous structure, which is suitable for such uses as a filtration membrane or as a base substrate for radiation grafted membrane in PEMFC. The effects of sintering temperature on the membrane morphology and tensile strength were investigated at 350oC and 385oC by using scanning electron microscopy (SEM and EX 20, respectively. The pore size and total void space are significantly smaller at higher sintering temperature employed with an average pore diameter of 11.78 nm. The tensile strength and tensile strain of sintered PTFE membrane at 385oC are approximately 19.02 + 1.46 MPa and 351.04 + 23.13 %, respectively. These results were indicated at 385oC, which represents significant improvements in tensile strength and tensile strain, which are nearly twice those at 350oC.

  16. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z; Lu, L.; Lu, L.; Kemperman, Antonius J.B.; Deng, H.; Nijmeijer, Dorothea C.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can

  17. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    Science.gov (United States)

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH4+-N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Retention of Acholeplasma laidlawii by sterile filtration membranes: effect of cultivation medium and filtration temperature.

    Science.gov (United States)

    Helling, Alexander; König, Hannes; Seiler, Felix; Berkholz, Ralph; Thom, Volkmar; Polakovic, Milan

    2018-01-17

    This experimental study compares cell size, zeta potential and the ability to penetrate tailor-made size exclusion membrane filters of mycoplasma A. laidlawii cultivated in five different cultivation media. The influence of relevant filtration process parameters, in particular transmembrane pressure and filtration temperature, on their respective retention was tested. The impact of the filtration temperature was further evaluated for the Gram-negative bacteria species Brevundimonas diminuta, the Gram-positive bacteria species Staphylococcus epidermidis, the Pseudomonas phage PP7 and the mycoplasma species M. orale. The findings were correlated to the different mechanical properties of the particles, especially also with respect to the different bacterial cell envelopes found in those species. This study suggests, that mycoplasma, surrounded by a flexible lipid bilayer, are significantly susceptible to changes in temperature, altering the stiffness of the cell envelope. Mycoplasma retention could thus be increased significantly by a decreased filtration temperature. In contrast, Gram-negative and Gram-positive bacteria species, with a cell wall containing a cross-linked peptidoglycan layer, as well as bacteriophages PP7 exhibiting a rigid protein capsid, did not show a temperature dependent retention within the applied filtration temperatures between 2 and 35 °C. The trends of the retention of A. laidlawii with increasing temperature and transmembrane pressure were independent of cultivation media. Data obtained with mycoplasma M. orale suggest that the trend of mycoplasma retention at different filtration temperatures is also independent of the membrane pore size and thus retention level. Copyright © 2018, Parenteral Drug Association.

  19. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  20. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature

    Directory of Open Access Journals (Sweden)

    Monika Haponska

    2017-12-01

    Full Text Available In this study, we successfully prepared nine non-woven, supported polyvinylidene fluoride (PVDF membranes, using a phase inversion precipitation method, starting from a 15 wt % PVDF solution in N-methyl-2-pyrrolidone. Various membrane morphologies were obtained by using (1 PVDF polymers, with diverse molecular weights ranging from 300 to 700 kDa, and (2 different temperature coagulation baths (20, 40, and 60 ± 2 °C used for the film precipitation. An environmental scanning electron microscope (ESEM was used for surface and cross-section morphology characterization. An atomic force microscope (AFM was employed to investigate surface roughness, while a contact angle (CA instrument was used for membrane hydrophobicity studies. Fourier transform infrared spectroscopy (FTIR results show that the fabricated membranes are formed by a mixture of TGTG’ chains, in α phase crystalline domains, and all-TTTT trans planar zigzag chains characteristic to β phase. Moreover, generated results indicate that the phases’ content and membrane morphologies depend on the polymer molecular weight and conditions used for the membranes’ preparation. The diversity of fabricated membranes could be applied by the End User Industries for different applications.