WorldWideScience

Sample records for temperate climate zones

  1. Heterogeneous responses of temperate-zone amphibian populations to climate change complicates conservation planning

    Science.gov (United States)

    Muths, Erin L.; Chambert, Thierry A.; Schmidt, B. R.; Miller, D. A. W.; Hossack, Blake R.; Joly, P.; Grolet, O.; Green, D. M.; Pilliod, David S.; Cheylan, M.; Fisher, Robert N.; McCaffery, R. M.; Adams, M. J.; Palen, W. J.; Arntzen, J. W.; Garwood, J.; Fellers, Gary M.; Thirion, J. M.; Grant, Evan H. Campbell; Besnard, A.

    2017-01-01

    The pervasive and unabated nature of global amphibian declines suggests common demographic responses to a given driver, and quantification of major drivers and responses could inform broad-scale conservation actions. We explored the influence of climate on demographic parameters (i.e., changes in the probabilities of survival and recruitment) using 31 datasets from temperate zone amphibian populations (North America and Europe) with more than a decade of observations each. There was evidence for an influence of climate on population demographic rates, but the direction and magnitude of responses to climate drivers was highly variable among taxa and among populations within taxa. These results reveal that climate drivers interact with variation in life-history traits and population-specific attributes resulting in a diversity of responses. This heterogeneity complicates the identification of conservation ‘rules of thumb’ for these taxa, and supports the notion of local focus as the most effective approach to overcome global-scale conservation challenges.

  2. Analysis of viticultural potential and delineation of homogeneous viticultural zones in a temperate climate region of Romania

    Directory of Open Access Journals (Sweden)

    Liviu Mihai Irimia

    2014-09-01

    Significance and impact of the study: This study provides the necessary information for viticultural zoning in the Huşi wine growing region in Romania. The methodology allows to evaluate viticultural potential and to delineate homogeneous viticultural zones in wine growing regions with a temperate continental climate.

  3. Thermal performance of natural airflow window in subtropical and temperate climate zones - A comparative study

    International Nuclear Information System (INIS)

    Chow Tintai; Lin Zhang; Fong Kwongfai; Chan Lokshun; He Miaomiao

    2009-01-01

    Airflow window is highly useful in conserving building energy, and lessens the comfort problems caused by glazing. In this study, the thermal performance of a natural airflow window was examined through the use of a dynamic model, developed based on the integrated energy balance and airflow networks. The validity of the model was first tested by measured data obtained from a prototype installed at an environmental chamber. The application in the subtropical and temperate climate zones were then examined with the typical weather data of Hong Kong and Beijing. The findings confirmed that the natural airflow window can achieve substantial energy saving in both cities, and the reversible window frame is only required for Beijing, a location with hot summer and cold winter. The space cooling load via fenestration in Hong Kong, a subtropical city, can be reduced to 60% of the commonly used single absorptive glazing. In Beijing, as an example of the temperate climate, this can be reduced to 75% of the commonly used double glazing configuration in the summer period, and the space heat gain can be improved by 46% in the winter period.

  4. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  5. Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone.

    Science.gov (United States)

    Bennema, S C; Ducheyne, E; Vercruysse, J; Claerebout, E; Hendrickx, G; Charlier, J

    2011-02-01

    Fasciola hepatica, a trematode parasite with a worldwide distribution, is the cause of important production losses in the dairy industry. Diagnosis is hampered by the fact that the infection is mostly subclinical. To increase awareness and develop regionally adapted control methods, knowledge on the spatial distribution of economically important infection levels is needed. Previous studies modelling the spatial distribution of F. hepatica are mostly based on single cross-sectional samplings and have focussed on climatic and environmental factors, often ignoring management factors. This study investigated the associations between management, climatic and environmental factors affecting the spatial distribution of infection with F. hepatica in dairy herds in a temperate climate zone (Flanders, Belgium) over three consecutive years. A bulk-tank milk antibody ELISA was used to measure F. hepatica infection levels in a random sample of 1762 dairy herds in the autumns of 2006, 2007 and 2008. The infection levels were included in a Geographic Information System together with meteorological, environmental and management parameters. Logistic regression models were used to determine associations between possible risk factors and infection levels. The prevalence and spatial distribution of F. hepatica was relatively stable, with small interannual differences in prevalence and location of clusters. The logistic regression model based on both management and climatic/environmental factors included the factors: annual rainfall, mowing of pastures, proportion of grazed grass in the diet and length of grazing season as significant predictors and described the spatial distribution of F. hepatica better than the model based on climatic/environmental factors only (annual rainfall, elevation and slope, soil type), with an Area Under the Curve of the Receiver Operating Characteristic of 0.68 compared with 0.62. The results indicate that in temperate climate zones without large climatic

  6. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea.

    Science.gov (United States)

    Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares

    2016-02-01

    Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L

  7. Dams release methane even in temperate zoned

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2010-01-01

    The Wohlen lake (near Bern) is a retaining dam built 90 years ago that has undergone a campaign to measure the quantity of methane released. The campaign lasted 1 year and the result was unexpected: 0.15 g/m 2 *day which one of the highest release rates in temperate zones. This result is all the more stunning since water stays only 2 days in average in the reservoir and that the drowned area is not important. In fact the river Aar that feeds the lake is loaded with organic matter coming from humane activities: agriculture and 3 sewage plants. This organic matter decays in the lake releasing methane. (A.C.)

  8. Prey type and foraging ecology of Sanderlings Calidris alba in different climate zones: are tropical areas more favourable than temperate sites?

    Directory of Open Access Journals (Sweden)

    Kirsten Grond

    2015-08-01

    Full Text Available Sanderlings (Calidris alba are long-distance migratory shorebirds with a non-breeding range that spans temperate and tropical coastal habitats. Breeding in the High Arctic combined with non-breeding seasons in the tropics necessitate long migrations, which are energetically demanding. On an annual basis, the higher energy expenditures during migration might pay off if food availability in the tropics is higher than at temperate latitudes. We compared foraging behaviour of birds at a north temperate and a tropical non-breeding site in the Netherlands and Ghana, respectively. In both cases the birds used similar habitats (open beaches, and experienced similar periods of daylight, which enabled us to compare food abundance and availability, and behavioural time budgets and food intake. During the non-breeding season, Sanderlings in the Netherlands spent 79% of their day foraging; in Ghana birds spent only 38% of the daytime period foraging and the largest proportion of their time resting (58%. The main prey item in the Netherlands was the soft-bodied polychaete Scolelepis squamata, while Sanderlings in Ghana fed almost exclusively on the bivalve Donax pulchellus, which they swallowed whole and crushed internally. Average availability of polychaete worms in the Netherlands was 7.4 g ash free dry mass (AFDM m−2, which was one tenth of the 77.1 g AFDM m−2 estimated for the beach in Ghana. In the tropical environment of Ghana the Sanderlings combined relatively low energy requirements with high prey intake rates (1.64 mg opposed to 0.13 mg AFDM s−1 for Ghana and the Netherlands respectively. Although this may suggest that the Ghana beaches are the most favourable environment, processing the hard-shelled bivalve (D. pulchellus which is the staple food could be costly. The large amount of daytime spent resting in Ghana may be indicative of the time needed to process the shell fragments, rather than indicate rest.

  9. Simulating the Effect of Climate Change on Vegetation Zone Distribution on the Loess Plateau, Northwest China

    Directory of Open Access Journals (Sweden)

    Guoqing Li

    2015-06-01

    Full Text Available A risk assessment of vegetation zone responses to climate change was conducted using the classical Holdridge life zone model on the Loess Plateau of Northwest China. The results show that there are currently ten vegetation zones occurring on the Loess Plateau (1950–2000, including alvar desert, alpine wet tundra, alpine rain tundra, boreal moist forest, boreal wet forest, cool temperate desert, cool temperate desert scrub, cool temperate steppe, cool temperate moist forest, warm temperate desert scrub, warm temperate thorn steppe, and warm temperate dry forest. Seventy years later (2070S, the alvar desert, the alpine wet tundra and the cool temperate desert will disappear, while warm temperate desert scrub and warm temperate thorn steppe will emerge. The area proportion of warm temperate dry forest will expand from 12.2% to 22.8%–37.2%, while that of cool temperate moist forest will decrease from 18.5% to 6.9%–9.5%. The area proportion of cool temperate steppe will decrease from 51.8% to 34.5%–51.6%. Our results suggest that future climate change will be conducive to the growth and expansion of forest zones on the Loess Plateau, which can provide valuable reference information for regional vegetation restoration planning and adaptive strategies in this region.

  10. Effect of climate change on temperate forest ecosystems

    NARCIS (Netherlands)

    Brolsma, R.J.

    2010-01-01

    In temperate climates groundwater can have a strong effect on vegetation, because it can influence the spatio-temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. Current IPCC climate projections based on CO2 emission scenarios show a global temperature rise

  11. Carbon sequestration in managed temperate coniferous forests under climate change

    Science.gov (United States)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  12. Climate change, cranes, and temperate floodplain ecosystems

    Science.gov (United States)

    King, Sammy L.

    2010-01-01

    Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.

  13. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  14. Fledgling survival increases with development time and adult survival across north and south temperate zones

    Science.gov (United States)

    Lloyd, Penn; Martin, Thomas E.

    2016-01-01

    Slow life histories are characterized by high adult survival and few offspring, which are thought to allow increased investment per offspring to increase juvenile survival. Consistent with this pattern, south temperate zone birds are commonly longer-lived and have fewer young than north temperate zone species. However, comparative analyses of juvenile survival, including during the first few weeks of the post-fledging period when most juvenile mortality occurs, are largely lacking. We combined our measurements of fledgling survival for eight passerines in South Africa with estimates from published studies of 57 north and south temperate zone songbird species to test three predictions: (1) fledgling survival increases with length of development time in the nest; (2) fledgling survival increases with adult survival and reduced brood size controlled for development time; and (3) south temperate zone species, with their higher adult survival and smaller brood sizes, exhibit higher fledgling survival than north temperate zone species controlled for development time. We found that fledgling survival was higher among south temperate zone species and generally increased with development time and adult survival within and between latitudinal regions. Clutch size did not explain additional variation, but was confounded with adult survival. Given the importance of age-specific mortality to life history evolution, understanding the causes of these geographical patterns of mortality is important.

  15. The effects of climate stability on northern temperate forests

    DEFF Research Database (Denmark)

    Ma, Ziyu

    2016-01-01

    a small subset of phylogenetic lineages. For current climate change, I examined the broad-scale dynamics of climate-sensitive boreal forest on a decadal time scale. Using global remote sensing data and machine learning, I tested for associations between spatial patterns of tree cover change with possible...... drivers, i.e., climate anomalies, permafrost, fire, and human activities from years 2000 to 2010. The results showed tree cover change links to fire prevalence and rising temperature in permafrost zones, suggesting impacts of permafrost thawing on large-scale tree cover dynamics in the boreal zone...

  16. Relation between century-scale Holocene arid intervals in tropical and temperate zones

    Science.gov (United States)

    Lamb, H. F.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W. T.; Pearce, N. J.; Roberts, C. N.

    1995-01-01

    CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1-10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.

  17. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    International Nuclear Information System (INIS)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David; Gylling, Bjoern; Marsic, Niko; Rhen, Ingvar

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  18. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  19. Social implications of residential demand response in cool temperate climates

    International Nuclear Information System (INIS)

    Darby, Sarah J.; McKenna, Eoghan

    2012-01-01

    Residential electrical demand response (DR) offers the prospect of reducing the environmental impact of electricity use, and also the supply costs. However, the relatively small loads and numerous actors imply a large effort: response ratio. Residential DR may be an essential part of future smart grids, but how viable is it in the short to medium term? This paper reviews some DR concepts, then evaluates the propositions that households in cool temperate climates will be in a position to contribute to grid flexibility within the next decade, and that that they will allow some automated load control. Examples of demand response from around the world are discussed in order to assess the main considerations for cool climates. Different tariff types and forms of control are assessed in terms of what is being asked of electricity users, with a focus on real-time pricing and direct load control in energy systems with increasingly distributed resources. The literature points to the significance of thermal loads, supply mix, demand-side infrastructure, market regulation, and the framing of risks and opportunities associated with DR. In concentrating on social aspects of residential demand response, the paper complements the body of work on technical and economic potential. - Highlights: ► Demand response implies major change in governance of electricity systems. ► Households in cool temperate climates can be flexible, mainly with thermal loads. ► DR requires simple tariffs, appropriate enabling technology, education, and feedback. ► Need to test consumer acceptance of DR in specific conditions. ► Introduce tariffs with technologies e.g., TOU tariff plus DLC with electric vehicles.

  20. Intensity of Urban Heat Islands in Tropical and Temperate Climates

    Directory of Open Access Journals (Sweden)

    Margarete Cristiane de Costa Trindade Amorim

    2017-12-01

    Full Text Available Nowadays, most of the Earth’s population lives in urban areas. The replacement of vegetation by buildings and the general soil sealing, associated with human activity, lead to a rise in cities temperature, resulting in the formation of urban heat islands. This article aims to evaluate the intensity and the hourly maintenance of the atmospheric heat islands in two climates: one tropical (Presidente Prudente, Brazil and one temperate (Rennes, France throughout 2016. For this, air temperature and hourly averages were measured and calculated using both a HOBO datalogger (U23-002—protected under the same RS3 brand and weather stations Davis Vantage PRO 2. The daily evolution of the heat islands presented characteristics that varied according to the hours and seasons of the year. For both Rennes and Presidente Prudente, the largest magnitudes occurred overnight, being more greatly expressed in the tropical environment and during the driest months (winter in the tropical city and summer in the temperate one. The variability of synoptic conditions from one month to another also leads to a great heterogeneity of UHI intensity throughout the year.

  1. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  2. Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones

    International Nuclear Information System (INIS)

    Ali, Muzaffar; Vukovic, Vladimir; Sheikh, Nadeem Ahmed; Ali, Hafiz M.

    2015-01-01

    Highlights: • Five configurations of a DEC system are analyzed in five climate zones. • DEC system model configurations are developed in Dymola/Modelica. • Performance analysis predicted a suitable DEC system configuration for each climate zone. • Results show that climate of Vienna, Sao Paulo, and Adelaide favors the ventilated-dunkle cycle. • While ventilation cycle configuration suits the climate of Karachi and Shanghai. - Abstract: Performance of desiccant evaporative cooling (DEC) system configurations is strongly influenced by the climate conditions and varies widely in different climate zones. Finding the optimal configuration of DEC systems for a specific climatic zone is tedious and time consuming. This investigation conducts performance analysis of five DEC system configurations under climatic conditions of five cities from different zones: Vienna, Karachi, Sao Paulo, Shanghai, and Adelaide. On the basis of operating cycle, three standard and two modified system configurations (ventilation, recirculation, dunkle cycles; ventilated-recirculation and ventilated-dunkle cycles) are analyzed in these five climate zones. Using an advance equation-based object-oriented (EOO) modeling and simulation approach, optimal configurations of a DEC system are determined for each climate zone. Based on the hourly climate data of each zone for its respective design cooling day, performance of each system configuration is estimated using three performance parameters: cooling capacity, COP, and cooling energy delivered. The results revealed that the continental/micro-thermal climate of Vienna, temperate/mesothermal climate of Sao Paulo, and dry-summer subtropical climate of Adelaide favor the use of ventilated-dunkle cycle configuration with average COP of 0.405, 0.89 and 1.01 respectively. While ventilation cycle based DEC configuration suits arid and semiarid climate of Karachi and another category of temperate/mesothermal climate of Shanghai with average COP of

  3. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    Science.gov (United States)

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  4. Role of temperate zone forests in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V.; Hett, J. (eds.)

    1979-01-01

    The proceedings of a workshop on carbon uptake and losses from temperate zone forests are presented. The goals of the workshop were to analyze existing data on growth and utilization of the temperate zone forest carbon pool and to identify further research needs in relation to the role of temperate forests in the global carbon cycle. Total standing stock and growth recovery transients were examined for most of the temperate region over a period from pre-settlement times to the present, with emphasis on the last three decades. Because of data availability, certain regions and topics were covered more in detail than others. Forest inventory data from most of the commercial timberlands of the north temperate zone suggest these forests have functioned over the past several decades as an annual sink for about 10/sup 9/ metric tons of carbon. Thus, net growth of these forests has withdrawn carbon from the atmosphere at a rate equivalent, approximately, to 50% of the annual rise in atmospheric carbon. Various data inadequacies make this estimate probably no more precise than plus or minus half of the value. Analysis of growth and vegetation changes in New England and the southeastern United States shows that forest biomass has partly recovered since extensive clearing took place in the 18th and 19th centuries. This regrowth represents a net withdrawal of carbon (carbon sink) from the atmosphere in recent decades, although the difference in pool size between present and original forests means that, in the longer term, the two regions have functioned as carbon sources.

  5. Tropical Agroecosystems: These habitats are misunderstood by the temperate zones, mismanaged by the tropics.

    Science.gov (United States)

    Janzen, D H

    1973-12-21

    I have listed some of the ways in which the lowland tropics are not such a warm and wonderful place for the farmer, some of the reasons why it may be unreasonable to expect him to cope with the problems, and some of the ways in which the temperate zones make his task more difficult. The tropics are very close to being a tragedy of the commons on a global scale (69, 103), and it is the temperate zone's shepherds and sheep who are among the greatest offenders (31). Given that the temperate zones have some limited amount of resources with which they are willing to repay the tropics, how can these resources best be spent? The first answer, without doubt, is education, and the incorporation of what is already known about the tropics into that education. Second should be the generation of secure psychological and physical resources for governments that show they are enthusiastic about the development of an SYTA. Third should be support of intensive research needed to generate the set of site-specific rules for specific, clearly identified SYTA's. The subject matter of youths' cultural programming is presumably determined by what they will need during the rest of their lives. A major component of this programming should be the teaching of the socioeconomic rules of a sustained-yield, nonexpanding economy, tuned to the concept of living within the carrying capacity of the country's or region's resources. Incorporating such a process into tropical school systems will cause a major upheaval, if for no other reason than that it will involve an evaluation of the country's resources, what standard of living is to be accepted by those living on them, and who is presently harvesting them. Of even greater impact, it will have to evaluate resources in terms of their ability to raise the standard of living by Y amount for X proportion of the people in the region, rather than in terms of their cash value on the world market. For such a change to be technologically successful, it will

  6. Prevalence and genetic variability of Plesiomonas shigelloides in temperate climate surface waters of the Pannonian Plain

    Directory of Open Access Journals (Sweden)

    Petrušić Milivoje

    2018-01-01

    Full Text Available Plesiomonas shigelloides, a Gram-negative bacterium and the causative agent of intestinal diseases and extraintestinal infections in humans and animals, is most frequently found in aquatic environments in tropical or subtropical areas. The present study was designed to establish the prevalence and genetic variability of P. shigelloides in surface waters (lakes, rivers, ponds, inlets and canals located in a temperate climate zone, namely the Pannonian Plain of the northern part of Serbia and southern part of Hungary. The strains were isolated directly by plating samples on inositol-brilliant green-bile agar with neutral red or phenol red as indicators. Our results indicate that phenol red effectively facilitates differentiation of P. shigelloides from other bacteria. A number of samples were enriched using alkaline peptone water broth, peptone inositolbile broth and tetrathionate broth. The recovery of the isolates was more successful with the first medium. Out of a total of 51 water samples collected from 28 different locations, 22 samples (43.1% were found positive for P. shigelloides. Among the 37 isolated strains, 34 were from lakes (Šatrinci, Ludaš, Panonija, Krivaja, Pecs, Kapetanski rit, Pavlovci, Kovacsszenaja, Dobrodol, Vranjaš, Borkovac, Hermann Otto, Sot, Šelevrenac, Zobnatica, Palić, Orfui, Jarkovci, Čonoplja and 3 were from rivers (Danube, Sava. The strains were identified by phenotypic characteristic or by the VITEK2 system and confirmed by PCR using 23S rRNA species-specific oligos. The strains showed a high genetic variability, displaying a variety of RAPD profiles. Our results reveal for the first time a high prevalence of genetically diverse P. shigelloides populations in surface waters located in the temperate climate of central and southeastern Europe. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI 172058

  7. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  8. Comparative analysis of radiosensitivity of fish eggs from northern and temperate climate

    International Nuclear Information System (INIS)

    Kryshev, A.; Sazykina, T.

    2004-01-01

    In the radiobiological studies of aquatic organisms, fish eggs are the favorite subject for experimental work because of easy availability of embryos and the possibility of observing the development of embryos within eggs. Data from Russian/FSU publications concerning the effects of ionizing radiation on fish eggs were compiled in the EPIC database within the framework of the EC Project EPIC. The comparative analysis of radiosensitivity was performed for eggs of two representative fish species from different climatic zones: cold water salmon (Salmo salar), and pike (Esox lucius), a widespread predatory fish in the temperate climate. A special attention was given to data of chronic exposure experiments with incubation of roe in water containing radionuclides. Dose rates on the fish eggs were estimated using appropriate dosimetric methodologies. Dose-effects relationships were constructed for chronic exposures during the periods of fish eggs development. The comparative analysis revealed that effects of ionizing radiation on salmon eggs appeared at lower doses than the effects on pike eggs. For example, first effects on survival of salmon eggs appeared at dose rate (1-2)*10-4 Gy/day, whereas effects on survival of pike eggs were not found at dose rates lower than (5-10)*10-3 Gy/day (chronic exposure); practically total death of roe took place at the chronic dose rates 0.13-0.33 Gy/day for salmon and 0.94 Gy/day for pike. Data on dose-effects relationships for salmon and pike roe defined the range of radiosensitivities between fish species from zones of severe and moderate climate. (author)

  9. Nonrandom community assembly and high temporal turnover promote regional coexistence in tropics but not temperate zone.

    Science.gov (United States)

    Freestone, Amy L; Inouye, Brian D

    2015-01-01

    A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.

  10. An atypical case of successful resuscitation of an accidental profound hypothermia patient, occurring in a temperate climate.

    LENUS (Irish Health Repository)

    Coleman, E

    2010-03-01

    Cases of accidental profound hypothermia occur most frequently in cold, northern climates. We describe an atypical case, occurring in a temperate climate, where a hypothermic cardiac-arrested patient was successfully resuscitated using extracorporeal circulation (ECC).

  11. Impacts of climate change on paddy rice yield in a temperate climate.

    Science.gov (United States)

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.

  12. Climate and Vegetation Effects on Temperate Mountain Forest Evapotranspiration

    Science.gov (United States)

    Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use h...

  13. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change

    NARCIS (Netherlands)

    Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Boncina, A.; Mohren, G.M.J.

    2014-01-01

    In many parts of Europe, close-to-nature silviculture (CNS) has been widely advocated as being the best approach for managing forests to cope with future climate change. In this review, we identify and evaluate six principles for enhancing the adaptive capacity of European temperate forests in a

  14. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate.

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Stroosnijder, L.

    1986-01-01

    A simple parametric model is presented to estimate daily evaporation from fallow tilled soil under spring conditions in a temperate climate. In this model, cumulative actual evaporation during a drying cycle is directly proportional to the square root of cumulative potential evaporation. The model

  15. Cave visitation by temperate zone bats: effects of climatic factors

    Czech Academy of Sciences Publication Activity Database

    Berková, Hana; Zukal, Jan

    2010-01-01

    Roč. 280, č. 4 (2010), s. 387-395 ISSN 0952-8369 R&D Projects: GA ČR GA206/01/1555; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : automatic registration * bats * flight activity * hibernaculum * seasonal changes Subject RIV: EG - Zoology Impact factor: 1.787, year: 2010

  16. Climate change implications in the northern coastal temperate rainforest of North America

    Science.gov (United States)

    Shanley, Colin S.; Pyare, Sanjay; Goldstein, Michael I.; Alaback, Paul B.; Albert, David M.; Beier, Colin M.; Brinkman, Todd J.; Edwards, Rick T.; Hood, Eran; MacKinnon, Andy; McPhee, Megan V.; Patterson, Trista; Suring, Lowell H.; Tallmon, David; Wipfli, Mark S.

    2015-01-01

    We synthesized an expert review of climate change implications for hydroecological and terrestrial ecological systems in the northern coastal temperate rainforest of North America. Our synthesis is based on an analysis of projected temperature, precipitation, and snowfall stratified by eight biogeoclimatic provinces and three vegetation zones. Five IPCC CMIP5 global climate models (GCMs) and two representative concentration pathways (RCPs) are the basis for projections of mean annual temperature increasing from a current average (1961–1990) of 3.2 °C to 4.9–6.9 °C (5 GCM range; RCP4.5 scenario) or 6.4–8.7 °C (RCP8.5), mean annual precipitation increasing from 3130 mm to 3210–3400 mm (3–9 % increase) or 3320–3690 mm (6–18 % increase), and total precipitation as snow decreasing from 1200 mm to 940–720 mm (22–40 % decrease) or 720–500 mm (40–58 % decrease) by the 2080s (2071–2100; 30-year normal period). These projected changes are anticipated to result in a cascade of ecosystem-level effects including: increased frequency of flooding and rain-on-snow events; an elevated snowline and reduced snowpack; changes in the timing and magnitude of stream flow, freshwater thermal regimes, and riverine nutrient exports; shrinking alpine habitats; altitudinal and latitudinal expansion of lowland and subalpine forest types; shifts in suitable habitat boundaries for vegetation and wildlife communities; adverse effects on species with rare ecological niches or limited dispersibility; and shifts in anadromous salmon distribution and productivity. Our collaborative synthesis of potential impacts highlights the coupling of social and ecological systems that characterize the region as well as a number of major information gaps to help guide assessments of future conditions and adaptive capacity.

  17. Cytotoxic Meroterpenoids with Rare Skeletons from Psidium guajava Cultivated in Temperate Zone

    Science.gov (United States)

    Qin, Xu-Jie; Yan, Huan; Ni, Wei; Yu, Mu-Yuan; Khan, Afsar; Liu, Hui; Zhang, Hong-Xia; He, Li; Hao, Xiao-Jiang; di, Ying-Tong; Liu, Hai-Yang

    2016-09-01

    Three new meroterpenoids, guajavadials A-C (1-3), were isolated from Psidium guajava cultivated in temperate zone. Their structures were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Guajavadial A (1) represents a novel skeleton of the 3,5-diformylbenzyl phloroglucinol-coupled monoterpenoid, while guajavadials B (2) and C (3) are new adducts of the 3,5-diformylbenzyl phloroglucinol and a sesquiterpene with different coupling models. The plausible biosynthetic pathways as well as antimicrobial and cytotoxic activities of these meroterpenoids are also discussed. All these isolates exhibited moderate cytotoxicities against five human cancer cell lines, with 3 being most effective with an IC50 value of 3.54 μM toward SMMC-7721 cell lines.

  18. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  19. Heat stress in cows at pasture and benefit of shade in a temperate climate region

    Science.gov (United States)

    Veissier, Isabelle; Van laer, Eva; Palme, Rupert; Moons, Christel P. H.; Ampe, Bart; Sonck, Bart; Andanson, Stéphane; Tuyttens, Frank A. M.

    2017-11-01

    Under temperate climates, cattle are often at pasture in summer and are not necessarily provided with shade. We aimed at evaluating in a temperate region (Belgium) to what extent cattle may suffer from heat stress (measured through body temperature, respiration rate and panting score, cortisol or its metabolites in milk, and feces on hot days) and at assessing the potential benefits of shade. During the summer of 2012, 20 cows were kept on pasture without access to shade. During the summer of 2011, ten cows had access to shade (young trees with shade cloth hung between them), whereas ten cows had no access. Climatic conditions were quantified by the Heat Load Index (HLI). In animals without access to shade respiration rates, panting scores, rectal temperatures, and milk cortisol concentrations increased as HLI increased in both 2011 and 2012. Fecal cortisol metabolites varied with HLI in 2011 only. When cattle had access to shade, their use of shade increased as the HLI increased. This effect was more pronounced during the last part of the summer, possibly due to better acquaintance with the shade construction. In this case, shade use increased to 65% at the highest HLI (79). Shade tempered the effects on respiration, rectal temperature, and fecal cortisol metabolites. Milk cortisol was not influenced by HLI for cows using shade for > 10% of the day. Therefore, even in temperate areas, cattle may suffer from heat when they are at pasture in summer and providing shade can reduce such stress.

  20. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    Science.gov (United States)

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  1. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    Science.gov (United States)

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  2. Patrones geográficos de distribuci��n de árboles y arbustos en la zona de transición climática mediterráneo-templada de Chile Geographic patterns of distribution of trees and shrubs in the transitional Mediterranean-temperate climatic zone of Chile

    Directory of Open Access Journals (Sweden)

    ERNESTO A. TENEB

    2004-03-01

    Full Text Available Uno de los principales objetivos de la biogeografía es determinar si las especies se distribuyen en el espacio en forma aleatoria o si existen grupos de especies con patrones de distribución comunes. En el presente estudio determinamos a través de técnicas cuantitativas si existen corotipos, es decir, grupos de especies con patrones de distribución común entre los árboles y arbustos en la zona de transición climática mediterráneo-templada de Chile, Octava Región de Chile. Adicionalmente, evaluamos la relación entre el clima y la distribución de los diferentes grupos de árboles y arbustos de la Octava Región. El análisis de agrupamiento de especies permitió definir 24 corotipos significativos, de los cuales 18 responden significativamente con alguna variable ambiental analizada. La temperatura media anual, la temperatura media invernal y la temperatura media de verano resultaron ser las variables que mejor explican el patrón de distribución de la mayoría de los corotipos. Las tendencias geográficas de los corotipos y su relación con las variables ambientales fueron evaluadas mediante un análisis de ordenación. Los resultados señalan que los corotipos con distribución en la cordillera de los Andes se correlacionan con la temperatura de invierno en tanto que los corotipos con distribución costera se correlacionan con la mediterraneidad. Se discute respecto de la utilización de una nueva aproximación para el análisis fitogeográfico y de su utilidad en el estudio de la relación entre la vegetación y los factores ambientales que determinan su distribuciónOne main aim of biogeography is to determine if species are randomly distributed or if there exist groups of species with common distributional patterns known as chorotypes. In this study, we determined through quantitative techniques if there exists such chorotypes for trees and shrubs in the transitional Mediterranean-temperate climatic zone of Chile, Eigth

  3. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments

    Directory of Open Access Journals (Sweden)

    Berit Gehrke

    2018-04-01

    Full Text Available Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks.

  4. Conference on the Rehabilitation of Severely Damaged Land and Freshwater Ecosystems in Temperate Zones

    CERN Document Server

    Woodman, M

    1978-01-01

    This volume contains the papers presented at a conference on "The rehabilitation of severely damaged land and freshwater eco­ systems in temperate zones", held at Reykjavik, Iceland, from 4th to 11th July, 1976. The meeting was held under the auspices of the Ecosciences Panel of the N.A.T.O. Science Committee, and the organising expenses and greater part of the expenses of the speakers and chairmen were provided by N.A.T.O. The scientific programme was planned by M. W. Holdgate and M. J. Woodman, in consultation with numerous colleagues, and especially with the Administrative Director of the Conference in Iceland, Dr. Sturla Fridriksson. Iceland proved a particularly suitable location for such a Conference. Geologically, it is one of the youngest countries 1n the world, owing its origin to the up-welling of volcanic rock along the spreading zone of the mid-Atlantic ridge within the past 20 million years. Its structure, northern oceanic situation, recent glaciation and continuing volcanic activity make it dis...

  5. Contemporary earthen architecture in the northern temperate climate

    DEFF Research Database (Denmark)

    Vestergaard, Inge; Eybye, Birgitte Tanderup

    2017-01-01

    houses designed using passive strategies and renewable materials have increased. Often the earth material, with its low environmental impact, is involved in the construction process. Building qualities include both pleasant living spaces and comfort in terms of better indoor climate. During the last few...... years new developments towards industrialized earthen building components can be seen. Hence the research question is: how can earth as a building material contribute to future Danish architecture? The results point out possible future developments in earthen architecture in Denmark. The methodologies...... and studying the applied materials and techniques....

  6. Climate and Vegetation Effects on Temperate Mountain Forest ...

    Science.gov (United States)

    Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use has implications for biogenic emissions and deposition of reactive nitrogen and carbon compounds. Forest evapotranspiration (ET) can vary greatly at daily and seasonal time scales, but compared to carbon fluxes, often exhibits relatively consistent inter-annual behavior. The processes controlling ET involve the combined effects of physical and biological factors. Atmospheric conditions that promote high ET, consisting of high radiation and vapor pressure deficit (D), are often characterized by rainless periods when soil water supply to vegetation may be limiting and plant stomata may close to prevent excessive water loss. In contrast, periods of high ecosystem water availability require frequent precipitation and are characterized by low D. Thus, the combination of these contrasting conditions throughout a growing season may explain some of the consistency in ET. Additionally, vegetation composition is also an important factor in determining ET. In mixed species forests, physiological differences in water use strategies (e.g. isohydric/anisohydric species) can produce conservative water use throughout wet and dry phases of the growing season. Furthermore, transpiration by evergreen specie

  7. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system

    Science.gov (United States)

    Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.

    2018-01-01

    Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.

  8. Retrofit with Interior Insulation on Solid Masonry Walls in Cool Temperate Climates

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Finken, G.R.; Odgaard, Tommy

    2015-01-01

    For historic buildings, where an alteration of the exterior façade is not wanted, interior insulation can be the solution to improve the indoor climate and reduce heat loss, but might also introduce moisture problems like condensation in the wall. Capillary active/hydrophilic insulation materials...... have been introduced to cope with the moisture problem. An extensive amount of calculations indicating where the challenges lie in the complex work with interior insulation in cool temperate climate has been carried out. In areas with high precipitation like Denmark, capillary active insulation may...

