WorldWideScience

Sample records for temperature 1000-4000 k

  1. A 20mK temperature sensor

    International Nuclear Information System (INIS)

    Wang, N.; Sadoulet, B.; Shutt, T.

    1987-11-01

    We are developing a 20mK temperature sensor made of neutron transmutation doped (NTD) germanium for use as a phonon detector in a dark matter search. We find that NTD germanium thermistors around 20mK have resistances which are a strong function of temperature, and have sufficient sensitivity to eventually reach a base line rms energy fluctuation of 6eV at 25mK. Further work is needed to understand the extreme sensitivity of the thermistors to bias power. 13 refs., 18 figs

  2. Corium Oxidation at Temperatures Above 2000 K

    International Nuclear Information System (INIS)

    Hagrman, Donald L.; Rempe, Joy L.

    2001-01-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ∼4% of the zirconium oxidation heating rate.The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows:(unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T 2 /1.986T)]} 1/2 .As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O 2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation

  3. Corium Oxidation at Temperatures Above 2000 K

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, Donald Lee; Rempe, Joy Lynn

    2001-02-01

    A mechanistic model, based on a quasi-equilibrium analysis of oxidation reactions, is proposed for predicting high-temperature corium oxidation. The analysis suggests that oxide forming on the surface of corium containing uranium, zirconium, and iron is similar to the oxides formed on zirconium and uranium as long as there is a small percentage of unoxidized zirconium or uranium in the metallic phase. This is because of the higher affinity of zirconium and uranium for oxygen. Hence, oxidation rates and heat production rates are similar to (U,Zr) compounds until nearly all the uranium and zirconium in the corium oxidizes. Oxidation rates after this point are predicted to be similar to those implied by the oxide thickness present when the forming oxide ceases to be protective, and heat generation rates should be similar to those implied by iron oxidation, i.e., ~4% of the zirconium oxidation heating rate. The maximum atomic ratio of unoxidized iron to unoxidized liquid zirconium plus uranium for the formation of a solid protective oxide below 2800 K is estimated for a temperature, T (in Kelvin), as follows: (unoxidized iron)/(unoxidized zirconium + turanium) = (1/28){5.7/exp[-(147 061 + 12.08T log(T) - 61.03T - 0.000555T2/1.986T)]}1/2. As long as this limit is not exceeded, either zirconium or uranium metal oxidation rates and heating describe the corium oxidation rate. If this limit is exceeded, diffusion of steam to the corium surface will limit the oxidation rate, and linear time-dependent growth of a nonprotective, mostly FeO, layer will occur below the protective (Zr,U) O2 scale. When this happens, the oxidation should be at the constant rate given by the thickness of the protective layer. Heat generation should be similar to that of iron oxidation.

  4. Germanium thermometers in the temperature range .1000K to 4.20K

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Sanchez, D.H.

    1974-01-01

    The sensitivity characteristics of two germanium thermometers that proved to be convenient sensors in the temperature range from .100 0 K to 4.2 0 K, are described. Their resistances change from about 8 x 10 5 ohms at .100 0 K to about 100 ohms at 4.2 0 K. The calibration curves were fitted to natural spline functions of order 3 in the whole range of temperatures. These functions give less than half millidegree standard dispersion against 15 millidegree standard dispersion when usual polynomial interpolations are used. It is discussed what spline functions are, and compare the goodness of spline interpolation with polynomial methods [pt

  5. Thermodynamic properties of molybdenum borides at temperatures above 300 K

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Blinder, A.V.; Serbova, M.I.

    1990-01-01

    Enthalpy of Mo 2 B, MoB, Mo 2 B 5 borides within the range of temperatures above 300 K has been experimentally studied. Parameters of temperature dependences of enthalpy, heat capacity, entropy and the reduced Gibbs energy of the studied substances are calculated within a wide range. It is stated that high-temperature heat capacity of the studied borides can be presented as a sum of the electron component, a harmonic part of the lattice component and a contribution caused by anharmonic oscillations of lattice atoms. Values of coefficients of isothermal compressibility of Mo 2 , MoB, Mo 2 B 5 within the high temperature range are estimated

  6. Temperature dependence of thermal expansion of cadmium sulfide in the temperature range 20 - 820 K

    International Nuclear Information System (INIS)

    Oskotskij, V.S.; Kobyakov, I.B.; Solodukhin, A.V.

    1980-01-01

    The linear thermal expansion of cadmium sulfide is measured perpendicularly (α 1 ) and parallelly (α 2 ) to the hexagonal axis in the temperature range from 20 to 820 K. Anisotropy is low at up to 80 K; rises at higher temperatures; at 3OO K α 1 /α 3 ratio is 1.8; at 820 K, 2.4. Heat expansion is negative at temperatures lower than 104.5 K(α 1 ) and 126.0 K(α 2 ). It achieves the minimum at 43.6 K (α 1 ) and 52.5K (α 3 ). The theory of heat expansion is plotted in the Debue, approximation and cadmium sulfide is considered as an isotope crystal with average elastic constants. Two parameters of the theory are determined by the position and value of the minimum of volumetric thermal expansion of the model isotope crystal. The theoretic curve agrees well with the experimental one at temperatures up to 160 K, i.e in the range of applicability of the Debue approximation and the isotropic model

  7. The refrigeration of high temperature superconductors between 25K and 65K

    International Nuclear Information System (INIS)

    Richardson, R.N.; Scurlock, R.G.; Tavner, A.C.R.

    1996-01-01

    The present state of the art indicates that acceptable j - H characteristics for power applications of the new high Tc superconductors will only be achieved using materials at temperatures below liquid nitrogen temperature. A boiling point of 27.1K and high specific cooling capacity make neon an eminently suitable choice of refrigerant at these temperatures. A cryostat has been constructed which employs a two stage Gifford-McMahon cooler to liquefy neon gas. The cryostat contains up to 5 litres of liquid neon which can be used for open-quote in-situ close-quote experiments or transfer to another cryostat. Another set of cryostats are being used with liquid nitrogen/oxygen mixtures at reduced pressure for temperatures down to 50K. All these cryostats provide a core facility for characterising and operating high T c superconductors at Southampton

  8. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    Science.gov (United States)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  9. The effective temperatures and colours of G and K stars

    International Nuclear Information System (INIS)

    Bell, R.A.; Gustafsson, B.

    1989-01-01

    Temperature scales are found for G and K dwarf and giant stars, using new tables of synthetic infrared colours as well as the infrared flux ratio method. The temperatures of 95 individual stars are given. The colours are presented for grids of flux constant, line blanketed models. One grid has been published previously, as have some colours for the visible region of the spectrum. The models of this grid are in the range 4000 K eff < 6000 K, 0.75 < log g < 3.00, - 3.0 < [A/H] < 0.0. A grid of dwarf models, with the same temperature and abundance range but with 3.75 < log g < 4.5 is also used. The colours are computed from two series of overlapping synthetic spectra, which have been calculated with a resolution of 0.1 A between 3000 and 12 000 A and 1.0 A between 0.9 and 6.0 μm. (author)

  10. Temperature dependence of muonium spin exchange with O2 in the range 88 K to 478 K

    International Nuclear Information System (INIS)

    Senba, M.; Garner, D.M.; Arseneau, D.J.; Fleming, D.G.

    1984-01-01

    The authors have extended an earlier study of the spin exchange reactions of Mu with O 2 in the range 295 K to 478 K, to a low temperature region down to 88 K. From 135 K to 296 K, the spin depolarization rate constant was found to vary according to the relative velocity of the colliding species, which indicates that the spin exchange cross section of Mu-O 2 is temperature independent in this range. However, it was found that below 105 K and above 400 K, the spin depolarization rate constant tends to have stronger temperature dependences. (Auth.)

  11. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  12. Electrical conductivity of molten SnCl2 at temperature as high as 1314 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten SnCl 2 was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  13. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  14. Electrical conductivity of molten ZnCl2 at temperature as high as 1421 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten ZnCl 2 was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  15. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2016-11-01

    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  16. Electrical conductivity of molten CdCl2 at temperatures as high as 1474 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-01-01

    The electrical conductivity of molten CdCl 2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  17. Common rectifier diodes in temperature measurement applications below 50 K

    International Nuclear Information System (INIS)

    Jaervelae, J; Stenvall, A; Mikkonen, R

    2010-01-01

    In this paper we studied the use of common electronic semiconductor diodes in temperature measurements at cryogenic atmosphere. The motivation for this is the high price of calibrated cryogenic temperature sensors since there are some applications, like quench detection, in which a cheaper and a less accurate sensor would suffice. We measured the forward voltage as a function of temperature, V f (T), of several silicon rectifier diodes to determine the accuracy and interchangeability of the diodes. The experimental results confirmed that V f (T) of common rectifier diodes are similar to cryogenic sensor diodes, but the variability between two samples is much larger. The interchangeability of the diodes proved to be poor if absolute temperatures are to be measured. However for sensing changes in temperature they proved to be adequate and thus can be used to measure e.g. quench propagation or sense quench ignition at multiple locations with cheap price.

  18. An automated thermal relaxation calorimeter for operation at low temperature (0.5KK)

    International Nuclear Information System (INIS)

    Banerjee, S.; Prins, M.W.J.; Rajeev, K.P.; Raychaudhuri, A.K.

    1992-01-01

    An automated calorimeter for measurement of specific heat in the temperature range 10K>T>0.5K. It uses sample of moderate size (100-1000 mg), has a moderate precision and accuracy (2%-5%) is easy to operate and the measurements can be done quickly with 3 He economy is described. The accuracy of this calorimeter was checked by measurement of specific heat of copper and that of aluminium near its superconducting transition temperature. (author). 12 refs., 11 figs

  19. In-situ temperature calibration below 1 K using the μ+ Knight shift in CMN

    International Nuclear Information System (INIS)

    Heffner, R.H.; Le, L.P.; Amato, A.; Baines, C.

    1996-01-01

    The authors present μ + paramagnetic shift measurements between 12 K and about 65 mK in cerium magnesium nitrate (CMN) to investigate its utility as an in-situ temperature calibration source for low temperature μSR experiments. CMN is a salt which exhibits Curie-law susceptibility to temperatures as low as 5 mK. The μ + Knight shift is measured to be (1.46 ± 0.03) x 10 -3 /T + (0.004 ± 0.02) x 10 -3 , corresponding to a transferred hyperfine field of -28.5 kOe/μ B

  20. Additional 5 kWe thermoelectric system temperature transients

    International Nuclear Information System (INIS)

    Halfen, F.J.

    1972-01-01

    Several additional system transients have been calculated for the 5 kW(e) TE system and are reported in this document. They include a startup transient with a reactivity rate of 0.005 cents/sec, several startup accidents, a step reactivity insertion at full power and a loss of electrical load. These data are intended for input to system design analyses and for possible use in the protected accident section of the safety report. (U.S.)

  1. Testing program for concrete at temperatures to 8940K

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.; Robinson, G.C.

    1981-01-01

    A test program was conducted to define the variations in mechanical properties of a limestone aggregate concrete and a lightweight insulating concrete exposed to elevated temperatures. Four test series were conducted: (1) unconfined compression; (2) shear; (3) rebar bond; and (4) sustained loading (creep). Tests results are presented

  2. Mean colors and effective temperatures of K and M dwarfs

    International Nuclear Information System (INIS)

    Wing, R.F.

    1983-01-01

    A new compilation of the mean colors of K3 - M6 dwarfs obtained largely from the photometry of Johnson (1965) by sorting the stars he observed according to their new spectral classifications from the eight-color photometry is given in table form. For each color index, a plot was made of color vs. spectral type and a smooth curve was drawn through the data. With the new spectral types, these curves are well determined, the author claims. He recommends the use of the new tabulation of mean colors whenever classifications on the MK system are employed, in view of the substantial systematic differences with Johnson's. (G.J.P.)

  3. Effective temperatures of late-type stars: The field giants from K0 to M6

    International Nuclear Information System (INIS)

    Ridgway, S.T.; Joyce, R.R.; White, N.M.; Wing, R.F.

    1980-01-01

    Angular diameters from lunar occultation are combined with infrared photometry to determine effective temperatures, T/sub eff/, for K0--M6 giants. The relation between T/sub eff/ and color temperature, MK spectral type, V--K color, and I (104) --L color are derived. The principal result is a general increase in T/sub eff/ for the cooler spectral types compared to previous calibrations. Throughout the temperature range studied, we obtain excellent agreement with recent model atmosphere computations

  4. Radiation measurements by pn junction InSb detector at the temperature from 4.2 K to 115 K

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yoshihara, Fumiki; Nouchi, Ryo; Sugiura, Osamu; Murase, Yasuhiro; Nakamura, Tatsuya; Katagiri, Masaki

    2003-01-01

    We fabricated the pn junction-type detectors on a p-type InSb substrate. Both sides of the InSb substrate were etched using a mixture of nitric and lactic acids. On the top side surface, Sn and Al were deposited by heat evaporation and then the Sn was diffused into the p-type InSb by lamp annealing and resulted in the n-type layer. Based on the confirmation of the performance of the InSb detector at temperatures of 0.5 K and 4.2 K, we concentrated on the measurement of alpha particles by the pm junction-type InSb detectors at higher operating temperatures of up to 115 K. The InSb detector showed a wide temperature operating range. We can conclude that all of the voltage was induced slowly by the holes at 4.2 K and mainly as a result of electrons at 77 K. (T. Tanaka)

  5. The bimolecular reaction of radiolysis product of hydrated electron at temperature up to 473K; Reaksi bimolekular antar produk radiolisis elektron terhidrasi pada temperatur hingga 473K

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, G R [Reactor Safety Technology Research Centre, National Atomic Energy Agency, Serpong (Indonesia)

    1996-06-01

    Rate constant from the bimolecular reaction of hydrated electron was determined by using radiolysis method. The methanol solution with concentration of 5 x 10{sup -2} dm{sup 3} mol{sup -1} was used as a scavenger of H and OH radicals. The pH was kept by adding the buffer solution of 1.0 x 10{sup -3} dm{sup 3} mol{sup -1} Na{sub 2}HPO{sub 4} + 1.0 x 10{sup 4} dm{sup 3} mol{sup -1} NaH{sub 2}PO{sub 4}. The irradiation was done by using the electron beam which come from linear accelerator 28 MeV with pulse width 10ns and dose of 80 Gy per pulse. The absorbance of hydrated electron was observed at wavelength of 824 nm. By using the kinetic equation the rate reaction constants were obtained. The bimolecular reaction of hydrated electron increase with temperature up to 423K. The activation energy was 19.3 kJ mol{sup -1} and the 2 k (298K) was 1.1 x 10{sup 10} dm{sup 3} mol{sup -1}. Then this bimolecular reaction decrease at temperature higher than 423K and the rate reaction constant at 473K almost similar with that at 298K. (author)

  6. Experimental (155 K) and predicted (151 K) Curie temperature (Tc) of K2ZnBr4: structural confirmation of ferroelectric state below Tc

    International Nuclear Information System (INIS)

    Abrahams, S.C.

    1994-01-01

    The temperature T c at which K 2 ZnBr 4 is predicted to transform from the paraelectric to the ferroelectric phase is 151 (19) K, based on the crystal structure determinations at 291 and 144 K by Fabry, Breczewski, Zuniga and Arnaiz and the Abrahams-Kurtz-Jamieson relationship. A dielectric and heat-capacity anomaly in this material at 155 K has been reported elsewhere. The locations reported for the ZnBr 2- 4 and K + ions fulfill the requirements of mirror plane symmetry above T c ; ionic displacements along the polar direction that approach but do not exceed 0.1 A and that violate the mirror symmetry on cooling through T c form the basis of the prediction and satisfy the structural criteria for ferroelectricity in the phase below the transition. (orig.)

  7. Plastic behaviour of Zircaloy-4 in the temperature range 77-1000 K

    International Nuclear Information System (INIS)

    Derep, J.L.; Ibrahim, S.; Rouby, D.; Fantozzi, G.; Gobin, P.

    1979-01-01

    Tensile tests were carried out on Zircaloy-4 over a temperature range 77-1000 K. So, we have determined the flow stress variations as a function of temperature and strain rate. Two thermally activated zones were observed between about 77 and 600 K, a plateau stress between 600 and 700 K and an other thermally activated zone above 700 K. The various mechanisms which can be responsible for the thermally activated and athermal zones are discussed in the light of experimental results. The mechanical behaviour of Zircaloy-4 appears similar to the zirconium-oxygen alloys one. (orig.) [de

  8. Density of Liquid Steel over Temperature Range of 1 803-1 873 K

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang

    2004-01-01

    The density of three kinds of liquid steel was measured by a modified sessile drop method over the temperature range of 1 803-1 873 K. It is found that the density of liquid steels decreases with increasing temperature and carbon content in steel. Both of the density and its absolute temperature coefficient of studied steels are smaller than the literature values of pure iron. The molar volume of the steels increases with increasing temperature.

  9. Bilateral Comparison Between NIM and NMC Over the Temperature Range from 83.8058 K to 692.677 K

    Science.gov (United States)

    Sun, Jianping; Ye, Shaochun; Kho, Haoyuan; Zhang, Jintao; Wang, Li

    2015-08-01

    A bilateral comparison of local realization of the International Temperature Scale of 1990 between the National Institute of Metrology (NIM) and National Metrology Centre (NMC) was carried out over the temperature range from 83.8058 K to 692.677 K. It involved six fixed points including the argon triple point, the mercury triple point, the triple point of water, the melting point of gallium, the freezing point of tin, and the freezing point of zinc. In 2009, NMC asked NIM to participate in a bilateral comparison to link the NMC results to the Consultative Committee for Thermometry Key Comparison 3 (CCT-K3) and facilitate the NMC's calibration and measurement capabilities submission. This comparison was agreed by NIM and Asia Pacific Metrology Programme in 2009, and registered in the Key Comparison Database in 2010 as CCT-K3.2. NMC supplied two fused silica sheath standard platinum resistance thermometers (SPRTs) as traveling standards. One of them was used at the Ga, Sn, and Zn fixed points, while the other one was used at the Ar and Hg fixed points. NMC measured them before and after NIM measured them. During the comparison, a criterion for the SPRT was set as the stability at the triple point of water to be less than 0.3 mK. The results for both laboratories are summarized. A proposal for linking the NMC's comparison results to CCT-K3 is presented. The difference between NMC and NIM and the difference between NMC and the CCT-K3 average reference value using NIM as a link are reported with expanded uncertainties at each measured fixed point.

  10. The drift velocity of electrons in carbon dioxide at temperatures between 193 and 573 K

    International Nuclear Information System (INIS)

    Elford, M.T.; Haddad, G.N.

    1980-01-01

    The drift velocity of electrons in carbon dioxide has been measured at gas temperatures ranging from 193 to 573 K and at E/N values up to 20 Td at 193 K, 50 Td at 293 K and 40 Td at 573 K. The measured drift velocities were found to decrease linearly with increasing gas number density at a given value of E/N for gas temperatures less than 293 K. This dependence has been attributed to multiple scattering and the data have been extrapolated to zero number density to correct for this effect. Comparisons are made with previous measurements where available. The present data for the variation of μN(thermal) with temperature agree to within the experimental error with the data of Pact et al. (1962)

  11. Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K

    International Nuclear Information System (INIS)

    Wang, Xinwei; Wang, Jianmei; Huang, Xiaopeng; Eres, Gyula

    2011-01-01

    In this paper we discuss the results of thermal transport measurements in multi-wall carbon nanotube (MWCNT) bundles at elevated temperatures. A novel generalized electrothermal technique (GET) was developed for measuring the thermal diffusivity ( ) and conductivity (k) of MWCNT bundles. The results show that the feeding current has a negligible effect on the thermal properties. The measured k is larger than the reported values for unaligned bundles, and is comparable to that of typical aligned arrays. Compared with experimental and theoretical data for individual CNTs, k of the MWCNT bundles is two to three orders of magnitude lower, suggesting that the thermal transport in CNT bundles is dominated by the thermal contact resistance of tube-to-tube junctions. The effective density for the two MWCNT bundles, which is difficult to measure using other techniques, was determined to be 116 kg/m3 and 234 kg/m3, respectively. The temperature dependences of and k at temperatures up to 830 K was obtained. slightly decreases with temperature while k exhibits a small increase with temperature up to 500 K and then decreases. For the first time, the behavior of specific heat cp(T) for CNTs above room temperature was determined. The specific heat is close to graphite at 300-400 K but is lower than that for graphite above 400 K, indicating that the behavior of phonons in MWCNT bundles is dominated by boundary scattering rather than by the three-phonon Umklapp process. The length of the mean curvature between two adjacent tube contact points in these bundles is estimated to be on the order of micrometer to millimeter. The analysis of the radiation heat loss suggests that it needs to be considered when measuring the thermophysical properties of micro/nano wires of high aspect ratios at elevated temperatures, especially for individual CNTs due to their extremely small diameter.

  12. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  13. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  14. Semiconductor resistance thermometer for the temperature range 300-0.3 K

    International Nuclear Information System (INIS)

    Zinov'eva, K.N.; Zarubin, L.I.; Nemish, I.Yu.; Vorobkalo, F.M.; Boldarev, S.T.; AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1979-01-01

    Thermometric characteristics of semiconductor resistor thermometers for the temperature range from 300 to 0.3 K and from 77 to 0.3 K are given. Temperature dependence of thermometer resistances in the 300-1.3 K range was measured in cryostats with pumping-out of N 2 , H 2 and 4 He. For measurements below 1.3 K use was made of a 3 H- 4 He dissolving cryostat. The accuracy of measuring temperatures in the 1.3-0.3 K range is not below +-0.003 K, the error in determining thermometer resistances does not exceed 1%. The analysis of obtained thermometric characteristics of several series of semiconductor resistance thermometers showed that observed insignificant spread of resistances of thermometers in one series and identity of characteristics allows them to be used without preliminary calibration for relatively coarse measurements in the range from 3O0 to 0.3 K. Besides, it has been found that in the 4.2-0.3 K range the thermometric characteristics represent a straight line in the lgR-Tsup(-n) coordinates, where R is the thermometer resistance, T is the temperature and n=0.5. Thus, the thermometers of the same series can be calibrated only in 2 or 3 reference point measurements

  15. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    Science.gov (United States)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  16. Electric resistance of nickel and niobium in the temperature range of 300-1300 K

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roshchupkin, V.V.; Mozgovoj, A.G.; Semashko, N.A.

    1982-01-01

    The results of experimental investigation of nickel and niobium electric resistance on the wire samples by the potentiometric method in the temperature range of 300-1300 K are presented. Experimental data processing by the least square method is carried out; approximating equations of temperature dependence of the nickel and niobium electric resistance are prepared

  17. Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K

    Science.gov (United States)

    Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.

    2013-07-01

    Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.

  18. Thermal properties of Permian Basin evaporites to 493 K temperature and 30 MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Heard, H.C.; Boro, C.O.; Keller, K.T.; Ralph, W.E.; Trimmer, D.A.

    1987-03-01

    Laboratory measurements of the thermal conductivity and diffusivity of four rock salts, two anhydrites, and two dolomites bordering Cycle 4 and Cycle 5 bedded salt formations in the Permian Basin in Deaf Smith County, Texas, were made in conditions ranging from 303 to 473 K in temperature and 0.1 to 31.0 MPa in hydrostatic confining pressure. Within the +-5% measurement resolution neither conductivity nor diffusivity showed a dependence upon pressure in any of the rocks. Conductivity and diffusivity in all rocks had a negative temperature dependence. For the Cycle 4 salt samples, conductivity fell from 5.5 to 3.75 W/m . K, and diffusivity fell from about 2.7 to 1.7 x 10 -6 m 2 /s. One Cycle 5 salt was a single crystal with anomalous results, but the other had a low conductivity with very weak temperature dependence and a high diffusivity. In the nonsalts, conductivity and diffusivity decreased 10 to 20% over the temperature range explored. In measurements of the coefficient of thermal linear expansion for Cycle 5 salt and nonsalts, the coefficient typically varied from about 12 x 10 -6 K -1 at P = 3.0 MPa to 4 x 10 -6 K -1 at P = 30 MPa for both nonsalt rocks. In anhydrite, it decreased with increasing temperature. In dolomite, the coefficient increased at roughly the same rate. Expansion of the salt ranged from 33 to 38 x 10 -6 K -1 and was independent of pressure and temperature

  19. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    Science.gov (United States)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  20. Two-stage high frequency pulse tube refrigerator with base temperature below 10 K

    Science.gov (United States)

    Chen, Liubiao; Wu, Xianlin; Liu, Sixue; Zhu, Xiaoshuang; Pan, Changzhao; Guo, Jia; Zhou, Yuan; Wang, Junjie

    2017-12-01

    This paper introduces our recent experimental results of pulse tube refrigerator driven by linear compressor. The working frequency is 23-30 Hz, which is much higher than the G-M type cooler (the developed cryocooler will be called high frequency pulse tube refrigerator in this paper). To achieve a temperature below 10 K, two types of two-stage configuration, gas coupled and thermal coupled, have been designed, built and tested. At present, both types can achieve a no-load temperature below 10 K by using only one compressor. As to gas-coupled HPTR, the second stage can achieve a cooling power of 16 mW/10K when the first stage applied a 400 mW heat load at 60 K with a total input power of 400 W. As to thermal-coupled HPTR, the designed cooling power of the first stage is 10W/80K, and then the temperature of the second stage can get a temperature below 10 K with a total input power of 300 W. In the current preliminary experiment, liquid nitrogen is used to replace the first coaxial configuration as the precooling stage, and a no-load temperature 9.6 K can be achieved with a stainless steel mesh regenerator. Using Er3Ni sphere with a diameter about 50-60 micron, the simulation results show it is possible to achieve a temperature below 8 K. The configuration, the phase shifters and the regenerative materials of the developed two types of two-stage high frequency pulse tube refrigerator will be discussed, and some typical experimental results and considerations for achieving a better performance will also be presented in this paper.

  1. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  2. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  3. A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

    CERN Multimedia

    2004-01-01

    A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

  4. The development of a cryogenic integrated system with the working temperature of 100K

    Science.gov (United States)

    Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin

    2016-05-01

    In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.

  5. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    Directory of Open Access Journals (Sweden)

    Peng Sang

    2016-02-01

    Full Text Available To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein.

  6. W-Band InP Wideband MMIC LNA with 30K Noise Temperature

    Science.gov (United States)

    Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.

    2000-01-01

    This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.

  7. The structure factor and the pair potential of liquid rubidium at temperatures between 450 K and 1,400 K

    International Nuclear Information System (INIS)

    Block de Priego, R.A.

    1977-11-01

    The structure factor S(Q) of liquid rubidium has been measured for temperatures between 450 K and 1400 K and pressures up to 200 atm. The corresponding densities varied between 1.42 and 0.98 g cm -3 . The incident energy of the neutrons was 3.4 MeV, the momentum transfer Q being 0.2 - 2.5 A -1 . A significant change in the order of the liquid has been registrated. Compressibility and electrical conductivity were derived from the structure factors and compared with the direct measured quantities, showing a good agreement. Further interpretation of the data was done by means of a hard core and a square well potential. Using these models it was already possible to get some information about the interactions between the rubidium atoms. A more exact calculation with a modified STLS model and a pseudopotential leads to a good description of the measured S(Q). In order to describe at high temperatures S(Q) for smaller values a new term had to be added to the pseudopotential. (orig.) [de

  8. Acoustic resonator providing fixed points of temperature between 0.1 and 2 K

    International Nuclear Information System (INIS)

    Salmela, Anssi; Tuoriniemi, Juha; Pentti, Elias; Sebedash, Alexander; Rysti, Juho

    2009-01-01

    Below 2 K the speed of second sound in mixtures of liquid 3 He and 4 He first increases to a maximum of 30-40 m/s at about 1 K and then decreases again at lower temperatures to values below 15 m/s. The exact values depend on the concentration and pressure of the mixture. This can be exploited to provide fixed points in temperature by utilizing a resonator with appropriate dimensions and frequency to excite standing waves in the resonator cavity filled with helium mixture. We demonstrate that commercially mass produced quartz tuning forks can be used for this purpose. They are meant for frequency standards operating at 32 kHz. Their dimensions are typically of order 1 mm matching the wavelength of the second sound in helium mixtures at certain values of temperature. Due to the complicated geometry, we observe some 20 sharp acoustic resonances in the range 0.1l 2 K having temperature resolution of order 1 μK. The quartz resonators are cheap, compact, simple to implement, easy to measure with great accuracy, and, above all, they are not sensitive to magnetic field, which is a great advantage compared to fixed point devices based on superconductivity transitions. The reproducibility of the resonance pattern upon thermal cycling remains to be verified.

  9. PdMn and PdFe: New Materials for Temperature Measurement Near 2K

    International Nuclear Information System (INIS)

    Adriaans, M.J.; Aselage, T.L.; Day, P.K.; Duncan, R.V.; Klemme, B.J.; Sergatskov, D.A.

    1999-01-01

    Interest in the critical dynamics of superfluid 4 He in microgravity conditions has motivated the development of new high resolution thermometry technol- ogy for use in space experiments near 2K. The current material commonly used as the temperature sensing element for high resolution thermometers (HRTs) is copper ammonium bromide [Cu(NH 4 ) 2 Br 4 2H 2 0) or ''CAB'', which undergoes a ferromagnetic phase transition at 1.8K1. HRTs made from CAB have demonstrated low drift ( -13 K/s

  10. Apparatus to measure emissivities of metallic films between 90K and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bekeris, V I [Nunez Univ. Nacional (Argentina). Faculdad de Ciencias Exactas Y Naturales; Ramos, E D [Santa Rosa Univ. Nacional (Argentina). Facultad de Ciencias Exactas Y Naturales; Sanchez, D H [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1975-09-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented.

  11. Apparatus to measure emissivities of metallic films between 90K and room temperature

    International Nuclear Information System (INIS)

    Bekeris, V.I.; Ramos, E.D.; Sanchez, D.H.

    1975-01-01

    The development of multilayer insulations is aerospace and cryogenic required to know the emissivity of the metallic films used as reflective layers. This work describes an emissometer that measures the total hemispherical emissivity of metallic films evaporated on polyester substrates. The apparatus works at liquid oxigen temperatures and permits to get emissivities from 90K to room temperatures within a 15% precision. The emissometer construction and operation are described in detail. Results of measurements done on Single Aluminized Mylar are presented [pt

  12. A low-temperature (4-300K) constant volume gas thermometer

    International Nuclear Information System (INIS)

    Combarieu, A. de

    1976-01-01

    A constant volume gas thermometer was built to calibrate the various secondary thermometers used at low temperature. This gas thermometer is placed in a cryostat where any stable temperature between 4 and 300K may be obtained. The principle is outlined, then the gas thermometer and its auxiliary equipment are briefly described; the corrections to be applied to the results are given and a table shows the values obtained [fr

  13. Simultaneous temperature measurement of ionospheric plasma and neutral atmosphere with K-10-11 rocket

    International Nuclear Information System (INIS)

    Murasato, Yukio; Kaneko, Osamu; Sasaki, Susumu; Kawashima, Nobuki; Kibune, Tadashi.

    1976-01-01

    Ion temperature and neutral atmospheric temperature in lower ionospheric layer were measured by the ''Shadow Method'', which has been developed and improved by the authors. The principle of the method, which utilizes the fact that the shadow due to the reduction of density of medium behind on obstacle depends upon the flow velocity and the temperature of the medium, is briefly explained together with the apparatus used for the measurement. A pair of the Langmuir probes with the interval of 44 mm was used for the measurement of ion temperature. For the measurement of the neutral atmospheric temperature, its density was measured with the ionization gauge. The measuring system was mounted on the K-10-11 rocket, and launched from KSC at 2 p.m., September 24, 1975. Although the rocket itself reached its highest altitude of 196 km, the temperature measurement was performed between the altitude of 80 km and 140 km. The measured temperatures of ions, neutral atmosphere, and electrons are presented as the functions of altitude. It is confirmed that the temperatures of ions and neutral atmosphere are lower than that of electrons in that range of altitude. (Aoki, K.)

  14. High-capacity NO2 denuder systems operated at various temperatures (298-473 K).

    Science.gov (United States)

    Wolf, Jan-Christoph; Niessner, Reinhard

    2012-12-01

    In this study, we investigated several coatings for high-temperature, high-capacity, and high-efficiency denuder-based NO(2) removal, with the scope to face the harsh conditions and requirements of automotive exhaust gas sampling. As first coating, we propose a potassium iodide (KI)/polyethylene glycol coating with a high removal efficiency (ε > 98%) for about 2 h and 50 ppm NO(2) at room temperature (298 K). At elevated temperatures (423 K), the initial capacity (100 ppmh) is decreased to 15 ppmh. Furthermore, this is the first proposal of the ionic liquid methyl-butyl-imidazolium iodide ([BMIm(+)][I(-)]) as denuder coating material. At room temperature, this ionic liquid exhibits far greater capacity (300 ppmh) and NO(2) removal efficiency (ε > 99.9%) than KI. Nevertheless, KI exhibits a slightly (~10%) higher capacity at elevated temperatures than [BMIm(+)][I(-)]. Both coatings presented are suitable for applications requiring selective denuding of NO(2) at temperatures up to 423 K.

  15. Development of an experimental variable temperature set-up for a temperature range from 2.2 K to 325 K for cost-effective temperature sensor calibration

    Science.gov (United States)

    Pal, Sandip; Kar, Ranjan; Mandal, Anupam; Das, Ananda; Saha, Subrata

    2017-05-01

    A prototype of a variable temperature insert has been developed in-house as a cryogenic thermometer calibration facility. It was commissioned in fulfilment of the very stringent requirements of the temperature control of the cryogenic system. The calibration facility is designed for calibrating industrial cryogenic thermometers that include a temperature sensor and the wires heat-intercept in the 2.2 K-325 K temperature range. The isothermal section of the calibration block onto which the thermometers are mounted is weakly linked with the temperature control zone mounted with cooling capillary coil and cryogenic heater. The connecting wires of the thermometer are thermally anchored with the support of the temperature insert. The calibration procedure begins once the temperature of the support is stabilized. Homogeneity of the calibration block’s temperature is established both by simulation and by cross-comparison of two calibrated sensors. The absolute uncertainty present in temperature measurement is calculated and found comparable with the measured uncertainty at different temperature points. Measured data is presented in comparison to the standard thermometers at fixed points and it is possible to infer that the absolute accuracy achieved is better than  ±0.5% of the reading in comparison to the fixed point temperature. The design and development of simpler, low cost equipment, and approach to analysis of the calibration results are discussed further in this paper, so that it can be easily devised by other researchers.

  16. Micromechanical properties of C70 single crystals in the temperature range 77-350 K

    International Nuclear Information System (INIS)

    Lubenets, S.V.; Natsik, V.D.; Fomenko, L.S.; Rusakova, A.V.; Natsik, V.D.; Osip'yan, Yu.A.; Orlov, V.I.; Sidorov, N.S.; Izotov, A.N.

    2012-01-01

    Hexagonal single crystals of C 70 up to a size down to 1-2 mm were grown which allowed for the first time to investigate their low-temperature mechanical properties. Morphology, microplasticity anisotropy and the temperature dependence of Vickers microhardness HV (T) of the C 70 crystals in the temperature range 77-350 K involving all known phase transitions have been studied with the aid of optical microscopy and microindentation. The association of the features of HV (T) dependence with orientation phase transformations has been analyzed. It is suggested that anisotropy of microplasticity in the C 70 crystals correlates with the active slip systems.

  17. Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund

    the circuit creates a circuit in which the two legs generate different voltages, leaving a small difference in voltage available for measurement (Figure 1). That difference increases with temperature, and can typically be between one and seventy micro-volts per Kelvin (μV/K) for the modern range of available...

  18. Temperature control for liquid-helium cryostats below 4.2 K

    International Nuclear Information System (INIS)

    Escorne, M.; Mauger, A.

    1983-01-01

    We report the operational characteristics of a membrane type of manostat and of a throttle valve system which we have constructed to regulate the pressure P above the liquid-helium bath. The choice of the manostat rather than the other device depends on the nature of the experiments to be performed: in the membrane type of manostat, the temperature is determined with an accuracy limited by the fluctuations ΔT around the mean value T. With throttle valves, the accuracy is limited by the drift of T in time. The performance of both devices prove to be sufficiently good as they stand, since the departure from T in the course of the experiments is lower than 10 -2 K in the whole range 1.4< T<4.2 K, being well inside this limit below 2 K. The need for expensive and complex electronic regulations to improve the temperature control is thus exceptional

  19. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.

    Science.gov (United States)

    Dammeier, J; Colberg, M; Friedrichs, G

    2007-08-21

    The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).

  20. Dislocation mechanisms for plastic flow of nickel in the temperature range 4.2-1200K

    International Nuclear Information System (INIS)

    Sastry, D.H.; Tangri, K.

    1975-01-01

    The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow. In the low-temperature thermally activated region (<250K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (<750K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell-Stokes law is obeyed over large strains in the range 750-1200K. (author)

  1. Dusty plasma in a glow discharge in helium in temperature range of 5–300 K

    Energy Technology Data Exchange (ETDEWEB)

    Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com; Amirov, R. Kh.; Kirillin, A. V.; Nikolaev, V. S.; Bedran, Z. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawa potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.

  2. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit [The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Muirhead, Philip S. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Lopez-Morales, Mercedes [Institut de Ciencies de L' Espai (CSIC-IEEC), E-08193 Bellaterra (Spain); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); and others

    2012-10-01

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally

  3. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    International Nuclear Information System (INIS)

    Roy, Rabindra N.; Roy, Lakshmi N.; LeNoue, Sean R.; Denton, Cole E.; Simon, Ashley N.; Richards, Sarah J.; Moore, Andrew C.; Roy, Chandra N.; Redmond, R. Ryan; Bryant, Paul A.

    2006-01-01

    Values of the second thermodynamic dissociation constant pK 2 of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H 2 (g, p - bar =101.325 kPa)|Taps (m 1 ), NaTapsate (m 2 ), NaCl (m 3 )|AgCl|Ag, where m denotes molality. The pK 2 values for the dissociation of Taps are represented by the equation: pK 2 =2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK 2 for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, ΔG - bar , ΔH - bar , ΔS - bar , and ΔC p - bar dissociation process of Taps have been derived from the temperature coefficients of the pK 2

  4. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rabindra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)]. E-mail: rroy@drury.edu; Roy, Lakshmi N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); LeNoue, Sean R. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Denton, Cole E. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Simon, Ashley N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Richards, Sarah J. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Moore, Andrew C. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Roy, Chandra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Redmond, R. Ryan [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Bryant, Paul A. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)

    2006-04-15

    Values of the second thermodynamic dissociation constant pK{sub 2} of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H{sub 2} (g, p{sup -}bar =101.325 kPa)|Taps (m{sub 1}), NaTapsate (m{sub 2}), NaCl (m{sub 3})|AgCl|Ag, where m denotes molality. The pK{sub 2} values for the dissociation of Taps are represented by the equation: pK{sub 2}=2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK{sub 2} for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, {delta}G{sup -}bar , {delta}H{sup -}bar , {delta}S{sup -}bar , and {delta}C{sub p}{sup -}bar dissociation process of Taps have been derived from the temperature coefficients of the pK{sub 2}.

  5. Experimental investigation on tritium release from lithium titanate pebble under high temperature of 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: howartre@onid.oregonstate.edu [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Edao, Yuki; Kawamura, Yoshinori [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Ohta, Masayuki; Sato, Satoshi; Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2015-10-15

    Highlights: • We have performed the tritium recovery experiment with the DT neutron source at 1073 K. • The tritium recovery corresponded with the calculated tritium production. • The chemical form of recovered tritium is affected by the temperature and kind of sweep gas. • The recovered HT increases at higher temperature and dry hydrogen circumstance. - Abstract: The temperature of Li{sub 2}TiO{sub 3} pebble breeder in a fusion DEMO blanket is assumed to be more than 1000 K. For the investigation of tritium release from a Li{sub 2}TiO{sub 3} pebble breeder blanket at such a high temperature, we have carried out a tritium release experiment with the DT neutron source at the JAEA-FNS. The Li{sub 2}TiO{sub 3} pebble (1.0–1.2 mm in diameter) of 70 g was put into a stainless steel container and installed into an assembly stratified with beryllium and Li{sub 2}TiO{sub 3} layers. During the DT neutron irradiation, the temperature was kept at 1073 K with wire heaters in the blanket container. Helium gas including 1% hydrogen gas (H{sub 2}/He) mainly flowed inside the container as the purge gas. Two chemical forms, HT and HTO, of extracted tritium were separately collected during the DT neutron irradiation by using water bubblers and CuO bed. The tritium activity in the water bubbler was measured by a liquid scintillation counter. To investigate the effect of moisture in the purge gas, we also performed the same experiments with H{sub 2}O/He gas (H{sub 2}O content: 1%) or pure helium gas. From our experiment at 1073 K, in the case of the purge gas includes H{sub 2}, it is indicated that the increasing tendency of HT release is similar to that of the dry H{sub 2}/He.

  6. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  7. K-band spectroscopic metallicities and temperatures of M-dwarf stars

    Directory of Open Access Journals (Sweden)

    Rojas-Ayala Bárbara

    2013-04-01

    Full Text Available I present the metallicity and effective temperature techniques developed for M dwarf stars by Rojas-Ayala et al. (2010, 2012. These techniques are based on absorption features present in the modest resolution K-band spectra (R∼2700 of M dwarfs and have been calibrated using FGK+M dwarf pairs and synthetic atmosphere models. The H2O-K2 index seems to overestimate the effective temperatures of M dwarfs when compared to interferometric measurements. The metallicity distribution of the M dwarf host candidates by the Kepler Mission hints that jovian-size planets form preferentially around solar and super-solar metallicity environments, while small rocky planet host exhibit a wide range of metallicities, just like in their solar-type counterparts.

  8. Low-temperature synthesis and structural properties of ferroelectric K 3WO 3F 3 elpasolite

    Science.gov (United States)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-06-01

    Low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 has been prepared by chemical synthesis. Structural and chemical properties of the final product have been evaluated with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Structure parameters of G2-K 3WO 3F 3 are refined by the Rietveld method from XRD data measured at room temperature (space group Cm, Z = 2, a = 8.7350(3) Å, b = 8.6808(5) Å, c = 6.1581(3) Å, β = 135.124(3) Å, V = 329.46(3) Å 3; RB = 2.47%). Partial ordering of oxygen and fluorine atoms has been found over anion positions. Mechanism of ferroelectric phase transition in A 2BMO 3F 3 oxyfluorides is discussed.

  9. Neutron diffraction study of high temperature phase of K2SeO4

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Koyano, Nobumitsu; Shibuya, Iwao; Hidaka, Masanori; Okazaki, Atsushi.

    1984-01-01

    The crystal structure of high-temperature phase of K 2 SeO 4 has been determined by means of single crystal neutron diffraction. The space group is P6 3 /mmc of hexagonal system with two formula units per unit cell. The structure is characterized by an averaged dispositions of SeO 4 tetrahedra with one of its Se-O bonds pointing parallel and antiparallel to the hexagonal c-axis in addition to the split distribution of potassium atoms. Heavily distorted distribution of oxygen atoms in SeO 4 is observed in Fourier maps corrersponding to split positions and reorientational motion of tetrahedra. This disordered arrangement is found to have close relation with the room temperature orthorhombic structure. The hexagonal-orthorhombic phase transition of K 2 SeO 4 at 472 0 C is grouped to an order-disorder type. (author)

  10. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  11. Experimental determination of the Koo fuel temperature coefficient for an HTGR lattice

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, P.; Benedetti, F.; Brighenti, G.; Chiodi, P. L.; Dell' Oro, P.; Giuliani, C.; Tassan, S.

    1974-10-15

    This paper describes temperature-dependent k-infinity measurements conducted using an assembly of loose HTGR coated particles in the BR-2 reactor by means of null reactivity oscillating method comparing the effect of poisoned and unpoisoned lattices like tests performed in the Physical Constants Test Reactor (PCTR) at Hanford. The RB-2 reactor was the property of the Italian firm AGIP NUCLEARE and operated at the Montecuccolino Center in Bologna.

  12. Test results of full-scale high temperature superconductors cable models destined for a 36 kV, 2 kA(rms) utility demonstration

    DEFF Research Database (Denmark)

    Daumling, M.; Rasmussen, C.N.; Hansen, F.

    2001-01-01

    Power cable systems using high temperature superconductors (HTS) are nearing technical feasibility. This presentation summarises the advancements and status of a project aimed at demonstrating a 36 kV, 2 kA(rms) AC cable system by installing a 30 m long full-scale functional model in a power...

  13. Measurements of (p, ρ, T) properties for isobutane in the temperature range from 280 K to 440 K at pressures up to 200 MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2006-01-01

    Measurements of (p, ρ, T) properties for isobutane in the compressed liquid phase have been obtained by means of a metal-bellows variable volumometer in the temperature range from 280 K to 440 K at pressures up to 200 MPa. The volume-fraction purity of isobutane used was 0.9999. The expanded uncertainties (k = 2) of temperature, pressure, and density measurements have been estimated to be less than 3 mK, 1.5 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa), and 0.11%, respectively. In region more than 100 MPa at 280 K and 440 K, the uncertainty in density measurements rise up to 0.15% and 0.23%, respectively. The differences of the present density values at the same temperature between two series of measurements, in which the sample fillings are different, are within the maximum deviation of 0.09% in density, which is enough lower than the expanded uncertainty in density. Eight (p, ρ, T) measurements at the same temperatures and pressures as the literature values have been conducted for comparison. In addition, vapour pressures were measured at T = (280, 300) K. Moreover, the comparisons of the available equations of state with the present measurements are reported

  14. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    Science.gov (United States)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  15. Continental-Scale Temperature Reconstructions from the PAGES 2k Network

    Science.gov (United States)

    Kaufman, D. S.

    2012-12-01

    We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse

  16. The effect of temperature on pulsed positive streamer discharges in air over the range 292 K–1438 K

    Science.gov (United States)

    Ono, Ryo; Ishikawa, Yuta

    2018-05-01

    The effect of temperature on pulsed positive streamer discharges in air is measured by comparing atmospheric-pressure, high-temperature discharges with low-pressure, room-temperature discharges at the same air densities n and discharge voltages. Both discharges have the same reduced electric field E/n, so the differences between the two discharges only depend on the temperature, which is varied from 292 K to 1438 K. Temperature affects the discharge pulse energy most significantly; at 1438 K, the energy of an atmospheric-pressure discharge pulse is approximately 30 times larger than that of the corresponding 20.5 kPa, room-temperature discharge. Temperature also affects the shapes of the streamers when K, but no significant effect is observed for K. There is also no significant temperature effect on the spatially integrated intensity of N2(C–B) emission. However, temperature strongly affects the ratio of the integrated emission intensity to the discharge energy. No effect of the temperature is observed on the propagation velocity of the primary streamer or on the length of the secondary streamer.

  17. TEMPERATURE PREDICTION IN 3013 CONTAINERS IN K AREA MATERIAL STORAGE (KAMS) FACILITY USING REGRESSION METHODS

    International Nuclear Information System (INIS)

    Gupta, N

    2008-01-01

    3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO 2 density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures

  18. Solvent Effects in the Electroreduction of Ferrocene at Pt in the Temperature Range 200-300 K

    Science.gov (United States)

    1991-03-20

    been obtained at iow temperatures downto 92 K ata P ulramcroeectode(dimete, 2 pm inthree alcohol solvents, namely, methanol, ethanol , and n-propanol. In...In this aree.-doutee-eace&4 Kinetic parameters for the electrooxidation of ferrocene have been obtained at low temperatures down to 193 ’K at a Pt...with solvent nature. tnsvetsiky of~aitm Davis, CA 95616 Kinetic data obtained in mteehanol, ethanol . and I1- propanol as a function of temperature

  19. Test results of a 20 kA high temperature superconductor current lead using REBCO tapes

    Science.gov (United States)

    Heller, R.; Fietz, W. H.; Gröner, F.; Heiduk, M.; Hollik, M.; Lange, C.; Lietzow, R.

    2018-05-01

    The Karlsruhe Institute of Technology has developed a 20 kA high temperature superconductor (HTS) current lead (CL) using the second generation material REBCO, as industry worldwide concentrate on the production of this material. The aim was to demonstrate the possibility of replacing the Bi-2223/AgAu tapes by REBCO tapes, while for easy comparison of results, all other components are copies of the 20 kA HTS CL manufactured for the satellite tokamak JT-60SA. After the manufacture of all CL components including the newly developed REBCO module, the assembly of the CL has been executed at KIT and an experiment has been carried out in the CuLTKa test facility where the REBCO CL was installed and connected to a JT-60SA CL via a superconducting bus bar. The experiment covers steady state operation up to 20 kA, pulsed operation, measurement of the heat load at 4.5 K end, loss-of-flow-accident simulations, and quench performance studies. Here the results of these tests are reported and directly compared to those of the JT-60SA CL.

  20. Phonon Anharmonicity of Germanium in the Temperature Range 80-880 K

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G; Nilsson, G

    1974-06-15

    Phonon frequency shifts and line widths in germanium have been studied in the temperature range 80 - 880 K by means of thermal neutron spectrometry. The results cannot be described in terms of the quasiharmonic approximation in which phonon frequencies are solely volume dependent. Theoretical calculations are found to be more satisfactory for the Raman frequency than for most other modes. A good account of the observed shifts is given by a proposal due to Barron according to which the relative frequency renormalization of a crystal is proportional to the total harmonic vibrational energy. An analysis of the gradients of measured dispersion relations in the principal symmetry directions at 80 K is presented. It is shown that accidental degeneracies may influence the dispersion

  1. Bi-Sr-Ca-Cu-O superconductor system with critical temperatures of 80 and 107 K

    International Nuclear Information System (INIS)

    Kugimiya, K.; Kawashima, S.; Inoue, O.; Adachi, S.

    1988-01-01

    Critical temperatures (T/sub c/) of 80 and 107 K are confirmed by resistivity and inductance measurements and also by the Meissner effect. X-rayelectron diffraction and electron microscopy analyses on a single phase material of 80 K show that its structure is orthorhombic with a unit cell of a = 5.407 A, b = 27.011 A, c = 30.588 A composed of a pseudotetragonal cell of a = b = 5.41 A. The pseudotetragonal cell size and cleavage behavior to very thin flakes strongly indicate that the oxide is basically a lamellar oxide of the Aurivillius phase type, i.e., a stacked layer structure of (Bi 2 O 2 ) 2+ sheets and distorted perovskite cell sheets

  2. Vapour pressure of D2O - Ice at temperatures below 237 K

    International Nuclear Information System (INIS)

    Heras, J.M.; Asensio, M.C.; Estiu, G.; Viscido, L.

    1984-01-01

    Accurate measurements of heavy water ice vapour pressures between 193 and 253 K have been carried out and an equation based on thermodynamic data has been derived in order to calculate the D 2 O-ice vapour pressures between 173 and 273 K. The agreement between our calculated vapour pressures and the available experimental data including those in this paper, is very good. The comparison between the theoretical calculations of H 2 O-ice and D 2 O-ice vapour pressures confirms the experimental evidence that H 2 O-ice is more volatile than D 2 O-ice at all temperatures in agreement with the vapour isotopic effect theory (VPIE).(author)

  3. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    Science.gov (United States)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  4. Thermodynamic Temperatures of the Triple Points of Mercury and Gallium and in the Interval 217 K to 303 K

    OpenAIRE

    Moldover, M. R.; Boyes, S. J.; Meyer, C. W.; Goodwin, A. R. H.

    1999-01-01

    We measured the acoustic resonance frequencies of an argon-filled spherical cavity and the microwave resonance frequencies of the same cavity when evacuated. The microwave data were used to deduce the thermal expansion of the cavity and the acoustic data were fitted to a temperature-pressure surface to deduce zero-pressure speed-of-sound ratios. The ratios determine (T?T 90), the difference between the Kelvin thermodynamic temperature T and the temperature on the International Temperature Sca...

  5. Spin trapping of radicals formed in gamma-irradiated methanol: effect of the irradiation temperature from 77K to 300K

    International Nuclear Information System (INIS)

    Schlick, S.; Kevan, L.

    1976-01-01

    The neutral radicals formed in gamma-irradiated methanol were studied by spin trapping with phenyl-t-butylnitrone (PBN) in an attempt to probe the primary neutral radicals formed. In the temperature range from approximately 157 K to 300 K both CH 2 OH and CH 3 O spin adducts are observed and their limiting ratio at high PBN concentrations is CH 2 OH/CH 3 O=1.5 over this temperature range. Below approximately 157 K this ratio increases exponentially with decreasing temperature with an apparent activation energy of 5.8 kJ/mole (1.4 kcal/mole); this is consistent with the finding that only CH 2 OH radicals are formed by gamma radiolysis at 77 K. Several possible models for the primary neutral radicals formed in gamma-irradiated methanol and their subsequent reactions as a function of irradiation temperature are discussed. It is suggested that the primary radical formation mechanisms are similar in the gas and liquid phases and become temperature dependent when molecular motion is arrested in the solid. (Auth.)

  6. Laser parameters of a Fe : ZnSe crystal in the 85-255-K temperature range

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Frolov, MP

    The temperature dependence of the efficiency of a laser based on a Fe:ZnSe crystal grown from the vapour phase by the free-growth method is studied in the 85-255-K temperature range. As the temperature was increased, the slope efficiency of the laser with respect to absorbed energy decreased from

  7. Maglev system concept using 20-K high-temperature superconductors and hyperconductors

    Science.gov (United States)

    Hull, J. R.; He, Jianliang

    A magnetically levitated high-speed ground transportation concept is proposed that uses high-temperature superconductors or hyperconductors, cooled by liquid hydrogen at 20 K, to provide levitation. An on-board hydrogen-powered turbine/generator provides electricity for propulsion by linear induction motors. The liquid hydrogen is used to cool the superconductors and the windings of the generator and motors before combusting in the turbine. The principal advantage of this system is the potential to greatly reduce the cost of the guideway, which is completely passive.

  8. The density of molten indium at temperatures up to 600 K

    International Nuclear Information System (INIS)

    Alchagirov, B.B.; Khatsukov, A.M.; Mozgovoj, A.G.

    2004-01-01

    The liquid indium density measurement is carried out through the pycnometric method within the temperature range of 434-600 K both by heating and cooling. The totality of the obtained results was processed through the approximating equation. The root-mean-square deviation of the experimental data from the approximating equation does not exceed ±0.01%. The high accuracy of the obtained results is noted. The deviation of the existing data on the liquid indium density from the approximating equation is shown graphically [ru

  9. Elements of non-equilibrium (ℎ, k)-dynamics at zero and finite temperatures

    International Nuclear Information System (INIS)

    Golubeva, O.N.; Sukhanov, A.D.

    2011-01-01

    We suggest a method which allows developing some elements of non-equilibrium (ℎ, k)-dynamics without use of Schroedinger equation. It is based on the generalization pf Fokker-Planck and Hamilton-Jacobi equations. Sequential considering of stochastic influence of vacuum is realized in the quantum heat bath model. We show that at the presence of quantum-thermal diffusion non-equilibrium wave functions describe the process of nearing to generalized state of thermal equilibrium at zero and finite temperatures. They can be used as a ground for universal description of transport phenomena

  10. (p, ρ, T) Properties for n-butane in the temperature range from 280 K to 380 K at pressures up to 200 MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2007-01-01

    The (p, ρ, T) properties for n-butane in the compressed liquid phase were measured by means of a metal-bellows variable volumometer in the temperature range from 280 K to 380 K at pressures up to 200 MPa. The mole fraction purity of the n-butane used in the measurements was 0.9997. The expanded uncertainties (k = 2) in temperature, pressure, and density measurements have been estimated to be less than ±3 mK; 1.4 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa); and 0.09%, respectively. In the region above100 MPa at T = 280 K and T = 440 K, the uncertainty in density measurements increases from 0.09% to 0.13% and 0.22%, respectively. Eight (p, ρ, T) measurements at the same temperatures and pressures as the literature values have been conducted for comparisons. In addition, comparisons of the available equations of state with the present measurements are reported

  11. The enthalpy of solid scandium in the temperature range 406 - 1812 K

    International Nuclear Information System (INIS)

    Lyapunov, K.M.; Baginskij, A.V.; Stankus, S.V.

    2001-01-01

    Enthalpy of pure scandium was measured on massive calorimeter in the range from 406 to 1812 K by mixing method. The enthalpy of face centered close cubic lattice - body centered cubic lattice transformation is equal to ΔH t 4068 J/mol. Obtained value within the limits of error is compatible with the results given earlier (4009 J/mol). The dependence of the middle specific heat of scandium C p (T) on the temperature was shown in correlation with the results of other works. The results of the conducted experiments reinforce the conclusion made earlier about an absence (or a little) in the decomposition of an anharmonic component of the oscillation specific heat of scandium C p a (T) members proportional to the first or the second degrees of temperature [ru

  12. Thermometry using 1/8 W carbon resistors in a temperature region around 10 mK

    International Nuclear Information System (INIS)

    Kobayasi, S.; Shinohara, M.; Ono, K.

    1976-01-01

    The resistance-temperature characteristics of 1/8 W carbon resistors of grade ERC-18SG, manufactured by Matsushita, with the nominal values of 48, 82, 100, 220 and 330 Ω have been measured in the region 4.2 K to 25 mK and their application as thermometers in this region is confirmed. For the 82 Ω resistor, measurements were taken at temperatures below 10mK. The temperature dependence of the resistance was found to be linear on the log-log plot over a wide range below 50 mK. The sensitivity remains finite even at 6 mK, but below 10 mK rapid measurements were prevented by a considerable increase in the thermal relaxation time. Measurement of the characteristics of several 100 Ω resistors from two different sets showed that resistors from the same set separate into two groups with different characteristics. This become appreciable at temperatures below 4.2 K, so it is difficult to predict the behaviour of Matsushite resistors below 4.2 K from the characteristics at higher temperatures. (author)

  13. Correlation of irradiation-induced transition temperature increases from C sub v and K sub Jc /K sub Ic data

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. (Materials Engineering Associates, Inc., Lanham, MD (USA))

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C{sub v}) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region ({Delta}T) is based upon the {Delta}T determined from notch ductility (C{sub v}) tests. Since the ASME K{sub Ic} and K{sub IR} reference fracture toughness curves are shifted by the {Delta}T from C{sub v}, assurance that this {Delta}T does not underestimate {Delta}T associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of {Delta}T's defined by elastic-plastic fracture toughness and C{sub v} tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using as-measure'' fracture toughness values (K{sub Jc}), average comparisons between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}) are: (a) All data: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +10{degree}C; (b) Plates only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +15{degree}C; and (c) Welds only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) {minus}1{degree}C. Fluence rate is found to have no significant effect on the relationship between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}). 12 refs., 12 figs., 5 tabs.

  14. Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p = 0.1 MPa

    International Nuclear Information System (INIS)

    Lourenco, M.J.V.; Santos, F.J.V.; Ramires, M.L.V.; Nieto de Castro, C.A.

    2006-01-01

    There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol . kg -1 , at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature. The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement

  15. Temperature dependence of the Schottky-barrier heights of n-type semiconductors in the temperature range of 7 to 300 K

    International Nuclear Information System (INIS)

    Chen, T.P.; Lee, T.C.; Fung, S.; Beling, C.D.

    1994-01-01

    In this note we present the results of the temperature dependence of the SBH in Au/n-Si, Ag/n-GaAs, and Au/n-GaAs in the temperature range of 7 to 300 K from our internal photoemission measurements. (orig.)

  16. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.

    1998-01-01

    Vitrification is the technology that has been chosen to solidify approximately 15,500 tons of geologic mill tailings at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The geologic mill tailings are residues from the processing of pitchlende ore during 1949-1958. These waste residues are contained in silos in Operable Unit 4 (OU4) at the FEMP facility. Operable Unit 4 is one of five operable units at the FEMP. Operating Unit 4 consists of four concrete storage silos and their contents. Silos 1 and 2 contain K-65 mill tailing residues and a bentonite cap, Silo 3 contains non-radioactive metal oxides, and Silo 4 is empty. The K-65 residues contain radium, uranium, uranium daughter products, and heavy metals such as lead and barium.The K-65 waste leaches lead at greater than 100 times the allowable Environmental Protection Agency (EPA) Resource, Conservation, and Recovery Act (RCRA) concentration limits when tested by the Toxic Characteristic Leaching Procedure (TCLP). Vitrification was chosen by FEMP as the preferred technology for the Silos 1, 2, 3 wastes because the final waste form met the following criteria: controls radon emanation, eliminates the potential for hazardous or radioactive constituents to migrate to the aquifer below FEMP, controls the spread of radioactive particulates, reduces leachability of metals and radiological constituents, reduces volume of final wasteform for disposal, silo waste composition is favorable to vitrification, will meet current and proposed RCRA TCLP leaching criteria Glasses that melt at 1350 degrees C were developed by Pacific Northwest National Laboratory (PNNL) and glasses that melt between 1150-1350 degrees C were developed by the Vitreous State Laboratory (VSL) for the K-65 silo wastes. Both crucible studies and pilot scale vitrification studies were conducted by PNNL and VSL. Subsequently, a Vitrification Pilot Plant (VPP) was constructed at FEMP capable of operating at temperatures up to 1450

  17. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  18. Thermal properties of KUO3(s) and K2U2O7 - by high temperature Calvet calorimeter

    International Nuclear Information System (INIS)

    Jayanthi, K.; Iyer, V.S.; Venugopal, V.

    1998-01-01

    The thermal properties of KUO 3 (s) and K 2 U 2 O 7 (s) were determined using a high temperature Calvet calorimeter by drop method. The enthalpy increments, (H T o - H 298.15 0 ), in kJ/mol for KUO 3 (s) and K 2 U 2 O 7 (s) can be represented by, H T o - H 298.15 0 KUO 3 (s) kJ/mol ± 0.7 = -39.15 + 0.129T + 0.1005x10 -4 T 2 (369-714K) and H T o -H 298.15 0 K 2 U 2 O 7 (s) kJ/mol ± 0.7 = -52.99 + 0.1361T + 0.146x10 -3 T 2 (391 - 683K). (author)

  19. Magnetic ordering of quasi-1 D S=1/2 Heisenberg antiferromagnet Cu benzoate at sub-mK temperatures

    International Nuclear Information System (INIS)

    Karaki, Y.; Masutomi, R.; Kubota, M.; Ishimoto, H.; Asano, T.; Ajiro, Y.

    2003-01-01

    We have measured the AC susceptibility of quasi-1D S=1/2 Heisenberg antiferromagnet Cu benzoate at temperatures down to 0.2 mK. A sharp susceptibility peak is observed at 0.8 mK under an earth field. This fact indicates a 3D ordering of linear chains coupled by a weak magnetic interaction between chains

  20. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    International Nuclear Information System (INIS)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.

    2011-01-01

    Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  1. Design and construction of an adiabatic calorimeter for samples of less than 1 cm3 in the temperature range T = 15 K to T = 350 K

    International Nuclear Information System (INIS)

    Lang, Brian E.; Boerio-Goates, Juliana; Woodfield, Brian F.

    2006-01-01

    A small-scale adiabatic calorimeter has been constructed as part of a larger project to study the thermodynamics of nanomaterials and to facilitate heat capacity measurements on samples of insufficient quantity to run on our current large-scale adiabatic apparatus. This calorimeter is designed to measure the heat capacity of samples whose volume is less than 0.8 cm 3 over a temperature range of T = 13 K to T = 350 K. Heat capacity results on copper, sapphire, and benzoic acid show the accuracy of the measurements to be better than ±0.4% for temperatures higher than T = 50 K. The reproducibility of these measurements is generally better than ±0.25%

  2. CRESU studies of electron attachment and Penning ionization at temperatures down to 48 K

    International Nuclear Information System (INIS)

    Le Garrec, J.L.; Mitchell, J.B.A.; Rowe, B.R.

    1996-01-01

    The object of the present report is to present results obtained for electron attachment and Penning ionization, obtained with the addition of a Langmuir probe to the measurement apparatus. Measurements of the rate coefficients for electron attachment and Penning ionization are performed using the standard techniques for the flow reactors. Rate coefficients for the Penning ionisation of argon, nitrogen molecule, oxygen molecule by helium metastable are presented. The results obtained concerning the attachment of electrons to SF 6 (non-dissociative), CCl 2 F 2 (producing Cl - ), and CF 3 Br as a function of temperature are presented. The differences observed, and the variation of the value of β below 100 K, provides evidence of the strong influence of the internal state (probably vibrational) of the CF 3 Br molecule on its dissociative attachment

  3. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    Science.gov (United States)

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  4. Towards a 20 kA high temperature superconductor current lead module using REBCO tapes

    Science.gov (United States)

    Heller, R.; Bagrets, N.; Fietz, W. H.; Gröner, F.; Kienzler, A.; Lange, C.; Wolf, M. J.

    2018-01-01

    Most of the large fusion devices presently under construction or in operation consisting of superconducting magnets like EAST, Wendelstein 7-X (W7-X), JT-60SA, and ITER, use high temperature superconductor (HTS) current leads (CL) to reduce the cryogenic load and operational cost. In all cases, the 1st generation HTS material Bi-2223 is used which is embedded in a low-conductivity matrix of AgAu. In the meantime, industry worldwide concentrates on the production of the 2nd generation HTS REBCO material because of the better field performance in particular at higher temperature. As the new material can only be produced in a multilayer thin-film structure rather than as a multi-filamentary tape, the technology developed for Bi-2223-based current leads cannot be transferred directly to REBCO. Therefore, several laboratories are presently investigating the design of high current HTS current leads made of REBCO. Karlsruhe Institute of Technology is developing a 20 kA HTS current lead using brass-stabilized REBCO tapes—as a further development to the Bi-2223 design used in the JT-60SA current leads. The same copper heat exchanger module as in the 20 kA JT-60SA current lead will be used for simplicity, which will allow a comparison of the newly developed REBCO CL with the earlier produced and investigated CL for JT-60SA. The present paper discusses the design and accompanying test of single tape and stack REBCO mock-ups. Finally, the fabrication of the HTS module using REBCO stacks is described.

  5. Thermodynamic properties of deep eutectic solvent and ionic liquid mixtures at temperatures from 293.15 K to 343.15 K

    Science.gov (United States)

    Achsah, R. S.; Shyam, S.; Mayuri, N.; Anantharaj, R.

    2018-04-01

    Deep eutectic solvents (DES) and ionic liquids (ILs) have their applications in various fields of research and in industries due to their attractive physiochemical properties. In this study, the combined thermodynamic properties of DES (choline chloride-glycerol) + IL1 (1-butyl-3-methylimiazolium acetate) and DES(choline chloride-glycerol) + IL2 (1-ethyl-3-methylimadzolium ethyl sulphate) have been studied. The thermodynamic properties such as excess molar volume, partial molar volume, excess partial molar volume and apparent molar volume were calculated for different mole fractions ranging from 0 to 1 and varying temperatures from 293.15 K to 343.15 K. In order to know the solvent properties of DESs and ILs mixtures at different temperatures and their molecular interactions to enhance the solvent performance and process efficiency at fixed composition and temperature the thermodynamic properties were analyzed.

  6. Structure of spinel at high temperature using in-situ XANES study at the Al and Mg K-edge

    Energy Technology Data Exchange (ETDEWEB)

    Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, 69622 Villeurbanne (France); Neuville, D R [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Flank, A-M; Lagarde, P, E-mail: deligny@pcml.univ-lyon1.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 France (France)

    2009-11-15

    We present structural information obtained on spinel at high temperature (298-2400 K) using in situ XANES at the Mg and Al K-edge. Spinel, {sup [4]}(Al{sub x},Mg{sub 1-x}){sup [6]}(Al{sub 2-x},Mg{sub x})O{sub 4}, with increasing temperature, show a substitution of Mg by Al and Al by Mg in their respective sites. This substitution corresponds to an inversion of the Mg and Al sites. Furthermore, both experiments at the Al and Mg K-edges are in good agreement with XANES calculation made using FDMNES code.

  7. Recombination in deuterium plasma at cryogenic temperatures (down to 130 K)

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, O.; Glosik, J.; Pysanenko, A.; Zakouril, P.; Plasil, R.; Tichy, M. [Prague Charles Univ., Faculty of Mathematics and Physics (Czech Republic)

    2004-07-01

    The ions H{sub 3}{sup +} and D{sub 3}{sup +} play an important role in the kinetics of media of astrophysical interest but also in laboratory produced plasmas (discharges, fusion plasmas). In the presented study variable temperature flowing afterglow with Langmuir probe (VT-FALP) was used to study plasma decay in D{sub 2}/He mixture at temperatures down to 130 K and total pressure up to 10 Torr. Large extend of partial number densities of D{sub 2} (10{sup 12} - 3 x 10{sup 15} cm{sup -3}) were used in the experiments. Langmuir probes and mass spectrometers were applied to monitor decay of the plasma during the afterglow. The study is a continuation of our previous measurements of recombination rate coefficients of D{sub 3}{sup +} and D{sub 5}{sup +} ions. In these studies we observed dependence of the recombination rate coefficient on partial pressure of deuterium indicating that third-body assisted recombination is efficient and significantly contributes to recombination in decaying deuterium-containing plasma. (authors)

  8. Testing the potential of an elevated temperature IRSL signal from K-feldspar

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Murray, A.S.; Thomsen, Kristina Jørkov

    2009-01-01

    on laboratory tests (recycling ratio, recuperation, dose recovery) we show that our SAR protocol is suitable for these samples. The observed post-IR IR fading rates (mean g2days = 1.62 ± 0.06%/decade, n = 24; assuming logarithmic fading) are significantly lower than those measured at 50 °C (mean g2days = 3...... the conventional IRSL signal stimulated at 50 °C and detected in the blue–violet region of the spectrum. One of these was the post-IR IR signal in which first an IR bleach is carried out at a low temperature (e.g. 100 s at 50 °C) and a remaining IRSL signal is measured at an elevated temperature (100 s at 225 °C......; detection in the blue–violet region). It is the latter signal that is of interest in this paper. We test such a post-IR IR dating protocol on K-feldspar extracts from a variety of locations and depositional environments and compare the results with those from the conventional IR at 50 °C protocol. Based...

  9. The Single Transmembrane Segment of Minimal Sensor DesK Senses Temperature via a Membrane-Thickness Caliper.

    Science.gov (United States)

    Inda, Maria E; Oliveira, Rafael G; de Mendoza, Diego; Cybulski, Larisa E

    2016-11-01

    Thermosensors detect temperature changes and trigger cellular responses crucial for survival at different temperatures. The thermosensor DesK is a transmembrane (TM) histidine kinase which detects a decrease in temperature through its TM segments (TMS). Here, we address a key issue: how a physical stimulus such as temperature can be converted into a cellular response. We show that the thickness of Bacillus lipid membranes varies with temperature and that such variations can be detected by DesK with great precision. On the basis of genetic studies and measurements of in vitro activity of a DesK construct with a single TMS (minimal sensor DesK [MS-DesK]), reconstituted in liposomes, we propose an interplay mechanism directed by a conserved dyad, phenylalanine 8-lysine 10. This dyad is critical to anchor the only transmembrane segment of the MS-DesK construct to the extracellular water-lipid interphase and is required for the transmembrane segment of MS-DesK to function as a caliper for precise measurement of membrane thickness. The data suggest that positively charged lysine 10, which is located in the hydrophobic core of the membrane but is close to the water-lipid interface, pulls the transmembrane region toward the water phase to localize its charge at the interface. Nevertheless, the hydrophobic residue phenylalanine 8, located at the N-terminal extreme of the TMS, has a strong tendency to remain in the lipid phase, impairing access of lysine 10 to the water phase. The outcome of this interplay is a fine-tuned sensitivity to membrane thickness that elicits conformational changes that favor different signaling states of the protein. The ability to sense and respond to extracellular signals is essential for cell survival. One example is the cellular response to temperature variation. How do cells "sense" temperature changes? It has been proposed that the bacterial thermosensor DesK acts as a molecular caliper measuring membrane thickness variations that would occur

  10. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water

    Science.gov (United States)

    Chen, Kai; Wang, Jiamei; Du, Donghai; Andresen, Peter L.; Zhang, Lefu

    2018-05-01

    The effect of dK/da on crack growth behavior of nickel base alloys has been studied by conducting stress corrosion cracking tests under positive and negative dK/da loading conditions on Alloys 690, 600 and X-750 in high temperature water. Results indicate that positive dK/da accelerates the SCC growth rates, and the accelerating effect increases with dK/da and the initial CGR. The FRI model was found to underestimate the dK/da effect by ∼100X, especially for strain hardening materials, and this underscores the need for improved insight and models for crack tip strain rate. The effect of crack tip strain rate and dK/dt in particular can explain the dK/da accelerating effect.

  11. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  12. Low-temperature thermometry. Use of a gas thermometer as a calibration standard between 4 and 300 K

    International Nuclear Information System (INIS)

    Combarieu, A. de

    1978-01-01

    A constant volume gas thermometer was built to calibrate the various secondary thermometers used at low temperature. This gas thermometer is placed in a cryostat where any stable temperature between 4 and 300 K may be obtained. After some words about low temperature thermometry, the gas thermometer and its auxiliary equipment are described briefly; the corrections to be applied to the results are given and the article ends with a table showing the values obtained [fr

  13. Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15K to 303.15K

    Energy Technology Data Exchange (ETDEWEB)

    Tsierkezos, Nikos G. [Institut fuer Chemie, Humboldt-Universitaet zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin (Germany)]. E-mail: tsierkezos@chemie.hu-berlin.de; Molinou, Ioanna E. [Physical Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771 (Greece)]. E-mail: imolinou@chem.uoa.gr

    2007-08-15

    Densities ({rho}), speeds of sound (u), isentropic compressibilities (k{sub s}), refractive indices (n{sub D}), and surface tensions ({sigma}) of binary mixtures of methyl salicylate (MSL) with 1-pentanol (PEN) have been measured over the entire composition range at the temperatures of 278.15K, 288.15K, and 303.15K. The excess molar volumes (V{sup E}), excess surface tensions ({sigma}{sup E}), deviations in speed of sound ({delta}u), deviations in isentropic compressibility ({delta}k{sub s}), and deviations in molar refraction ({delta}R) have been calculated. The excess thermodynamic properties V{sup E}, {sigma}{sup E}, {delta}u, {delta}k{sub s}, and {delta}R were fitted to the Redlich-Kister polynomial equation and the A{sub k} coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The surface tension ({sigma}) values have been further used for the calculation of the surface entropy (S{sup S}) and the surface enthalpy (H{sup S}) per unit surface area. The lyophobicity ({beta}) and the surface mole fraction (x{sub 2}{sup S}) of the surfactant component PEN have been also derived using the extended Langmuir model. The results provide information on the molecular interactions between the unlike molecules that take place at the surface and the bulk.

  14. Thermodynamic investigation of methyl salicylate/1-pentanol binary system in the temperature range from 278.15K to 303.15K

    International Nuclear Information System (INIS)

    Tsierkezos, Nikos G.; Molinou, Ioanna E.

    2007-01-01

    Densities (ρ), speeds of sound (u), isentropic compressibilities (k s ), refractive indices (n D ), and surface tensions (σ) of binary mixtures of methyl salicylate (MSL) with 1-pentanol (PEN) have been measured over the entire composition range at the temperatures of 278.15K, 288.15K, and 303.15K. The excess molar volumes (V E ), excess surface tensions (σ E ), deviations in speed of sound (Δu), deviations in isentropic compressibility (Δk s ), and deviations in molar refraction (ΔR) have been calculated. The excess thermodynamic properties V E , σ E , Δu, Δk s , and ΔR were fitted to the Redlich-Kister polynomial equation and the A k coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The surface tension (σ) values have been further used for the calculation of the surface entropy (S S ) and the surface enthalpy (H S ) per unit surface area. The lyophobicity (β) and the surface mole fraction (x 2 S ) of the surfactant component PEN have been also derived using the extended Langmuir model. The results provide information on the molecular interactions between the unlike molecules that take place at the surface and the bulk

  15. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    Science.gov (United States)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  16. An in situ Raman spectroscopy system for long-term corrosion experiments in high temperature water up to 673 K

    International Nuclear Information System (INIS)

    Domae, Masafumi; Tani, Jun-ichi; Fujiwara, Kazutoshi; Katsumura, Yosuke

    2006-01-01

    A Raman spectroscopy system has been developed, in order to identify oxides formed on the surfaces of metals and steels in high temperature water up to 673 K. A supercritical water loop system including a Raman cell was installed. The design of the loop system is up to 673 K and 40 MPa. The Raman cell has a diamond window without window-to-metal packing. Raman spectrum of alumina plate was measured at room temperature, at 523 and at 673 K under pressure of 25 MPa. A long-term measurement was also performed at 523 K and 25 MPa for 117.5 h. In all cases intense Raman peaks attributed to alumina were observed. Raman spectrum of anatase particles in suspension was measured at 673 K and 25 MPa. The results show that the Raman spectroscopy system developed in the present study works well not only for plate sample but also for suspension. Raman spectra observed for titanium plate in high temperature water of 673 K and 25 MPa show growth of several Raman peaks with time up to 257 h. The peaks disappeared after cooled down to room temperature. The experimental results have demonstrated importance of in situ Raman spectroscopy. (author)

  17. Driving Curie temperature towards room temperature in the half-metallic ferromagnet K2Cr8O16 by soft redox chemistry.

    Science.gov (United States)

    Pirrotta, I; Fernández-Sanjulián, J; Moran, E; Alario-Franco, M A; Gonzalo, E; Kuhn, A; García-Alvarado, F

    2012-02-14

    The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

  18. Home-made temperature monitoring system from four-channel K-type thermocouples via internet of thing technology platform

    Science.gov (United States)

    Detmod, Thitaporn; Özmen, Yiǧiter; Songkaitiwong, Kittiphot; Saenyot, Khanuengchat; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    This paper is aimed to design and construct the home-made temperature monitoring system from four-channel K-type thermocouples in order to improve the temperature measurement based on standard evaluation measurements guidance. The temperature monitoring system was capable to record the temperature on SD card and to display the realtime temperature on Internet of Thing Technology platform. The temperature monitoring system was tested in terms of the temperature measurement accuracy and delay response time. It was found that a standard deviation was acceptable as compared to the Instrument Society of America. The response time of the microcontroller to SD card was 2 sec faster than that of the microcontroller to Thingspeak.

  19. Densities and derived thermodynamic properties of 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico)], E-mail: lgalicial@ipn.mx; Betancourt-Cardenas, Felix F. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738 Lindavista, Mexico, D.F. (Mexico)

    2008-01-15

    Experimental densities were determined in liquid phase for 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa using a vibrating tube densimeter. Water and nitrogen were used as reference fluids for the calibration of the vibrating tube densimeter. The uncertainties of the experimental measurements in the whole range of reported data are estimated to be {+-}0.03 K for temperature, {+-}0.008 MPa for pressure, and {+-}0.20 kg . m{sup -3} for density. The experimental data are correlated using a short empirical equation of six parameters and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations are reported. Published density data of 1-heptanol are compared with values calculated with the 6-parameter equation using the parameters obtained in this work. The experimental data determined here are also compared with an available correlation for 1-heptanol. Densities of 2-heptanol at high pressure were not found in the literature and the data reported here represent the first set of data reported in the literature. Isothermal compressibilities and isobaric thermal expansivity are calculated using the 6-parameter equation for both alcohols within uncertainties estimated to be {+-}0.025 Gpa{sup -1} and {+-}4 x 10{sup -7} K{sup -1}, respectively.

  20. Densities and derived thermodynamic properties of 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa

    International Nuclear Information System (INIS)

    Zuniga-Moreno, Abel; Galicia-Luna, Luis A.; Betancourt-Cardenas, Felix F.

    2008-01-01

    Experimental densities were determined in liquid phase for 1-heptanol and 2-heptanol at temperatures from 313 K to 363 K and pressures up to 22 MPa using a vibrating tube densimeter. Water and nitrogen were used as reference fluids for the calibration of the vibrating tube densimeter. The uncertainties of the experimental measurements in the whole range of reported data are estimated to be ±0.03 K for temperature, ±0.008 MPa for pressure, and ±0.20 kg . m -3 for density. The experimental data are correlated using a short empirical equation of six parameters and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations are reported. Published density data of 1-heptanol are compared with values calculated with the 6-parameter equation using the parameters obtained in this work. The experimental data determined here are also compared with an available correlation for 1-heptanol. Densities of 2-heptanol at high pressure were not found in the literature and the data reported here represent the first set of data reported in the literature. Isothermal compressibilities and isobaric thermal expansivity are calculated using the 6-parameter equation for both alcohols within uncertainties estimated to be ±0.025 Gpa -1 and ±4 x 10 -7 K -1 , respectively

  1. Experimental determination of cesium saturated vapor pressure in the 483/642 deg K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gushchin, G I; Subbotin, V A; Khachaturov, Eh Kh [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.

    1975-07-01

    Test results of saturated cesium vapour pressure in the temperature range of 483.13-642 deg K and pressure range of 15.77-1.389 N/m/sup 2/ by direct static method are presented. The testing system comprises a differential bellows-type pressure sensor, a thermostatic unit and a gas system with V-shaped oil manometer used for argon-assisted sensor calibration. The static sensor characteristic approaches linearity in the pressure range of 10-600 N/m/sup 2/. The greatest non-linearity is observed at low pressures (10-40 N/m/sup 2/) and does not exceed 3-4%. Sensor sensitivity is 0.39 mV/N/m/sup 2/ in this pressure range. The characteristic hysteresis is 0.5% and below. With pressures greater than 600 N/m/sup 2/, the sensor sensitivity gradually decreases by 12% while the characteristic hysteresis increases to 2-3%. A brief description of the experimental procedure is offered. The present results are compared with other authors' data.

  2. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain

    Directory of Open Access Journals (Sweden)

    Qingzhang Zhu

    2017-01-01

    Full Text Available Objective: IP6 kinases (IP6Ks regulate cell metabolism and survival. Mice with global (IP6K1-KO or adipocyte-specific (AdKO deletion of IP6K1 are protected from diet induced obesity (DIO at ambient (23 °C temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE. Thus, at thermoneutral (30 °C temperature, high fat diet (HFD-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. Methods: Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR, fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. Results: Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. Conclusions: Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target. Keywords: IP6K, Obesity, Diabetes, Energy expenditure, β-oxidation

  3. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Science.gov (United States)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  4. Mechanical behaviour of substitutional body centered cubic Fe-Ti solid solutions at temperatures between 77 and 900 K; Plasticite des solutions solides cubiques centrees substitutionnelles fer-titane aux temperatures comprises entre 77 et 900 K

    Energy Technology Data Exchange (ETDEWEB)

    Dubots, Patrick

    1976-05-11

    Plastic behavior of body-centered cubic, interstitial free, Fe-Ti substitutional solid solutions has been characterised. We obtained the following results: at temperatures below 500 K, the thermal component τ* of the critical resolved shear stress τ greatly increases. Solute additions (c >0.12 wt pc) results in: softening at temperatures below 200 K, hardening at temperatures between 200 and 500 K. Results are discussed on Peierls mechanism. At temperatures below 200 K, screw dislocation motion is controlled.by the nucleation of dislocation pairs over the Peierls'hill. Substitutional solute favoring this process gives account of the softening. At temperatures above 200 K, edge dislocation motion controls the strain. The observed hardening is explained by the interaction occurring between edge-dislocations and foreign atoms. At temperatures between 500 and 800 K, a Portevin-Le Chatelier effect is observed. This effect is characterised by two types of serrations. The activation energy of the PLC effect has been determined (E = 1,4 eV). The origin of this phenomenon is the diffusion of solute towards dislocation by a vacancy-mechanism. Two maxima have been observed on the (σ{sub ε} - T) curves. These are due to superposition of overstraining (hardening) and creation of dislocations (softening). The athermal component τ{sub μ} is increased by titanium additions. This hardening has been explained by modulus and size effects. (author) [French] La caracterisation des mecanismes controlant la deformation plastique des solutions solides cubiques centrees substitutionnelles fer-titane, libres d'interstitiels pour les teneurs en solute superieures a 0,12pc pds, a donne les resultats suivants: aux temperatures inferieures a 500 K, la composante thermique τ* de la contrainte critique de cisaillement resolue τ augmente fortement. L'introduction du solute se traduit (pour c>0,12 pc pds): par un adoucissement pour θ < 200 K; par un durcissement pour 200 K< θ < 500 K. Le

  5. Densities and volumetric properties of a (xylene + dimethyl sulfoxide) at temperature from (293.15 to 353.15) K

    International Nuclear Information System (INIS)

    Wang Haijun; Liu Wei; Huang Jihou

    2004-01-01

    The densities of (o-xylene, or m-xylene, or p-xylene + dimethyl sulfoxide) were measured at temperatures (293.15, 303.15, 313.15, 323.15, 333.15, 343.15, 353.15) K and atmospheric pressure by means of a vibrating-tube densimeter. The excess molar volume V m E calculated from the density data provide the temperature dependence of V m E in the temperature range of (293.15 to 353.15) K. The V m E results were correlated using the fourth-order Redlich-Kister equation, with the maximum likelihood principle being applied for the determination of the adjustable parameters. Also we have calculated partial molar volume and excess partial molar volumes of two components. It was found that the V m E in the systems studied increase with rising temperature

  6. Melting-pressure and density equations of 3He at temperatures from 0.001 to 30 K

    International Nuclear Information System (INIS)

    Huang Yonghua; Chen Guobang

    2005-01-01

    Nonsegmented equations for melting pressure and density at temperatures from 0.001 K to 30 K have been developed to fit the reference data. The maximum and average deviations between the melting pressure equation and the totaling 298 reference data are 2.17% and 0.218%, respectively. For the density equations, the average deviations are 0.236% for the liquid side and 0.218% for the solid side. Both the melting pressure curve and melting density curves predicted by the submitted equations approach their minimums at about 0.315 K

  7. Temperature behavior of electrical properties of high-k lead-magnesium-niobium titanate thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenbin, E-mail: cwb0201@163.com [Electromechanical Engineering College, Guilin University of Electronic Technology (China); McCarthy, Kevin G. [Department of Electrical and Electronic Engineering, University College Cork (Ireland); Copuroglu, Mehmet; O' Brien, Shane; Winfield, Richard; Mathewson, Alan [Tyndall National Institute, University College Cork (Ireland)

    2012-05-01

    This paper reports on the temperature dependence of the electrical properties of high-k lead-magnesium-niobium titanate thin films processed with different compositions (with and without nanoparticles) and with different annealing temperatures (450 Degree-Sign C and 750 Degree-Sign C). These characterization results support the ongoing investigation of the material's electrical properties which are necessary before the dielectric can be used in silicon-based IC applications.

  8. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298-670K.

    Science.gov (United States)

    Gauza-Włodarczyk, Marlena; Kubisz, Leszek; Mielcarek, Sławomir; Włodarczyk, Dariusz

    2017-11-01

    The increased interest in fish collagen is a consequence of the risk of exposure to Creutzfeld-Jacob disease (CJD) and the bovine spongiform encephalopathy (BSE), whose occurrence is associated with prions carried by bovine collagen. Collagen is the main biopolymer in living organisms and the main component of the skin and bones. Until the discovery of the BSE, bovine collagen had been widely used. The BSE epidemic increased the interest in new sources of collagen such as fish skin collagen (FSC) and its properties. Although the thermal properties of collagen originating from mammals have been well described, less attention has been paid to the thermal properties of FSC. Denaturation temperature is a particularly important parameter, depending on the collagen origin and hydration level. In the reported experiment, the free water and bound water release processes along with thermal denaturation process were studied by means of the differential scanning calorimetry (DSC). Measurements were carried out using a DSC 7 instrument (Elmer-Perkin), in the temperature range 298-670K. The study material was FSC derived by acidic hydration method. The bovine Achilles tendon (BAT) collagen type I was used as the control material. The thermograms recorded revealed both, exothermic and endothermic peaks. For both materials, the peaks in the temperature range of 330-360K were assigned to the release of free water and bound water. The denaturation temperatures of FSC and BAT collagen were determined as 420K and 493K, respectively. Thermal decomposition process was observed at about 500K for FSC and at about 510K for BAT collagen. These results show that FSC is less resistant to high temperature than BAT collagen. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Thermal properties of Na2MoO4(s) and Na2Mo2O7(s) by high-temperature Calvet calorimetry in the temperature range 335 K to 760 K

    International Nuclear Information System (INIS)

    Iyer, V.S.; Agarwal, Renu; Roy, K.N.; Venkateswaran, R.S.; Venugopal, V.; Sood, D.D.

    1990-01-01

    Enthalpy increment measurements were made on Na 2 MoO 4 and Na 2 Mo 2 O 7 in the temperature range 335 K to 760 K by the drop method using a high-temperature Calvet calorimeter. The calorimeter was calibrated using an electrical method and synthetic sapphire SRM-720(Al 2 O 3 ). An on-line computer was used for acquiring and processing results from the calorimeter. The enthalpy increments for Na 2 MoO 4 and Na 2 Mo 2 O 7 were least-squares fitted to a polynomial with temperature and are given. The thermal properties of Na 2 MoO 4 and Na 2 Mo 2 O 7 were obtained using the above experimental values. These are the first experimental results on the thermal properties of these compounds. (author)

  10. Research of resonant losses of ultrasonic sound in the deformed single crystals in temperature range 77...300 K

    International Nuclear Information System (INIS)

    Petchenko, A.M.; Petchenko, G.A.

    2007-01-01

    The damped dislocation resonance in preliminary deformed up to 1 % single crystals KBr was investigated. The measurements of a frequency dependence of a dislocation damping decrement of ultrasonic sound were conducted in range of frequencies 7,5...217,5 MHz and temperature range 77...300 K. From the analysis of frequency spectrums the temperature course of a coefficient of phonon viscosity B was determined, which is agreed both with the theory and experimental literary data. The influencing temperature changes of length of a dislocation segment on parameters of a resonant maximum and dynamic drag of dislocations by phonons was revealed and analyzed

  11. Thermochemical transformations of hard-coal pitches at the stage of raising the softening temperature to 358-363 K

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Stepanenko, M.A.; Gordienko, V.G.

    1983-01-01

    Using high-resolution NMR together with infra-red spectroscopy, data were obtained characterising changes in hydrogen content in various groups of compounds dissolved in fractions of the original pitch and its thermal product when raising the softening temperature to 358-363 K.

  12. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  13. Phase diagram of Ti-B-C system in the temperature range of 300-3500 K

    International Nuclear Information System (INIS)

    Gusev, A.I.

    1996-01-01

    Calculation of phase equilibrium in the ternary system Ti-B-C in the areas of the TiC y -TiB 2 and B 4 C y -TiB 2 cross sections as well as partial construction of three-dimensional (spatial)diagram of the Ti-B-C system within the temperature range of 300-3500 K is carried out. The form of the isothermal cross section of the ternary system remains almost unchanged up to 1900 K. The most essential change is related to disordering of the low-temperature ordered phases Ti 2 C, Ti 3 C and Ti 6 C 5 of the titanium carbide at T > 950 K [ru

  14. Compressed liquid densities of 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)]. E-mail: lgalicial@ipn.mx; Camacho-Camacho, Luis E. [Laboratorio de Termodinamica, ESIQIE, Instituto Politecnico Nacional, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Mexico, D.F. (Mexico)

    2007-02-15

    (p, {rho}, T) properties were determined in liquid phase for 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The uncertainty is estimated to be lower than {+-}0.2 kg . m{sup -3} for the experimental densities. Nitrogen and water were used as reference fluids for the calibration of the vibrating tube densimeter. Experimental densities of 1-butanol and 2-butanol were correlated with a short empirical equation and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations were reported. Published densities of 1-butanol and 2-butanol are compared with values calculated with the BWRS EoS using the parameters obtained in this work. The experimental data determined here are also compared with available correlations for 1-butanol and 2-butanol.

  15. Compressed liquid densities of 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa

    International Nuclear Information System (INIS)

    Zuniga-Moreno, Abel; Galicia-Luna, Luis A.; Camacho-Camacho, Luis E.

    2007-01-01

    (p, ρ, T) properties were determined in liquid phase for 1-butanol and 2-butanol at temperatures from 313 K to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The uncertainty is estimated to be lower than ±0.2 kg . m -3 for the experimental densities. Nitrogen and water were used as reference fluids for the calibration of the vibrating tube densimeter. Experimental densities of 1-butanol and 2-butanol were correlated with a short empirical equation and the 11-parameter Benedict-Webb-Rubin-Starling equation of state (BWRS EoS) using a least square optimization. Statistical values to evaluate the different correlations were reported. Published densities of 1-butanol and 2-butanol are compared with values calculated with the BWRS EoS using the parameters obtained in this work. The experimental data determined here are also compared with available correlations for 1-butanol and 2-butanol

  16. Fatigue-induced dislocation structure of titanium alloy VT5-1ct at temperatures of 293-11 K

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, N.M. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Aleksenko, E.N. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Moskalenko, V.A. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Smirnov, A.R.N. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Yakovenko, L.F. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Mozhaev, A.V. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine)); Arinushkin, I.A. (Inst. for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov (Ukraine))

    1993-07-05

    The dislocation structure formed during the final stage of fatigue at high- and low-amplitude stresses at T=293 K in air and T=293, 93 and 11 K in high vacuum is studied on the Ti alloy VT5-1ct which has been prepared by two processing methods. The [sigma]-N curves are plotted for corresponding experimental conditions. It is shown that slip alone is responsible for the plastic deformation. The characteristic features of the dislocation structure formed are reported. The morphology of the a phase does not influence the character of the dislocation structure. At lower temperatures, the substructure remains practically unaltered, although the likelihood of uniformly distributed dislocations is lower. The lifetime is essentially dependent on the environment, temperature and the alloy microstructure, the latter being especially important at low temperatures in the high-amplitude region. (orig.)

  17. The Wilson-Bappu effect of the MgII k line - dependence on stellar temperature, activity and metallicity

    DEFF Research Database (Denmark)

    Elgaroy, O.; Engvold, O.; Lund, Niels

    1999-01-01

    widths around the regression lines. The sample contains slowly rotating stars of different activity levels and is suitable for investigations of a possible relation between line width and stellar activity. A difference in behavior between dwarfs and giants (and supergiants) of spectral class K seems......The Wilson-Bappu effect is investigated using accurate absolute magnitudes of 65 stars obtained through early release of data from the Hipparcos satellite together with MgII k fine widths determined from high resolution spectra observed with the International Ultraviolet Explorer (IUE) observatory....... Stars of spectral classes F, G, K and M and luminosity classes I-V are represented in the sample. Wilson-Bappu relations for the Mg II k line for stars of different temperatures i.e. spectral classes are determined. The relation varies with spectral class and there is a significant scatter of the line...

  18. Measuring the microwave response of superconducting Nb:STO and Ti at mK temperatures using superconducting resonators

    Energy Technology Data Exchange (ETDEWEB)

    Thiemann, Markus; Beutel, Manfred; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart (Germany); Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    Niobium doped SrTiO{sub 3} is a superconductor, with the lowest charge carrier density among all superconductors. It shows a dome in the transition temperature as a function of doping concentration with a maximum T{sub c} ∼ 0.3 K. The superconducting dome may originate from the different bands being occupied depending on the doping level. The low energy scales of the system, as indicated by the low T{sub c} are within the GHz-regime. Therefore microwave measurements are a powerful technique to reveal the electronic properties of these superconductors. We preformed microwave measurements on Nb:STO of different doping levels in a dilution refrigerator, using superconducting stripline resonators. Measurements were done in a temperature and frequency range from 40-400 mK and 1-20 GHz, covering the normal and superconducting states. For comparison we also measured the temperature dependence of the surface impedance of superconducting titanium (T{sub c} ∼ 0.5 K), which can be well described by the Mattis-Bardeen equations with a ratio (2Δ)/(k{sub B}T{sub c}) = 3.56. Therefore titanium is an ideal reference sample representing a conventional BCS-superconductor.

  19. Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells.

    Science.gov (United States)

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2011-12-09

    Cation chloride cotransporters play essential roles in many physiological processes such as volume regulation, transepithelial salt transport and setting the intracellular chloride concentration in neurons. They consist mainly of the inward transporters NCC, NKCC1, and NKCC2, and the outward transporters KCC1 to KCC4. To gain insight into regulatory and structure-function relationships, precise determination of their activity is required. Frequently, these analyses are performed in HEK-293 cells. Recently the activity of the inward transporters NKCC1 and NCC was shown to increase with temperature in these cells. However, the temperature effect on KCCs remains largely unknown. Here, we determined the temperature effect on KCC2 and KCC4 transport activity in HEK-293 cells. Both transporters demonstrated significantly higher transport activity (2.5 fold for KCC2 and 3.3 fold for KCC4) after pre-incubation at room temperature compared to 37°C. These data identify a reciprocal temperature dependence of cation chloride inward and outward cotransporters in HEK-293 cells. Thus, lower temperature should be used for functional characterization of KCC2 and KCC4 and higher temperatures for N(K)CCs in heterologous mammalian expression systems. Furthermore, if this reciprocal effect also applies to neurons, the action of inhibitory neurotransmitters might be more affected by changes in temperature than previously thought.

  20. A model for the operation of helium-filled proportional counter at low temperatures near 4.2 K

    International Nuclear Information System (INIS)

    Masaoka, Sei; Katano, Rintaro; Kishimoto, Shunji; Isozumi, Yasuhito

    2000-01-01

    In order to understand the operation of helium-filled proportional counter (HFPC) from the standpoint of fundamental atomic and molecular processes, we have surveyed previous works on collision processes in discharged helium gas. By analyzing gas gain curve, after-pulses and discharge current experimentally observed at 4.2 K, the electron avalanche and the secondary electron emission from cathode have been related to the collision processes in helium. A simplified model for the HFPC operation at low temperatures near 4.2 K has been constructed with the related processes

  1. Approximation of the thermometric characteristics of n- and p-GaAs thermodiodes in the 4.2-300 K temperature range and p-GaAs resistance thermometers in the 4.2-100 K temperature range

    International Nuclear Information System (INIS)

    Logvinenko, S.P.; Derbysheva, S.L.

    1978-01-01

    The investigation results are reported of various methods for approximating the calibration characteristics of technical resistance thermometers made from p-GaAs and of thermodiodes from n- p-GaAs. The following methods may by used for approximating thermometric characteristics and obtaining calibration tables: method of approximating function describing a physical model (P); method of power polynoms (PP); and the spline method (S). Studies of thermometric characteristics have been achieved in the 4.2-300 K temperature range for thermodiodes, and at 4.2-100 K for thermoresistances. The obtained data show that the use of the S and PP methods for describing monotonous thermometric characteristics of thermodiodes and thermoresistances is equivalent and leads to satisfactory results. Method S affords the best results for describing thermometric characteristics with specific features. The error in approximating thermometric characteristics by method S does not exceed 0.01 K

  2. Volumetric properties of glucose in aqueous HCI solutions at temperatures from 278.15 to 318.15 K

    Institute of Scientific and Technical Information of China (English)

    ZHUO Kelei; ZHANG Qiufen; XUAN Xiaopeng; ZHANG Hucheng; WANG Jianji

    2007-01-01

    Densities have been measured for Glucose+HC1 +Water at 10-degree intervals from 278.15 to 318.15 K.The apparent molar volumes (Vφ,G) and standard partial molar volumes (V0φ,G) for Glucose in aqueous solution of 0.2,0.4,0.7,1.1,1.6,2.1 mol.kg-1 HCI have been calculated as well as volumetric interaction parameters (VEG) for Glucose-HC1 in water and standard partial molar expansion coefficients ((e)V0φ,G/(e)T)p.Results show that (1) the apparent molar volume for Glucose in aqueous HC1 solutions increases lineally with increasing molality of Glucose and HC1; (2) V0φ,Gfor Glucose in aqueous HC1 solutions increases lineally with increasing molality of HC1; (3) the volumetric interaction parameters for Glucose-HC1 pair in water are small positive and vary slightly with temperature; (4) the relation between V0φ,G and temperature exists as V0φ,G =α0+α1(T-273.15 K)2/3;(5)values of((e)V0φ,G/(e)T)p are positive and increase as temperatures rise,and at given temperatures decrease slightly with increasing molalities of HC1,indicating that the hydration of glucose decreases with increasing temperature and molality of HCI.These phenomena are interpreted successfully by the structure interaction model.

  3. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2014-05-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  4. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    International Nuclear Information System (INIS)

    Fat'yanov, O V; Asimow, P D

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ∼800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  5. Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.

  6. 1-D thermal-hydraulic analysis of the high temperature superconducting current leads for the ITER magnet system from 5 K to 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Bauer, Pierre [ITER Organization, Cadarache (France); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)

    2013-12-15

    Highlights: • A global, predictive picture of the ITER HTS current lead is not yet available. • A predictive 1-D, steady state thermal-hydraulic analysis of the full length HTS current leads has been performed. • For the heat exchanger, correlations previously derived by the same authors have been used. • The results have been compared with the ITER relevant requirements. • According to our results, the ITER HTS current leads will fulfill the requirements. -- Abstract: The magnet system of ITER includes high temperature superconducting (HTS) current leads with a maximum current of 68 kA for the toroidal field (TF) coils, 55 kA for the poloidal field (PF)/central solenoid (CS) coils and 10 kA for the control coils (CC), respectively. Although different in terms of size and operative conditions, the ITER HTS current leads have been all designed on the basis of an established concept, which was successfully developed for the LHC at CERN and proven by the so-called 70 kA “demonstrator” lead made by KIT and by the ITER pre-prototypes made by ASIPP in China. A broad R and D campaign has been undertaken by ASIPP and CERN in order to find optimized designs for each component of the leads. Nevertheless, a comprehensive picture of the performance of the entire HTS current leads is not yet available. In this paper, a steady state, full length, thermal-hydraulic 1-D modeling is applied to the study of the three types (TF, PF/CS, CC) of ITER HTS current leads. The results of this predictive analysis are then compared with relevant ITER requirements. It was found that the present design of the HTS current leads will fulfill these specifications.

  7. Creep and swelling of Type 348 stainless steel at temperatures up to 700 K and comparison with fast reactor data

    International Nuclear Information System (INIS)

    Beeston, J.M.; Thomas, L.E.

    1982-01-01

    In-reactor creep and swelling of Type 248 stainless steel from ATR SN-5 and ETR H-10 in-pile tube measurements were investigated to identify and characterize their mechanistic relationships at temperatures less than 723 0 K. The principal creep mechanism appears to be diffusion along high conductivity paths related to interstitial loops. The irradiation creep is a function of temperature and is presented as an empirical equation. The swelling in the ATR in-pile tubes is also presented as an empirical equation

  8. Thermal conduction and linear expansion of sintered rhenium and tungsten-rhenium alloys at a temperature up to 1000 K

    International Nuclear Information System (INIS)

    Pozdnyak, N.Z.; Belyaev, R.A.; Vavilov, Yu.V.; Vinogradov, Yu.G.; Serykh, G.M.