  9. Assessment of Natural Ventilation Potential for Residential Buildings across Different Climate Zones in Australia

    Directory of Open Access Journals (Sweden)

    Zijing Tan

    2017-09-01

    Full Text Available In this study, the natural ventilation potential of residential buildings was numerically investigated based on a typical single-story house in the three most populous climate zones in Australia. Simulations using the commercial simulation software TRNSYS (Transient System Simulation Tool were performed for all seasons in three representative cities, i.e., Darwin for the hot humid summer and warm winter zone, Sydney for the mild temperate zone, and Melbourne for the cool temperate zone. A natural ventilation control strategy was generated by the rule-based decision-tree method based on the local climates. Natural ventilation hour (NVH and satisfied natural ventilation hour (SNVH were employed to evaluate the potential of natural ventilation in each city considering local climate and local indoor thermal comfort requirements, respectively. The numerical results revealed that natural ventilation potential was related to the local climate. The greatest natural ventilation potential for the case study building was observed in Darwin with an annual 4141 SNVH out of 4728 NVH, while the least natural ventilation potential was found in the Melbourne case. Moreover, summer and transition seasons (spring and autumn were found to be the optimal periods to sustain indoor thermal comfort by utilising natural ventilation in Sydney and Melbourne. By contrast, natural ventilation was found applicable over the whole year in Darwin. In addition, the indoor operative temperature results demonstrated that indoor thermal comfort can be maintained only by utilising natural ventilation for all cases during the whole year, except for the non-natural ventilation periods in summer in Darwin and winter in Melbourne. These findings could improve the understanding of natural ventilation potential in different climates, and are beneficial for the climate-conscious design of residential buildings in Australia.

  10. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

    Science.gov (United States)

    Reinmann, Andrew B; Hutyra, Lucy R

    2017-01-03

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  11. The role of clothing in thermal comfort: how people dress in a temperate and humid climate in Brazil

    Directory of Open Access Journals (Sweden)

    Renata De Vecchi

    Full Text Available Abstract Thermal insulation from clothing is one of the most important input variables used to predict the thermal comfort of a building's occupants. This paper investigates the clothing pattern in buildings with different configurations located in a temperate and humid climate in Brazil. Occupants of two kinds of buildings (three offices and two university classrooms assessed their thermal environment through 'right-here-right-now' questionnaires, while at the same time indoor climatic measurements were carried out in situ (air temperature and radiant temperature, air speed and humidity. A total of 5,036 votes from 1,161 occupants were collected. Results suggest that the clothing values adopted by occupants inside buildings were influenced by: 1 climate and seasons of the year; 2 different configurations and indoor thermal conditions; and 3 occupants' age and gender. Significant intergenerational and gender differences were found, which might be explained by differences in metabolic rates and fashion. The results also indicate that there is a great opportunity to exceed the clothing interval of the thermal comfort zones proposed by international standards such as ASHRAE 55 (2013 - 0.5 to 1.0 clo - and thereby save energy from cooling and heating systems, without compromising the occupants' indoor thermal comfort.

  12. Influence of climate change on the flowering of temperate fruit trees

    Science.gov (United States)

    Perez-Lopez, D.; Ruiz-Ramos, M.; Sánchez-Sánchez, E.; Centeno, A.; Prieto-Egido, I.; Lopez-de-la-Franca, N.

    2012-04-01

    It is well known that winter chilling is necessary for the flowering of temperate trees. The chilling requirement is a criterion for choosing a species or variety at a given location. Also chemistry products can be used for reducing the chilling-hours needs but make our production more expensive. This study first analysed the observed values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. Usually the chilling is measured and calculated as chilling-hours, and different methods have been used to calculate them (e.g. Richarson et al., 1974 among others) according to the species considered. For our objective North Carolina method (Shaltout and Unrath, 1983) was applied for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The influence of climate change in temperate trees was studied by calculating projections of chilling-hours with climate data from Regional Climate Models (RCMs) at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). These projections will allow for analysing the modelled variations of chill-hours between 2nd half of 20C and 1st half of 21C at the study locations.

  13. Climate-based seed zones for Mexico: guiding reforestation under observed and projected climate change

    Science.gov (United States)

    Dante Castellanos-Acuña; Kenneth W. Vance-Borland; J. Bradley St. Clair; Andreas Hamann; Javier López-Upton; Erika Gómez-Pineda; Juan Manuel Ortega-Rodríguez; Cuauhtémoc Sáenz-Romero

    2018-01-01

    Seed zones for forest tree species are a widely used tool in reforestation programs to ensure that seedlings are well adapted to their planting environments. Here, we propose a climate-based seed zone system for Mexico to address observed and projected climate change. The proposed seed zone classification is based on bands of climate variables often related to genetic...

  14. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    Science.gov (United States)

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  15. The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species

    Directory of Open Access Journals (Sweden)

    Elsa Desnoues

    2017-12-01

    Full Text Available Background Leaf out times of temperate forest trees are a prominent determinant of global carbon dynamics throughout the year. Abiotic cues of leaf emergence are well studied but investigation of the relative roles of shared evolutionary history (phylogeny and local adaptation to climate in determining the species-level responses to these cues is needed to better apprehend the effect of global change on leaf emergence. We explored the relative importance of phylogeny and climate in determining the innate leaf out phenology across the temperate biome. Methods We used an extensive dataset of leaf-out dates of 1126 temperate woody species grown in eight Northern Hemisphere common gardens. For these species, information on the native climate and phylogenetic position was collected. Using linear regression analyses, we examine the relative effect of climate variables and phylogeny on leaf out variation among species. Results Climate variables explained twice as much variation in leaf out timing as phylogenetic information, a process that was driven primarily by the complex interactive effects of multiple climate variables. Although the primary climate factors explaining species-level variation in leaf-out timing varied drastically across different families, our analyses reveal that local adaptation plays a stronger role than common evolutionary history in determining tree phenology across the temperate biome. Conclusions In the long-term, the direct effects of physiological adaptation to abiotic effects of climate change on forest phenology are likely to outweigh the indirect effects mediated through changes in tree species composition.

  16. Ecophysiological and anatomical characteristics of the subtropical shrub Zanthoxylum acanthopodium (Rutaceae) in conditions of a temperate continental climate (Serbia)

    DEFF Research Database (Denmark)

    Rakic, Tamara; Sinzar-Sekulic, Jasmina; Filipovic, Biljana

    2009-01-01

    The evergreen shrub Zanthoxylum acanthopodium DC. (Rutaceae), originating from warm temperate and subtropical Asia, has existed successfully in the Jevremovac Botanical Garden in Belgrade for more than 80 years. The seasonal pattern of water management in leaves, electrolyte leakage, essential oil...... composition, and leaf anatomy were examined in order to understand the resistance and viability of this subtropical shrub in the temperate continental climate of Belgrade, Serbia....

  17. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...... at each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  18. Organic matter flow in the food web at a temperate heath under multifactorial climate change

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Konestabo, Heidi S.; Maraldo, Kristine

    2011-01-01

    climate change factors (elevated CO2, increased temperature and drought) were investigated in a full factorial field experiment at a temperate heathland location. The combined effect of biotic and abiotic factors on nitrogen and carbon flows was traced in plant root → litter → microbe → detritivore....../omnivore → predator food‐web for one year after amendment with 15N13C2‐glycine. Isotope ratio mass spectrometry (IRMS) measurement of 15N/14N and 13C/12C in soil extracts and functional ecosystem compartments revealed that the recovery of 15N sometimes decreased through the chain of consumption, with the largest...

  19. Climate change affects winter chill for temperate fruit and nut trees.

    Science.gov (United States)

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  20. Tree species distribution in temperate forests is more influenced by soil than by climate.

    Science.gov (United States)

    Walthert, Lorenz; Meier, Eliane Seraina

    2017-11-01

    Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.

  1. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Dirnböck, Thomas; Müller, Jörg; Kobler, Johannes; Katzensteiner, Klaus; Helm, Norbert; Seidl, Rupert

    2017-02-01

    1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher

  2. Impact of Climate Change on Temperate and Alpine Grasslands in China during 1982–2006

    Directory of Open Access Journals (Sweden)

    Xiangjin Shen

    2015-01-01

    Full Text Available Based on GIMMS NDVI and climate data from 1982 to 2006, this study analyzed the impact of climate change on grassland in China. During the growing season, there were significant effects of precipitation on the growth of all the grassland types (P<0.05, except for meadow vegetation. For the air temperatures, there existed asymmetrical effects of maximum temperature (Tmax and minimum temperature (Tmin on grassland vegetation, especially for the temperate grasslands and alpine steppe. The growing season NDVI correlated negatively with Tmax but positively with Tmin for temperate grasslands. Seasonally, these opposite effects were only observed in summer. For alpine steppe, the growing season NDVI correlated positively with Tmax but negatively with Tmin, and this pattern of asymmetrical responses was only obvious in spring and autumn. Under the background of global asymmetric warming, more attention should be paid to this asymmetric response of grassland vegetation to daytime and night-time warming, especially when we want to predict the productivity of China’s grasslands in the future.

  3. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras.

    Science.gov (United States)

    Eiserhardt, Wolf L; Borchsenius, Finn; Plum, Christoffer M; Ordonez, Alejandro; Svenning, Jens-Christian

    2015-03-01

    When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non-random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly. © 2015 John Wiley & Sons Ltd/CNRS.

  4. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment

    NARCIS (Netherlands)

    Dorenbosch, M.; Bakker, E.S.

    2012-01-01

    1.Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on

  5. Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems

    Science.gov (United States)

    Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.

    2010-12-01

    Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.

  6. Development of climatic zones and passive solar design in Madagascar

    International Nuclear Information System (INIS)

    Rakoto-Joseph, O.; Garde, F.; David, M.; Adelard, L.; Randriamanantany, Z.A.

    2009-01-01

    Climate classification is extremely useful to design buildings for thermal comfort purposes. This paper presents the first work for a climate classification of Madagascar Island. This classification is based on the meteorological data measured in different cities of this country. Three major climatic zones are identified. Psychometric charts for the six urban areas of Madagascar are proposed, and suited passive solar designs related to each climate are briefly discussed. Finally, a total of three passive design zones have been identified and appropriate design strategies such as solar heating, natural ventilation, thermal mass are suggested for each zone. The specificity of this work is that: it is the first published survey on the climate classification and the passive solar designs for this developing country

  7. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  8. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered.

    Science.gov (United States)

    Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer

    2018-05-01

    The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.

  9. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    Science.gov (United States)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  10. On validation of the rain climatic zone designations for Nigeria

    Science.gov (United States)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2017-07-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  11. Land use strategies to mitigate climate change in carbon dense temperate forests.

    Science.gov (United States)

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  12. Land use strategies to mitigate climate change in carbon dense temperate forests

    Science.gov (United States)

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  13. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    Science.gov (United States)

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones.

  14. Hair coat properties of donkeys, mules and horses in a temperate climate.

    Science.gov (United States)

    Osthaus, B; Proops, L; Long, S; Bell, N; Hayday, K; Burden, F

    2018-05-01

    There are clear differences between donkeys and horses in their evolutionary history, physiology, behaviour and husbandry needs. Donkeys are often kept in climates that they are not adapted to and as such may suffer impaired welfare unless protection from the elements is provided. To compare some of the hair coat properties of donkeys, mules and horses living outside, throughout the year, in the temperate climate of the UK. Longitudinal study. Hair samples were taken from 42 animals: 18 donkeys (4 females, 14 males), 16 horses (6 females, 10 males) and eight mules (5 females, 3 males), in March, June, September and December. The weight, length and width of hair were measured, across the four seasons, as indicators of the hair coat insulation properties. Donkeys' hair coats do not significantly differ across the seasons. All three measurements of the insulation properties of the hair samples indicate that donkeys do not grow a winter coat and that their hair coat was significantly lighter, shorter and thinner than that of horses and mules in winter. In contrast, the hair coats of horses changed significantly between seasons, growing thicker in winter. The measurements cover only a limited range of features that contribute to the thermoregulation of an animal. Further research is needed to assess shelter preferences by behavioural measures, and absolute heat loss via thermoimaging. Donkeys, and to a lesser extent mules, appear not to be as adapted to colder, wet climates as horses, and may therefore require additional protection from the elements, such as access to a wind and waterproof shelter, in order for their welfare needs to be met. © 2017 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  15. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    Science.gov (United States)

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-02-14

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  16. Prediction of spatial patterns of collapsed pipes in loess-derived soils in a temperate humid climate using logistic regression

    Science.gov (United States)

    Verachtert, E.; Den Eeckhaut, M. Van; Poesen, J.; Govers, G.; Deckers, J.

    2011-07-01

    Soil piping (tunnel erosion) has been recognised as an important erosion process in collapsible loess-derived soils of temperate humid climates, which can cause collapse of the topsoil and formation of discontinuous gullies. Information about the spatial patterns of collapsed pipes and regional models describing these patterns is still limited. Therefore, this study aims at better understanding the factors controlling the spatial distribution and predicting pipe collapse. A dataset with parcels suffering from collapsed pipes (n = 560) and parcels without collapsed pipes was obtained through a regional survey in a 236 km² study area in the Flemish Ardennes (Belgium). Logistic regression was applied to find the best model describing the relationship between the presence/absence of a collapsed pipe and a set of independent explanatory variables (i.e. slope gradient, drainage area, distance-to-thalweg, curvature, aspect, soil type and lithology). Special attention was paid to the selection procedure of the grid cells without collapsed pipes. Apart from the first piping susceptibility map created by logistic regression modelling, a second map was made based on topographical thresholds of slope gradient and upslope drainage area. The logistic regression model allowed identification of the most important factors controlling pipe collapse. Pipes are much more likely to occur when a topographical threshold depending on both slope gradient and upslope area is exceeded in zones with a sufficient water supply (due to topographical convergence and/or the presence of a clay-rich lithology). On the other hand, the use of slope-area thresholds only results in reasonable predictions of piping susceptibility, with minimum information.

  17. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010.

    Science.gov (United States)

    Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei

    2015-02-01

    Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.

  18. Plants for passive cooling. A preliminary investigation of the use of plants for passive cooling in temperate humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Spirn, A W; Santos, A N; Johnson, D A; Harder, L B; Rios, M W

    1981-04-01

    The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.

  19. Thermal Regime of A Deep Temperate Lake and Its Response to Climate Change: Lake Kuttara, Japan

    Directory of Open Access Journals (Sweden)

    Kazuhisa A. Chikita

    2018-02-01

    Full Text Available A deep temperate lake, Lake Kuttara, Hokkaido, Japan (148 m deep at maximum was completely ice-covered every winter in the 20th century. However, ice-free conditions of the lake over winter occurred three times in the 21st century, which is probably due to global warming. In order to understand how thermal regime of the lake responds to climate change, a change in lake mean water temperature from the heat storage change was calculated by integrating observed water temperature over water depths and by numerical calculation of heat budget components based on hydrometeorological data. As a result, a temporal variation of lake mean water temperature from the heat budget calculation was very reasonable to that from the observed water temperature (determination coefficient R2 = 0.969. The lowest lake mean temperature for non-freeze was then evaluated at −1.87 °C, referring to the zero level at 6.80 °C. The 1978–2017 data at a meteorological station near Kuttara indicated that there are significant (less than 5% level long-term trends for air temperature (+0.024 °C/year and wind speed (−0.010 m/s/year. In order to evaluate the effects of climate change on freeze-up patterns, a sensitivity analysis was carried out for the calculated lake mean water temperature. It is noted that, after two decades, the lake could be ice-free once per every two years.

  20. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought.

    Science.gov (United States)

    D'Orangeville, Loïc; Maxwell, Justin; Kneeshaw, Daniel; Pederson, Neil; Duchesne, Louis; Logan, Travis; Houle, Daniel; Arseneault, Dominique; Beier, Colin M; Bishop, Daniel A; Druckenbrod, Daniel; Fraver, Shawn; Girard, François; Halman, Joshua; Hansen, Chris; Hart, Justin L; Hartmann, Henrik; Kaye, Margot; Leblanc, David; Manzoni, Stefano; Ouimet, Rock; Rayback, Shelly; Rollinson, Christine R; Phillips, Richard P

    2018-02-20

    Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ 50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors. © 2018 John Wiley & Sons Ltd.

  1. Genetic structure of Leptopilina boulardi populations from different climatic zones of Iran

    NARCIS (Netherlands)

    Seyahooei, M.A.; van Alphen, J.J.M.; Kraaijeveld, K.

    2011-01-01

    Background The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in Leptopilina boulardi, a parasitoid of Drosophila of African origin and widely distributed over temperate and (sub) tropical climates.

  2. Mapping urban climate zones and quantifying climate behaviors - An application on Toulouse urban area (France)

    Energy Technology Data Exchange (ETDEWEB)

    Houet, Thomas, E-mail: thomas.houet@univ-tlse2.fr [GEODE UMR 5602 CNRS, Universite de Toulouse, 5 allee Antonio Machado, 31058 Toulouse Cedex (France); Pigeon, Gregoire [Centre National de Recherches Meteorologiques, Meteo-France/CNRM-GAME, 42 avenue Coriolis, 31057 Toulouse Cedex (France)

    2011-08-15

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone-UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. - Highlights: > We proposed a method to map Urban Climate Zones and quantify their climate behaviors. > UCZ is an expert-based classification and is integrated in the WMO guidelines. > We classified 26 sample areas and quantified climate behaviors in winter/summer. > Results enhance urban heat islands and outskirts are surprisingly hottest in summer. > Influence of scale and climate data on UCZ mapping and climate evaluation is discussed. - This paper presents an automated approach to classify sample areas in a UCZ using landscape descriptors and demonstrate that climate behaviors of UCZ differ.

  3. Effect of temperate climate tree species on gross ammonification, gross nitrification and N2O formation

    Science.gov (United States)

    Brüggemann, N.; Rosenkranz, P.; Papen, H.; Butterbach-Bahl, K.

    2003-04-01

    Microbial nitrogen turnover processes in the soil, like ammonification, nitrification and denitrification, play an important role in the formation of nitrous oxide (N2O): (i) ammonification, because it releases nitrogen from organic material in the form of ammonium (NH4+), which in turn can serve as substrate for nitrification; (ii) nitrification itself (i.e. the turnover of NH4+ to nitrate, NO3-), during which nitric oxide (NO) and N2O can be released as by-products at varying ratios; (iii) denitrification, in which NO3- serves as electron acceptor and is converted to molecular nitrogen (N2) via NO and N2O as intermediates, that can also be partially lost to the atmosphere. Temperate forest soils are a substantial source of atmospheric N2O contributing up to 10% to the total atmospheric N2O budget. However, this figure is afflicted with a huge uncertainty due to a number of factors governing the soil N2O formation, consumption, release and uptake, which are not fully understood at present. To one of these factors belongs the influence of the tree species on nitrogen turnover processes in the soil and the formation of N trace gases related with them. The aim of the present work was to analyse this tree species effect for the temperate climate region. For this purpose the effect of five different temperate tree species, having the same age and growing on the same soil in direct vicinity to each other, on gross ammonification and gross nitrification as well as on N2O formation was investigated. The trees (common beech, Fagus sylvatica; pedunculate oak, Quercus robur; Norway spruce, Picea abies; Japanese larch, Larix leptolepis; mountain pine, Pinus mugo) were part of a species trial in Western Jutland, Denmark, established in 1965 on a former sandy heathland. Samples from the soil under these five tree species were taken in spring and in summer 2002, respectively, differentiating between organic layer and mineral soil. The gross rates of ammonification as well of

  4. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system

    Science.gov (United States)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál

    2018-01-01

    In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.

  5. Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates

    International Nuclear Information System (INIS)

    Favoino, Fabio; Fiorito, Francesco; Cannavale, Alessandro; Ranzi, Gianluca; Overend, Mauro

    2016-01-01

    Highlights: • The features and properties of photovoltachromic switchable glazing are presented. • The different possible control strategies for the switchable glazing are presented. • Thermal and daylight performance are co-simulated for rule-based and optimal control. • A novel building performance simulation framework is developed for this aim. • Switchable glazing performance is compared for different controls and climates. - Abstract: The development of adaptive building envelope technologies, and particularly of switchable glazing, can make significant contributions to decarbonisation targets. It is therefore essential to quantify their effect on building energy use and indoor environmental quality when integrated into buildings. The evaluation of their performance presents new challenges when compared to conventional “static” building envelope systems, as they require design and control aspects to be evaluated together, which are also mutually interrelated across thermal and visual physical domains. This paper addresses these challenges by presenting a novel simulation framework for the performance evaluation of responsive building envelope technologies and, particularly, of switchable glazing. This is achieved by integrating a building energy simulation tool and a lighting simulation one, in a control optimisation framework to simulate advanced control of adaptive building envelopes. The performance of a photovoltachromic glazing is evaluated according to building energy use, Useful Daylight Illuminance, glare risk and load profile matching indicators for a sun oriented office building in different temperate climates. The original architecture of photovoltachromic cell provides an automatic control of its transparency as a function of incoming solar irradiance. However, to fully explore the building integration potential of photovoltachromic technology, different control strategies are evaluated, from passive and simple rule based controls, to

  6. Economic feasibility of biochar application to soils in temperate climate regions

    Science.gov (United States)

    Soja, Gerhard; Bücker, Jannis; Gunczy, Stefan; Kitzler, Barbara; Klinglmüller, Michaela; Kloss, Stefanie; Watzinger, Andrea; Wimmer, Bernhard; Zechmeister-Boltenstern, Sophie; Zehetner, Franz

    2014-05-01

    The findings that fertility improvements in tropical soils have been successfully mediated by biochar applications have caused wide-spread interest to use biochar as a soil amendment also for soils in temperate climate regions. But these soils in intensively cultivated regions are not always as acidic or sandy as the tropical Ferralsols where biochar is most effective. Therefore it is not self-evident that different soil characteristics allow biochar to display the same benefits if site-specific demands for the optimal organic soil amendment are not considered. This study pursued the objective to study the extent of benefits that biochar could provide for crops on two typical Austrian agricultural soils in a two-year field experiment. An economic evaluation assessed the local biochar production costs and compared them with the value of the observed biochar benefits. From a business economic viewpoint, currently high costs of biochar are not balanced by only moderate increases in crop yields and thus agricultural revenues. Improved water retention due to biochar, however, might justify biochar as an adaptation measure to global warming, especially when considering beside business economic aspects also overall economic aspects. When not assuming total crop failures but only increased soil fertility, even an inclusion of avoided social (=societal) costs by sequestering carbon and thereby helping to mitigate climate change do not economically justify the application of biochar. Price of biochar would need to decrease by at least 40 % to achieve a break-even from the overall economic viewpoint (if optimistic assumptions about the social value of sequestered carbon are applied; at pessimistic assumptions price for biochar must decrease even more in order to break even). When applying an alternative type of soil treatment of using modified biochar but avoiding additional N-fertilization, a similar picture arises: Social benefits due to avoided N-fertilization and

  7. Climate Change Literacy across the Critical Zone Observatory Network

    Science.gov (United States)

    Moore, A.; Derry, L. A.; Zabel, I.; Duggan-Haas, D.; Ross, R. M.

    2017-12-01

    Earth's Critical Zone extends from the top of the tree canopy to the base of the groundwater lens. Thus the Critical Zone is examined as a suite of interconnected systems and study of the CZ is inherently interdisciplinary. Climate change is an important driver of CZ processes. The US Critical Zone Observatory Network comprises nine observatories and a coordinating National Office. Educational programs and materials developed at each CZO and the National Office have been collected, reviewed, and presented on-line at the CZONO (criticalzone.org/national/education-outreach/resources). Because the CZOs are designed to observe and measure a suite of common parameters on varying geological substrates and within different ecological contexts, educational resources reflect the diversity of processes represented across the network. As climate change has a network-wide impact, the fundamental building blocks of climate change literacy are key elements in many activities within the CZONO resource collection. Carbon-cycle and hydrologic cycle processes are well-represented, with emphasis on human interactions with these resources, as well as the impact of extreme events and the changing climate. Current work on the resource collection focuses on connecting individual resources to "Teach Climate Science" project and the Teacher-Friendly Guide to Climate Change (teachclimatescience.wordpress.com). The Teacher-Friendly Guide is a manual for K-12 teachers that presents both the fundamentals of climate science alongside resources for effective teaching of this controversial topic. Using the reach of the CZO network we hope to disseminate effective climate literacy resources and support to the K-12 community.

  8. Environmental Survival of Mycobacterium avium subsp. paratuberculosis in Different Climatic Zones of Eastern Australia

    Science.gov (United States)

    Begg, Douglas J.; Dhand, Navneet K.; Watt, Bruce; Whittington, Richard J.

    2014-01-01

    The duration of survival of both the S and C strains of Mycobacterium avium subsp. paratuberculosis in feces was quantified in contrasting climatic zones of New South Wales, Australia, and detailed environmental temperature data were collected. Known concentrations of S and C strains in feces placed on soil in polystyrene boxes were exposed to the environment with or without the provision of shade (70%) at Bathurst, Armidale, Condobolin, and Broken Hill, and subsamples taken every 2 weeks were cultured for the presence of M. avium subsp. paratuberculosis. The duration of survival ranged from a minimum of 1 week to a maximum of 16 weeks, and the provision of 70% shade was the most important factor in extending the survival time. The hazard of death for exposed compared to shaded samples was 20 and 9 times higher for the S and C strains, respectively. Site did not affect the survival of the C strain, but for the S strain, the hazard of death was 2.3 times higher at the two arid zone sites (Broken Hill and Condobolin) than at the two temperate zone sites (Bathurst and Armidale). Temperature measurements revealed maximum temperatures exceeding 60°C and large daily temperature ranges at the soil surface, particularly in exposed boxes. PMID:24463974

  9. Effects of climate variability and functional changes on carbon cycling in a temperate deciduous forest

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian

    2013-03-15

    Temperate forests are globally important carbon (C) stocks and sinks. A decadal (1997-2009) trend of increasing C uptake has been observed in an intensively studied temperate deciduous forest, Soroe (Zealand, Denmark). This gave the impetus to investigate the factors controlling the C cycling and the fundamental processes at work in this type of ecosystem. The major objectives of this study were to (1) evaluate to what extent and at what temporal scales, direct climatic variability and functional changes (e.g. changes in the structure or physiological properties) regulate the interannual variability (IAV) in the ecosystem C balance; (2) provide a synthesis of the ecosystem C budget at this site and (3) investigate whether terrestrial ecosystem models can dynamically simulate the trend of increasing C uptake. Data driven analysis, semi-empirical and process-based modelling experiments were performed in a series of studies in order to provide a complete assessment of the carbon storage and allocation within the ecosystem and clarify the mechanisms responsible for the observed variability and trend in the ecosystem C fluxes. Combining all independently estimated ecosystem carbon budget (ECB) datasets and other calculated ECB components based on mass balance equations, a synthesis of the carbon cycling was performed. The results showed that this temperature deciduous forest was moderately productive with both high rates of gross primary production and ecosystem respiration. Approximately 62% of the gross assimilated carbon was respired by the living plants, while 21% was contributed to the soil as litter production, the latter balancing the total heterotrophic respiration. The remaining 17% was either stored in the plants (mainly as aboveground biomass) or removed from the system as wood production. In general, the ECB component datasets were consistent after the cross-checking. This, together with their characterized uncertainties, can be used in model data fusion

  10. Gas production analysis of a fixed-dome digester operated under temperate climates in central Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Castano, J.; Martin, J.F.; Ciotola, R.; Schlea, D.; Eger, C. [Ohio State Univ., Columbus, OH (United States). Ecological Engineering Program

    2010-07-01

    Anaerobic digestion is not used in small farms in the United States because of the high costs and large size of existing digesters. More affordable digesters are needed to realize the environmental and energetic benefits on smaller farms in temperate climates. Field and laboratory experiments were conducted to determine the effects of seasonal temperature variation on gas production. Once a baseline for gas production and digester function is determined, then methods can be identified to increase gas production in these conditions. A 1 cubic metre modified fixed-dome digester was buried just below the soil surface at the Ohio State University dairy farm. The digester was fed with 1 kg/m{sup 3} per day of diluted cow manure. The kinetics associated with 6 specific anaerobic trophic groups at 5 and 15 degrees C were determined through laboratory experiments. The average ambient temperature from October through December 2009 was 7.2 degrees C, while the average digester temperature was 8.6 degrees C. The average specific gas production during this period was 0.01746 litres/Kg of volatile solids (VS). Preliminary results showed an average reduction of 44 per cent in VS and volatile fatty acids concentration of 8441 mg/litre inside the digester, from which 61 per cent, 26 per cent, 1 per cent, 7 per cent, and 5 per cent were acetic, propionic, isobutyric, isovaleric and valeric acids, respectively. These preliminary results suggest that the decreasing gas production is associated with a kinetic constraint for a specific trophic group.

  11. Reproductive performance of different breeds of broiler rabbits under sub-temperate climatic conditions

    Directory of Open Access Journals (Sweden)

    D. Kumar

    2013-09-01

    Full Text Available This study was conducted to assess the effect of breed, season, age and weight of doe at mating on reproductive performance of 4 broiler rabbit breeds, Grey Giant, White Giant, Soviet Chinchilla, and New Zealand White, reared under standard management practices in sub-temperate climatic conditions of India. They were first mated at 6 to 7 mo of age, whereupon an extensive breeding system (re-mating after weaning was followed. Weaning was done 42 d after kindling. The data from the records on reproduction consisting of 503 matings and 377 kindlings were analysed. The parameters considered were fertility rate, litter size at birth (LSB, litter weight at birth (LWB, litter size at weaning (LSW, litter weight at weaning (LWW, doe weight at mating (DWM, gestation length and sex ratio. Among 4 breeds, the LSB, LWB and LSW were higher in Grey Giant followed by White Giant, Soviet Chinchilla and New Zealand White. The LSB and LSW in Grey Giant breed differed significantly (P<0.05 from Soviet Chinchilla and New Zealand White. Season had significant (P<0.05 effect on LSW with higher values during spring (5.68±0.24, followed by summer (5.29±0.30, winter (5.13±0.25 and autumn (4.17±0.49. The body weight of doe at service significantly influenced fertility. The fertility increased as body weight increased. The age of the doe at mating had a significant effect on LSW, with higher values for does more than 2 yr and less than 1 yr old compared to 1- to 2-yr old does. The parity did not affect any of the parameters studied. It is concluded that the factors studied affect the reproductive performance of rabbit does. Grey Giant breed showed the highest litter size at birth and weaning, and the highest litter size and weight at weaning was in spring.

  12. Habitat use by larval fishes in a temperate South African surf zone

    Science.gov (United States)

    Watt-Pringle, Peter; Strydom, Nadine A.

    2003-12-01

    Larval fishes were sampled in the Kwaaihoek surf zone on the south east coast of South Africa. On six occasions between February and May 2002, larval fishes were collected in two habitat types identified in the inner surf zone using a modified beach-seine net. The surf zone habitats were classified as either sheltered trough areas or adjacent exposed surf areas. Temperature, depth and current measurements were taken at all sites. Trough habitats consisted of a depression in surf topography characterised by reduced current velocities and greater average depth than adjacent surf areas. In total, 325 larval fishes were collected. Of these, 229 were collected in trough and 96 in surf habitats. At least 22 families and 37 species were represented in the catch. Dominant families were the Mugilidae, Sparidae, Atherinidae, and Engraulidae. Dominant species included Liza tricuspidens and Liza richardsonii (Mugilidae), Rhabdosargus holubi and Sarpa salpa (Sparidae), Atherina breviceps (Atherinidae) and Engraulis japonicus (Engraulide). Mean CPUE of postflexion larvae of estuary-dependent species was significantly greater in trough areas. The proportion of postflexion larval fishes in trough habitat was significantly greater than that of preflexion stages, a result that was not apparent in surf habitat sampled. CPUE of postflexion larvae of estuary-dependent fishes was negatively correlated with current magnitude and positively correlated with habitat depth. Mean body length of larval fishes was significantly greater in trough than in surf habitats. These results provide evidence that the CPUE of postflexion larvae of estuary-dependent fishes is higher in trough habitat in the surf zone and this may be indicative of active habitat selection for areas of reduced current velocity/wave action. The implications of this behaviour for estuarine recruitment processes are discussed.

  13. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D

    2017-07-01

    Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  14. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.

    2017-01-01

    Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  15. Latitude, elevational climatic zonation and speciation in New World vertebrates

    DEFF Research Database (Denmark)

    Cadena, Carlos Daniel; Kozak, Kenneth H.; Gomez, Juan Pablo

    2012-01-01

    in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate...

  16. Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models

    Science.gov (United States)

    Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin

    2010-09-01

    After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.

  17. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  18. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    Science.gov (United States)

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  19. Climate Change Impacts on the Mediterranean Coastal Zones

    International Nuclear Information System (INIS)

    Brochier, F.; Ramieri, E.

    2001-04-01

    The main objective of this paper is to highlight the potential impacts of changes in climatic conditions and in related variables, which could affect coastal areas, as well as to identify potential response measures which could reduce the vulnerability of coastal systems and enhance their adaptability. Attention will be focused on the Mediterranean basin which is in the climate change context, a zone of great interest and of recent concern at the world scale by some features: strong ocean-atmosphere-land interactions; contrast between the small size of the sea and its significant role in the global climate system; possibility to use it at a scaled down model for the monitoring of environmental and climate evolution; critical environmental conditions of some areas and high human pressure; and strong geographical, socio-economic and climatic contrasts. The first section provides an introduction to the climate change issue, the past trends and the projections of future climate at the global scale. The second section presents the main features of the Mediterranean basin and some relevant regional projections of future climatic variables. The third section focuses on the main likely impacts on the Mediterranean coasts. Different coastal systems - such as islands, deltas, estuaries, coastal wetlands and coastal cities - and different climate change impacts - such as inundation, increased flooding, salinisation, salt water intrusion, desertification, and increased erosion - are addressed in this section. Finally the last section brings some conclusions and identify some strategies of adaptations and directions for future research aimed at improving our ability to predict and assess the local impacts of climate change in the region

  20. Rainfall distribution and change detection across climatic zones in Nigeria

    OpenAIRE

    Stephen Bunmi Ogungbenro; Tobi Eniolu Morakinyo

    2014-01-01

    Nigerian agriculture is mainly rain-fed and basically dependent on the vagaries of weather especially rainfall. Nigeria today has about forty-four (44) weather observation stations which provide measurement of rainfall amount for different locations across the country. Hence, this study investigates change detection in rainfall pattern over each climatic zone of Nigeria. Data were collected for 90 years (1910–1999) period for all the weather observation stations in Nigeria, while a subdivisio...

  1. Downscaling NASA Climatological Data to Produce Detailed Climate Zone Maps

    Science.gov (United States)

    Chandler, William S.; Hoell, James M.; Westberg, David J.; Whitlock, Charles H.; Zhang, Taiping; Stackhouse, P. W.

    2011-01-01

    The design of energy efficient sustainable buildings is heavily dependent on accurate long-term and near real-time local weather data. To varying degrees the current meteorological networks over the globe have been used to provide these data albeit often from sites far removed from the desired location. The national need is for access to weather and solar resource data accurate enough to use to develop preliminary building designs within a short proposal time limit, usually within 60 days. The NASA Prediction Of Worldwide Energy Resource (POWER) project was established by NASA to provide industry friendly access to globally distributed solar and meteorological data. As a result, the POWER web site (power.larc.nasa.gov) now provides global information on many renewable energy parameters and several buildings-related items but at a relatively coarse resolution. This paper describes a method of downscaling NASA atmospheric assimilation model results to higher resolution and maps those parameters to produce building climate zone maps using estimates of temperature and precipitation. The distribution of climate zones for North America with an emphasis on the Pacific Northwest for just one year shows very good correspondence to the currently defined distribution. The method has the potential to provide a consistent procedure for deriving climate zone information on a global basis that can be assessed for variability and updated more regularly.

  2. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    Science.gov (United States)

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  3. Co-occurrence of viruses and mosquitoes at the vectors' optimal climate range: An underestimated risk to temperate regions?

    Science.gov (United States)

    Blagrove, Marcus S C; Caminade, Cyril; Waldmann, Elisabeth; Sutton, Elizabeth R; Wardeh, Maya; Baylis, Matthew

    2017-06-01

    Mosquito-borne viruses have been estimated to cause over 100 million cases of human disease annually. Many methodologies have been developed to help identify areas most at risk from transmission of these viruses. However, generally, these methodologies focus predominantly on the effects of climate on either the vectors or the pathogens they spread, and do not consider the dynamic interaction between the optimal conditions for both vector and virus. Here, we use a new approach that considers the complex interplay between the optimal temperature for virus transmission, and the optimal climate for the mosquito vectors. Using published geolocated data we identified temperature and rainfall ranges in which a number of mosquito vectors have been observed to co-occur with West Nile virus, dengue virus or chikungunya virus. We then investigated whether the optimal climate for co-occurrence of vector and virus varies between "warmer" and "cooler" adapted vectors for the same virus. We found that different mosquito vectors co-occur with the same virus at different temperatures, despite significant overlap in vector temperature ranges. Specifically, we found that co-occurrence correlates with the optimal climatic conditions for the respective vector; cooler-adapted mosquitoes tend to co-occur with the same virus in cooler conditions than their warmer-adapted counterparts. We conclude that mosquitoes appear to be most able to transmit virus in the mosquitoes' optimal climate range, and hypothesise that this may be due to proportionally over-extended vector longevity, and other increased fitness attributes, within this optimal range. These results suggest that the threat posed by vector-competent mosquito species indigenous to temperate regions may have been underestimated, whilst the threat arising from invasive tropical vectors moving to cooler temperate regions may be overestimated.

  4. Predicting Impacts of Climate Change on the Aboveground Carbon Sequestration Rate of a Temperate Forest in Northeastern China

    Science.gov (United States)

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species. PMID:24763409

  5. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Science.gov (United States)

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  6. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available The aboveground carbon sequestration rate (ACSR reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0 was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  7. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia

    Science.gov (United States)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed

  8. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions.

    Science.gov (United States)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  9. Effects of Environmental Factors on the Disinfection Performance of a Wastewater Stabilization Pond Operated in a Temperate Climate

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-12-01

    Full Text Available Treatment in a wastewater stabilization pond (WSP relies on natural purification processes, which can be sensitive to both location and climate. This study investigated the effects of three environmental factors, pH, dissolved oxygen (DO and temperature, on disinfection efficiency in a WSP system consisting of three facultative cells, and operated in a temperate climate region, in Eastern Ontario, Canada. Indicator organism (Escherichia coli (E. coli removal in WSP systems is driven by a combination of different factors. Elevated pH and DO concentrations, which are attributed to the presence of algae, are important factors for effective disinfection. Therefore, the presence of algae in natural wastewater treatment systems can contribute appreciably to disinfection. Consequently, based on algal concentrations, removal efficiencies of pathogenic microorganisms during wastewater treatment over the course of a year can be highly variable, where higher removal efficiencies would be expected in summer and fall seasons.

  10. Climatic zones of solar radiation of Galicia; Zonas climaticas de radiacion solar de Galicia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Izquierdo, P.; Pose, M.; Prado, M. T.; Santos, J.

    2008-07-01

    The paper shows the results of a research on the solar radiation received in Galicia that allows assigning each one of the 315 Galician municipalities to one of the Climatic Zones of solar radiation, defined in the Spanish Building Technical Code (BTC). It is proposed to complete the assignment of climatic Zones in the BTC with a new zone, named Climatic Zone 0, with the objective to differentiate the geographical areas in Galicia with less than 3.4 kWh/m{sup 2}.day of yearly daily average solar radiation. The study is completed with the realization of a map of the Climate Zones of solar radiation of Galicia. (Author)

  11. Migration of heavy natural radionuclides in a humid climatic zone

    International Nuclear Information System (INIS)

    Titaeva, N.A.; Alexakhin, R.M.; Taskaev, A.I.; Maslov, V.I.

    1980-01-01

    Regularities and biochemical peculiarities of the migrations of heavy natural radionuclides in the environment are examined, with special reference to two regions in a humid climatic zone representing natural patterns of radionuclide distribution and to four plots artificially contaminated with high levels of natural radioactivity more than 20 years previously. It was determined that the migration of thorium, uranium, and radium isotopes through the rock-water-soil-plant system is dependent on many physiochemical properties of these radionuclides, their compounds, and the local environment. Isotopic activity ratios provide a useful tool for studying the direction of radionuclide migration and its influence on observed distribution patterns

  12. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    Science.gov (United States)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest

  13. Estimating Climate Trends: Application to United States Plant Hardiness Zones

    Directory of Open Access Journals (Sweden)

    Nir Y. Krakauer

    2012-01-01

    Full Text Available The United States Department of Agriculture classifies plant hardiness zones based on mean annual minimum temperatures over some past period (currently 1976–2005. Since temperatures are changing, these values may benefit from updating. I outline a multistep methodology involving imputation of missing station values, geostatistical interpolation, and time series smoothing to update a climate variable’s expected value compared to a climatology period and apply it to estimating annual minimum temperature change over the coterminous United States. I show using hindcast experiments that trend estimation gives more accurate predictions of minimum temperatures 1-2 years in advance compared to the previous 30 years’ mean alone. I find that annual minimum temperature increased roughly 2.5 times faster than mean temperature (~2.0 K versus ~0.8 K since 1970, and is already an average of 1.2  0.5 K (regionally up to ~2 K above the 1976–2005 mean, so that much of the country belongs to warmer hardiness zones compared to the current map. The methods developed may also be applied to estimate changes in other climate variables and geographic regions.

  14. Data on experiments result of three identical huts with shape-stabilized phase change materials in Japanese temperate climate

    Directory of Open Access Journals (Sweden)

    Hyun Bae Kim

    2018-04-01

    Full Text Available The data in this article are the experimental results of three identical huts (Hut A, B and C, which were examined by using varying shape-stabilized PCMs (SSPCMs sheet levels under natural and heating conditions in winter of Chiba prefecture where Japanese temperate climate. The SSPCMs sheet established the melting and solidification-temperature ranged at 19–26 °C were used. In Hut A, no SSPCM sheets were applied; in Hut B, four layers of SSPCM sheets were applied to the floor; in Hut C, one layer of SSPCM was applied to the floor, walls, and ceilings. The data provide information on the application of SSPCM sheets to improve indoor stabilization and the heating load reduction effects.

  15. Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa

    2014-01-01

    An in-situ13C pulse-labeling experiment was carried out in a temperate heath/grassland to study the impacts of elevated CO2 concentration (510ppm), prolonged summer droughts (annual exclusion of 7.6±0.8%) and increased temperature (~1°C) on belowground carbon (C) utilization. Recently assimilated C...... (13C from the pulse-label) was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in different microbial functional groups on the basis of phospholipid fatty acid...... (PLFA) biomarker profiles. Climate treatments did not affect microbial abundance in soil or rhizosphere fractions in terms of total PLFA-C concentration. Elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy), but did not affect the abundance of decomposers (fungi...

  16. Tropical and Highland Temperate Forest Plantations in Mexico: Pathways for Climate Change Mitigation and Ecosystem Services Delivery

    Directory of Open Access Journals (Sweden)

    Vidal Guerra-De la Cruz

    2017-12-01

    Full Text Available Forest plantations are a possible way of increasing forest productivity in temperate and tropical forests, and therefore also increasing above- and belowground carbon pools. In the context of climate change, monospecific plantations might become an alternative to mitigate global warming; however, their contribution to the structural complexity, complementarity, and biodiversity of forests has not been addressed. Mixed forest plantations can ensure that objectives of climate change mitigation are met through carbon sequestration, while also delivering anticipated ecosystem services (e.g., nutrient cycling, erosion control, and wildlife habitat. However, mixed forest plantations pose considerable operational challenges and research opportunities. For example, it is essential to know how many species or functional traits are necessary to deliver a set of benefits, or what mixture of species and densities are key to maintaining productive plantations and delivering multiple ecosystem services. At the same time, the establishment of forest plantations in Mexico should not be motivated solely by timber production. Forest plantations should also increase carbon sequestration, maintain biodiversity, and provide other ecosystem services. This article analyzes some matters that affect the development of planted forests in the Mexican national context, and presents alternatives for forest resources management through the recommendation of mixed forest plantations as a means of contributing to climate change mitigation and the delivery of ecosystem services.

  17. Changes in the world rivers' discharge projected from an updated high resolution dataset of current and future climate zones

    Science.gov (United States)

    Santini, Monia; di Paola, Arianna

    2015-12-01

    In this paper, an updated global map of the current climate zoning and of its projections, according to the Köppen-Geiger classification, is first provided. The map at high horizontal resolution (0.5° × 0.5°), representative of the current (i.e. 1961-2005) conditions, is based on the Climate Research Unit dataset holding gridded series of historical observed temperature and precipitation, while projected conditions rely on the simulated series, for the same variables, by the General Circulation Model CMCC-CM. Modeled variables were corrected for their bias and then projections of climate zoning were generated for the medium term (2006-2050) and long term (2056-2100) future periods, under RCP 4.5 and RCP 8.5 emission scenarios. Results show that Equatorial and Arid climates will spread at the expenses of Snow and Polar climates, with the Warm Temperate experiencing more moderate increase. Maps of climate zones are valuable for a wide range of studies on climate change and its impacts, especially those regarding the water cycle that is strongly regulated by the combined conditions of precipitation and temperature. As example of large scale hydrological applications, in this work we tested and implemented a spatial statistical procedure, the geographically weighted regression among climate zones' surface and mean annual discharge (MAD) at hydrographic basin level, to quantify likely changes in MAD for the main world rivers monitored through the Global Runoff Data Center database. The selected river basins are representative of more than half of both global superficial freshwater resources and world's land area. Globally, a decrease in MAD is projected both in the medium term and long term, while spatial differences highlight how some areas require efforts to avoid consequences of amplified water scarcity, while other areas call for strategies to take the opportunity from the expected increase in water availability. Also the fluctuations of trends between the

  18. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon FluxMeasurements ofMontanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander; Malenovský, Z.; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, M.; Vráblová, M.; Olejníčková, Julie; Špunda, V.; Marek, Michal V.

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 1-13 ISSN 1537-744X R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŽP(CZ) SP/2D1/93/07; GA MŠk(CZ) LM2010007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Chlorophyll fluorescence * carbon flux * forest ecosystems * Norway Spruce * temperate zone Subject RIV: EH - Ecology, Behaviour Impact factor: 1.730, year: 2012

  19. Integrating Climate and Ecosystem-Response Sciences in Temperate Western North American Mountains: The CIRMOUNT Initiative

    Science.gov (United States)

    Millar, C. I.; Fagre, D. B.

    2004-12-01

    Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate

  20. Northward shift of the agricultural climate zone under 21st-century global climate change.

    Science.gov (United States)

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  1. Internal Flow Management in a Multi-Zone Climate Control Unit

    NARCIS (Netherlands)

    Persis, C. De; Jessen, J.J.; Izadi-Zamanabadi, R.; Schiøler, H.

    2006-01-01

    In this contribution, we examine a dynamic model describing the evolution of internal climate conditions in a closed environment partitioned into zones for which different climate conditions must be guaranteed. The zones are not separated, large air masses are exchanged among them, and the behavior

  2. A distributed control algorithm for internal flow management in a multi-zone climate unit

    NARCIS (Netherlands)

    Persis, C. De; Jessen, J.J.; Izadi-Zamanabadi, R.; Schiøler, H.

    2008-01-01

    We examine a distributed control problem for internal flow management in a multi-zone climate unit. The problem consists of guaranteeing prescribed indoor climate conditions in a cascade connection of an arbitrarily large number of communicating zones, in which air masses are exchanged to redirect

  3. Internal flow management in a multi-zone climate control unit

    DEFF Research Database (Denmark)

    De Persis, C.; Jessen, Jan Jacob; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    In this contribution, we examine a dynamic model describing the evolution of internal climate conditions in a closed environment partitioned into zones for which different climate conditions must be guaranteed. The zones are not separated, large air masses are exchanged among them, and the behavior...

  4. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate.

    Science.gov (United States)

    Switanek, Matthew; Crailsheim, Karl; Truhetz, Heimo; Brodschneider, Robert

    2017-02-01

    Insect pollinators are essential to global food production. For this reason, it is alarming that honey bee (Apis mellifera) populations across the world have recently seen increased rates of mortality. These changes in colony mortality are often ascribed to one or more factors including parasites, diseases, pesticides, nutrition, habitat dynamics, weather and/or climate. However, the effect of climate on colony mortality has never been demonstrated. Therefore, in this study, we focus on longer-term weather conditions and/or climate's influence on honey bee winter mortality rates across Austria. Statistical correlations between monthly climate variables and winter mortality rates were investigated. Our results indicate that warmer and drier weather conditions in the preceding year were accompanied by increased winter mortality. We subsequently built a statistical model to predict colony mortality using temperature and precipitation data as predictors. Our model reduces the mean absolute error between predicted and observed colony mortalities by 9% and is statistically significant at the 99.9% confidence level. This is the first study to show clear evidence of a link between climate variability and honey bee winter mortality. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  5. Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperate Regions. Europe

    International Nuclear Information System (INIS)

    Maracchi, G.; Sirotenko, O.; Bindi, M.

    2005-01-01

    Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors

  6. Evaluating climate variability and management impacts on carbon dynamics of a temperate forest using a variety of techniques

    Science.gov (United States)

    Arain, M. A.

    2015-12-01

    Climate variability, extreme weather events, forest age and management history impacts carbon sequestration in forest ecosystems. A variety of measurement techniques such as eddy covariance, dendrochronology, automatic soil CO2 chambers and remote sensing are employed fully understand forest carbon dynamics. Here, we present carbon flux measurements from 2003-2014 in a 76-year old managed temperate pine ((-Pinus strobus L.) forest, near Lake Erie in southern Ontario, Canada. Forest was partially thinned (30% tree harvested) in 1983 and 2012. The thinning in 2012 did not significantly impact carbon fluxes as post-thinning fluxes were within the range of inter-annual variability. Mean annual post-thinning (2012-2104) gross ecosystem productivity (GEP) measure by the eddy covariance technique was 1518 ± 78 g C m-2 year-1 as compared to pre-thinning (2003-2011) GEP of 1384 ± 121 g C m-2·year-1. Over the same period, mean post-thinning net ecosystem productivity (NEP) was 185 ± 75 g C m-2 year-1 as compared to post-thinning NEP of 180 ± 70 g C m-2 year-1, indicating that pre-thinning NEP was not significantly different than post-thinning NEP. Only post-thinning mean annual ecosystem respiration (Re; 1322 ± 54 g C m-2 year-1) was higher than pre-thinning Re (1195 ± 101 g C m-2 year-1). Soil CO2 efflux measurements showed similar trends. We also evaluated the impacts of climate variability and management regime on the full life cycle of the forest using annual radial tree-ring growths from 15 trees and compared them with historical climate (temperature and precipitation) data. While the annual growth rates displayed weak correlation with long-term climatic records, the growth was generally reduced during years with extreme drought (-36% of mean annual precipitation) and extreme temperature variability (±0.6 - 1.0°C). Overall, forest was more sensitive to management regime than climate variability. It showed higher growth stress during low light condition after

  7. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.

    Science.gov (United States)

    Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik

    2015-08-01

    Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The

  8. Long-term vegetation changes in a temperate forest impacted by climate change

    Science.gov (United States)

    Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo

    2014-01-01

    Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...

  9. A first approach to calculate BIOCLIM variables and climate zones for Antarctica

    Science.gov (United States)

    Wagner, Monika; Trutschnig, Wolfgang; Bathke, Arne C.; Ruprecht, Ulrike

    2018-02-01

    For testing the hypothesis that macroclimatological factors determine the occurrence, biodiversity, and species specificity of both symbiotic partners of Antarctic lecideoid lichens, we present a first approach for the computation of the full set of 19 BIOCLIM variables, as available at http://www.worldclim.org/ for all regions of the world with exception of Antarctica. Annual mean temperature (Bio 1) and annual precipitation (Bio 12) were chosen to define climate zones of the Antarctic continent and adjacent islands as required for ecological niche modeling (ENM). The zones are based on data for the years 2009-2015 which was obtained from the Antarctic Mesoscale Prediction System (AMPS) database of the Ohio State University. For both temperature and precipitation, two separate zonings were specified; temperature values were divided into 12 zones (named 1 to 12) and precipitation values into five (named A to E). By combining these two partitions, we defined climate zonings where each geographical point can be uniquely assigned to exactly one zone, which allows an immediate explicit interpretation. The soundness of the newly calculated climate zones was tested by comparison with already published data, which used only three zones defined on climate information from the literature. The newly defined climate zones result in a more precise assignment of species distribution to the single habitats. This study provides the basis for a more detailed continental-wide ENM using a comprehensive dataset of lichen specimens which are located within 21 different climate regions.

  10. Effects of climate variability and functional changes on carbon cycling in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian

    and the fundamental processes at work in this type of ecosystem. The major objectives of this study were to (1) evaluate to what extent and at what temporal scales, direct climatic variability and functional changes (e.g. changes in the structure or physiological properties) regulate the interannual variability (IAV....... In general, the ECB component datasets were consistent after the cross-checking. This, together with their characterized uncertainties, can be used in model data fusion studies. The sensitivity of the C fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed...... seasonally. At the annual time scale, the IAV in net ecosystem exchange of CO2 (NEE) was mostly determined by changes in the ecosystem functional properties. This indicated that the processes controlling the function change need to be incorporated into the process-based ecosystem models. The process...

  11. Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP

    Directory of Open Access Journals (Sweden)

    Shabir A. Mir

    2016-12-01

    Full Text Available Due to overwhelming complex and vague nature of interactions between multiple factors describing agriculture, Multi-Criteria Decision Making (MCDM methods are widely used from farm to fork to facilitate systematic and transparent decision support, figure out multiple decision outcomes and equip decision maker with confident decision choices in order to choose best alternative. This research proposes a Fuzzy Analytical Hierarchy Process (FAHP based decision support to evaluate and prioritize important factors of rice production practices and constraints under temperate climatic conditions and provides estimate of weightings, which measure relative importance of critical factors of the crop under biotic, abiotic, socio-economic and technological settings. The results envisage that flood, drought, water logging, late sali, temperature and rainfall are important constraints. However, regulating transplantation time; maintaining planting density; providing training to the educated farmers; introducing high productive varieties like Shalimar Rice-1 and Jhelum; better management of nutrients, weeds and diseases are most important opportunities to enhance rice production in the region. Therefore, the proposed system supplements farmers with precise decision information about important rice production practices, opportunities and constraints.

  12. Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP)

    International Nuclear Information System (INIS)

    Mir, S.A.; Padma, T.

    2016-01-01

    Due to overwhelming complex and vague nature of interactions between multiple factors describing agriculture, Multi-Criteria Decision Making (MCDM) methods are widely used from farm to fork to facilitate systematic and transparent decision support, figure out multiple decision outcomes and equip decision maker with confident decision choices in order to choose best alternative. This research proposes a Fuzzy Analytical Hierarchy Process (FAHP) based decision support to evaluate and prioritize important factors of rice production practices and constraints under temperate climatic conditions and provides estimate of weightings, which measure relative importance of critical factors of the crop under biotic, abiotic, socio-economic and technological settings. The results envisage that flood, drought, water logging, late sali, temperature and rainfall are important constraints. However, regulating transplantation time; maintaining planting density; providing training to the educated farmers; introducing high productive varieties like Shalimar Rice-1 and Jhelum; better management of nutrients, weeds and diseases are most important opportunities to enhance rice production in the region. Therefore, the proposed system supplements farmers with precise decision information about important rice production practices, opportunities and constraints.

  13. Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP)

    Energy Technology Data Exchange (ETDEWEB)

    Mir, S.A.; Padma, T.

    2016-07-01

    Due to overwhelming complex and vague nature of interactions between multiple factors describing agriculture, Multi-Criteria Decision Making (MCDM) methods are widely used from farm to fork to facilitate systematic and transparent decision support, figure out multiple decision outcomes and equip decision maker with confident decision choices in order to choose best alternative. This research proposes a Fuzzy Analytical Hierarchy Process (FAHP) based decision support to evaluate and prioritize important factors of rice production practices and constraints under temperate climatic conditions and provides estimate of weightings, which measure relative importance of critical factors of the crop under biotic, abiotic, socio-economic and technological settings. The results envisage that flood, drought, water logging, late sali, temperature and rainfall are important constraints. However, regulating transplantation time; maintaining planting density; providing training to the educated farmers; introducing high productive varieties like Shalimar Rice-1 and Jhelum; better management of nutrients, weeds and diseases are most important opportunities to enhance rice production in the region. Therefore, the proposed system supplements farmers with precise decision information about important rice production practices, opportunities and constraints.

  14. Disaggregating Tropical Disease Prevalence by Climatic and Vegetative Zones within Tropical West Africa.

    Science.gov (United States)

    Beckley, Carl S; Shaban, Salisu; Palmer, Guy H; Hudak, Andrew T; Noh, Susan M; Futse, James E

    2016-01-01

    Tropical infectious disease prevalence is dependent on many socio-cultural determinants. However, rainfall and temperature frequently underlie overall prevalence, particularly for vector-borne diseases. As a result these diseases have increased prevalence in tropical as compared to temperate regions. Specific to tropical Africa, the tendency to incorrectly infer that tropical diseases are uniformly prevalent has been partially overcome with solid epidemiologic data. This finer resolution data is important in multiple contexts, including understanding risk, predictive value in disease diagnosis, and population immunity. We hypothesized that within the context of a tropical climate, vector-borne pathogen prevalence would significantly differ according to zonal differences in rainfall, temperature, relative humidity and vegetation condition. We then determined if these environmental data were predictive of pathogen prevalence. First we determined the prevalence of three major pathogens of cattle, Anaplasma marginale, Babesia bigemina and Theileria spp, in the three vegetation zones where cattle are predominantly raised in Ghana: Guinea savannah, semi-deciduous forest, and coastal savannah. The prevalence of A. marginale was 63%, 26% for Theileria spp and 2% for B. bigemina. A. marginale and Theileria spp. were significantly more prevalent in the coastal savannah as compared to either the Guinea savanna or the semi-deciduous forest, supporting acceptance of the first hypothesis. To test the predictive power of environmental variables, the data over a three year period were considered in best subsets multiple linear regression models predicting prevalence of each pathogen. Corrected Akaike Information Criteria (AICc) were assigned to the alternative models to compare their utility. Competitive models for each response were averaged using AICc weights. Rainfall was most predictive of pathogen prevalence, and EVI also contributed to A. marginale and B. bigemina prevalence

  15. Disaggregating Tropical Disease Prevalence by Climatic and Vegetative Zones within Tropical West Africa.

    Directory of Open Access Journals (Sweden)

    Carl S Beckley

    Full Text Available Tropical infectious disease prevalence is dependent on many socio-cultural determinants. However, rainfall and temperature frequently underlie overall prevalence, particularly for vector-borne diseases. As a result these diseases have increased prevalence in tropical as compared to temperate regions. Specific to tropical Africa, the tendency to incorrectly infer that tropical diseases are uniformly prevalent has been partially overcome with solid epidemiologic data. This finer resolution data is important in multiple contexts, including understanding risk, predictive value in disease diagnosis, and population immunity. We hypothesized that within the context of a tropical climate, vector-borne pathogen prevalence would significantly differ according to zonal differences in rainfall, temperature, relative humidity and vegetation condition. We then determined if these environmental data were predictive of pathogen prevalence. First we determined the prevalence of three major pathogens of cattle, Anaplasma marginale, Babesia bigemina and Theileria spp, in the three vegetation zones where cattle are predominantly raised in Ghana: Guinea savannah, semi-deciduous forest, and coastal savannah. The prevalence of A. marginale was 63%, 26% for Theileria spp and 2% for B. bigemina. A. marginale and Theileria spp. were significantly more prevalent in the coastal savannah as compared to either the Guinea savanna or the semi-deciduous forest, supporting acceptance of the first hypothesis. To test the predictive power of environmental variables, the data over a three year period were considered in best subsets multiple linear regression models predicting prevalence of each pathogen. Corrected Akaike Information Criteria (AICc were assigned to the alternative models to compare their utility. Competitive models for each response were averaged using AICc weights. Rainfall was most predictive of pathogen prevalence, and EVI also contributed to A. marginale and B

  16. Potential Climatic Zoning of Wheat (Triticum aestivum L. Golestan Province

    Directory of Open Access Journals (Sweden)

    Afrough Sadat Baniaghil

    2017-12-01

    digital elevation model (DEM with a topo-to-raster function. Method of study In this study, the first agro-ecological requirements and of wheat were determined based on scientific resources. Studied climatic variables were included average, minimum and maximum temperatures, precipitation in the date planting and during growth season of crop. Data of the last 10 years were collected and recorded from 25 stations located within the study area. The standardization of data was used from fuzzy method and Analytic Hierarchy Process (AHP was used for weighting the criteria. Finally, using weighted linear combination (WLC in the software IDRISI, wheat cultivation potential map was prepared. Results and Discussion The results showed that the weighted criteria of AHP, the amount of precipitation during the growing season had the highest amount with 0.3407 and minimum temperature in the emergence stage with 0.0306 had the lowest coefficient in the rankings. The digital environmental layers overlaid and integration in GIS media then zoning of lands carried out in 4 classes (high suitable, suitable, less suitable and unsuitable. The results showed that 9.54% and 54.53% of this area were high suitable and suitable for wheat cropping, respectively. Conclusion In the output map from weighted linear combination, the located lands in East, Southeastern, South and Southwest had the lowest potential production for wheat. These areas were consisted of steep slopes, highest elevation, less precipitation and less favorable area in terms of areas which had unfavorable climate areas and other areas that located in the Northeastern, center and Northwest of the province had the best potential for wheat production which can be said cause of sufficient amount precipitation, low slope and elevation, favorable soil and temperature.

  17. Potential impacts of climate change on the built environment: ASHRAE climate zones, building codes and national energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Kumar, Jitendra [ORNL; Hoffman, Forrest M. [ORNL

    2017-10-01

    Statement of the Problem: ASHRAE releases updates to 90.1 “Energy Standard for Buildings except Low-Rise Residential Buildings” every three years resulting in a 3.7%-17.3% increase in energy efficiency for buildings with each release. This is adopted by or informs building codes in nations across the globe, is the National Standard for the US, and individual states elect which release year of the standard they will enforce. These codes are built upon Standard 169 “Climatic Data for Building Design Standards,” the latest 2017 release of which defines climate zones based on 8, 118 weather stations throughout the world and data from the past 8-25 years. This data may not be indicative of the weather that new buildings built today, will see during their upcoming 30-120 year lifespan. Methodology & Theoretical Orientation: Using more modern, high-resolution datasets from climate satellites, IPCC climate models (PCM and HadGCM), high performance computing resources (Titan) and new capabilities for clustering and optimization the authors briefly analyzed different methods for redefining climate zones. Using bottom-up analysis of multiple meteorological variables which were the subject matter, experts selected as being important to energy consumption, rather than the heating/cooling degree days currently used. Findings: We analyzed the accuracy of redefined climate zones, compared to current climate zones and how the climate zones moved under different climate change scenarios, and quantified the accuracy of these methods on a local level, at a national scale for the US. Conclusion & Significance: There is likely to be a significant annual, national energy and cost (billions USD) savings that could be realized by adjusting climate zones to take into account anticipated trends or scenarios in regional weather patterns.

  18. Effect of different home-cooking methods on textural and nutritional properties of sweet potato genotypes grown in temperate climate conditions.

    Science.gov (United States)

    Nicoletto, Carlo; Vianello, Fabio; Sambo, Paolo

    2018-01-01

    The European Union (EU) market for sweet potato is small but is growing considerably and and has increased by 100% over the last 5 years. The cultivation of sweet potato in temperate climate conditions has not considered extensively and could be a new opportunity for the EU market. Healthy and qualitative traits of different sweet potato cultivars grown in temperate climate conditions were evaluated in accordance with four cooking methods. Traditional cultivars showed high hardness and adhesiveness values. The highest concentrations of sugars (especially maltose) and phenolic acids (caffeic and chlorogenic) were found in samples treated by boiling and steaming. High antioxidant activity was found in fried potatoes. Qualitative traits of sweet potatoes treated by microwaves did not report any significant variation compared to the control. Traditional and new sweet potato cultivars can be cultivated in temperate climate conditions and show interesting qualitative properties, especially as a result of the presence of antioxidant compounds. Concerning global quality, colored varieties expressed a better profile than traditional Italian ones and they are suitable for the European market, giving new opportunities for consumers and producers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems

    Science.gov (United States)

    D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn; Palik, Brian J.

    2013-01-01

    Reducing tree densities through silvicultural thinning has been widely advocated as a strategy for enhancing resistance and resilience to drought, yet few empirical evaluations of this approach exist. We examined detailed dendrochronological data from a long-term (>50 yrs) replicated thinning experiment to determine if density reductions conferred greater resistance and/or resilience to droughts, assessed by the magnitude of stand-level growth reductions. Our results suggest that thinning generally enhanced drought resistance and resilience; however, this relationship showed a pronounced reversal over time in stands maintained at lower tree densities. Specifically, lower-density stands exhibited greater resistance and resilience at younger ages (49 years), yet exhibited lower resistance and resilience at older ages (76 years), relative to higher-density stands. We attribute this reversal to significantly greater tree sizes attained within the lower-density stands through stand development, which in turn increased tree-level water demand during the later droughts. Results from response-function analyses indicate that thinning altered growth-climate relationships, such that higher-density stands were more sensitive to growing-season precipitation relative to lower-density stands. These results confirm the potential of density management to moderate drought impacts on growth, and they highlight the importance of accounting for stand structure when predicting climate-change impacts to forest systems.

  20. Antibiotic resistant Pseudomonas spp. in the aquatic environment: A prevalence study under tropical and temperate climate conditions.

    Science.gov (United States)

    Devarajan, Naresh; Köhler, Thilo; Sivalingam, Periyasamy; van Delden, Christian; Mulaji, Crispin K; Mpiana, Pius T; Ibelings, Bastiaan W; Poté, John

    2017-05-15

    by evaluating the aquatic ecosystems sediments from tropical and temperate climate conditions. Taken together, our findings demonstrate a widespread occurrence of antibiotic resistance in aquatic ecosystems sediments receiving untreated/treated wastewater and how these contemporary sources of contamination, contribute to the spread of microbial resistance in the aquatic environment. This research presents also useful tools to evaluate sediment quality in the receiving river/reservoir systems which can be applied to similar environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Weather influences feed intake and feed efficiency in a temperate climate.

    Science.gov (United States)

    Hill, Davina L; Wall, Eileen

    2017-03-01

    A key goal for livestock science is to ensure that food production meets the needs of an increasing global population. Climate change may heighten this challenge through increases in mean temperatures and in the intensity, duration, and spatial distribution of extreme weather events, such as heat waves. Under high ambient temperatures, livestock are expected to decrease dry matter intake (DMI) to reduce their metabolic heat production. High yielding dairy cows require high DMI to support their levels of milk production, but this may increase susceptibility to heat stress. Here, we tested how feed intake and the rate of converting dry matter to milk (feed efficiency, FE) vary in response to natural fluctuations in weather conditions in a housed experimental herd of lactating Holstein Friesians in the United Kingdom. Cows belonged to 2 lines: those selected for high genetic merit for milk traits (select) and those at the UK average (control). We predicted that (1) feed intake and FE would vary with an index of temperature and humidity (THI), wind speed, and the number of hours of sunshine, and that (2) the effects of (1) would depend on the cows' genetic merit. Animals received a mixed ration, available ad libitum, from automatic feed measurement gates. Using >73,000 daily feed intake and FE records from 328 cows over 8 yr, we found that select cows produced more fat- and protein-corrected milk, and had higher DMI and FE than controls. Cows of both lines decreased DMI and fat- and protein-corrected milk but, importantly, increased FE as THI increased. This suggests that improvements in the efficiency of converting feed to milk may partially offset the costs of reduced milk yield owing to a warmer climate, at least under conditions of mild heat stress. The rate of increase in FE with THI was steeper in select cows than in controls, which raises the possibility that select cows use more effective coping tactics. This is, to our knowledge, the first longitudinal study

  2. The CARMENES Search for Exoplanets around M Dwarfs: A Low-mass Planet in the Temperate Zone of the Nearby K2-18

    Science.gov (United States)

    Sarkis, Paula; Henning, Thomas; Kürster, Martin; Trifonov, Trifon; Zechmeister, Mathias; Tal-Or, Lev; Anglada-Escudé, Guillem; Hatzes, Artie P.; Lafarga, Marina; Dreizler, Stefan; Ribas, Ignasi; Caballero, José A.; Reiners, Ansgar; Mallonn, Matthias; Morales, Juan C.; Kaminski, Adrian; Aceituno, Jesús; Amado, Pedro J.; Béjar, Victor J. S.; Hagen, Hans-Jürgen; Jeffers, Sandra; Quirrenbach, Andreas; Launhardt, Ralf; Marvin, Christopher; Montes, David

    2018-06-01

    K2-18 is a nearby M2.5 dwarf, located at 34 pc and hosting a transiting planet that was first discovered by the K2 mission and later confirmed with Spitzer Space Telescope observations. With a radius of ∼2 R ⊕ and an orbital period of ∼33 days, the planet lies in the temperate zone of its host star and receives stellar irradiation similar to that of Earth. Here we perform radial velocity follow-up observations with the visual channel of CARMENES with the goal of determining the mass and density of the planet. We measure a planetary semi-amplitude of K b ∼ 3.5 {{m}} {{{s}}}-1 and a mass of M b ∼ 9 M ⊕, yielding a bulk density around {ρ }b∼ 4 {{g}} {cm}}-3. This indicates a low-mass planet with a composition consistent with a solid core and a volatile-rich envelope. A signal at 9 days was recently reported using radial velocity measurements taken with the HARPS spectrograph. This was interpreted as being due to a second planet. We see a weaker, time- and wavelength-dependent signal in the CARMENES data set and thus favor stellar activity for its origin. K2-18 b joins the growing group of low-mass planets detected in the temperate zone of M dwarfs. The brightness of the host star in the near-infrared makes the system a good target for detailed atmospheric studies with the James Webb Space Telescope.