    1978-01-01

    Preparation technology (by powder metallurgy methods) of sintered rhenium and tungsten-rhenium VR-5, VR-10, and VR-20 alloys is described. Thermal conduction of rhenium and VR-20 alloy has been measured in the temperature range from 300 to 1000 K. The value obtained turned out to be considerably less than those published elsewhere, this testifies to the great thermal contact resistance between the material grains. Also measured is the mean linear expansion coefficient for the mentioned above materials in the same temperature range. Linear expansion increases with rhenium content increase

  9. Densities and volumetric properties of (acetonitrile+an amide) binary mixtures at temperatures between 293.15K and 318.15K

    International Nuclear Information System (INIS)

    Nain, Anil Kumar

    2006-01-01

    The densities of binary mixtures of acetonitrile (ACN) with formamide (FA), N,N-dimethylformamide (DMF), N-methylacetamide (NMA), and N,N-dimethylacetamide (DMA), including those of pure liquids, over the entire composition range were measured at temperatures (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and atmospheric pressure. From the experimental data, the excess molar volume, V m E , and partial molar volumes, V-bar m,1 and V-bar m,2 , were calculated over whole composition range. The variation of these parameters with composition and temperature of the mixtures has been discussed in terms of molecular interaction in these mixtures. The V m E values were found negative for all the mixtures and at each temperature studied, indicating the presence of specific interactions between ACN and amide molecules. The extent of negative deviations in V m E values follows the order: FA>NMA>DMA>DMF. It is observed that the V m E values depend upon the positions of methyl groups in these amide molecules

  10. Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K

    Science.gov (United States)

    Kompan, T. A.; Kondratiev, S. V.; Korenev, A. S.; Puhov, N. F.; Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.

    2018-03-01

    The paper is devoted to a new high-temperature dilatometer, a part of the State Primary Standard of the thermal expansion coefficient (TEC) unit. The dilatometer is designed for investigation and certification of materials for TEC standards in the range of extremely high temperatures. The critical review of existing methods of TEC measurements is given. Also, the design, principles of operation and metrological parameters of the new device are described. The main attention is paid to the system of machine vision that allows accurate measurement of elongation at high temperatures. The results of TEC measurements for graphite GIP-4, single crystal Al2O3, and some other materials are also presented.

  11. In situ XRD study of C60 polymerisation above pressures of 9 GPa and temperatures up to 830K

    International Nuclear Information System (INIS)

    Talyzin, A.V.; Jansson, U.; Dubrovinsky, L.S.; Oden, M.; Le Bihan, T.

    2002-01-01

    The C60 polymerization was studied by X-ray diffraction in situ in the pressure range 13-18 GPa and at temperatures up to 830 K. The results of the high pressure high temperature treatment are strongly dependent from the history of the sample and stress. At certain conditions no elliptical diffraction patterns were observed at 13 GPa and 830K. Samples with a relatively low internal stress showed a transformation to new phase. It is suggested that this phase is three-dimensional polymer with each C60 molecule bonded to eight neighbors. This phase showed an increased hardness (about 37 GPa) and a Raman spectrum distinctly different from previously known polymeric phases

  12. Reaction OH + OH studied over the 298-834 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-06-21

    Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.

  13. Excess enthalpies of binary mixtures of 1-hexene with some branched alkanes at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Wang, Zhaohui; Benson, George C.; Lu, Benjamin C.-Y.

    2004-01-01

    Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter are reported for the five binary mixtures formed by mixing 1-hexene with the branched alkanes: 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, and 2,2,4-trimethylpentane. Smooth Redlich-Kister representations of the results are described. It was found that the Liebermann-Fried model also provided good representations of the results

  14. Density dependence of a positron annihilation and positronium formation in H2 gas at temperatures between 77 and 297 K

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Positron lifetime experiments have been performed on H 2 gas at temperatures between 77 and 297 K and in the density range from 12-160 Amagat. The extracted parameters are discussed in terms of current models. In the case of the positronium fraction it has been found that the observed density dependence can, in part, be interpreted using a combined Ore and spur model. (author)

  15. Density measurements of liquid 2-propanol at temperatures between (280 and 393) K and at pressures up to 10 MPa

    International Nuclear Information System (INIS)

    Stringari, Paolo; Scalabrin, Giancarlo; Valtz, A.; Richon, D.

    2009-01-01

    Liquid densities for 2-propanol have been measured at T = (280, 300, 325, 350, 375, and 393) K from about atmospheric pressure up to 10 MPa using a vibrating tube densimeter. The period of vibration has been converted into density using the Forced Path Mechanical Calibration method. The R134a has been used as reference fluid for T ≤ 350 K and water for T > 350 K. The uncertainty of the measurements is lower than ±0.05%. The measured liquid densities have been correlated with a Starling BWR equation with an overall AAD of 0.025%. The same BWR equation agrees within an AAD lower than 0.2% with the experimental values available in the literature over the same temperature and pressure range

  16. Critical Temperature of Randomly Diluted Two-Dimensional Heisenberg Ferromagnet, K2CuxZn(1-x)F4

    Science.gov (United States)

    Okuda, Yuichi; Tohi, Yasuto; Yamada, Isao; Haseda, Taiichiro

    1980-09-01

    The susceptibility of randomly diluted two-dimensional Heisenberg-like ferromagnet K2CuxZn(1-x)F4 was measured down to 50 mK, using the 3He-4He dilution refrigerator and a SQUID magnetometer. The ferromagnetic critical temperature Tc(x) was obtained for x{=}0.98, 0.94, 0.85, 0.82, 0.68, 0.60, 0.54, 0.50 and 0.42. The value of [1/Tc(1)][(d/dx)Tc(x)]x=1 was approximately 3.0. The critical temperature versus x curve exhibits a noticeable tail near the critical concentration, which may stem from the second nearest-neighbor interaction. The critical concentration xc, below which concentration there is no long range order down to T{=}0 K, was estimated to be 0.45˜0.50. The susceptibility of sample with x{=}0.42 behaves as if it obeys the Curie law down to 50 mK.

  17. The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B

    Science.gov (United States)

    Gates, Thomas S.; Feldman, Mark

    1994-01-01

    Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.

  18. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se [Atmospheric Science, Department of Chemistry, University of Gothenburg, SE-412 96 Göteborg (Sweden); Kotzias, Bernhard [Airbus DS, Department Mechanical Engineering, D28199 Bremen (Germany)

    2016-04-15

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H{sub 2N}(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H{sub 4}(0) and H{sub 3}(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H{sub 2N}(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  19. Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

    International Nuclear Information System (INIS)

    Holmlid, Leif; Kotzias, Bernhard

    2016-01-01

    Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H_2_N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H_4(0) and H_3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H_2_N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected.

  20. Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line

    Directory of Open Access Journals (Sweden)

    Alberto Arroyo

    2015-12-01

    Full Text Available This paper presents the steady and dynamic thermal balances of an overhead power line proposed by CIGRE (Technical Brochure 601, 2014 and IEEE (Std.738, 2012 standards. The estimated temperatures calculated by the standards are compared with the averaged conductor temperature obtained every 8 min during a year. The conductor is a LA 280 Hawk type, used in a 132-kV overhead line. The steady and dynamic state comparison shows that the number of cases with deviations to conductor temperatures higher than 5 ∘ C decreases from around 20% to 15% when the dynamic analysis is used. As some of the most critical variables are magnitude and direction of the wind speed, ambient temperature and solar radiation, their influence on the conductor temperature is studied. Both standards give similar results with slight differences due to the different way to calculate the solar radiation and convection. Considering the wind, both standards provide better results for the estimated conductor temperature as the wind speed increases and the angle with the line is closer to 90 ∘ . In addition, if the theoretical radiation is replaced by that measured with the pyranometer, the number of samples with deviations higher than 5 ∘ C is reduced from around 15% to 5%.

  1. Shock Tube/Laser Absorption Studies of Jet Fuels at Low Temperatures (600-1200K)

    Science.gov (United States)

    2013-08-27

    Davidson, Ronald K. Hanson. A second-generation aerosol shock tube and its use in studying ignition delay times of large biodiesel surrogates, 28th... Biodiesel Surrogate behind Reflected Shock Waves,” 8th US National Combustion Meeting, Paper 070RK-0008 Park City, UT 5/2013.   These  studies provide...www.elsevier .com/locate / fuel 1. Introduction Normal alkanes have been widely used as fuels and are major components of many commercial transportation fuels

  2. Thermal conductivity measurements of impregnated Nb3Sn coil samples in the temperature range of 3.5 K to 100 K

    Science.gov (United States)

    Koettig, T.; Maciocha, W.; Bermudez, S.; Rysti, J.; Tavares, S.; Cacherat, F.; Bremer, J.

    2017-02-01

    In the framework of the luminosity upgrade of the LHC, high-field magnets are under development. Magnetic flux densities of up to 13 T require the use of Nb3Sn superconducting coils. Quench protection becomes challenging due to the high stored energy density and the low stabilizer fraction. The thermal conductivity and diffusivity of the combination of insulating layers and Nb3Sn based cables are an important thermodynamic input parameter for quench protection systems and superfluid helium cooling studies. A two-stage cryocooler based test stand is used to measure the thermal conductance of the coil sample in two different heat flow directions with respect to the coil package geometry. Variable base temperatures of the experimental platform at the cryocooler allow for a steady-state heat flux method up to 100 K. The heat is applied at wedges style copper interfaces of the Rutherford cables. The respective temperature difference represents the absolute value of thermal conductance of the sample arrangement. We report about the measurement methodology applied to this kind of non-uniform sample composition and the evaluation of the used resin composite materials.

  3. Mechano-chemical synthesis K2MF6 (M = Mn, Ni) by cation-exchange reaction at room temperature

    Science.gov (United States)

    Rawat, Pooja; Nagarajan, Rajamani

    2018-02-01

    In order to establish the power of mechanochemistry to produce industrially important phosphors, synthesis of K2MnF6 has been attempted by the successive grinding reactions of manganese (II) acetate with ammonium fluoride and potassium fluoride. The progress of reaction was followed by ex-situ characterization after periodic intervals of time. Cubic symmetry of K2MnF6 was evident from its powder X-ray diffraction pattern which was refined successfully in cubic space group (Fm-3m) with a = 8.4658 (20) Å. Stretching and bending vibration modes of MnF62- octahedral units appeared at 740 and 482 cm-1 in the fourier transformed infrared spectrum. Bands at 405 and 652 cm-1 appeared in the Raman spectrum and they were finger-print positions of cubic K2MnF6. Other than the ligand to metal charge transfer transition at 242 nm, transitions from 4A2g to 4T1g, 4T2g and 2T2g of Mn4+-ion appeared at 352, 429, 474 and 569 nm in the UV-visible diffuse reflectance spectrum of the sample. Red emission due to Mn4+ was observed in the photoluminescence spectrum with a decay time of 0.22 ms. Following the success in forming cubic K2MnF6, this approach has been extended to synthesize cubic K2NiF6 at room temperature. All these results confirmed the susceptibility of acetate salts of transition metals belonging to first-row of the periodic table to facile fluorination at room temperature aided by mechanical forces.

  4. Infrared normal spectral emissivity of Ti-6Al-4V alloy in the 500-1150 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Risueno, E. [CIC Energigune, Parque Tecnologico, Albert Einstein 48, 01510 Minano, Alava, Spain. (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer First heating cycle acts as a annealing, relieving the surface stresses. Black-Right-Pointing-Pointer Stress relieving occurs mainly above 900 K. Black-Right-Pointing-Pointer Emissivity decreases between 0.35 and 0.10 in the 2.5-22 {mu}m spectral range. Black-Right-Pointing-Pointer Emissivity increases linearly with temperature, with the same slope for {lambda} > 10 {mu}m. Black-Right-Pointing-Pointer Good agreement between resistivity and emissivity by means of Hagen-Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti-6Al-4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 {mu}m to about 0.10 at 22 {mu}m. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen-Rubens equation.

  5. Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 500–1150 K temperature range

    International Nuclear Information System (INIS)

    González-Fernández, L.; Risueño, E.; Pérez-Sáez, R.B.; Tello, M.J.

    2012-01-01

    Highlights: ► First heating cycle acts as a annealing, relieving the surface stresses. ► Stress relieving occurs mainly above 900 K. ► Emissivity decreases between 0.35 and 0.10 in the 2.5–22 μm spectral range. ► Emissivity increases linearly with temperature, with the same slope for λ > 10 μm. ► Good agreement between resistivity and emissivity by means of Hagen–Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti–6Al–4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 μm to about 0.10 at 22 μm. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen–Rubens equation.

  6. Mechanical properties of polymer matrix composites at 77 K and at room temperature after irradiation with 60Co γ-rays

    International Nuclear Information System (INIS)

    Egusa, S.; Hagiwara, M.

    1986-01-01

    Ten different polymer matrix composites were irradiated with 60 Co γ-rays at room temperature, and were examined with regard to the mechanical properties at 77 K and at room temperature. The radiation resistance of these composites depends primarily on the radiation resistance of matrix resins, which increases in the order diglycidyl ether of bisphenol A < tetraglycidyl diaminodiphenyl methane < Kerimid 601. Comparison of the mechanical properties tested at 77 K and at room temperature demonstrates that the extent of radiation-induced decrease in the composite strength is appreciably greater in the 77 K test than in the room temperature test. (author)

  7. Partial molar volumes of (acetonitrile + water) mixtures over the temperature range (273.15 to 318.15) K

    International Nuclear Information System (INIS)

    Yeow, Y. Leong; Leong, Yee-Kwong

    2007-01-01

    Isothermal molar volume data of (acetonitrile + water) mixtures, between T = 273.15 K and T = 318.15 K, extracted from different sources are combined and treated as a single set to even out minor differences between sources and to increase the number of data points for each temperature. Tikhonov regularization is applied to compute the isothermal first and second derivatives of these data with respect to molar composition. For the reference temperature of 298.15 K, this computation is extended to the third derivative. Generalized Cross Validation is used to guide the selection of the regularization parameter that keeps noise amplification under control. The resulting first derivatives are used to construct the partial molar volume curves which are then checked against published results. Properties of the partial molar volumes are analysed by examining their derivatives. Finally the general shape of the second derivative curve of molar volume is explained qualitatively in terms of tripartite segmentation of the molar composition interval but quantitative comparisons are required to confirm this explanation

  8. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  9. Cryosorption pumping of deuterium by MS-5A at temperatures above 4.2 K for fusion reactor applications

    International Nuclear Information System (INIS)

    Fisher, P.W.; Watson, J.S.

    1977-01-01

    An Excalibur CVR-1106 cryosorption pump was fitted with a special cooling system to permit measurement of deuterium pumping speeds at temperatures between 6 and 20 0 K. Pumping speeds were found to be a function of feed rate, loading prior to each run, loading during runs, and thermal treatment between runs. At feed rates -4 Torr-l s -1 cm -2 , speeds were near 1 l s -1 cm -2 initially and declined monotonically with loading. At high feed rates, speeds reached a higher maximum (approx. 3 l s -1 cm -2 ) but also generally declined with loading; however, after 50 to 100 Torr l had accumulated, the pump underwent a spontaneous transition which effected a return to the original (high) pumping speed. This transition was accompanied by pressure spikes in the test chamber and temperature spikes in the sieve panel. Initial speeds for each consecutive run equaled the final speed for the preceding run if the pump was maintained at operating temperature; however, if it was warmed to 77 0 K and recooled, a restoration to the maximum speed was observed at the beginning of the next run

  10. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).

  11. First principles simulation on the K0.8Fe2Se2 high-temperature structural superconductor

    International Nuclear Information System (INIS)

    Guo, Rui; Yang, Shizhong; Khosravi, Ebrahim; Zhao, Guang-Lin; Bagayoko, Diola

    2013-01-01

    Highlights: • The superconductor K 0.8 Fe 2 Se 2 super cell size, shape, and atomic positions are fully optimized using first principles density functional theory method. • Each K atom donates 0.8 |e| with K vacancies in the supercell, each Fe atom donates 0.4 |e|, while each Se atom gains 0.7 |e| ∼ 0.8 |e|. • Fe atoms show magnetic moment fluctuation and possible strong spin-orbital coupling. -- Abstract: Since the synthesis of the first ones in 2008, iron-based high temperature superconductors have been the subject of many studies. This great interest is partly due to their higher, upper magnetic field, smaller Fermi surface around the Γ point, and a larger coherence length. This work is focused on A x Fe 2 Se 2 structural superconductor (FeSe, 11 hierarchy; A = K, Cs) as recently observed. ARPES data show novel, electronic structure and a hole-free Fermi surface which is different from previously observed Fermi surface images. We use ab initio density functional theory method to simulate the electronic structure of the novel superconductor A x Fe 2 Se 2 . We compare this electronic structure with those of other Fe-based superconductors

  12. Complex magnetic differentiation of cobalts in Na x CoO2 with 22 K Néel temperature

    Science.gov (United States)

    Mukhamedshin, I. R.; Gilmutdinov, I. F.; Salosin, M. A.; Alloul, H.

    2014-06-01

    Single crystals of sodium cobaltates Na x CoO2 with x ≈ 0.8 were grown by the floating zone technique. Using electrochemical Na de-intercalation method we reduced the sodium content in the as-grown crystals down to pure phase with 22 K Néel temperature and x ≈ 0.77. The 59Co NMR study in the paramagnetic state of the T N = 22 K phase permitted us to evidence that at least 6 Co sites are differentiated. They could be separated by their magnetic behavior into three types: a single site with cobalt close to non-magnetic Co3+, two sites with the most magnetic cobalts in the system, and the remaining three sites displaying an intermediate behavior. This unusual magnetic differentiation calls for more detailed NMR experiments on our well characterized samples.

  13. Deficient by oxygen perovskites and superconductor with transition temperature 93 K

    International Nuclear Information System (INIS)

    Ross, N.L.; Angel, R.J.; Finger, L.W.; Hazen, R.M.; Prewitt, K.T.

    1988-01-01

    Structural changes in some perovskites deficient by oxygen is reviewd. The structure of the high-temperature YBa 2 Cu 3 O 7-x superconductor is shown to develop usual for perovskites properties and at the same time to possess specific features. The specific feature includes the fact that ordering of vacancies and oxygen atoms is the consequence of Ba 2+ and Y 3+ ordering in positions A. Such ordering causes the removal of oxygen atoms plane from the structure and accurrence of pyramidal-coordinated atoms Cu2 in positions B. 22 refs.; 3 figs.; 2 tabs

  14. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    Science.gov (United States)

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  15. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    Science.gov (United States)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  16. Operation experiences with a 30 kV/100 MVA high temperature superconducting cable system

    International Nuclear Information System (INIS)

    Toennesen, Ole; Daeumling, Manfred; Jensen, Kim H; Kvorning, Svend; Olsen, Soeren K; Traeholt, Chresten; Veje, Erling; Willen, Dag; Oestergaard, Jacob

    2004-01-01

    A superconducting cable based on Bi-2223 tape technology has been developed, installed and operated in the public network of Copenhagen Energy in a two-year period between May 2001 and May 2003. This paper gives a brief overview of the system and analyses some of the operation experiences. The aim of this demonstration project is to gain experience with HTS cables under realistic conditions in a live distribution network. Approximately 50 000 utility customers have their electric power supplied through the HTS cable. The cable system has delivered 226 GW h of energy and reached a maximum operating current of 1157 A. The operation experiences include over-currents of 6 kA due to faults on peripheral lines, commissioning, servicing and failure responses on the cooling system, continuous 24 h, 7 day per week monitoring and performance of the alarm system. The implications of these experiences for the future applications of HTS cable systems are analysed

  17. Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1999-01-01

    Vitrification is the technology that has been chosen to solidify approximately 18,000 tons of geologic mill tailings at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The geologic mill tailings are residues from the processing of pitchlende ore during 1949-1958. These waste residues are contained in silos in Operable Unit 4 (OU4) at the FEMP facility. Operable Unit 4 is one of five operable units at the FEMP. Operable Unit 4 is one of five operable units at the FEMP. Operating Unit 4 consists of four concrete storage silos and their contents. Silos 1 and 2 contain K-65 mill tailing residues and a bentonite cap, Silo 3 contains non-radioactive metal oxides, and Silo 4 is empty

  18. Excess enthalpies of the ternary mixtures: {tetrahydrofuran + 3-methylpentane + (octane or decane)} at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Wang Zhaohui; Benson, George C.; Lu, Benjamin C.-Y.

    2003-01-01

    Measurements of excess molar enthalpies at the temperature 298.15 K in a flow microcalorimeter, are reported for the two ternary mixtures {X 1 C 4 H 8 O + X 2 CH 3 CH 2 CH(CH 3 )CH 2 CH 3 + (1-X 1 -X 2 )CH 3 (CH 2 ) v-2 CH 3 } with v=8 and 10. Smooth representations of the results are described and used to construct constant-enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the ternary enthalpies can be obtained from the Liebermann-Fried model, using only the physical properties of the components and their binary mixtures

  19. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    OpenAIRE

    Fat'yanov, Oleg V.; Asimow, P. D.

    2014-01-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority ...

  20. Phase equilibria in the Cs-U-O system in the temperature range from 873 to 1273 K

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1978-01-01

    Portions of the cesium-uranium-oxygen system have been investigated between 873 and 1273 K and a phase diagram has been constructed using these data and the data of other workers in the field. A consistent set of measured and estimated thermodynamic data for cesium uranates has been used to calculate the equilibrium cesium partial pressure and the equilibrium oxygen partial pressure over two and three phase regions in the Cs-U-O system. For a given temperature, the equilibrium cesium partial pressure in a two phase region decreases as the equilibrium oxygen partial pressure increases. (author)

  1. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  2. Bimetallic strip for low temperature use. [4-300/sup 0/K

    Science.gov (United States)

    Bussiee, J.F.; Welch, D.O.; Suenaga, M.

    A class of mechanically pre-stressed structures is provided suitably bi-layer strips, consisting of a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of transition metals with certain group 3A, 4A or 5A metals or metalloids such as Ga, In, Si, Ge, Sn, As or Sb. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, or in direct dial reading instruments. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers are heated, cooled the copper alloys and is removed. Removing one of the two formed interlayer alloys between the transition metal and the metal previously alloyed with copper remain.

  3. Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon; Kim, Seok Yeon [Kookmin Univ., Seoul (Korea, Republic of)

    2017-08-15

    In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.

  4. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    International Nuclear Information System (INIS)

    Shaldin, Yu. V.; Matyjasik, S.; Novikova, N. E.; Tseitlin, M.; Mozhaev, E.; Roth, M.

    2010-01-01

    The temperature dependences of the pyroelectric coefficients of KTiOAsO 4 and RbTiOAsO 4 single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO 4 . This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  5. Thermal conductivity and electrical resistivity of cadmium arsenide (Cd3As2) in the temperature range 4.2-40K1

    International Nuclear Information System (INIS)

    Bartkowski, K.; Ratalowicz, J.; Zdanowicz, W.

    1986-01-01

    Results on electrical resistivity and thermal conductivity measured in the temperature range 4.2-40 K are presented for single-crystal and polycrystalline samples of Cd 3 As 2 . Hall effect has been studied at temperatures of 4.2, 77, and 300K. The calculated value of the conduction electron concentration was in the range 1.87-1.95 10 24 m -3 . Electrical resistivity of all investigated samples was independent of temperature up to about 10K and increased slowsly at higher temperatures. The thermal conductivity shows a maximum in the region in which the lattice component of thermal conductivity dominates. The strong anistropy of the lattice component determines the anisotropy of the total thermal conductivity. The electronic component of thermal conductivity does not exhibit any anisotropy and shows a maximum at a temperature of about 300 K

  6. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated Conductor at Temperatures Below 50K

    CERN Document Server

    van Nugteren, J; Wessel, S; Krooshoop, E; Nijhuis, A; ten Kate, H

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50% to 100% of Ic. The data are compared to results of analytic predictions and to one-dimensional numerical simulations. The availability of long lengths of ReBCO coated conductor makes the material interesting for many HTS applications operating well below the boiling point of liquid nitrogen, such as magnets and motors. One of the main issues in the design of such devices is quench detection and protection. At higher temperatures, the quench velocities in these materials are known to be about two orders of magnitude lower compared to low temperature superconductors, resulting in significantly smaller normal zones and the risk of higher peak temperatures. To investigate whether the same also holds for lower tempera...

  7. Studies of Interactions of Positive Helium Ions with Small Neutrals at Temperatures Below 50K

    Science.gov (United States)

    Schauer, Martin Michael

    1990-01-01

    Interactions of He^+ ions with small neutrals are important because of their fundamental nature and applicability to other areas of research. In the past, very little work has been done on such systems at very low temperatures (T Boehringer and Arnold (1986) and Johnsen, Chen, and Biondi (1980). A new method of detecting the ions in the trap was also developed and implemented. The Fourier Transform Ion Z-resonance (FTIZR) technique took advantage of an induced coherence in the oscillations of the ions in the trap. This method allowed for measurement of faster ion -neutral reactions. This method was demonstrated by studying the non -resonant charge transfer process ^3He ^+{+}^4He{toatop >=ts}^3He{+}^4He^+. These measurements confirmed that the forward reaction is endothermic by about 1.1 meV.

  8. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Pronab; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2′-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN{sub 2}) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ{sup ∗} or the ππ{sup ∗} absorption band, respectively. Together with the fluorescence bands, the LN{sub 2} studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G{sup ∗∗} level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S{sub 1} and the T{sub 1} states—one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S{sub 2}) state. This is ascribed to the proximity of the minimum of the PEC of the S{sub 2} state and the hill-top of the PEC of the S{sub 1} state.

  9. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  10. Temperature-specific inhibition of human red cell (Na/sup +//K/sup +/) ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz (CW) microwave radiation. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersected between 23 and 24 C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 C. Exposure of membrane suspensions to a 6 W/kg dose rate at 1 C intervals between 23 and 27 C, resulted in an activity change only for the Na+/K+ ATPase at 25 C. The activity decreased by approximately 35% compared to sham-irradiated samples. An hypothesis based on the interaction of microwave radiation with enzyme structure during a conformational rearrangement is proposed as an explanation for the effect.

  11. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-107 K).

    Science.gov (United States)

    Ocaña, A J; Blázquez, S; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Jiménez, E

    2018-02-21

    Ethanol, CH 3 CH 2 OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH 3 CH 2 OH (k(T)) between 21 and 107 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(107 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10 -11 (T/300 K) -(0.71±0.10) cm 3 molecule -1 s -1 . In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (∼10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10 -11 cm 3 molecule -1 s -1 at 100 K and around 1 × 10 -10 cm 3 molecule -1 s -1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  12. Gas phase kinetics of the OH + CH3CH2OH reaction at temperatures of the interstellar medium (T = 21-10^7 K)

    Science.gov (United States)

    Ocaña, A. J.; Blázquez, S.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejoab, J.; Jiménez, E.

    2018-02-01

    Ethanol, CH3CH2OH, has been unveiled in the interstellar medium (ISM) by radioastronomy and it is thought to be released into the gas phase after the warm-up phase of the grain surface, where it is formed. Once in the gas phase, it can be destroyed by different reactions with atomic and radical species, such as hydroxyl (OH) radicals. The knowledge of the rate coefficients of all these processes at temperatures of the ISM is essential in the accurate interpretation of the observed abundances. In this work, we have determined the rate coefficient for the reaction of OH with CH3CH2OH (k(T)) between 21 and 10^7 K by employing the pulsed and continuous CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique. The pulsed laser photolysis technique was used for generating OH radicals, whose time evolution was monitored by laser induced fluorescence. An increase of approximately 4 times was observed for k(21 K) with respect to k(10^7 K). With respect to k(300 K), the OH-reactivity at 21 K is enhanced by two orders of magnitude. The obtained T-expression in the investigated temperature range is k(T) = (2.1 ± 0.5) × 10^-11 (T/300 K)-(0.71±0.10) cm^3 molecule^-1 s^-1. In addition, the pressure dependence of k(T) has been investigated at several temperatures between 21 K and 90 K. No pressure dependence of k(T) was observed in the investigated ranges. This may imply that this reaction is purely bimolecular or that the high-pressure limit is reached at the lowest total pressure experimentally accessible in our system. From our results, k(T) at usual IS temperatures (˜10-100 K) is confirmed to be very fast. Typical rate coefficients can be considered to range within about 4 × 10^-11 cm^3 molecule^-1 s^-1 at 100 K and around 1 × 10^-10 cm^3 molecule^-1 s^-1 at 20 K. The extrapolation of k at the lowest temperatures of the dense molecular clouds of ISM is also discussed in this paper.

  13. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    Science.gov (United States)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  14. Forced convection of ammonia. 2. part.: gaseous ammonia - very high wall temperatures (1000 to 3000 K); Convection forcee de l'ammoniac. 2. partie: ammoniac gazeux - cas de tres hautes temperatures de paroi (1000 a 3000{sup 0} K)

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P.; Rebiere, J.; Strittmatter, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (d{sub i} = 2.8 mm, d{sub e} = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm{sup 2}. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors) [French] On determine experimentalement les coefficients d'echange thermique et les pertes de charge de l'ammoniac gazeux en convection forcee. Le fluide circule avec un debit en masse compris entre 0.6 et 2.4 g/s (G = 10 a 40 g/cm{sup 2}.s) dans un tube long en tungstene (d{sub i} = 2.8 mm, d{sub e} = 5.1 mm, L = 700 mm), chauffe electriquement. La temperature de paroi atteint 3000 deg. K, celle du fluide 2500 deg. K et le flux de chaleur maximal est de 530 W/cm{sup 2}. L'ammoniac se dissocie completement, la puissance correspondant a la dissociation atteint 30 pour cent de la puissance totale echangee. La pression d'entree varie entre 6 et 16 bars et la chute de pression maximale dans le canal est de 15 bars. On distingue deux regimes de dissociation, catalytique et homogene, et on etudie la variation du taux de dissociation en fonction de la longueur du tube. Les coefficients d'echange thermique mesures

  15. Forced convection of ammonia. 2. part.: gaseous ammonia - very high wall temperatures (1000 to 3000 K); Convection forcee de l'ammoniac. 2. partie: ammoniac gazeux - cas de tres hautes temperatures de paroi (1000 a 3000{sup 0} K)

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P; Rebiere, J; Strittmatter, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Heat transfer coefficients and pressure drop of gaseous ammonia in forced convection are experimentally determined. The fluid flows (mass flow rate 0.6 to 2.4 g/s) in a long tungsten tube (d{sub i} = 2.8 mm, d{sub e} = 5.1 mm, L = 700 mm) electrically heated. The temperature of the wall reaches 3000 deg. K and the fluid 2500 deg. K; maximum heat flux 530 w/cm{sup 2}. Ammonia is completely dissociated and the power necessary for dissociation reaches 30 per cent of the total power exchanged. Inlet pressure varies between 6 and 16 bars and the maximum pressure drop in the tube reaches 15 bars. Two regimes of dissociation have been shown: catalytic and homogeneous and the variation of dissociation along the length of the tube is studied. The measured heat transfer coefficients may be about 10 times these calculated by the means of classical formulae. A correlation of experimental results using enthalpy as a driving force for heat transmission is presented. Pressure drops may be calculated by the means of a classical friction factor. (authors) [French] On determine experimentalement les coefficients d'echange thermique et les pertes de charge de l'ammoniac gazeux en convection forcee. Le fluide circule avec un debit en masse compris entre 0.6 et 2.4 g/s (G = 10 a 40 g/cm{sup 2}.s) dans un tube long en tungstene (d{sub i} = 2.8 mm, d{sub e} = 5.1 mm, L = 700 mm), chauffe electriquement. La temperature de paroi atteint 3000 deg. K, celle du fluide 2500 deg. K et le flux de chaleur maximal est de 530 W/cm{sup 2}. L'ammoniac se dissocie completement, la puissance correspondant a la dissociation atteint 30 pour cent de la puissance totale echangee. La pression d'entree varie entre 6 et 16 bars et la chute de pression maximale dans le canal est de 15 bars. On distingue deux regimes de dissociation, catalytique et homogene, et on etudie la variation du taux de dissociation en fonction de la longueur du tube. Les coefficients d'echange thermique mesures peuvent etre environ 10

  16. Ikaite solubility in seawater-derived brines at 1 atm and sub-zero temperatures to 265 K

    Science.gov (United States)

    Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.

    2013-05-01

    The concentration-based (stoichiometric) equilibrium solubility product of ikaite (CaCO3·6H2O) in seawater and cryogenic seawater-derived brines was determined at 1 atm total pressure over the temperature range from -1.1 to -7.5 °C and the salinity range from 34 to 124 in temperature-salinity pairs representative of sea ice brines. The solubility measurements were obtained in solutions that were undersaturated and supersaturated with respect to ikaite by equilibration with CO2/N2 gas mixtures of known pCO2 (20-400 μatm). The solutions were then equilibrated with synthetic ikaite (seed) for up to 3 months in a closed system. Arrival of the solid-solution system at a long-term chemical equilibrium was indicated by attainment of constant chemical solution composition with respect to total dissolved calcium, total dissolved inorganic carbon, and total alkalinity. Using these measurements, the stoichiometric equilibrium solubility product of ikaite (Ksp,ikaite∗=[Ca][CO32-], in molkgsolution-2) was determined, with the carbonate ion concentration computed from the measured total alkalinity and total dissolved inorganic carbon concentrations. The computed carbonate ion concentration and, by extension, the Ksp,ikaite∗ are both contingent on solving the system of equations that describe the parameters of the CO2 system in seawater by extrapolation to the experimental salinity and temperature conditions. The results show that the pKsp,ikaite∗=-logKsp,ikaite∗ in seawater of salinity 34 at -1.1 °C was 5.362 ± 0.004 and that the pKsp,ikaite∗ in sea ice at the freezing point of brines of salinity greater than 34 can be described as a function of temperature (T, in K) by the equation, pKsp,ikaite∗=-15489.09608+623443.70216T-1+2355.14596lnT, in the temperature range of 265.15 K 1 month) approach to chemical equilibrium when incubated without seeding ikaite crystals. Simple modeling indicated that ikaite should not precipitate from sea ice brines evolving under

  17. Deposition temperature effect on electrical properties and interface of high-k ZrO{sub 2} capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo-Hyung; Ignatova, Velislava A [Fraunhofer Institute, Center of Nanoelectronic Technologies (CNT), Koenigsbruecker Str., 01099 Dresden (Germany); Heitmann, Johannes; Oberbeck, Lars [Qimonda Dresden GmbH and Co. OHG, Koenigsbruecker Str. 180, 01099 Dresden (Germany)], E-mail: joo-hyung.kim@inha.ac.kr

    2008-09-07

    The electrical characteristics, i.e. leakage current and capacitance, of ZrO{sub 2} based metal-insulator-metal structures, grown at 225, 250 and 275 deg, C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 deg. C deposition temperature, while the highest dielectric constant (k {approx} 43) was measured for the samples grown at 275 {sup 0}C, most probably due to the formation of tetragonal/cubic phases in the ZrO{sub 2} layer. We have shown that the main leakage current of these ZrO{sub 2} capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 {sup 0}C deposition temperature the oxygen content at and beyond the ZrO{sub 2}/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiO{sub x}N{sub y} interface layer. At and above 275 deg. C the ZrO{sub 2} layer changes its structure and becomes crystalline as proven by XRD analysis. (fast track communication)

  18. Orientation effect on sign and magnitude of excess thermodynamic functions of non electrolyte solutions at different temperatures (303.15 K, 308.15 K, and 313.15K)

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Jareena; Sankar, Manukonda Gowri; Ramachandran, Dittakavi; Rambabu, Chintala [Acharya Nagarjuna University, Guntur (India)

    2014-08-15

    Experimental values of the density and viscosity have been measured for binary mixtures of N-ethylaniline with isomeric butanols (1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol) at 303.15, 308.15 and 313.15 K over the entire mole fraction range. These data, the excess molar volumes, and deviation viscosity for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The excess molar volumes, deviation viscosity and excess Gibbs energy of activation of viscous flow have been analyzed in terms of acid-base interactions, hydrogen bond, and dipole-dipole interaction between unlike molecules. The results obtained for dynamic viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Katti-Chaudhri, and Hind et al. equations.

  19. Orientation effect on sign and magnitude of excess thermodynamic functions of non electrolyte solutions at different temperatures (303.15 K, 308.15 K, and 313.15K)

    International Nuclear Information System (INIS)

    Shaik, Jareena; Sankar, Manukonda Gowri; Ramachandran, Dittakavi; Rambabu, Chintala

    2014-01-01

    Experimental values of the density and viscosity have been measured for binary mixtures of N-ethylaniline with isomeric butanols (1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol) at 303.15, 308.15 and 313.15 K over the entire mole fraction range. These data, the excess molar volumes, and deviation viscosity for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. The excess molar volumes, deviation viscosity and excess Gibbs energy of activation of viscous flow have been analyzed in terms of acid-base interactions, hydrogen bond, and dipole-dipole interaction between unlike molecules. The results obtained for dynamic viscosity of binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, Katti-Chaudhri, and Hind et al. equations

  20. Measurement of the ( p, , T) Properties for Pure Hydrocarbons at Temperatures up to 600 K and Pressures up to 200 MPa

    Science.gov (United States)

    Ito, T.; Nagata, Y.; Miyamoto, H.

    2014-10-01

    The data available for the thermodynamic properties of propane, -butane, and isobutane at temperatures above 440 K are outdated and show significant discrepancies with each other. The ambiguity associated with these data could be limiting to the development of any understanding related to the effects of mixing of these substances with other materials such as , ammonia, and non-flammable or lower-flammable HFC refrigerants. In this study, the ( p, , T) properties of propane, -butane, and isobutane were measured at temperatures ranging from (360 to 600) K and pressures ranging from (50 to 200) MPa. Precise measurements were carried out using a metal-bellows variable volumometer with a thermostatted air bath. The expanded uncertainties in the temperature, pressure, and density measurements were estimated to be 5 mK, 0.02 MPa, and 0.88 kg m ( K, MPa), 0.76 kg ( K, MPa), 0.76 kg ( K, MPa), and 2.94 kg ( K, MPa), respectively. The data obtained throughout this study were systematically compared with the calculated values derived from the available equations of state. These models agree well with the measured data at higher temperatures up to 600 K, demonstrating their suitability for an effective and precise examination of the mixing effects of potential alternative mixtures.

  1. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.; Hull, J.R.

    1994-01-01

    High-temperature superconductors (HTSs), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given

  2. Investigation of electrophysical properties of allotropic modifications of carbon in the range of temperatures 140-400 K

    Science.gov (United States)

    Goshev, A. A.; Eseev, M. K.; Volkov, A. S.; Lyah, N. L.

    2017-09-01

    The paper presents the results of the investigation of allotropic modifications of carbon (coal, graphite, fullerenes, CNTs. Dependences of conductivity on the field frequency in the temperature range 140-400 K are presented. The characteristic features associated with the structure and types of hybridization are revealed. Calculation of the activation energy of carriers was performed. As well article presents experimental study of electrical properties of polymeric composites, reinforced different types of allotropic modifications of carbon (CNTs, graphite, fullerenes, coal) in alternating electrical field in frequency band from 0.01 Hz to 10 MHz. The threshold of percolation of polymer composites with various types of additives and their influence for conduction properties was estimated.

  3. The standard Gibbs free energy of formation of lithium manganese oxides at the temperatures of (680, 740 and 800) K

    International Nuclear Information System (INIS)

    Rog, G.; Kucza, W.; Kozlowska-Rog, A.

    2004-01-01

    The standard Gibbs free energy of formation of LiMnO 2 and LiMn 2 O 4 at the temperatures of (680, 740 and 800) K has been determined with the help of the solid-state galvanic cells involving lithium-β-alumina electrolyte. The equilibrium electrical potentials of cathode containing Li x Mn 2 O 4 spinel, in the composition ranges 0≤x≤1 and 1≤x≤2, vs. metallic lithium in the reversible intercalation galvanic cell have been calculated. The existence of two-voltage plateaus which appeared during charging and discharging processes in reversible intercalation of lithium into Li x Mn 2 O 4 spinel, has been discussed

  4. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    /n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane as model reservoir fluids and measured their phase equilibrium in the temperature range from (283–473) K by using a variable volume cell with full visibility. Their phase envelopes and liquid volume fractions below the saturation pressure have been measured. Four equations of state, including Soave......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...

  5. Studies of Mn0.5Cr0.5Fe2O4 ferrite by neutron diffraction at different temperatures in the range 768K ≥ T ≥ 13K

    International Nuclear Information System (INIS)

    Zakaria, A.K.M.; Ahmed, F.U.; Azad, A.K.; Yunus, S.M.; Asgar, M.A.; Paranjpe, S.K.; Das, A.

    2002-01-01

    Neutron diffraction studies of a polycrystalline manganese-chromium- ferrite with composition Mn 0.5 Cr 0.5 Fe 2 O 4 have been performed at a number of temperatures in the range 768K ≥ T ≥ 13K. The cation distributions, oxygen position parameter (u) and lattice constant (a o ) have been determined from the analysis of the higher angle neutron diffraction data. The temperature response of the lattice constant has also been investigated and a slight anomalous expansion has been found around the magnetic transition temperature. Sublattice as well as net ferrimagnetic moments of the specimen have been found out from the analysis of the neutron diffraction data at different temperatures. A randomly canted ordering of spins has been observed in the B sublattice, while the A sublattice moments appear to exhibit collinear Neel type ordering at all temperatures. (author)

  6. Effects of grain refinement on cast structure and tensile properties of superalloy K4169 at high pouring temperature

    Directory of Open Access Journals (Sweden)

    Zi-qi Jie

    2016-03-01

    Full Text Available In order to improve the filling ability of large complex thin wall castings, the pouring temperature should be increased, but this will result in the grain coarsening. To overcome this problem, two kinds of grain refiners of Co-Fe-Nb and Cr-Fe-Nb ternary alloys, which contain high stability compound particles, were prepared. The effects of the refiners on the as-cast structures and tensile properties of the K4169 superalloy with different casting conditions were studied by analyzing specimens 110 mm long and 20 mm in diameter. Results showed that the mixture addition of the two refiners in the melt of K4169 can reduce the columnar grain region and decrease the equiaxed grain size greatly. After refinement, the amount of Laves phase decreases and its morphology changes from island to blocky structure. The carbides in the fine grain samples are fine and dispersive. Meanwhile, the porosity in specimens is decreased due to grain refinement. As a result, the yield strength, ultimate strength and the elongation of the specimens are increased. The grain refinement mechanisms are also discussed.

  7. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  8. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  9. Physical properties of {anisole + n-alkanes} at temperatures between (293.15 and 303.15) K

    International Nuclear Information System (INIS)

    Al-Jimaz, Adel S.; Al-Kandary, Jasem A.; Abdul-latif, Abdul-Haq M.; Al-Zanki, Adnan M.

    2005-01-01

    Density ρ, viscosity η, and refractive index n D , values of {anisole + hexane, or heptane, or octane, or nonane, or decane, or dodecane} binary mixtures over the entire range of mole fraction at temperatures (293.15, 298.15, and 303.15) K, have been investigated at atmospheric pressure. The excess molar volume V E , has been calculated from the experimental measurements. These results were fitted to Redlich and Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of Grunberg and Nissan, and McAllister. The refractive indices data were used to calculate the specific refractivity R 12 , and also correlated with Lorentz-Lorenz equation. While the excess molar volumes of {anisole + hexane} are negative, and {anisole + heptane} are sigmoidal S-shaped, the remaining binary mixtures are positive. The effects of n-alkanes chain length as well as the temperature on the excess molar volume have been studied. The calculated values have been qualitatively used to explain the intermolecular interaction between the mixing components

  10. Measurement of density and electron temperature of a decaying plasma in 4.2 K helium gases

    International Nuclear Information System (INIS)

    Kimura, T.; Minami, K.

    1986-01-01

    As is well known, the coupling constant Γ of a plasma is defined as the ratio of the average Coulomb energy to the average kinetic energy. Plasmas with Γ not much less than unity are called strongly coupled plasmas or non-ideal plasmas. Such plasmas, high density or low temperature, can be produced by laser implosion, shock waves etc. In the present report, the authors' attempt to generate a non-ideal plasma in a different way from previous ones. They observe a late period of a decaying plasma in helium gases at a temperature less than 4.2 K. An afterglow in cryogenic helium gases was studied previously. In that study, the authors measured the density of the order of 10/sup 12/ cm/sup -3/ by the method of transmission of X-band microwaves. In the present case, plasma is observed in a cylindrical cavity of TE/sub 011/ mode at 2.83 GHz immersed in liquid helium. The size of the cavity is 166 mm inner diameter and 83 mm length. One end wall is made by thin mesh through which plasmas produced by pulse discharge of 750 A, 1 μsec are fed. The loaded Q without plasma is 5300. The pressure of helium gas is changed from 0.03 to 1.3 Torr

  11. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    Science.gov (United States)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  12. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    Science.gov (United States)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  13. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  14. Investigation of oxygen disorder, thermal parameters, lattice vibrations and elastic constants of UO2 and ThO2 at temperatures up to 2 930 K

    DEFF Research Database (Denmark)

    Clausen, Kurt Nørgaard; Hayes, W; Hutchings, M.T.

    1984-01-01

    temperatures has been unanswered until now. A new high temperature furnace has been purchased by Harwell for work at temperatures in this region, and a series of experiments has been carried out involving diffraction, quasielastic diffuse and inelastic neutron scattering from single crystals of UO2 and ThO2....... These have been backed by experiments in the lower temperature range to 2 500 K at I.L.L. Details of the Harwell furnace, and methods used for temperature measurement and encapsulation of the crystal samples are given, together with some examples of the principal results. These results show unambiguously...

  15. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    Science.gov (United States)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

  16. Heat capacity and thermodynamics of solid and liquid pyridine-3-carboxylic acid (nicotinic acid) over the temperature range 296 K to 531 K

    International Nuclear Information System (INIS)

    Joseph, Abhinav; Bernardes, Carlos E.S.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the heat capacity of solid and liquid nicotinic acid by DSC. ► We determined Δ 357.8K 305.6K H m o (NA,crII) by Calvet microcalorimetry. ► We studied the thermodynamics of the cr II → cr I phase transition. ► We determined the Δ f G m o –T diagram of nicotinic acid for T = (296 to 531) K. - Abstract: The molar heat capacity of pyridine-3-carboxylic acid (nicotinic acid) for T = (296 to 531) K was investigated by differential scanning calorimetry (DSC) and Calvet-drop microcalorimetry. The measurements extended up to the liquid range and also covered the interval where a reversible and fast solid-solid (cr II → cr I) phase transition occurs. The molar enthalpies and entropies of that phase transition and of fusion were obtained as T trs = (455.0 ± 0.2) K, Δ trs H m o = (0.90 ± 0.10) kJ ⋅ mol −1 , Δ trs S m o = (1.98 ± 0.22) J ⋅ K −1 ⋅ mol −1 , T fus = (509.91 ± 0.04) K, Δ fus H m o = (28.2 ± 0.1) kJ ⋅ mol −1 , and Δ fus S m o = (55.30 ± 0.16) J ⋅ K −1 ⋅ mol −1 . By combining these experimental results with the previously reported Δ sub H m (NA,cr II) at T = 366.5 K, the corresponding entropy in the gaseous state calculated at the B3LYP/6-31+G(d,p) level of theory, and Δ f H m o (NA),cr II) at T = 298.15 K, it was possible to estimate the standard molar Gibbs energy of formation functions necessary for the construction of the Δ f G m ∘ vs. T diagram illustrating the enantiotropic nature of this system.

  17. Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15K to 328.15K

    International Nuclear Information System (INIS)

    Orchilles, A. Vicent; Gonzalez-Alfaro, Vicenta; Miguel, Pablo J.; Vercher, Ernesto; Martinez-Andreu, Antoni

    2006-01-01

    Densities of 1-butyl-3-methylimidazolium octylsulfate ([bmim][OcOSO 3 ]) solutions in water and 1-propanol have been measured with an oscillating-tube densimeter at temperatures from 278.15K to 328.15K. From these densities, apparent molar volumes V φ of [bmim][OcOSO 3 ] in both solvents have been calculated, and its dependence on the molality has been treated with the Redlich and Meyer equation. Debye-Huckel limiting slopes for 1-propanol at working temperatures have been calculated, and apparent molar volumes of [bmim][OcOSO 3 ] at infinite dilution V φ o in both solvents have been evaluated. The partial molar volume at infinite dilution of [bmim][OcOSO 3 ] in water is higher than in 1-propanol and augments when the temperature augments. On the other hand, the partial molar volume at infinite dilution of [bmim][OcOSO 3 ] in 1-propanol decreases when the temperature augments

  18. Vitamin K 3 family members - Part II: Single crystal X-ray structures, temperature-induced packing polymorphism, magneto-structural correlations and probable anti-oncogenic candidature

    Science.gov (United States)

    Rane, Sandhya; Ahmed, Khursheed; Salunke-Gawali, Sunita; Zaware, Santosh B.; Srinivas, D.; Gonnade, Rajesh; Bhadbhade, Mohan

    2008-12-01

    Temperature-induced packing polymorphism is observed for vitamin K 3 (menadione, 3-methyl-1,4-naphthoquinone, 1). Form 1a crystallizes at 300 K and 1b at 277 K both in the same space group P2 1/ c. Form 1b contains one molecule per asymmetric unit, performing anisotropy in g-factor viz. g z = 2.0082, g y = 2.0055 and g x = 2.0025, whereas form 1a contains two molecules in its asymmetric unit. Vitamin K 3 family members 2, [2-hydroxy vitamin K 3] and 3, [2-hydroxy-1-oximino vitamin K 3] also perform intrinsic neutral active naphthosemiquinone valence tautomers even in dark having spin concentrations due to hydrogen bonding and aromatic stacking interactions which are compared to vitamin K 3. The significant lateral C-H⋯O and O-H⋯π bifurcated or π-π ∗ interactions are discussed for molecular associations and radical formations. X-ray structure of 3 revealed π-π ∗ stack dimers as radicals signatured in EPR as triplet with five hyperfine splits [ Ā( 14N) = 11.9 G]. The centrosymmetric biradicals in 3 show diamagnetism at high temperature but below 10 K it shows paramagnetism with μeff as 0.19 B.M. Vitamin K 3 and its family members inhibit biological activities of acid phosphatase ( APase), which are proportional to their spin concentrations. This may relate to their probable anti-oncogenic candidature in future.

  19. THE BINARITY OF MILKY WAY F,G,K STARS AS A FUNCTION OF EFFECTIVE TEMPERATURE AND METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shuang; Liu, Chao; Zhang, Xiaobin; Justham, Stephen; Deng, Licai; Yang, Ming [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-06-20

    We estimate the fraction of F,G,K stars with close binary companions by analysing multi-epoch stellar spectra from the Sloan Digital Sky Survey (SDSS) and LAMOST for radial velocity variations. We employ a Bayesian method to infer the maximum likelihood of the fraction of binary stars with orbital periods of 1000 days or shorter, assuming a simple model distribution for a binary population with circular orbits. The overall inferred fraction of stars with such a close binary companion is 43.0% ± 2.0% for a sample of F,G,K stars from SDSS SEGUE, and 30% ± 8.0% in a similar sample from LAMOST. The apparent close binary fraction decreases with the stellar effective temperature. We divide the SEGUE and LEGUE data into three subsamples with different metallicity ([Fe/H] < –1.1; –1.1 < [Fe/H] < –0.6; –0.6 < [Fe/H]), for which the inferred close binary fractions are 56 ± 5.0%, 56.0 ± 3%, and 30 ± 5.7%. The metal-rich stars from our sample are therefore substantially less likely to possess a close binary companion than otherwise similar stars drawn from metal-poor populations. The different ages and formation environments of the Milky Way's thin disk, thick disk, and halo may contribute to explaining these observations. Alternatively, metallicity may have a significant effect on the formation and/or evolution of binary stars.

  20. Cooling of high temperature superconductors below 60 K by means of a two-stage cryogenic mixed refrigerant cascade; Kuehlung von Hochtemperatursupraleitern unterhalb von 60 K mittels einer zweistufigen Gemischkaeltekaskade

    Energy Technology Data Exchange (ETDEWEB)

    Kochenburger, T.M. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Thermodynamik und Kaeltetechnik (ITTK); Grohmann, S. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technische Thermodynamik und Kaeltetechnik (ITTK); Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Physik (ITEP)

    2015-07-01

    High temperature superconductors enable the efficient transmission of electrical energy in urban and industrial networks. It is the availability of simple, reliable and at the same time efficient cooling methods prerequisite for the application of this technology. At operating temperatures 65-80 K is the cooling currently mostly implemented by liquid nitrogen, large-scale turbo-Brayton plants or batteries of regenerative cryocooler; however, all these options for applications in the range of a few kW of required cooling capacity have thermodynamic, economic and practical limitations. In addition, a further lowering the cooling temperature below 60 K is desirable to increase the current density in the superconductors. Two-stage cryogenic mixed refrigerant cascade offer the potential for a reliable and easily scalable alternative for refrigeration in this temperature range. The first stage of the considered process consists of a classic mixture refrigeration cycle to pre-cool to 120 K. The second stage operates in the low temperature range up to 55 K with a mixture of nitrogen, oxygen and neon at high pressures. This paper compares on the basis of experimental data, the performance of combustible and non-combustible mixtures in the precooling level. The applicability of various equations of state for modeling of phase behavior of mixtures is discussed. [German] Hochtemperatursupraleiter ermoeglichen den effizienten Transport elektrischer Energie in urbanen und industriellen Netzen. Dabei ist die Verfuegbarkeit von einfachen, zuverlaessigen und gleichzeitig effizienten Kuehlmethoden Voraussetzung fuer die Anwendung dieser Technologie. Bei Betriebstemperaturen von 65 - 80 K wird die Kuehlung derzeit meist durch Fluessigstickstoff, grossskalige Turbo-Brayton-Anlagen oder Batterien regenerativer Kleinkuehler realisiert; jedoch haben alle diese Optionen fuer Anwendungen im Bereich von einigen kW an erforderlicher Kaelteleistung thermodynamische, oekonomische und

  1. Effect of nanostructure on thermoelectric properties of La0.7Sr0.3MnO3 in 300–600 K temperature range

    Science.gov (United States)

    Singh, Saurabh; Srivastav, Simant Kumar; Patel, Ashutosh; Chatterjee, Ratnamala; Pandey, Sudhir K.

    2018-05-01

    In oxide materials, nanostructuring effect has been found a very promising approach for the enhancement of figure-of-merit, ZT. In the present work, we have synthesized La0.7Sr0.3MnO3 (LSMO) compound using sol-gel method and samples of crystallite size of ∼20, ∼41, and ∼49 nm were obtained by giving different heat treatment. Seebeck coefficient (α), electrical resistivity (ρ), and thermal conductivity (κ) measurements were carried out in 300–600 K temperature range. The systematic change in the values of α from ∼‑19 μV/K to ∼‑24 μV/K and drastic reduction in the values of κ from ∼0.88 W/mK to ∼0.23 W/mK are observed as crystallite size is reduced from 49 nm to 20 nm at ∼600 K. Also, fall in the values of ρ in the paramagnetic (PM) insulator phase (400–600 K) are effectively responsible for the increasing trend in the values of ZT at high temperature. For the crystallite size of 41 nm, the value of ZT at 600 K was found to be ∼0.017.

  2. Experimental investigation of thermodynamic properties of binary mixture of acetic acid + n-butanol and acetic acid + water at temperature from 293.15 K to 343.15 K

    Science.gov (United States)

    Paul, M. Danish John; Shruthi, N.; Anantharaj, R.

    2018-04-01

    The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.

  3. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  4. Absolute rate constants for the reaction of O(3P) atoms with ethylene, propylene, and propylene-d6 over the temperature range 258--861 K

    International Nuclear Information System (INIS)

    Perry, R.A.

    1984-01-01

    Absolute rate constants for the reaction of O( 3 P) with ethylene, propylene, and propylene-d6 were determined over the temperature range 258--861 K using a laser photolysis-chemiluminescence technique. The following empirical expressions are the best fits to the data: k/sub ethylene/ = 2.12 x 10 -13 T -63 e -1370 /sup ///sup R//sup T/, k/sub propylene/ = 3.40 x 10 -19 T/sup 2.56/e/sup 1130/RT/, and k/sub propylene-d/6 = 3.40 x 10 -19 T/sup 2.53/ e/sup 1210/R/T cm 3 molecule -1 s -1 . A simple transition state theory model is shown to provide a reasonable explanation for non-Arrhenius temperature behavior

  5. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  6. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    International Nuclear Information System (INIS)

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-01-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system

  7. Risk Mitigaion for HTS Motors: Intermediate Temperature (27 K) Strain Effects in Reinforced Bi-Sr-Ca-Cu-O Superconductors

    National Research Council Canada - National Science Library

    Schwartz, Justin

    2004-01-01

    High temperature superconductors , known for their high critical temperatures, also have very high upper critical fields and thus have received significant attention for superconducting magnets (SCMs...

  8. Partial molar volumes of organic solutes in water. XXIV. Selected alkane-α,ω-diols at temperatures T = 298 K to 573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan; Hnědkovský, Lubomír

    2013-01-01

    Highlights: • Standard molar volumes of three alkane-α,ω-diols (C 5 , C 8 , C 9 ) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Dependences on carbon atom number, temperature, and pressure are analysed. -- Abstract: Density data for dilute aqueous solutions of three alkane-α,ω-diols (pentane-1,5-diol, octane-1,8-diol, nonane-1,9-diol) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were slightly above the saturation vapour pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Measured standard molar volumes were combined with data previously published for other members of the homologous series and discussed. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Dependences of standard molar volumes on temperature and pressure were analysed. Contributions of the methylene group to the standard molar volume were also evaluated and discussed

  9. Pyroelectric Properties of Potassium and Rubidium Titanyl-Arsenate Single Crystals in the Temperature Range of 4.2-300 K

    Energy Technology Data Exchange (ETDEWEB)

    Shaldin, Yu. V., E-mail: yuri1999@rambler.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Matyjasik, S. [International Laboratory of Strong Magnetic Fields and Low Temperatures (Poland); Novikova, N. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tseitlin, M.; Mozhaev, E. [Ariel University Center of Samaria (Israel); Roth, M. [Hebrew University, School of Applied Sciences (Israel)

    2010-11-15

    The temperature dependences of the pyroelectric coefficients of KTiOAsO{sub 4} and RbTiOAsO{sub 4} single crystals grown by flux crystallization have been investigated in the temperature range of 4.2-300 K. With an increase in temperature, superionic conductivity first arises in KTiOAsO4 (at T > 200 K) and then (at T > 270 K) in RbTiOAsO{sub 4}. This conductivity is much higher in the samples polarized at T = 4.2 K. An exponential change in the crystal resistivity along the polar direction is simultaneously observed. The results of measurements in the range of 4.2-200 K indicate larger values of pyroelectric coefficients when compared with potassium and rubidium titanyl-phosphate crystals. A correlation between the pyroelectric coefficients and a change in the lattice constants at isomorphic substitutions of K atoms for Rb and P atoms for As has been revealed within the symmetry approach.

  10. Effect of Low Temperature on a 4 W/60 K Pulse-Tube Cryocooler for Cooling HgCdTe Detector

    Science.gov (United States)

    Zhang, Ankuo; Liu, Shaoshuai; Wu, Yinong

    2018-04-01

    Temperature is an extremely important parameter for the material of the space-borne infrared detector. To cool an HgCdTe-infrared detector, a Stirling-type pulse-tube cryocooler (PTC) has been developed based on a great deal of numerical simulations, which are performed to investigate the thermodynamic behaviors of the PTC. The effects of different low temperatures are presented to analyze different energy flows, losses, phase shifts, and impedance matching of the PTC at a temperature range of 40-120 K, where woven wire screens are used. Finally, a high-efficiency coaxial PTC has been designed, built, and tested, operating around 60 K after a number of theoretical and experimental studies. The PTC can offer a no-load refrigeration temperature of 40 K with an input electric power of 150 W, and a cooling power of 4 W at 60 K is obtained with Carnot efficiency of 12%. In addition, a comparative study of simulation and experiment has been carried out, and some studies on reject temperatures have been presented for a thorough understanding of the PTC system.

  11. Attachment to the REh-1301 spectrometer for study on substances in the temperature range 120-350 K at pressure 1-1O4 atm

    International Nuclear Information System (INIS)

    Filippov, A.I.

    1979-01-01

    A design of an attachment for an electron paramagnetic resonance spectrometer is described, which allows investigations of substances over the 120-350 K temperature range at the pressures of 1 to 10 4 atm. To create a required pressure the high-pressure bomb is screwed by means of a special nut into the low-pressure system. The high-pressure vessel is made of a single piece of beryllium bronze. The temperature is measured with the help of a thermocouple, and the pressure - by a manganine manometer. Temperature isolation of the high-thermal insulation of the high-pressure bomb make it possible to adjust the temperature with an accuracy of +-1 K or better

  12. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa

    Directory of Open Access Journals (Sweden)

    JianJun Jiang

    2016-03-01

    Full Text Available The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC, to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E 2 g 1 ,A1g, and 2LA(M. Over our experimental temperature and pressure range (300–600 K and 1 atm−18.5 GPa, the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3–4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  13. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    Science.gov (United States)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  14. (Vapour+liquid) equilibria of {xCH3Cl+(1-x)HCl} at temperatures (159.01 and 182.33) K

    International Nuclear Information System (INIS)

    Senra, A.M.P.; Fonseca, I.M.A.; Lobo, L.Q.

    2005-01-01

    VLE for (CH 3 Cl+HCl) has been experimentally determined at temperatures (159.01 and 182.33) K, using a static; method. The data were used to calculate the molar excess Gibbs energy at the two temperatures. The excess molar enthalpy estimated from the G m E values for the equimolar mixture is relatively large and negative: H m E =-(1011+/-318) J.mol -1 . The results have been compared with estimates from the chemical theory of solutions

  15. Excess Molar Volumes of (Propiophenone + Benzene, or Toluene, or Ethylbenzene, or Butylbenzene) at Temperatures 298.15 K and 328.15 K

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Linek, Jan

    2005-01-01

    Roč. 37, č. 9 (2005), s. 1023-1028 ISSN 0021-9614 R&D Projects: GA ČR(CZ) GA203/02/1098 Institutional research plan: CEZ:AV0Z40720504 Keywords : density * excess volume * temperature dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.398, year: 2005

  16. (P, Vm, T) Measurements of (Toluene + Propiophenone) at Temperatures from 298.15 K to 328.15 K and at Pressures Up to 40 MPa

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Wagner, Zdeněk; Linek, Jan

    2005-01-01

    Roč. 37, č. 7 (2005), s. 658-666 ISSN 0021-9614 R&D Projects: GA ČR(CZ) GA203/02/1098 Institutional research plan: CEZ:AV0Z40720504 Keywords : density * high pressure * elevated temperature Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.398, year: 2005

  17. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  18. High-temperature Brillouin scattering study of haplogranitic glasses and liquids: Effects of F, K, Na and Li on Tg and elastic properties

    Science.gov (United States)

    Manghnani, M. H.; Hushur, A.; Williams, Q. C.; Dingwell, D. B.

    2010-12-01

    The density, compressibility and viscosity of silicate melts are important in understanding the thermodynamic and fluid dynamic properties of magmatic systems. Knowledge of the compressibility of silicate melts at 1 bar is an important component in the construction of accurate pressure-volume-temperature equations of state. In light of this, the velocity (nVp, Vp, Vs) and refractive index n of four anhydrous haplogranitic glasses and liquids with similar alkali abundances, but different cations, are measured at high temperature by Brillouin scattering spectroscopy through the glass transition temperature (Tg) in both platelet and back scattering geometry. The compositions of four haplogranites are 5 wt% of the components Li2O, Na2O, K2O and F each added to a base of haplogranitic (HPG8) composition. The glass transition temperature Tg of different haplogranite samples at the GHz frequency of the Brillouin probe are determined from the change in slope of the temperature-dependent longitudinal or transverse sound velocity. HPG8-Li5 has the lowest glass transition temperature (466°C), while HPG8-K5 has the highest glass transition temperature (575°C). Our Brillouin results, when compared with DSC measurements, show lower Tg values. This raises the possibility of a role of either heating rates or a frequency dependence of the glass transition in explaining the discrepancies in Tg values derived from the two methods. The sound velocity (nVp, Vp, Vs) shows markedly different temperature dependences (including differences in sign) below Tg depending on their different alkali contents. The unrelaxed elastic moduli of three haplogranitic glasses with added Li2O, Na2O and F components have been obtained as a function of temperature. The unrelaxed bulk modulus, shear modulus and Poisson’s ratio show strong compositional dependences at ambient temperature. On heating, The K initially decreases with increasing temperature up to ~ 135°C, then increases up to Tg, and then

  19. The resistance to deformation and facture of magnesium ma2-1 under shock-wave loading at 293 k and 823 k of the temperature

    Science.gov (United States)

    Garkushin, Gennady; Kanel, Gennady I.; Razorenov, Sergey V.

    2012-03-01

    The Hugoniot elastic limit and spall strength of Ma2-1 magnesium deformable alloy were measured at the sample thickness varied from 0.25 mm to 10 mm at room and elevated temperatures. By means of analysis of decay of an elastic precursor wave it is found that initial plastic strain rate decreases from 2×105 s-1 at distance of 0.25 mm to 103 s-1 at distance of 10 mm. The strain rate in plastic shock wave is by order of magnitude higher at the same value of the shear stress. The spall strength of the alloy grows with increasing the strain rate and decreases with approach to the solidus temperature.

  20. Measurement and modeling of density and viscosity of n-octanol-kerosene-phosphoric acid solutions in a temperature range 293.15-333.15 K

    Science.gov (United States)

    Ye, Changwen; Pei, Xiangjun; Liu, J. C.

    2016-12-01

    Densities and viscosities have been measured for the n-octanol + aviation kerosene (AK) + phosphoric acid (H3PO4) system with the mass fraction of H3PO4 in the range from w = 0 to 0.26 and in the temperature of 293.15-333.15 K. According to the experimental data, the measured viscosities were found well correlated with the temperature and mass fraction of H3PO4, which were fitted to regression equations. The result shows that the dilution effect of AK is obvious under the same temperature and mass fraction of H3PO4.

  1. The Kubo-Greenwood calculation of conductivity of the simple and non-simple liquid metals in a wide temperature range

    International Nuclear Information System (INIS)

    Sobolev, A N; Mirzoev, A A

    2008-01-01

    We calculated the temperature dependences of electroconductivity for the different metals, such as alkalis (caesium), transition metals (iron), and mercury by Kubo-Greenwood formula. Atomic models of 1000-4000 atoms were obtained by Shommers method using the data of diffractional experiments for the wide temperature range. The electronic structure and interaction parameters for supercells of 30-50 atoms were got by LMTO method. The recursion method was used for the calculation of DOS and diffusivity quotients. The lowering of the DOS at the Fermi level was carefully examined. The results obtained are in good agreement with other authors' in views on the nature of the metal-nonmetal transition in different liquid metals. The calculated DOS and conductivity for all metals match the experimental data well

  2. Measurement of the specific heat of small vanadium particles in the normal- and superconducting state in the temperature range of 1.5-12 K

    International Nuclear Information System (INIS)

    Vergara Garcia, O.

    1982-01-01

    The specific heat of small crystalline vanadium particles in form of polyeders with diameters between 2.9 and 13.2 mm was measured in the temperature range of 1.5-12 K. Quantum effects are interpreted in the frame of theoretical models. (BEF)

  3. Measurement and Analysis of Normal Zone Propagation in a ReBCO Coated at Temperatures Below 50 K (Proc. 25th ICEC & ICMC2014 conference)

    NARCIS (Netherlands)

    van Nugteren, J.; Dhalle, Marc M.J.; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Nijhuis, Arend; ten Kate, Herman H.J.

    2015-01-01

    Measurements of the quasi-adiabatic normal zone propagation velocity and quench energies of a Superpower SCS4050 copper stabilised ReBCO superconducting tape are presented over a temperature range of 23 − 47 K; in parallel applied magnetic fields of 6, 10 and 14 T; and over a current range from 50%

  4. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    Science.gov (United States)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  5. The thermochemical transformations of hard-coal pitches at the stage of raising the softening temperature to 358-363K

    Energy Technology Data Exchange (ETDEWEB)

    Kekin, N.A.; Belkina, T.V.; Gordienko, V.G.; Stepanenko, M.A.

    1983-01-01

    By using the PMR method in association with IR spectroscopy, information has been obtained on the nature of the change in the amount of hydrogen in various groups of substances of the soluble fraction of the initial pitch and its thermal product at the stage of raising the softening temperature to 358-363K.

  6. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    International Nuclear Information System (INIS)

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas; Von Braun, Kaspar; Van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm; Ridgway, Stephen

    2013-01-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C ), Kron (R K I K ), Sloan (griz), and WISE (W 3 W 4 ) photometric systems. These relations have an average standard deviation of ∼3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ∼2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  7. Study of L-aspartic acid for its possible use as a dosimeter in the interval of 3.4-20 kGy at different irradiation temperatures

    Science.gov (United States)

    Meléndez-López, Adriana; Negrón-Mendoza, Alicia; Gómez-Vidales, Virginia; Uribe, Roberto M.; Ramos-Bernal, Sergio

    2014-11-01

    Certain commercial applications of radiation processing increase the efficiency of chemical reactions at low temperatures to decrease the free radicals in the bulk material and avoid the synergistic effects of heat. Such applications have motivated the search for a reliable, low-temperature dosimeter for use under the conditions of the irradiation process. For this purpose, polycrystalline samples of L-aspartic acid (2-aminobutanedioic acid) were irradiated with gamma rays at low temperatures and doses in the kiloGray range (3.4-64 kGy). The potential use of the aspartic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. These radicals can be studied and quantified using electron spin resonance (ESR). The response curves at different temperatures show that the intensity of the ESR spectra (the five characteristic lines) depends on the dose received. The response of the dosimeter increases with increasing temperature, and this relationship is linear up to 20 kGy at 298 K. The decay characteristics show that the change in the ESR signal over time is low and reproducible. In addition, the L-aspartic acid dosimeter is easy to handle and has low cost.

  8. The volumetric properties of (1,2-propanediol carbonate+benzene, or toluene, or styrene) binary mixtures at temperatures from T=293.15 K to T=353.15 K

    International Nuclear Information System (INIS)

    Wang Haijun; Wu Yonghua; Huang Jihou

    2006-01-01

    The densities and excess molar volumes V m E for binary liquid mixtures of (1,2-propanediol carbonate+benzene, or toluene, or ethylbenzene, or styrene) have been measured as a function of compositions using a vibrating-tube densimeter in the temperature range of (293.15 to 353.15) K and at atmospheric pressure. The V m E results were correlated using the fourth-order Redlich-Kister equation. It was found that the V m E in these systems studied increases with rising temperature

  9. Phase equilibrium measurements of (methane + benzene) and (methane + methylbenzene) at temperatures from (188 to 348) K and pressures to 13 MPa

    International Nuclear Information System (INIS)

    Hughes, Thomas J.; Kandil, Mohamed E.; Graham, Brendan F.; Marsh, Kenneth N.; Huang, Stanley H.; May, Eric F.

    2015-01-01

    Highlights: • VLE data for (CH 4 (1) + C 6 H 6 (2)) and (CH 4 (1) + C 6 H 5 CH 3 (3)) were measured. • LLE was observed at T = 198.15 K, a T higher than expected, for (CH 4 + C 6 H 5 CH 3 ) . • Inconsistences in the literature data were identified and assessed. • More data at x 1 > 0.3 for both systems are needed to investigate discrepancies. - Abstract: New isothermal pTxy data are reported for (methane + benzene) and (methane + methylbenzene (toluene)) at pressures up to 13 MPa over the temperature range (188 to 313) K using a custom-built (vapor + liquid) equilibrium (VLE) apparatus. The aim of this work was to investigate literature data inconsistencies and to extend the measurements to lower temperatures. For (methane (1) + benzene (2)), measurements were made along six isotherms from (233 to 348) K at pressures to 9.6 MPa. At temperatures below 279 K there was evidence of a solid phase, and thus only vapor phase samples were analyzed at these temperatures. For the (methane (1) + methylbenzene (3)) system, measurements were made along seven isotherms from T = (188 to 313) K at pressures up to 13 MPa. Along the 198 K isotherm, a significant change in the data’s p,x slope was observed indicating (liquid + liquid) equilibria at higher pressures. The data were compared with literature data and with calculations made using the Peng–Robinson (PR) equation of state (EOS). For both binary systems our data agree with much of the literature data that also deviate from the EOS in a similar manner. However, the data of Elbishlawi and Spencer (1951) for both binary systems, which appear to have received an equal weighting to other data in the EOS development, are inconsistent with the results of our measurements and data from other literature sources

  10. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.

    Science.gov (United States)

    Li, Yufang; Zhao, Gang; Hossain, S M Chapal; Panhwar, Fazil; Sun, Wenyu; Kong, Fei; Zang, Chuanbao; Jiang, Zhendong

    2017-06-01

    Biobanking of organs by cryopreservation is an enabling technology for organ transplantation. Compared with the conventional slow freezing method, vitreous cryopreservation has been regarded to be a more promising approach for long-term storage of organs. The major challenges to vitrification are devitrification and recrystallization during the warming process, and high concentrations of cryoprotective agents (CPAs) induced metabolic and osmotic injuries. For a theoretical model based optimization of vitrification, thermal properties of CPA solutions are indispensable. In this study, the thermal conductivities of M22 and vitrification solution containing ethylene glycol and dimethyl sulfoxide (two commonly used vitrification solutions) were measured using a self-made microscaled hot probe with enameled copper wire at the temperature range of 77 K-300 K. The data obtained by this study will further enrich knowledge of the thermal properties for CPA solutions at low temperatures, as is of primary importance for optimization of vitrification.

  11. Experimental study of the density and derived volumetric (excess, apparent, and partial molar volumes) properties of aqueous 1-propanol mixtures at temperatures from 298 K to 582 K and pressures up to 40 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2014-01-01

    Highlights: • Density of (water + 1-propanol) mixtures. • Excess molar volumes of (water + 1-propanol) mixtures. • Apparent molar volumes of (water + 1-propanol) mixtures. -- Abstract: Densities of (water + 1-propanol) mixtures have been measured over the temperature range from 298 K to 582 K and at pressures up to 40 MPa using the constant-volume piezometer immersed in a precision liquid thermostat. The measurements were made for six compositions of (0.869, 2.465, 2.531, 7.407, 14.377, and 56.348) mol · kg −1 of 1-propanol. The expanded uncertainty of the density, pressure, temperature, and concentration measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.06%, 0.05%, 15 mK, and 0.015%, respectively. The derived volumetric properties such as excess (V m E ), apparent (V Φ ), and partial (V ¯ 2 ∞ ) molar volumes were calculated using the measured values of density for the mixture and for pure components (water and 1-propanol). The concentration dependences of the apparent molar volumes were extrapolated to zero concentration to yield the partial molar volumes of 1-propanol at infinite dilution (V ¯ 2 ∞ ). The temperature, pressure, and concentration dependence of density and derived properties of the mixture were studied. All experimental and derived properties (excess, apparent, and partial molar volumes) were compared with the reported data by other authors. The small and negative values of excess molar volume for the mixtures were found at all experimental temperatures, pressures, and over the entire concentration range. The excess molar volume minimum is found at concentration about 0.4 mole fraction of 1-propanol. The concentration minimum of the derived apparent molar volumes V Φ near the 2.5 mol · kg −1 (dilute mixture) was observed

  12. Design, Fabrication, Test Report of the Material Capsule(08M-10K) with Double Thermal Media for High-temperature Irradiation

    International Nuclear Information System (INIS)

    Cho, Man Soon; Choo, K. N.; Kang, Y. H.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Kim, B. G.; Oh, S. Y.

    2010-01-01

    To overcome the restriction of the irradiation test at a high temperature of the existing material capsule with Al thermal media, a capsule suitable for the irradiation at the high temperature was developed and the performance test was undertaken. The 08M-10K capsule was designed and fabricated as that with double thermal media to verify the structural and external integrity in the high-temperature irradiation higher than 500 .deg. C. The thermal performance test was undertaken at the out-pile test facility, and the soundness of the double thermal media was confirmed with the naked eye after disassembling the capsule. Though the temperatures of the specimens reach 500±20 .deg. C as a result maintaining the capsule during 5 hours after setting the specimens temperatures in the target range, the high-temperature thermal media with double structure was confirmed to maintain the soundness. And the specimens and the thermal media were heated to 600 .deg. C for about 3 minutes, but the thermal media were maintained sound. Especially, the Al thermal media were heated for 5 hours in range of 500±20 .deg. C and for 3 minutes at the temperature of 600 .deg. C. However, the thermal media were confirmed to maintain the soundness. Whether a capsule has only Al thermal media or the high-temperature thermal media with double structure, any capsule can be used in the range of 500±20 .deg. C as the result of this experiment maintaining the specimens high-temperature

  13. K Srinivasan

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Srinivasan. Articles written in Bulletin of Materials Science. Volume 23 Issue 1 February 2000 pp 35-37 Metallic Materials. Impact toughness of ternary Al–Zn–Mg alloys in as cast and homogenized condition measured in the temperature range 263–673 K · Harish Kundar ...

  14. Measurement of the (pressure, density, temperature) relation of two (methane + nitrogen) gas mixtures at temperatures between 240 and 400 K and pressures up to 20 MPa using an accurate single-sinker densimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, C.R. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain)]. E-mail: cescha@eis.uva.es; Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Villamanan, M.A. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Estela-Uribe, J.F. [Facultad de Ingenieria, Universidad Javeriana-Cali, Calle 18, 118-250 Cali (Colombia); Trusler, J.P.M. [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2006-07-15

    Comprehensive (p, {rho}, T) measurements on two gas mixtures of (0.9CH{sub 4} + 0.1N{sub 2}) and (0.8CH{sub 4} + 0.2N{sub 2}) have been carried out at six temperatures between 240 and 400 K and at pressures up to 20 MPa. A total of 108 (p, {rho}, T) data for the first mixture and 134 for the second one are given. These measurements were performed using a compact single-sinker densimeter based on Archimedes' buoyancy principle. The overall uncertainty in density {rho} is estimated to be (1.5 . 10{sup -4} . {rho} + 2 . 10{sup -3} kg . m{sup -3}) (coverage factor k = 2), the uncertainty in temperature T is estimated to be 0.006 K (coverage factor k = 2), and the uncertainty in pressure p is estimated to be 1 . 10{sup -4}.p (coverage factor k = 2). The equipment has been previously checked with pure nitrogen over the whole temperature and pressure working ranges and experimental results (35 values) are given and a comparison with the reference equation of state for nitrogen is presented.

  15. Measurement of the (pressure, density, temperature) relation of two (methane + nitrogen) gas mixtures at temperatures between 240 and 400 K and pressures up to 20 MPa using an accurate single-sinker densimeter

    International Nuclear Information System (INIS)

    Chamorro, C.R.; Segovia, J.J.; Martin, M.C.; Villamanan, M.A.; Estela-Uribe, J.F.; Trusler, J.P.M.

    2006-01-01

    Comprehensive (p, ρ, T) measurements on two gas mixtures of (0.9CH 4 + 0.1N 2 ) and (0.8CH 4 + 0.2N 2 ) have been carried out at six temperatures between 240 and 400 K and at pressures up to 20 MPa. A total of 108 (p, ρ, T) data for the first mixture and 134 for the second one are given. These measurements were performed using a compact single-sinker densimeter based on Archimedes' buoyancy principle. The overall uncertainty in density ρ is estimated to be (1.5 . 10 -4 . ρ + 2 . 10 -3 kg . m -3 ) (coverage factor k = 2), the uncertainty in temperature T is estimated to be 0.006 K (coverage factor k = 2), and the uncertainty in pressure p is estimated to be 1 . 10 -4 .p (coverage factor k = 2). The equipment has been previously checked with pure nitrogen over the whole temperature and pressure working ranges and experimental results (35 values) are given and a comparison with the reference equation of state for nitrogen is presented

  16. Phase equilibrium measurements and thermodynamic modeling of aqueous solutions of polyamines CO_2 absorbents: 3-aminopropylmethylamine, 3-aminopropyldimethylamine and N,N-diethyl 1,3-propanediamine at temperatures from 273 K to 363 K

    International Nuclear Information System (INIS)

    Bouzina, Zahida; Mokbel, Ilham; Negadi, Amina; Jose, Jacques; Negadi, Latifa

    2016-01-01

    Highlights: • Experimental vapor pressures of pure MAPA, DMAPA, DEAPA and their aqueous solutions are reported. • The investigated temperatures are 273 K through 363 K. • The MAPA binary system exhibits negative deviations in G"E values. • The DMAPA and DEAPA systems exhibit negative, sinusoidal and positive deviations in G"E values. • The 3rd order Redlich–Kister, and NRTL or UNIQUAC models have been used to correlate the (P-x-y) data. - Abstract: The vapor pressures of the pure components 3-aminopropylmethylamine (MAPA), 3-aminopropyldimethylamine (DMAPA) and N,N-diethyl 1,3-propanediamine (DEAPA) along with the binary mixtures (MAPA + water), (DMAPA + water) and (DEAPA + water) were measured by means of a static apparatus at temperatures between (273 and 363) K. The data were correlated with the Antoine equation. From these data, excess Gibbs functions (G"E) were calculated for several constant temperatures, and fitted to a three parameters Redlich–Kister equation using the Barker’s method. Additionally, the NRTL and UNIQUAC models have been used for the correlation of the total pressure.

  17. The Crucial Role of the K+-Aluminium Oxide Interaction in K+-Promoted Alumina- and Hydrotalcite-Based Materials for CO2 Sorption at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Walspurger, S.; Boels, L.; Cobden, P.D.; Elzinga, G.D.; Haije, W.G.; Van den Brink, R.W. [Energy Research Centre of the Netherlands ECN, Westerduinweg 3, 1755LE, Petten (Netherlands)

    2008-09-15

    CO2-free hydrogen can be produced from coal gasification power plants by pre-combustion decarbonisation and carbon dioxide capture. Potassium carbonate promoted hydrotalcite-based and alumina-based materials are cheap and excellent materials for high-temperature (300-500C) adsorption of CO2, and particularly promising in the sorption-enhanced water gas shift (SEWGS) reaction. Alkaline promotion significantly improves CO2 reversible sorption capacity at 300-500C for both materials. Hydrotalcites and promoted hydrotalcites, promoted magnesium oxide and promoted -alumina were investigated by in situ analytical methods (IR spectroscopy, sorption experiments, X-ray diffraction) to identify structural and surface rearrangements. All experimental results show that potassium ions actually strongly interact with aluminium oxide centres in the aluminium-containing materials. This study unambiguously shows that potassium promotion of aluminium oxide centres in hydrotalcite generates basic sites which reversibly adsorb CO2 at 400C.

  18. Flux mapping at 77 K and local measurement at lower temperature of thin-wall YBaCuO single-domain samples oxygenated under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chaud, X., E-mail: Xavier.chaud@grenoble.cnrs.f [CRETA, CNRS, 25, Avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Noudem, J. [CRISMAT/ENSICAEN, CNRS, 6 bd Marechal Juin, 14050 Caen (France); Prikhna, T.; Savchuk, Y. [ISM, National Acad. of Sciences of Ukraine, 2 Avtozavodskaya Street, Kiev, 04074 (Ukraine); Haanappel, E. [LNCMP, UMR 5147, 143 avenue de Rangueil, 31400 Toulouse (France); Diko, P. [IEP, Slovak Acad. of Sciences, Watsonova 47, 043 53, Kosice (Slovakia); Zhang, C.P. [SMRC, NIN, 96 Weiyang Road, Xi' an 710016 (China)

    2009-10-15

    YBCO single-domain samples are suitable for the production of high trapped fields in the range 20-77 K using a cryocooler or liquid nitrogen. But the oxygenation process required to actually transform the single domains into superconductors induces an extensive crack network that is limiting the material performances. Thin-wall geometry has been introduced to reduce the diffusion paths and to enable a progressive oxygenation strategy. As a consequence cracks are drastically reduced. In addition the use of a high oxygen pressure (16 MPa) speeds up further the process by displacing the oxygen-temperature equilibrium towards the higher temperature of the phase diagram. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample. Remarkable results are obtained without any doping by the combination of thin walls and oxygen high pressure. While classical plain samples yield 300-400 mT, a trapped field of 840 mT has been measured at 77 K on a 16 mm diameter Y123 thin-wall single-domain sample with an annealing time as short as 3 days. Local measurements with a fixed Hall probe on top of the sample were performed at lower temperature after magnetization either in a static field or in a pulse field. The trapped field is significantly higher at lower temperature. Cryocoolers become the key to compromise between performances and cryogenic cost around 40 K.

  19. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    International Nuclear Information System (INIS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold

    2015-01-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr 3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines

  20. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA+, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany)

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  1. Variable-Temperature IR Spectroscopic and Theoretical Studies on CO2 Adsorbed in Zeolite K-FER

    Czech Academy of Sciences Publication Activity Database

    Areán, C. O.; Delgado, M. R.; Bibiloni, G. F.; Bludský, Ota; Nachtigall, P.

    2011-01-01

    Roč. 12, č. 8 (2011), s. 1435-1443 ISSN 1439-4235 R&D Projects: GA MŠk(CZ) ME10032; GA MŠk LC512; GA ČR GA203/09/0143 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption * carbon dioxide * density functional calculations * IR spectroscopy * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  2. Self-diffusion and molecular association of acetylsalicylic acid and methyl salicylate in methanol- d4 in the temperature range 278-318 K

    Science.gov (United States)

    Golubev, V. A.; Kumeev, R. S.; Gurina, D. L.; Nikiforov, M. Yu.

    2017-05-01

    The effect of concentration on the self-diffusion coefficients of acetylsalicylic acid and methyl salicylate in methanol- d4 is investigated in the temperature range of 278-318 K using NMR. It is found that the self-diffusion coefficients increase along with temperature and fall as concentration rises. Within the limit of an infinitely dilute solution, the effective radii of solute molecules, calculated using the Stokes-Einstein equation shrink as the temperature grows. It is shown that the observed reduction of effective radii is associated with an increase in the fraction of solute monomers as the temperature rises. The physicochemical parameters of heteroassociation of acetylsalicylic acid and methyl salicylate with methanol are determined.

  3. P, ρ, T and heat capacity measurements of (α-pinene + β-pinene) mixtures over the temperature range 283.15 K to 358.15 K and pressures up to 40 MPa: Experiments and modelling

    International Nuclear Information System (INIS)

    Langa, Elisa; Palavra, Antonio M.F.; Lourenço, Maria J.V.; Nieto de Castro, Carlos A.; Mainar, Ana M.

    2013-01-01

    Highlights: ► Density as a function of P, T and composition was measured for pinene mixtures. ► Isothermal compressibility and coefficients of cubic expansion were also calculated. ► Isobaric heat capacity was also determined as function of temperature and composition. ► Usual behaviour of these properties was found. ► SAFT and PC-SAFT were used as predictive models, showing PC-SAFT the best predictions. - Abstract: The density and isobaric heat capacity of the binary system {α-pinene (4,7,7-trimethylbicyclo[3.1.1]hept-3-ene (1), CAS Number 7785-26-4) + β-pinene (6,6-dimethyl-2-methylene-bicyclo[3.1.1]heptane (2), CAS Number 127-91-3)} has been measured for eleven different compositions. The density was determined at five pressures from (20 MPa to 40 MPa) and temperatures from (283.15 K to 358.15 K) and the isobaric heat capacity at atmospheric pressure and temperatures from (313.15 K to 418.15 K). Density was measured with an experimental uncertainty estimated to be ± 0.5 kg·m −3 . The isothermal compressibility and isobaric thermal expansion were derived from the experimental density data. The isobaric heat capacity was determined with a DSC calorimeter being the experimental uncertainty lower than 1.5%. Isobaric heat capacity behaviour was as expected for both pure compounds and for mixtures. Two different equations of state, conventional SAFT and PC-SAFT, were applied to calculate the densities of the mixture, being the best predictions achieved with PC-SAFT equation.

  4. Investigation of the accumulation kinetics of free radicals under irradiation of some polymethylmethacrylate co-polymers in the 270-400 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, S P; Poljakov, A I; Rjabikin, Y A; Philippov, N L; Bitenbaev, M I [AN Kazakhskoj SSR, Alma-Ata. Inst. Yadernoj Fiziki

    1982-02-01

    In the present work, anomalous shapes of free radical (FR) accumulation curves found under PMMA copolymers irradiation in the T >= 300/sup 0/ K temperature range have been studied. With the irradiation dose increase the FR concentration in PMMA increases up to a definite maximal value and then starts falling. It is stated that appearance of slopes on the FR accumulation curves is not associated with possible changes of the FR relaxation characteristics. The second order of the FR decay reactions is estimated with the activation energy E = 8.3 kcal/mol. It is suggested that the FR decay processes in the irradiation temperature range T >= 300/sup 0/ K are due to the fast decay of macrochains according to the 'unzipping' mechanism.

  5. Investigation of the accumulation kinetics of free radicals under irradiation of some polymethylmethacrylate co-polymers in the 270-400 K temperature range

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Poljakov, A.I.; Rjabikin, Y.A.; Philippov, N.L.; Bitenbaev, M.I.

    1982-01-01

    In the present work, anomalous shapes of free radical (FR) accumulation curves found under PMMA copolymers irradiation in the T >= 300 0 K temperature range have been studied. With the irradiation dose increase the FR concentration in PMMA increases up to a definite maximal value and then starts falling. It is stated that appearance of slopes on the FR accumulation curves is not associated with possible changes of the FR relaxation characteristics. The second order of the FR decay reactions is estimated with the activation energy E = 8.3 kcal/mol. It is suggested that the FR decay processes in the irradiation temperature range T >= 300 0 K are due to the fast decay of macrochains according to the 'unzipping' mechanism. (author)

  6. Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa

    International Nuclear Information System (INIS)

    Schäfer, Michael; Richter, Markus; Span, Roland

    2015-01-01

    Highlights: • A new rotating-body viscometer for the low-pressure region was presented. • A viscosity dependent offset was compensated by calibrating the viscometer. • The viscosity of carbon dioxide was measured at low pressures. • Measurements were carried out from T = (253.15 to 473.15) K with p ≤ 1.2 MPa. • The relative expanded combined uncertainty (k = 2) was U r,c (η) = (0.20 to 0.41)%. - Abstract: The viscosity of carbon dioxide was measured over the temperature range T = (253.15 to 473.15) K with pressures up to 1.2 MPa utilizing a new rotating-body viscometer. The relative expanded combined uncertainty (k = 2) in viscosity (including uncertainties of temperature and pressure) was (0.20 to 0.41)%. The instrument was specifically designed for measurements at low gas densities and enables measurements of the dynamic viscosity at temperatures between T = 253.15 K and T = 473.15 K with pressures up to 2 MPa. For carbon dioxide, the fluid specific measuring range with regard to pressure was limited to 1.2 MPa due to the formation of disturbing vortices inside the measuring cell at higher pressures. The model function for the viscosity measurement was extended in such a way that the dynamic viscosity was measured relative to helium. Therefore, the influence of the geometry of the concentric cylindrical system inside the measuring cell became almost negligible. Moreover, a systematic offset resulting from a small but inevitable eccentricity of the cylindrical system was compensated for. The residual damping, usually measured in vacuum, was calibrated in the entire temperature range using viscosity values of helium, neon and argon calculated ab initio; at T = 298.15 K recommended reference values were used. A viscosity dependent offset of the measured viscosities, which was observed in previously published data, did not occur when using the calibrated residual damping. The new carbon dioxide results were compared to other experimental literature data

  7. Stress-strain behavior under static loading in Gd123 high-temperature superconductors at 77 K

    Science.gov (United States)

    Fujimoto, Hiroyuki; Murakami, Akira; Teshima, Hidekazu; Morita, Mitsuru

    2013-10-01

    Mechanical properties of melt-growth GdBa2Cu3Ox (Gd123) superconducting samples with 10 wt.% Ag2O and 0.5 wt.% Pt were evaluated at 77 K through flexural tests for specimens cut from the samples in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. We discuss the mechanical properties; the Young's modulus and flexural strength with stress-strain behavior at 77 K. The results show that the flexural strength and fracture strain of Gd123 at 77 K are approximately 100 MPa and 0.1%, respectively, and that the origin of the fracture is defects such as pores, impurities and non-superconducting compounds. We also show that the Young's modulus of Gd123 is estimated to be 160-165 GPa.

  8. Linear thermal expansion coefficient (at temperatures from 130 to 800 K) of borosilicate glasses applicable for coupling with silicon in microelectronics

    OpenAIRE

    Sinev, Leonid S.; Petrov, Ivan D.

    2017-01-01

    Processing results of measurements of linear thermal expansion coefficients and linear thermal expansion of two brands of borosilicate glasses --- LK5 and Borofloat 33 --- are presented. The linear thermal expansion of glass samples have been determined in the temperature range 130 to 800 K (minus 143 to 526 $\\deg$C) using thermomechanical analyzer TMA7100. Relative imprecision of indirectly measured linear thermal expansion coefficients and linear thermal expansion of both glass brands is le...

  9. Excess molar volumes of (an alkanol plus a branched chain ether) at the temperature 298.15 K and the application of the ERAS model

    CSIR Research Space (South Africa)

    Letcher, TM

    1997-12-01

    Full Text Available Phase Equilibria 140 (1997) 207-220 The excess molar the temperature volumes of (an alkanol + a branched chain ether) at 298.15 K and the application of the ERAS model Trevor M. Letcher * , Penny U. Govender ? Drpartnwnt... V,,? results presented here, together with the previously reported data for the molar excess enthalpy Hi, has been used to test the Extended Real Associated Solution (ERAS) model. 0 1997 Elsevier Science B.V. Ke...

  10. High-Temperature Heat Capacity of Germanates Pr2Ge2O7 and Nd2Ge2O7 within 350-1000 K

    Science.gov (United States)

    Denisova, L. T.; Irtyugo, L. A.; Beletskii, V. V.; Belousova, N. V.; Denisov, V. M.

    2018-03-01

    Pr2Ge2O7 and Nd2Ge2O7 were obtained via solid-phase synthesis from Pr2O3 ( Nd2O3) and GeO2 with multistage firing in air within 1273-1473 K. A temperature effect on molar heat capacity of the oxide compounds was measured with a differential scanning calorimetry. Their thermodynamic properties were calculated from the C P = f( T) dependences.

  11. Emanation-thermal characteristics of Ba-salts of some aromatic acids in the temperature range between 298 and 373 K

    Energy Technology Data Exchange (ETDEWEB)

    Balek, V; Prachar, M [Ustav Jaderneho Vyzkumu, Rez (Czechoslovakia); Kroupa, J [Vyzkumny Ustav Syntetickych Pryskyric a Laku, Pardubice (Czechoslovakia)

    1977-01-01

    The paper presents the emanation-thermal characteristics of Ba salts of some monocarboxylic acids (phtalic, isophtalic and terephtalic) and dicarboxylic acids (benzoic, salicylic, 1,4-aminobenzoic, 1,2-Cl-benzoic and 1,2-I-benzoic). It is shown that the emanation thermal characteristics measured in the temperature range between 298 and 373 K are suitable for estimating diffusion properties of studied organic solids. An apparatus for determining emanation-thermal characteristics is proposed.

  12. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm [CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR{sub J} I{sub J} JHK), Cousins (R{sub C} I{sub C}), Kron (R{sub K} I{sub K}), Sloan (griz), and WISE (W{sub 3} W{sub 4}) photometric systems. These relations have an average standard deviation of {approx}3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T{sub eff} > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only {approx}2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  13. Neutron-diffraction study of cubic ErC/sub 0.6/ in the temperature range 1.6--296 K

    International Nuclear Information System (INIS)

    Atoji, M.

    1981-01-01

    Neutron-diffraction measurements have shown that the form of ErC/sub 0.6/ that has a cubic, NaCl-type structure is paramagnetic above 90 K, exhibiting a free Er 3+ moment. Below 90 K, ErC/sub 0.6/ becomes a ferromagnet with a saturation moment of 2.5 Bohr magnetons (only 28% of the maximum free-ion moment), indicating a large crystal-field effect. By measuring the preferential crystallite orientation induced by the applied magnetic field, the direction of the ferromagnetically ordered moment was found to be parallel to the axis. A ferromagnetic, short-range ordering coexists with the ferromagnetic long-range ordering at temperatures down to 1.6 K

  14. Apparent molar volumes and apparent molar heat capacities of dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Origlia-Luster, M.L.; Woolley, E.M.

    2003-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi have been determined for dilute aqueous solutions of ethanol, 1-propanol, and 2-propanol at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa. The molalities investigated ranged from 0.05 mol·kg -1 to 1.0 mol·kg -1 . We used a vibrating tube densimeter (DMA 512P, Anton PAAR, Austria) to determine the densities and volumetric properties. Heat capacities were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter (NanoDSC 6100, Calorimetry Sciences Corporation, American Fork, UT, USA). The results were fit by regression to equations that describe the surfaces (V phi ,T,m) and (C p,phi ,T,m). Infinite dilution partial molar volumes V 2 0 and heat capacities C 0 p,2 were obtained over the range of temperatures by extrapolation of these surfaces to m=0 mol·kg -1

  15. Thermodynamic properties and equation of state of liquid di-isodecyl phthalate at temperature between (273 and 423) K and at pressures up to 140 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Peleties, F. [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid (Spain); Trusler, J.P.M., E-mail: m.trusler@imperial.ac.u [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Vega-Maza, D. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2010-05-15

    We report measurements of the thermodynamic properties of liquid di-isodecyl phthalate (DIDP) and an equation of state determined therefrom. The speed of sound in DIDP was measured at temperatures between (293.15 and 413.15) K and a pressures between (0.1 and 140) MPa with a relative uncertainty of 0.1%. In addition, the isobaric specific heat capacity was measured at temperatures between (293.15 and 423.15) K at a pressure of 0.1 MPa with a relative uncertainty of 1%, and the density was measured at temperatures between (273.15 and 413.15) K at a pressure of 0.1 MPa with a relative uncertainty of 0.015%. The thermodynamic properties of DIDP were obtained from the measured speeds of sound by thermodynamic integration starting from the initial values of density and isobaric specific heat capacity obtained experimentally. The results have been represented by a new equation of state containing nine parameters with an uncertainty in density not worse than 0.025%. Comparisons with literature data are made.

  16. X-ray and neutron powder investigations of pure and yttrium doped CeO2 at temperatures up to 1600 K

    International Nuclear Information System (INIS)

    Berber, K.; Martin, U.; Mursic, Z.; Schneider, J.; Boysen, H.; Frey, F.

    1991-01-01

    Ceria, CeO 2 powders and sintermaterials with different amounts of yttria, Y 2 O 3 , (0-10 mole %) were investigated up to 1600 K by X-ray and neutron powder diffraction. In the sample with 3 mole % yttria the onset of a solid-state reaction or a kind of phase change at 900 K is indicated by a change of the lattice expansion coefficient and by an increase of the slope of the B iso (T) curve. Microstrains are present in the sintered material above 900 K. Anharmonic contributions to the temperature factor of the oxygens become significant at higher temperatures. We deduce from a non-zero part B T ≠0 some static disorder within the O-sublattice. Pdf-maps of the oxygens show clearly deformations of the 'normal' isotropic behaviour, but exceptional smearing out or even closed pathways are not observed. Thus, the superior anionic conductivity of this material is not reflected by the features of the averaged structure. It is most likely due to a disordered 'interface-structure' between ordered domains. A temperature dependent 'structured' background scattering supports this conclusion. (author) 6 figs., 9 refs

  17. Thermodynamic properties and equation of state of liquid di-isodecyl phthalate at temperature between (273 and 423) K and at pressures up to 140 MPa

    International Nuclear Information System (INIS)

    Peleties, F.; Segovia, J.J.; Trusler, J.P.M.; Vega-Maza, D.

    2010-01-01

    We report measurements of the thermodynamic properties of liquid di-isodecyl phthalate (DIDP) and an equation of state determined therefrom. The speed of sound in DIDP was measured at temperatures between (293.15 and 413.15) K and a pressures between (0.1 and 140) MPa with a relative uncertainty of 0.1%. In addition, the isobaric specific heat capacity was measured at temperatures between (293.15 and 423.15) K at a pressure of 0.1 MPa with a relative uncertainty of 1%, and the density was measured at temperatures between (273.15 and 413.15) K at a pressure of 0.1 MPa with a relative uncertainty of 0.015%. The thermodynamic properties of DIDP were obtained from the measured speeds of sound by thermodynamic integration starting from the initial values of density and isobaric specific heat capacity obtained experimentally. The results have been represented by a new equation of state containing nine parameters with an uncertainty in density not worse than 0.025%. Comparisons with literature data are made.

  18. Partial molar volumes of organic solutes in water. XXVII. Two aliphatic polyethers (triglyme, tetraglyme) at temperatures T = 298–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2016-01-01

    Highlights: • Standard molar volumes of two linear aliphatic polyethers in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data combined with those obtained previously are analyzed and compared with standard molar volumes of cyclic ethers. - Abstract: Densities of dilute aqueous solutions of two linear aliphatic polyethers: 2,5,8,11-tetraoxadodecane (triethylene glycol dimethyl ether, triglyme) and 2,5,8,11,14-pentaoxapentadecane (tetraethylene glycol dimethyl ether, tetraglyme), measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. The present values complement previous measurements performed for the title polyethers at atmospheric pressure in the temperature range from (278 to 343) K and extend the knowledge to temperature and pressure ranges in which the data on standard molar volumes for lower members of the homologous series (monoglyme, diglyme) are already available.

  19. Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20 K to room temperatures

    Czech Academy of Sciences Publication Activity Database

    Králík, Tomáš; Musilová, Věra; Hanzelka, Pavel; Frolec, Jiří

    2016-01-01

    Roč. 53, č. 2 (2016), s. 743-753 ISSN 0026-1394 R&D Projects: GA ČR(CZ) GA14-07397S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : absorptivity * emissivity * radiative heat transfer * metallic surfaces * cryogenics * uncertainty evaluation Subject RIV: BJ - Thermodynamics Impact factor: 3.411, year: 2016

  20. Measurement of Refractive Indices of CdSiP2 at Temperatures from 90 to 450 K (Postprint)

    Science.gov (United States)

    2018-01-05

    Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject...crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010). 4. P. Brand , B. Boulanger, P. Segonds, V. Kemlin, P. G. Schunemann, K. T. Zawilski, B. Ménaert

  1. A high sensitivity SQUID-method for the measurement of magnetic susceptibility of small samples in the temperature range 1.5 K-40 K and application on small palladium particles

    International Nuclear Information System (INIS)

    Tu Nguyen Quang.