  3. Impacts of Present and Future Climate Change and Climate Variability on Agriculture in the Temperate Regions. North America

    International Nuclear Information System (INIS)

    Motha, Raymond P.; Baier, W.

    2005-01-01

    The potential impact of climate variability and climate change on agricultural production in the United States and Canada varies generally by latitude. Largest reductions are projected in southern crop areas due to increased temperatures and reduced water availability. A longer growing season and projected increases in CO2 may enhance crop yields in northern growing areas. Major factors in these scenarios analyzes are increased drought tendencies and more extreme weather events, both of which are detrimental to agriculture. Increasing competition for water between agriculture and non-agricultural users also focuses attention on water management issues. Agriculture also has impact on the greenhouse gas balance. Forests and soils are natural sinks for CO2. Removal of forests and changes in land use, associated with the conversion from rural to urban domains, alters these natural sinks. Agricultural livestock and rice cultivation are leading contributors to methane emission into the atmosphere. The application of fertilizers is also a significant contributor to nitrous oxide emission into the atmosphere. Thus, efficient management strategies in agriculture can play an important role in managing the sources and sinks of greenhouse gases. Forest and land management can be effective tools in mitigating the greenhouse effect

  4. The effects of climate change on heating energy consumption of office buildings in different climate zones in China

    Science.gov (United States)

    Meng, Fanchao; Li, Mingcai; Cao, Jingfu; Li, Ji; Xiong, Mingming; Feng, Xiaomei; Ren, Guoyu

    2017-06-01

    Climate plays an important role in heating energy consumption owing to the direct relationship between space heating and changes in meteorological conditions. To quantify the impact, the Transient System Simulation Program software was used to simulate the heating loads of office buildings in Harbin, Tianjin, and Shanghai, representing three major climate zones (i.e., severe cold, cold, and hot summer and cold winter climate zones) in China during 1961-2010. Stepwise multiple linear regression was performed to determine the key climatic parameters influencing heating energy consumption. The results showed that dry bulb temperature (DBT) is the dominant climatic parameter affecting building heating loads in all three climate zones across China during the heating period at daily, monthly, and yearly scales (R 2 ≥ 0.86). With the continuous warming climate in winter over the past 50 years, heating loads decreased by 14.2, 7.2, and 7.1 W/m2 in Harbin, Tianjin, and Shanghai, respectively, indicating that the decreasing rate is more apparent in severe cold climate zone. When the DBT increases by 1 °C, the heating loads decrease by 253.1 W/m2 in Harbin, 177.2 W/m2 in Tianjin, and 126.4 W/m2 in Shanghai. These results suggest that the heating energy consumption can be well predicted by the regression models at different temporal scales in different climate conditions owing to the high determination coefficients. In addition, a greater decrease in heating energy consumption in northern severe cold and cold climate zones may efficiently promote the energy saving in these areas with high energy consumption for heating. Particularly, the likely future increase in temperatures should be considered in improving building energy efficiency.

  5. Temperature reconstruction from dripwater hydrochemistry, speleothem fabric and speleothem δ13C: towards an integrated approach in temperate climate caves

    Science.gov (United States)

    Borsato, Andrea; Frisia, Silvia; Johnston, Vanessa; Spötl, Christoph

    2017-04-01

    Accurate reconstruction of past climate records from speleothem minerals requires a thorough understanding of both environmental and hydrologic conditions underpinning their formation. These conditions likely influenced how speleothems incorporate chemical signals that are used as climate proxies. Thus, a thorough investigation of environmental and hydrologic parameters is a pre-requisite to gain robust palaeoclimate reconstructions from stalagmites. Here, we present a systematic study of soil, dripwater and speleothems in temperate climate caves at different altitudes, which allowed the assessment of how mean annual air temperature in the infiltration area (MATinf) influences vegetation cover, soil pCO2 and, eventually, pCO2 of karst water and cave air. Our study demonstrates that for caves developed in pure carbonate rocks, the soil and aquifer pCO2 are directly related to the MATinf (Borsato et al., 2015). It is well known that soil and aquifer pCO2 control carbonate dissolution and the carbonate-carbonic acid system. By establishing a relationship between dripwater pCO2 and MATinf, we show that dripwater Ca content and calcite saturation state SIcc) are correlated with MATinf when unaffected by Prior Calcite Precipitation. In particular, dripwater saturation (SIcc = 0) is reached at a MATinf of 4.4°C in our study area. This MATinf delineates a ''speleothem limit", above which speleothems composed of sparitic calcite should not form (Borsato et al., 2016). In fact, sparitic calcite speleothems do not form, today, in caves with a MATinf well as calcite δ13C in speleothems that were not significantly influenced by kinetic fractionation. A linear correlation between calcite δ13C and MATinf was obtained for modern sparitic speleothems that formed at isotopic equilibrium (Johnston et al., 2013). The combination of these two approaches (present-day dripwater SIcc and calcite δ13C in sparitic speleothems) can be used to reconstruct the past MATinf for high

  6. Integration of climatic indices in an objective probabilistic model for establishing and mapping viticultural climatic zones in a region

    Science.gov (United States)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García, Abelardo; Honorio, Fulgencio

    2016-05-01

    Different climatic indices have been proposed to determine the wine suitability in a region. Some of them are related to the air temperature, but the hydric component of climate should also be considered which, in turn, is influenced by the precipitation during the different stages of the grapevine growing and ripening periods. In this study, we propose using the information obtained from ten climatic indices [heliothermal index (HI), cool night index (CI), dryness index (DI), growing season temperature (GST), the Winkler index (WI), September mean thermal amplitude (MTA), annual precipitation (AP), precipitation during flowering (PDF), precipitation before flowering (PBF), and summer precipitation (SP)] as inputs in an objective and probabilistic model, the Rasch model, with the aim of integrating the individual effects of them, obtaining the climate data that summarize all main climatic indices, which could influence on wine suitability from a climate viewpoint, and utilizing the Rasch measures to generate homogeneous climatic zones. The use of the Rasch model to estimate viticultural climatic suitability constitutes a new application of great practical importance, enabling to rationally determine locations in a region where high viticultural potential exists and establishing a ranking of the climatic indices which exerts an important influence on wine suitability in a region. Furthermore, from the measures of viticultural climatic suitability at some locations, estimates can be computed using a geostatistical algorithm, and these estimates can be utilized to map viticultural climatic zones in a region. To illustrate the process, an application to Extremadura, southwestern Spain, is shown.

  7. Carbon budget over 12 years in a production crop under temperate climate

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9

  8. Climatic zoning for the calculation of the thermal demand of buildings in Extremadura (Spain)

    Science.gov (United States)

    Moral, Francisco J.; Pulido, Elena; Ruíz, Antonio; López, Fernando

    2017-08-01

    The present work reports on a methodology to assess the climatic severity of a particular geographic region as compared to specific information available in the current regulations. The viability for each of the 387 municipalities in the Autonomous Community of Extremadura (Spain) is analysed, making a distinction between those with reliable climate reports and those for which no such information is available. In the case study, although the weather conditions in Extremadura are quite homogeneous according to the Spanish Technical Building Code (STBC 2015) classification and most areas are associated to zone C4 (soft winters and hot summers), the southern area in the region is associated to zone D1, similar to the north of Spain, where winters and summers are cool, which does not coincide with the actual climate in the south of Extremadura. The general climatic homogeneity in Extremadura was also highlighted with the new procedure, predominating zone C4, but unexpected or unreal climatic zoning was not generated, giving place to a consistent spatial distribution of zones throughout the region. Consequently, the proposed method allows a more accurate climatic zoning of any region in agreement with the Spanish legislation on energy efficiency in buildings, which would enhance the setting of thermal demand rates according to the actual climatic characterisation of the area in which a particular municipality is located.

  9. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México.

    Science.gov (United States)

    Macías-Macías, J O; Tapia-Gonzalez, J M; Contreras-Escareño, F

    2017-01-01

    Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  10. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini in temperate climate of Jalisco, México

    Directory of Open Access Journals (Sweden)

    J. O. Macías-Macías

    Full Text Available Abstract Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  11. Piping dynamics in mid-altitude mountains under a temperate climate: the Bieszczady Mts., the Eastern Carpathians

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Jakiel, Michał; Krzemień, Kazimierz

    2017-04-01

    Soil erosion is caused not only by overland flow, but also by subsurface flow. Piping which is a process of mechanical removal of soil particles by concentrated subsurface flow is frequently being overlooked and not accounted for in soil erosion studies. However, it seems that it is far more widespread than it has often been supposed. Furthermore, our knowledge about piping dynamics and its quantification currently relies on a limited number of data available for mainly loess-mantled areas and marl badlands. Therefore, this research aims to recognize piping dynamics in mid-altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping-prone soils. The survey was carried out in the Bereźnica Wyżna catchment (305 ha), in the Bieszczady Mts. (the Eastern Carpathians, Poland), where 188 collapsed pipes were mapped. The research was based on the monitoring of selected piping systems located within grasslands (1971-1974, 2013-2016). The development of piping systems is mainly induced by the elongation of pipes and creation of new collapses (closed depressions and sinkholes), rather than by the enlargement of existing piping forms, or the deepening of pipes. It draws attention to the role of dense vegetation (grasslands) in the delay of pipe collapses and, also, to the boundary of pipe development (soil-bedrock interface). The obtained results reveal an episodic, and even stochastic nature of piping activity, expressed by varied one-year and short-term (3 years) erosion rates, and pipe elongation. Changes in soil loss vary significantly between different years (up to 27.36 t ha-1 y-1), reaching the rate of 1.34 t ha-1 y-1 for the 45-year study period. The elongation of pipes also differs, from no changes to 36 m during one year. The results indicate that soil loss due to piping can cause high soil loss even in highly vegetated lands (grasslands), which are generally considered as areas without a significant erosion

  12. Can behaviour buffer the impacts of climate change on an arid-zone ...

    African Journals Online (AJOL)

    Can behaviour buffer the impacts of climate change on an arid-zone bird? ... These could include reduced opportunity for foraging, breeding or territorial defence, each ... We investigated patterns of microclimate use and foraging behaviour by ...

  13. Anthropogenic and climatic factors enhancing hypolimnetic anoxia in a temperate mountain lake

    Science.gov (United States)

    Sánchez-España, Javier; Mata, M. Pilar; Vegas, Juana; Morellón, Mario; Rodríguez, Juan Antonio; Salazar, Ángel; Yusta, Iñaki; Chaos, Aida; Pérez-Martínez, Carmen; Navas, Ana

    2017-12-01

    Oxygen depletion (temporal or permanent) in freshwater ecosystems is a widespread and globally important environmental problem. However, the factors behind increased hypolimnetic anoxia in lakes and reservoirs are often diverse and may involve processes at different spatial and temporal scales. Here, we evaluate the combined effects of different anthropogenic pressures on the oxygen dynamics and water chemistry of Lake Enol, an emblematic mountain lake in Picos de Europa National Park (NW Spain). A multidisciplinary study conducted over a period of four years (2013-2016) indicates that the extent and duration of hypolimnetic anoxia has increased dramatically in recent years. The extent and duration of hypolimnetic anoxia is typical of meso-eutrophic systems, in contrast with the internal productivity of the lake, which remains oligo-mesotrophic and phosphorus-limited. This apparent contradiction is ascribed to the combination of different external pressures in the catchment, which have increased the input of allochthonous organic matter in recent times through enhanced erosion and sediment transport. The most important among these pressures appears to be cattle grazing, which affects not only the import of carbon and nutrients, but also the lake microbiology. The contribution of clear-cutting, runoff channelling, and tourism is comparatively less significant. The cumulative effects of these local human impacts are not only affecting the lake metabolism, but also the import of sulfate, nitrate- and ammonium-nitrogen, and metals (Zn). However, these local factors alone cannot explain entirely the observed oxygen deficit. Climatic factors (e.g., warmer and drier spring and autumn seasons) are also reducing oxygen levels in deep waters through a longer and increasingly steep thermal stratification. Global warming may indirectly increase anoxia in many other mountain lakes in the near future.

  14. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-08-01

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and

  15. Phytoextraction and phytostabilisation of metal-contaminated soil in temperate maritime climate of coastal British Columbia, Canada

    Science.gov (United States)

    Padmavathiamma, P. K.; Li, L. Y.

    2009-04-01

    This research addressed the phytoremediation of roadside soils subjected to multi-component metal solutions. A typical right of way for roads in Canada is around 30 m, and at least 33% of that land in the right of way is unpaved and can support animal life. Thus, land associated with 12,000 km of roads in the province of British Columbia and millions of kilometres around the world represent a substantial quantity of wildlife habitat where metal contamination needs to be remediated. Phytostabilisation, requires least maintenance among different phytoremediation techniques, and it could be a feasible and practical method of remediating in roadside soils along highways and for improving highway runoff drainage. The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the above-ground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.

  16. Assessing the optimality of ASHRAE climate zones using high resolution meteorological data sets

    Science.gov (United States)

    Fils, P. D.; Kumar, J.; Collier, N.; Hoffman, F. M.; Xu, M.; Forbes, W.

    2017-12-01

    Energy consumed by built infrastructure constitutes a significant fraction of the nation's energy budget. According to 2015 US Energy Information Agency report, 41% of the energy used in the US was going to residential and commercial buildings. Additional research has shown that 32% of commercial building energy goes into heating and cooling the building. The American National Standards Institute and the American Society of Heating Refrigerating and Air-Conditioning Engineers Standard 90.1 provides climate zones for current state-of-practice since heating and cooling demands are strongly influenced by spatio-temporal weather variations. For this reason, we have been assessing the optimality of the climate zones using high resolution daily climate data from NASA's DAYMET database. We analyzed time series of meteorological data sets for all ASHRAE climate zones between 1980-2016 inclusively. We computed the mean, standard deviation, and other statistics for a set of meteorological variables (solar radiation, maximum and minimum temperature)within each zone. By plotting all the zonal statistics, we analyzed patterns and trends in those data over the past 36 years. We compared the means of each zone to its standard deviation to determine the range of spatial variability that exist within each zone. If the band around the mean is too large, it indicates that regions in the zone experience a wide range of weather conditions and perhaps a common set of building design guidelines would lead to a non-optimal energy consumption scenario. In this study we have observed a strong variation in the different climate zones. Some have shown consistent patterns in the past 36 years, indicating that the zone was well constructed, while others have greatly deviated from their mean indicating that the zone needs to be reconstructed. We also looked at redesigning the climate zones based on high resolution climate data. We are using building simulations models like EnergyPlus to develop

  17. Economic analysis of hybrid power systems (PV/diesel) in different climatic zones of Tamil Nadu

    International Nuclear Information System (INIS)

    Suresh Kumar, U.; Manoharan, P.S.

    2014-01-01

    Highlights: • Investigation on economic feasibility of PV/diesel system in various climatic zones. • HOMER is used to solve economic feasibility analysis. • By the sensitivity analysis, the net present cost is reduced. • Optimum climatic zone in Tamil Nadu, India is recommended. - Abstract: With the increasing threat to environment and the fast depleting fossil fuel resources, hybrid power systems consisting of two or more renewable energy sources such as solar PV, wind, biomass, ocean thermal-with or without the back up of diesel generator have come to the forefront. These hybrid systems are normally integrated with battery banks for total reliability; such systems have brought about better quality of life in remote areas of developing economics. The remote areas in the state of Tamil Nadu in India possess excellent renewable energy sources. These areas fall under different climatic zones, are sparsely populated and are in the process of development. Though these areas are connected to the grid, Tamil Nadu grid is not stable; it is currently experiencing 40% short fall in generation. Thus grid power is available to these remote areas only for 10 h a day and even when available, there are voltage frequency problems. This paper analyses the economic feasibility of installing and operating hybrid systems in these areas. The areas are divided into different climatic zones and the hybrid system economy is analyzed for each climatic zone on the basis of NPC (net present cost), consumption of diesel and renewable fraction for all climate zones. The analysis indicates that the interior climatic zone – the area would be the optimum climatic zone to install HPS PV/diesel. The sensitivity analysis proves that the NPC of such a system can be reduced. It is suggested that due to high initial cost, government subsidy is necessary to adopt the system on a large scale. Such a profit will encourage development of renewable energy utilization and bring about rapid

  18. Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania

    Science.gov (United States)

    Irimia, Liviu Mihai; Patriche, Cristian Valeriu; Quenol, Hervé; Sfîcă, Lucian; Foss, Chris

    2018-02-01

    Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area's historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area's climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.

  19. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora.

    Science.gov (United States)

    Qiu, Ying-Xiong; Fu, Cheng-Xing; Comes, Hans Peter

    2011-04-01

    The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-)temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences

  20. Determinação por cromatografia gasosa de açúcares em frutíferas de clima temperado Gas chromatography determination of sugars in temperate-zone fruit trees

    Directory of Open Access Journals (Sweden)

    Alexandre Couto Rodrigues

    2005-04-01

    Full Text Available As frutíferas de clima temperado apresentam o fenômeno da dormência. Na saída da dormência, há a conversão do amido para açúcares solúveis, como substrato para a retomada de crescimento na primavera. Visando à maior compreensão da fisiologia das plantas em respostas a eventos, como as variações climáticas, estresses e problemas de adaptação, desenvolveu-se este trabalho, no Laboratório de Fisiologia Vegetal da Embrapa Clima Temperado, com o objetivo de descrever uma metodologia para a determinação das concentrações dos açúcares solúveis (frutose, sorbitol, alfa-glicose, beta-glicose e sacarose, em tecidos vegetais de frutíferas, via cromatografia gasosa. O cromatógrafo utilizado para as análises dos açúcares por essa metodologia é o GAS CHROMATOGRAPH e a coluna do tipo Packed Column J. K. de 3,2mm de diâmetro por 2m de comprimento, empacotada com Silicone SE-52 Uniport HP 80/100 mesh. Através da cromatografia gasosa, obtêm-se eficiência e resolução cromatográfica, para análises de açúcares solúveis, sendo, desta forma, vantajoso e executável esse tipo de análise pelo método descrito.The temperate-zone deciduous fruit trees present the phenomenon of dormancy. In that period, there is the conversion of the starch in soluble sugars, as substratum for the resumption of growth in the spring. Seeking to better understanding the physiology of the plants in answers to events as the climatic variations, stresses and adaptation problems, this study was done in the Laboratory of Crop Physiology of Embrapa Temperate Climate, with the objective of describing a methodology for determination of concentrations of the soluble sugars (fructose, sorbitol, alpha-glucose, beta-glucose and sucrose, in tissues of fruit tree, through gaseous chromatography. The chromatograph used for the analyses of the sugars was the GAS CHROMATOGRAPH with the column of the type Packed Column J. K. of 3,2mm of diameter for 2m of length

  1. Long range transport of caesium isotopes from temperate latitudes to the equatorial zone during the winter monsoon period

    International Nuclear Information System (INIS)

    Pham Duy Hien; Nguyen Thanh Binh; Vuong Thu Bac; Truong Y; Nguyen Trong Ngo.

    1993-01-01

    An air radioactivity monitoring study carried out in Dalat, Vietnam since 1986 has revealed distinct peaks of caesium isotope concentrations in air and fallout during December-January, when the monthly average air temperature was lowest and dry fallout dominated. These peaks provide evidence of the intrusion of more radioactive cold air masses from temperate northern latitudes during the development of large-scale anti cyclones, frequently observed in the most active winter monsoon period. High dry fallout velocity (about 10 cm/s) determined from the measured concentrations, clearly demonstrates one of the most relevant features of cold air masses: behind the cold front, vertical air motion is descending. The role of other processes, such as injection of radioactive air from stratosphere and local resuspension of soil dust, has been shown to be insignificant. The interpretation of the experimental results was based on the analysis of environmental -meteorological factors as well as the behaviour of other naturally-occurring radionuclides. (author). 7 refs, 2 figs

  2. Field observations of climbing behavior and seed predation by adult ground beetles (Coleoptera: Carabidae) in a lowland area of the temperate zone.

    Science.gov (United States)

    Sasakawa, Kôji

    2010-10-01

    Granivory is a specialized food habit in the predominantly carnivorous beetle family Carabidae. Most studies of carabid granivory have been conducted under laboratory conditions; thus, our knowledge of the feeding ecology of granivorous carabids in the field is insufficient. I conducted field observations of climbing behavior and seed predation by adult carabids in a lowland area of eastern Japan, from early October to late November in 2008. This is the first systematic field observation of the feeding ecology of granivorous carabids in the temperate zone. In total, 176 carabid individuals of 11 species were observed, with 108 individuals feeding on plant seeds/flowers. Each carabid species was primarily observed feeding on a particular plant species. Frequently observed combinations were: Amara gigantea Motschulsky on Humulus scandens (Loureiro) Merrill (Moraceae) seed, Amara lucens Baliani on Artemisia indica Willdenow (Asteraceae) flower, and Amara macronota (Solsky) and Harpalus (Pseudoophonus) spp. on Digitaria ciliaris (Retzius) Koeler (Poaceae) seed. In all but one species, the sex ratio of individuals observed feeding was female-biased. In Am. gigantea and Am. macronota, a larger proportion of females than males ate seeds. In the three Amara species, copulations on plants, with the female feeding on its seeds/flowers, were often observed. These observations may indicate that, whereas females climb onto plants to feed on seeds, males climb to seek females for copulation rather than forage. Because granivorous carabids play important roles as weed-control agents in temperate agro-ecosystems, the present results would provide valuable basic information for future studies on this subject.

  3. The impact of climate change on future land-use in a coastal zone planning context

    DEFF Research Database (Denmark)

    Hansen, Henning Sten

    2008-01-01

    Climate change has received much attention during the last decennium and especially various mitigation and adaptation strategies. Particularly the coastal zone will feel the consequences of climate change and the associated effects like sea level rise, increased storminess and flooding. Thus...

  4. Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia

    Science.gov (United States)

    Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.

    2017-12-01

    Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

  5. Effects of brood pheromone (SuperBoost) on consumption of protein supplement and growth of honey bee (Hymenoptera: Apidae) colonies during fall in a northern temperate climate.

    Science.gov (United States)

    Sagili, Ramesh R; Breece, Carolyn R

    2012-08-01

    Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.

  6. Environmental Change: Precipitation and N, P, K, mg Fertilization Influences on Crop Yield Under Temperate Climate Conditions

    Science.gov (United States)

    László Phd, Dd. M.

    2009-04-01

    Summary: Agroecological quality has a well estabished dependence on climate-rainfall changes because the water problems are pressing. Therefore, there is, growing concern about the potentially wide ranging risks that climate change would have on these key industries as the nature and extent of anticipated changes have become more evident. It also includes changes in land use and in plant production and their management. These changes are unprecedented in terms of both their rate and their spatial extent. Changes in land use (agrotechnics, soil, cultivation, fertility, quality, protection etc.) and in plant production (plant, nutrition, rotation, protection etc.) are currently the main manifestations. As an interdisciplinary problem it is necessary to study such a complex matter in terms of agricultural production. Generally, among natural catastrophes, droughts and floods cause the greatest problems in field crop production. The droughts and the floods that were experienced in Hungary in the early 1980s have drawn renewed attention to the analyses of these problems. New research on climate change-soil-plant systems are focused on yield and yield quality. This paper reports of the climate changes (rainfall); soil (acidic sandy brown forest) properties, mineral N, P, K, Mg fertilisation level and plant interactions on rye (Secale cereale L.), on potato (Solanum tuberosum L.) and on winter wheat (Triticum aestivum L.) yields in a long term field experiment set up at Nyírlugos in north-eastern Hungary under temperate climate conditions in 1962. Results are summarised from 1962 to 1990. Main conclusions were as follows: 1. Rye: a, Experimental years were characterised by frequent extremes of precipitation variabilities and changes. b, By an average year, at a satisfactory fertilisation level (N: 90 kg ha-1 and NP, NK, NPK, NPKMg combinations) the maximum yield reached 3.8 t ha-1. But yield was decreased by 17% and by 52% due to drought and excess rainfall, respectively

  7. Regional analysis of ground and above-ground climate. Part I. Regional suitability of earth-tempering practices: summary and conclusions. Part II. Bioclimatic data

    Energy Technology Data Exchange (ETDEWEB)

    Labs, K.

    The regional suitability of underground construction as a climate-control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above-ground climate-control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dewpoint ground temperature comparisons for identifying the relative likelihood of condensation, from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically. While the subsurface almost always provides a thermal advantage on its own terms when compared to above-ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate-control techniques. Also contained in the report are reviews of above- and below-ground climate mapping schemes related to human comfort and architectural design, and a detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States. 3 references, 12 figures, 14 tables.

  8. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2015-01-01

    Full Text Available Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest TRF, Guinea savannah GS, Sahel savannah SHS, Sudan savannah SUS, and Mangrove swamp forest MSF was analyzed. To justify its use, the satellite data was tested for goodness of agreement with ground measured solar radiation data using 26-year mean monthly and daily data over 16 locations in the 5 climatic zones. The well-known R2, RMSE, MBE, and MPE statistical tests were used and good agreement was found. The 25 locations were grouped into the 5 climatic zones. Frequency distribution of global solar irradiance was done for each of the climatic zones. This showed that 46.88%, and 40.6% of the number of days (9794 over TRF and MSF, respectively, had irradiation within the range of 15.01–20.01 MJ/m2/day. For the GS, SHS, and SUS, 46.19%, 55.84% and 58.53% of the days had total irradiation within the range of 20.01–25.01 MJ/m2/day, respectively. Generally, in all the climatic zones, coefficients of variation of solar radiation were high and mean values were low in July and August. Contour maps showed that high and low values of global solar irradiance and clearness index were observed in the Northern and Southern locations of Nigeria, respectively.

  9. The importance of riparian zones on stream carbon and nitrogen export in a temperate, agricultural dominated landscape

    DEFF Research Database (Denmark)

    Wohlfart, T; Exbrayat, J F; Schelde, Kirsten

    2012-01-01

    The surrounding landscape of a stream has crucial impacts on the aquatic environment. This study pictures the hydro-biogeochemical situation of the Tyrebaekken creek catchment in central Jutland, Denmark. The intensively managed agricultural landscape is dominated by rotational croplands. One...... northern and one southern stream run through the catchment before converging to form a second order brook. The small catchments mainly consist of sandy soil types besides organic soils along the riparian zone of the streams. The aim of the study was to characterise the relative influence of soil type...... and dissolved organic carbon (DOC) concentrations were measured and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electro-conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed significant differences between the northern, southern and converged...

  10. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2008-01-01

    To provide baseline data for physiological studies of extreme low-temperature (LT) tolerance in boreal conifers, we profiled LT stress responses, liquid nitrogen (LN2)-quench tolerance, and sugar concentrations in foliage of boreal-temperate species pairs in the genera Abies, Picea and Pinus, growing in an...

  11. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

    Directory of Open Access Journals (Sweden)

    Hamada AbdElgawad

    Full Text Available Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C, under ambient CO2 (392 ppm and elevated CO2 (620 ppm. As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P and magnesium (Mg contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C, nitrogen (N contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will

  12. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    Science.gov (United States)

    Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A.; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  13. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate.

    Science.gov (United States)

    Gorniak, Tobias; Meyer, Ulrich; Südekum, Karl-Heinz; Dänicke, Sven

    2014-01-01

    The aim of the present study was to evaluate the impact of summer temperatures in a temperate climate on mid-lactation Holstein dairy cows. Therefore, a data set was examined comprising five trials with dairy cows conducted at the experimental station of the Friedrich-Loeffler-Institute in Braunschweig, Germany. The temperature-humidity index (THI) was calculated using temperature and humidity data from the barns recorded between January 2010 and July 2012. By using a generalised additive mixed model, the impact of increasing THI on dry matter intake, milk yield and milk composition was evaluated. Dry matter intake and milk yield decreased when THI rose above 60, whilst water intake increased in a linear manner beyond THI 30. Furthermore, milk protein and milk fat content decreased continuously with increasing THI. The present results revealed that heat stress exists in Lower Saxony, Germany. However, further research is necessary to describe the mode of action of heat stress. Especially, mild heat stress has to be investigated in more detail and appropriate heat stress thresholds for temperate climates have to be developed.

  14. Parameter Estimation of Dynamic Multi-zone Models for Livestock Indoor Climate Control

    DEFF Research Database (Denmark)

    Wu, Zhuang; Stoustrup, Jakob; Heiselberg, Per

    2008-01-01

    , the livestock, the ventilation system and the building on the dynamic performance of indoor climate. Some significant parameters employed in the climate model as well as the airflow interaction between each conceptual zone are identified with the use of experimental time series data collected during spring......In this paper, a multi-zone modeling concept is proposed based on a simplified energy balance formulation to provide a better prediction of the indoor horizontal temperature variation inside the livestock building. The developed mathematical models reflect the influences from the weather...... and winter at a real scale livestock building in Denmark. The obtained comparative results between the measured data and the simulated output confirm that a very simple multi-zone model can capture the salient dynamical features of the climate dynamics which are needed for control purposes....

  15. Temper Tantrums

    Science.gov (United States)

    ... Nine Steps to More Effective Parenting How Can Parents Discipline Without Spanking? Delayed Speech or Language Development Talking to Your Child's Preschool Teacher Your Child's Habits Separation Anxiety Breath-Holding Spells Train Your Temper View ...

  16. South Africa’s climatic zones: today, tomorrow

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2012-07-01

    Full Text Available To design energy efficient buildings using an optimal combination of passive design strategies it is necessary to understand the particular climate designed for. To use energy simulation software such as EnergyPlusTM, EcotectTM or Design...

  17. PRODUCTIVE AND QUALITATIVE PERFORMANCE OF NATURALIZED AND NATIVE FORAGE LEGUMES IN THE TEMPERATE ZONE OF PUEBLA STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    Juan de Dios Guerrero-Rodríguez

    2015-12-01

    Full Text Available The aim of this study was to evaluate seven species of native and naturalized legumes in terms of forage production and nutritive quality. The control species, Vicia sativa was represented by two varieties, which maintained a high dry matter production at two locations, in one of them, matched by Melilotus albus. The latter species also had high yields of dry matter in two locations, but in one of them the varieties of V. sativa were not successful. Less yielding species were those that had lower fiber concentration, a situation that was in part due to a higher leaf:stem ratio. Medicago polymorpha had the lowest digestibility, which coincided with higher concentrations of neutral and acid detergent fiber. The crude protein concentration was different among species (P<0.0001, where M. polymorpha consistently had low (P<0.05 concentration (16.8% as well as M. albus (17%. Among the species tested in this study, several of them have potential yield and quality to improve the diet of ruminants in the highland region of Puebla State and can replace the vetches. Additionally, even when the climate may be the same, the soil conditions also determine which species can thrive in a region.

  18. Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Filippin, C. [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); Larsen, S. Flores [CONICET - CC302, Santa Rosa, 6300 La Pampa (Argentina); INENCO - Instituto de Investigaciones en Energias No Convencionales, U.N.Sa., CONICET, Avda. Bolivia 5150 - CP 4400, Salta Capital (Argentina); Mercado, V. [LAHV-Laboratorio de Ambienet Humano y Vivienda (INCIHUSA-CCT-CONICET) (Argentina)

    2011-01-15

    This paper analyzes the thermal and energy behaviour of apartments in three-story block buildings located along a NE-SW axis (azimuth = 120 ) in a temperate-cold climate (latitude: 36 57'; longitude: 64 27') in the city of Santa Rosa, La Pampa, central Argentina. Four apartments had been monitored during May and June 2009. Three of them are located in Block 126. Two of these apartments face South: 15 and 23 on the SE end, ground and first floor, respectively; 18 faces N on the second floor. Finally apartment, 12 is located in Block 374, on the first floor, faces N and shows a carpentry-closed balcony. The purpose of this work is - to study the evolution of the indoor temperature in each apartment; to analyze energy consumption and comfort conditions; to study energy potential and energy intervention in order to reduce energy consumption; to analyze bioclimatic alternatives feasibility and the possibility to extrapolate results to all blocks. On the basis of the analysis of natural gas historical consumption records, results showed that regarding heating energy consumption during the period May-June, Apartment 12, facing N, with its only bedroom facing NW and its carpentry-closed, transparent glass balcony, presented a mean temperature of 21.2 C, using a halogen heater for 6 h/day between 9 pm and 2 am (0.16 kWh/day/m{sup 2}). Apartment 15, on the SE end, first floor of the block consumed 22.5 kWh/day (0.43 kWh/day/m{sup 2}) (mean temperature = 22.2 C). Apartment 23, located on the second and top floor (on top of Apartment 15) with higher energy loss, consumed 28 kWh/day (0.54 kWh/day/m{sup 2}) (mean temperature 23.7 C). Apartment 18, also on the second floor and facing N, located in the centre and with its only bedroom facing SE, consumed 18.8 kWh/day (0.48 kWh/day/m{sup 2}) (mean temperature = 22.3 C). Apartment 23, with higher thermal loss through its envelope, but with heat transfer from the apartment located below, is the one that showed the highest

  19. Analysis of reproductive traits of broiler rabbits reared in sub-temperate climate of Kodai hills, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    S. Rajapandi

    2015-09-01

    Full Text Available Aim: The present study was carried out at Institute Rabbit Farm of Southern Regional Research Centre, Mannavanur, Kodaikanal, Tamil Nadu, India having sub-temperate climate with winter temperature during night hours going below 0°C with an objective of finding the influence of different factors such as breed, year, season and parity on different reproductive traits of broiler rabbits in order to come out with the best strategies for improving the productivity. Materials and Methods: A total of 1793 records (946 White Giant and 847 Soviet Chinchilla for weight at mating (WM, weight at kindling (WK, gestation length (GL, litter size at birth (LSB and litter size at weaning (LSW, litter weight at birth (LWB, and litter weight at weaning (LWW were collected in the period between 2000 and 2009 and the data was analyzed using general linear model option of SAS 9.2. Results: The overall mean GL, WM, WK, LSB, LSW, LWB, and LWW were 31.68±0.04 days, 3.65±0.01 kg, 3.84±0.01 kg, 6.91±0.08, 5.49±0.09, 387.62±4.07 g, and 4.66±0.07 kg, respectively. The breed has significantly influenced GL, WK, LSW, LWB, and LWW. The LSB, LSW, LWB, and LWW were 7.05±0.11, 5.76±0.13, 399.55±5.88 g, and 4.87±0.10 kg, respectively in White Giant and corresponding values for Soviet Chinchilla were 6.78±0.11, 5.22±0.12, 375.91±5.64 g, and 4.46±0.09 kg, respectively. The year of kindling had significantly affected all the reproductive traits under study and is varying over different years. The parity significantly influenced the WM, WK, and LWW. The LWW increased from first (4.16±0.21 kg to second parity (4.86±0.19 kg and remained in the same range from third parity onward. WM was significantly higher in spring season (3.72±0.02 than the animals in rainy (3.59±0.02 and winter season (3.65±0.02. Better reproductive performance in terms of higher LSB, LSW, LWB, and LWW as observed in the present study might be due to conducive environmental conditions prevailing

  20. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.

    Science.gov (United States)

    Andrew, Nigel R; Hart, Robert A; Jung, Myung-Pyo; Hemmings, Zac; Terblanche, John S

    2013-09-01

    Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than

  1. Contrasting patterns of groundwater evapotranspiration in grass and tree dominated riparian zones of a temperate agricultural catchment

    Science.gov (United States)

    Satchithanantham, Sanjayan; Wilson, Henry F.; Glenn, Aaron J.

    2017-06-01

    Consumptive use of shallow groundwater by phreatophytic vegetation is a significant part of the water budget in many regions, particularly in riparian areas. The influence of vegetation type on groundwater level fluctuations and evapotranspiration has rarely been quantified for contrasting plant communities concurrently although it has implications for downstream water yield and quality. Hourly groundwater evapotranspiration (ETG) rates were estimated for grass and tree riparian vegetation in southwestern Manitoba, Canada using two modified White methods. Groundwater table depth was monitored in four 21 m transects of five 3 m deep monitoring wells in the riparian zone of a stream reach including tree (Acer negundo; boxelder) and grass (Bromus inermis; smooth brome) dominated segments. The average depths to the groundwater table from the surface were 1.4 m and 1 m for the tree and grass segments, respectively, over the two-year study. During rain free periods of the growing season ETG was estimated for a total of 70 days in 2014 and 79 days in 2015 when diurnal fluctuations were present in groundwater level. Diurnal groundwater level fluctuations were observed during dry periods under both segments, however, ETG was significantly higher (p < 0.001) under trees compared to grass cover in 2014 (a wet year with 72% higher than normal growing season precipitation) and 2015 (a drier year with 15% higher than normal growing season precipitation). The two methods used to estimate ETG produced similar daily and seasonal values for the two segments. In 2014, total ETG was approximately 50% (148 mm) and 100% (282-285 mm) of reference evapotranspiration (ETref, 281 mm) for the grass and tree segments, respectively. In 2015, total ETG was approximately 40% (106-127 mm) and 120% (369-374 mm) of ETref (307 mm) for the grass and tree segments, respectively. Results from the study show the tree dominated portions of the stream reach consumed approximately 2.4 ML ha-1 yr-1 more

  2. Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa.

    Science.gov (United States)

    Ayanlade, Ayansina; Radeny, Maren; Morton, John F; Muchaba, Tabitha

    2018-07-15

    This paper examines drought characteristics as an evidence of climate change in two agro-climatic zones of Nigeria and farmers' climate change perceptions of impacts and adaptation strategies. The results show high spatial and temporal rainfall variability for the stations. Consequently, there are several anomalies in rainfall in recent years but much more in the locations around the Guinea savanna. The inter-station and seasonality statistics reveal less variable and wetter early growing seasons and late growing seasons in the Rainforest zone, and more variable and drier growing seasons in other stations. The probability (p) of dry spells exceeding 3, 5 and 10 consecutive days is very high with 0.62≤p≥0.8 in all the stations, though, the p-values for 10day spells drop below 0.6 in Ibadan and Osogbo. The results further show that rainfall is much more reliable from the month of May until July with the coefficient of variance for rainy days 0.30), though CV-RD appears higher in the month of August for all the stations. It is apparent that farmers' perceptions of drought fundamentally mirror climatic patterns from historical weather data. The study concludes that the adaptation facilities and equipment, hybrids of crops and animals are to be provided to farmers, at a subsidized price by the government, for them to cope with the current condition of climate change. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. 基于主成分-聚类分析法的建筑节能气候区划%Further climatic zoning of building energy efficiency based on principal component analysis and cluster analysis

    Institute of Scientific and Technical Information of China (English)

    张慧玲; 付祥钊

    2012-01-01

    Taking HDD18, CDD26, average temperature of the coldest month, average temperature of the hottest month, solar radiation in winter, solar radiation in summer, humidity ratio in winter and humidity ratio in summer as division indexes based on the analysis of climate indexes impacting the building cooling and heating energy consumptions, applies the principal component analysis and cluster analysis to building energy efficiency climatic zoning of the 270 cities in China, which are divided into the severe-cold dry heat high-solar-radiation zone, severe-cold cool high-solar-radiation zone, severe-cold summer free zone, cold slight-hot zone, temperate-hot-humid zone, temperate-cool zone and raw hot-wet zone. Describes the main climatic characteristics and geographic distribution of the seven climate zones, and clarifies the key point of building energy efficiency and the appropriate technical strategies respectively.%通过分析影响建筑冷热耗量的气候指标,提出了以采暖度日数HDD18、空调度日数CDD26、最冷月平均温度、最热月平均温度、冬季太阳辐射热量、夏季太阳辐射热量、冬季含湿量和夏季含湿量8个气候指标作为建筑节能气候区划指标,采用主成分分析与聚类分析相结合的区划方法对我国270个城市进行了建筑节能气候区划,划分为严寒干热高辐区、严寒凉爽高辐区、严寒无夏区、寒冷微热区、温和炎热湿润区、温和凉爽区和阴冷湿热区,介绍了这7个气候区的主要气候特征和主要的地理范围,明确了各区的建筑节能重点和适宜的技术策略.

  4. Climate variability and vadose zone controls on damping of transient recharge

    Science.gov (United States)

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2017-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  5. RURAL FARMERS’ PERCEPTION OF CLIMATE CHANGE IN CENTRAL AGRICULTURAL ZONE OF DELTA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    A.U. Ofuoku

    2011-10-01

    Full Text Available Farmer perception of their environment is a factor of climate change. Adaptation to climate change requires farmers to realize that the climate has changed and they must identify useful adaptations and implement them. This study analyzed the per-ception of climate change among rural farmers in central agri-cultural zone of Delta State, Nigeria. Climate change studies often assume certain adaptations and minimal examination of how, when, why, and conditions under which adaptations usually take place in any economic and social systems. The study was conducted by survey method on 131 respondents using struc-tured interview schedule and questionnaire. Data were analyzed with descriptive statistics and linear regression model to test that education, gender, and farming experience influenced farmers’ perception of climate change. The results showed that the farmers were aware of climate change. The identified causes of climate change were ranging from intensified agriculture, population explosion, increased use of fossil fuel, loss of in-digenous know practice to gas flaring. The effects of climate change on crops and livestocks were also identified by the rural farmers. Many of the farmers adapted to climate change by planting trees, carrying out soil conservation practice, changing planting dates, using different crop varieties, installing fans in livestock pens, and applying irrigation. Almost half of them did not adapt to climate change. The linear regression analysis revealed that education, gender, and farming experience influ-enced farmers’ perception of climate change. The major barriers to adaptation to climate change included lack of information, lack of money, and inadequate land.

  6. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    Science.gov (United States)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  7. How soil water storage moderates climate changes effects on transpiration, across the different climates of the Critical Zone Observatories

    Science.gov (United States)

    Heckman, C.; Tague, C.

    2017-12-01

    While the demand side of transpiration is predicted to increase under a warmer climate, actual evapotranspiration (AET) will be moderated by the supply of water available to vegetation. A key question to ask is how will plant accessible water storage capacity (PAWSC) affect the partitioning of precipitation between AET and runoff. Our results indicate that whether AET increases or decreases, and how much, is significantly based upon interactions between PAWSC and characteristics of precipitation such as the amount, frequency, and skew as well the partitioning between rain and snow. In snow dominated climates, if PAWSC cannot make up for the loss of storage as snowpack then AET could decrease, and in rain dominated climates, PAWSC could significantly limit the increase in AET. These results highlight the importance of critical zone research: constraining PAWSC is critical in predicting not only the magnitude but also the direction of the change in AET with climate warming. Due to the highly heterogeneous nature of PAWSC and the difficulty of measuring it across large scales, we use a well-tested hydrologic model to estimate the impacts from a range of PAWSC on the partitioning of precipitation between runoff and AET. We completed this analysis for the range of precipitation and vegetation characteristics found across 9 of the Critical Zone Observatories.

  8. Climate change and the northern Russian treeline zone.

    Science.gov (United States)

    MacDonald, G M; Kremenetski, K V; Beilman, D W

    2008-07-12

    The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.

  9. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  10. Mapping urban climate zones and quantifying climate behaviors--an application on Toulouse urban area (France).

    Science.gov (United States)

    Houet, Thomas; Pigeon, Grégoire

    2011-01-01

    Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The use of climatic maps, such Urban Climate Zone‑UCZ, is adapted for this kind of application. The objective of this paper is to demonstrate that the UCZ classification, integrated in the World Meteorological Organization guidelines, first can be automatically determined for sample areas and second is meaningful according to climatic variables. The analysis presented is applied on Toulouse urban area (France). Results show first that UCZ differentiate according to air and surface temperature. It has been possible to determine the membership of sample areas to an UCZ using landscape descriptors automatically computed with GIS and remote sensed data. It also emphasizes that climate behavior and magnitude of UCZ may vary from winter to summer. Finally we discuss the influence of climate data and scale of observation on UCZ mapping and climate characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Sensible climates in monsoon Asia.

    Science.gov (United States)

    Ono, H S; Kawamura, T

    1991-06-01

    This study identifies characteristics of the geographical distribution of sensible climates and their diurnal and annual variations, and presents a classification of bioclimates in monsoon Asia by using Kawamura's discomfort index formula. During the hottest month, tropical areas and areas in central and South China are uncomfortable for humans throughout the day and night, and temperate zones in lowlands are uncomfortable during the daytime. Tropical zones are uncomfortable all year long and temperate zones in lowlands are uncomfortable during summer. Four climatic types were distinguished in monsoon Asia. Climatic type I, hyperthermal throughout the year, occurs in the tropics south of latitude 20 degrees N. Climatic type II, hyperthermal in the hottest month and comfortable in the coldest month, extends over latitudes from 20 degrees to 30 degrees N except in the highlands. Climatic type III, hyperthermal in the hottest month and hypothermal in the coldest month, encompasses temperate zones of East Asia and subtropical arid areas of northwestern India. Climatic type V, comfortable in the hottest month and hypothermal in coldest month, occurs near the southeast coast of the Soviet Union and in the highlands of the Himalayas.

  12. Development and Climate Change in Uruguay. Focus on Coastal Zones, Agriculture and Forestry

    International Nuclear Information System (INIS)

    Agrawala, S.; Moehner, A.; Gagnon-Lebrun, F.; Van Aalst, M.; Smith, J.; Hagenstad, M.; Baethgen, W.E.; Martino, D.L.; Lorenzo, E.

    2004-01-01

    This document is an output from the OECD Development and Climate Change project, an activity jointly overseen by the EPOC Working Party on Global and Structural Policies (WPGSP), and the DAC Network on Environment and Development Co-operation (ENVIRONET). The overall objective of the project is to provide guidance on how to mainstream responses to climate change within economic development planning and assistance policies, with natural resource management as an overarching theme. This report presents the integrated case study for Tanzania carried out under an OECD project on Development and Climate Change. This report presents the integrated case study for Uruguay carried out under an OECD project on Development and Climate Change. The report is structured around a three-tiered framework. First, recent climate trends and climate change scenarios for Uruguay are assessed and key sectoral impacts are identified and ranked along multiple indicators to establish priorities for adaptation. Second, donor portfolios are analyzed to examine the proportion of development assistance activities affected by climate risks. A desk analysis of donor strategies and project documents as well as national plans is conducted to assess the degree of attention to climate change concerns in development planning and assistance. Third, an in-depth analysis is conducted for adaptation in coastal zones as well as for mainstreaming carbonsequestration within the agriculture and forestry sectors

  13. Clay Mineralogy and Crystallinity as a Climatic Indicator: Evidence for Both Cold and Temperate Conditions on Early Mars

    Science.gov (United States)

    Horgan, B.; Rutledge, A.; Rampe, E. B.

    2015-01-01

    Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate.

  14. Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran

    Directory of Open Access Journals (Sweden)

    Sara Ghaem Sigarchian

    2018-05-01

    Full Text Available Design and performance of polygeneration energy systems are highly influenced by several variables, including the climate zone, which can affect the load profile as well as the availability of renewable energy sources. To investigate the effects, in this study, the design of a polygeneration system for identical residential buildings that are located in three different climate zones in Iran has been investigated. To perform the study, a model has previously developed by the author is used. The performance of the polygeneration system in terms of energy, economy and environment were compared to each other. The results show significant energetic and environmental benefits of the implementation of polygeneration systems in Iran, especially in the building that is located in a hot climate, with a high cooling demand and a low heating demand. Optimal polygeneration system for an identical building has achieved a 27% carbon dioxide emission reduction in the cold climate, while this value is around 41% in the hot climate. However, when considering the price of electricity and gas in the current energy market in Iran, none of the systems are feasible and financial support mechanisms or other incentives are required to promote the application of decentralized polygeneration energy systems.

  15. Ecosystems and climate interactions in the boreal zone of northern Eurasia

    International Nuclear Information System (INIS)

    Vygodskaya, N N; Groisman, P Ya; Tchebakova, N M; Kurbatova, J A; Panfyorov, O; Parfenova, E I; Sogachev, A F

    2007-01-01

    The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections

  16. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  17. Quantitative reconstruction of cross-sectional dimensions and hydrological parameters of gravelly fluvial channels developed in a forearc basin setting under a temperate climatic condition, central Japan

    Science.gov (United States)

    Shibata, Kenichiro; Adhiperdana, Billy G.; Ito, Makoto

    2018-01-01

    Reconstructions of the dimensions and hydrological features of ancient fluvial channels, such as bankfull depth, bankfull width, and water discharges, have used empirical equations developed from compiled data-sets, mainly from modern meandering rivers, in various tectonic and climatic settings. However, the application of the proposed empirical equations to an ancient fluvial succession should be carefully examined with respect to the tectonic and climatic settings of the objective deposits. In this study, we developed empirical relationships among the mean bankfull channel depth, bankfull channel depth, drainage area, bankfull channel width, mean discharge, and bankfull discharge using data from 24 observation sites of modern gravelly rivers in the Kanto region, central Japan. Some of the equations among these parameters are different from those proposed by previous studies. The discrepancies are considered to reflect tectonic and climatic settings of the present river systems, which are characterized by relatively steeper valley slope, active supply of volcaniclastic sediments, and seasonal precipitation in the Kanto region. The empirical relationships derived from the present study can be applied to modern and ancient gravelly fluvial channels with multiple and alternate bars, developed in convergent margin settings under a temperate climatic condition. The developed empirical equations were applied to a transgressive gravelly fluvial succession of the Paleogene Iwaki Formation, Northeast Japan as a case study. Stratigraphic thicknesses of bar deposits were used for estimation of the bankfull channel depth. In addition, some other geomorphological and hydrological parameters were calculated using the empirical equations developed by the present study. The results indicate that the Iwaki Formation fluvial deposits were formed by a fluvial system that was represented by the dimensions and discharges of channels similar to those of the middle to lower reaches of

  18. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    Science.gov (United States)

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-07-01

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the

  19. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  20. Effects of climate variability and functional changes on the interannual variation of the carbon balance in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; van der Linden, Leon; Lasslop, G.

    2012-01-01

    scale, direct climatic variability and changes in ecosystem functional properties regulated the IAV of the carbon balance at this site. Correlation analysis showed that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed...... seasonally. Ecosystem response anomalies implied that changes in the distribution of climate anomalies during the vegetation period will have stronger impacts on future ecosystem carbon balances than changes in average climate. We improved a published modelling approach which distinguishes the direct....... At the annual time scale as much as 80% of the IAV in NEE was attributed to the variation in photosynthesis and respiration related model parameters. Our results suggest that the observed decadal NEE trend at the investigated site was dominated by changes in ecosystem functioning. In general this study showed...

  1. Impacts of Severe Weather, Climate Zone, and Energy Factors on Base Realignment and Closure (BRAC)

    Science.gov (United States)

    2015-03-26

    Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Management Christopher L. Teke, Major, USAF Major...the science behind severe weather occurrences and climate zone. Chapter 3 further details the methodology used in the analysis and sets the stage... actuarial estimates and should be thought of as insurance premiums, and ought to remain a budgeted cost if a base stays open. In contrast, if a base is

  2. Assessing the likely impacts of climate change on pests, diseases and weeds of Australia's temperate plantation forests

    International Nuclear Information System (INIS)

    Kriticos, Darren; Leriche, Agathe; Pinkard, Elizabeth A.; Wharton, Trudi N.; Potter, Karina J.B.; Watt, Mike S.; Battaglia, Michael; Richardson, Brian

    2007-01-01

    Full text: Full text: Australia's plantation forests presently cover some 163 milllion hectares, accounting for 105 billion tonnes of carbon. Plantation forests also account for approximately two thirds of the A$18 billion value of turnover in Australia's forest product industries (Bureau of Resource Sciences 2006). Plantation forests also play a small but significant role in mitigating the effects of climate change through sequestration of carbon into durable timber products. However, climate change is likely to pose several direct and indirect challenges to this important industry. One of the indirect challenges is likely to come through changes in the distribution, relative abundance and population dynamics of both native and exotic insects, diseases and weeds (collectively pests) (Sutherst etal. 2007). A series of case studies involving key pests of Eucalypt and Pine plantations are used to explore the likely impacts of climate change on plantation productivity. Global climate model (GCM) scenarios from Ozclim are used with CLIMEX to project changes in the potential distribution and relative abundance of these pests. The GCM results are also used to generate synthetic weather sequences for future climate scenarios. These weather sequences are used in DYMEX models of pest population dynamics to explore non-linear responses of the pest populations. In turn, the DYMEX results are fed into a process-based plant growth model (CABALA), for the three major plantation species in order to assess the likely effects of changing pest populations associated with climate, change on plantation productivity

  3. Structural and functional responses of plant communities to climate change-mediated alterations in the hydrology of riparian areas in temperate Europe.

    Science.gov (United States)

    Baattrup-Pedersen, Annette; Garssen, Annemarie; Göthe, Emma; Hoffmann, Carl Christian; Oddershede, Andrea; Riis, Tenna; van Bodegom, Peter M; Larsen, Søren E; Soons, Merel

    2018-04-01

    The hydrology of riparian areas changes rapidly these years because of climate change-mediated alterations in precipitation patterns. In this study, we used a large-scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near-stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near-stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time-dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects

  4. Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone

    Science.gov (United States)

    Melo, D. D.; Wendland, E.

    2013-12-01

    The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme

  5. The Climate Change Vulnerability and Risk Management Matrix for the Coastal Zone of The Gambia

    Directory of Open Access Journals (Sweden)

    Joshua Amuzu

    2018-02-01

    Full Text Available Global Climate Change is one of the dire challenges facing the international community today. Coastal zones are vulnerable to its impacts. An effective approach with long-term prospects in addressing climate change impacts is it’s mainstreaming into development agenda of sectoral policies. A comprehensive risk and vulnerability assessment is a pre-requisite to ensure that the right adaptive response is taken for effective integration into developmental plans. The objective of this study is to evaluate and prioritize risks, vulnerability and adaptation issues of current and anticipated impacts of climate change on the coastal zone of The Gambia. The study will also give a methodological contribution for assessing risks, vulnerability and adaptation from the sub-national to local levels. The relevance of this study will be to create a link between the sub-national and local levels in order to facilitate the integration and mainstreaming of climate change into sectoral and local policies for more climate-resilient communities. This will aid in the promotion of strategic investment of constrained developmental resources to actualize successfully dynamic coping strategies, elude ‘maladaptation’ and less compelling responsive measures. A purposive expert sampling technique was used in selecting respondents for the study. The findings of the study reveal that by the end of the 21st century, the climatic variables likely to have the highest impact on the coastal zone of The Gambia are ‘increased flood severity’ and ‘increased temperature’. The coastal zone of The Gambia showed a high vulnerability to these climate change variables. The suggested adaptive response in addressing the impacts of increased flood intensity in the study area includes; improving regulations for restricting agriculture and livestock grazing activities to improve land cover; strengthening of early-warning systems, among others. The suggested adaptive response in

  6. Effect of reservoir zones and hedging factor dynamism on reservoir adaptive capacity for climate change impacts

    Science.gov (United States)

    Adeloye, Adebayo J.; Soundharajan, Bankaru-Swamy

    2018-06-01

    When based on the zones of available water in storage, hedging has traditionally used a single hedged zone and a constant rationing ratio for constraining supply during droughts. Given the usual seasonality of reservoir inflows, it is also possible that hedging could feature multiple hedged zones and temporally varying rationing ratios but very few studies addressing this have been reported especially in relation to adaptation to projected climate change. This study developed and tested Genetic Algorithms (GA) optimised zone-based operating policies of various configurations using data for the Pong reservoir, Himachal Pradesh, India. The results show that hedging does lessen vulnerability, which dropped from ≥ 60 % without hedging to below 25 % with the single stage hedging. More complex hedging policies, e.g. two stage and/or temporally varying rationing ratios only produced marginal improvements in performance. All this shows that water hedging policies do not have to be overly complex to effectively offset reservoir vulnerability caused by water shortage resulting from e.g. projected climate change.

  7. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones.

    Science.gov (United States)

    Engler, J O; Rödder, D; Elle, O; Hochkirch, A; Secondi, J

    2013-11-01

    Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  8. Possible responses of northern peatlands to climate change in the zone of discontinuous permafrost, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bubier, J L [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Oceans, and Space; Moore, T R [McGill Univ., Montreal (Canada). Geography Dept.

    1997-12-31

    More than half of the world`s peatlands occur in the boreal zone (45 - 60 deg C N. lat), a region which global climate models predict will experience large changes in temperature and precipitation with increasing atmospheric CO{sub 2} concentrations. The northern part of the boreal zone is characterised by discontinuous permafrost, an area that is particularly sensitive to climate change with the possible degradation and thawing of frozen peat. Peatlands are large sources of atmospheric methane (CH{sub 4}), an important greenhouse gas. Yet few measurements of methane have been conducted in discontinuous permafrost environments. As part of the Boreal Ecosystem-Atmosphere Study (BOREAS), CH{sub 4} flux was measured in a diverse peatland complex (bogs, fens, peat plateaus, and collapse scars), representing the complete range of temperature, moisture, and plant community gradients found in northern peatlands. The measurement period May to September 1994 was one of the warmest and driest seasons on record, which provided an opportunity to observe the short-term responses of different parts of the peatland ecosystem to a warmer and drier climate as an analog to predicted climate change in the region. (5 refs.)

  9. Possible responses of northern peatlands to climate change in the zone of discontinuous permafrost, Manitoba, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bubier, J.L. [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Oceans, and Space; Moore, T.R. [McGill Univ., Montreal (Canada). Geography Dept.

    1996-12-31

    More than half of the world`s peatlands occur in the boreal zone (45 - 60 deg C N. lat), a region which global climate models predict will experience large changes in temperature and precipitation with increasing atmospheric CO{sub 2} concentrations. The northern part of the boreal zone is characterised by discontinuous permafrost, an area that is particularly sensitive to climate change with the possible degradation and thawing of frozen peat. Peatlands are large sources of atmospheric methane (CH{sub 4}), an important greenhouse gas. Yet few measurements of methane have been conducted in discontinuous permafrost environments. As part of the Boreal Ecosystem-Atmosphere Study (BOREAS), CH{sub 4} flux was measured in a diverse peatland complex (bogs, fens, peat plateaus, and collapse scars), representing the complete range of temperature, moisture, and plant community gradients found in northern peatlands. The measurement period May to September 1994 was one of the warmest and driest seasons on record, which provided an opportunity to observe the short-term responses of different parts of the peatland ecosystem to a warmer and drier climate as an analog to predicted climate change in the region. (5 refs.)

  10. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  11. A guideline for sizing Photovoltaic panels across different climatic zones in Burkina Faso

    International Nuclear Information System (INIS)

    Waongo, M; Koalaga, Z; Zougmore, F

    2012-01-01

    In many developing countries a long time series of solar radiation measurements are not often available. This is due to the cost, maintenance and calibration requirements of measuring devices. Consequently, the use of solar energy by Photovoltaic (PV) conversion copes with the choice and the optimization of the PV system. This work concerned the analysis of climate parameters strongly influencing the Photovoltaic (PV) systems energy production and the simulation of an ideal system based on a single PV module. Estimation and analysis of time series of climate parameters covered a set of six weather stations with respect to the three climatic zones in Burkina Faso (BF), over 38 years. The analysis showed that the solar irradiation in BF lies between 3 kWh/m 2 /day and 7.5 kWh/m 2 /day. The highest values of the solar irradiation are measured in the Northern part of the country while lowest values are measured in the Southern part. Daily mean temperature for all weather stations was greater than the Standard Test Condition (STC) temperature (25°C) over a long period of the year. Information on solar irradiation and temperature is fundamental for PV systems sizing process. For PV performance evaluation, a simulation is carried out using an ideal system composed of a single PV module from TENESOL Company. This simulation is performed for three classes of climatic conditions 'Mean situation', 'Adverse situation', and 'Beneficial situation', and evaluated for six sitesacross BF. The results revealed intra-annual and spatial variability of Maximum Power (MP). Across BF, MP varied between 60 W/day and 190 W/day in Sahelian zone, between 65 W/day and 185 W/day in soudano-sahelian zone, and between 67 W/day and 208 W/day in Soudanian zone. MP intra-annual variability is higher during the period July-August, mainly for 'Beneficial situation'. The negative effect of temperature on PV energy production is specially amplified in Sahelian zone due to its highest temperatures

  12. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    Science.gov (United States)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  13. Altitudinal patterns in breeding bird species richness and density in relation to climate, habitat heterogeneity, and migration influence in a temperate montane forest (South Korea).

    Science.gov (United States)

    Kim, Jin-Yong; Lee, Sanghun; Shin, Man-Seok; Lee, Chang-Hoon; Seo, Changwan; Eo, Soo Hyung

    2018-01-01

    Altitudinal patterns in the population ecology of mountain bird species are useful for predicting species occurrence and behavior. Numerous hypotheses about the complex interactions among environmental factors have been proposed; however, these still remain controversial. This study aimed to identify the altitudinal patterns in breeding bird species richness or density and to test the hypotheses that climate, habitat heterogeneity (horizontal and vertical), and heterospecific attraction in a temperate forest, South Korea. We conducted a field survey of 142 plots at altitudes between 200 and 1,400 m a.s.l in the breeding season. A total of 2,771 individuals from 53 breeding bird species were recorded. Altitudinal patterns of species richness and density showed a hump-shaped pattern, indicating that the highest richness and density could be observed at moderate altitudes. Models constructed with 13 combinations of six variables demonstrated that species richness was positively correlated with vertical and horizontal habitat heterogeneity. Density was positively correlated with vertical, but not horizontal habitat heterogeneity, and negatively correlated with migratory bird ratio. No significant relationships were found between spring temperature and species richness or density. Therefore, the observed patterns in species richness support the hypothesis that habitat heterogeneity, rather than climate, is the main driver of species richness. Also, neither habitat heterogeneity nor climate hypotheses fully explains the observed patterns in density. However, vertical habitat heterogeneity does likely help explain observed patterns in density. The heterospecific attraction hypothesis did not apply to the distribution of birds along the altitudinal gradient. Appropriate management of vertical habitat heterogeneity, such as vegetation cover, should be maintained for the conservation of bird diversity in this area.

  14. Effects of Atlantic warm pool variability over climate of South America tropical transition zone

    Science.gov (United States)

    Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo

    2016-04-01

    Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO

  15. Human-water interactions in Myanmar's Dry Zone under climate change

    Science.gov (United States)

    Taft, Linda; Evers, Mariele

    2016-04-01

    Understanding human-water interactions is particularly essential in countries where the economy and the people's well-being and income strongly depend on the availability and quality of sufficient water resources. Such a strong dependency on water is existent in Myanmar's Dry Zone located in the central Ayeyarwady River basin. In this area, rainfall is associated with high heterogeneity across space and time. Precipitation amounts in the Dry Zone (500-1000 mm annually) are generally less compared to other regions in Myanmar (up to 4000-6000 mm). Following the Global Climate Risk Index, Myanmar is one of the countries which were most affected by extreme weather events between 1994 and 2013. Severe drought periods e.g in the years 1997-1998, 2010 and 2014 led to crop failures and water shortage in the Dry Zone, where more than 14 mio people predominantly practice agriculture. Due to the high variability of rainfalls, farming is only possible with irrigation, mainly conducted by canal systems from the rivers and groundwater withdrawal. Myanmar is recently facing big challenges which result from comprehensive political and economic reforms since 2011. These may also include increasing water use by new industrial zones and urbanization. However, not only policy and economy modify the need for water. Variability of river runoff and changes in seasonality are expected as a result of climate change. The overarching goal of the study is to understand and increase the knowledge on human-water-climate interactions and to elaborate possible future scenarios for Myanmar's Dry Zone. It is not well studied yet how current and future climate change and increasing human impact will influence the country's abundant water resources including groundwater. Therefore, the first step of this study is to identify the major drivers within the central Ayeyarwady River basin. We are in the process of collecting and analyzing data sets and information including hydrologic and eco

  16. Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China.

    Science.gov (United States)

    Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan

    2018-02-01

    Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison and statistical analysis of long-term overheating indices applied on energy renovated dwellings in temperate climates

    DEFF Research Database (Denmark)

    Psomas, Theofanis Ch.; Heiselberg, Per Kvols; Duer, Karsten

    2018-01-01

    -running’ representative dwellings and characteristic climatic conditions of central Europe (Denmark, United Kingdom, Austria and France). Different renovation steps and passive cooling strategies were applied on these case studies creating 66 variants for comfort assessment. The analyses were conducted with the use...

  18. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal

    Science.gov (United States)

    Sujakhu, Nani M.; Merz, Juerg; Kindt, Roeland; Xu, Jianchu; Matin, Mir A.; Ali, Mostafa; Zomer, Robert J.

    2016-01-01

    The Government of Nepal has identified opportunities in agricultural commercialization, responding to a growing internal demand and expansion of export markets to reduce the immense trade deficit. Several cash crops, including coffee and bananas, have been identified in the recently approved Agriculture Development Strategy. Both of these crops have encouraged smallholder farmers to convert their subsistence farming practices to more commercial cultivation. Identification of suitable agro-ecological zones and understanding climate-related issues are important for improved production and livelihoods of smallholder farmers. Here, the suitability of coffee and banana crops is analyzed for different agro-ecological zones represented by Global Environmental Stratification (GEnS). Future shifts in these suitability zones are also predicted. Plantation sites in Nepal were geo-referenced and used as input in species distribution modelling. The multi-model ensemble model suggests that climate change will reduce the suitable growing area for coffee by about 72% across the selected emission scenarios from now to 2050. Impacts are low for banana growing, with a reduction in suitability by about 16% by 2050. Bananas show a lot of potential for playing an important role in Nepal as a sustainable crop in the context of climate change, as this study indicates that the amount of area suited to banana growing will grow by 40% by 2050. Based on our analysis we recommend possible new locations for coffee plantations and one method for mitigating climate change-related problems on existing plantations. These findings are expected to support planning and policy dialogue for mitigation and support better informed and scientifically based decision-making relating to these two crops. PMID:27689354

  19. Teaching climate science within the transdisciplinary framework of Critical Zone science

    Science.gov (United States)

    White, T. S.; Wymore, A.; Dere, A. L. D.; Washburne, J. C.; Hoffman, A.; Conklin, M. H.

    2017-12-01

    During the past decade a new realm of Earth surface and environmental science has evolved, Critical Zone (CZ) science. The CZ is the outermost layer of the continents spanning from the top of the vegetation canopy down to the bottom of the fresh groundwater zone. CZ science integrates across many disciplines and cross cutting concepts, including climate science, and much progress has been made by the CZ community to develop educational curricula - descriptions of the climate science aspects of two of those follows. An interdisciplinary team of CZ scientists developed an undergraduate course entitled "Introduction to CZ science". The semester-long course is modular, has been tested in multiple university settings, and the content is available online. A primary tenet of the course is that to achieve environmental sustainability, society must understand the CZ system, the natural processes and services of the CZ that are of value to society, and how those processes operate with and without the presence of humanity. A fundamental concept in the course is that the fluxes of water, C, energy, reactive gases, particulates and nutrients throughout the CZ are directly and indirectly related to climatic phenomenon and processes. Units on land-atmosphere interactions, weathering, and water budgets highlight the connection between CZ science and climate science, and are augmented by learning activities that consider climate links to soil development and landscape evolution. An online open-source course entitled "Earth 530: Earth Surface Processes in the Critical Zone'" is offered as part of The Pennsylvania State University's Masters of Education in Earth Sciences program. The course is designed to educate teachers interested in incorporating CZ science into their classrooms, though it is usable by anyone with a basic understanding of Earth surface and environmental science. Earth 530 introduces students to knowledge needed to understand the CZ through integration of

  20. Tempered fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  1. Tempered fractional calculus

    Science.gov (United States)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  2. Tempered fractional calculus

    International Nuclear Information System (INIS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series

  3. End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis.

    Science.gov (United States)

    Faverial, Julie; Boval, Maryline; Sierra, Jorge; Sauvant, Daniel

    2016-12-01

    A meta-analysis on end-product quality of 442 composts was performed to assess the effects of climate and raw materials on compost quality. The analysis was performed using an ANOVA including a mixed model with nested factors (climate, raw material and publication effect). Tropical composts presented lower carbon, nitrogen, potassium and soluble-carbon contents, and higher electrical conductivity. The results suggest that compost quality in the tropics was affected by weather conditions during composting (e.g. high temperature and rainfall), which induced high losses of carbon and nutrients. For most properties, industrial, sewage sludge and manure-based composts displayed the highest quality under both climates, while the contrary was found for household and municipal solid waste-based composts. The publication effect represented >50% of total variance, which was mainly due to the heterogeneity of the composting procedures. The meta-analysis was found to be a helpful tool to analyse the imbalanced worldwide database on compost quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach

    DEFF Research Database (Denmark)

    Poeplau, Christopher; Don, Axel; Vesterdal, Lars

    2011-01-01

    Land-use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites...... approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC....