    1979-01-01

    In this paper a method is developed for magnetic susceptibility measurements which is superior to the common methods. The method is based on the SQUID-principle (Superconducting Quantum Interference Device) using the tunnel effect of a superconducting point contact and magnetic flux quantization for measuring electric and magnetic quantities. Due to this refined method susceptibility changes of very small palladium particles could be detected in the temperature range 1.5 K-40 K with respect to the bulk. In addition susceptibility differences of particle distributions with different means diameters (81 Angstroem and 65 Angstroem) have been measured for the first time. A quantitative comparison of the measurements with theoretical results shows satisfactory agreement. (orig./WBU) [de

  2. Thermodynamic and transport properties of (1-Butanol + 1,4-Butanediol) at temperatures from (298.15 to 318.15) K

    International Nuclear Information System (INIS)

    Zorebski, Edward; Geppert-Rybczynska, Monika

    2010-01-01

    Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg-Nissan and McAllister equations for viscosities of mixtures have also been examined.

  3. Solubility of methane and carbon dioxide in ethylene glycol at pressures up to 14 MPa and temperatures ranging from (303 to 423) K

    International Nuclear Information System (INIS)

    Galvao, A.C.; Francesconi, A.Z.

    2010-01-01

    This work reports solubility data of methane and carbon dioxide in ethylene glycol and the Henry's law constant of each solute in the studied solvent at saturation pressure. The measurements were performed at (303, 323, 373, 398, and 423.15) K and pressures up to 6.3 MPa for mixtures containing carbon dioxide and pressures up to 13.7 MPa for mixtures containing methane. The experiments were performed in an autoclave type phase equilibrium apparatus using the total pressure method (synthetic method). All investigated systems show an increase of gas solubility with the increase of pressure. A decrease of carbon dioxide solubility with the increase of temperature and an increase of methane solubility with the increase of temperature was observed. From the variation of solubility with temperature, the partial molar enthalpy, and entropy change are calculated.

  4. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry

    International Nuclear Information System (INIS)

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.

    2006-01-01

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures ≤2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO 2 , MgO, and Pt which were found to be within ±3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed

  5. Thermodynamic studies on the ferroelectric phase transition in neutron irradiated (LixK1-x)2SO4 crystals at high temperature

    International Nuclear Information System (INIS)

    Kassem, M.E.; El-Khatib, A.M.; Ammar, E.A.; Denton, M.M.

    1989-05-01

    Thermodynamic studies of (Li x K 1-x ) 2 SO 4 , LKS, mixed crystals have been made in the concentration range (x=0.1,0.2,...,x=0.5). The thermal behavior has been investigated by differential thermal analysis, DTA, and differential scanning calorimeter, DSC, in the vicinity of high temperature phases. Also, the effect of the mixed neutron field of fast and thermal neutrons (10% of the reactor neutron pile is fast neutrons) on the thermal properties of mixed crystals was studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat Cp at transition temperature, due to the change of stoichiometric ratio and radiation doses. The change of enthalpy and entropy of mixed crystals have been estimated numerically. The obtained small values of ΔS/R is characteristic of incommensurate phase transition as previously confirmed by the results of neutron diffraction technique. (author). 16 refs, 5 figs, 1 tab

  6. Estimation of Hydrazine Decomposition on Measuring the High-Temperature pH in Hydrazine/ETA Solutions at 553 K

    International Nuclear Information System (INIS)

    Hwang, Jae Sik; Yeon, Jei Won; Yun, Myung Hee; Song, Kyu Seok; Lee, Sang Ill

    2010-01-01

    Hydrazine is one of the most excellent oxygen scavengers used in the secondary circuit of nuclear power plants. Furthermore, in some pants, the hydrazine is used as a source of hydrogen required to suppress radiolysis of the coolant water in the primary loop. When hydrazine was exposed in the high temperature and high pressure water, it can be decomposed into the various products such as NH 3 , N 2 , H 2 , and NO 3 ions. As the result, the pH of solution containing hydrazine in the condition of the high temperature and high pressure can be changed by those decomposed products. In the present work, we investigated the decomposition behavior of hydrazine in ETA (ethanol amine) solution. In addition, we measured the high temperature pH at 553 K on the various hydrazine/ETA solutions for confirming the applicability of the yttria stabilized zirconia (YSZ)- based pH electrode in secondary circuit of the nuclear power plants

  7. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  8. Conceptual design of a forced-flow-cooled 20-kA current lead using Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.

    1994-11-01

    The use of high-temperature superconductors in current leads to reduce refrigeration power has been investigated by many groups in the past. Most used YBCO and Bi-2212 bulk superconductors, although their critical current density is not very high. In this paper, BI-2223 HTSC tapes sheathed with Ag alloys are used in the design of a 20-kA current lead because of their higher critical current in medium magnetic fields. The lead current of 20 kA is related to the coil current of the planned stellarator WENDELSTEIN 7-X. Forced-now helium cooling has been used in the design, allowing position-independent and well-controlled operation. The design characteristics of the lead are presented and 4-K helium cooling of the whole lead, as well as 60-K helium cooling of the copper part of the lead, is discussed. The power consumption at zero current, and the lead's behaviour in case of loss of coolant flow, are given, The results of the design allow extrapolation to current leads of the 50-kA range

  9. Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas

    International Nuclear Information System (INIS)

    Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.

    2012-01-01

    Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.

  10. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    Science.gov (United States)

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  11. Analysis of the U.K. measurements of temperature effects in tubular loose coated particle fuels in HECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, A J

    1972-06-15

    A series of measurements of reaction rates and reactivity changes with temperature were made in teh central region of HECTOR, using loose coated particle fuel provided by the Dragon project under the collaborative agrement between the Project and the UKAEA. A DP report giving the results of these experiments was issued in 1970 and an interim statement given at the 10th DCPM. Since that time, analysis of the reactivity changes with temperature in uranium fuelled cores has indicated significant discrepancies, which were not apparent from the earlier analysis of reaction rate measurements. This report documents the current analysis.

  12. Use of the gamma radiation, in a dose of 0,4 kGy, on the storage temperature reduction of the banana nanica

    International Nuclear Information System (INIS)

    Manoel, Luciana; Vieites, Rogerio Lopes

    2009-01-01

    The aim was to evaluate the use of gamma radiation, in a dose of 0,4 kGy, on the storage temperature reduction of the banana 'Nanica'. The bananas 'Nanica' were harvested in the Arm Taperao, Brotas (SP) town, and sent to CBE (Companhia Brasileira de Esterilizacao-Cotia-SP) for irradiation and constitution of the following treatments: T1 (fruits irradiated at 0,4 kGy and stored at 16 ±1 deg C); T2 (fruits irradiated at 0,4 kGy and stored at 14 ±1 deg C); T3 (fruit irradiated ata 0,4 kGy and stored at 12±1 deg C); T4 (fruits non-irradiated and stored at 16±1 deg C); T5 (fruits non-irradiated and stored at 14±1 deg C) and T6 (fruits non-irradiated and stored at 12±1 deg C). The fruits were stored in B.O.Ds. of the Agroindustrial Management and Technology Department, with a relative humidity of 80±5%. The experiment was divided in two groups: control group (post harvest conservation and disease incidence) and parcel group (soluble solids and pulp/peel). The analyses were performed in intervals of five days during a period of 25 days. The experimental design employed was completely randomized (DIC) by applying a factor of 2 x 3 x 6 (irradiation x temperature x time). The Tukey test with 5% of probability was used for comparison between means. The storage temperature of the bananas 'Nanica' was not reduce by irradiation. (author)

  13. Low-Temperature Synchrotron Photoionization Study of 2-Methyl-3-buten-2-ol (MBO) Oxidation Initiated by O(3P) Atoms in the 298-650 K Range.

    Science.gov (United States)

    Fathi, Yasmin; Price, Chelsea; Meloni, Giovanni

    2017-04-20

    This work studies the oxidation of 2-methyl-3-buten-2-ol initiated by O( 3 P) atoms. The oxidation was investigated at room temperature, 550, and 650 K. Using the synchrotron radiation from the Advanced Light Source (ALS) of the Lawrence Berkley National Laboratory, reaction intermediates and products were studied by multiplexed photoionization mass spectrometry. Mass-to-charge ratios, kinetic time traces, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identity. Using electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined and presented in this paper to further validate the primary chemistry occurring. Branching fractions of primary products at all three temperatures were also provided. At room temperature only three primary products formed: ethenol (26.6%), acetaldehyde (4.2%), and acetone (53.4%). At 550 and 650 K the same primary products were observed in addition to propene (5.1%, 11.2%), ethenol (18.1%, 2.8%), acetaldehyde (8.9%, 5.7%), cyclobutene (1.6%, 10.8%), 1-butene (2.0%, 10.9%), trans-2-butene (3.2%, 23.1%), acetone (50.4%, 16.8%), 3-penten-2-one (1.0%, 11.5%), and 3-methyl-2-butenal (0.9%, 2.5%), where the first branching fraction value in parentheses corresponds to the 550 K data. At the highest temperature, a small amount of propyne (1.0%) was also observed.

  14. Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at temperatures T = 298 K–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2017-01-01

    Highlights: • Standard molar volumes of three poly(ethylene glycols) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data are analyzed and compared with those of similar solutes. - Abstract: Densities of dilute aqueous solutions of three poly(ethylene glycols): 3-oxapentane-1,5-diol (diethylene glycol), 3,6-dioxaoctane-1,8-diol (triethylene glycol), and 3,5,9-trioxaundecane-1,11-diol (tetraethylene glycol) measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data complement both the previous measurements performed at atmospheric pressure in the temperature range from (278 to 343) K and the data already available for the first member of the homologous series (ethylene glycol). A comparison with data previously measured for the homologous series of linear aliphatic polyethers (poly(ethylene glycol) dimethyl ethers, glymes), diethylene glycol monomethyl ether (3,6-dioxaheptan-1-ol), and selected alkane-α,ω-diols is presented.

  15. Design and test of a 5 kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene

    International Nuclear Information System (INIS)

    Samsun, Remzi Can; Pasel, Joachim; Janßen, Holger; Lehnert, Werner; Peters, Ralf; Stolten, Detlef

    2014-01-01

    Highlights: • A fuel cell system for application as auxiliary power unit was developed. • Key components were a high-temperature PEFC stack and an autothermal reformer. • The system was tested with GTL kerosene, BTL diesel and premium diesel fuel. • The target electrical power of 5 kW was achieved with all fuels used. • Self-sustaining system operation was demonstrated with the integrated system design. - Abstract: A high-temperature PEFC system, developed with the aim of delivering 5 kW electrical power from the chemical energy stored in diesel and kerosene fuels for application as an auxiliary power unit, was simulated and tested. The key components of the system were an autothermal reformer, a water–gas shift reactor, a catalytic burner, and the HT-PEFC stack. The targeted power level of 5 kW was achieved using different fuels, namely GTL kerosene, BTL diesel and premium diesel. Using an integrated system approach, operation without external heat input was demonstrated. The overall analysis showed slight but non-continuous performance loss for 250 h operation time

  16. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.

    Science.gov (United States)

    Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K

    2016-09-14

    The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.

  17. Kinetics of ikaite precipitation and dissolution in seawater-derived brines at sub-zero temperatures to 265 K

    Science.gov (United States)

    Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.

    2014-09-01

    The kinetics of calcium carbonate hexahydrate (ikaite) precipitation and dissolution were investigated in seawater and seawater-derived brines at sub-zero temperatures using the constant addition experimental technique. The steady state rate of these two processes was found to be a function of the deviation of the solution from equilibrium with respect to ikaite and conformed to the same empirical rate law as the anhydrous CaCO3 polymorphs, calcite and aragonite. In addition to the saturation state of the brine with respect to ikaite, the salinity of the brine and the temperature of the reaction evidently exerted some control on the ikaite precipitation kinetics, while the dissolution kinetics of the polymorph were not noticeably influenced by these two parameters. The experimental salinity and temperature conditions were equivalent to those at thermal equilibrium between brine and ice in the sea ice cover of polar seas. Simple modelling of the CO2 system by extrapolation of the oceanic equivalent to sea ice brines showed that the physical concentration of seawater ions and the changes in ikaite solubility as a function of salinity and temperature, both inherent in the sea ice system, would be insufficient to drive the emergent brines to ikaite supersaturation and precipitation in sea ice down to -8 °C. The loss of dissolved inorganic carbon to the gas phase of sea ice and to sympagic autotrophs are two independent mechanisms which, in nature, could prompt the brine CO2 system towards ikaite supersaturation and precipitation. Under these conditions, the steady state precipitation rate of ikaite was found to be fast enough for rapid formation within short time scales (days to weeks) in sea ice. The observed ikaite dissolution kinetics were also found conducive to short turn-over time scales of a few hours to a few days in corrosive solutions, such as surface seawater.

  18. Development and testing of a high temperature (673-1273K), high pressure regenerative desulphurization process for IGCC concepts

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, F.J.J.G.; Meijer, R. (KEMA Fossil Power Plants, Arnhem (Netherlands))

    1994-01-01

    In the period 1990-1993 a European Community (EC) subsidized international project on the subject of high-temperature and high-pressure desulfurization of coal gas has been carried out within the framework of the JOULE 1 program. This report is a summary of the final report, in which an overview is given of the developed and tested absorbents and the results of a feasibility study for a 100 MWe Integrated Coal Gasification Combined Cycle (ICGCC) in combination with a high-temperature desulfurization process. The Utrecht University in Utrecht, Netherlands, developed absorbents in cooperation with The Dutch Centre for Gas Technology GASTEC in Apeldoorn, Netherlands. The absorbents are tested by KEMA and the Netherlands Energy Research Foundation in Petten, Netherlands. Foster Wheeler in Livingston, New Jersey, USA, executed the feasibility study. The combination of iron oxide/molybdenum oxide on aluminium phosphate appears to be the most promising absorbent. The preparation method has been patented. From the feasibility study it appeared that by means of a high-temperature desulfurization process the investment and operational costs can be reduced considerably. Further development of the absorbent and the accompanying reactor concept already has started in a new EC project within the framework of the JOULE 1 program

  19. Volumetric properties of binary mixtures of {difluoromethane (R32) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E))} at temperatures from 283.15 K to 363.15 K and pressures up to 100 MPa

    International Nuclear Information System (INIS)

    Jia, Tao; Bi, Shengshan; Hu, Xiaozhen; Meng, Xianyang; Wu, Jiangtao

    2016-01-01

    Highlights: • Densities of R32+R1234ze(E) mixtures were measured with a vibrating-tube densimeter. • Densities of mixtures were conducted from (283 to 363) K, at pressures up to 100 MPa. • Excess molar volumes were correlated with the Redlich–Kister equation. - Abstract: Values of experimental density of difluoromethane (R32) and five compositions of {R32 + trans-1,3,3,3-tetrafluoropropene (R1234ze(E))} binary mixtures are reported over the temperature range from 283 K to 363 K and at pressures up to 100 MPa with a vibrating-tube densimeter. The excess molar volumes were calculated from experimental results and fitted to the Redlich–Kister equation. The maximum standard deviation and average standard deviations of the experimental and calculated values of excess molar volume from Redlich–Kister equation are 0.07789 cm"3·mol"−"1 and 0.01645 cm"3·mol"−"1, respectively.

  20. Densities and apparent molar volumes of aqueous LiI solutions at temperatures from (296 to 600) K and at pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Azizov, N.D.

    2004-01-01

    Densities of five aqueous LiI solutions (0.0906, 0.2832, 0.6621, 1.6046, and 3.0886) mol . kg -1 H 2 O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made along various isotherms between (296.95 and 600.25) K. The range of pressure was (0.1 to 30) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements was estimated to be less than 0.06%, 0.05%, 15 mK, and 0.014%, respectively. To check and confirm the accuracy of the measurements, (p,V m ,T,x) data were taken for pure water at selected temperatures and pressures. Experimental and calculated (IAPWS formulation) densities for pure water show excellent agreement within their experimental uncertainties (average absolute deviation is 0.02%). Values of saturated densities were determined by extrapolating experimental p - ρ data to the vapour pressure at fixed temperature and composition using a linear interpolating equation. Apparent molar volumes were derived using measured values of density for solutions and pure water. The apparent molar volumes were extrapolated to zero concentration (m → 0) to yield partial molar volumes of electrolyte (LiI) at infinite dilution. The temperature, pressure, and concentration dependence of apparent and partial molar volumes was studied. The measured values of density, apparent and partial molar volume were compared with data reported in the literature by other authors. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method using the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.065%

  1. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    International Nuclear Information System (INIS)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.; Nasiatka, J.R.; Kirillov, I.R.; Ogorodnikov, A.P.; Preslitski, G.V.; Goloubovitch, G.P.; Xu, Zeng Yu

    1996-01-01

    The Vanadium/Lithium system has been the recent focus of ANL's Blanket Technology Pro-ram, and for the last several years, ANL's Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne's Liquid Metal EXperiment (ALEX) from a 200 degrees C NaK facility to a 350 degrees C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10 3 to 10 5 in lithium at 350 degrees C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230 degrees C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000

  2. Thermodynamic and transport properties of (1,2-ethanediol + 1-nonanol) at temperatures from (298.15 to 313.15) K

    International Nuclear Information System (INIS)

    Zorebski, Edward; Lubowiecka-Kostka, Beata

    2009-01-01

    Densities and kinematic viscosities have been measured for (1,2-ethanediol + 1-nonanol) over the temperature range from (298.15 to 313.15) K. The speeds of sound in those mixtures within the temperature range from (293.15 to 313.15) K have been measured as well. Using the measurement results, the molar volumes, isentropic compressibility coefficients, molar isentropic compressibilities, and the corresponding excess and deviation values (excess molar volumes, excess isentropic compressibility coefficients, excess molar isentropic compressibilities, differently defined deviations of the speed of sound, and dynamic viscosity deviations) were calculated. The excess Gibbs free energies estimated by the use of the UNIQUAC model are also reported. The excess molar volumes and Gibbs free energies are positive, whereas the compressibility excesses are s-shaped. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of variations of the structure of the system caused by the participation of two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding. The effect of temperature is discussed. The predictive abilities of the McAllister equation for viscosities of the mixtures under test have also been examined

  3. Direct measurements of methoxy removal rate constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673--973K

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Oldenborg, R.C.; Baugchum, S.L.; Winn, K.R.

    1988-01-01

    Removal rate constants for CH 3 O by CH 4 , Ar, N 2 , Xe, and CF 4 were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N 2 , Xe, and CF 4 ) at elevated temperatures showing that the dissociation and isomerization channels for CH 3 O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH 4 exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp[(/minus/101070 +- 350)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH 4 and CF 4 , the reaction rate constant for CH 3 O /plus/ CH 4 is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp[(/minus/7480 +- 1100)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs

  4. Determination and correlation of pyridoxine hydrochloride solubility in different binary mixtures at temperatures from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Han, Dandan; Li, Xiaona; Wang, Haisheng; Wang, Yan; Du, Shichao; Yu, Bo; Liu, Yumin; Xu, Shijie; Gong, Junbo

    2016-01-01

    Highlights: • Solubility of pyridoxine hydrochloride in three binary mixtures was determined. • Experimental solubility of pyridoxine hydrochloride was correlated by four models. • Mixing thermodynamics of pyridoxine hydrochloride were calculated and discussed. - Abstract: The solubility of pyridoxine hydrochloride in binary solvent mixtures, including (acetone + water), (methanol + water) and (ethanol + water), was measured over temperature range from (278.15 to 313.15) K by a gravimetric method at atmospheric pressure (P = 0.1 MPa). The solubility increased with increasing temperature in binary solvent mixtures at constant solvent composition. Besides, the dissolving capacity of pyridoxine hydrochloride in the three binary solvent mixtures at constant temperature ranked as (methanol + water > ethanol + water > acetone + water) in general, partly depending on the polarity of the solvents. Additionally, the modified Apelblat equation, van’t Hoff equation, CNIBS/R–K model and Jouyban–Acree model were used to correlate the solubility data in binary mixtures, it turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the mixing thermodynamic properties of pyridoxine hydrochloride in different binary solvent mixtures were also calculated and discussed. The results indicate that the mixing process of pyridoxine hydrochloride in the selected solvents is exothermic.

  5. Thermophysical Properties of Acetophenone with Ethylchloroacetate at Temperatures of 303.15, 313.15 and 323.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, K. [Sathyabama Univ., Chennai (India); Baskaran, R. [St.Joseph' s College of Engineering, Chennai (India); Kubendran, T. R. [Anna Univ., Chennai (India)

    2012-08-15

    Densities, viscosities, refractive indices and speed of sounds of the binary mixtures of Acetophenone with Ethylchloroacetate were measured over the entire mole fractions at (303.15, 313.15 and 323.15) K. From these experimental results, excess molar volume V{sup E}, viscosity deviation Δη, refractive index deviation Δn{sub D}, deviations in speed of sound Δu, deviations in isentropic compressibility Δk{sub s} and excess intermolecular free length ΔL{sub f} were calculated. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind et al., Tamura and Kurata, Katti and Chaudri, Sedgwick, Krishnan-Laddha and McAllister. The thermo physical properties under study were fit to the Jouyban-Acree model. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. It was found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution.

  6. Thermophysical Properties of Acetophenone with Ethylchloroacetate at Temperatures of 303.15, 313.15 and 323.15 K

    International Nuclear Information System (INIS)

    Saravanakumar, K.; Baskaran, R.; Kubendran, T. R.

    2012-01-01

    Densities, viscosities, refractive indices and speed of sounds of the binary mixtures of Acetophenone with Ethylchloroacetate were measured over the entire mole fractions at (303.15, 313.15 and 323.15) K. From these experimental results, excess molar volume V E , viscosity deviation Δη, refractive index deviation Δn D , deviations in speed of sound Δu, deviations in isentropic compressibility Δk s and excess intermolecular free length ΔL f were calculated. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind et al., Tamura and Kurata, Katti and Chaudri, Sedgwick, Krishnan-Laddha and McAllister. The thermo physical properties under study were fit to the Jouyban-Acree model. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. It was found that in all cases, the data obtained fitted with the values correlated by the corresponding models very well. The results are interpreted in terms of molecular interactions occurring in the solution

  7. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    James E. O& #39; Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  8. Experimental determination of line strengths for selected carbon monoxide and carbon dioxide absorption lines at temperatures between 295 and 1250 K

    International Nuclear Information System (INIS)

    Medvecz, P.J.; Nichols, K.M.

    1994-01-01

    Fourier transform infrared absorption spectroscopy has been used for the determination of the line strengths of 41 CO and CO 2 absorption lines at temperatures between 295 and 1250 K. The CO vibrational-rotational lines were from the P branch of the fundamental absorption band (2150--1950 cm -1 ) while the CO 2 vibrational-rotational lines were from the far wing of the R branch of the ν 3 fundamental band (2395--2380 cm -1 ). The intensities of the lines were measured from absorption spectra recorded in a high-temperature gas cell containing known concentrations of CO/CO 2 /N 2 gas mixtures at atmospheric pressure. Absorption spectra were recorded through the cell with the use of a moderate-resolution Fourier transform infrared spectrometer. The absorption spectra were mathematically corrected for distortions resulting from the finite resolution of the spectrometer and for peak overlap. Line strength measurements were made from the corrected peaks by using the Bouguer-Lambert law and assuming a Lorentzian line profile. The experimentally obtained line strengths were evaluated by statistical calculations, by consideration of the validity of the Bouguer-Lambert assumption for these data, by comparison with existing room-temperature and high-temperature data, and by comparison with theoretical calculations. For CO, the statistical analysis suggests that the reported values have an uncertainty of ±10--12%, which is similar to the observed discrepancies with other reported values at room temperature. At high temperatures, the difference between these data and previously reported data and theoretical predictions is less than 10%. For CO 2 , the statistical uncertainty associated with the line strength calculations is less than 5%, which is also the approximate level of agreement with existing room-temperature data

  9. Fault of the correction factor for pressure and temperature kPT in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico

    International Nuclear Information System (INIS)

    Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M.

    2013-01-01

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of 60 Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of 125 I brachytherapy sources was given an additional correction lower in 11% compared to conventional k PT value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of 137 Cs

  10. Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513 K to 1873 K (1240 °C to 1600 °C)

    Science.gov (United States)

    Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae

    2018-06-01

    Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised

  11. Evaporation of Cu, Sn, and S from Fe-C-Cu-Sn-S Liquid Alloys in the Temperature Range from 1513 K to 1873 K (1240 °C to 1600 °C)

    Science.gov (United States)

    Tafwidli, Fahmi; Choi, Moo-Eob; Yi, Sang-Ho; Kang, Youn-Bae

    2018-02-01

    Evaporation of Cu or Sn from liquid iron alloys containing C and S was experimentally investigated. The initial C concentration, [pct C]0, in the liquid alloy was varied from zero to C saturation, and the evaporation temperature was varied from 1513 K to 1773 K (1240 °C to 1500 °C). Along with the report by one of the present authors, the evaporation mechanism of Cu and Sn from liquid Fe-C-S alloy is proposed, after a modification from the previous mechanism. It was proposed that Cu and Sn evaporate as Cu(g) and Sn(g) and also evaporate as CuS(g) and SnS(g), which are more volatile species. Therefore, availability of S in the alloy affects the overall evaporation rate of Cu and Sn. At the same time, C in the alloy also forms volatile carbosulfides CS(g) and CS2(g), thereby competing with Cu and Sn. Moreover, C increases the activity coefficients of Cu, Sn, and S. This increases the thermodynamic driving force for the formation of CuS(g) and SnS(g). Therefore, increasing [pct C] partly accelerates the evaporation rate of Cu and Sn by increasing the activity coefficient but partly decelerates the evaporation rate by lowering the available S content. S partly accelerates the evaporation rate by increasing the available S for the sulfide gas species but partly decelerates the evaporation rate due to the surface poisoning effect. Increasing the reaction temperature increases the overall evaporation rate. All these facts were taken into account in order to develop an evaporation rate model. This model was extended from the present authors' previous one by taking into account (1) CS(g), S(g), and CS2(g) (therefore, the following species were considered as dominant evaporating species: Cu(g), CuS(g), Sn(g), SnS(g), S(g), CS(g), and CS2(g)); (2) the effect of C and temperature on the activity coefficients of Cu, Sn, and S; (3) the effect of C and temperature on the density of the liquid alloy; and (4) the effect of temperature on the S adsorption coefficient. This revised

  12. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production

    International Nuclear Information System (INIS)

    Hong, Hui; Liu, Qibin; Jin, Hongguang

    2012-01-01

    Highlights: ► A 15 kW solar chemical receiver/reactor for hydrogen production was developed. ► The solar thermochemical efficiency of the receiver/reactor was in the range of 20–28%. ► Hydrogen production exceeding 80% was achieved. ► The research results extend the application of mid-temperature solar thermal energy. -- Abstract: In this paper, we report the operational performance and energy conversion efficiency of a developed 15 kW solar chemical receiver/reactor for hydrogen production. A concentrated solar heat of around 200–300 °C was utilized to provide process heat to drive methanol steam reforming. A modified 15 kW direct-irradiation solar reactor coupled with a linear receiver positioned along the focal line of a one-axis parabolic trough concentrator was used. The experiments were conducted from 200 to 300 °C under a mean solar flux of 300–800 W/m 2 and a reactant feeding rate of 6 kg/h. Reactants were continuously fed, and the attained conversion rate of methanol was more than 70% at 700 W/m 2 . The typical solar thermochemical efficiency of solar thermal energy converted into chemical energy was in the 20–28% range. The overall energy efficiency of input solar power conversion into chemical energy reached up to 17% and may be further increased by improving solar field efficiency. Hydrogen production exceeding 80% was achieved. In addition, preliminary economic evaluation was performed, and methods for further improvement were proposed. This paper proves that solar hydrogen production is feasible by combining solar thermal energy with alternative fuel at around 200–300 °C, which is much lower than the temperature of other solar thermochemical processes. This may offer an economic approach to solar fuel production and extend the application of mid-temperature solar thermal energy.

  13. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  14. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  15. Partial molar volume of mefenamic acid in alcohol at temperatures between T=293.15 and T=313.15 K

    OpenAIRE

    Iqbal, Muhammad J.; Siddiquah, Mahrukh

    2006-01-01

    Apparent molar volume (Vphi), partial molar volume (V), solute-solute interaction parameter (Sv), partial molar expansivity (E(0)2) and isobaric thermal expansion coefficient (alpha2) of mefenamic acid in six different organic solvents namely, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol, have been calculated from the measured solution densities over a temperature range of T=293.15 and T=313.15±0.1K. The solution densities were measured by an automated vibrating tube de...

  16. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari

    2005-01-01

    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  17. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  18. Characteristics of ZnO Wafers Implanted with 60 keV Sn+ Ions at Room Temperature and at 110 K

    International Nuclear Information System (INIS)

    Dang, Giang T.; Taniwaki, Masafumi; Kawaharamura, Toshiyuki; Hirao, Takashi; Nitta, Noriko

    2011-01-01

    ZnO wafers implanted with 60 keV Sn + ions at room temperature (RT) and at 110 K are investigated by means of X-ray diffraction (XRD) and photoluminescence (PL) techniques. The effect of implantation temperature is evident in the XRD and PL data. A yellow-orange (YO) band near 600 nm appears in the PL spectra of the ZnO wafers implanted to the doses of 4x10 14 and 8x10 14 ions/cm 2 at RT. The intensity of this band increases and the peak position blue-shifts after illumination of the samples with the 325 nm line of a He-Cd laser. The PL data suggests that the CB (conduction band)→V O + and Zn i + →V Zn - transitions contribute to the photoemission of the YO band.

  19. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone + water solvent at temperatures 303.15 and 313.15 K

    International Nuclear Information System (INIS)

    Tiwari, Vaishali; Pande, Rama

    2006-01-01

    Densities ρ and viscosities η of two hydroxamic acids, N-phenyl-2-chlorobenzo- and N-o-tolyl-4-chlorobenzo-, have been determined as a function of their concentration in aqueous acetone solution at temperatures 303.15 and 313.15 K. Apparent molar volumes, standard-state partial molar volumes and relative viscosities have been calculated. The viscosity data have been analyzed using Jones-Dole equation. The activation thermodynamic parameters of viscous flow have been evaluated using Feakins equation. These were obtained to throw light on the mechanism of viscous flow. Thermodynamic interactions in solutions have been studied in terms of a number of excess functions calculated from the experimental data. The effect of hydroxamic acid concentration and temperature on these parameters has been discussed. The results were interpreted in the light of solute-solvent interactions in aquo-organic media

  20. Standard molar volumes and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate at temperatures up to 573 K and pressures to 28 MPa

    International Nuclear Information System (INIS)

    Pourtier, Emilie; Ballerat-Busserolles, Karine; Majer, Vladimir; Šedlbauer, Josef

    2013-01-01

    Highlights: ► Original HT/HP data for NaTr(aq) obtained using non-commercial instruments. ► First heat capacity data for NaTr(aq) at conditions remote from ambient. ► Correction for association when calculating stand. therm. properties of Tr(aq) anion. - Abstract: Densities and heat capacities of aqueous solutions of sodium trifluoromethanesulfonate (sodium triflate) of concentrations from 0.025 to 0.3 mol · kg −1 were measured with high temperature, high pressure custom-made instruments at temperatures up to 573 K and at pressures up to 28 MPa. Standard molar volumes and standard molar heat capacities were obtained via extrapolation of the apparent molar properties to infinite dilution. The results for volumetric properties are consistent with earlier literature data, but no previous measurements exist for heat capacities of sodium triflate at superambient conditions. The new data were used for calculating the standard molar volumes and heat capacities for the triflate anion and compared with the results for triflic acid that should be essentially identical within the expected error margins. At temperatures above 473 K an effort was made to refine the processing of literature data for HCl(aq), taking into account its partial association, and subsequently to modify the value for Na + ion calculated from the standard thermodynamic values of NaCl(aq) where its ion pairing was already considered. This approach yields reasonable agreement at high temperatures between the values for triflate ion calculated from its salt and those for triflic acid.

  1. Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications

    Directory of Open Access Journals (Sweden)

    Gaurav Vats

    2014-03-01

    Full Text Available This paper has considered the selection of the optimal processing parameter (sintering temperature leading to best possible properties of K0.5Na0.5NbO3 (KNN for electromechanical applications. Vital piezoelectric properties for such applications include the piezoelectric coupling coefficient (kp, piezoelectric coefficient (d31, Curie temperature (Tc, remanent polarization (Pr, coercive field (Ec, density (ρ, elastic compliance (S11E and S12E and dielectric loss (tan δ. The weights and priority of these physical properties for KNN are calculated using the modified digital logic (MDL method. The priority order of these properties used for the selection of optimal processing parameters is as d31>tan δ>S11E=S12E>Tc=Pr>ρ>kp>Ec. The weights obtained using MDL are further incorporated with analytic hierarchy process (AHP and VlseKriterijumska Optimisacija I Kompromisno Resenje (VIKOR in order to determine the optimal sintering temperature for KNN. Both methods suggest that 1080 °C and 1120 °C are the most and least desirable sintering temperatures, respectively. Finally, sensitivity analysis is performed for the robustness of our results and prediction of most influential parameter in terms of sensitivity. tan δ is found to be the most sensitive property for alteration in the present ranking.

  2. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    Science.gov (United States)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  3. 3He flow in dilute 3He-4He mixtures at temperatures between 10 and 150 mK

    International Nuclear Information System (INIS)

    Castelijns, C.A.M.; Kuerten, J.G.M.; de Waele, A.T.A.M.; Gijsman, H.M.

    1985-01-01

    The mutual friction between 3 He and 4 He II below 150 mK has been studied. Empirical relations for the adiabatic and the nonadiabatic flow properties of 3 He moving through 4 He have been determined using a dilution refrigerator with a single mixing chamber. The validity of the relations is verified by osmotic-pressure measurements and by measuring the properties of a double-mixing-chamber system. It is shown that superleak shunts have a strong effect on the flow characteristics. From the nonadiabatic flow properties an expression is derived for the mutual-friction-force density between 3 He and 4 He II. This has a strong resemblance to the Gorter-Mellink mutual-friction-force density between the normal and the superfluid components in pure 4 He II. It is speculated that the 3 He flow in our systems generates a 4 He vortex tangle, which leads to the observed mutual friction between 3 He and 4 He and also to a strong clamping of the 4 He to the walls

  4. Evaluation of high specific-heat ceramic for regenerator use at temperatures between 2-30 K

    Science.gov (United States)

    Lawless, W. N.

    1979-01-01

    Specific heat, thermal conductivity (both in the range 2-30 K), and microhardness data were measured on the ceramics labelled LS-8, LS-8A, and LS-8A doped with CsI, SnCl2, and AgCl. A work hardened sample of LS-8A was also studied in an effort to determine the feasibility of using these types of LS-8 materials to replace Pb spheres in the regenerator of the JPL cryocooler. The LS-8A materials are all more than an order of magnitude harder than Pb, and the dopants do not significantly improve the hardness. However, the SnCl2 dopant has a remarkable effect in improving the specific heat and thermal conductivity of LS-8A. The SnCl2 doping level which maximized the regenerator enthalpy change in going from an unloaded to a loaded condition was found to be 0.2 percent SnCl2 in LS-8A. It was also found that the enthalpy change for a regenerator employing the LS-8A material is more than three times larger than for the Pb spheres case. The use of rods, rather than spheres, of optimally doped LS-8A in regenerators is discussed.

  5. Apparent molar volumes and apparent molar heat capacities of aqueous lead nitrate at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Brown, B.R.; Niederhauser, T.L.; Merkley, E.D.; Woolley, E.M.

    2004-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi were determined for aqueous solutions of lead nitrate [Pb(NO 3 ) 2 ] at m=(0.02 to 0.5) mol · kg -1 , at T=(278.15 to 393.15) K, and at the pressure 0.35 MPa. Our V phi values were calculated from densities obtained using a vibrating-tube densimeter, and our C p,phi values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results were fitted to functions of m and T and compared with results from the literature

  6. The effects of increased testicular temperature on testis-specific isoform of Na+/K+ -ATPase in sperm and its role in spermatogenesis and sperm function.

    Science.gov (United States)

    Thundathil, J C; Rajamanickam, G D; Kastelic, J P; Newton, L D

    2012-08-01

    Impaired testicular thermoregulation is commonly implicated in abnormal spermatogenesis and impaired sperm function in animals and humans, with outcomes ranging from subclinical infertility to sterility. Bovine testes must be maintained 4-5 °C below body-core temperature for normal spermatogenesis. The effects of elevated testicular temperature have been extensively studied in cattle using a scrotal insulation model, which results in abnormal spermatogenesis and impaired sperm morphology and function. Using this model and proteomic approaches, we compared normal and abnormal sperm (from the same bulls) to elucidate the molecular basis of impaired function. We identified a cohort of sperm functional proteins differentially expressed between normal vs abnormal sperm, including a testis-specific isoform of Na(+) /K(+) -ATPase. In addition to its role as a sodium pump regulating sperm motility, Na(+) /K(+) -ATPase is also involved as a signalling molecule during sperm capacitation. In conclusion, because of its involvement in regulation of sperm function, this protein has potential as a fertility marker. Furthermore, comparing normal vs abnormal sperm (induced by scrotal insulation) is a useful model for identifying proteins regulating sperm function. © 2012 Blackwell Verlag GmbH.

  7. Measurement and correlation of the solubility of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol in water and alcohols at temperatures from 292.15 K to 310.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shuqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiying [China Certification & Inspection (Group) Henan Co., Ltd., Zhengzhou, Henan 450000 (China); Shen, Le; Li, Huanxin; Mao, Zhendong [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiping, E-mail: huipingli@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China)

    2016-04-20

    Highlights: • The (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was successfully synthesized and characterized by IR and NMR. • The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol in water and alcohols were measured. • The experimental solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation and λh equation model. • The dissolution enthalpy of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was calculated by using the modified Apelblat equation. • The solubility data, correlation models, and the thermodynamic parameters were discussed in detail. - Abstract: The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol (BTZM) in water, methanol, ethanol, n-propanol, isopropanol, and n-butanol were measured at temperatures ranging from 292.15 K to 310.15 K by a dynamic method under normal atmospheric pressure. The results showed that it increased with the increasing temperature and the order of solvents was: order: methanol > ethanol > n-propanol > n-butanol > isopropanol > water except three points. The solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation, and λh equation. The average relative deviations (ARD) were 1.87%, 1.53%, and 1.71%, and the root-mean-square-deviations (RMSD) were 2.37 × 10{sup −2}, 1.51 × 10{sup −2}, and 2.12 × 10{sup −2}, respectively. It was found that the modified Apelblat equation gave the best correlation results. Furthermore, the dissolution enthalpy of BTZM was calculated by the modified Apelblat equation.

  8. Linear chains of magnetic ions stacked with variable distance: ferromagnetic ordering with a Curie temperature above 20 K

    Energy Technology Data Exchange (ETDEWEB)

    Friedlaender, Stefan; Poeppl, Andreas [Abteilung Magnetische Resonanz komplexer Quantenfestkoerper, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig (Germany); Liu, Jinxuan [Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology (China); Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rueger, Robert; Kuc, Agnieszka [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Leipzig (Germany); Guo, Wei; Zhou, Wencai; Wang, Zhengbang; Weidler, Peter G.; Woell, Christof [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Lukose, Binit [Engineering and Science, Department of Physics and Earth Science, Jacobs University Bremen (Germany); Ziese, Michael [Abteilung Supraleitung und Magnetismus, Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig (Germany); Heine, Thomas [Engineering and Science, Department of Physics and Earth Science, Jacobs University Bremen (Germany); Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Leipzig (Germany)

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu{sup 2+} ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu{sup 2+} ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin {sup 1}/{sub 2} ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. An International Standard Equation of State for Difluoromethane (R-32) for Temperatures from the Triple Point at 136.34 K to 435 K and Pressures up to 70 MPa

    International Nuclear Information System (INIS)

    Tillner-Roth, R.; Yokozeki, A.

    1997-01-01

    A fundamental equation of state for the Helmholtz free energy of R-32 (difluoromethane) is presented which is valid from the triple point at 136.34 K to 435 K and pressures up to 70 MPa. It is based on accurate measurements of pressure-density-temperature (p,ρ,T), speed of sound, heat capacity, and vapor pressure currently available. New values for the isobaric heat capacity c p circ of the ideal gas calculated from spectroscopic data taking into account also first order anharmonicity corrections are presented. The Helmholtz free energy equation of state has 19 coefficients and represents all selected experimental data within their estimated accuracy with the exception for heat capacities and speed of sound in the region close to the critical point. Typical uncertainties are ±0.05% for density, ±0.02% for the vapor pressure and ±0.5%endash 1% for the heat capacity. This equation of state has been compared to equations developed by other research groups by Annex 18 of the International Energy Agency and has been selected as an international standard formulation for the thermodynamic properties of R-32 by this group. copyright 1997 American Institute of Physics and American Chemical Society

  10. Apparent molar volumes and apparent molar heat capacities of aqueous magnesium nitrate, strontium nitrate, and manganese nitrate at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Jones, J.S.; Ziemer, S.P.; Brown, B.R.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ and apparent molar heat capacities C p,φ were determined at the pressure 0.35 MPa for aqueous solutions of magnesium nitrate Mg(NO 3 ) 2 at molalities m = (0.02 to 1.0) mol . kg -1 , strontium nitrate Sr(NO 3 ) 2 at m = (0.05 to 3.0) mol . kg -1 , and manganese nitrate Mn(NO 3 ) 2 at m = (0.01 to 0.5) mol . kg -1 . Our V φ values were calculated from solution densities obtained at T = (278.15 to 368.15) K using a vibrating-tube densimeter, and our C p,φ values were calculated from solution heat capacities obtained at T = (278.15 to 393.15) K using a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results, and standard state partial molar volumes and heat capacities were obtained over the ranges of T investigated

  11. Speeds of sound in {(1 - x)CH4 + xN2} with x = (0.10001, 0.19999, and 0.5422) at temperatures between 170 K and 400 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Estela-Uribe, J.F.; Trusler, J.P.M.; Chamorro, C.R.; Segovia, J.J.; Martin, M.C.; Villamanan, M.A.

    2006-01-01

    The speed of sound in {(1 - x)CH 4 + xN 2 } has been measured with a spherical acoustic resonator. Two mixtures with x = (0.10001 and 0.19999) were studied along isotherms at temperatures between 220 K and 400 K with pressures up to 20 MPa; a few additional measurements at p = (25 and 30) MPa are also reported. A third mixture with x = 0.5422 was studied along pseudo-isochores at amount-of-substance densities between 0.2 mol . dm -3 and 5 mol . dm -3 . Corrections for molecular vibrational relaxation are discussed in detail and relaxation times are reported. The overall uncertainty of the measured speeds of sound is estimated to be not worse than ±0.02%, except for those measurements in the mixture with x = 0.5422 that lie along the pseduo-isochore at the highest amount-of-substance density. The results have been compared with the predictions of several equations of state used for natural gas systems

  12. Study of the Synchrotron Photoionization Oxidation of 2-Methylfuran Initiated by O(3P) under Low-Temperature Conditions at 550 and 650 K.

    Science.gov (United States)

    Fathi, Yasmin; Meloni, Giovanni

    2017-09-21

    The O-( 3 P)-initiated oxidation of 2-methylfuran (2-MF) was investigated using vacuum-ultraviolet synchrotron radiation from the Advanced Light Source at Lawrence Berkeley National Laboratory. Reaction species were studied by multiplexed photoionization mass spectrometry at 550 and 650 K. The oxygen addition pathway is favored in this reaction, forming four triplet diradicals that undergo intersystem crossing into singlet epoxide species that lead to the formation of products at m/z 30 (formaldehyde), 42 (propene), 54 (1-butyne, 1,3-butadiene, and 2-butyne), and 70 (2-butenal, methyl vinyl ketone, and 3-butenal). Mass-to-charge ratios, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identities. In addition, by means of electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined to further validate the primary chemistry occurring. Branching fractions for the formation of the primary products were calculated at the two temperatures and contribute 81.0 ± 21.4% at 550 K and 92.1 ± 25.5% at 650 K.

  13. Liquid density of biofuel mixtures: (Dibutyl ether + 1-butanol) system at pressures up to 140 MPa and temperatures from (293.15 to 393.15) K

    International Nuclear Information System (INIS)

    Alaoui, Fatima E.M.; Montero, Eduardo A.; Bazile, Jean-Patrick; Aguilar, Fernando; Boned, Christian

    2011-01-01

    Highlights: → New density data for binary mixtures of (dibutyl ether + 1-butanol) are reported. → The pressure and temperature intervals are 0.1 to 140 MPa and 293.15 to 393.15 K. → 445 Data points measured at five compositions were fitted to a Tait-like equation. → Excess volumes have been calculated from the experimental data. → The isobaric expansivity and the isothermal compressibility have been derived. - Abstract: This work reports new experimental density data (445 points) for binary mixtures of (dibutyl ether + 1-butanol) over the composition range (five compositions; 0.15 ≤ dibutyl ether mole fraction x ≤ 0.85), from (293.15 to 393.15) K (every 20 K), and for 15 pressures from (0.1 to 140) MPa (every 10 MPa). An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of ±0.5 kg . m -3 was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data and fitted by the Redlich-Kister equation. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation.

  14. Liquid density of biofuel mixtures: (Dibutyl ether + 1-butanol) system at pressures up to 140 MPa and temperatures from (293.15 to 393.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Alaoui, Fatima E.M. [Laboratoire des Fluides Complexes, Faculte des Sciences et Techniques, UMR CNRS 5150, Universite de Pau, BP 1155, 64013 Pau Cedex (France); Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Montero, Eduardo A., E-mail: emontero@ubu.es [Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Bazile, Jean-Patrick [Laboratoire des Fluides Complexes, Faculte des Sciences et Techniques, UMR CNRS 5150, Universite de Pau, BP 1155, 64013 Pau Cedex (France); Aguilar, Fernando [Departamento de Ingenieria Electromecanica, Escuela Politecnica Superior, Universidad de Burgos, E-09006 Burgos (Spain); Boned, Christian [Laboratoire des Fluides Complexes, Faculte des Sciences et Techniques, UMR CNRS 5150, Universite de Pau, BP 1155, 64013 Pau Cedex (France)

    2011-11-15

    Highlights: > New density data for binary mixtures of (dibutyl ether + 1-butanol) are reported. > The pressure and temperature intervals are 0.1 to 140 MPa and 293.15 to 393.15 K. > 445 Data points measured at five compositions were fitted to a Tait-like equation. > Excess volumes have been calculated from the experimental data. > The isobaric expansivity and the isothermal compressibility have been derived. - Abstract: This work reports new experimental density data (445 points) for binary mixtures of (dibutyl ether + 1-butanol) over the composition range (five compositions; 0.15 {<=} dibutyl ether mole fraction x {<=} 0.85), from (293.15 to 393.15) K (every 20 K), and for 15 pressures from (0.1 to 140) MPa (every 10 MPa). An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of {+-}0.5 kg . m{sup -3} was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data and fitted by the Redlich-Kister equation. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation.

  15. Incommensurate antiferromagnetic order in the manifoldly-frustrated SrTb2O4 with transition temperature up to 4.28 K

    Directory of Open Access Journals (Sweden)

    Haifeng eLi

    2014-07-01

    Full Text Available The Neel temperature of the new frustrated family of SrRE2O4 (RE = rare earth compounds is yet limited to 0.9 K, which more or less hampers a complete understanding of the magnetic frustrations and spin interactions. Here we report on a new frustrated member to the family, SrTb2O4 with a record TN = 4.28(2 K, and an experimental study of the magnetic interacting and frustrating mechanisms by polarized and unpolarized neutron scattering. The compound of SrTb2O4 displays an incommensurate antiferromagnetic (AFM order with a transverse wave vector Q = (0.5924(1, 0.0059(1, 0 albeit with partially-ordered moments, 1.92(6 uB at 0.5 K, stemming from only one of the two inequivalent Tb sites by virtue of their different octahedral distortions. The localized moments are confined to the bc plane, 11.9(66 degree away from the b axis by single-ion anisotropy. We reveal that this AFM order is dominated mainly by dipole-dipole interactions and disclose that the octahedral distortion, nearest-neighbour (NN ferromagnetic (FM arrangement, different next NN FM and AFM configurations, and in-plane anisotropic spin correlations are vital to the magnetic structure and associated multiple frustrations. The discovery of the thus far highest AFM transition temperature renders SrTb2O4 a new friendly frustrated platform in the family for exploring the nature of magnetic interactions and frustrations.

  16. Evaluation of the effects of thermal annealing temperature and high-k dielectrics on amorphous InGaZnO thin films by using pseudo-MOS transistors

    International Nuclear Information System (INIS)

    Lee, Se-Won; Cho, Won-Ju

    2012-01-01

    The effects of annealing temperatures and high-k gate dielectric materials on the amorphous In-Ga-Zn-O thin-film transistors (a-IGZO TFTs) were investigated using pseudo-metal-oxide semiconductor transistors (Ψ-MOSFETs), a method without conventional source/drain (S/D) layer deposition. Annealing of the a-IGZO film was carried out at 150 - 900 .deg. C in a N 2 ambient for 30 min. As the annealing temperature was increased, the electrical characteristics of Ψ-MOSFETs on a-IGZO were drastically improved. However, when the annealing temperature exceeded 700 .deg. C, a deterioration of the MOS parameters was observed, including a shift of the threshold voltage (V th ) in a negative direction, an increase in the subthreshold slope (SS) and hysteresis, a decrease in the field effect mobility (μ FE ), an increase in the trap density (N t ), and a decrease in the on/off ratio. Meanwhile, the high-k gate dielectrics enhanced the performance of a-IGZO Ψ-MOSFETs. The ZrO 2 gate dielectrics particularly exhibited excellent characteristics in terms of SS (128 mV/dec), μ FE (10.2 cm -2 /V·s), N t (1.1 x 10 12 cm -2 ), and on/off ratio (5.3 x 10 6 ). Accordingly, the Ψ-MOSFET structure is a useful method for rapid evaluation of the effects of the process and the material on a-IGZO TFTs without a conventional S/D layer deposition.

  17. Thermal stability of carbonyl radicals. Part II. Reactions of methylglyoxyl and methylglyoxylperoxy radicals at 1 bar in the temperature range 275-311 K.