  5. Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoof, Joost van; Hensen, Jan L.M. [Faculty of Architecture, Building and Planning, Technische Universiteit Eindhoven, Vertigo 6.18, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2007-01-15

    Standards governing thermal comfort evaluation are on a constant cycle of revision and public review. One of the main topics being discussed in the latest round was the introduction of an adaptive thermal comfort model, which now forms an optional part of ASHRAE Standard 55. Also on a national level, adaptive thermal comfort guidelines come into being, such as in the Netherlands. This paper discusses two implementations of the adaptive comfort model in terms of usability and energy use for moderate maritime climate zones by means of literature study, a case study comprising temperature measurements, and building performance simulation. It is concluded that for moderate climate zones the adaptive model is only applicable during summer months, and can reduce energy for naturally conditioned buildings. However, the adaptive thermal comfort model has very limited application potential for such climates. Additionally we suggest a temperature parameter with a gradual course to replace the mean monthly outdoor air temperature to avoid step changes in optimum comfort temperatures. (author)

  6. Predicting Plant-Accessible Water in the Critical Zone: Mountain Ecosystems in a Mediterranean Climate

    Science.gov (United States)

    Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.

    2017-12-01

    Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.

  7. Urban local climate zone mapping and apply in urban environment study

    Science.gov (United States)

    He, Shan; Zhang, Yunwei; Zhang, Jili

    2018-02-01

    The city’s local climate zone (LCZ) was considered to be a powerful tool for urban climate mapping. But for cities in different countries and regions, the LCZ division methods and results were different, thus targeted researches should be performed. In the current work, a LCZ mapping method was proposed, which is convenient in operation and city planning oriented. In this proposed method, the local climate zoning types were adjusted firstly, according to the characteristics of Chinese city, that more tall buildings and high density. Then the classification method proposed by WUDAPT based on remote sensing data was performed on Xi’an city, as an example, for LCZ mapping. Combined with the city road network, a reasonable expression of the dividing results was provided, to adapt to the characteristics in city planning that land parcels are usually recognized as the basic unit. The proposed method was validated against the actual land use and construction data that surveyed in Xi’an, with results indicating the feasibility of the proposed method for urban LCZ mapping in China.

  8. Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales)

    Science.gov (United States)

    Bussi, Gianbattista; Whitehead, Paul G.; Thomas, Amy R. C.; Masante, Dario; Jones, Laurence; Jack Cosby, B.; Emmett, Bridget A.; Malham, Shelagh K.; Prudhomme, Christel; Prosser, Havard

    2017-10-01

    Water-borne pathogen contamination from untreated sewage effluent and runoff from farms is a serious threat to the use of river water for drinking and commercial purposes, such as downstream estuarine shellfish industries. In this study, the impact of climate change and land-use change on the presence of faecal indicator bacteria in freshwater was evaluated, through the use of a recently-developed catchment-scale pathogen model. The River Conwy in Wales has been used as a case-study, because of the large presence of livestock in the catchment and the importance of the shellfish harvesting activities in its estuary. The INCA-Pathogens catchment model has been calibrated through the use of a Monte-Carlo-based technique, based on faecal indicator bacteria measurements, and then driven by an ensemble of climate projections obtained from the HadRM3-PPE model (Future Flow Climate) plus four land-use scenarios (current land use, managed ecosystem, abandonment and agricultural intensification). The results show that climate change is not expected to have a very large impact on average river flow, although it might alter its seasonality. The abundance of faecal indicator bacteria is expected to decrease in response to climate change, especially during the summer months, due to reduced precipitation, causing reduced runoff, and increased temperature, which enhances the bacterial die-off processes. Land-use change can also have a potentially large impact on pathogens. The "managed ecosystems" scenario proposed in this study can cause a reduction of 15% in average water faecal indicator bacteria and up to 30% in the 90th percentile of water faecal indicator bacteria, mainly due to the conversion of pasture land into grassland and the expansion of forest land. This study provides an example of how to assess the impacts of human interventions on the landscape, and what may be the extent of their effects, for other catchments where the human use of the natural resources in the

  9. Improving modelled impacts on the flowering of temperate fruit trees in the Iberian Peninsula of climate change projections for 21st century

    Science.gov (United States)

    Ruiz-Ramos, Margarita; Pérez-Lopez, David; Sánchez-Sánchez, Enrique; Centeno, Ana; Dosio, Alessandro; Lopez-de-la-Franca, Noelia

    2013-04-01

    Flowering of temperate trees needs winter chilling, being the specific requirements dependent on the variety. This work studied the trend and changes of values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. According to our previous results (Pérez-López et al., 2012), areas traditionally producing fruit as the Ebro (NE of Spain) or Guadalquivir (SO) valleys, Murcia (SE) and Extremadura (SO) could have a major cold reduction of chill-hours. This would drive a change of varieties or species and may enhance the use of chemicals to complete the needs of chill hours for flowering. However, these results showed high uncertainty, partly due to the bias of the climate data used, generated by Regional Climate Models. The chilling hours were calculated with different methods according to the species considered: North Carolina method (Shaltout and Unrath, 1983) was used for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The climate data used as inputs were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/) first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012). This work aims to improve the impact projections obtained in Pérez-López et al. (2012). For this purpose, variation of chill-hours between 2nd half of 20th century and 1st half of 21st century at the study locations were recalculated considering 1) a feedback in the dates in which the chilling hours are calculated, to take into account the shift of phenological dates, and 2) substituting the original ENSEMBLES data set of climate used in Pérez-López et al. (2012) by the bias corrected data set. Calculations for the 2nd half of 20th

  10. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  11. Groundwater flow modeling of periods with temperate climate conditions for use in a safety assessment of a repository for spent nuclear fuel - 59154

    International Nuclear Information System (INIS)

    Joyce, Steven; Hartley, Lee; Simpson, Trevor

    2012-01-01

    Document available in abstract form only. Full text of publication follows: As a part of the license application for a final repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Company (SKB) has prepared a safety report (SR-Site) that assesses the long-term radiological safety after closure of a repository located at 500 m depth in the Forsmark area, c. 120 km north of Stockholm. The movement and composition of groundwater affect both the key pathways for radionuclide migration and the performance of engineered barriers, and hence are important issues that have to be considered and modelled as part of quantitative assessment calculations. This presentation describes the groundwater flow modelling studies that have been performed to represent the post-closure hydrogeological and hydrochemical situations during temperate climate conditions, and how these are used to support safety assessment calculations and arguments. The collation and implementation of onsite hydrogeological and hydrogeochemical data from the surface based site investigations at Forsmark are used as the basis for defining a reference case for the natural hydrogeological situation at the site (hydrogeological base case). Areas of uncertainty within the current site understanding and the engineered system are examined by a series of flow model variants

  12. Revisions of the Fish Invasiveness Screening Kit (FISK) for its application in warmer climatic zones, with particular reference to peninsular Florida.

    Science.gov (United States)

    Lawson, Larry L; Hill, Jeffrey E; Vilizzi, Lorenzo; Hardin, Scott; Copp, Gordon H

    2013-08-01

    The initial version (v1) of the Fish Invasiveness Scoring Kit (FISK) was adapted from the Weed Risk Assessment of Pheloung, Williams, and Halloy to assess the potential invasiveness of nonnative freshwater fishes in the United Kingdom. Published applications of FISK v1 have been primarily in temperate-zone countries (Belgium, Belarus, and Japan), so the specificity of this screening tool to that climatic zone was not noted until attempts were made to apply it in peninsular Florida. To remedy this shortcoming, the questions and guidance notes of FISK v1 were reviewed and revised to improve clarity and extend its applicability to broader climatic regions, resulting in changes to 36 of the 49 questions. In addition, upgrades were made to the software architecture of FISK to improve overall computational speed as well as graphical user interface flexibility and friendliness. We demonstrate the process of screening a fish species using FISK v2 in a realistic management scenario by assessing the Barcoo grunter Scortum barcoo (Terapontidae), a species whose management concerns are related to its potential use for aquaponics in Florida. The FISK v2 screening of Barcoo grunter placed the species into the lower range of medium risk (score = 5), suggesting it is a permissible species for use in Florida under current nonnative species regulations. Screening of the Barcoo grunter illustrates the usefulness of FISK v2 as a proactive tool serving to inform risk management decisions, but the low level of confidence associated with the assessment highlighted a dearth of critical information on this species. © 2012 Society for Risk Analysis.

  13. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    Science.gov (United States)

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic)

    Science.gov (United States)

    Kruk, Marek; Kobos, Justyna; Nawrocka, Lidia; Parszuto, Katarzyna

    2018-04-01

    This study aims to demonstrate that factors associated with climate dynamics, such as temperature and wind, affect the ecosystem of the shallow Vistula Lagoon in the southern Baltic and cause nutrient forms phytoplankton interactions: the growth of biomass and constraints of it. This occurs through a network of direct and indirect relationships between environmental and phytoplankton factors, including interactions of positive and negative feedback loops. Path analysis supported by structural equation modeling (SEM) was used to test hypotheses regarding the impact of climate factors on algal assemblages. Increased phytoplankton biomass was affected directly by water temperature and salinity, while the wind speed effect was indirect as it resulted in increased concentrations of suspended solids (SS) in the water column. Simultaneously, the concentration of SS in the water was positively correlated with particulate organic carbon (POC), particulate nitrogen (PN), and particulate phosphorus (PP), and was negatively correlated with the total nitrogen to phosphorus (N:P) ratio. Particulate forms of C, N, and phosphorus (P), concentrations of soluble reactive phosphorus (SRP) and nitrate and nitrite nitrogen (NO3-N + NO2-N), and ratios of the total N:P and DIN:SRP, all indirectly effected Cyanobacteria C concentrations. These processes influence other phytoplankton groups (Chlorophyta, Bacillariophyceae and the picophytoplankton fraction). Increased levels of SRP associated with organic matter (POC), which stemmed from reduced DIN:SRP ratios, contributed to increased Cyanoprokaryota and picophytoplankton C concentrations, which created a positive feedback loop. However, a simultaneous reduction in the total N:P ratio could have inhibited increases in the biomass of these assemblages by limiting N, which likely formed a negative feedback loop. The study indicates that the nutrients-phytoplankton feedback loop phenomenon can intensify eutrophication in a temperate lagoon

  15. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    Science.gov (United States)

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future

  16. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2.

    Directory of Open Access Journals (Sweden)

    Louise C Andresen

    Full Text Available It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1 soil of (13C-labeled glycine ((13C2, 99 atom % to soils in situ. Plots were treated with elevated temperature (+1°C, T, summer drought (D and elevated atmospheric carbon dioxide (510 ppm [CO2], as well as combined treatments (TD, TCO2, DCO2 and TDCO2. The (13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs was determined after 24 h. (13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS. Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13C in all treatments, whereas fungi had minor or no glycine derived (13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13C-depleted (δ(13C = 12.2‰ compared to ambient (δ(13C = ∼-8‰, and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to

  17. Settlement determination of operating moisture of autoclaved aerated concrete in different climatic zones

    Directory of Open Access Journals (Sweden)

    Pastushkov Pavel Pavlovich

    Full Text Available In the process of operation of buildings the moisture state of enveloping structures materials is changing depending on their construction features, properties of the material, temperature and moisture conditions in the premises, climatic conditions of the construction area. Moisture mode determines the operational properties of the enveloping structures of a building. It directly influences the thermal characteristics of enveloping structure and energy efficiency of the applied materials. The analysis of the methods for calculation of moisture behavior of enclosing structures is carried out. The research relevance of operational moisture of AAC is substantiated. Experimental studies and results of the sorption moisturizing and water vapor permeability of leading marks of aerated concrete are carried out. The authors offer the results of numerical calculations of the moisture behavior of aerated concrete in the walls with mark D400 with facade thermal insulation composite systems - with external plaster layers for different climatic zones of construction.

  18. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa

    DEFF Research Database (Denmark)

    Mertz, Ole; D'haen, Sarah Ann Lise; Maiga, Abdou

    2012-01-01

    Environmental change in the Sudan-Sahel region of West Africa (SSWA) has been much debated since the droughts of the 1970s. In this article we assess climate variability and environmental stress in the region. Households in Senegal, Mali, Burkina Faso, Niger, and Nigeria were asked about climatic...... to household perceptions, observed rainfall patterns showed an increasing trend over the past 20 years. However, August rainfall declined, and could therefore potentially explain the contrasting negative household perceptions of rainfall trends. Most households reported degradation of soils, water resources......, vegetation, and fauna, but more so in the 500–900 mm zones. Adaptation measures to counter environmental degradation included use of manure, reforestation, soil and water conservation, and protection of fauna and vegetation. The results raise concerns for future environmental management in the region...

  19. Impact of global warming on performance of ground source heat pumps in US climate zones

    International Nuclear Information System (INIS)

    Shen, Pengyuan; Lukes, Jennifer R.

    2015-01-01

    Highlights: • Used morphing method to have downscaled hourly local weather data from GCM. • Selected representative cities in different climate zones in the US for case study on GSHP performance. • Used hourly building simulation tools (eQuest and TRNSYS) to project GSHP performance in future. • Analysis on GSHP performance in 2050 for both residential and office building in the US are conducted. - Abstract: Ground source heat pumps (GSHP) have attracted increasing attention because of their high energy efficiencies. The aim of this paper is to study the performance of (GSHP) in future climate conditions (2040–2069) by using projected future hourly weather data of selected representative cities in the US to estimate future ground temperature change. The projected hourly weather data and estimated ground temperatures are input to an hourly simulation tool (TRNSYS and eQuest for this research), which provides reliable coupling of GSHP system and building performance. The simulation results show that global warming will decrease the energy efficiency of GSHP in US residential buildings because a rise in inlet and outlet water temperature is predicted for GSHP systems during the cooling season and because buildings will become more cooling dominated in the future. For office buildings, although the cooling performance of GSHP will not drop significantly under future climate, the overall energy efficiency for the system will decrease due to the increasing energy consumption of the ground loop pump. In the future, considering the significant ground heat imbalance for GSHP operation, GSHP will become less competitive both economically and technically than it is now in the context of US climate zones

  20. Analysis of Solar Chimneys in Different Climate Zones - Case of Social Housing in Ecuador

    Science.gov (United States)

    Godoy-Vaca, Luis; Almaguer, Manuel; Martínez-Gómez, Javier; Lobato, Andrea; Palme, Massimo

    2017-10-01

    The aim of this research is to simulate the performance of a solar chimney located in different macro-zones in Ecuador. The proposed solar chimney model was simulated using a python script in order to predict the temperature distribution and the mass flow over time. The results obtained were firstly compared with experimental data for dry-warm climate. Then, the model was evaluated and tested in real weather conditions: dry-warm, moist-warm and rainy-cold. In addition, the assumed chimney dimensions were chosen according to the literature for the studied conditions. In spite of evaluating the best nightly ventilation, different chimney wall materials were tested: solid brick, common brick and reinforced concrete. The results showed that concrete in a dry-warm climate, a metallic layer on the gap with solid brick in a moist-warm climate and reinforced concrete in a rainy cold climate used for the absorbent wall improve the thermal inertia of the social housing.

  1. Climate change and their consequences on coastal zone of Ain el Turck in Oran

    Directory of Open Access Journals (Sweden)

    Mohammed Tewfik Bouroumi

    2017-12-01

    Full Text Available Algeria does not escape the problem of the climate change, its geographical position in zone of transition, and its dry and semi-arid climate, in fact a very vulnerable space. In Algeria, approximately two thirds of the population is concentrated on the coast which represents only 4 % of the territory. The Mediterranean coast, in particular in Algeria, is subjected to pressures: financial stakes, climatic risks, pollutions and conservation of the water. It is on the basis of the critical and objective report with regard to a wild urbanization of the Algerian coast as well as the influence of the demographic pressure that the choice of the search for this article was held. This publication has for objective to raise (to draw up a current situation (inventory of fixtures of the sector of the environment in Algeria and to present through the case of the coastal city of Oran the consequences of climate change. We propose, to review the situation through the case of the municipality of Ain El Türck, by basing itself on data relative to the evolution of the temperatures and the sea level.

  2. Indiana bat summer maternity distribution: effects of current and future climates

    Science.gov (United States)

    Susan C. Loeb; Eric A. Winters

    2013-01-01

    Temperate zone bats may be more sensitive to climate change than other groups of mammals because many aspects of their ecology are closely linked to temperature. However, few studies have tried to predict the responses of bats to climate change. The Indiana bat (Myotis sodalis) is a federally listed endangered species that is found in the eastern...

  3. Local Climate Zones Classification to Urban Planning in the Mega City of São Paulo - SP, Brazil

    Science.gov (United States)

    Gonçalves Santos, Rafael; Saraiva Lopes, António Manuel; Prata-Shimomura, Alessandra

    2017-04-01

    Local Climate Zones Classification to Urban Planning in the Mega city of São Paulo - SP, Brazil Tropical megacities have presented a strong trend in growing urban. Urban management in megacities has as one of the biggest challenges is the lack of integration of urban climate and urban planning to promote ecologically smart cities. Local Climatic Zones (LCZs) are considered as important and recognized tool for urban climate management. Classes are local in scale, climatic in nature, and zonal in representation. They can be understood as regions of uniform surface cover, structure, material and human activity that have to a unique climate response. As an initial tool to promote urban climate planning, LCZs represent a simple composition of different land coverages (buildings, vegetation, soils, rock, roads and water). LCZs are divided in 17 classes, they are based on surface cover (built fraction, soil moisture, albedo), surface structure (sky view factor, roughness height) and cultural activity (anthropogenic heat flux). The aim of this study is the application of the LCZs classification system in the megacity of São Paulo, Brazil. Located at a latitude of 23° 21' and longitude 46° 44' near to the Tropic of Capricorn, presenting humid subtropical climate (Cfa) with diversified topographies. The megacity of São Paulo currently concentrates 11.890.000 inhabitants is characterized by large urban conglomerates with impermeable surfaces and high verticalization, having as result high urban heat island intensity. The result indicates predominance in urban zones of Compact low-rise, Compact Mid-rise, Compact High-rise and Open Low-rise. Non-urban regions are mainly covered by dense vegetation and water. The LCZs classification system promotes significant advantages for climate sensitive urban planning in the megacity of São Paulo. They offers new perspectives to the management of temperature and urban ventilation and allows the formulation of urban planning

  4. Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Ataur Rahman

    2015-03-01

    possible to reduce the effects of natural and climate change-induced disasters. Under such a management system, the entire coastal zone can be made more productive and sustainable.

  5. Impacts of extreme weather events and climate variability on carbon exchanges in an age-sequence of managed temperate pine forests from 2003 to 201

    Science.gov (United States)

    Arain, M. A.

    2017-12-01

    North American temperate forests are a critical component of the global carbon cycle and regional water resources. A large portion of these forests has traditionally been managed for timber production and other uses. The response of these forests, which are in different stages of development, to extreme weather events such as drought and heat stresses, climate variability and management regimes is not fully understood. In this study, eddy covariance flux measurements in an age sequence (77-, 42-, and 14-years old as of 2016) of white pine (Pinus strobus L.) plantation forests in southern Ontario, Canada are examined to determine the impact of heat and drought stresses and climate variability over a 14 year period (2003 to 2016). The mean annual net ecosystem productivity (NEP) values were 195 ± 87, 512 ±161 and 103 ± 103 g C m-2 year-1 in 77-, 42- and 14-year-old forests respectively, over the study period. The youngest forest became a net carbon sink in the fifth year of its growth. Air temperature was a dominant control on carbon fluxes and heat stress reduced photosynthesis much more as compared to ecosystem respiration in the growing season. A large decrease in annual NEP was observed during years experiencing heat waves. Drought stress had the strongest impact on the middle age forest which had the largest carbon sink and water demand. In contrast, young forest was more sensitive to heat stress, than drought. Severity of heat and drought stress impacts was highly dependent on the timing of these events. Simultaneous occurrence of heat and drought stress in the early growing season such as in 2012 and 2016 had a drastic negative impact on carbon balance in these forests due to plant-soil-atmosphere feedbacks. Future research should consider the timing of the extreme events, the stage of forest development and effects of extreme events on component fluxes. This research helps to assess the vulnerability of managed forests and their ecological and hydrological

  6. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Hiel

    2018-05-01

    Full Text Available Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues and in the type of tillage (reduced tillage (10 cm depth vs. conventional tillage (ploughing at 25 cm depth in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons, soil organic carbon content, nitrate ( ${\\mathrm{NO}}_{3}^{-}$ NO 3 − , phosphorus (P and potassium (K soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue

  7. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils.

    Science.gov (United States)

    Hiel, Marie-Pierre; Barbieux, Sophie; Pierreux, Jérôme; Olivier, Claire; Lobet, Guillaume; Roisin, Christian; Garré, Sarah; Colinet, Gilles; Bodson, Bernard; Dumont, Benjamin

    2018-01-01

    Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops-winter wheat, faba bean and maize-cultivated over six cropping seasons), soil organic carbon content, nitrate ([Formula: see text]), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the [Formula: see

  8. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa.

    Science.gov (United States)

    Mertz, Ole; D'haen, Sarah; Maiga, Abdou; Moussa, Ibrahim Bouzou; Barbier, Bruno; Diouf, Awa; Diallo, Drissa; Da, Evariste Dapola; Dabi, Daniel

    2012-06-01

    Environmental change in the Sudan-Sahel region of West Africa (SSWA) has been much debated since the droughts of the 1970s. In this article we assess climate variability and environmental stress in the region. Households in Senegal, Mali, Burkina Faso, Niger, and Nigeria were asked about climatic changes and their perceptions were compared across north-south and west-east rainfall gradients. More than 80% of all households found that rainfall had decreased, especially in the wettest areas. Increases in wind speeds and temperature were perceived by an overall 60-80% of households. Contrary to household perceptions, observed rainfall patterns showed an increasing trend over the past 20 years. However, August rainfall declined, and could therefore potentially explain the contrasting negative household perceptions of rainfall trends. Most households reported degradation of soils, water resources, vegetation, and fauna, but more so in the 500-900 mm zones. Adaptation measures to counter environmental degradation included use of manure, reforestation, soil and water conservation, and protection of fauna and vegetation. The results raise concerns for future environmental management in the region, especially in the 500-900 mm zones and the western part of SSWA.

  9. Impact of global warming on the geobotanic zones: an experiment with a statistical-dynamical climate model

    Energy Technology Data Exchange (ETDEWEB)

    Franchito, Sergio H.; Brahmananda Rao, V. [Instituto Nacional de Pesquisas Espaciais, Centro de Ciencia do Sistema Terrestre, CCST, Sau Paulo, SP (Brazil); Moraes, E.C. [Instituto Nacional de Pesquisas Espaciais, Divisao de Sensoriamento Remoto, DSR, Sau Paulo, SP (Brazil)

    2011-11-15

    In this study, a zonally-averaged statistical climate model (SDM) is used to investigate the impact of global warming on the distribution of the geobotanic zones over the globe. The model includes a parameterization of the biogeophysical feedback mechanism that links the state of surface to the atmosphere (a bidirectional interaction between vegetation and climate). In the control experiment (simulation of the present-day climate) the geobotanic state is well simulated by the model, so that the distribution of the geobotanic zones over the globe shows a very good agreement with the observed ones. The impact of global warming on the distribution of the geobotanic zones is investigated considering the increase of CO{sub 2} concentration for the B1, A2 and A1FI scenarios. The results showed that the geobotanic zones over the entire earth can be modified in future due to global warming. Expansion of subtropical desert and semi-desert zones in the Northern and Southern Hemispheres, retreat of glaciers and sea-ice, with the Arctic region being particularly affected and a reduction of the tropical rainforest and boreal forest can occur due to the increase of the greenhouse gases concentration. The effects were more pronounced in the A1FI and A2 scenarios compared with the B1 scenario. The SDM results confirm IPCC AR4 projections of future climate and are consistent with simulations of more complex GCMs, reinforcing the necessity of the mitigation of climate change associated to global warming. (orig.)

  10. Effect of long term thermal ageing on the mechanical properties of ASTM A533B and A508 steels in the quenched and tempered and simulated heat affected zone conditions

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; Gage, G.; Jordan, G.

    1985-04-01

    Manganese-molybdenum-nickel steels are used commonly in the fabrication of critical components in the PWR primary circuit operating at temperatures up to 345 C for periods up to several hundred thousand hours. Demonstration of structural integrity throughout service life requires quantification of the effects of thermal ageing on mechanical properties. Thermal ageing in the temperature range 300 to 550 C for durations up to 2000 h was studied in quenched and tempered A533B plate and simulated heat-affected-zone (HAZ) microstructures in A533B and A508 materials. A combination of tensile, hardness and Charpy impact tests were used to assess changes in rheological and toughness related properties. Quantitative fractography and Auger spectroscopy were used to characterize associated changes in fracture mode and grain boundary composition.

  11. Seroprevalence of Capripoxvirus infection in sheep and goats among different agro-climatic zones of Odisha, India

    Directory of Open Access Journals (Sweden)

    Abhishek Hota

    2018-01-01

    Full Text Available Aim: The study was undertaken to assess the prevalence of antibodies to Capripoxviruses among small ruminants of Odisha, India. Materials and Methods: A total of 500 random serum samples collected from 214 sheep and 286 goats across 10 agro-climatic zones of Odisha, were screened using whole virus antigen-based indirect ELISA for antibodies against Capripoxviruses. Results were analyzed by suitable statistical methods. Results: Screening of 500 serum samples showed seropositivity of 8.88% and 31.47% in sheep and goats, respectively, for Capripoxviruses. The prevalence rate according to agro-climatic zone ranged from 0% (North Eastern coastal plain zone to 48.57% (North central plateau zone for goat pox, and 0% (Western undulating zone and North central plateau to 22.22% (South Eastern ghat zone for sheep pox. The difference in prevalence rates among the various agro-climatic zones was statistically significant (p<0.05 for goats, but not for sheep. Antibody prevalence rates among various districts were recorded to be the highest in Jagatsinghpur (30% for sheep pox and Dhenkanal (80% for goat pox. Conclusion: The study revealed serological evidence of Capripoxvirus infection in sheep and goat populations in the study area, in the absence of vaccination. Systematic investigation, monitoring, and reporting of outbreaks are necessary to devise control strategies.

  12. Seroprevalence of Capripoxvirus infection in sheep and goats among different agro-climatic zones of Odisha, India.

    Science.gov (United States)

    Hota, Abhishek; Biswal, Sangram; Sahoo, Niranjana; Venkatesan, Gnanavel; Arya, Sargam; Kumar, Amit; Ramakrishnan, Muthannan Andavar; Pandey, Awadh Bihari; Rout, Manoranjan

    2018-01-01

    The study was undertaken to assess the prevalence of antibodies to Capripoxviruses among small ruminants of Odisha, India. A total of 500 random serum samples collected from 214 sheep and 286 goats across 10 agro-climatic zones of Odisha, were screened using whole virus antigen-based indirect ELISA for antibodies against Capripoxviruses. Results were analyzed by suitable statistical methods. Screening of 500 serum samples showed seropositivity of 8.88% and 31.47% in sheep and goats, respectively, for Capripoxviruses. The prevalence rate according to agro-climatic zone ranged from 0% (North Eastern coastal plain zone) to 48.57% (North central plateau zone) for goat pox, and 0% (Western undulating zone and North central plateau) to 22.22% (South Eastern ghat zone) for sheep pox. The difference in prevalence rates among the various agro-climatic zones was statistically significant (ppox and Dhenkanal (80%) for goat pox. The study revealed serological evidence of Capripoxvirus infection in sheep and goat populations in the study area, in the absence of vaccination. Systematic investigation, monitoring, and reporting of outbreaks are necessary to devise control strategies.

  13. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  14. Attributing the effects of climate on phenology change suggests high sensitivity in coastal zones

    Science.gov (United States)

    Seyednasrollah, B.; Clark, J. S.

    2015-12-01

    The impact of climate change on spring phenology depends on many variables that cannot be separated using current models. Phenology can influence carbon sequestration, plant nutrition, forest health, and species distributions. Leaf phenology is sensitive to changes of environmental factors, including climate, species composition, latitude, and solar radiation. The many variables and their interactions frustrate efforts to attribute variation to climate change. We developed a Bayesian framework to quantify the influence of environment on the speed of forest green-up. This study presents a state-space hierarchical model to infer and predict change in forest greenness over time using satellite observations and ground measurements. The framework accommodates both observation and process errors and it allows for main effects of variables and their interactions. We used daily spaceborne remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify temporal variability in the enhanced vegetation index (EVI) along a habitat gradient in the Southeastern United States. The ground measurements of meteorological parameters are obtained from study sites located in the Appalachian Mountains, the Piedmont and the Atlantic Coastal Plain between years 2000 and 2015. Results suggest that warming accelerates spring green-up in the Coastal Plain to a greater degree than in the Piedmont and Appalachian. In other words, regardless of variation in the timing of spring onset, the rate of greenness in non-coastal zones decreases with increasing temperature and hence with time over the spring transitional period. However, in coastal zones, as air temperature increases, leaf expansion becomes faster. This may indicate relative vulnerability to warming in non-coastal regions where moisture could be a limiting factor, whereas high temperatures in regions close to the coast enhance forest physiological activities. Model predictions agree with the remotely

  15. Risk factors for the presence of Deformed wing virus and Acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies.

    Science.gov (United States)

    Molineri, Ana; Giacobino, Agostina; Pacini, Adriana; Bulacio Cagnolo, Natalia; Fondevila, Norberto; Ferrufino, Cecilia; Merke, Julieta; Orellano, Emanuel; Bertozzi, Ezequiel; Masciángelo, Germán; Pietronave, Hernán; Signorini, Marcelo

    2017-05-01

    Beekeepers all across the world are suffering important losses of their colonies, and the parasitic mites Varroa destructor and Nosema sp, as well as several bee viruses, are being pointed out as the possible causes of these losses, generally associated with environmental and management factors. The objective of the present study was to evaluate the presence of seven virus species (Deformed wing virus -DWV-, Acute bee paralysis virus -ABPV-, Chronic bee paralysis virus -CBPV-, Black queen cell virus -BQCV-, Kashmir bee virus -KBV-, Israeli acute bee paralysis virus -IAPV-, and Sacbrood bee virus -SBV), as well as the prevalence of Nosema sp. and Varroa destructor, and their possible associated factors, under temperate and subtropical climate conditions in Argentinean colonies. A total of 385 colonies distributed in five Argentinean eco-regions were examined after honey harvest. The final multivariable model revealed only one variable associated with the presence of DWV and two with the presence of ABPV. The apiary random effect was significant in both cases (P=0.018; P=0.006, respectively). Colonies with a Varroa infestation rate >3% showed higher presence of DWV than colonies with <3% of Varroa infestation level (OR=1.91; 95% CI: 1.02-3.57; P<0.044). The same pattern was observed for the presence of ABPV (OR=2.23; 95% CI: 1.04-4.77; P<0.039). Also, colonies where replacement of old combs was not a common practice had higher presence of ABPV (OR=6.02; 95% CI: 1.16-31.25; P<0.033). Regardless of the location of the colonies, virus presence was strongly associated with V. destructor level. Therefore, all the factors that directly or indirectly influence the levels of mites will be also influencing the presence of the viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Potential evapotranspiration trend analysis for different climatic zones in Khyber Pakhtunkhwa, Pakistan

    International Nuclear Information System (INIS)

    Nazeer, M.

    2012-01-01

    Estimation of potential evapotranspiration (ETo) plays a significant role in the study of water resources management. The study was conducted to investigate the change in potential evapotranspiration value during the past three decade in three diverse climatic zones of Khyber Pakhtunkhwa, Pakistan. Three Districts of Khyber Pakhtunkhwa, Pakistan (Chitral, Peshawar and D. I. Khan) were selected based on their climatic diversity. Thirty years climatic data (1981-2010) obtained from Pakistan Metrological Department, Islamabad and Agriculture Research Institute, Peshawar was used. Potential evapotranspiration was determined for three decades separately, as well as on mean monthly basis. World Meteorological Organization (WMO) technique was used for trend analysis. Results revealed highest ETo in D. I. Khan followed by Peshawar and Chitral. However, in the summer months ETo value was found highest in Chitral as compared to other selected Districts. Trend analysis results showed that decrease in ETo trend was observed in all the selected Districts with the passage of time. It can be concluded that ETo values decreased as compared to past in all the selected Districts without any discrimination of physical geography and location. (author)

  17. Analysis of Small ruminant market system in different agro-climatic zones of Southern India

    Directory of Open Access Journals (Sweden)

    D Ramesh

    2012-10-01

    Full Text Available This study examines the marketing system of small ruminants in three different agro-climatic zones of Karnataka in India. Multistage random sampling technique was used to select 60 small ruminant farmers from three viz. Bijapur (Arid zone, Gulbarga (Semi-arid zone and Udupi (Coastal zone district of Karnataka state. A structured questionnaire which had earlier been subject to face validity and has a reliability coefficient of 0.87 was used to collect data from the samples respondents. Data was analysed using statistical package for social science (SPSS.The results of the study revealed that marketing of small ruminants is haphazard in the study areas. Majority of the respondents (85% sold their animal when they needed cash for home consumption followed by to pay off loan (28.3% was the main reason to sell their animals. Important marketing channels were relatives and friends, local markets and village collectors. Farmers gave different reasons for selling their animals through different channels. Majority of the farmers used relatives and friends as one of the marketing channels. Most of farmers also felt that there was a difference in the price offered by village collectors and the price they were getting in the livestock markets. And a few of them were of the opinion that village collectors were not reliable in marketing. Price of the animals was establishing based on the body confirmation of the animal. Study also revealed that injured animals fetch less value than the healthy animals. [Vet. World 2012; 5(5.000: 288-293

  18. Comparative transcriptome analysis of ginger variety Suprabha from two different agro-climatic zones of Odisha.

    Science.gov (United States)

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Mohanty, Sujata; Joshi, Raj Kumar; Subudhi, Enketeswara

    2016-09-01

    Ginger (Zingiber officinale Rosc.), a well-known member of family Zingiberaceae, is bestowed with number of medicinal properties which is because of the secondary metabolites, essential oil and oleoresin, it contains in its rhizome. The drug yielding potential is known to depend on agro-climatic conditions prevailing at the place cultivation. Present study deals with comparative transcriptome analysis of two sample of elite ginger variety Suprabha collected from two different agro-climatic zones of Odisha. Transcriptome assembly for both the samples was done using next generation sequencing methodology. The raw data of size 10.8 and 11.8 GB obtained from analysis of two rhizomes S1Z4 and S2Z5 collected from Bhubaneswar and Koraput and are available in NCBI accession number SAMN03761169 and SAMN03761176 respectively. We identified 60,452 and 54,748 transcripts using trinity tool respectively from ginger rhizome of S1Z4 and S2Z5. The transcript length varied from 300 bp to 15,213 bp and 8988 bp and N50 value of 1415 bp and 1334 bp respectively for S1Z4 and S2Z5. To the best of our knowledge, this is the first comparative transcriptome analysis of elite ginger cultivars Suprabha from two different agro-climatic conditions of Odisha, India which will help to understand the effect of agro-climatic conditions on differential expression of secondary metabolites.

  19. Assessment of five control strategies of an adjustable glazing at three different climate zones

    Directory of Open Access Journals (Sweden)

    Volker Ritter

    2015-11-01

    Full Text Available The energy demand for operating modern office spaces is often driven by either the annual heating demand, cooling demand or the demand for electrical lighting. The irradiation of the sun directly and indirectly affects the demand of all three. Consequently, the glazing of higher office buildings is often treated with coating that allows a fixed transmittance. Due to changing exterior conditions and interior needs, a fix-transmittance value is a compromise and most often doesn’t provide optimal thermal and visual conditions. The team in the research project named Fluidglass develops a new glazing in which the transmittance of the glazing can be adjusted. This is possible by colouring a fluid, which is circulated in chambers of the glazing. The concentration of the colorant can be infinitely adjusted. In addition, this window allows collecting heat in the exterior fluid and allows the interior fluid chamber to operate as heating panel. This paper presents a first assessment of different control strategies for adjusting the colorant concentration with a simplified model. The assessed control strategies result in considerably different overall energy demands. Certain control strategies have high potential for reducing the energy demand for heating and cooling depending on the locations (Munich 20–30% , Madrid 50–70% , Dubai 50–60%. However, certain control strategies increase the electricity demand for lighting, which needs to be considered in the further development. In general, control strategies that only consider the solar irradiation are less promising strategies in temperate climate than strategies that also take the interior temperature into account. The results of controls that also respect the thermal comfort based on a Predicted Mean Vote (PMV index can achieve low energy demand, presuming that a deviation from the highest level of comfort is acceptable. At this stage of research, none of the studied control strategies shows to be

  20. Biochar boosts tropical but not temperate crop yields

    Science.gov (United States)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  1. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Dobrovolný, Petr

    2016-01-01

    Roč. 8, č. 10 (2016), č. článku 788. ISSN 2072-4292 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:UrbanAdapt(XE) EHP-CZ02-OV-1-036-2015 Program:CZ02 Biodiverzita a ekosystémové služby / Monitorování a integrované plánování a kontrola v životním prostředí/ Adaptace na změnu klimatu Institutional support: RVO:67179843 Keywords : land surface temperature * local climate zones * ASTER * LANDSAT * analysis of variance * Prague * Brno * Czech Republic Subject RIV: EH - Ecology, Behaviour Impact factor: 3.244, year: 2016

  2. Influence of invasive Acer negundo leaf litter on benthic microbial abundance and activity in the littoral zone of a temperate river in Lithuania

    Directory of Open Access Journals (Sweden)

    Krevš Alina

    2017-01-01

    Full Text Available Riparian forests are known as important source of allochthonous organic matter entering to water ecosystems via fallen leaves. However, leaf litter, depending on their quality, may create different conditions for benthic microorganisms functioning in littoral zone of water bodies. In order to evaluate the impact of riparian invasive Acer negundo on littoral water zone of the River Neris (Lithuania, we performed physicochemical and microbiological investigations in bottom sediments of three different sites of the river. One sampling site was close by riparian A. negundo, another close by native Alnus glutinosa location and a third zone was near the shore without riparian vegetation. Content of nutrients in the littoral sediments differed between invasive and native trees leaf litter accumulation sites, while not always significantly. The highest microbial densities as well as benthic community respiratory activity (expressed as the rate of organic carbon mineralization occurred in A. negundo leaves accumulation site. In sediments of this site, the most intensive anaerobic terminal organic carbon mineralization process − sulfate reduction and the highest concentration of hydrogen sulfide were also observed. Differences in the intensity of mineralization processes between sites suggest that the replacement of the riparian native species such as dominant A. glutinosa by invasive A. negundo with higher biodegradability leaves may induce local changes in organic matter processing in the littoral zone of the river. The increase of littoral bioproductivity in the accumulation zone of A. negundo leaf litter can occur due to the inflow of available organic matter and its intensive mineralization.

  3. Vulnerability of boreal zone for increased nitrogen loading due to climate change

    Science.gov (United States)

    Rankinen, Katri; Holmberg, Maria

    2016-04-01

    The observed rapid warming of the boreal zone that has been observed in Finland (0.14 °C by decade) is expected to continue (http://www.ipcc.ch/report/ar5/wg1/). Also precipitation is assumed to increase in future. These changes may increase nitrogen (N) loading from terrestrial environments to water bodies by accelerating soil organic matter decay and by increasing runoff. Nitrogen is limiting nutrient in the Baltic Sea but also in some lakes, so increased loading may increase eutrophication. Further, high nitrate levels in drinking water may cause methaemoglobin anemia for humans, and nitrate is also connected to increased risk of diabetes and cancer. Thus EU has set upper limits to nitrate concentration in drinking water. MONIMET (LIFE12 ENV/FI/000409) is a project about Climate Change Indicators and Vulnerability of Boreal Zone. We simulated N loading from two boreal catchments to the receiving waters by the dynamic, catchment scale model INCA in different climate change and land use change scenarios. We calculated land use specific N loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network. We upscaled the results to the larger river basin, combining them with the information on drinking water supply to assess the vulnerability. Specific emphasis was paid on nitrate concentrations in soil water and groundwater. In general, land use change has higher influence on N loading than increase in precipitation and temperature alone. Peak runoff will sift from snow melting peak in April to late autumn and winter. Growing season will become longer allowing more efficient vegetation uptake of nutrients. Small groundwater aquifers and private wells in the middle of agricultural fields will be in the risk of increased N concentrations, if agricultural N loading increases due to changes in agricultural patterns and land use change.

  4. Influence of neighbourhood information on 'Local Climate Zone' mapping in heterogeneous cities

    Science.gov (United States)

    Verdonck, Marie-Leen; Okujeni, Akpona; van der Linden, Sebastian; Demuzere, Matthias; De Wulf, Robert; Van Coillie, Frieke

    2017-10-01

    Local climate zone (LCZ) mapping is an emerging field in urban climate research. LCZs potentially provide an objective framework to assess urban form and function worldwide. The scheme is currently being used to globally map LCZs as a part of the World Urban Database and Access Portal Tools (WUDAPT) initiative. So far, most of the LCZ maps lack proper quantitative assessment, challenging the generic character of the WUDAPT workflow. Using the standard method introduced by the WUDAPT community difficulties arose concerning the built zones due to high levels of heterogeneity. To overcome this problem a contextual classifier is adopted in the mapping process. This paper quantitatively assesses the influence of neighbourhood information on the LCZ mapping result of three cities in Belgium: Antwerp, Brussels and Ghent. Overall accuracies for the maps were respectively 85.7 ± 0.5, 79.6 ± 0.9, 90.2 ± 0.4%. The approach presented here results in overall accuracies of 93.6 ± 0.2, 92.6 ± 0.3 and 95.6 ± 0.3% for Antwerp, Brussels and Ghent. The results thus indicate a positive influence of neighbourhood information for all study areas with an increase in overall accuracies of 7.9, 13.0 and 5.4%. This paper reaches two main conclusions. Firstly, evidence was introduced on the relevance of a quantitative accuracy assessment in LCZ mapping, showing that the accuracies reported in previous papers are not easily achieved. Secondly, the method presented in this paper proves to be highly effective in Belgian cities, and given its open character shows promise for application in other heterogeneous cities worldwide.

  5. Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2005-09-01

    Full Text Available The paper presents a comparative analysis of two different river mouths from two different geographical zones (subtropical and temperate climatic regions. One is the multi-branch and multi-spit mouth of the Red River on the Gulf of Tonkin (Vietnam, the other is the smaller delta of the river Vistula on a bay of the Baltic Sea (Poland. The analysis focuses on the similarities and differences in the hydrodynamics between these estuaries and the adjacent coastal zones, the features of sediment transport, and the long-term morphodynamics of the river outlets. Salinity and water level are also discussed, the latter also in the context of the anticipated global effect of accelerated sea level rise. The analysis shows that the climatic and environmental conditions associated with geographical zones give rise to fundamental differences in the generation and dynamic evolution of the river mouths.

  6. Evaluation of outdoor human thermal sensation of local climate zones based on long-term database

    Science.gov (United States)

    Unger, János; Skarbit, Nóra; Gál, Tamás

    2018-02-01

    This study gives a comprehensive picture on the diurnal and seasonal general outdoor human thermal sensation levels in different urban quarters based on long-term (almost 3 years) data series from urban and rural areas of Szeged, Hungary. It is supplemented with a case study dealing with an extreme heat wave period which is more and more frequent in the last decades in the study area. The intra-urban comparison is based on a thermal aspect classification of the surface, namely, the local climate zone (LCZ) system, on an urban meteorological station network and on the utilization of the physiologically equivalent temperature (PET) comfort index with categories calibrated to the local population. The selected stations represent sunlit areas well inside the LCZ areas. The results show that the seasonal and annual average magnitudes of the thermal load exerted by LCZs in the afternoon and evening follow their LCZ numbers. It is perfectly in line with the LCZ concept originally concentrating only on air temperature ( T air) differences between the zones. Our results justified the subdivision of urban areas into LCZs and give significant support to the application possibilities of the LCZ concept as a broader term covering different thermal phenomena.

  7. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China.

    Science.gov (United States)

    Yang, Qiquan; Huang, Xin; Li, Jiayi

    2017-08-24

    The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.

  8. Climate-Induced Larch Growth Response Within the Central Siberian Permafrost Zone

    Science.gov (United States)

    Kharuk, Viacheslav I.; Ranson, Kenneth J.; Im, Sergei T.; Petrov, Il'ya A.

    2015-01-01

    Aim: estimation of larch (Larix gmelinii) growth response to current climate changes. Location: permafrost area within the northern part of Central Siberia (approximately 65.8 deg N, 98.5 deg E). Method: analysis of dendrochronological data, climate variables, drought index SPEI, GPP (gross primary production) and EVI vegetation index (both Aqua/MODIS satellite derived), and soil water content anomalies (GRACE satellite measurements of equivalent water thickness anomalies, EWTA). Results: larch tree ring width (TRW) correlated with previous year August precipitation (r = 0.63), snow accumulation (r = 0.61), soil water anomalies (r = 0.79), early summer temperatures and water vapor pressure (r = 0.73 and r = 0.69, respectively), May and June drought index (r = 0.68-0.82). There are significant positive trends of TRW since late 1980s and GPP since the year 2000. Mean TRW increased by about 50%, which is similar to post-Little Ice Age warming. TRW correlated with GPP and EVI of larch stands (r = 0.68-0.69). Main conclusions: within the permafrost zone of central Siberia larch TRW growth is limited by early summer temperatures, available water from snowmelt, water accumulated within soil in the previous year, and permafrost thaw water. Water stress is one of the limiting factors of larch growth. Larch TRW growth and GPP increased during recent decades.

  9. Factors influencing smallholder farmers' behavioural intention towards adaptation to climate change in transitional climatic zones: A case study of Hwedza District in Zimbabwe.

    Science.gov (United States)

    Zamasiya, Byron; Nyikahadzoi, Kefasi; Mukamuri, Billy Billiard

    2017-08-01

    This paper examines factors influencing behavioural change among smallholder farmers towards adaptation to climate change in transitional climatic zones of Africa, specifically, Hwedza District in Zimbabwe. Data for this study were collected from 400 randomly-selected smallholder farmers, using a structured questionnaire, focus group discussions and key informant interviews. The study used an ordered logit model to examine the factors that influence smallholder farmers' behavioural intention towards adaptation to climate change. Results from the study show that the gender of the household head, access to extension services on crop and livestock production, access to climate information, membership to social groups and experiencing a drought have a positive influence on farmers' attitude towards adaptation to climate change and variability. The study concluded that although the majority of smallholder farmers perceive that the climate is changing, they continue to habour negative attitudes towards prescribed climate change adaptation techniques. This study recommends more education on climate change, as well as adaptation strategies for both agricultural extension workers and farmers. This can be complemented by disseminating timely climate information through extension officers and farmers' groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Climate-Induced Landsliding within the Larch Dominant Permafrost Zone of Central Siberia

    Science.gov (United States)

    Kharuk, Viacheslav I.; Shushpanov, Alexandr S.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62 000 km2. Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and Gravity Recovery and Climate Experiment satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68-0.7), and number of thawing days (i.e., a number of days with t (max) > 0 deg C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes.

  11. Seasonal and interseasonal dynamics of bluetongue virus infection of dairy cattle and Culicoides sonorensis midges in northern California--implications for virus overwintering in temperate zones.

    Directory of Open Access Journals (Sweden)

    Christie E Mayo

    Full Text Available Bluetongue virus (BTV is the cause of an economically important arboviral disease of domestic and wild ruminants. The occurrence of BTV infection of livestock is distinctly seasonal in temperate regions of the world, thus we determined the dynamics of BTV infection (using BTV-specific real time reverse transcriptase polymerase chain reaction among sentinel cattle and vector Culicoides sonorensis (C. sonorensis midges on a dairy farm in northern California throughout both the seasonal and interseasonal (overwintering periods of BTV activity from August 2012 until March 2014. The data confirmed widespread infection of both sentinel cattle and vector midges during the August-November period of seasonal BTV transmission, however BTV infection of parous female midges captured in traps set during daylight hours also was detected in February of both 2013 and 2014, during the interseasonal period. The finding of BTV-infected vector midges during mid-winter suggests that BTV may overwinter in northern California by infection of long-lived female C. sonorensis midges that were infected during the prior seasonal period of virus transmission, and reemerged sporadically during the overwintering period; however the data do not definitively preclude other potential mechanisms of BTV overwintering that are also discussed.

  12. Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave

    Directory of Open Access Journals (Sweden)

    Benjamin W. Tobin

    2013-09-01

    Full Text Available Seasonality in surface weather results in seasonal temperature and humidity changes in caves. Ecological and physiological differences among trogloxenes, troglophiles, and troglobionts result in species-dependent responses to this variability. To investigate these responses, we conducted five biological inventories in a marble cave in the Sierra Nevada Range, California, USA between May and December 2010. The cave was divided into six quadrats and temperature was continuously logged in each (humidity was logged at the entrance and in the deep cave. With increasing distance from the entrance, temperature changes were increasingly attenuated and lagged relative to surface temperature. Linear regressions were created to determine the relationship between measured environmental variables and diversity for cavernicoles (troglobionts and troglophiles and trogloxenes cave– wide and in the transition zone. Diversity for cavernicoles and trogloxenes peaked in the entrance and deep cave zones, respectively. Quadrat, date, 2-week antecedent temperature average, 2-week antecedent temperature range, and trogloxene abundance explained 76% of cavernicole diversity variability. Quadrat explained 55% of trogloxene diversity variability. In the transition zone, trogloxene abundance explained 26% of cavernicole variability and 2-week antecedent temperature and 2-week antecedent temperature range explained 40% of trogloxene variability. In the transition zone, trogloxene diversity was inversely related to 2-week antecedent temperature average and 2-week antecedent temperature range, suggesting that species were moving into the transition zone when temperature was most stable. In a CCA of cavernicoles distribution data and environmental variables, 35% of variation in species-specific distributions was attributable to quadrat, and non-significant percentages were explained by date and environmental variables. Differences in assemblage structure among quadrats were

  13. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Savić, S.; Milošević, D.

    2018-01-01

    Roč. 624, 15 May (2018), s. 385-395 ISSN 0048-9697 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67985807 Keywords : HUMIDEX * MUKLIMO_3 * air temperature * relative humidity * local climate zones * heat wave Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.900, year: 2016

  14. IDENTIFYING LOCAL SCALE CLIMATE ZONES OF URBAN HEAT ISLAND FROM HJ-1B SATELLITE DATA USING SELF-ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    C. Z. Wei

    2016-10-01

    Full Text Available With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI has attracted more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector indicators (Mean of Inner Border, Mean of Outer border in the city of Guangzhou, China. Secondly, in order to establish a model to delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM. The results show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95% in the first two principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and could potentially help to provide the basis and decision support for further sustainable urban planning.

  15. Climate Change and Coastal Zones. An Overview of the State-of-the-Art on Regional and Local Vulnerability Assessment

    International Nuclear Information System (INIS)

    Sterr, H.; Klein, R.J.T.; Reese, S.

    2000-06-01

    This paper provides an overview of the latest developments in methodologies for assessing the vulnerability of coastal zones to climate change at regional and local scales. The focus of vulnerability assessment in coastal zones used to be on erosion and land loss due to sea-level rise. Methodologies now increasingly consider the wide range of climate and impact variables that play a part in determining coastal vulnerability, as well as non-climatic developments. The paper presents a conceptual framework for vulnerability assessment that identifies a number of system components that can be considered determinants of vulnerability. It then goes on to outline a number of steps that are required for the actual assessment of coastal vulnerability, such as scenario development, data collection and impact assessment. The approach is illustrated using a regional and local case study in Germany

  16. Analyzing the Implications of Climate Data on Plant Hardiness Zones for Green Infrastructure Planning: Case Study of Knoxville, Tennessee and Surrounding Region

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester, Linda M [ORNL; Omitaomu, Olufemi A [ORNL; Parish, Esther S [ORNL

    2016-07-01

    Downscaled climate data for Knoxville, Tennessee and the surrounding region were used to investigate future changing Plant Hardiness Zones due to climate change. The methodology used is the same as the US Department of Agriculture (USDA), well-known for their creation of the standard Plant Hardiness Zone map used by gardeners and planners. USDA data were calculated from observed daily data for 1976–2005. The modeled climate data for the past is daily data from 1980-2005 and the future data is projected for 2025–2050. The average of all the modeled annual extreme minimums for each time period of interest was calculated. Each 1 km raster cell was placed into zone categories based on temperature, using the same criteria and categories of the USDA. The individual models vary between suggesting little change to the Plant Hardiness Zones to suggesting Knoxville moves into the next two Hardiness Zones. But overall, the models suggest moving into the next warmer Zone. USDA currently has the Knoxville area categorized as Zone 7a. None of the Zones calculated from the climate data models placed Knoxville in Zone 7a for the similar time period. The models placed Knoxville in a cooler Hardiness Zone and projected the area to increase to Zone 7. The modeled temperature data appears to be slightly cooler than the actual temperature data and this may explain the zone discrepancy. However, overall Knoxville is projected to increase to the next warmer Zone. As the modeled data has Knoxville, overall, moving from Zone 6 to Zone 7, it can be inferred that Knoxville, Tennessee may increase from their current Zone 7 to Zone 8.

  17. Building America Case Study: Rehabilitation of USDA Multifamily Homes, Georgia (Climate Zones 2-4)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    Rea Ventures Group, LLC, (Rea Ventures) partnered with Southface Energy Institute (Southface) on the rehabilitation of 418 low-income rental multifamily apartments located at 14 different properties in Georgia (Climate Zones 2-4). These 22-year old, individually-metered units were arranged in rowhouse or townhouse style units. Rehabilitation plans were developed using a process prescribed by the US Department of Agriculture (USDA) Rural Development program, who partially funded the building upgrades. The USDA is responsible for building, upgrading, and subsidizing housing in rural areas nationwide. In 2012, over $100 million was allocated in grants and loans. Due to the unique financing mechanism as well as long-term ownership requirements, property owners are especially motivated to invest in upgrades that will increase durability and tenant retention. These buildings represent a large stock of rural affordable housing that have the potential for significant energy and cost savings for property owners and tenants. Southface analyzed the energy upgrade potential of one stereotypical property in the Rea Ventures portfolio. This study will provide insight into the most cost-effective, implementable energy efficiency and durability upgrades for this age multifamily housing, having an enormous impact not only on the portfolio of Rea Ventures but on the vast USDA and larger Federal portfolio. Additionally, Southface will identify gaps in the current capital needs assessment process, examine available audit and simulation tools and protocols, and evaluate additional auditor training or certification needs.

  18. Climate change impacts on rural poverty in low-elevation coastal zones

    Science.gov (United States)

    Barbier, Edward B.

    2015-11-01

    This paper identifies the low-elevation coastal zone (LECZ) populations and developing regions most vulnerable to sea-level rise and other coastal hazards, such as storm surges, coastal erosion and salt-water intrusion. The focus is on the rural poor in the LECZ, as their economic livelihoods are especially endangered both directly by coastal hazards and indirectly through the impacts of climate change on key coastal and near-shore ecosystems. Using geo-spatially referenced malnutrition and infant mortality data for 2000 as a proxy for poverty, this study finds that just 15 developing countries contain over 90% of the world's LECZ rural poor. Low-income countries as a group have the highest incidence of poverty, which declines somewhat for lower middle-income countries, and then is much lower for upper middle-income economies. South Asia, East Asia and the Pacific and Sub-Saharan Africa account for most of the world's LECZ rural poor, and have a high incidence of poverty among their rural LECZ populations. Although fostering growth, especially in coastal areas, may reduce rural poverty in the LECZ, additional policy actions will be required to protect vulnerable communities from disasters, to conserve and restore key coastal and near-shore ecosystems, and to promote key infrastructure investments and coastal community response capability.

  19. MAPPING LOCAL CLIMATE ZONES WITH A VECTOR-BASED GIS METHOD

    Directory of Open Access Journals (Sweden)

    E. Lelovics

    2013-03-01

    Full Text Available In this study we determined Local Climate Zones in a South-Hungarian city, using vector-based and raster-based databases. We calculated seven of the originally proposed ten physical (geometric, surface cover and radiative properties for areas which are based on the mobile temperature measurement campaigns earlier carried out in this city.As input data we applied 3D building database (earlier created with photogrammetric methods, 2D road database, topographic map, aerial photographs, remotely sensed reflectance information from RapidEye satellite image and our local knowledge about the area. The values of the properties were calculated by GIS methods developed for this purpose.We derived for the examined areas and applied for classification sky view factor, mean building height, terrain roughness class, building surface fraction, pervious surface fraction, impervious surface fraction and albedo.Six built and one land cover LCZ classes could be detected with this method on our study area. From each class one circle area was selected, which is representative for that class. Their thermal reactions were examined with the application of mobile temperature measurement dataset. The comparison was made in cases, when the weather was clear and calm and the surface was dry. We found that compact built-in types have more temperature surplus than open ones, and midrise types also have more than lowrise ones. According to our primary results, these categories provide a useful opportunity for intra- and inter-urban comparisons.

  20. Predicting Pleistocene climate from vegetation in North America

    Directory of Open Access Journals (Sweden)

    C. Loehle

    2007-01-01

    Full Text Available Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder for eastern North America than those produced by climate simulations. It has been suggested that low CO2 levels could account for this discrepancy. In this study biogeographic evidence is used to test the CO2 effect model. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ, which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were extremely cold or that temperate species had to migrate far to the south. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Thus climate reconstruction from pollen data is probably biased and needs to incorporate CO2 effects. Most temperate species could have survived across their current

  1. The Need for Temperance

    Directory of Open Access Journals (Sweden)

    Karl Inge Tangen

    2015-11-01

    Full Text Available This article explores how temperance as a virtue relates to organizational leadership. The study begins with a short survey of classical Greek and Christian notions of temperance before proceeding to ex-plore temperance in relation to self-leadership, visionary and strategic leadership, and relational lead-ership. The final part of the article offers reflections on how temperance might be cultivated from a theological perspective. Temperance is understood not only as sound thinking but also as embodied self-control and active patience. On the level of self-leadership, it is argued that temperance enables the leader to establish forms of integrity that protect the leader’s self from chaos and destruction. Moreover, temperance may also nurture focused visionary leadership that accepts ethical limits and has an eye to the common good. The study also suggests that organizations should cultivate a culture of strategic discipline that is capable of realizing such visions. On the interpersonal level, temperance is viewed as critical in terms of enabling leaders to treat co-workers with respect and wisdom and han-dle conflict with consideration. Finally, is argued that that the cultivation of temperance is not a one-way street from the inside to the outside or a subordination of feelings to reason but rather a very complex process that includes interpersonal humility, finds vision in an encounter with the good, and yet remains a personal responsibility.

  2. TOWARDS CONSISTENT MAPPING OF URBAN STRUCTURES – GLOBAL HUMAN SETTLEMENT LAYER AND LOCAL CLIMATE ZONES

    Directory of Open Access Journals (Sweden)

    B. Bechtel

    2016-06-01

    Full Text Available Although more than half of the Earth’s population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage and inconsistent (varying definitions and scale. While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST. Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ scheme (used by the World Urban Database and Access Portal Tools project and the Global Human Settlement Layer (GHSL methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing.

  3. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones.

    Science.gov (United States)

    Merriman, L S; Moore, T L C; Wang, J W; Osmond, D L; Al-Rubaei, A M; Smolek, A P; Blecken, G T; Viklander, M; Hunt, W F

    2017-04-01

    The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm -2 yr -1 ), in vegetated temporary inundation zones in Sweden (75.8gCm -2 yr -1 ), and in all ponds in Singapore (135gCm -2 yr -1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  5. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    Science.gov (United States)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  6. Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8 locus.

    Directory of Open Access Journals (Sweden)

    Sophie Bouchet

    Full Text Available The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide

  7. Policy frameworks for adaptation to climate change in coastal zones. The case of the Gulf of Mexico

    International Nuclear Information System (INIS)

    Levina, E.; Jacob, J.S.; Ramos Bustillos, L.E.; Ortiz, I.

    2007-05-01

    This paper is the third in a series of AIXG (Annex I Expert Group on the United Nations Framework Convention on Climate Change (UNFCCC)) papers that analyse the roles that national policy frameworks of various sectors play in adaptation to climate change. Adaptation to climate change is unlikely to be a standalone process. It occurs within the existing sectoral and cross-sectoral policy frameworks, including legal provisions, institutional structures, policies and management practices, and is supported by the available information tools. The previous two papers focused on the water sector. The aim of this paper is to identify and analyse policy frameworks that are important for facilitating adaptation to climate change impacts in coastal zones. The paper is based on the analysis of the Gulf of Mexico. Two countries, the US and Mexico, are examined, with a focus on two aspects of coastal zones: wetlands and built environment. Next to these two sectors attention is paid to four components that construct policy frameworks, namely legal framework, institutional landscape, policies and management tools, and information. Following a brief introduction of the Gulf of Mexico region, its physical and economic characteristics, the paper takes a look at current climatic conditions and trends in the Gulf region and expected climate change impacts and the key vulnerabilities of the region to these changes (Section 2). The rational for the scope and focus of the sectoral analysis presented in this paper can also be found in Section 2. Section 3 focuses on the analysis of policy frameworks that govern wetlands in the US and Mexico and their links with adaptation. Section 4 focuses on the analysis of policy frameworks that govern the development of human settlements, and adaptation to climate change. Sections 3 and 4 follow a structure similar to the one that was used for the two previous papers on policy frameworks for adaptation in the water sector. Both sections examine

  8. Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

    Energy Technology Data Exchange (ETDEWEB)

    Soares David, T.; Assunção Pinto, C.; Nadezhdina, N.; Soares David, J.

    2016-07-01

    Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning. Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels. Material and Methods: For literature review we used Sc opus, Web of Science and Go ogle Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes. Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture. Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silviculture practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed. (Author)

  9. Urban field classification by "local climate zones" in a medium-sized Central European city: the case of Olomouc (Czech Republic)

    Science.gov (United States)

    Lehnert, Michal; Geletič, Jan; Husák, Jan; Vysoudil, Miroslav

    2015-11-01

    The stations of the Metropolitan Station Network in Olomouc (Czech Republic) were assigned to local climatic zones, and the temperature characteristics of the stations were compared. The classification of local climatic zones represents an up-to-date concept for the unification of the characterization of the neighborhoods of climate research sites. This study is one of the first to provide a classification of existing stations within local climate zones. Using a combination of GIS-based analyses and field research, the values of geometric and surface cover properties were calculated, and the stations were subsequently classified into the local climate zones. It turned out that the classification of local climatic zones can be efficiently used for representative documentation of the neighborhood of the climate stations. To achieve a full standardization of the description of the neighborhood of a station, the classification procedures, including the methods used for the processing of spatial data and methods used for the indication of specific local characteristics, must be also standardized. Although the main patterns of temperature differences between the stations with a compact rise, those with an open rise and the stations with no rise or sparsely built areas were evident; the air temperature also showed considerable differences within particular zones. These differences were largely caused by various geometric layout of development and by unstandardized placement of the stations. For the direct comparison of temperatures between zones, particularly those stations which have been placed in such a way that they are as representative as possible for the zone in question should be used in further research.

  10. Chronology of soil evolution and climatic changes in the dry steppe zone of the Northern Caucasus, Russia, during the 3rd millennium BC

    NARCIS (Netherlands)

    Alexandrovskiy, AL; van der Plicht, J; Belinskiy, AB; Khokhlova, OS

    2001-01-01

    Chrono-sequences of paleosols buried under different mounds of the large Ipatovo Kurgan, constructed during the Bronze Age, have been studied to reconstruct climatic changes in the dry steppe zone of the Northern Caucasus, Russia. Abrupt climatic and environmental changes in the third millennium BC

  11. Marine Biodiversity in Temperate Western Australia: Multi-Taxon Surveys of Minden and Roe Reefs

    Directory of Open Access Journals (Sweden)

    Zoe Richards

    2016-03-01

    Full Text Available A growing body of evidence indicates that temperate marine ecosystems are being tropicalised due to the poleward extension of tropical species. Such climate mediated changes in species distribution patterns have the potential to profoundly alter temperate communities, as this advance can serve to push temperate taxa, many of which are southern Australian endemics, southward. These changes can lead to cascading effects for the biodiversity and function of coastal ecosystems, including contraction of ranges/habitats of sensitive cool water species. Hence there is growing concern for the future of Australia’s temperate marine biodiversity. Here we examine the diversity and abundance of marine flora and fauna at two reefs near Perth’s metropolitan area—Minden Reef and Roe Reef. We report the presence of 427 species of marine flora and fauna from eight taxon groups occurring in the Perth metropolitan area; at least three species of which appear to be new to science. Our data also extends the known range of 15 species, and in numerous instances, thousands of kilometres south from the Kimberley or Pilbara and verifies that tropicalisation of reef communities in the Perth metropolitan area is occurring. We report the presence of 24 species endemic to south-west Australia that may be at risk of range contractions with continued ocean warming. The results of these surveys add to our knowledge of local nearshore marine environments in the Perth metropolitan area and support the growing body of evidence that indicates a diverse and regionally significant marine fauna occurs in temperate Western Australia. Regular, repeated survey work across seasons is important in order to thoroughly document the status of marine biodiversity in this significant transition zone.

  12. A new agro-climatic classification for crop suitability zoning in northern semi-arid Ethiopia

    NARCIS (Netherlands)

    Araya, A.; Keesstra, S.D.; Stroosnijder, L.

    2010-01-01

    The agro-climatic resources of Giba catchment in northern Ethiopia were assessed and characterized. The objectives were (i) to ascertain the suitability of the climate for growing teff (Eragrostis tef) and barley (Hordeum vulgare); (ii) to determine the onset and length of the growing period (LGP),

  13. Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil.

    Science.gov (United States)

    Yamada, Eliane S M; Sentelhas, Paulo C

    2014-11-01

    As jatropha (Jatropha curcas L.) is a recent crop in Brazil, the studies for defining its suitability for different regions are not yet available, even considering the promises about this plant as of high potential for marginal zones where poor soils and dry climate occur. Based on that, the present study had as objective to characterize the climatic conditions of jatropha's center of origin in Central America for establishing its climatic requirements and to develop the agro-climatic zoning for this crop for some Brazilian regions where, according to the literature, it would be suitable. For classifying the climatic conditions of the jatropha's center of origin, climate data from 123 weather stations located in Mexico (93) and in Guatemala (30) were used. These data were input for Thornthwaite and Mather's climatological water balance for determining the annual water deficiency (WD) and water surplus (WS) of each location, considering a soil water-holding capacity (SWHC) of 100 mm. Mean annual temperature (T m), WD, and WS data were organized in histograms for defining the limits of suitability for jatropha cultivation. The results showed that the suitable range of T m for jatropha cultivation is between 23 and 27 °C. T m between 15 and 22.9 °C and between 27.1 and 28 °C were classified as marginal by thermal deficiency and excess, respectively. T m below 15 °C and above 28 °C were considered as unsuitable for jatropha cultivation, respectively, by risk of frosts and physiological disturbs. For WD, suitability for rain-fed jatropha cultivation was considered when its value is below 360 mm, while between 361 and 720 mm is considered as marginal and over 720 mm unsuitable. The same order of suitability was also defined for WS, with the following limits: suitable for WS up to 1,200 mm; marginal for WS between 1,201 and 2,400 mm, and unsuitable for WS above 2,400 mm. For the crop zoning, the criteria previously defined were applied to 1,814 climate stations in

  14. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  15. Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design

    Directory of Open Access Journals (Sweden)

    Temidayo Victor Omotosho

    2014-01-01

    Full Text Available Normal 0 false false false EN-GB X-NONE X-NONE Cloud cover statistics, cloud base and top height, cloud temperature, frequency of precipitation, freezing height, total cloud liquid water content (TCLWC and cloud attenuation data have been obtained for the six major climatic zones of Africa. The present results reveal a strong positive correlation between the monthly distribution of low cloud cover, cloud top height, cloud temperature, and frequency of precipitation in the six zones. The cumulative distribution of the TCLWC derived from radiosonde measurement in each climatic zone shows a departure from the TCLWC recommended by the ITU Study Group 3 data, with an exceedance percentage difference of 32% to 90% occurring 0.01% to 10% of the time. The underestimation of the TCLWC is greatest in the tropical rain forest. A comparison of the cloud attenuation cumulative distribution in the Ka and V bands reveals that the International Telecommunication Union – Region (ITU-R is an intergovernmental organization that develops rain model based on collected data around the world. This model underestimates the cloud attenuation in all of the six climatic zones by 2.0 dB and 4.7 dB for the arid Sahara desert, 1.3 dB and 3.0 dB in semi-arid North Africa, 1.3 dB and 1.5 dB in savannah North Africa, 2.0 dB and 3.6 dB in the tropical rain forest, 1.3 dB and 2.9 dB in savannah South Africa and 0.9 dB and 2.6 dB in semi-arid South Africa, respectively, at 30 and 50 GHz. Overall, the cloud attenuation in the tropical rain-forest zone is very high because of the high annual total cloud cover (98%, high annual frequency of precipitation (4.5, low annual clear sky amount (8%, high cloud depth (10,937 m, high 0°C isotherm height (4.7 km, high TCLWC (4.0 kg/m2 at 0.01% and low seasonal cloud base height (356 m.