    Science.gov (United States)

    Jagiella, Stefan; Zabel, Friedhelm

    2008-04-07

    Reactions of methylglyoxyl and methylglyoxylperoxy radicals were investigated at a total pressure of 1 bar in oxygen. Methylglyoxyl radicals were generated by stationary photolysis of Br2-CH3C(O)C(O)H-NO2-O2-N2 mixtures at wavelengths > or =480 nm and of Cl2-CH3C(O)C(O)H-NO2-O2-N2 mixtures in the wavelength range 315-460 nm. In the bromine system, rate constant ratios for the reactions CH3C(O)CO --> CH3CO + CO (kdis) and CH3C(O)CO + O2 --> CH3C(O)C(O)O2 (kO2) were measured as a function of temperature in the range 275-311 K. Assuming the constant value kO2 = 5.1 x 10(-12) cm3 molecule(-1) s(-1) for our reaction conditions, kdis = 1.2 x 10(10.0+/-0.7) x exp(-11.7 +/- 3.8 kJ mol(-1)/RT) s(-1) (2sigma errors) was obtained for ptot = 1 bar (M = O2), in good agreement with the kinetic parameters calculated by Méreau et al. [R. Méreau, M.-T. Rayez, J.-C. Rayez, F. Caralp and R. Lesclaux, Phys. Chem. Chem. Phys., 2001, 3, 4712]. CH3C(O)C(O)O2 radicals oxidise NO2, forming NO3, CH3CO and CO2. This experimental result is supported by DFT and ab initio calculations. Possible mechanisms for the observed formation of several % of ketene and bromoacetyl peroxynitrate are discussed. Use of Cl rather than Br atoms to abstract the aldehydic H atom from methylglyoxal leads to chemically activated CH3C(O)CO radicals, thus substantially increasing the fraction of CH3C(O)CO radicals that decompose rather than add O2.

  18. METALLICITY AND TEMPERATURE INDICATORS IN M DWARF K-BAND SPECTRA: TESTING NEW AND UPDATED CALIBRATIONS WITH OBSERVATIONS OF 133 SOLAR NEIGHBORHOOD M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Ayala, Barbara [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Covey, Kevin R.; Lloyd, James P. [Department of Astronomy, Cornell University, 122 Sciences Drive, Ithaca, NY 14853 (United States); Muirhead, Philip S., E-mail: babs@amnh.org [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States)

    2012-04-01

    We present K-band spectra for 133 nearby (d < 33 ps) M dwarfs, including 18 M dwarfs with reliable metallicity estimates (as inferred from an FGK type companion), 11 M dwarf planet hosts, more than 2/3 of the M dwarfs in the northern 8 pc sample, and several M dwarfs from the LSPM catalog. From these spectra, we measure equivalent widths of the Ca and Na lines, and a spectral index quantifying the absorption due to H{sub 2}O opacity (the H{sub 2}O-K2 index). Using empirical spectral type standards and synthetic models, we calibrate the H{sub 2}O-K2 index as an indicator of an M dwarf's spectral type and effective temperature. We also present a revised relationship that estimates the [Fe/H] and [M/H] metallicities of M dwarfs from their Na I, Ca I, and H{sub 2}O-K2 measurements. Comparisons to model atmosphere provide a qualitative validation of our approach, but also reveal an overall offset between the atomic line strengths predicted by models as compared to actual observations. Our metallicity estimates also reproduce expected correlations with Galactic space motions and H{alpha} emission line strengths, and return statistically identical metallicities for M dwarfs within a common multiple system. Finally, we find systematic residuals between our H{sub 2}O-based spectral types and those derived from optical spectral features with previously known sensitivity to stellar metallicity, such as TiO, and identify the CaH1 index as a promising optical index for diagnosing the metallicities of near-solar M dwarfs.

  19. Solubility measurement and correlation of 4-nitrophthalimide in (methanol, ethanol, or acetone) + N,N-dimethylformamide mixed solvents at temperatures from 273.15 K to 323.15 K

    International Nuclear Information System (INIS)

    Li, Rongrong; Han, Shuo; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 4-nitrophthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by four models. • The standard dissolution enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 4-nitrophthalimide in binary (methanol + N,N-dimethylformamide (DMF), ethanol + DMF) and (acetone + DMF) solvent mixtures were investigated by the isothermal dissolution equilibrium method under atmosphere pressure. These studies were carried out at different mass fractions of methanol, ethanol or acetone ranging from 0.1 to 0.9 at temperature T = (273.15–323.15) K. For the nine groups of each solvent mixture studied, the solubility of 4-nitrophthalimide in mixed solutions increased with increasing temperature and mass fraction of methanol, ethanol or acetone for the three systems including (methanol + DMF), (ethanol + DMF) and (acetone + DMF). At the same temperature and mass fraction of methanol, ethanol or acetone, the mole fraction solubility of 4-nitrophthalimide in (acetone + DMF) was greater than that in the other two binary solvents. In addition, the experimental mole fraction solubility was correlated by four models (Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model and Sun model). The Jouyban–Acree model gave best representation for the experimental solubility values. Furthermore, the standard molar enthalpies of 4-nitrophthalimide during the dissolving process (Δ sol H o ) were also obtained in this work, and the results show that the dissolution process is endothermic. The experimental solubility and the models used in this work will be helpful in separating 4-nitrophthalimide from its isomeric mixtures.

  20. Rate constant and mechanism of the reaction Cl + CFCl₂H → CFCl₂ + HCl over the temperature range 298-670 K in N₂ or N₂/O₂ diluent.

    Science.gov (United States)

    Kaiser, E W; Jawad, Khadija M

    2014-05-08

    The rate constant of the reaction Cl + CFCl2H (k1) has been measured relative to the established rate constant for the reaction Cl + CH4 (k2) at 760 Torr. The measurements were carried out in Pyrex reactors using a mixture of CFCl2H, CH4, and Cl2 in either N2 or N2/O2 diluent. Reactants and products were quantified by GC/FID analysis. Cl atoms were generated by irradiation of the mixture with 360 nm light to dissociate the Cl2 for temperatures up to ~550 K. At higher temperature, the Cl2 dissociated thermally, and no irradiation was used. Over the temperature range 298-670 K, k1 is consistently a factor of ~5 smaller than that of k2 with a nearly identical temperature dependence. The optimum non-Arrhenius rate constant is represented by the expression k1 = 1.14 × 10(-22) T(3.49) e(-241/T) cm(3) molecule(-1) s(-1) with an estimated uncertainty of ±15% including uncertainty in the reference reaction. CFCl3 formed from the reaction CFCl2 + Cl2 (k3) is the sole product in N2 diluent. In ~20% O2 at 298 K, the CFCl3 product is suppressed. The rate constant of reaction 3 was measured relative to that of reaction 4 [CFCl2 + O2 (k4)] giving the result k3/k4 = 0.0031 ± 0.0005 at 298 K. An earlier experiment by others observed C(O)FCl to be the major product of reaction channel 4 [formed via the sequence, CFCl2(O2) → CFCl2O → C(O)FCl + Cl]. Our current experiments verified that there is a Cl atom chain reaction in the presence of O2 as required by this mechanism.

  1. High temperature corrosion of thermally sprayed NiCr- and amorphous Fe-based coatings covered with a KCl-K{sub 2}SO{sub 4} salt

    Energy Technology Data Exchange (ETDEWEB)

    Varis, T.; Suhonen, T.; Tuurna, S.; Ruusuvuori, K.; Holmstroem, S.; Salonen, J. [VTT, Espoo (Finland); Bankiewicz, D.; Yrjas, P. [Aabo Akademi Univ., Turku (Finland)

    2010-07-01

    New process conditions due to the requirement of higher efficiency together with the use of high-chlorine and alkali containing fuels such as biomass and waste fuels for heat and electricity production will challenge the resistance and life of tube materials. In conventional materials the addition of alloying elements to increase the corrosion resistance in aggressive combustion conditions increases costs relatively rapidly. Thermally sprayed coating offer promising, effective, flexible and cost efficient solutions to fulfill the material needs for the future. Some heat exchanger design alteractions before global commercialization have to be overcome, though. High temperature corrosion in combustion plants can occur by a variety of mechanisms including passive scale degradation with subsequent rapid scaling, loss of adhesion and scale detachment, attack by melted or partly melted deposits via fluxing reactions and intergranular-/interlamellar corrosion. A generally accepted model of the ''active oxidation'' attributes the responsibility for inducing corrosion to chlorine. The active oxidation mechanism plays a key role in the thermally sprayed coatings due to their unique lamellar structure. In this study, the corrosion behaviour of NiCr (HVOF and Wire Arc), amorphous Fe-based, and Fe13Cr (Wire Arc) thermally sprayed coatings, were tested in the laboratory under simplified biomass combustion conditions. The tests were carried out by using a KCl-K{sub 2}SO{sub 4} salt mixture as a synthetic biomass ash, which was placed on the materials and then heat treated for one week (168h) at two different temperatures (550{sup 0}C and 600 C) and in two different gas atmospheres (air and air+30%H{sub 2}O). After the exposures, the metallographic cross sections of the coatings were studied with SEM/EDX analyzer. The results showed that the coatings behaved relatively well at the lower test temperature while critical corrosion through the lamella boundaries

  2. Nitro-PAH formation studied by interacting artificially PAH-coated soot aerosol with NO 2 in the temperature range of 295-523 K

    Science.gov (United States)

    Carrara, Matteo; Wolf, Jan-Christoph; Niessner, Reinhard

    2010-10-01

    Diesel particulate matter poses a threat to human health, and in particular nitrated polycyclic aromatic hydrocarbons (NPAHs) found within and on the surface of these particles. Although diesel particulate filters (DPFs) have been designed and implemented to reduce these and other harmful diesel emissions, the particle loaded filters may act as a reaction chamber for the enhanced production of NPAHs from the nitration of PAHs with NO 2. Focus is on the investigation of the heterogeneous reactions that occur on soot particles by exposing laboratory produced pyrene- or benzo(a)pyrene-coated spark discharge soot particles to varying concentrations of NO 2 and temperatures while following the formation of products over time. The sole nitration product that was observed throughout the experiments with pyrene-coated soot was 1-nitropyrene (1-NPYR), which increased linearly with reaction time for all NO 2 concentrations chosen (0.11, 1.0, 2.0, 4.0 ppm, m m -1). Resulting 1-NPYR formation rate increased exponentially with [NO 2]. Throughout the 3-h experiments less than 10% of pyrene has been converted to 1-NPYR and the partial reaction order with regard to [NO 2] was estimated to 1.52. Benzo(a)pyrene (BaP) was more reactive than pyrene. After 3 h reaction time almost 80% of the BaP has been converted to 6-NBaP. Highest 1-NPYR concentrations on particles were detected at 373 K, and at higher temperatures a considerable decrease in particulate 1-NPYR was observed. A similar trend was observed in a DPF simulation system (PM-Kat ®-like) with BaP-coated soot. In this case, highest 6-NBaP concentration on particles was detected at 423 K. Backed by corroborating results from separate gas/solid-phase partition experiments with 1-NPYR and 6-NBaP, it is likely that the newly formed 1-NPYR and 6-NBaP became transferred from particle to gas phase at higher temperatures. Results from this study confirm the presence of 1-NPYR and 6-NBaP in particulate and gas phase under conditions

  3. Viscosity of n-hexadecane, n-octadecane and n-eicosane at pressures up to 243 MPa and temperatures up to 534 K

    International Nuclear Information System (INIS)

    Baled, Hseen O.; Xing, Dazun; Katz, Harrison; Tapriyal, Deepak; Gamwo, Isaac K.; Soong, Yee; Bamgbade, Babatunde A.; Wu, Yue; Liu, Kun; McHugh, Mark A.; Enick, Robert M.

    2014-01-01

    Highlights: • A novel windowed Inconel rolling-ball viscometer is designed and used by our team. • Viscosity data are reported for n-hexadecane, n-octadecane, and n-eicosane at high temperatures and pressures. • The viscosity results are compared with the available literature data. • The viscosity results are modeled with the free volume theory model. - Abstract: Viscosity data are reported for n-hexadecane (C16), n-octadecane (C18), and n-eicosane (C20) at pressures between (3 and 243) MPa and temperatures between (304 and 534) K. These extreme conditions are representative of those encountered in ultra-deep petroleum formations beneath the deepwaters of the Gulf of Mexico. The measurements are taken with a novel windowed Inconel rolling-ball viscometer designed by our team that is calibrated with n-decane. A comparison of the reported viscosity values with the available literature data that cover limited pressure and temperature ranges, shows that the mean absolute percentage deviation, δ, ranges between 1.1% and 4.8%. The reported data extend the database of viscosity to the high-temperature, high-pressure region where most gaps occur in the literature data for n-hexadecane and n-octadecane. To the best of our knowledge, the results for n-eicosane are the first reported viscosity values at pressures above 2 MPa over the entire temperature range. The viscosity results are modeled with the free volume theory model in conjunction with density values obtained using the Peng–Robinson equation of state (EoS) and the PC-SAFT EoS. The δ values obtained with this model range from 2.0% to 3.5%. The data are also correlated by a non-linear surface fit as a simultaneous function of temperature and pressure that yields δ values of 0.40%, 0.43%, and 0.38% for C16, C18, and C20, respectively

  4. Realization of the Temperature Scale in the Range from 234.3 K (Hg Triple Point) to 1084.62°C (Cu Freezing Point) in Croatia

    Science.gov (United States)

    Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka

    2008-06-01

    This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.

  5. Dielectric spectroscopy in aqueous solutions of paracetamol over the frequency range of 20 Hz to 2 MHz at 293.15 K temperature

    Science.gov (United States)

    Pandit, T. R.; Rana, V. A.

    2018-05-01

    Frequency domain dielectric relaxation spectroscopy plays an important role in the study of pharmaceutical drug molecules. The complex relative dielectric permittivity ɛ*(ω) = ɛ' - j ɛ" of aqueous solutions of paracetamol in the frequency range of 20 Hz to 2 MHz at a temperature range of 293.15 K are measured with the help of Agilent precision LCR meter E4980A along with four terminal liquid test fixture Agilent 16452A. Data of complex relative permittivity are used to calculate loss tangent for all concentrations of paracetamol in distilled water. Electrode polarization relaxation time has been calculated for all solutions. Effect of variation of concentrations of paracetamol in distilled water on these dielectric parameters is discussed.

  6. Vapor pressures, osmotic and activity coefficients for (LiBr + acetonitrile) between the temperatures (298.15 and 343.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Nasirzadeh, Karamat E-mail: karamat.nasirzadeh@chemie.uni-regensburg.de; Neueder, Roland; Kunz, Werner

    2004-06-01

    Precise vapor pressure data for pure acetonitrile and (LiBr + acetonitrile) are given for temperatures ranging from T=(298.15 to 343.15) K. The molality range is from m=(0.0579 to 0.8298) mol {center_dot} kg{sup -1}. The osmotic coefficients are calculated by taking into account the second virial coefficient of acetonitrile. The parameters of the extended Pitzer ion interaction model of Archer and the mole fraction-based thermodynamic model of Clegg-Pitzer are evaluated. These models accurately reproduce the available osmotic coefficients. The parameters of the extended Pitzer ion interaction model of Archer are used to calculate the mean molal activity coefficients.

  7. (Vapor + liquid) equilibrium data for (carbon dioxide + 1,1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa

    International Nuclear Information System (INIS)

    Madani, Hakim; Valtz, Alain; Coquelet, Christophe; Meniai, Abdeslam Hassen; Richon, Dominique

    2008-01-01

    Accurate thermo-physical data are of utmost interest for the development of new efficient refrigeration systems. Carbon dioxide (R744) and 1,1-difluoroethane (R152a) are addressed here. Isothermal (vapor + liquid) equilibrium data are reported herein for (R744 + R152a) binary system in the (258-343) K temperature range and in the (0.14 to 7.65) MPa pressure range. A reliable 'static-analytic' method taking advantage of two online ROLSI TM micro capillary samplers is used for all thermodynamic measurements. The data are correlated using our in-house ThermoSoft thermodynamic model using the Peng-Robinson equation of state, the Mathias-Copeman alpha function, the Wong-Sandler mixing rules, and the NRTL model

  8. Improved approach for determining thin layer thermal conductivity using the 3 ω method. Application to porous Si thermal conductivity in the temperature range 77–300 K

    International Nuclear Information System (INIS)

    Valalaki, K; Nassiopoulou, A G

    2017-01-01

    An improved approach for determining thermal conductivity using the 3 ω method was used to determine anisotropic porous Si thermal conductivity in the temperature range 77–300 K. In this approach, thermal conductivity is extracted from experimental data of the third harmonic of the voltage (3 ω ) as a function of frequency, combined with consequent FEM simulations. The advantage is that within this approach the finite thickness of the sample and the heater are taken into account so that the corresponding errors introduced in thermal conductivity values when using Cahill’s simplified analytical formula are eliminated. The developed method constitutes a useful tool for measuring the thermal conductivity of samples with unknown thermal properties. The thermal conductivity measurements with the 3 ω method are discussed and compared with those obtained using the well-established dc method. (paper)

  9. Thermal Conductance and High-Frequency Properties of Cryogenic Normal or Superconducting Semi-rigid Coaxial Cables in the Temperature Range of 1-8 K

    Science.gov (United States)

    Kushino, A.; Kasai, S.; Ukibe, M.; Ohkubo, M.

    2018-04-01

    In this study, the characteristics of thin semi-rigid cables composed of different conductors and with outer diameters ranging from 0.86 to 1.19 mm were investigated at low temperatures. The thermal conductance was measured between approximately 1 and 8 K, and the frequency dependence of the attenuation in the cables was obtained at 3 K. The electrical conductors used in the cables were alloys: beryllium copper, brass, stainless steel (SUS304), phosphor bronze, cupronickel (CuNi), and niobium-titanium (NbTi). The thermal conductance of a commercial miniature coaxial cable with braided wires forming the outer electrical conductor was also examined for reference. The measured thermal conductance was compared to published data and that generated from material libraries and databases. Among the measured cables using normal metals, the semi-rigid cable composed of SUS304 conductors and a polytetrafluoroethylene insulator showed the lowest thermal conductance. The transmission performance of the semi-rigid cables using SUS304 or CuNi was improved by plating the central conductors with a silver coating of approximately 3 μm thickness, and their thermal conductance with the plating increased by approximately one order of magnitude. The superconducting NbTi semi-rigid cable exhibited the lowest thermal conductance of all the cables considered in the present study along with very small attenuation up to above 5 GHz.

  10. Compressed liquid densities and excess molar volumes for (CO2 + 1-pentanol) binary system at temperatures from 313 to 363 K and pressures up to 25 MPa

    International Nuclear Information System (INIS)

    Zuniga-Moreno, Abel; Galicia-Luna, Luis A.; Sandler, Stanley I.

    2008-01-01

    Measurements of compressed liquid densities for 1-pentanol and for {CO 2 (1) + 1-pentanol (2)} system were carried out at temperatures from 313 K to 363 K and pressures up to 25 MPa. Densities were measured for binary mixtures at 10 different compositions, x 1 = 0.0816, 0.1347, 0.3624, 0.4651, 0.6054, 0.7274, 0.8067, 0.8573, 0.9216, and 0.9757. A vibrating tube densimeter was used to perform density measurements using two reference calibration fluids. The uncertainty is estimated to be better than ±0.2 kg . m -3 for the experimental density measurements. For each mixture and for 1-pentanol, the experimental densities were correlated using an explicit volume equation of six parameters and an 11-parameter equation of state (EoS). Excess molar volumes were determined for the (CO 2 + 1-pentanol) system using 1-pentanol densities calculated from the 11-parameter EoS and CO 2 densities calculated from a multiparameter reference EoS

  11. Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K

    International Nuclear Information System (INIS)

    Singh, Tejwant; Kumar, Arvind; Kaur, Mandeep; Kaur, Gurpreet; Kumar, H.

    2009-01-01

    Non-ideal behaviour of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF 4 ]; 1-octyl-3-methylimidazolium tetrafluoroborate [omim][BF 4 ] and 1-butyl-3-methylimidazolium octylsulfate [bmim][C 8 OSO 3 ] in ethylene glycol [HOCH 2 CH 2 OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K. For the purpose, volumetric properties such as excess molar volumes, V m E , apparent molar volumes, V φ,i , partial molar volumes, V-bar m,i , excess partial molar volumes, V-bar m,i E , and their limiting values at infinite dilution, V φ,i ∞ , V-bar m,i ∞ , and V-bar m,i E,∞ respectively have been calculated from the experimental density measurements. The V m E results have been analyzed using the Prigogine-Flory-Patterson (PFP) theory. PFP theory has satisfactorily explained the volumetric behaviour of the binary mixtures. Refractive index measurements at 298.15 K have been used to calculate the deviations in refractive indices Δ φ n and the deviation of molar refraction Δ x R from their respective ideal values. Refractive index results have been correlated with volumetric results, and have been interpreted in terms of molecular interactions. Excess properties are fitted to the Redlich-Kister polynomial equation to obtain the binary coefficients and the standard errors.

  12. Technical Note: VUV photodesorption rates from water ice in the 120–150 K temperature range – significance for Noctilucent Clouds

    Directory of Open Access Journals (Sweden)

    M. Yu. Kulikov

    2011-02-01

    Full Text Available Laboratory studies have been carried out with the aim to improve our understanding of physicochemical processes which take place at the water ice/air interface initiated by solar irradiation with a wavelength of 121.6 nm. It was intended to mimic the processes of ice particles characteristic of Noctilucent Clouds (NLCs. The experimental set-up used includes a high-vacuum chamber, a gas handling system, a cryostat with temperature controller, an FTIR spectrometer, a vacuum ultraviolet hydrogen lamp, and a microwave generator. We report the first results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase from thin (20–100 nm water ice samples kept in the temperature range of 120–150 K. The obtained results show that a flow of photoproducts into the gas phase is considerably lower than presumed in the recent study by Murray and Plane (2005. The experiments indicate that almost all photoproducts remain in the solid phase, and the principal chemical reaction between them is the recombination reaction H + OH → H2O which is evidently very fast. This means that direct photolysis of mesospheric ice particles seems to have no significant impact on the gas phase chemistry of the upper mesosphere.

  13. Improved functional expression of recombinant human ether-a-go-go (hERG K+ channels by cultivation at reduced temperature

    Directory of Open Access Journals (Sweden)

    Hamilton Bruce

    2007-12-01

    Full Text Available Abstract Background HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance. Results Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C. Conclusion Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.

  14. Saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa

    International Nuclear Information System (INIS)

    Efika, Emmanuel C.; Hoballah, Rayane; Li, Xuesong; May, Eric F.; Nania, Manuela; Sanchez-Vicente, Yolanda; Martin Trusler, J.P.

    2016-01-01

    Highlights: • Saturated phase densities of CO_2 + H_2O were measured with a 1.5 kg · m"−"3 uncertainty. • Aqueous phase densities can be predicted within 3 kg · m"−"3 using empirical models. • The CO_2-rich phase density was within 8 kg · m"−"3 of pure CO_2 at the same (p, T). • The cubic EOS of Spycher and Pruess deviates from the data by up to about 8 kg · m"−"3. - Abstract: An apparatus consisting of an equilibrium cell connected to two vibrating tube densimeters and two syringe pumps was used to measure the saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, with estimated average standard uncertainties of 1.5 kg · m"−"3 for the CO_2-rich phase and 1.0 kg · m"−"3 for the aqueous phase. The densimeters were housed in the same thermostat as the equilibrium cell and were calibrated in situ using pure water, CO_2 and helium. Following mixing, samples of each saturated phase were displaced sequentially at constant pressure from the equilibrium cell into the vibrating tube densimeters connected to the top (CO_2-rich phase) and bottom (aqueous phase) of the cell. The aqueous phase densities are predicted to within 3 kg · m"−"3 using empirical models for the phase compositions and partial molar volumes of each component. However, a recently developed multi-parameter equation of state (EOS) for this binary mixture, Gernert and Span [32], was found to under predict the measured aqueous phase density by up to 13 kg · m"−"3. The density of the CO_2-rich phase was always within about 8 kg · m"−"3 of the density for pure CO_2 at the same pressure and temperature; the differences were most positive near the critical density, and became negative at temperatures above about 373 K and pressures below about 10 MPa. For this phase, the multi-parameter EOS of Gernert and Span describes the measured densities to within 5 kg · m"−"3, whereas the computationally-efficient cubic EOS model of

  15. Detection of temperature rise at 4.2K by using a dual-core optical fiber-an optical method to detect a quench of a superconducting magnet

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kokubun, Y.; Toyama, T.

    1986-01-01

    We performed an experiment to detect a temperature rise at cryogenic temperature using a dual-core optical fiber. This fiber has two single-mode optical cores in one fiber. We demonstrated that a temperature rise of 4 K was detectable at 4.2 K. The sensitivity of this method can be improved using a longer fiber. This method may be applicable as a quench detector for superconducting magnets. A quench detector using this optical method is immune from electromagnetic noise, free from troubles caused by break-down of electrical insulator, and has many advantages over a conventional quench detector measuring voltages of a magnet

  16. Volumetric properties of room temperature ionic liquid 1. The system of {l_brace}1-methyl-3-ethylimidazolium ethyl sulfate+water{r_brace} at temperature in the range (278.15 to 333.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xingmei [Department of Chemistry, Shenyang Normal University, Shenyang 110034 (China); Department of Chemistry, Liaoning University, Shenyang 110036 (China); Xu Weiguo [Institute of Salt Lakes, Chinese Academy of Science, Xining 810008 (China); Gui Jinsong [Department of Chemistry, Shenyang Normal University, Shenyang 110034 (China); Li Huawei [Department of Chemistry, Shenyang Normal University, Shenyang 110034 (China); Yang Jiazhen [Institute of Salt Lakes, Chinese Academy of Science, Xining 810008 (China)]. E-mail: jzyanglnu@yahoo.com.cn

    2005-01-01

    This paper reports densities of aqueous solutions of ionic liquid (IL) 1-methyl-3-ethylimidazolium ethyl sulfate (EMISE) that were measured gravimetrically at temperatures (278.15 to 333.15) K. The values of the apparent molar volume, {sup {phi}}V{sub B} and partial molar volume, V-bar B, were determined and apparent molar expansibilities {sup {phi}}E=(({partial_derivative}{phi}{sub B})/{partial_derivative}T)){sub p} of EMISE and the coefficients of thermal expansion of the solutions, {alpha}, were calculated. The values of the apparent molar volume, {sup {phi}}V{sub B}, were fitted by the method of least-squares to a Pitzer's equation to determine the parameters, {beta}{sub MX}{sup (0)V}, {beta}{sub MX}{sup (1)V}, and C{sub MX}{sup V}.

  17. Volumetric properties of room temperature ionic liquid 1. The system of {1-methyl-3-ethylimidazolium ethyl sulfate+water} at temperature in the range (278.15 to 333.15) K

    International Nuclear Information System (INIS)

    Lu Xingmei; Xu Weiguo; Gui Jinsong; Li Huawei; Yang Jiazhen

    2005-01-01

    This paper reports densities of aqueous solutions of ionic liquid (IL) 1-methyl-3-ethylimidazolium ethyl sulfate (EMISE) that were measured gravimetrically at temperatures (278.15 to 333.15) K. The values of the apparent molar volume, φ V B and partial molar volume, V-bar B, were determined and apparent molar expansibilities φ E=((∂φ B )/∂T)) p of EMISE and the coefficients of thermal expansion of the solutions, α, were calculated. The values of the apparent molar volume, φ V B , were fitted by the method of least-squares to a Pitzer's equation to determine the parameters, β MX (0)V , β MX (1)V , and C MX V

  18. Corrosion of graphitic high temperature reactor materials in steam/helium mixtures at total pessures of 3-55 bar and temperatures of 900-1150 C (1173-1423K)

    International Nuclear Information System (INIS)

    Hinssen, H.K.; Loenissen, K.J.; Katscher, W.; Moormann, R.

    1993-03-01

    In course of accident examination for (HTR), experiments on the corrosion behavior of graphitic reactor materials in steam have been performed a total pressures of 3-55bar and temperatures of 900-1150 C (1173-1423K); these experiments and their evaluation are documented here. Reactor materials examined are the structure graphite V483T2 and the fuel element matrices A3-27 and A3-3. In all experiments, the steam partial pressure was 474mbar (inert gas helium). The dependence of reaction rates and density profiles on burn-off, total pressure and temperature has been examined. Experimental reaction rates depending on burn-off are fitted by theoretical curves, a procedure, which allows rate comparison for a well defined burn-off. Comparing rates as a function of total pressure, V483T2 shows a linear dependence on 1√p total , whereas for matrix materials a pressure independent rate was found for p total 4mm for A3-3. (orig.) [de

  19. Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejwant [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364 002 (India); Kumar, Arvind [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364 002 (India)], E-mail: mailme_arvind@yahoo.com; Kaur, Mandeep; Kaur, Gurpreet; Kumar, H. [Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, Panjab (India)

    2009-06-15

    Non-ideal behaviour of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF{sub 4}]; 1-octyl-3-methylimidazolium tetrafluoroborate [omim][BF{sub 4}] and 1-butyl-3-methylimidazolium octylsulfate [bmim][C{sub 8}OSO{sub 3}] in ethylene glycol [HOCH{sub 2}CH{sub 2}OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K. For the purpose, volumetric properties such as excess molar volumes, V{sub m}{sup E}, apparent molar volumes, V{sub {phi}}{sub ,i}, partial molar volumes, V-bar{sub m,i}, excess partial molar volumes, V-bar{sub m,i}{sup E}, and their limiting values at infinite dilution, V{sub {phi}}{sub ,i}{sup {infinity}}, V-bar{sub m,i}{sup {infinity}}, and V-bar{sub m,i}{sup E,{infinity}} respectively have been calculated from the experimental density measurements. The V{sub m}{sup E} results have been analyzed using the Prigogine-Flory-Patterson (PFP) theory. PFP theory has satisfactorily explained the volumetric behaviour of the binary mixtures. Refractive index measurements at 298.15 K have been used to calculate the deviations in refractive indices {delta}{sub {phi}}n and the deviation of molar refraction {delta}{sub x}R from their respective ideal values. Refractive index results have been correlated with volumetric results, and have been interpreted in terms of molecular interactions. Excess properties are fitted to the Redlich-Kister polynomial equation to obtain the binary coefficients and the standard errors.

  20. Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zheng, Zeke; Xiong, Mei; Zhang, Xiaochen; Li, Xiaoqing; Ning, Honglong; Fang, Zhiqiang; Xie, Weiguang; Lu, Xubing; Peng, Junbiao

    2018-03-01

    In this work, low temperature fabrication of a sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors (TFTs) on polyimide substrates was investigated. The effects of Ar-pressure during the sputtering process and then especially the post-annealing treatments at low temperature (≤200 °C) for HfO2 on reducing the density of defects in the bulk and on the surface were systematically studied. X-ray reflectivity, UV-vis and X-ray photoelectron spectroscopy, and micro-wave photoconductivity decay measurements were carried out and indicated that the high quality of optimized HfO2 film and its high dielectric properties contributed to the low concentration of structural defects and shallow localized defects such as oxygen vacancies. As a result, the well-structured HfO2 gate dielectric exhibited a high density of 9.7 g/cm3, a high dielectric constant of 28.5, a wide optical bandgap of 4.75 eV, and relatively low leakage current. The corresponding flexible a-IGZO TFT on polyimide exhibited an optimal device performance with a saturation mobility of 10.3 cm2 V-1 s-1, an Ion/Ioff ratio of 4.3 × 107, a SS value of 0.28 V dec-1, and a threshold voltage (Vth) of 1.1 V, as well as favorable stability under NBS/PBS gate bias and bending stress.

  1. Effect of preparation techniques on creep characteristics of the Zr-2. 5% Nb alloy at temperatures of 673 to 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Pahutova, M; Kreici, J; Polesna, M [Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie

    1976-01-01

    The effect of the initial raw material - zirconium sponge or zirconium iodide - on some creep and stres-strain properties was studied on Zr-2.5%Nb alloy by a stress-strain test at constant crosshead speed and by strain-rate sensitivity testing. Dependence of the creep characteristics on cooling conditions after solution treatment was examined. Alloy made from Zr-sponge was used for measurement of steady-state creep rate on time to fracture dependence and steady-state creep rate on time to fracture with respect to the angle between rolling direction of alloy sheets and tensile axis. Transmission electron microscopy was used for structure study of both alloys after different heat treatment. Higher creep strength of the alloy made from iodide zirconium (after respective heat treatment) than that of the alloy made from Zr-sponge is discussed. Oxygen content and its effect on structural changes during heat treatment seems to be responsible for higher creep strength of the first alloy. On the other hand the difference of respective creep strengths is not so significant as to justify production of Zr-2.5%Nb alloy and perhaps of future high-strength Zr alloys (for applications in structural components in reactors in the temperature range of 673 to 773 K) from iodide zirconium. Results of creep and stress-strain (short time) testing are briefly discussed.

  2. The effect of preparation techniques on creep characteristics of the Zr-2.5% Nb alloy at temperatures of 673 to 823 K

    International Nuclear Information System (INIS)

    Pahutova, M.; Krejci, J.; Polesna, M.

    1976-01-01

    The effect of the initial raw material - zirconium sponge or zirconium iodide - on some creep and stres-strain properties was studied on Zr-2.5%Nb alloy by a stress-strain test at constant crosshead speed and by strain-rate sensitivity testing. Dependence of the creep characteristics on cooling conditions after solution treatment was examined. Alloy made from Zr-sponge was used for measurement of steady-state creep rate on time to fracture dependence and steady-state creep rate on time to fracture with respect to the angle between rolling direction of alloy sheets and tensile axis. Transmission electron microscopy was used for structure study of both alloys after different heat treatment. Higher creep strength of the alloy made from iodide zirconium (after respective heat treatment) than that of the alloy made from Zr-sponge is discussed. Oxygen content and its effect on structural changes during heat treatment seems to be responsible for higher creep strength of the first alloy. On the other hand the difference of respective creep strengths is not so significant as to justify production of Zr-2.5%Nb alloy and perhaps of future high-strength Zr alloys (for applications in structural components in reactors in the temperature range of 673 to 773 K) from iodide zirconium. Results of creep and stress-strain (short time) testing are briefly discussed. (author)

  3. High-purity metal-carbon eutectic systems as thermometric fixed points in the range from 1000 K to 3500 K; Des systemes eutectiques metal-carbone de grande purete comme points fixes de temperature dans l'intervalle 1000-3500 K

    Energy Technology Data Exchange (ETDEWEB)

    Bloembergen, P.; Yamada, Y.; Sasajima, N.; Yamamoto, N. [National Metrology Institute of Japan (NMIJ), AIST, Tsukuba (Japan); Torizuka, S.; Yoshida, N. [National Institute for Materials Science (NIMS), Tsukuba (Japan)

    2004-12-01

    A survey will be given of metal-carbon (M-C) and metal carbide-carbon (MC-C) systems presently in development for applications in thermometry in the range from 1000 K to about 3500 K. The advantages of these systems as fixed points at high temperatures as compared to systems relying on pure metals will be elucidated. Purification of the components making up the M-C or MC-C systems is a prerequisite to their implementation as reference fixed points in thermometry, requiring a high level of reproducibility of the eutectic temperature. To set an example a study on the effect of impurities on the eutectic transition of Fe-C is included in the survey. Experimentally obtained melting curves are compared with the curves calculated on the basis of a thermodynamic model, which includes the impurities in question as components. The calculations of the melting curves are based upon: (1) the Equilibrium solidification model and (2) the Scheil-Gulliver solidification model, which handle the effects of the impurities on the transition process in such a way that they may be assumed to set lower and upper boundaries to the associated melting ranges, respectively. We will conclude pointing out fields of common interest to materials science and thermometry within the realm of ultra-pure materials. (authors)

  4. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

    International Nuclear Information System (INIS)

    Thomas, Daniel; Zeilinger, Michael; Gruner, Daniel; Hüttl, Regina; Seidel, Jürgen; Wolter, Anja U.B.; Fässler, Thomas F.; Mertens, Florian

    2015-01-01

    Highlights: • High quality experimental heat capacities of the new lithium rich silicides Li 17 Si 4 and Li 16.42 Si 4 are reported. • Two different calorimeters have been used to cover the broad temperature range from (2 to 873) K. • Samples were prepared and characterized (XRD) by the original authors who firstly described these new silicide phases in 2013. • Supply of polynomial heat capacity functions for four temperature intervals. • Calculation of standard entropies and entropies of formation of the lithium silicides. - Abstract: This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li 17 Si 4 and Li 16.42 Si 4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C p -by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region

  5. V K Agrawal

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V K Agrawal. Articles written in Bulletin of Materials Science. Volume 33 Issue 4 August 2010 pp 383-390 Electrical Properties. Temperature dependence of electromechanical properties of PLZT /57/43 ceramics · A K Shukla V K Agrawal I M L Das Janardan Singh S L ...

  6. A study of the x-irradiated Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O crystal by EPR in the 80-415 K temperature range

    CERN Document Server

    Waplak, S; Baranov, A I; Shuvalov, L A

    1997-01-01

    The EPR spectra of the x-irradiated fast proton conductor Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O were investigated in the temperature range of 80-415 K. Two kinds of paramagnetic SO sub 4 sup - centres with different proton configurations below about 370 K and freeze-out behaviour of one of them below about 200 K were observed. The role of acid proton dynamics with respect to the glassy-like transition is discussed. (author)

  7. Effect of temperature and solvent composition on acid dissociation equilibria, I: Sequenced {sup s}{sub s}pK{sub a} determination of compounds commonly used as buffers in high performance liquid chromatography coupled to mass spectroscopy detection

    Energy Technology Data Exchange (ETDEWEB)

    Padro, Juan M.; Acquaviva, Agustin; Tascon, Marcos [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Gagliardi, Leonardo G., E-mail: leogagliardi@quimica.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Castells, Cecilia B., E-mail: castells@isis.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We developed a rapid potentiometric method for sequential pK{sub a} determinations. Black-Right-Pointing-Pointer We measured pK{sub a} of buffers from 0 to 90% (v/v) acetonitrile/water and from 20 to 60 Degree-Sign C. Black-Right-Pointing-Pointer Sequences of 42 pK{sub a}-data spanned over a wide solvent composition range needed 2 h. Black-Right-Pointing-Pointer We measured pK{sub a} of formic acid and triethylamine/HCl in up to 90% (v/v) acetonitrile. Black-Right-Pointing-Pointer The high-throughput method was applied to obtain pK{sub a} of two common buffers in LC/MS. - Abstract: A new automated and rapid potentiometric method for determining the effect of organic-solvent composition on pK{sub a} has been developed. It is based on the measurements of pH values of buffer solutions of variable solvent compositions using a combined glass electrode. Additions of small volumes of one precisely thermostated solution into another, both containing exactly the same analytical concentrations of the buffer components, can produce continuous changes in the solvent composition. Two sequences of potential measurements, one of increasing and the other of decreasing solvent content, are sufficient to obtain the pK{sub a} values of the acidic compound within the complete solvent-composition range in about 2 h. The experimental design, procedures, and calculations needed to convert the measured pH into the thermodynamic pK{sub a} values are thoroughly discussed. This rapid and automated method allows the systematic study of the effect of solvent compositions and temperatures on the pK{sub a}. It has been applied to study the dissociation constants of two monoprotic acids: formic acid and triethylamine:HCl in acetonitrile/water mixtures within the range from 0 to 90% (v/v) at temperatures between 20 Degree-Sign C and 60 Degree-Sign C. These volatile compounds are frequently used to control the pH of the mobile phase in HPLC, especially in

  8. Assimilation of MODIS Ice Surface Temperature and Albedo into the Snow and Ice Model CROCUS Over the Greenland Ice Sheet Along the K-transect Stations

    Science.gov (United States)

    Navari, M.; Margulis, S. A.; Bateni, S. M.; Alexander, P. M.; Tedesco, M.

    2016-12-01

    Estimating the Greenland Ice Sheet (GrIS) surface mass balance (SMB) is an important component of current and future projections of sea level rise. In situ measurement provides direct estimates of the SMB, but are inherently limited by their spatial extent and representativeness. Given this limitation, physically based regional climate models (RCMs) are critical for understanding GrIS physical processes and estimating of the GrIS SMB. However, the uncertainty in estimates of SMB from RCMs is still high. Surface remote sensing (RS) has been used as a complimentary tool to characterize various aspects related to the SMB. The difficulty of using these data streams is that the links between them and the SMB terms are most often indirect and implicit. Given the lack of in situ information, imperfect models, and under-utilized RS data it is critical to merge the available data in a systematic way to better characterize the spatial and temporal variation of the GrIS SMB. This work proposes a data assimilation (DA) framework that yields temporally-continuous and physically consistent SMB estimates that benefit from state-of-the-art models and relevant remote sensing data streams. Ice surface temperature (IST) is the most important factor that regulates partitioning of the net radiation into the subsurface snow/ice, sensible and latent heat fluxes and plays a key role in runoff generation. Therefore it can be expected that a better estimate of surface temperature from a data assimilation system would contribute to a better estimate of surface mass fluxes. Albedo plays an important role in the surface energy balance of the GrIS. However, even advanced albedo modules are not adequate to simulate albedo over the GrIS. Therefore, merging remotely sensed albedo product into a physically based model has a potential to improve the estimates of the GrIS SMB. In this work a MODIS-derived IST and a 16-day albedo product are independently assimilated into the snow and ice model CROCUS

  9. Luminescence of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex in the temperature range of 90-315 K: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru [Samara State Aerospace University, Samara 443086 (Russian Federation); Lebedev Physical Institute, Samara 443011 (Russian Federation); Mebel, A. M., E-mail: mebela@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199 (United States)

    2015-12-28

    Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the

  10. Low temperature vibrational spectra, lattice dynamics, and phase transitions in some potassium hexahalometallates: K2[XY6] with X=Sn or Te and Y=Cl or Br

    DEFF Research Database (Denmark)

    Chodos, Steven L.; Berg, Rolf W.

    1979-01-01

    This paper deals with the observation and identification of phonon frequencies resulting from the low temperature phase transitions in K2XY6 crystals. By means of a simple lattice dynamical model, the vibrational Raman and IR data available in the literature and obtained here have been analyzed. ...

  11. Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.

    2011-01-01

    The densities of {water (1) + tert-butanol (2)} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using 'Anton Paar' digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich-Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T ≤ 208 K the inflection points at x 2 ∼ 0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at x 2 ∼ 0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at ∼288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.

  12. Strong correlation between Jc(T, H||c) and Jc(77 K, 3 T||c) in Zr-added (Gd, Y)BaCuO coated conductors at temperatures from 77 down to 20 K and fields up to 9 T

    International Nuclear Information System (INIS)

    Xu, A; Delgado, L; Heydari Gharahcheshmeh, M; Khatri, N; Liu, Y; Selvamanickam, V

    2015-01-01

    We have conducted a critical current density J c (T, H) study over a wide temperature T from 77 down to 20 K and a magnetic field H up to 9 T on more than 50 ∼ 0.9 μm-thick REBa 2 Cu 3 O 7−δ (RE = rare earth) thin films containing different concentrations of BaZrO 3 (BZO). We found that, independent of the composition, there is a linear correlation between J c (77 K, 3 T||c) and J c (T, H||c) at T down to 20 K and H up to 9 T. Moreover, J c (77 K, 3 T||c) is also linearly correlated to J c (T, H||ab) below 40 K. We ascribed this linear correlation to the dominant pinning source of BZO nanorods, which act as a strong correlated pinning at T above ∼30 K and provide weak uncorrelated point pins at lower temperatures. Our result emphasizes that J c (77 K, 3 T||c) is a key metric for metal-organic chemical vapor deposited REBa 2 Cu 3 O 7−δ coated conductors. (fast track communication)

  13. Rheological behaviour of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Chahal, Amanpreet K.; Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143005 (India)

    2010-08-15

    The viscosities, {eta} of mono-, di-, tri-saccharides and methylglycosides, viz., D(+)-xylose (XYL), D(-)-arabinose (ARA), D(-)-ribose (RIB), D(-)-fructose (FRU), D(+)-galactose (GAL), D(+)-mannose (MAN), D(+)-glucose (GLU), D(+)-melibiose (MEL), D(+)-cellobiose (CEL), D(+)-lactose monohydrate (LAC), D(+)-maltose monohydrate (MAL), D(+)-trehalose dihydrate (TRE), sucrose (SUC), D(+)-raffinose pentahydrate (RAF), {alpha}-methyl-D(+)-glucoside ({alpha}-Me-GLU), methyl-{alpha}-D-xylopyranoside (Me-{alpha}-XYL), and methyl-{beta}-D-xylopyranoside (Me-{beta}-XYL) in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous solutions of potassium chloride (KCl) have been determined at T = (288.15, 298.15, 308.15, and 318.15) K from efflux time measurements by using a capillary viscometer. Densities used to determine viscosities have been reported earlier. The viscosity data have been utilized to determine the viscosity B-coefficients employing the Jones-Dole equation at different temperatures. From these data, the viscosity B-coefficients of transfer, {Delta}{sub t}B have been estimated for the transfer of various saccharides/methylglycosides from water to aqueous potassium chloride solutions. The {Delta}{sub t}B values have been found to be positive, whose magnitude increases with the increase in concentration of potassium chloride in all cases. The dB/dT coefficients, pair, {eta}{sub AB} and triplet, {eta}{sub ABB} viscometric interaction coefficients have also been determined. Gibbs free energies of activation and related thermodynamic parameters of activation of viscous flow have been determined employing Feakin's transition-state theory. The signs and magnitudes of various parameters have been discussed in terms of solute-solute and solute-solvent interactions occurring in these solutions. The effect of substitution of -OH by methoxy group, -OCH{sub 3} has also been discussed.

  14. Studies on volumetric properties of some saccharides in aqueous potassium chloride solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K. [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)], E-mail: pkbanipal@yahoo.com; Chahal, Amanpreet K. [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2009-04-15

    The standard partial molar volumes, V{sub 2}{sup {infinity}} at infinite dilution of monosaccharides; D(+)-xylose, D(-)-arabinose, D(-)-ribose, D(+)-mannose, D(+)-galactose, D(-)-fructose and D(+)-glucose, disaccharides; D(+)-melibiose, D(+)-cellobiose, D(+)-maltose monohydrate, D(+)-trehalose dihydrate, D(+)-lactose monohydrate and sucrose, trisaccharide; D(+)-raffinose pentahydrate, methylglycosides; {alpha}-methyl-D(+)-glucoside, methyl-{alpha}-D-xylopyranoside and methyl-{beta}-D-xylopyranoside have been determined in water and in aqueous solutions of potassium chloride (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} at T = (288.15, 298.15, 308.15, and 318.15) K from density measurements employing a vibrating-tube densimeter. These results have been utilized to determine the corresponding standard partial molar volumes of transfer, {delta}{sub t}V{sub 2}{sup {infinity}} for the transfer of various saccharides from water to aqueous potassium chloride solutions. The standard transfer volumes have been found to be positive (except for {alpha}- and {beta}-methyl xylopyranosides in 0.5 mol . kg{sup -1} solutions of potassium chloride) whose magnitude increase with the concentration of potassium chloride as well as temperature for all the saccharides. Partial molar expansion coefficients, ({partial_derivative}V{sub 2}{sup {infinity}}/{partial_derivative}T){sub p} and the second derivative ({partial_derivative}{sup 2}V{sub 2}{sup {infinity}}/{partial_derivative}T{sup 2}){sub p} values have been estimated. Pair and higher order volumetric interaction coefficients have also been calculated from {delta}{sub t}V{sub 2}{sup {infinity}} by using the McMillan-Mayer theory. These parameters have been discussed in terms of the solute-cosolute interactions and are used to understand various mixing effects due to these interactions. The effect of substitution of -OH by glycosidic group, -OCH{sub 3} is also discussed. Attempt has also been made to discuss the stereochemical effects

  15. K0/K+ ratio in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Russkikh, V.N.

    1996-11-01

    It is shown that ratio of production yields of K 0 and K + mesons in collisions of isotopically asymmetric nuclei at incident energies ∼ 1 GeV/nucleon is related directly enough to temperature of nuclear matter at the initial stage of the collision. Sensitivity of the K 0 /K + ratio to the temperature variation is analyzed. Ambiguities, associated with interpretation of this quantity as a probe of nuclear temperature, are discussed. It is argued that the K 0 /K + ratio is a fairly model-independent quantity, provided channels with Δ isobars dominate the kaon production. (orig.)

  16. Tunneling observation at very low temperature of impurity bands within the gap of the Kondo superconducting system CuFe/Pb(T(K)>T(c))

    International Nuclear Information System (INIS)

    Dumoulin, Louis; Le Fur, Daniel

    1976-01-01

    Very low temperature superconducting tunneling experiments on CuFe(12.10 -6 ) backed by superconducting lead show a band of localized states next to the gap edge. There is no quantitative agreement with the perturbative approach of Mueller-Hartmann Zittartz in this system where the Kondo temperature is larger than the superconductive T(c) [fr

  17. Excess Molar Volumes of (Benzene + Isopropylbenzene, or 1,3,5-Trimethylbenzene, or 1,2,4-Trimethylbenzene) at Temperatures between 298.15 K and 328.15 K

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Linek, Jan

    2003-01-01

    Roč. 35, č. 7 (2003), s. 1139-1149 ISSN 0021-9614 R&D Projects: GA ČR GA203/02/1098 Institutional research plan: CEZ:AV0Z4072921 Keywords : density * excess volume * temperature dependence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.986, year: 2003

  18. Fully automatized apparatus for determining speed of sound for liquids in the temperature and pressure interval (283.15–343.15) K and (0.1–95) MPa

    International Nuclear Information System (INIS)

    Yebra, Francisco; Troncoso, Jacobo; Romaní, Luis

    2017-01-01

    Highlights: • An apparatus for measuring speed of sound of liquids is described. • Pressure and temperature control is fully automatized. • Uncertainty of the measurements is estimated in 0.1%. • Comparison with literature data confirms the reliability of the methodology. - Abstract: An instrument for determining the speed of sound as a function of temperature and pressure for liquids is described. It was totally automatized: pressure and temperature values are controlled and time of flight of the ultrasonic wave data were acquired using a digital system which automatically made all required actions. The instrument calibration was made only at atmospheric pressure using high quality data of water and methanol. For higher pressures, the calibration parameters were predicted using a model for the high pressure cell, through finite-element calculations (FEM), in order to realistically determine the changes in the cell induced by the compression. Uncertainties in pressure and temperature were 20 mK and 0.1 MPa, respectively and in speed of sound it was estimated to be about 0.1%. The speeds of sound for water, methanol, hexane, heptane, octane, toluene, ethanol and 1-propanol were determined in the temperature and pressure ranges (283.15–343.15) K and (0.1–95) MPa. Comparison with literature data reveals the high reliability of the experimental procedure.

  19. P K Das

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. P K Das. Articles written in Bulletin of Materials Science. Volume 23 Issue 4 August 2000 pp 249-253 Nitride Ceramics. Optimization of time–temperature schedule for nitridation of silicon compact on the basis of silicon and nitrogen reaction kinetics · J Rakshit P K Das.

  20. Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Villares, A.; Martin, S.; Haro, M.; Giner, B.; Artigas, H.

    2004-01-01

    This paper reports densities and speeds of sound for the binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K. Excess volumes and excess isentropic compressibility coefficients have been calculated from experimental data and fitted by means of a Redlich-Kister type equation. The ERAS model has been used to calculate the excess volumes of the four systems at both temperatures

  1. Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K

    International Nuclear Information System (INIS)

    Pal, Amalendu; Gaba, Rekha

    2008-01-01

    The densities, ρ and the speeds of sound, u, for {2-(2-hexyloxyethoxy)ethanol (C 6 E 2 ) + methanol, +1-propanol, +1-pentanol, and +1-heptanol} have been measured as a function of composition using an Anton-Paar DSA 5000 densimeter at temperatures (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure over the whole concentration range. The ρ and u values were used to calculate excess molar volumes, V E , and excess molar isentropic compressibility, K S,m E , respectively. Also, thermal expansivity, α, partial molar volume, V-bar i , and partial molar volume of the components at infinite dilution, V-bar i 0 , have been calculated. The variation of these properties with composition and temperature of the mixtures are discussed in terms of molecular interactions

  2. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junfeng [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)], E-mail: Licx@mail.buct.edu.cn; Li Xuemei; Meng Hong [College of Chem. Eng.., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Li Chunxi [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Wang Zihao [College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)

    2009-02-15

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration.

  3. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    International Nuclear Information System (INIS)

    Wang Junfeng; Li Xuemei; Meng Hong; Li Chunxi; Wang Zihao

    2009-01-01

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration

  4. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    Science.gov (United States)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  5. Volumetric properties of binary liquid-phase mixture of (water + glycerol) at temperatures of (278.15 to 323.15) K and pressures of (0.1 to 100) MPa

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.

    2014-01-01

    Highlights: • Coefficients of compressibility of liquid binary mixture (water + glycerol) were measured. • Partial molar volumes of the components and excess molar volumes of the mixture were calculated. • Molar isothermal compression, molar isobaric expansion and molar isochoric elasticity of the mixture were evaluated. • Analysis of volume characteristics confirms glycerol hydrophilic nature. - Abstract: The coefficients of compressibility, k = ΔV/V o , of liquid binary mixture of {water (1) + glycerol (2)} were measured over the whole composition range at pressures from (0.1 to 100) MPa and temperatures from (278.15 to 323.15) K. Excess molar volumes of the mixture, V m E , partial molar volumes of the mixture components, V ¯ i , as well as their limiting values, molar isothermal compression K T,m , molar isobaric expansion E P,m , molar isochoric elasticity (isochoric coefficient of thermal pressure) β m were calculated. It was revealed that with glycerol molar fraction increasing the coefficients of compressibility, k, decreased to x 2 ≈ 0.3 ÷ 0.4 (where x 2 was glycerol molar fraction), and further changed insignificantly. It was shown that all isobars of excess molar volumes were negative and their absolute values, V m E , decreased on temperature and pressure rising. No extremes were observed on concentration dependences of partial molar volumes of glycerol in the mixture at its low concentrations. Under the state parameters studied limiting partial volumes of water and glycerol decrease with pressure rising but increase with temperature growth. Dependences of molar isothermal compression and molar isochoric elasticity on glycerol molar fraction passed extremes, and similar dependences of molar isobaric expansion had the temperature inversion regions

  6. Thermodynamic properties of solutions of sodium di-hydrogen phosphate in (1-propanol + water) mixed-solvent media over the temperature range of (283.15 to 303.15) K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Parhizkar, Hana

    2008-01-01

    The apparent molar volume and apparent molar isentropic compressibility of solutions of sodium di-hydrogen phosphate (NaH 2 PO 4 ) in (1-propanol + water) mixed-solvent media with alcohol mass fractions of 0.00, 0.05, 0.10, and 0.15 are reported over the range of temperature (283.15 to 303.15) K at 5 K intervals. The results were fitted to a Redlich-Mayer type equation from which the apparent molar volume and apparent molar isentropic compressibility of the solutions at the infinite dilution were also calculated at the working temperature. The results show a positive transfer volume of NaH 2 PO 4 from an aqueous solution to an aqueous 1-propanol solution. The apparent molar isentropic compressibility of NaH 2 PO 4 in aqueous 1-propanol solutions is negative and it increases with increasing the concentration of NaH 2 PO 4 , 1-propanol, and temperature. Electrical conductivity and refractive index of the solutions are also studied at T = 298.15 K. The effects of the electrolyte concentration and relative permittivity of the medium on the molar conductivity were also investigated

  7. Quench behavior of Sr{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}/Ag tapes with AC and DC transport currents at different temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Institute of Science, Information Engineering University, Zhengzhou 450001 (China); Zhang, Guomin, E-mail: gmzhang@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Hua [Institute of Science, Information Engineering University, Zhengzhou 450001 (China); Li, Zhenming; Liu, Wei [China Electric Power Research Institute, Beijing 100192 (China); Jing, Liwei [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yu, Hui; Liu, Guole [Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China)

    2016-09-15

    Highlights: • Quench behavior of Sr{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}/ Ag tape with AC transport current was reported for the first time. • The measurement are performed as a function of different temperature (20 K–30 K), transport current (AC and DC) and operating frequency (50 Hz–250 Hz). • The study is concentrated on the research of quench development, and the discussions of NZPV and MQE values. - Abstract: In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K–30 K), varying transport current and operating frequency (50 Hz–250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  8. Volumetric behaviour of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system and its binary sub-systems within the temperature range (298.15–328.15) K

    International Nuclear Information System (INIS)

    Morávková, Lenka; Troncoso, Jacobo; Machanová, Karolina; Sedláková, Zuzana

    2013-01-01

    Highlights: • Density measurements. • Excess molar volume at atmospheric pressure. • Redlich–Kister equation. • ERAS model. • Comparison of our data with literature data. -- Abstract: Densities and speeds of sound of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system as well as all its binary sub-systems were measured at four temperatures, namely 298.15 K, 308.15 K, 318.15 K, and 328.15 K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. The binary (isooctane + toluene) system was studied previously. Excess quantities (molar volume, adiabatic compressibility, and isobaric thermal expansivity) of the mixtures studied were calculated from the experimental densities and speed of sounds. The excess molar volume data were correlated using the Redlich–Kister equation. Both the positive and S-shaped excess molar volume curves were found for the systems studied. The excess molar volumes versus concentration of binary systems differed in the shape and temperature dependence. The experimental binary data were compared with literature data. The experimental excess molar volumes were analyzed by means of the Extended Real Associated Solution (ERAS) model. The experimental data and the ERAS model can help to estimate real behaviour of the systems studied

  9. Determination of the rate constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) reaction over the temperature range 295 to 701 K.

    Science.gov (United States)

    Altinay, Gokhan; Macdonald, R Glen

    2014-01-09

    The rate constant for the radical-radical reaction OH(X(2)Π) + OH(X(2)Π) → H2O + O((3)P) has been measured over the temperature and pressure ranges 295-701 K and 2-12 Torr, respectively, in mixtures of CF4, N2O, and H2O. The OH radical was produced by the 193 nm laser photolysis of N2O. The resulting O((1)D) atoms reacted rapidly with H2O to produce the OH radical. The OH radical was detected by high-resolution time-resolved infrared absorption spectroscopy using a single Λ-doublet component of the OH(1,0) P1e/f(4.5) fundamental vibrational transition. A detailed kinetic model was used to determine the reaction rate constant as a function of temperature. These experiments were conducted in a new temperature controlled reaction chamber. The values of the measured rate constants are quite similar to the previous measurements from this laboratory of Bahng and Macdonald (J. Phys. Chem. A 2007 , 111 , 3850 - 3861); however, they cover a much larger temperature range. The results of the present work do not agree with recent measurements of Sangwan and Krasnoperov (J. Phys. Chem. A 2012 , 116 , 11817 - 11822). At 295 K the rate constant of the title reaction was found to be (2.52 ± 0.63) × 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes both experimental scatter and an estimate of systematic errors at the 95% confidence limit. Over the temperature range of the experiments, the rate constant can be represented by k1a = 4.79 × 10(-18)T(1.79) exp(879.0/T) cm(3) molecule(-1) s(-1) with a uncertainty of ±24% at the 2σ level, including experimental scatter and systematic error.

  10. Densities and viscosities of binary mixtures of {dimethylsulfoxide+aliphatic lower alkanols (C1-C3)} at temperatures from T=303.15K to T=323.15K

    International Nuclear Information System (INIS)

    Bhuiyan, M.M.H.; Ferdaush, J.; Uddin, M.H.

    2007-01-01

    Densities and viscosities for dimethylsulfoxide (DMSO) with methanol, ethanol, 1-propanol, and 2-propanol have been measured as a function of mole fraction at T=(303.15, 308.15, 313.15, 318.15, and 323.15)K and atmospheric pressure. From the measurements, excess molar volumes (V m E ), excess viscosities (η E ), and Grunberg and Nissan interaction parameters (ε) have been calculated. The excess parameters are fitted to a Redlich-Kister equation. Excess molar volumes (V m E ) are negative for (DMSO+methanol, +ethanol) systems throughout the whole range of composition. The (DMSO+1-propanol) system shows both positive and negative excess molar volumes and (DMSO+2-propanol) shows positive excess molar volume, hardly any negative value is observed in alcohol rich-region. The excess viscosities and interaction parameters of all the mixtures are negative except for the (DMSO+methanol) system which is positive

  11. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  12. Apparent molar volumes and apparent molar heat capacities of aqueous D-lactose · H2O at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Sargent, J.D.; Niederhauser, T.L.; Woolley, E.M.

    2004-01-01

    Apparent molar volumes V phi and apparent molar heat capacities C p,phi were determined for aqueous solutions of D-lactose · H 2 O at molalities (0.01 to 0.34) mol · kg -1 at temperatures (278.15 to 393.15) K, and at the pressure 0.35 MPa. Our V phi values were calculated from densities obtained using a vibrating tube densimeter, and our C p,phi values were obtained using a twin fixed-cell, power-compensation, differential-output, temperature-scanning calorimeter. Our results for D-lactose(aq) and for D-lactcose · H 2 O were fitted to functions of m and T and compared with the literature results for aqueous D-glucose and D-galactose solutions. Infinite dilution partial molar volumes V 2 compfn and heat capacities C p,2 compfn are given over the range of temperatures

  13. New experimental perspectives for soft x-ray absorption spectroscopies at ultra-low temperatures below 50 mK and in high magnetic fields up to 7 T

    International Nuclear Information System (INIS)

    Beeck, T.; Baev, I.; Gieschen, S.; Meyer, H.; Meyer, S.; Palutke, S.; Martins, M.; Feulner, P.; Uhlig, K.; Wurth, W.

    2016-01-01

    A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free "3He-"4He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples between the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.

  14. Shallow Groundwater Temperatures and the Urban Heat Island Effect: the First U.K City-wide Geothermal Map to Support Development of Ground Source Heating Systems Strategy

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.; Williams, Bernard; Newell, Andrew J.

    2015-04-01

    The first UK city-wide heat map is described based on measurements of groundwater from a shallow superficial aquifer in the coastal city of Cardiff, Wales, UK. The UK Government has a target of reducing greenhouse gas emissions by 80% by 2050 (Climate Change Act 2008) and low carbon technologies are key to achieving this. To support the use of ground source heating we characterised the shallow heat potential of an urban aquifer to produce a baseline dataset which is intended to be used as a tool to inform developers and to underpin planning and regulation. We exploited an existing network of 168 groundwater monitoring boreholes across the city, recording the water temperature in each borehole at 1m depth intervals up to a depth of 20m. We recorded groundwater temperatures during the coldest part of 2014, and repeat profiling of the boreholes in different seasons has added a fourth dimension to our results and allowed us to characterise the maximum depth of seasonal temperature fluctuation. The temperature profiles were used to create a 3D model of heat potential within the aquifer using GOCAD® and the average borehole temperatures were contoured using Surfer® 10 to generate a 2D thermal resource map to support future assessment of urban Ground Source Heat Pumps prospectively. The average groundwater temperature in Cardiff was found to be above the average for England and Wales (11.3°C) with 90% of boreholes in excess of this figure by up to 4°C. The subsurface temperature profiles were also found to be higher than forecast by the predicted geothermal gradient for the area. Potential sources for heat include: conduction from buildings, basements and sub-surface infrastructure; insulation effects of the urban area and of the geology, and convection from leaking sewers. Other factors include recharge inhibition by drains, localised confinement and rock-water interaction in specific geology. It is likely to be a combination of multiple factors which we are hoping

  15. Structural study of layered cobaltate La.sub.x/3./sub.CoO.sub.2./sub. (x ~ 1) at temperatures up to 800 K

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Brázda, Petr; Buršík, Josef; Soroka, Miroslav; Beran, Přemysl

    2015-01-01

    Roč. 229, Sep (2015), 160-163 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S; GA MŠk LM2011019 Institutional support: RVO:68378271 ; RVO:61388980 ; RVO:61389005 Keywords : cobaltates * thermoelectrics * neutron diffraction * structure * La x/3 CoO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.265, year: 2015

  16. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    Science.gov (United States)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  17. Densities and viscosities of binary mixtures of {l_brace}dimethylsulfoxide+aliphatic lower alkanols (C{sub 1}-C{sub 3}){r_brace} at temperatures from T=303.15K to T=323.15K

    Energy Technology Data Exchange (ETDEWEB)

    Bhuiyan, M.M.H. [Department of Chemistry, University of Dhaka, Dhaka 1000 (Bangladesh)]. E-mail: bhuiyan_du@yahoo.com; Ferdaush, J. [Youngone Central Laboratory, Youngone Hi-Tech Sportswear Ind. Ltd, Dhaka Export Processing Zone, Savar, Dhaka (Bangladesh); Uddin, M.H. [Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1 Chofu-shi, Chofugawaka, Tokyo (Japan)

    2007-05-15

    Densities and viscosities for dimethylsulfoxide (DMSO) with methanol, ethanol, 1-propanol, and 2-propanol have been measured as a function of mole fraction at T=(303.15, 308.15, 313.15, 318.15, and 323.15)K and atmospheric pressure. From the measurements, excess molar volumes (V{sub m}{sup E}), excess viscosities ({eta}{sup E}), and Grunberg and Nissan interaction parameters ({epsilon}) have been calculated. The excess parameters are fitted to a Redlich-Kister equation. Excess molar volumes (V{sub m}{sup E}) are negative for (DMSO+methanol, +ethanol) systems throughout the whole range of composition. The (DMSO+1-propanol) system shows both positive and negative excess molar volumes and (DMSO+2-propanol) shows positive excess molar volume, hardly any negative value is observed in alcohol rich-region. The excess viscosities and interaction parameters of all the mixtures are negative except for the (DMSO+methanol) system which is positive.

  18. Vitamin K

    Science.gov (United States)

    Vitamins are substances that your body needs to grow and develop normally. Vitamin K helps your body by making proteins for ... blood clotting. If you don't have enough vitamin K, you may bleed too much. Newborns have ...

  19. Influence of ultra-thin TiN thickness (1.4 nm and 2.4 nm) on positive bias temperature instability (PBTI) of high-k/metal gate nMOSFETs with gate-last process

    International Nuclear Information System (INIS)

    Qi Lu-Wei; Yang Hong; Ren Shang-Qing; Xu Ye-Feng; Luo Wei-Chun; Xu Hao; Wang Yan-Rong; Tang Bo; Wang Wen-Wu; Yan Jiang; Zhu Hui-Long; Zhao Chao; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    The positive bias temperature instability (PBTI) degradations of high-k/metal gate (HK/MG) nMOSFETs with thin TiN capping layers (1.4 nm and 2.4 nm) are systemically investigated. In this paper, the trap energy distribution in gate stack during PBTI stress is extracted by using ramped recovery stress, and the temperature dependences of PBTI (90 °C, 125 °C, 160 °C) are studied and activation energy (E a ) values (0.13 eV and 0.15 eV) are extracted. Although the equivalent oxide thickness (EOT) values of two TiN thickness values are almost similar (0.85 nm and 0.87 nm), the 2.4-nm TiN one (thicker TiN capping layer) shows better PBTI reliability (13.41% at 0.9 V, 90 °C, 1000 s). This is due to the better interfacial layer/high-k (IL/HK) interface, and HK bulk states exhibited through extracting activation energy and trap energy distribution in the high-k layer. (paper)

  20. Development and test of 2 kW natural gas reformers for high and low temperature PEM fuel cells. Project report 2; Udvikling/afproevning af 2 kW naturgasreformere for hoej- og lavtemperatur PEM-braendselsceller. Projektrapport 2

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de [Dansk Gasteknisk Center (Denmark); Bech-Madsen, J. [IRD (Denmark); Bandur, V. [DTU (Denmark); Bartholin, N. [DPS (Denmark)

    2005-11-15

    The use of fuel cells for combined heat and power generation has advantages as regards technology and usability compared to existing CHP technology. Special characteristics for a fuel cell plant are: 1) It can be constructed in modules over a wide power range, 2) The efficiency is significantly independent of size, 3) It is noiseless, 4) A flexible coupling between power and heat production, 5) As there is no movable parts, long service check intervals can be expected, 6) Low emissions. The fuel for fuel cells is hydrogen and optimal utilization and CO{sub 2} reduction will require a 'hydrogen society'. While waiting for a 'hydrogen society' to arise, it is possible to use central or on-site reformers that convert natural gas to hydrogen. There will be some CO{sub 2} emission connected to energy use. The objective of the present project has been development and test of on-site reformers (fuel processors) for hydrogen supply to respectively high and low temperature PEM fuel cells aiming at use in single family houses. Sulphur cleaning, reformers, and lab-scale coupling with fuel cell KV units have been developed and tested during the project, as well as development and test of periphery equipment. (BA)

  1. Modulation in Tl.sub.2./sub.SeO.sub.4./sub. in the temperature range 298-90 K

    Czech Academy of Sciences Publication Activity Database

    Fábry, Jan; Kopecký, Miloš; Kub, Jiří

    2010-01-01

    Roč. 83, 10-11 (2010), s. 980-984 ISSN 0141-1594 R&D Projects: GA AV ČR IAA100100915 Grant - others:FP7/2007-2013 EC(XE) 226716 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100523 Keywords : phase transitions * A2BX4 compounds * beta-K 2 SO 4 * diffraction * synchrotrone radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  2. XANES Studies of Mn K and L3,2 Edges in the (Ga,Mn)As Layers Modified by High Temperature Annealing

    International Nuclear Information System (INIS)

    Wolska, A.; Lawniczak-Jablonska, K.; Klepka, M.T.; Jakiela, R.; Demchenko, I.N.; Sadowski, J.; Holub-Krappe, E.; Persson, A.; Arvanitis, D.

    2008-01-01

    Ga 1-x Mn x As is commonly considered as a promising material for microelectronic applications utilizing the electron spin. One of the ways that allow increasing the Curie temperature above room temperature is to produce second phase inclusions. In this paper Ga 1-x Mn x As samples containing precipitations of ferromagnetic MnAs are under consideration. We focus on the atomic and electronic structure around the Mn atoms relating to the cluster formation. The changes in the electronic structure of the Mn, Ga and As atoms in the (Ga,Mn)As layers after high temperature annealing were determined by X-ray absorption near edge spectroscopy. The experimental spectra were compared with the predictions of ab initio full multiple scattering theory using the FEFF 8.4 code. The nominal concentration of the Mn atoms in the investigated samples was 6% and 8%. We do not ob- serve changes in the electronic structure of Ga and As introduced by the presence of the Mn atoms. We find, in contrast, considerable changes in the electronic structure around the Mn atoms. Moreover, for the first time it was possible to indicate the preferred interstitial positions of the Mn atoms. (authors)

  3. New hardware and software platform for experiments on a HUBER-5042 X-ray diffractometer with a DISPLEX DE-202 helium cryostat in the temperature range of 20-300 K

    Science.gov (United States)

    Dudka, A. P.; Antipin, A. M.; Verin, I. A.

    2017-09-01

    Huber-5042 diffractometer with a closed-cycle Displex DE-202 helium cryostat is a unique scientific instrument for carrying out X-ray diffraction experiments when studying the single crystal structure in the temperature range of 20-300 K. To make the service life longer and develop new experimental techniques, the diffractometer control is transferred to a new hardware and software platform. To this end, a modern computer; a new detector reader unit; and new control interfaces for stepper motors, temperature controller, and cryostat vacuum pumping system are used. The system for cooling the X-ray tube, the high-voltage generator, and the helium compressor and pump for maintaining the desired vacuum in the cryostat are replaced. The system for controlling the primary beam shutter is upgraded. A biological shielding is installed. The new program tools, which use the Linux Ubuntu operating system and SPEC constructor, include a set of drivers for control units through the aforementioned interfaces. A program for searching reflections from a sample using fast continuous scanning and a priori information about crystal is written. Thus, the software package for carrying out the complete cycle of precise diffraction experiment (from determining the crystal unit cell to calculating the integral reflection intensities) is upgraded. High quality of the experimental data obtained on this equipment is confirmed in a number of studies in the temperature range from 20 to 300 K.

  4. Volumetric and ultrasonic studies of an antidepressant drug in aqueous and alcoholic medium over temperature range 298.15-313.15 k

    International Nuclear Information System (INIS)

    Jamal, M.A.; Khosa, M.K.; Muneer, M.; Shahzad, K.

    2013-01-01

    Escitalopram oxalate is an amphiphilic serotonin specific reuptake inhibitor-antidepressant drug. Ultrasonic velocity (u) and density (d) measurements were carried out for Escitalopram oxalate in aqueous and alcoholic systems as a function of concentration in a range of molality, m (0.0075-0.04) mol Kg-1 at 298.15-313.15 K using an Anton Paar density sound analyzer (DSA 5000M). Using these experimental values, the acoustical parameters such as apparent molar adiabatic compressibility and partial molar volume (V phi) was apparent molar volume (V phi (K computed for all the systems. The Partial molar expansivity (E/sup 0/) and second derivative values, (partial drive V/sup 0/partial drive T/sup 2/), have also been estimated. The critical micelle concentrations of this drug were obtained from ultrasound velocity measurement by using recently developed least square fitting algorithm. The results are interpreted in the light of structure-making or structure-breaking effects of escitalopram oxalate in the mixtures. (author)

  5. A neutron diffraction study of macroscopically entangled proton states in the high temperature phase of the KHCO3 crystal at 340 K

    International Nuclear Information System (INIS)

    Fillaux, Francois; Cousson, Alain; Gutmann, Matthias J

    2008-01-01

    We utilize single-crystal neutron diffraction to study the C 2/m structure of potassium hydrogen carbonate (KHCO 3 ) and macroscopic quantum entanglement above the phase transition at T c = 318 K. Whereas split atom sites could be due to disorder, the diffraction pattern at 340 K evidences macroscopic proton states identical to those previously observed below T c by Fillaux et al (2006 J. Phys.: Condens. Matter 18 3229). We propose a theoretical framework for decoherence-free proton states and the calculated differential cross-section accords with observations. The structural transition occurs from one ordered P 2 1 /a structure (T c ) to another ordered C 2/m structure. There is no breakdown of the quantum regime. It is suggested that the crystal is a macroscopic quantum object which can be represented by a state vector. Raman spectroscopy and quasi-elastic neutron scattering suggest that the |C2/m> state vector is a superposition of the state vectors for two P 2 1 /a-like structures symmetric with respect to (a,c) planes

  6. Conservação de sementes de Myrciaria dubia (H.B.K. McVaugh Myrciaria dubia (H.B.K. McVaugh seed storability as affected by temperature and seed moisture content

    Directory of Open Access Journals (Sweden)

    Daniel Felipe de Oliveira Gentil

    2004-12-01

    Full Text Available As sementes de Myrciaria dubia apresentam baixa longevidade e demandam a ampliação do conhecimento sobre fatores interferentes na sua conservação. Assim, o objetivo deste trabalho foi verificar as influências do grau de umidade e da temperatura do ambiente na manutenção da qualidade dessas sementes. Para tanto, sementes com 48%, 43%, 40%, 34%, 30%, 24%, 18% e 14% de água, acondicionadas em sacos de polietileno, foram armazenadas sob temperaturas controladas de 10 ºC, 20 ºC e 30 ºC, durante 280 dias, e submetidas, periodicamente, à avaliação do grau de umidade, da germinação, do vigor e da sanidade. Constatou-se que as sementes têm a conservação favorecida pela associação do grau de umidade de 43% com a temperatura de armazenamento de 10 °C.Myrciaria dubia seeds have a short life span and few informations are available about the factors that determine their storability. The main aim of this research work was to check the effects of three temperatures (10 ºC, 20 ºC and 30 ºC and eight seed moisture contents (48%, 43%, 40%, 34%, 30%, 24%, 18% and 14% on seed storability, during a time period of 280 days. Periodic evaluations of seed moisture content, germination, vigor and healthness were carried out throughout the experimental time. The best seed storability conditions were observed at 10 °C and 43% of seed moisture content.

  7. Use of the gamma radiation, in a dose of 0,4 kGy, on the storage temperature reduction of the banana nanica;Utilizacao da radiacao gama, na dose de 0,4kGy, na reducao da temperatura de armazenamento da banana nanica

    Energy Technology Data Exchange (ETDEWEB)

    Manoel, Luciana, E-mail: luciana_manoel@yahoo.com.b [Universidade Estadual Paulisa (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Programa de Pos-graduacao em Energia na Agricultura; Vieites, Rogerio Lopes, E-mail: vieites@fca.unesp.b [Universidade Estadual Paulisa (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Gestao e Tecnologia Agroindustrial

    2009-07-01

    The aim was to evaluate the use of gamma radiation, in a dose of 0,4 kGy, on the storage temperature reduction of the banana 'Nanica'. The bananas 'Nanica' were harvested in the Arm Taperao, Brotas (SP) town, and sent to CBE (Companhia Brasileira de Esterilizacao-Cotia-SP) for irradiation and constitution of the following treatments: T1 (fruits irradiated at 0,4 kGy and stored at 16 +-1 deg C); T2 (fruits irradiated at 0,4 kGy and stored at 14 +-1 deg C); T3 (fruit irradiated ata 0,4 kGy and stored at 12+-1 deg C); T4 (fruits non-irradiated and stored at 16+-1 deg C); T5 (fruits non-irradiated and stored at 14+-1 deg C) and T6 (fruits non-irradiated and stored at 12+-1 deg C). The fruits were stored in B.O.Ds. of the Agroindustrial Management and Technology Department, with a relative humidity of 80+-5%. The experiment was divided in two groups: control group (post harvest conservation and disease incidence) and parcel group (soluble solids and pulp/peel). The analyses were performed in intervals of five days during a period of 25 days. The experimental design employed was completely randomized (DIC) by applying a factor of 2 x 3 x 6 (irradiation x temperature x time). The Tukey test with 5% of probability was used for comparison between means. The storage temperature of the bananas 'Nanica' was not reduce by irradiation. (author)

  8. Partial molar volumes of organic solutes in water. XXVI. 15-Crown-5 and 18-crown-6 ethers at temperatures (298 to 573) K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2015-01-01

    Highlights: • Density data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Standard molar volumes of two crown ethers in water are presented. • Group contribution method was designed to estimate standard molar volumes of cyclic ethers. - Abstract: Densities of dilute aqueous solutions of two cyclic ethers, viz. 15-crown-5 and 18-crown-6, measured over the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data were combined with those obtained previously for several cyclic ethers and predictions of standard molar volumes based on group contribution approach were tested and analysed

  9. Effect of storage temperature on survival and recovery of thermal and extrusion injured Escherichia coli K-12 in whey protein concentrate and corn meal.

    Science.gov (United States)

    Ukuku, Dike O; Mukhopadhyay, Sudarsan; Onwulata, Charles

    2013-01-01

    Previously, we reported inactivation of Escherichia coli populations in corn product (CP) and whey protein product (WPP) extruded at different temperatures. However, information on the effect of storage temperatures on injured bacterial populations was not addressed. In this study, the effect of storage temperatures on the survival and recovery of thermal death time (TDT) disks and extrusion injured E. coli populations in CP and WPP was investigated. CP and WPP inoculated with E. coli bacteria at 7.8 log(10) CFU/g were conveyed separately into the extruder with a series 6300 digital type T-35 twin screw volumetric feeder set at a speed of 600 rpm and extruded at 35°C, 55°C, 75°C, and 95°C, or thermally treated with TDT disks submerged into water bath set at 35°C, 55°C, 75°C, and 95°C for 120 s. Populations of surviving bacteria including injured cells in all treated samples were determined immediately and every day for 5 days, and up to 10 days for untreated samples during storage at 5°C, 10°C, and 23°C. TDT disks treatment at 35°C and 55°C did not cause significant changes in the population of the surviving bacteria including injured populations. Extrusion treatment at 35°C and 55°C led to significant (pagar plates. The results of this study showed that further inactivation of the injured populations occurred during storage at 5°C for 5 days suggesting the need for immediate storage of 75°C extruded CP and WPP at 5°C for at least 24 h to enhance their microbial safety.

  10. Elastic oscillation damping and magnetic susceptibility in Y19Fe81 spin glass in the temperature range 70-300 K

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Balalaev, S.Yu.

    1990-01-01

    Relaxation properties of Y 19 Fe 81 spin glass (SG) were investigated by means of internal friction(IF). Relaxation process resulting from transition to SG state was determined at sound range frequencies in amorphous alloy. On the basis of the obtained results concerning IF and magnetic susceptibility it follows, that relaxation of certain part of cluster magnetic moments lies within 10 -5 -10 -3 s limits with 0.11±0.06 eV activation energy. IF technique is shown to be used for investigation into relaxation properties, in particular, for acquisition of data on temperature of transition to SG' state

  11. Temperature-tuned Maxwell-Boltzmann neutron spectra for kT ranging from 30 up to 50 keV for nuclear astrophysics studies.

    Science.gov (United States)

    Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M

    2012-08-01

    The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Determination of infinite dilution activity coefficients using HS-SPME/GC/FID for hydrocarbons in furfural at temperatures of (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Arantes Furtado, Filipe; Vieira Coelho, Gerson Luiz

    2012-01-01

    Highlights: ► Two approaches were proposed using SPME on determination of infinite dilution activity coefficients. ► Infinite dilution activity coefficients of nine solutes in solvent furfural at T = (298.15, 308.15, and 318.15) K. ► Fiber–gas partition coefficients of nine solutes on PDMS at T = (298.15, 308.15, and 318.15) K. ► Optical microscopy analysis and statistical tests to measure possible damages on fiber coating. ► Advantages and limitations of methodology proposed were discussed. - Abstract: A new methodology using the headspace solid phase microextraction (HS-SPME) technique has been used to evaluate the infinite dilution activity coefficient (γ 12 ∞ ) of nine hydrocarbons (alkanes, cycloalkanes, and aromatics) in furfural solvent. The main objective of this study was to validate a faster and lower cost methodology expanding the use of HS-SPME to determine infinite dilution activity of solutes in organic solvents. Two approaches were proposed for the determination of γ 12 ∞ in order to use this technique (HS-SPME). In addition, the fiber–gas partition coefficients (K fg ) for each analyte at each of the studied temperatures were determined. The activity and partition coefficients have been reported at temperatures of (298.15, 308.15, and 318.15) K. The data were compared with the literature infinite dilution data determined by other methods such as liquid–gas chromatography (GLC) and gas stripping. Partial molar excess enthalpies of mixing at infinite dilution for each solute have been determined. The fibers were tested before and after each experiment, using statistical methods to ensure that their properties do not change during the experiments. The fibers were also analyzed by optical microscopy to evaluate possible surface damage by comparing them with new fibers. The activity coefficient values correlated well with the data in the literature and showed average deviations less than 10%.

  13. The Subcritical Assembly for High-Temperature Use; Assemblage Sous-Critique Pour Emploi a Haute Temperature; K voprosu o podkriticheskoj sborke dlya ispol'zovaniya pri vysokikh temperaturakh; Conjunto Subcritico para Temperatura Elevada

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Y.; Sekiya, T.; Suita, T. [Osaka University (Japan); Hishida, H.; Hamada, H.; Nagashima, K. [Sumitomo Atomic Energy Industries Group (Japan)

    1964-04-15

    The subcritical assemblies are of the graphite-moderated, natural-uranium fuelled type. The special design of this assembly is characterized by its high-temperature portion which can be put into the heart of the core assemblies of a lower-temperature portion and enables information to be obtained both for the future high-temperature gas-cooled reactor and the direct energy conversion from high-temperature gas medium to electricity. Furthermore, it is intended to be used for the training of undergraduate students. The assembly was piled up into the volume of 2 m x 2 m x 3 m consisting of graphite blocks of 10 cm square bar. The high-temperature portion of 1 m{sup 3} is energized by Joule's heating and can be maintained at the temperature up to 2000 Degree-Sign C. The fuel of UO{sub 2} pellets is used for the low-temperature portion, and the UC{sub 2} pellets are prepared for the high-temperature part. The fuels are inserted into the graphite sheath of square rods. The Am-Be sources of 5 c are put under the pedestal located at the bottom of the assemblies; on the other hand, the pulsed neutrons are injected at the arbitrary point inside the assembly. The target at the end of the extension tube of the accelerator is bombarded by the deuteron beam. The terminal bus of Joule's heating is cooled by water and helium gas is used for the cooling of overall wall surface of the high-temperature portion These high-temperature gas loops are designed to be applicable to the research of direct conversion of nuclear energy. Concerning the control systems, these assemblies are equipped with control and measuring systems comparable to those of small-scale nuclear reactors. The experimental approach to find out the buckling constant of the system is being studied and the best arrangement of the pulsed neutron source and the detector locations has been examined. Furthermore, the unique method of measuring the neuron flux density at high temperature has been developed. Finally, it is

  14. Vapour pressure and excess Gibbs free energy of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane at temperature of 182.33K

    International Nuclear Information System (INIS)

    Lobo, L.Q.; Ferreira, A.G.M.; Fonseca, I.M.A.; Senra, A.M.P.

    2006-01-01

    The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T=182.33K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures G m E (x 1 =0.5)=(835.5+/-5.8)J.mol -1 for (H 2 S+C 2 H 6 ) (820.1+/-2.4)J.mol -1 for (H 2 S+C 3 H 8 ), and (818.6+/-0.9)J.mol -1 for (H 2 S+n-C 4 H 10 ). The binary mixtures of H 2 S with ethane and with propane exhibit azeotropes, but that with n-butane does not

  15. Acoustic mismatch model and thermal phonon radiation across a tin/sapphire interface with radiation temperatures between 1.6 and 3.7 K

    International Nuclear Information System (INIS)

    Bayrle, R.; Weis, O.

    1989-01-01

    Using a special sandwich arrangement consisting of a constantan film, an insulating oxide layer and a superconducting tin-tunnel junction evaporated on an a-cut sapphire, the temperature jump between tin and sapphire has been measured as function of thermal phonon flux under steady-state and transient conditions using rectangular current pulses in the constantan heater. The tunnel junction serves as a very fast thermometer with a time resolution in the nanosecond range. During the steady-state and the heatup interval, full agreement is found between experimental results, and the predictions of the acoustic mismatch model applied to the phonon transfer across the tin/sapphire interface and under the additional assumption that thermal equilibrium exists between electrons and phonons (one-temperature model). In contrast, very strong deviations are found during the cooling process which starts immediately after the end of the heating pulses. This observed nonequilibrium between electron and phonon system is discussed in more detail in a subsequent paper

  16. Tunable exchange bias effect in magnetic Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles at temperatures up to 250K

    DEFF Research Database (Denmark)

    Basith, M. A.; Khan, F. A.; Ahmmad, Bashir

    2015-01-01

    that the strength of the exchange bias effect is tunable by the field cooling. The HEB values are also found to be dependent on the temperature. This magnetically tunable exchange bias obtained at temperatures up to 250K in Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles may be worthwhile for potential applications.......The exchange bias (EB) effect has been observed in magnetic Bi0.9Gd0.1Fe0.9Ti0.1O3 nanoparticles.The influence of magnetic field cooling on the exchange bias effect has also been investigated. The magnitude of the exchange bias field (HEB) increases with the cooling magnetic field, showing...

  17. (Vapour + liquid) equilibrium data for the azeotropic {1,1-difluoroethane (R152a) + 1,1,2,2-Tetrafluoroethane (R134)} system at various temperatures from (258.150 to 288.150) K

    International Nuclear Information System (INIS)

    Guo, Hao; Gong, Maoqiong; Dong, Xueqiang; Wu, Jianfeng

    2012-01-01

    Highlights: ► VLE data for the {R152a + R134} system were measured. ► The experiment is based on the static–analytic method. ► The VLE data were correlated using the PR–HV–NRTL model. ► A negative azeotropic behaviour was found. - Abstract: (Vapour + liquid) equilibrium (VLE) data for the {1,1-difluoroethane (R152a) + 1,1,2,2-Tetrafluoroethane (R134)} system were measured at T = (258.150 to 288.150) K. The experiment is based on a static–analytic method. Experimental data were correlated with the Peng–Robinson equation of state (PR EoS) and the Huron–Vidal (HV) mixing rule involving the NRTL activity coefficient model. The results show good agreement with experimental results for the binary system at each temperature. It was found that the system has a negative azeotropic behaviour within the temperature range measured here.

  18. Neutron powder investigations of Zr0.85Ca0.15O1.85 sinter material at temperatures up to 1100 K and with a simultaneously applied electric field

    International Nuclear Information System (INIS)

    Kahlert, H.; Boysen, H.; Frey, F.

    1998-01-01

    In situ neutron powder investigations of cubic stabilized zirconia [Zr 0.85 Ca 0.15 O 1.85 (CSZ15)] sinter material were performed at room temperature without an applied direct-current electric field and at 1100 K with and without an applied field, i.e. lasting ionic current. Experimental conditions (temperature, oxidizing atmosphere etc.) were chosen as close as possible to 'working conditions' of zirconia oxygen sensoric devices. To learn about field-induced structural changes and most probable ionic pathways, atomic displacement parameters were derived in the frame of a non-Gaussian Debye-Waller factor formalism for the oxygens. Probability-density-function maps and pseudo-potential (V eff ) maps indicate curved diffusion pathways of the oxygens close to the left angle 100 right angle directions. The action of the applied field is to lower the effective potential barriers. (orig.)

  19. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    International Nuclear Information System (INIS)

    Abadlia, L.; Mayoufi, M.; Gasser, F.; Khalouk, K.; Gasser, J. G.

    2014-01-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature

  20. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: application to pure copper, platinum, tungsten, and nickel at very high temperatures.

    Science.gov (United States)

    Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G

    2014-09-01

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  1. Viscosity of aqueous Ni(NO3)2 solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol . kg-1

    International Nuclear Information System (INIS)

    Abdulagatov, I.M.; Zeinalova, A.B.; Azizov, N.D.

    2006-01-01

    Viscosity of nine aqueous Ni(NO 3 ) 2 solutions (0.050, 0.153, 0.218, 0.288, 0.608, 0.951, 1.368, 1.824, and 2.246) mol . kg -1 was measured in the temperature range from (297 to 475) K and at pressures (0.1, 10, 20, and 30) MPa. The measurements were carried out with a capillary flow technique. The total experimental uncertainty of viscosity, pressure, temperature, and composition measurements were estimated to be less than 1.6%, 0.05%, 15 mK, and 0.02%, respectively. All experimental and derived results are compared with experimental and calculated values reported in the literature. Extrapolation of the solution viscosity measurements to zero concentration (pure water values) for the given temperature and pressure are in excellent agreement (average absolute deviation, AAD = 0.13%) with the values of pure water viscosity from IAPWS formulation [J. Kestin, J.V. Sengers, B. Kamgar-Parsi, J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13 (1984) 175-189]. The viscosity data for the solutions as a function of concentration have been interpreted in terms of the extended Jones-Dole equation for strong electrolytes. The values of viscosity A-, B-, and D-coefficients of the extended Jones-Dole equation for the relative viscosity (η/η ) of aqueous Ni(NO 3 ) 2 solutions as a function of temperature are studied. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen-Dole theory (limiting law) of electrolyte solutions and the values calculated with the ionic B-coefficient data. The measured values of viscosity for the solutions were also used to calculate the effective rigid molar volumes in the extended Einstein relation for the relative viscosity (η/η )

  2. Speed of sound in saturated aliphatic alcohols (propan-2-ol, butan-2-ol, and 2-methylpropan-1-ol) and alkanediols (ethane-1,2-diol, propane-1,2- and -1,3-diol) at temperature between 253.15 K and 353.15 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Dávila, María J.; Gedanitz, Holger; Span, Roland

    2016-01-01

    Highlights: • Speed of sound measurements were made in aliphatic alcohols and alkanediols. • Speeds of sound were measured in a wide temperature and pressure range. • A pulse-echo method with a double path type sensor operating at 8 MHz was employed. • A double polynomial equation was used to fit the experimental speed of sound data. • The accurate results were compared with available literature sources. - Abstract: Speeds of sound have been measured in three saturated aliphatic alcohols (propan-2-ol, butan-2-ol, and 2-methylpropan-1-ol) and three alkanediols (ethane-1,2-diol, propane-1,2- and -1,3-diol) in the temperature range from (253.15 to 353.15) K and pressures up to 30 MPa by use of a pulse-echo method with a double path type sensor operating at 8 MHz. The expanded overall uncertainties (k = 2) in the speed of sound measurements are estimated to be 0.013% for propan-2-ol, 0.019% for butan-2-ol, 0.01% for 2-methylpropan-1-ol, 0.009% for ethane-1,2-diol, 0.02% for propane-1,2-diol, and 0.07% for propane-1,3-diol. Experimental speeds of sound data were correlated with the temperature and pressure with an empirical double polynomial equation. Our results were also compared with the available literature data and a satisfactory agreement was found.

  3. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  4. Operation of Silicon, Diamond and liquid Helium Detectors in the range of Room Temperature to 1.9 K and after an Irradiation Dose of several Mega Gray

    CERN Document Server

    Kurfuerst, C; Dehning, B; Eisel, T; Sapinski, M; Eremin, V

    2013-01-01

    At the triplet magnets, close to the interaction regions of the Large Hadron Collider (LHC), the current Beam Loss Monitoring (BLM) system is sensitive to the debris from the collision points. For future beams, with higher energy and intensity the expected increase in luminosity implicate an increase of the debris from interaction products covering the quench-provoking beam losses from the primary proton beams. The investigated option is to locate the detectors as close as possible to the superconducting coil, where the signal ratio of both is optimal. Therefore the detectors have to be located inside the cold mass of the superconducting magnets in superfluid helium at 1.9 Kelvin. Past measurements have shown that a liquid helium ionisation chamber, diamond and silicon detectors are promising candidates for cryogenic beam loss monitors. The carrier parameter, drift velocity, and the leakage current changes will be shown as a function of temperature. New high irradiation test beam measurements at room temperat...

  5. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  6. Volumetric behaviour of binary and ternary liquid systems composed of ethanol, isooctane, and toluene at temperatures from (298.15 to 328.15) K. Experimental data and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Moravkova, L.; Wagner, Z.; Sedlakova, Z. [E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals of the ASCR, v.v.i., 165 02 Prague 6 (Czech Republic); Linek, J., E-mail: linek@icpf.cas.cz [E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals of the ASCR, v.v.i., 165 02 Prague 6 (Czech Republic)

    2011-12-15

    Highlights: > We measured density and speed of sound at four temperatures within (298.15 to 328.15) K. > Excess quantities were calculated and fitted to the Redlich-Kister equation. > The complete ternary data were fitted to the modified Redlich-Kister equation. > Even for the systems with self-associating alcohol, only one ternary parameter is sufficient. - Abstract: The densities and speeds of sound of (ethanol + isooctane), (ethanol + toluene), and (ethanol + isooctane + toluene) were measured at four temperatures over the range (298.15 to 328.15) K, and the respective values of excess volumes V{sub m}{sup E} and adiabatic compressibility {kappa}{sub S} were calculated. The V{sub m}{sup E} and {kappa}{sub S} values for the binary systems were fitted to the Redlich-Kister equation. The respective ternary data together with corresponding binary data were then fitted to the modified Redlich-Kister equation considering various numbers of ternary constants. It was found that even for the systems containing self-associating alcohol, only one ternary parameter is sufficient to describe well the ternary system.

  7. Vitamin K

    Science.gov (United States)

    ... seem to benefit older women who still have strong bones. Taking vitamin K1 seems to increase bone strength and might prevent fractures in older women. But it might not work as well in older men. Vitamin K1 doesn't seem to improve bone ...

  8. K Girigowda

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. K Girigowda. Articles written in Resonance – Journal of Science Education. Volume 10 Issue 11 November 2005 pp 79-84 Classroom. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography · K Girigowda V H Mulimani.

  9. K Ramesha

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. K Ramesha. Articles written in Bulletin of Materials Science. Volume 34 Issue 2 April 2011 pp 271-277. Synthesis of new (Bi, La)3MSb2O11 phases (M = Cr, Mn, Fe) with KSbO3-type structure and their magnetic and photocatalytic properties · K Ramesha A S Prakash M Sathiya ...

  10. K Gowthamarajan

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. K Gowthamarajan. Articles written in Resonance – Journal of Science Education. Volume 8 Issue 5 May 2003 pp 38-46 General Article. Oral Insulin – Fact or Fiction? - Possibilities of Achieving Oral Delivery of Insulin · K Gowthamarajan Giriraj T Kulkarni.

  11. Studies on properties of ionic liquids 1-alkyl-3-methylimidazolium lactate at temperatures from (288.15 to 333.15) K

    International Nuclear Information System (INIS)

    Hong, Mei; Sun, Ao; Yang, Qi; Guan, Wei; Tong, Jing; Yang, Jia-Zhen

    2013-01-01

    Highlights: • Two ILs [C 2 mim][Lact] and [C 5 mim][Lact] were prepared. • The density, surface tension and refractive index for two ILs were measured in terms of SAT. • Using Kabo’s and Rebelo’s method, the molar enthalpy of evaporation for two ILs was estimated. • The surface tension was estimated using the parachor and the refractive index. -- Abstract: Two chiral ionic liquids based on lactic acid (LAILs), 1-ethyl-3-methylimidazolium lactate ([C 2 mim][Lact]) and 1-pentyl-3-methylimidazolium lactate ([C 5 mim][Lact]), have been prepared by the neutralization method and characterized by 1 H NMR and DSC. Their density, surface tension and refractive index were measured at T {(288.15 to 333.15) ± 0.05} K. Since the LAILs can form strong hydrogen bonds with water, small amounts of water are difficult to remove by conventional methods. In order to eliminate the effect of the impurity as water, the standard addition method (SAM) was applied to these measurements. The molar volume of [C n mim][Lact] (n = 2, 5), the thermal expansion coefficient, α, the surface excess entropy, S a , the surface excess energy E a , parachor, P, and molar refraction, R m , were obtained. According to the methods of both Kabo and Rebelo, the molar enthalpy of evapouration of the LAILs was estimated using experimental values for the surface tension and molar volume. At the same time, the surface tension of the LAILs may be estimated using the data of the parachor and refractive index. The estimated values of the surface tension correlate quite well with the corresponding experimental values

  12. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  13. The investigation on the vapour liquid phase equilibrium of (ammonia + 1,1,1,2-tetrafluoroethane) system over the temperatures ranging from (243.150 to 283.150) K

    International Nuclear Information System (INIS)

    Zhao, Yanxing; Dong, Xueqiang; Zhong, Quan; Gong, Maoqiong; Shen, Jun

    2017-01-01

    Highlights: • The vapour liquid equilibrium for ammonia + 1,1,1,2-tetrafluoroethane system was studied. • Measurements were based on vapour phase single recirculation method. • A positive azeotropic behaviour was exhibited at the experimental temperature range. - Abstract: To blend ammonia with some hydrofluorocarbons may give these mixed refrigerants lower flammability and global warming potential. In this paper, the isothermal vapour liquid equilibrium (VLE) of (ammonia + 1,1,1,2-tetrafluoroethane) system at temperatures ranging from (243.150 to 283.150) K are presented. Two models were employed to regress the experimental VLE results, namely the Peng–Robinson (PR) equation of state with the simple van der waals (VDW) mixing rule; the Peng–Robinson equation of state combined non-random two-liquid (NRTL) activity coefficient model with the modified Huron-Vidal one-order (MHV1) mixing rule. The maximum average absolute relative deviation of pressure (AARDp) and average absolute deviation of the vapour phase mole fraction (AADy) for PR-VDW are 0.56% and 0.010, respectively, while the maximum AARDp and AADy for PR-MHV1-NRTL are 0.27% and 0.014, respectively. Positive azeotropic behaviour was exhibited at each temperature investigated.

  14. Phase behaviour for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems at temperatures from (313.2 to 393.2) K and pressures from (5 to 31) MPa

    International Nuclear Information System (INIS)

    Byun, Hun-Soo; Jang, Yoon-Seok; Yoo, Ki-Pung

    2010-01-01

    The solubility curves for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems were determined by a static view cell apparatus at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2) K as well as pressures up to 31.43 MPa. Two {carbon dioxide + (meth)acrylate} systems had continuous critical mixture curves with maxima in pressure located between the critical temperatures of carbon dioxide and 2-phenoxyethyl (meth)acrylate. The solubility of 2-phenoxyethyl (meth)acrylate in the {carbon dioxide + 2-phenoxyethyl (meth)acrylate} systems increases as the temperature increases at a fixed pressure. The (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems exhibit type-I phase behaviour. The experimental results for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems correlate with the Peng-Robinson equation of state using a van der Waals one-fluid mixing rule including two adjustable parameters. The critical properties of 2-phenoxyethyl acrylate and 2-phenoxyethyl methacrylate were predicted with the Joback and Lee-Kesler method.

  15. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    Science.gov (United States)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  16. An investigation of the insertion of the cations H{sup +}, Na{sup +}, K{sup +} on the electrochromic properties of the thermally evaporated WO{sub 3} thin films grown at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.J. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Panchal, C.J., E-mail: cjpanchal_msu@yahoo.com [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Mehta, P.K. [Physics Department, Faculty of Science, M.S. University of Baroda, Vadodara 390002, Gujarat (India)

    2010-11-01

    The phenomenon of electrochromism in tungsten trioxide (WO{sub 3}) thin films has recently attained considerable interest due to their enormous applications in inorganic thin film electrochromic devices. We have investigated the compositional, optical, and electrochromic properties of the WO{sub 3} thin films grown at different substrate temperatures by the thermal evaporation of WO{sub 3} powder. The thin films were characterized using X-ray diffraction (XRD), X-ray photo-emission spectroscopy (XPS), and electrochemical techniques. The XPS analysis suggested that the oxygen to tungsten (O/W) ratio decreases, i.e., the oxygen deficiency increases, on increasing the substrate temperature up to 500 deg. C. The electrochemical analysis provided a comparative study of the coloration efficiency (CE) of the WO{sub 3} thin films intercalated with three different ions viz. H{sup +}, Na{sup +}, and K{sup +}. The effect of the variation of the substrate temperature on the CE and the switching time have also been investigated for the WO{sub 3} thin films intercalated with H{sup +} ions; the thin films deposited at RT and intercalated with H{sup +} ions are found to possess adequate electrochromic properties viz. CE and switching time from device point of view.

  17. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, No. 28 XianNing West Road, Xi' an, Shaanxi Province 710049 (China); Murphy, Anthony B. [CSIRO Manufacturing Flagship, PO Box 218, Lindfield NSW 2070 (Australia)

    2015-04-14

    The influence of copper vapor mixed in hot CO{sub 2} on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K–4000 K is numerically analyzed. First, the equilibrium composition of hot CO{sub 2} with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N){sub cr} is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N){sub cr} of the CO{sub 2}–Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O{sub 2} from the thermal dissociation of CO{sub 2} contributes to the increase of (E/N){sub cr} of CO{sub 2}–Cu hot gas mixtures from about 2000 K to 3500 K.

  18. Fault of the correction factor for pressure and temperature k{sub PT} in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico; Falla del factor de correcion por presion y temperatura k{sub PT} a las condiciones atmosfericas del LSCD-ININ-Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: jesus.cejudo@inin.gob.mx, E-mail: daniel.delacruz@inin.gob.mx, E-mail: victor.tovar@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (LSCD/ININ), Ocoyoacac (Mexico). Laboratorio Secundario de Calibracion Dosimetrica

    2013-07-01

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of {sup 60}Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of {sup 125}I brachytherapy sources was given an additional correction lower in 11% compared to conventional k{sub PT} value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of {sup 137}Cs.

  19. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S. [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  20. Low temperature formation of higher-k cubic phase HfO2 by atomic layer deposition on GeOx/Ge structures fabricated by in-situ thermal oxidation

    International Nuclear Information System (INIS)

    Zhang, R.; Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S.

    2016-01-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO 2 using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO x interfacial layer. It is found that the cubic phase is dominant in the HfO 2 film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO 2 film on a 1-nm-thick GeO x form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO 2 can be induced by the formation of six-fold crystalline GeO x structures in the underlying GeO x interfacial layer

  1. Cryogenic laboratory (80 K - 4 K)

    International Nuclear Information System (INIS)

    Brad, Sebastian; Steflea, Dumitru

    2002-01-01

    The technology of low temperature at the beginning of this century, developed for the production of oxygen, nitrogen and rare gases, was the basis for setting up the cryogenic technology in all the companies with these activity fields. The cryogenics section of today comprises engineering and construction of cryogenic plants for science, research and development, space technology, nuclear power techniques. Linde has designed and built a reliable small scale Helium liquefier. This fully automatic cryoliquefier operates for purification, liquefaction as well as re-liquefaction of Helium-gas, evaporated in cryostat systems. The basic equipment of the Linde L5 are the liquefier apparatus, transfer line, medium pressure buffer vessel, automatic purifier, compressor with mechanical oil separation unit, oil adsorber, electrical control unit. The accessories of the Linde L5 are the liquid helium storage tank, high-pressure gas supply, helium recovery unit, and cryocomponents. The cycle compressor C 101 designed as a single stage screw compressor supplies the liquefaction process with approx. 10 g/s of helium at a pressure of 10 to 12 bar and a temperature of approx. 300 K. In the first plate heat exchanger E 201 the gas is cooled down to approx. 70 K. Then the He high-pressure flow is divided: about 7 g/s reach the turbine X 201 via valve 203 (turbine entry) and are expanded there to approx. 4.6 bar, the gas cooling down to 64 K. After further cooling in the heat exchanger E 203 to about 16 K, another power-consuming expansion to 1.2 bar takes place. The implied cooling of the gas results in a temperature of 12 K at the outlet of the turbine X 202. This gas is then transferred to the low-pressure side of the heat exchanger E 204. The smaller part of the He high-pressure gas flow (approx. 3 g/s) is cooled down in the heat exchanger E 202 - E 205 to about 7 K. One part of the cold helium gas (approx. 0.17 g/s) is used in the purifier to cool down the feed gas to air

  2. Compressed liquid densities and excess molar volumes for (CO{sub 2} + 1-pentanol) binary system at temperatures from 313 to 363 K and pressures up to 25 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Moreno, Abel [Instituto Politecnico Nacional, ESIQIE, Laboratorio de Termodinamica, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738, Lindavista, Mexico, D.F. (Mexico); Galicia-Luna, Luis A. [Instituto Politecnico Nacional, ESIQIE, Laboratorio de Termodinamica, Edif. Z, Secc. 6, 1er piso, UPALM Zacatenco, 07738, Lindavista, Mexico, D.F. (Mexico)], E-mail: lgalicial@ipn.mx; Sandler, Stanley I. [Department of Chemical Engineering, University of Delaware, Newark, DE 19716-3119 (United States)

    2008-02-15

    Measurements of compressed liquid densities for 1-pentanol and for {l_brace}CO{sub 2} (1) + 1-pentanol (2){r_brace} system were carried out at temperatures from 313 K to 363 K and pressures up to 25 MPa. Densities were measured for binary mixtures at 10 different compositions, x{sub 1} = 0.0816, 0.1347, 0.3624, 0.4651, 0.6054, 0.7274, 0.8067, 0.8573, 0.9216, and 0.9757. A vibrating tube densimeter was used to perform density measurements using two reference calibration fluids. The uncertainty is estimated to be better than {+-}0.2 kg . m{sup -3} for the experimental density measurements. For each mixture and for 1-pentanol, the experimental densities were correlated using an explicit volume equation of six parameters and an 11-parameter equation of state (EoS). Excess molar volumes were determined for the (CO{sub 2} + 1-pentanol) system using 1-pentanol densities calculated from the 11-parameter EoS and CO{sub 2} densities calculated from a multiparameter reference EoS.

  3. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.

    2014-05-04

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  4. Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing

    KAUST Repository

    Wagman, Benjamin M.; Jackson, Charles S.; Yao, Fengchao; Zedler, Sarah; Hoteit, Ibrahim

    2014-01-01

    Uncertainty in wind forcing has long hampered direct tests of ocean model output against observations for the purpose of refining the boundary layer K-Profile Parameterization (KPP) of oceanic vertical mixing. Considered here is a short-term metric that could be sensitive to the ways in which the KPP directly affects the adjustment of sea surface temperatures for a given change in wind stress. In particular a metric is developed based on the lagged correlation between the 2–6 day filtered wind stress and sea surface temperature. The metric is normalized by estimated observational and model uncertainties such that the significance of differences may be assessed. For this purpose multiple wind reanalysis products and their blended combinations were used to represent the range of forcing uncertainty, while perturbed KPP parameter model runs explore the sensitivity of the metric to the parameterization of vertical mixing. The correlation metric is sensitive to perturbations to most KPP parameters, in ways that accord with expectations, although only a few parameters show a sensitivity on the same order as the sensitivity to switching between wind products. This suggests that uncertainties in wind forcing continue to be a significant limitation for applying direct observational tests of KPP physics. Moreover, model correlations are biased high, suggesting that the model lacks or does not resolve sources of variability on the 2–6 day time scale.

  5. Effect of sodium acetate on the volumetric behaviour of some mono-, di-, and tri-saccharides in aqueous solutions over temperature range (288.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Banipal, Parampaul K., E-mail: pkbanipal@yahoo.co [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Singh, Vickramjeet [Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India); Banipal, Tarlok S. [Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005 (India)

    2010-01-15

    The standard partial molar volumes, V{sub 2}{sup 0} at infinite dilution of eight monosaccharides [D(+)-xylose, D(-)-arabinose, D(-)-ribose, L(-)-sorbose, D(-)-fructose, D(+)-galactose, D(+)-glucose, and D(+)-mannose], six disaccharides [D(+)-cellobiose, sucrose, D(+)-melibiose, D(+)-lactose monohydrate, D(+)-trehalose dihydrate, and D(+)-maltose monohydrate] and two trisaccharides [D(+)-melizitose and D(+)-raffinose pentahydrate] (molalities of saccharides range from (0.03 to 0.12) mol . kg{sup -1}) have been determined in water and in (0.5, 1.0, 2.0, and 3.0) mol . kg{sup -1} aqueous sodium acetate solutions at temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from density measurements using a vibrating-tube digital densimeter. From these results, corresponding standard partial molar volumes of transfer, DELTA{sub t}V{sub 2}{sup 0} have been determined for the transfer of various saccharides from water to aqueous solutions of sodium acetate. Positive values of DELTA{sub t}V{sub 2}{sup 0} were obtained for most of the saccharides, whose magnitude increase with the concentration of sodium acetate as well as temperature. However, negative DELTA{sub t}V{sub 2}{sup 0} values were observed for L(-)-sorbose, D(-)-fructose and D(+)-xylose at lower concentrations of co-solute. The negative magnitude of DELTA{sub t}V{sub 2}{sup 0} values decrease with rise of temperature from (288.15 to 318.15) K. Pair and higher order volumetric interaction coefficients have been determined by using McMillan-Mayer theory. Partial molar expansion coefficients, (partial derivV{sub 2}{sup 0}/partial derivT){sub p} and the second derivatives (partial deriv{sup 2}V{sub 2}{sup 0}/partial derivT{sup 2}){sub p} have also been estimated. These parameters have been utilized to understand various mixing effects in aqueous solutions due to the interactions between solute (saccharide) and co-solute (sodium acetate).

  6. Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1.HCl and B6.HCl at temperatures (278.15, 288.15, and 298.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Deshmukh, Dinesh W.; Paliwal, Lalitmohan J.

    2013-01-01

    Highlights: ► Study of aqueous solutions of vitamins B 1 .HCl and B 6 .HCl at different temperatures has been presented. ► These are important vitamins. ► Different interactions among solute and solvents have been investigated. ► The results are interpreted in terms of water structure making and breaking effects due to cations. -- Abstract: The experimental values of density (ρ), speed of sound (u), absolute viscosity (η) and refractive index (n D ) properties are reported for aqueous solutions of thiamine hydrochloride (vitamin B 1 .HCl) and pyridoxine hydrochloride (vitamin B 6 .HCl) within the concentration range (0.01 to 0.55) mol ⋅ kg −1 at three different temperatures, viz. T/K = 278.15, 288.15, and 298.15. Using experimental data, different derived parameters such as the apparent molar volume of solute (ϕ V ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (ϕ KS ) and relative viscosity of solution (η r ) have been computed. The limiting values of apparent molar volume (ϕ V 0 ) and apparent molar isentropic compressibility (ϕ KS 0 ) have been obtained. The limiting apparent molar expansivity (ϕ E 0 ) of solute, coefficient of thermal expansion (α ∗ ) and hydration numbers (n h ) of above vitamins in the aqueous medium have also been estimated. The experimental values of relative viscosity are used to calculate the Jones–Dole equation viscosity A and B coefficients for the hydrochlorides. The temperature coefficients of B i.e. (dB/dT) for these solutes have been used to study water structure making and breaking effects due to cations. Further, a discussion is made on the basis of solute–solute and solute–solvent interactions

  7. Speeds of sound in {l_brace}(1 - x)CH{sub 4} + xN{sub 2}{r_brace} with x = (0.10001, 0.19999, and 0.5422) at temperatures between 170 K and 400 K and pressures up to 30 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Estela-Uribe, J.F. [Facultad de Ingenieria, Universidad Javeriana-Cali, Calle 18, 118-250 Cali (Colombia); Trusler, J.P.M. [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)]. E-mail: m.trusler@imperial.ac.uk; Chamorro, C.R. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Villamanan, M.A. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2006-07-15

    The speed of sound in {l_brace}(1 - x)CH{sub 4} + xN{sub 2}{r_brace} has been measured with a spherical acoustic resonator. Two mixtures with x = (0.10001 and 0.19999) were studied along isotherms at temperatures between 220 K and 400 K with pressures up to 20 MPa; a few additional measurements at p = (25 and 30) MPa are also reported. A third mixture with x = 0.5422 was studied along pseudo-isochores at amount-of-substance densities between 0.2 mol . dm{sup -3} and 5 mol . dm{sup -3}. Corrections for molecular vibrational relaxation are discussed in detail and relaxation times are reported. The overall uncertainty of the measured speeds of sound is estimated to be not worse than {+-}0.02%, except for those measurements in the mixture with x = 0.5422 that lie along the pseduo-isochore at the highest amount-of-substance density. The results have been compared with the predictions of several equations of state used for natural gas systems.

  8. Apparent molar volumes and apparent molar heat capacities of aqueous tetrahydrofuran, dimethyl sulfoxide, 1,4-dioxane, and 1,2-dimethoxyethane at temperatures from 278.15 K to 393.15 K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Swenson, D.M.; Blodgett, M.B.; Ziemer, S.P.; Woolley, E.M.

    2008-01-01

    We determined apparent molar volumes V φ at 278.15 ≤ (T/K) ≤ 368.15 and apparent molar heat capacities C p,φ at 278.15 ≤ (T/K) ≤ 393.15 at p = 0.35 MPa for aqueous solutions of tetrahydrofuran at m from (0.016 to 2.5) mol . kg -1 , dimethyl sulfoxide at m from (0.02 to 3.0) mol . kg -1 , 1,4-dioxane at m from (0.015 to 2.0) mol . kg -1 , and 1,2-dimethoxyethane at m from (0.01 to 2.0) mol . kg -1 . Values of V φ were determined from densities measured with a vibrating-tube densimeter, and values of C p,φ were determined with a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T for each compound were fitted to our V φ and C p,φ results

  9. Volumetric, Viscometric and Excess Properties of Binary Mixtures of 1-Iodobutane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from 303.15 to 313.15 K

    Directory of Open Access Journals (Sweden)

    Sangita Sharma

    2013-01-01

    Full Text Available Densities and viscosities have been determined for binary mixtures of 1-iodobutane with benzene, toluene, o-xylene, m-xylene, p-xylene, and mesitylene at 303.15, 308.15, and 313.15 K for the entire composition range at atmospheric pressure. The excess molar volumes, , deviations in viscosity, Δη, and excess Gibbs’ free energy of activation flow, Δ have been calculated from the experimental values. The experimental data were fitted to Redlich-Kister polynomial equation. The variations of these parameters with composition of the mixtures and temperature have been discussed in terms of molecular interactions occurring in these mixtures. Further, the viscosities of these binary mixtures were calculated theoretically from their corresponding pure component data by using empirical relations like Bingham, Arrhenius and Eyring, Kendall and Munroe, Hind, Katti and Chaudhari, Grunberg and Nissan, and Tamura and Kurata. Comparison of various interaction parameters has been expressed to explain the intermolecular interactions between iodobutane and selected hydrocarbons.

  10. (Vapour + liquid) equilibrium data for the {1,1-difluoroethane (R152a) + 1,1,1,3,3-pentafluoropropane (R245fa)} system at temperatures from (323.150 to 353.150) K

    International Nuclear Information System (INIS)

    Yang, Lixiang; Gong, Maoqiong; Guo, Hao; Dong, Xueqiang; Wu, Jianfeng

    2015-01-01

    Highlights: • VLE data for (R152a + R245fa) system were measured at temperatures. • The experiments were based on the static-analytic method. • VLE data were correlated using PR–vdWs and PR–HV–NRTL models. - Abstract: In this paper, (vapour + liquid) equilibrium (VLE) for the {1,1-difluoroethane (R152a) + 1,1,1,3,3-pentafluoropropane (R245fa)} system was determined by a static-analytical method at T = (323.150 to 353.150) K. Values of the VLE were correlated by the Peng–Robison equation of state (PR EoS) using two different models, the van der Waals (vdWs) mixing rule and the Huron–Vidal (HV) mixing rule involving the non-random two-liquid (NRTL) activity coefficient model. The correlated results show good agreement with the experimental values. For the two models, the maximum average absolute deviations of the vapour phase mole fraction are 0.0034 and 0.0035, respectively.

  11. Rescaling Temperature and Entropy

    Science.gov (United States)

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  12. Densities, Viscosities and Related Properties for Binary Mixtures of Sulfolane + p-Xylene, Sulfolane + Ethylbenzene in the Temperature Range from 303.15 K to 353.15 K%二元混合物环丁酚和对二甲苯、乙苯在温度范围为303.15-353.15K下的密度、黏度及其相关性质

    Institute of Scientific and Technical Information of China (English)

    杨长生; 马沛生; 周清

    2004-01-01

    Densities and viscosities of the binary systems of sulfolane + ethylbenzene, sulfolane + p-xylene have been experimentally determined in temperature interval 303.15-353.15 K and at atmospheric pressure for the whole composition range. The excess molar volumes and viscosity deviations were computed. The computed quantities have been fitted to Redlich-Kister equation. Excess molar volumes and viscosity deviation show a systematic change with increasing temperature. Two mixtures exhibit negative excess volumes with a minimum which occurs approximately at x = 0.5. The effect of the size, shape and interaction of components on excess molar volumes and viscosity deviations is discussed.

  13. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  14. Kinetic study of Ca({sup 1}S) + N{sub 2}O and Sr({sup 1}S) + N{sub 2}O reactions in the temperature ranges of, respectively, 303--1015 and 303--999 K

    Energy Technology Data Exchange (ETDEWEB)

    Vinckier, C.; Helaers, J.; Remeysen, J. [K.U. Leuven, Heverlee (Belgium). Dept. of Chemistry

    1999-07-08

    Metal/N{sub 2}O reactions in incinerators may reduce the emission of the greenhouse gas N{sub 2}O. The study of metal atom/N{sub 2}O reactions allows metal atom/N{sub 2}O reactions in the gas phase to be very exothermic, leading to product molecules being formed in an electronic excited state. When the metal oxides fall back to lower lying states, an intense chemiluminescence can occur. In this way such reactions can be suitable candidates for the development of chemical lasers in which the population inversion is obtained by means of a pure chemical reaction. A kinetic study of the second-order reactions Ca({sup 1}S) + N{sub 2}O(X{sup 1}{Sigma}{sup +}) {yields} CaO + N{sub 2} and Sr({sup 1}S) + N{sub 2}O(X{sup 1}{Sigma}{sup +}) {yields} SrO + N{sub 2} has been carried out in a fast-flow reactor in the temperature ranges of, respectively, 303--1015 and 303--999 K. The alkaline earth metal atoms were thermally generated from the solid metal pellets. Their decays as a function of the added N{sub 2}O concentration were followed by means of atomic absorption spectroscopy (AAS) at 422.7 nm for calcium and 460.7 nm for strontium atoms. Both reactions showed a non-Arrhenius behavior that can best be explained by the presence of two reaction product channels, resulting in a rate constant expressed as the sum of two exponential functions. The best fits over the entire temperature range are given by polynomial expressions. The results will be discussed in view of the literature data on the alkaline earth metal atom + N{sub 2}O reactions. The experimentally derived energy barriers will be compared with the calculated values on the basis of the semiempirical configuration interaction theory (SECI). Reasonably good correlations were obtained between the barrier heights of the reaction and the promotion energy of the metals involved.

  15. Adventures with the K anti K system

    International Nuclear Information System (INIS)

    Cason, N.M.

    1975-01-01

    The status of the new generation of K anti K experiments is reviewed. The reactions discussed are of the type πN → K anti KN. The general characteristics of the K anti K system which make it interesting and unique, the results of the first generation of experiments, and finally the status of the current experiments and some plans for future analyses

  16. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  17. The (p, ρ, T, x) properties of (x1 propane + x2n-butane) with x1 (0.0000, 0.2729, 0.5021, and 0.7308) over the temperature range from (280 to 440) K at pressures from (1 to 200) MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2008-01-01

    The (p, ρ, T, x) properties for (x 1 propane + x 2 n-butane) with x 1 = (0.0000, 0.2729, 0.5021, and 0.7308) in the compressed liquid phase were measured by means of a metal-bellows variable volumometer over the temperature range from (280 to 440) K at pressures from (1 to 200) MPa. The mole fraction purities of the propane and n-butane used in the measurements were 0.9999 and 0.9997, respectively. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than ±3 mK; 1.4 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa); 0.09%; and 4.4 . 10 -4 , respectively. In the region above 100 MPa at T = (280 and 440) K, the uncertainty in density measurements increases from 0.09% to 0.13% and 0.22%, respectively. Comparisons of the available equation of state with the present measurements are reported. On the basis of the present results, the excess molar volume v m E of the mixtures was calculated and illustrated as a function of temperature and pressure

  18. The (p, ρ, T, x) properties for {x propane + (1 - x) isobutane} with x = (1.0000, 0.2765, 0.5052, and 0.7468) in the temperature range from (280 to 440) K at pressures from (1 to 200) MPa

    International Nuclear Information System (INIS)

    Miyamoto, H.; Shigetoyo, K.; Uematsu, M.

    2007-01-01

    The (p, ρ, T, x) properties for {x propane + (1 - x) isobutane} with x = (1.0000, 0.2765, 0.5052, and 0.7468) in the compressed liquid phase were measured by means of a metal-bellows variable volumometer in the temperature range from (280 to 440) K at pressures from (1 to 200) MPa. The mole fraction purities of the propane and isobutane used in the measurements were 0.9999 and 0.9999, respectively. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than ±3 mK; 1.4 kPa (p ≤ 7 MPa), 0.06% (7 MPa 150 MPa); 0.09%; and 1.3 . 10 -4 , respectively. In the region above 100 MPa at T (280 and 440) K, the uncertainty in density measurements increases from 0.09% to 0.13% and 0.22%, respectively. Comparisons of the available equation of state with the present measurements are reported. On the basis of the present results, the excess molar volume V m E of the mixtures was calculated and illustrated as a function of temperature and pressure

  19. Colourings of (k-r,k-trees

    Directory of Open Access Journals (Sweden)

    M. Borowiecki

    2017-01-01

    Full Text Available Trees are generalized to a special kind of higher dimensional complexes known as \\((j,k\\-trees ([L. W. Beineke, R. E. Pippert, On the structure of \\((m,n\\-trees, Proc. 8th S-E Conf. Combinatorics, Graph Theory and Computing, 1977, 75-80], and which are a natural extension of \\(k\\-trees for \\(j=k-1\\. The aim of this paper is to study\\((k-r,k\\-trees ([H. P. Patil, Studies on \\(k\\-trees and some related topics, PhD Thesis, University of Warsaw, Poland, 1984], which are a generalization of \\(k\\-trees (or usual trees when \\(k=1\\. We obtain the chromatic polynomial of \\((k-r,k\\-trees and show that any two \\((k-r,k\\-trees of the same order are chromatically equivalent. However, if \\(r\

  20. Kinetics of the gas-phase reactions of chlorine atoms with CH2F2, CH3CCl3 and CF3CFH2 over the temperature range 253 – 551 K

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Ole John

    2009-01-01

    Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl+CH2F2) = 1.19×10-17 T 2 exp(-1023/T ) cm3 molecule-1 s-1 (253– 553 K), k(Cl+CH3CCl3) = 2.41×10-12 exp(...

  1. Effects of Sm3+/Yb3+ co-doping and temperature on the Raman, IR spectra and structure of [TeO2-GeO2-K2O-Sm2O3/Yb2O3] glasses

    International Nuclear Information System (INIS)

    Shaltout, I.; Badr, Y.

    2006-01-01

    Effects of Sm 3+ /Yb 3+ co-doping on Raman scattering, IR absorption, temperature dependence of the Raman spectra up to 210 o C and the structure of two glass systems of the composition (80TeO 2 -10GeO 2 -8K 2 O-2Sm 2 O 3 /Yb 2 O 3 ) is discussed. It was found that the addition of Yb 3+ to the glass very strongly enhances the intensities of the antistokes' Raman bands at 155, 375, 557 and 828 cm -1 and quenches both the intensities of the stokes' vibration modes of the TeO 4 units in the range of 120-770 cm -1 and the intensities of the OH - stretching vibration modes in the range of 2600-3300 cm -1 . Sm 2 O 3 /Yb 2 O 3 rare earth co-doping has a great influence on removing and/or changing the nature of the OH - groups. The appearance and splitting of the stretching vibration modes of the OH - groups at lower frequencies (2770, 2970 cm -1 ) for the Sm +3 singly doped glass sample, compared to the band at ∼3200 cm -1 for the Sm 3+ /Yb 3+ co-doped glass sample, suggested that the OH - groups are more strongly bonded and incorporated with the glass matrix for the singly doped glass. Heating the sample up continuously weakens the hydrogen bonding of the OH - groups to the glass matrix leading to creation of NBO and breakdown of the connectivity of the OH - groups to the TeO 4 , TeO 3+1 and TeO 3 structural units. Raman bands at 286, 477, 666 and 769 cm -1 were assigned to its respective vibrations of Te 2 O 7 , TeO 4 -4 species, the (Te-O-Te) bending vibrations of the TeO 4 triagonal bipyramids (tbps), the axial symmetric stretching vibration modes (Te ax -O) s with bridging oxygen BO atoms and to the (Te-O) nbo non-bridging stretching vibration modes of the TeO 3+1 and/or TeO 3 pyramids

  2. Development of a highly efficient conversion electron Moessbauer spectroscopy (CEMS) detector for low temperature (<20 K) measurements and tests on Fe / (Eu{sub x}Pb{sub 1-x})Te bilayers; Desenvolvimento de um detector de alta eficiencia para espectroscopia Moessbauer de eletrons de conversao (CEMS) a baixas temperaturas (<20K) e testes em bicamadas Fe / (Eu{sub x}Pb{sub 1-x})Te

    Energy Technology Data Exchange (ETDEWEB)

    Pombo, Carlos Jose da Silva Matos

    2006-07-01

    The {sup 57}Fe Moessbauer spectroscopy is a nuclear, non-destructive technique used for the investigation of structural, magnetic and hyperfine properties of several materials. It is a powerful tool in characterizing materials in physics, metallurgy, geology and biology field areas, especially magnetic materials, alloys and minerals containing Fe. Lately, the Conversion Electron Moessbauer Spectroscopy (CEMS) is widely used in making studies on ultra-thin magnetic films, as well as other nanostructured materials. In case of magnetic nanostructures, low temperature (LT) studies are especially important due to the possibility of dealing with superparamagnetic effects. In this work it was developed a CEMS measurement system for low temperatures (<20 K) based on a solid-state electron multiplier (Channeltron{sup R}) and an optical cryostat (Model SVT-400, Janis Research Co, USA), from which the project was originally conceived at the Applied Physics / Moessbauer spectroscopy Department from University of Duisburg-Essen, Germany. The LT-CEMS system was fully built, tested and successfully applied in a preliminary characterization of Fe/(Eu{sub x}Pb{sub 1-x})Te(111) bilayers with use of a 15 angstrom, {sup 57} Fe probe layer, with reasonable results at sample temperatures as low as 8 K. (author)

  3. X-ray diffraction studies on K3Gd5 (PO4) 6 between 20K to 1073 K

    International Nuclear Information System (INIS)

    Bevara, Samatha; Achary, S.N.; Tyagi, A.K.; Sinha, A.K.; Sastry, P.U.

    2016-01-01

    Complex inorganic phosphates have been of interest due to their diversified crystal chemistry depending on composition, preparation condition as well as external parameters like temperature and pressure. In addition varieties of complex phosphates have been considered as potential host matrices for immobilization of radioactive elements as well as for selective separation of ions from high level nuclear waste or heavy metal ion pollutants from environment. Temperature and/or pressure induced structural variations are often noticed in such type complex phosphates. In K 2 O-Gd 2 O 3 -P 2 O 5 , a novel complex phosphate with K 3 Gd 5 (PO 4 ) 6 has been reported recently. In order to study the effect of temperature on crystal structure of K 3 Gd 5 (PO 4 ) 6 variable temperature XRD studies between 20 K to 1073 K were carried out and the results are presented herein

  4. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    Science.gov (United States)

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  5. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  6. Calibration of thermometers in the range from 4K to 40K

    International Nuclear Information System (INIS)

    Cruz, M.E. de la; Sereni, Julian; Salva, Horacio.

    1977-06-01

    Carbon and Germanium resistors have been calibrated against a standard in the temperature range from 4K to 40K. From the data, values of temperature are obtained with 0,1% error (std deviation). These calibrations have been also checked against specific heat measurements. (author) [es

  7. NRC Microwave Refractive Index Gas Thermometry Implementation Between 24.5 K and 84 K

    Science.gov (United States)

    Rourke, P. M. C.

    2017-07-01

    The implementation of microwave refractive index gas thermometry at the National Research Council between 24.5 K and 84 K is reported. A new gas-handling system for accurate control and measurement of experimental gas pressure has been constructed, and primary thermometry measurements have been taken using a quasi-spherical copper resonator and helium gas at temperatures corresponding to three defining fixed points of the International Temperature Scale of 1990 (ITS-90). These measurements indicate differences between the thermodynamic temperature T and ITS-90 temperature T_{90} of ( T - T_{90} ) = -0.60 ± 0.56 mK at T_{90} = 24.5561 K, ( T - T_{90} ) = -2.0 ± 1.3 mK at T_{90} = 54.3584 K, and ( T - T_{90} ) = -4.0 ± 2.9 mK at T_{90} = 83.8058 K. The present results at T_{90} = 24.5561 K and T_{90} = 83.8058 K agree with previously reported measurements from other primary thermometry techniques of acoustic gas thermometry and dielectric constant gas thermometry, and the result at T_{90} = 54.3584 K provides new information in a temperature region where there is a gap in other recent data sets.

  8. Report to the CCT on COOMET comparison COOMET.T-K3.1 (previously COOMET.T-S1): Key regional comparison of the national standards of temperature in the range from the triple point of water to the freezing point of zinc

    Science.gov (United States)

    Pokhodun, A. I.

    2010-01-01

    In the framework of the CIPM MRA, a first COOMET comparison "Comparison of the ITS-90 realizations in the range from 0.01 °C to 429.7485 °C (from the triple point of water to the freezing point of zinc)", registered in the KCDB under the identifier "COOMET.T-K3", was carried out in 2005-2007. Four national metrology institutes took part in this comparison: VNIIM (Russian Federation), SMU (Slovakia), BelGIM (Republic of Belarus) and NSC IM (Ukraine), and two of them (VNIIM and SMU) ensured the linkage with key comparisons CCT-K3 and CCT-K4, in order to disseminate the metrological equivalence to the measurement standards of NSC IM and BelGIM. NSC IM, however, had to withdraw its results, and at the meeting of Technical Committee T-10 of COOMET it was decided to carry out a supplementary bilateral comparison between VNIIM and the NSC IM for realization of the ITS-90 in the same range of temperature. This was registered in the KCDB under the identifier COOMET.T-S1 and measurements were performed in 2008-2009. From the results presented in this report, it is possible to draw the conclusion that the COOMET supplementary comparison COOMET.T-S1 demonstrates the CMC uncertainties claimed by the NSC IM for the melting point of gallium 0.236 mK (k = 2), and the freezing points of indium 1.040 mK (k = 2), tin 0.858 mK (k = 2) and zinc 0.944 mK (k = 2). In September 2012 the Working Group on key Comparisons (WG 7) of the CCT upgraded this comparison to a COOMET key comparison of the 'CCT-K3' type. It is now identified as COOMET.T-K3.1. In April 2013 this report was superseded by item 03006 in the Technical Supplement of 2013. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  9. Final report on EURAMET.T-K6.1: Bilateral comparison of the realisations of local dew/frost-point temperature scales in the range -70 °C to +20 °C

    Science.gov (United States)

    Heinonen, Martti; Zvizdic, Davor; Sestan, Danijel

    2013-01-01

    As the European extension of the first CCT humidity key comparison, EUROMET.T-K6 was successfully completed in year 2008. After this comparison, a new low dew-point generator was introduced at LPM in Croatia as a result of progress in the EUROMET P912 project. With this new facility, the LPM uncertainties decreased significantly and the operating range became significantly wider. Therefore, it was decided to arrange a bilateral comparison between LPM and MIKES in Finland providing a link to EUROMET.T-K6 and CCT-K6. This comparison was carried out in a manner similar to other K6 comparisons but only one transfer standard was used instead of two units and the measurement point -70 °C was added to the measurement scheme. At all measurement points, the bilateral equivalence was well within the estimated expanded uncertainty at the approximately 95% confidence level. Also, the deviations of the LPM results from the EUROMET.T-K6 reference values were smaller than their expanded uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Structural investigation on K3Gd5(PO4)6 in between 20 K to 1073 K

    International Nuclear Information System (INIS)

    Bevara, Samatha; Achary, S.N.; Tyagi, A.K.; Mishra, K.K.; Ravindran, T.R.; Sinha, A.K.; Sastry, P.U.

    2016-01-01

    Evolution of crystal structure of K 3 Gd 5 (PO 4 ) 6 in the temperature range from 20 K to 1073 K, as observed from combined variable temperature X-ray diffraction (using both synchrotron source and Cu K α lab source) and Raman spectroscopic studies is communicated in the manuscript. The title compound has an open tunnel containing three dimensional structure built by periodic arrangements of (Gd 5 (PO 4 ) 6 ) 3- ions which in turn are formed by PO 4 tetrahedra and GdO n (n = 8 and 9) polyhedra and these tunnels are occupied by K + ions. The XRD patterns in the entire temperature range of study indicated no change in the crystal structural, which is also supported by differential thermal analyses and Raman spectroscopy. Average axial thermal expansion coefficients between 20K and 1073 K are : α a =10.6 x 10 -6 K -1 , α b = 5.5 x 10 -6 K -1 and α c = 16.4 X 10.6 -6 K -1 . (author)

  11. Temperature profiles from MBT casts from the CIRRUS and CUMULUS from Ocean Weather Station K (OWS-K) and M (OWS-M) in the North Atlantic Ocean from 1969-01-01 to 1970-01-16 (NODC Accession 7000939)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CIRRUS and CUMULUS within a 1-mile radius of Ocean Weather Station K (4500N 01600W), M (6600N 00200E), and in transit....

  12. Adaptation of closed cycle refrigeration system spectrum to radiation cryochemistry: γ-irradiation, ESR and optical absorption spectroscopy, ITL and RTL of frozen matrices at temperatures down to 14 K

    International Nuclear Information System (INIS)

    Mayer, J.; Plonka, A.; Ratajski, A.; Suwalski, J.P.; Wypych, M.

    1978-01-01

    The adaptation of the commercially available closed cycle refrigeration system Spectrim sup(TM) for radiation cryochemistry experiments with frozen matrices down to 14 K is described. The cold head of Spectrim sup(TM), equipped with vacuum shroud extensions and sample holders proper for the given type of experiments, was contained in lead shields, provided with special entrances for irradiation of samples with 60 Co γ-rays. The shroud extensions used for ESR and optical absorption measurements and the sample holders for isothermal luminescence and radiothermolumininescence measurements are described. (U.K.)

  13. Y K Vijay

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Y K Vijay. Articles written in Bulletin of Materials Science. Volume 27 Issue 5 October 2004 pp 417-420 Nuclear Related Materials. Irradiation of large area Mylar membrane and characterization of nuclear track filter · N K Acharya P K Yadav S Wate Y K Vijay F Singh D K Avasthi.

  14. High-temperature thermodynamics of the vanadium-oxygen system for 0≤ O/V ≤ 1.5. II. Direct measures of ΔH(O2) at 1323 K

    International Nuclear Information System (INIS)

    Tetot, R.; Picard, C.; Gerdanian, P.

    1987-01-01

    The Tian-Calvet microcalorimetric method has been used at 1323 K in order to determine ΔH(O 2 ), the partial molar enthalpy of mixing of oxygen, for the vanadium-oxygen system with O/V ratios from 0 to 1.5. Comparison is made with earlier independent determinations from electromotive force measurements

  15. Ternary and quaternary (liquid + liquid) equilibria for (water + ethanol + α-pinene, +β-pinene, or +limonene) and (water + ethanol + α-pinene + limonene) at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Li Hengde; Tamura, Kazuhiro

    2006-01-01

    (Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters

  16. Liquid phase PVTx properties of (water + tert-butanol) binary mixtures at temperatures from 278.15 to 323.15 K and pressures from 0.1 to 100 MPa. II. Molar isothermal compressions, molar isobaric expansions, molar thermal pressure coefficients, and internal pressure

    International Nuclear Information System (INIS)

    Egorov, Gennadiy I.; Makarov, Dmitriy M.; Kolker, Arkadiy M.

    2013-01-01

    Highlights: ► Molar isothermal compressions and molar isobaric expansions were evaluated. ► Coefficients of thermal pressure and internal pressure were obtained. ► Concentration dependences of coefficients under study display extremes. ► Temperature and pressure dependences of internal pressure of the mixture were linear. -- Abstract: Molar isothermal compressions, molar isobaric expansions, molar coefficients of thermal pressure, and internal pressure were calculated over the whole concentration range of {water (1) + tert-butanol (2)} mixture at pressures from 0.1 to 100 MPa and temperatures from 278.15 to 323.15 K. It was revealed that the extremes, observed on concentration dependences of molar isothermal compression K T,m and molar isobaric expansion E P,m of the mixture, became more pronounced with pressure growth and temperature lowering. Values of molar thermal pressure coefficients of the mixture sharply rose at compositions with small TBA mole fraction and then decreased practically linearly with the alcohol content increasing. Temperature and pressure dependences of the mixture internal pressure were almost linear, and at low TBA concentrations changed significantly from the dependences of water, tert-butanol and their mixtures at large alcohol content

  17. D K Mishra

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. D K Mishra. Articles written in Bulletin of Materials Science. Volume 34 Issue 7 December 2011 pp 1501-1506. Ce-doped LCMO CMR manganites: a consequence of enhanced T c and T IM · D K Mishra D R Sahu P K Mishra S K Singh B K Mohapatra B K Roul · More Details ...

  18. Thermal annealing of high dose radiation induced damage at room temperature in alkaline. Stored energy, thermoluminescence and coloration; Aniquilacion termica de dano inducido por irradiacion a altas dosis en haluros alcalinos a 300 k. energia almacenda. Termoluminiscencia y coloracion

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, L

    1980-07-01

    The possible relation between stored energy, thermoluminescence and colour centre annealing in gamma and electron irradiated alkali halides is studied. Thermoluminescence occurs at temperature higher than the temperature at which the main stored energy peak appears. No stored energy release is detected in additively coloured KC1 samples. Plastic deformation and doping with Ca and Sr induce a stored energy spectrum different from the spectrum observed in pure and as cleaved samples, but the amount of stored energy does not change for a given irradiation dose.Capacity of alkali halides to store energy by irradiation increases as the cation size decreases. (Author) 51 refs.

  19. Determination of the enthalpy of fusion of K{sub 3}TaF{sub 8} and K{sub 3}TaOF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Kosa, L. [Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava (Slovakia)]. E-mail: uachkosa@savba.sk; Mackova, I. [Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava (Slovakia)

    2006-08-15

    The areas of the fusion and crystallization peaks of K{sub 3}TaF{sub 8} and K{sub 3}TaOF{sub 6} have been measured using the DSC mode of the high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities and the temperature dependence of the used calorimetric method sensitivity, the values of the enthalpy of fusion of K{sub 3}TaF{sub 8} at temperature of fusion 1039 K: {delta}{sub fus} H {sub m}(K{sub 3}TaF{sub 8}; 1039 K) = (52 {+-} 2) kJ mol{sup -1} and of K{sub 3}TaOF{sub 6} at temperature of fusion 1055 K: {delta}{sub fus} H {sub m}(K{sub 3}TaOF{sub 6}; 1055 K) = (62 {+-} 3) kJ mol{sup -1} have been determined.

  20. Results from K2K experiment

    International Nuclear Information System (INIS)

    Yanagisawa, Chiaki

    2001-01-01

    The K2K experiment is the first long baseline neutrino oscillation experiment at KEK and at Kamioka, Japan. This is a brief summary of the K2K experiment in the first year of running from June 1999 to June 2000. The major result is that for the first time in human history artificially produced neutrinos by an accelerator are detected at a long distance of 250km from the production points. A brief introduction, the detector performance and the some analysis results are presented. The analysis results are based on the data corresponding to the integrated beam intesnsity of 2.29 x 10 19 pot

  1. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  2. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  3. Temperature effects on the pickup process of water group and hydrogen ions - Extensions of 'A theory for low-frequency waves observed at Comet Giacobini-Zinner' by M. L. Goldstein and H. K. Wong

    Science.gov (United States)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1988-01-01

    Cometary heavy ions can resonantly excite hydromagnetic wave activity with spacecraft frequency spectra strongly deviating from the ion cyclotron frequency. The influence of the newborn particle temperature on this effect is assessed, its relevance to the interpretation of the observations is discussed, and an alternative, more efficient mechanism to generate spacecraft frequencies of the order of the proton cyclotron frequency is suggested.

  4. On high temperature internal friction in metallic glasses

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Kalinin, Yu.E.; Roshchupkin, A.M.

    1992-01-01

    High temperature background of internal friction in amorphous lanthanum-aluminium alloys was investigated. More rapid growth of internal friction was observed at temperature ∼ 453 K reaching maximal value at 495 K. Crystallization process was accompanied by decrease of internal friction. Increase of mechanical vibration frequency to 1000 Hz leads to rise of internal friction background in the range of room temperatures and to decrease at temperatures above 370 K. Bend was observed on temperature dependence of internal friction at 440 K

  5. R K Mangal

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R K Mangal. Articles written in Bulletin of Materials Science. Volume 29 Issue 7 December 2006 pp 653-657 Semiconductors. Preparation of Al–Sb semiconductor by swift heavy ion irradiation · R K Mangal M Singh Y K Vijay D K Avasthi · More Details Abstract Fulltext PDF.

  6. C M K Nair

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. C M K Nair. Articles written in Bulletin of Materials Science. Volume 24 Issue 2 April 2001 pp 249-252 Crystal Growth. Thermal behaviour of strontium tartrate single crystals grown in gel · M H Rahimkutty K Rajendra Babu K Sreedharan Pillai M R Sudarsana Kumar C M K Nair.

  7. Facts about Vitamin K

    Science.gov (United States)

    Facts about Vitamin K 1 R. Elaine Turner and Wendy J. Dahl 2 FCS8666 Figure 1. Vitamin K is mostly found in vegetables, especially green ... ColognePhotos/iStock/Thinkstock, © ColognePhotos Why do we need vitamin K? Vitamin K is one of the fat- ...

  8. A K Singh

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Singh. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 633-638 Alloys and Steels. Analysis of stainless steel samples by energy dispersive X-ray fluorescence (EDXRF) spectrometry · M K Tiwari A K Singh K J S Sawhney · More Details ...

  9. A K Meikap

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Meikap. Articles written in Bulletin of Materials Science. Volume 24 Issue 6 December 2001 pp 649-652 Alloys and Steels. An X-ray diffraction study of defect parameters in a Ti-base alloy · G Karmaker P Mukherjee A K Meikap S K Chattopadhyay S K Chatterjee.

  10. K C Mittal

    Indian Academy of Sciences (India)

    K C Mittal. Articles written in Sadhana. Volume 30 Issue 6 December 2005 pp 757-764. Development of a 300-kV Marx generator and its application to drive a relativistic electron beam · Y Choyal Lalit Gupta Preeti Vyas Prasad Deshpande Anamika Chaturvedi K C Mittal K P Maheshwari · More Details Abstract Fulltext PDF.

  11. D K Ghosh

    Indian Academy of Sciences (India)

    D K Ghosh. Articles written in Pramana – Journal of Physics. Volume 63 Issue 6 December 2004 pp 1359-1365. Working group report: Low energy and flavour physics · Amol Dighe Anirban Kundu K Agashe B Anantanarayan A Chandra A Datta P K Das S P Das A Dighe R Forty D K Ghosh Y -Y Keum A Kundu N Mahajan S ...

  12. K$_{-}$ and K$_{-}$ polarizability from kaonic atoms

    CERN Document Server

    Backenstoss, Gerhard; Bergström, I; Bunaciu, T; Egger, J; Hagelberg, R; Hultberg, S; Koch, H; Lynen, Y; Ritter, H G; Schwitter, A; Tauscher, L

    1973-01-01

    The K/sup -/ mass was determined from kaonic atomic X-rays from Au and Ba to be 493.691+or-0.040 MeV. An upper limit for the polarizability of the K/sup -/ was found to be 0.020 fm/sup 3/ at 90% confidence. (18 refs).

  13. Temperature Dependences of the Quantum-Mechanical and Semi-Classical Spectral-Line Widths and the Separation 0 of the Impact and Non-Impact Regions for an Ar-Perturbed/K-Radiator System

    Directory of Open Access Journals (Sweden)

    W. C. Kreye

    2010-01-01

    Full Text Available Quantum-mechanical and semi-classical spectral-line shapes are computed at =400, 800, and 1000 K for the line core of the 5802 Å line of the Ar-Perturbed/K-Radiator system. HWHMs ('s are measured from computed full spectral-line shapes. The final-state pseudopotential is for the 721/2 state, and the initial-state potential is for the 423/2,3/2 state. Three high-pressure (P log(—versus—log( curves, corresponding to the non-impact region, intersect a similar set of low-P, impact-region curves at intersections, 0's. Similarly, for two sets of log(—versus—log( curves, which yield intersections, 0's, where is the perturber density. These 0's and 0's separate the two regions and represent the upper limits of the impact regions. A specific validity condition for the impact region is given by the equation ≤0. From an earlier spectroscopic, Fabry-Perot paper, expt=0.021 cm−1 at =400 K and =10 torr. Two theoretical values, theor=0.025 and 0.062 cm−1 corresponding to two different pseudo-potentials, are reported. Two -dependent figures are given, in which the first shows an increase in the impact region with , based on as the basic parameter, and the second which shows a decrease in the impact region with , based on as the basic parameter.

  14. Precision cryogenic temperature data acquisition system

    International Nuclear Information System (INIS)

    Farah, Y.; Sondericker, J.H.

    1985-01-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of +-25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors

  15. Apparent molar volumes and apparent molar heat capacities of aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa

    International Nuclear Information System (INIS)

    Blodgett, M.B.; Ziemer, S.P.; Brown, B.R.; Niederhauser, T.L.; Woolley, E.M.

    2007-01-01

    Apparent molar volumes V φ were determined for aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa, and apparent molar heat capacities C p,φ of the same solutions were determined at temperatures from (278.15 to 363.15) K at the same pressure. Molalities m/(mol . kg -1 ) of the solutions were in the range (0.02 ≤ m ≤ 3.2) for adonitol, (0.02 ≤ m ≤ 0.15) for dulcitol, (0.02 ≤ m ≤ 5.0) for glycerol, (0.02 ≤ m ≤ 3.0) for meso-erythritol, (0.02 ≤ m ≤ 0.5) for myo-inositol, (0.02 ≤ m ≤ 2.0) for D-sorbitol, and (0.02 ≤ m ≤ 2.7) for xylitol. A vibrating tube densimeter was used to obtain solution densities and a fixed-cell temperature scanning calorimeter was used to obtain heat capacities. Values of V φ and C p,φ for these sugar alcohols are discussed relative to one another and compared to values from the literature, where available

  16. Apparent molar volumes and apparent molar heat capacities of aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Blodgett, M.B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Brown, B.R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Niederhauser, T.L. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2007-04-15

    Apparent molar volumes V {sub {phi}} were determined for aqueous adonitol, dulcitol, glycerol, meso-erythritol, myo-inositol, D-sorbitol, and xylitol at temperatures from (278.15 to 368.15) K and at the pressure 0.35 MPa, and apparent molar heat capacities C {sub p,{phi}} of the same solutions were determined at temperatures from (278.15 to 363.15) K at the same pressure. Molalities m/(mol . kg{sup -1}) of the solutions were in the range (0.02 {<=} m {<=} 3.2) for adonitol, (0.02 {<=} m {<=} 0.15) for dulcitol, (0.02 {<=} m {<=} 5.0) for glycerol, (0.02 {<=} m {<=} 3.0) for meso-erythritol, (0.02 {<=} m {<=} 0.5) for myo-inositol, (0.02 {<=} m {<=} 2.0) for D-sorbitol, and (0.02 {<=} m {<=} 2.7) for xylitol. A vibrating tube densimeter was used to obtain solution densities and a fixed-cell temperature scanning calorimeter was used to obtain heat capacities. Values of V {sub {phi}} and C {sub p,{phi}} for these sugar alcohols are discussed relative to one another and compared to values from the literature, where available.

  17. Isothermal phase (vapour + liquid) equilibrium data for binary mixtures of propene (R1270) with either 1,1,2,3,3,3-hexafluoro-1-propene (R1216) or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane in the temperature range of (279 to 318) K

    International Nuclear Information System (INIS)

    Subramoney, Shalendra Clinton; Nelson, Wayne Michael; Courtial, Xavier; Naidoo, Paramespri; Coquelet, Christophe; Richon, Dominique; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Phase equilibrium data for propene and hexafluoropropylene. • Phase equilibrium data for propene and hexafluoropropylene oxide. • Systems exhibit pressure-maximum azeotropes. • Data well correlated by Peng–Robinson equation of state with the Wong–Sandler mixing rule. - Abstract: Isothermal (vapour + liquid) equilibrium data (P–x–y) are presented for the 1-propene 1,1,2,3,3,3-hexafluoro-1-propene and the 1-propene + 2,2,3-trifluoro-3-(trifluoromethyl)oxirane binary systems. Both binary systems were studied at five temperatures, ranging from (279.36 to 318.09) K, at pressures up to 2 MPa. The experimental (vapour + liquid) equilibrium data were measured using an apparatus based on the “(static + analytic)” method incorporating a single movable Rapid On-Line Sampler-Injector to sample the liquid and vapour phases at equilibrium. The expanded uncertainties are approximated on average as T = 0.07 K, 0.008 MPa, and 0.007 and 0.009 for the temperature, pressure, and the liquid and vapour mole fractions, respectively. A homogenous maximum-pressure azeotrope was observed for both binary systems at all temperatures studied. The experimental data were correlated with the Peng–Robinson equation of state using the Mathias–Copeman alpha function, paired with the Wong–Sandler mixing rule and the Non-Random Two Liquid activity coefficient model. The model provided satisfactory representation of the phase equilibrium data measured

  18. Progress in Primary Acoustic Thermometry at NIST: 273 K to 505 K

    Science.gov (United States)

    Strouse, G. F.; Defibaugh, D. R.; Moldover, M. R.; Ripple, D. C.

    2003-09-01

    The NIST Acoustic Thermometer determines the thermodynamic temperature by measuring the speed of sound of argon in a spherical cavity. We obtained the thermodynamic temperature of three fixed points on the International Temperature Scale of 1990: the melting point of gallium [T(Ga) = 302.9146 K] and the freezing points of indium [T(In) = 429.7485 K] and tin [T(Sn) = 505.078 K]. The deviations of thermodynamic temperature from the ITS-90 defined temperatures are T - T90 = (4.7 ± 0.6) mK at T(Ga) , T - T90 = (8.8 ± 1.5) mK at T(In) , and T - T90 = (10.7 ± 3.0) mK at T(Sn) , where the uncertainties are for a coverage factor of k = 1. Our results at T(In) and T(Sn) reduce the uncertainty of T - T90 by a factor of two in this range. Both T - T90 at T(Ga) and the measured thermal expansion of the resonator between the triple point of water and T(Ga) are in excellent agreement with the 1992 determination at NIST. The dominant uncertainties in the present data come from frequency-dependent and time-dependent crosstalk between the electroacoustic transducers. We plan to reduce these uncertainties and extend this work to 800 K.

  19. BILATERAL KEY COMPARISON SIM.T-K6.1 ON HUMIDITY STANDARDS IN THE DEW/FROST-POINT TEMPERATURE RANGE FROM −25 °C TO +20 °C

    Science.gov (United States)

    Meyer, C.W.; Hill, K.D.

    2015-01-01

    A Regional Metrology Organization (RMO) Key Comparison of dew/frost point temperatures was carried out by the National Institute of Standards and Technology (NIST, USA) and the National Research Council (NRC, Canada) between December 2014 and April, 2015. The results of this comparison are reported here, along with descriptions of the humidity laboratory standards for NIST and NRC and the uncertainty budget for these standards. This report also describes the protocol for the comparison and presents the data acquired. The results are analyzed, determining degree of equivalence between the dew/frost-point standards of NIST and NRC. PMID:26663952

  20. Apparatus for dynamic and static measurements of mechanical properties of solids and of flux-lattice in type-II superconductors at low frequency (10 - 5-10 Hz) and temperature (4.7-500 K)

    Science.gov (United States)

    D'Anna, G.; Benoit, W.

    1990-12-01

    A forced torsional pendulum which permits us to examine anelastic mechanical properties of solids as well as for flux-lattice in type-II superconductors, has been built to explore the low frequency and low temperature range. It works on the principle of dynamic frequency response function measurement and appears to be a powerful instrument for studying structural defect motions as well as flux line dynamics. As an additional quantity, the magnetization or the plastic strain can be statically measured by the same apparatus.