  16. Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh

    OpenAIRE

    Mohammed Ataur Rahman; Sowmen Rahman

    2015-01-01

    Substantially resourceful and densely populated coastal zones of Bangladesh experience numerous extreme events linked to hydro-meteorological processes viz. cyclones, tidal surges, floods, salinity intrusion and erosion etc. These hazards give rise to extensive damage to property and loss of lives every year. Further, anthropogenic activities in the coastal zones are accentuating environmental degradation causing widespread suffering. Cyclones and tornadoes in particular damage infrastructure...

  17. Spatial and temporal variations of wind erosion climatic erosivity in the farming-pastoral zone of Northern China

    Science.gov (United States)

    Yue, Shuping; Yang, Ruixin; Yan, Yechao; Yang, Zhengwei; Wang, Dandan

    2018-03-01

    Wind erosion climatic erosivity is an important parameter to assess the possible effects of climatic conditions on wind erosion. In this paper, the wind erosion climatic factor (C-factor), which was used to quantify the wind erosion climatic erosivity, was calculated for the period 1960-2014 based on monthly meteorological data collected from 101 stations in the farming-pastoral zone of Northern China. The Mann-Kendall (M-K) test, trend analysis, and geostatistical analysis methods were used to explore the spatial and temporal characteristics of the wind erosion climatic erosivity in this region. The result suggests that the annual C-factor, with a maximum of 76.05 in 1969 and a minimum of 26.57 in 2007, has a significant decreasing trend over the past 55 years. Strong seasonality in the C-factor was found, with the highest value in spring, which accounts for a significant proportion of the annual C-factor (41.46%). However, the coefficient of variation of the seasonal C-factor reaches a maximum in winter and a minimum in spring. The mean annual C-factor varies substantially across the region. Areas with high values of the mean annual C-factor (C ≥ 100) are located in Ulanqab and Dingxi, while areas with low values (C ≤ 10) lie in Lanzhou, Linxia, Dingxi, Xining, and Chengde. Spatial analysis on the trend of the C-factor reveals that 81% of the stations show statistically significant decreases at a 90% confidence level. An examination of the concentration ratio of the C-factor shows that the wind erosion climatic erosivity is concentrated in spring, especially in April, which makes this period particularly important for implementing soil conservation measures.

  18. Modeling of tropospheric NO2 column over different climatic zones and land use/land cover types in South Asia

    Science.gov (United States)

    ul-Haq, Zia; Rana, Asim Daud; Tariq, Salman; Mahmood, Khalid; Ali, Muhammad; Bashir, Iqra

    2018-03-01

    We have applied regression analyses for the modeling of tropospheric NO2 (tropo-NO2) as the function of anthropogenic nitrogen oxides (NOx) emissions, aerosol optical depth (AOD), and some important meteorological parameters such as temperature (Temp), precipitation (Preci), relative humidity (RH), wind speed (WS), cloud fraction (CLF) and outgoing long-wave radiation (OLR) over different climatic zones and land use/land cover types in South Asia during October 2004-December 2015. Simple linear regression shows that, over South Asia, tropo-NO2 variability is significantly linked to AOD, WS, NOx, Preci and CLF. Also zone-5, consisting of tropical monsoon areas of eastern India and Myanmar, is the only study zone over which all the selected parameters show their influence on tropo-NO2 at statistical significance levels. In stepwise multiple linear modeling, tropo-NO2 column over landmass of South Asia, is significantly predicted by the combination of RH (standardized regression coefficient, β = - 49), AOD (β = 0.42) and NOx (β = 0.25). The leading predictors of tropo-NO2 columns over zones 1-5 are OLR, AOD, Temp, OLR, and RH respectively. Overall, as revealed by the higher correlation coefficients (r), the multiple regressions provide reasonable models for tropo-NO2 over South Asia (r = 0.82), zone-4 (r = 0.90) and zone-5 (r = 0.93). The lowest r (of 0.66) has been found for hot semi-arid region in northwestern Indus-Ganges Basin (zone-2). The highest value of β for urban area AOD (of 0.42) is observed for megacity Lahore, located in warm semi-arid zone-2 with large scale crop-residue burning, indicating strong influence of aerosols on the modeled tropo-NO2 column. A statistical significant correlation (r = 0.22) at the 0.05 level is found between tropo-NO2 and AOD over Lahore. Also NOx emissions appear as the highest contributor (β = 0.59) for modeled tropo-NO2 column over megacity Dhaka.

  19. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan

    Science.gov (United States)

    Satta, Alessio; Snoussi, Maria; Puddu, Manuela; Flayou, Latifa; Hout, Radouane

    2016-06-01

    The regional risk assessment carried out within the ClimVar & ICZM Project identified the coastal zone of Tetouan as a hotspot of the Mediterranean Moroccan coast and so it was chosen for the application of the Multi-Scale Coastal Risk Index for Local Scale (CRI-LS). The local scale approach provides a useful tool for local coastal planning and management by exploring the effects and the extensions of the hazards and combining hazard, vulnerability and exposure variables in order to identify areas where the risk is relatively high. The coast of Tetouan is one of the coastal areas that have been most rapidly and densely urbanized in Morocco and it is characterized by an erosive shoreline. Local authorities are facing the complex task of balancing development and managing coastal risks, especially coastal erosion and flooding, and then be prepared to the unavoidable impacts of climate change. The first phase of the application of the CRI-LS methodology to Tetouan consisted of defining the coastal hazard zone, which results from the overlaying of the erosion hazard zone and the flooding hazard zone. Nineteen variables were chosen to describe the Hazards, Vulnerability and Exposure factors. The scores corresponding to each variable were calculated and the weights assigned through an expert judgement elicitation. The resulting values are hosted in a geographic information system (GIS) platform that enables the individual variables and aggregated risk scores to be color-coded and mapped across the coastal hazard zone. The results indicated that 10% and 27% of investigated littoral fall under respectively very high and high vulnerability because of combination of high erosion rates with high capital land use. The risk map showed that some areas, especially the flood plains of Restinga, Smir and Martil-Alila, with distances over 5 km from the coast, are characterized by high levels of risk due to the low topography of the flood plains and to the high values of exposure

  20. Climate change, agroclimatic resources and agroclimatic zoning of agriculture in Bulgaria

    Science.gov (United States)

    Kazandjiev, V.; Moteva, M.; Georgieva, V.

    2009-09-01

    The important factors for the agrarian output in Bulgaria are only thermal and water probability. From the two factors the component related to soil moisture is more limited. As well water and temperatures probabilities in the agrarian output are estimated trough sums of temperatures and rainfalls or by derivatives indicators (most frequently named as coefficients or indices). The heat conditions and the heat resources are specified by the continuousness of the vegetative period. Duration of vegetative season is limited for each type of plant, between the spring and autumn steady pass of air temperature across the biological minimum. For the agricultural crops in Bulgaria the three biological minimums: in 5°C are taken for wheat and barley, oat, pea, lentil and sunflower; 10°C for corn, haricot, and soybean and in 15°C for the cotton, vegetables and other spring cultures). The cold and warm period duration are mutually related characteristics. The first period define number of days with the snow fall and days with the snow cover, that are in the basis in the formation of soil moisture reserves after the spring snow melt. Definition of the regions with temperature stress conditions during vegetative season is one of the most important parameters of agroclimatic conditions. The values indicating for the limitations are one or more periods from at least 10 consecutive days with maximal air temperature over 35 °С. More from the agricultures, character for the moderate continental climatic zone are developed normally under temperatures 25-28°С. Temperatures over 28°C are ballast slowing the growth and destroying plants due to the heat tension. The component, limiting in greatest degree growth, development and formation of yields from the agricultural crops are the conditions of moisturizing, present trough atmospheric and soil moisture. The most apparent indicator is the year sum of the rains or their sum by the periods with the average daily temperatures of

  1. Oceanic temperate forest versus warm temperate rainforest: a reply to Grubb et al. (2017)

    DEFF Research Database (Denmark)

    McGlone, Matt S.; Buitenwerf, Robert; Richardson, Sarah J.

    2017-01-01

    Grubb et al. (2017) point out that we (McGlone et al. 2016) erroneously stated that the definition of warm temperate rain forest (WTRF; Grubb et al. 2013) was based in part on climatic criteria. We apologise: their text made clear that this was not the case. However, they go on to say that they ‘...

  2. Habitability Imposters: Extreme Terrestrial Climates in the Habitable Zone of M Dwarf Stars

    Science.gov (United States)

    Lincowski, A. P.; Meadows, V. S.; Crisp, D.; Robinson, T. D.; Luger, R.; Arney, G. N.

    2017-11-01

    We use coupled climate-photochemical modeling of TRAPPIST-1 planets to present a variety of evolved environmental states and their spectral discriminants, for use by upcoming M dwarf planet characterization observations.

  3. Backyard of the Rich North: The Climate Change-related Vicious Circle of the Arctic Zone

    International Nuclear Information System (INIS)

    Varis, Olli

    2006-01-01

    The Arctic zone is full of controversies, unknowns, contrasts, and challenges. The following example is enlightening. Saudi Arabia is a country that has been considered to have almost unlimited possibilities because of its enormous oil earnings. The country has US$60 thousand million purchasing power parity oil income each year for its mere 22 million inhabitants. Astonishingly, the Arctic zone's income from oil, gas, and minerals is at least as large as that of Saudi Arabia, modestly estimated, but the Arctic has less than 4 million people. Most money, however, flows away from the tundra, yet social and environmental problems remain there. A part of the side effect of consuming these resources - largely fossil fuels - returns to the Arctic in the form of greenhouse warming and all its consequences. The Arctic zone now warms at approximately double the rate of the world average

  4. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  5. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  6. Modelling the occurrence of postflexion stages of a marine estuarine-dependent fish in temperate South African estuaries

    Directory of Open Access Journals (Sweden)

    Yanasivan Kisten

    2017-03-01

    Full Text Available The movement of postflexion larvae of marine estuarine-dependent species into estuaries is critical for the survival of fishes reliant on estuaries as nurseries. However, detailed studies focused on environmental variability experienced by postflexion larvae entering a range of estuary types under varying conditions are rare. This study assessed the in situ conditions (temperature, salinity and water clarity under which the southern African endemic fish Rhabdosargus holubi (Sparidae recruits into estuaries. Postflexion larvae were sampled in three biogeographic regions (cool temperate, warm temperate and subtropical boundary, which included three estuary types (permanently open estuaries (POEs, temporarily open/closed estuaries and estuarine lake systems on a seasonal basis, independent of each other. Rhabdosargus holubi larvae were more abundant in spring and summer, in POEs in the warm temperate region. Models predicted that higher larval occurrence in estuaries is a function of lower salinity (e.g. mesohaline zones of 5-17.9 salinity and lower water clarity (e.g. 0-0.2 Kd, light extinction coefficient, particularly for warm, temperate POEs. This re-emphasizes the importance of freshwater for optimal nursery functioning, which may be compromised by impoundments, abstraction and climate change in water-short countries like South Africa.

  7. Absolute humidity and the human nose: A reanalysis of climate zones and their influence on nasal form and function.

    Science.gov (United States)

    Maddux, Scott D; Yokley, Todd R; Svoma, Bohumil M; Franciscus, Robert G

    2016-10-01

    Investigations into the selective role of climate on human nasal variation commonly divide climates into four broad adaptive zones (hot-dry, hot-wet, cold-dry, and cold-wet) based on temperature and relative humidity. Yet, absolute humidity-not relative humidity-is physiologically more important during respiration. Here, we investigate the global distribution of absolute humidity to better clarify ecogeographic demands on nasal physiology. We use monthly observations from the Climatic Research Unit Timeseries 3 (CRU TS3) database to construct global maps of average annual temperature, relative humidity and absolute humidity. Further, using data collected by Thomson and Buxton (1923) for over 15,000 globally-distributed individuals, we calculate the actual amount of heat and water that must be transferred to inspired air in different climatic regimes to maintain homeostasis, and investigate the influence of these factors on the nasal index. Our results show that absolute humidity, like temperature, generally decreases with latitude. Furthermore, our results demonstrate that environments typically characterized as "cold-wet" actually exhibit low absolute humidities, with values virtually identical to cold-dry environments and significantly lower than hot-wet and even hot-dry environments. Our results also indicate that strong associations between the nasal index and absolute humidity are, potentially erroneously, predicated on individuals from hot-dry environments possessing intermediate (mesorrhine) nasal indices. We suggest that differentially allocating populations to cold-dry or cold-wet climates is unlikely to reflect different selective pressures on respiratory physiology and nasal morphology-it is cold-dry, and to a lesser degree hot-dry environments, that stress respiratory function. Our study also supports assertions that demands for inspiratory modification are reduced in hot-wet environments, and that expiratory heat elimination for thermoregulation is a

  8. Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management

    Directory of Open Access Journals (Sweden)

    H. Staffler

    2008-06-01

    Full Text Available The main goals of this study were to identify the alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied.

    The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.

  9. Herdsmen’s Adaptation to Climate Changes and Subsequent Impacts in the Ecologically Fragile Zone, China

    Directory of Open Access Journals (Sweden)

    Yingcheng Liu

    2013-01-01

    Full Text Available The change of land surface can exert significant influence on the future climate change. This study analyzed the effects of herdsmen’s adaptation to climate changes on the livestock breeding, income, and land surface dynamics with a land surface parameterization scheme. The empirical analysis was first carried out on the impacts of the adaptation measures of herdsmen on their income in the context of the climate change with the positive mathematical programming (PMP model on the basis of the household survey data in the Three-River Source Region, an ecologically fragile area in Qinghai Province, China. Then, the land surface parameterization process is analyzed based on the agent-based model (ABM, which involves the herdsmen’s adaptation measures on climate change, and it also provides reference for the land surface change projection. The result shows that the climate change adaptation measures will have a positive effect on the increasing of the amount of herdsman’s livestock and income as well as future land surface dynamics. Some suggestions on the land use management were finally proposed, which can provide significant reference information for the land use planning.

  10. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities.

    Science.gov (United States)

    Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R

    2018-06-01

    Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Biological N2-FIXATION and Mineral N-Fertilization Effects on Soybean (Glicine max L. Merr.) Yield Under Temperate Climate Conditions

    Science.gov (United States)

    László Phd, M., ,, Dr.

    2009-04-01

    was found that the presence of any amount of Nitrofix inoculum has been a negative effect on seed and biomass quantity. Grain production was altered from 1.6 to 1.9 t ha-1 and biomass from 4.3 to 4.9 t ha-1. 4. On high level of farming with N- fertilization of 200 kg ha-1 year-1 N fertilization significantly increased yield compositions and seed mass on the low amount of residual NO3- -N in the ploughed zone. We concluded that this crop respose to fertilizer N related to the amount of NO3- -N in the rooth zone. Rhizobium japonicum inoculation by the Nitrofix 1 kg t-1 was showed the best results. Pod and grain number, rooth, stalk, pod, grain and biomass were achieved 9365 (1000), 15378 (1000), 0.6, 1.4, 1.5, 2.4 and 5.9 t ha-1. The outstanding yields could be attributed to a greater input of N fertilizer and to the Nitrofix 1 kg t-1. Here we present results demonstrating that can be describe this process by synergic effect between N- fertilizer of 200 kg ha-1 year-1 and Nitrofix 1 kg t-1. Grain yield was altered from 1.4 to 2.8 t ha-1 and biomass from 4.0 to 5.9 t ha-1. There is ample evidence to suggest that to ensure the optimal yield production in the different -poor, low, medium, high- developed level of farming systems we have to apply the fertilizer N and biological nitrogen fixation treatments together. These datas confirm the yield potential and production possibilities of soya under Mediterranean agro-ecological and field conditions. These datas after adaptation can be used as guidelines by the extension service and are offered to apply on other climate and biogeoregions conditions to sustainable soya production. Acknowledgements This study were supported by Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS) and University of Veszprém, Hungary. References Johnston, A.E., 2000. Some aspects of nitrogen use efficiency in arable agriculture. In.: Nitrogen efficiency in practical agriculture

  12. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport

    NARCIS (Netherlands)

    Harman, C.J.; Rao, P.S.C.; Basu, N.B.; McGrath, G.S.; Kumar, P.; Sivapalan, M.

    2011-01-01

    Temporal patterns of solute transport and transformation through the vadose zone are driven by the stochastic variability of water fluxes. This is determined by the hydrologic filtering of precipitation variability into infiltration, storage, drainage, and evapotranspiration. In this work we develop

  13. Partial Root-Zone Drying (PRD) Feasibility on Potato in a Sub-Humid Climate

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, C R; Liu, F

    2014-01-01

    A field experiment was carried out in Northern Italy, within the frame of the EU project SAFIR, to test the feasibility of partial root-zone drying (PRD) irrigation management in potatoes and to compare the PRD irrigation strategy with regulated deficit irrigation (RDI). PRD increased total...

  14. Climate controls how ecosystems size the root zone storage capacity at catchment scale

    NARCIS (Netherlands)

    Gao, H.; Hrachowitz, M.; Schymanski, S.J.; Fenicia, F.F.; Sriwongsitanon, N.; Savenije, H.H.G.

    2014-01-01

    The root zone moisture storage capacity (SR) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response, and biogeochemical processes. However, it is impossible to observe directly

  15. Conducting model ecosystem studies in tropical climate zones: Lessons learned from Thailand and way forward

    Energy Technology Data Exchange (ETDEWEB)

    Daam, Michiel A., E-mail: mdaam@isa.utl.pt [Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon (Portugal); Van den Brink, Paul J., E-mail: Paul.vandenbrink@wur.nl [Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-04-15

    Little research has been done so far into the environmental fate and side effects of pesticides in the tropics. In addition, those studies conducted in tropical regions have focused almost exclusively on single species laboratory tests. Hence, fate and effects of pesticides on higher-tier levels have barely been studied under tropical conditions. To address this lack of knowledge, four outdoor aquatic model ecosystem experiments using two different test systems were conducted in Thailand evaluating the insecticide chlorpyrifos, the herbicide linuron and the fungicide carbendazim. Results of these experiments and comparisons of recorded fate and effects with temperate studies have been published previously. The present paper discusses the pros and cons of the methodologies applied and provides indications for i) possible improvements; ii) important aspects that should be considered when performing model ecosystem experiments in the tropics; iii) future research. - Research highlights: > Methodologies used overall seemed adequate to evaluate pesticide stress. > Identification and sampling of tropical macroinvertebrates should be improved. > Additional studies needed for different compounds and greater geographical scale. > Different exposure regimes and ecosystem types should be simulated. > Trophic interrelationship and recovery potential need to be evaluated. - Methodologies for conducting model ecosystem studies in the tropics.

  16. Zoning vulnerability of climate change in variation of amount and trend of precipitation - Case Study: Great Khorasan province

    Science.gov (United States)

    Modiri, Ehsan; Modiri, Sadegh

    2015-04-01

    meteorological perspective risk. Finally, after determining the degree of threats, meteorological vulnerability zoning map was produced by kriging interpolation method and utilizing geographic information systems (GIS). It showed most studied areas were in complete level of investigation. Keywords: Vulnerability, Climate threats, GIS, Zoning, Precipitation, Crisis management.

  17. Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone.

    Science.gov (United States)

    Melo, Davi C D; Wendland, Edson

    2017-05-01

    Water availability restrictions are already a reality in several countries. This issue is likely to worsen due to climate change, predicted for the upcoming decades. This study aims to estimate the impacts of climate change on groundwater system in the Guarani Aquifer outcrop zone. Global Climate Models (GCM) outputs were used as inputs to a water balance model, which produced recharge estimates for the groundwater model. Recharge was estimated across different land use types considering a control period from 2004 to 2014, and a future period from 2081 to 2099. Major changes in monthly rainfall means are expected to take place in dry seasons. Most of the analysed scenarios predict increase of more than 2 ºC in monthly mean temperatures. Comparing the control and future runs, our results showed a mean recharge change among scenarios that ranged from ~-80 to ~+60%, depending on the land use type. As a result of such decrease in recharge rates, the response given by the groundwater model indicates a lowering of the water table under most scenarios.

  18. Response of apple (malus domestica borkh.) cultivars grafted on two rootstocks under sub-humid temperate climate of azad jammu and kashmir

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Gillani, G.M.; Kiani, F.A.

    2013-01-01

    Nine apple (Malus domestica Borkh.) cultivars grafted on two rootstocks were assessed on morphological and biochemical basis under sub-humid temperate region of Azad Jammu and Kashmir. Starking Delicious, Kala Kulu, Fuji, Red Chief, Royal Gala, Red Labnani, Red Delicious, Star Crimson and Sky Spur grafted on local Crab apple and MM.111 were studied for various growth characteristics. Red Chief exhibited maximum (415.8 cm) plant height on crab apple whereas, more flower (1866) tree-1, higher number (967.0) of fruit set tree/sup -1/, fruits matured (490.0) tree/sup -1/ and maximum (46.33 kg) weight of fruits tree/sup -1/ were recorded on MM.111. Minimum duration (5 days) of flowering was presented by Sky Spur on local crab apple while minimum (92.0) days for fruit maturation were required by Royal Gala on MM.111. Maximum (112.5 g) fruit weight, total soluble solids (13.95%), total sugars (10.9 %) and reducing sugars (7.94%) were recorded for Starking Delicious on MM.111. On the other hand more pH (3.51) and ascorbic acid (9.2 %) content were recorded for Kala Kulu on crab apple. Red Chief found to be high yielding cultivar on MM.111 than crab apple while total sugars, TSS and average fruit weight were better for Starking Delicious. It was concluded that performance of apple cultivars were variable on both rootstocks. However, MM.111 proved better than local crab apple under prevailing conditions. (author)

  19. The Arab Vernacular Architecture and its Adaptation to Mediterranean Climatic Zones

    Science.gov (United States)

    Paz, Shlomit; Hamza, Efat

    2014-05-01

    Throughout history people have employed building strategies adapted to local climatic conditions in an attempt to achieve thermal comfort in their homes. In the Mediterranean climate, a mixed strategy developed - utilizing positive parameters (e.g. natural lighting), while at the same time addressing negative variables (e.g. high temperatures during summer). This study analyzes the adaptation of construction strategies of traditional Arab houses to Mediterranean climatic conditions. It is based on the assumption that the climate of the eastern Mediterranean led to development of unique architectural patterns. The way in which the inhabitants chose to build their homes was modest but creative in the context of climate awareness, with simple ideas. These were often instinctive responses to climate challenges. Nine traditional Arab houses, built from the mid-19th century to the beginning of the 20th century, were analyzed in three different regions in Israel: the "Meshulash" - an area in the center of the country, and the Lower and Upper Galilees (in the north). In each region three houses were examined. It is important to note that only a few houses from these periods still remain, particularly in light of new construction in many of the villages' core areas. Qualitative research methodologies included documentation of all the elements of these traditional houses which were assumed to be a result of climatic factors, such as - house position (direction), thickness of walls, thermal mass, ceiling height, location of windows, natural ventilation, exterior wall colors and shading strategies. Additionally, air temperatures and relative humidity were measured at selected dates throughout all seasons both inside and immediately outside the houses during morning, noon, evening and night-time hours. The documentation of the architectural elements and strategies demonstrate that climatic considerations were an integral part of the planning and construction process of these

  20. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna...... and the human activity are all very important interacting factors affecting epidemiology. In Greenland, where only sylvatic trichinellosis is present, the high prevalence in wildlife appears closely connected with polar bear hunting. In the Scandinavian countries, the prevalence of both sylvatic and domestic...

  1. Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model

    International Nuclear Information System (INIS)

    Cortés, D.; Silva, H.; Baginsky, C.; Morales, L.

    2017-01-01

    Salvia hispanica L., known as chia, is a plant species originally from tropical and subtropical Mesoamerica. It is economically important because its seeds produce omega-3, thus its demand has increased in Chile and internationally. As there is no commercial production in Chile, we investigated the places in the country where this species could be cultivated in order to satisfy at the least the national demand. The aim of the study was to quantify the main climatic requirements of chia and to produce a climatic aptitude map for chia cultivation in Chile. The methodology was based on the Maxent species distribution model. We used 78 georeferenced data points where chia is grown throughout the world, mostly from the GBIF database, along with raster climatic layers from the Worldclim project. We estimated the performance curves of annual precipitation and temperature along with their respective optimal and critical values, in analogy with the Ecocrop method. The maps used two scenarios for crops in different conditions, with and without irrigation. The results indicated that the intermediate depression and coastal edge of mainly the Arica y Parinacota, Tarapacá, Antofagasta and Atacama regions have optimum conditions for irrigated crops, but it would be impossible in rainfed conditions. We conclude that chia’s cultivation niche is reduced due to its tropical climate requirements; however, it can be cultivated under irrigation in northern Chile.

  2. Climatic zoning of chia (Salvia hispanica L. in Chile using a species distribution model

    Directory of Open Access Journals (Sweden)

    Daniela Cortés

    2017-12-01

    Full Text Available Salvia hispanica L., known as chia, is a plant species originally from tropical and subtropical Mesoamerica. It is economically important because its seeds produce omega-3, thus its demand has increased in Chile and internationally. As there is no commercial production in Chile, we investigated the places in the country where this species could be cultivated in order to satisfy at the least the national demand. The aim of the study was to quantify the main climatic requirements of chia and to produce a climatic aptitude map for chia cultivation in Chile. The methodology was based on the Maxent species distribution model. We used 78 georeferenced data points where chia is grown throughout the world, mostly from the GBIF database, along with raster climatic layers from the Worldclim project. We estimated the performance curves of annual precipitation and temperature along with their respective optimal and critical values, in analogy with the Ecocrop method. The maps used two scenarios for crops in different conditions, with and without irrigation. The results indicated that the intermediate depression and coastal edge of mainly the Arica y Parinacota, Tarapacá, Antofagasta and Atacama regions have optimum conditions for irrigated crops, but it would be impossible in rainfed conditions. We conclude that chia’s cultivation niche is reduced due to its tropical climate requirements; however, it can be cultivated under irrigation in northern Chile.

  3. Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model

    Energy Technology Data Exchange (ETDEWEB)

    Cortés, D.; Silva, H.; Baginsky, C.; Morales, L.

    2017-07-01

    Salvia hispanica L., known as chia, is a plant species originally from tropical and subtropical Mesoamerica. It is economically important because its seeds produce omega-3, thus its demand has increased in Chile and internationally. As there is no commercial production in Chile, we investigated the places in the country where this species could be cultivated in order to satisfy at the least the national demand. The aim of the study was to quantify the main climatic requirements of chia and to produce a climatic aptitude map for chia cultivation in Chile. The methodology was based on the Maxent species distribution model. We used 78 georeferenced data points where chia is grown throughout the world, mostly from the GBIF database, along with raster climatic layers from the Worldclim project. We estimated the performance curves of annual precipitation and temperature along with their respective optimal and critical values, in analogy with the Ecocrop method. The maps used two scenarios for crops in different conditions, with and without irrigation. The results indicated that the intermediate depression and coastal edge of mainly the Arica y Parinacota, Tarapacá, Antofagasta and Atacama regions have optimum conditions for irrigated crops, but it would be impossible in rainfed conditions. We conclude that chia’s cultivation niche is reduced due to its tropical climate requirements; however, it can be cultivated under irrigation in northern Chile.

  4. Role of the seasonal cycle in coupling climate and carbon cycling in subanartic zone

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2010-08-01

    Full Text Available There is increasing evidence in the Southern Ocean that mesoscales and seasonal scales play an important role in the coupling of ocean carbon cycling and climate. The seasonal cycle is one of the strongest modes of variability in different...

  5. Defining climate zones in México City using multivariate analysis

    NARCIS (Netherlands)

    Estrada, Feporrua; Martínez-Arroyo, A.; Fernández-Eguiarte, A.; Luyando, E.; Gay, C.

    2009-01-01

    Spatial variability in the climate of México City was studied using multivariate methods to analyze 30 years of meteorological data from 37 stations (from the Servicio Meteorológico Nacional) located within the city. Although it covers relatively small area, México City encompasses considerable

  6. Using crowdsourced data from citizen weather stations to analyse air temperature in 'local climate zones' in Berlin, Germany

    Science.gov (United States)

    Fenner, Daniel; Meier, Fred; Bechtel, Benjamin; Otto, Marco; Scherer, Dieter

    2017-04-01

    Provision of observational data with high spatial coverage over extended time periods still remains as one of the biggest challenges in urban climate research. Classical meteorological networks are seldomly designed to monitor atmospheric conditions in a broad variety of urban environments, though the heterogeneity of urban structures leads to distinct thermal characteristics on local scales, i.e., hundreds of metres to several kilometres. One approach to overcome the aforementioned challenges of observation networks is to use data from weather stations that are maintained by citizens. The private company 'netatmo' (www.netatmo.com) produces and distributes such citizen weather stations (CWS) around the world. The stations automatically send their data to the netatmo server, and the user decides if data are publicly shared. Shared data can freely be retrieved via an application programming interface. We collected air temperature (T) data for the year 2015 for the city of Berlin, Germany, and surroundings with more than 1500 'netatmo' CWS in the study area. The entire data set was thoroughly quality checked, and filter techniques, involving data from a reference network, were developed to address different types of errors associated with CWS data. Additionally, the accuracy of 'netatmo' CWS was checked in a climate chamber and in a long-term field experiment. Since the terms 'urban' and 'rural' are ambiguous in urban climate studies, Stewart and Oke (2012) developed the 'local climate zone' (LCZ) concept to enhance understanding and interpretation of air temperature differences in urban regions. LCZ classification for the study region was conducted using the 'WUDAPT' approach by Bechtel et al. (2015). The quality-checked CWS data were used to analyse T characteristics of LCZ classes in Berlin and surroundings. Specifically, we analysed how LCZ classes are represented by CWS in 2015, how T varies within each LCZ class ('intra-LCZ variability'), and if significant

  7. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malše River, South Bohemia)

    Czech Academy of Sciences Publication Activity Database

    Hejzlar, Josef; Dubrovský, Martin; Buchtele, Josef; Růžička, Martin

    2003-01-01

    Roč. 310, 1-3 (2003), s. 143-152 ISSN 0048-9697 R&D Projects: GA AV ČR IAA3042903 Institutional research plan: CEZ:AV0Z6017912; CEZ:MSM 123100004; CEZ:AV0Z3042911; CEZ:AV0Z2060917 Keywords : dissolved organic carbon * climate change * scenario modelling Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.455, year: 2003

  8. Climate signals derived from cell anatomy of Scots pine in NE Germany.

    Science.gov (United States)

    Liang, Wei; Heinrich, Ingo; Simard, Sonia; Helle, Gerhard; Liñán, Isabel Dorado; Heinken, Thilo

    2013-08-01

    Tree-ring chronologies of Pinus sylvestris L. from latitudinal and altitudinal limits of the species distribution have been widely used for climate reconstructions, but there are many sites within the temperate climate zone, as is the case in northeastern Germany, at which there is little evidence of a clear climate signal in the chronologies. In this study, we developed long chronologies of several cell structure variables (e.g., average lumen area and cell wall thickness) from P. sylvestris growing in northeastern Germany and investigated the influence of climate on ring widths and cell structure variables. We found significant correlations between cell structure variables and temperature, and between tree-ring width and relative humidity and vapor pressure, respectively, enabling the development of robust reconstructions from temperate sites that have not yet been realized. Moreover, it has been shown that it may not be necessary to detrend chronologies of cell structure variables and thus low-frequency climate signals may be retrieved from longer cell structure chronologies. The relatively extensive resource of archaeological material of P. sylvestris covering approximately the last millennium may now be useful for climate reconstructions in northeastern Germany and other sites in the temperate climate zone.

  9. Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States.

    Science.gov (United States)

    McDonnell, T C; Reinds, G J; Sullivan, T J; Clark, C M; Bonten, L T C; Mol-Dijkstra, J P; Wamelink, G W W; Dovciak, M

    2018-03-01

    Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature and precipitation that will likely influence the effects of N deposition. To investigate the potential long-term impacts of atmospheric N deposition on hardwood forest ecosystems in the eastern United States in the context of climate change, application of the coupled biogeochemical and vegetation community model VSD+PROPS was explored at three sites in New Hampshire, Virginia, and Tennessee. This represents the first application of VSD+PROPS to forest ecosystems in the United States. Climate change and elevated (above mid-19th century) N deposition were simulated to be important factors for determining habitat suitability. Although simulation results suggested that the suitability of these forests to support the continued presence of their characteristic understory plant species might decline by the year 2100, low data availability for building vegetation response models with PROPS resulted in uncertain results at the extremes of simulated N deposition. Future PROPS model development in the United States should focus on inclusion of additional foundational data or alternate candidate predictor variables to reduce these uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integration and Typologies of Vulnerability to Climate Change: A Case Study from Australian Wheat Sheep Zones

    OpenAIRE

    Jianjun Huai

    2016-01-01

    Although the integrated indicator methods have become popular for assessing vulnerability to climate change, their proliferation has introduced a confusing array of scales and indicators that cause a science-policy gap. I argue for a clear adaptation pathway in an ?integrative typology? of regional vulnerability that matches appropriate scales, optimal measurements and adaptive strategies in a six-dimensional and multi-level analysis framework of integration and typology inspired by the ?5W1H...

  11. Joint inversion of 3-PG using eddy-covariance and inventory plot measurements in temperate-maritime conifer forests: Uncertainty in transient carbon-balance responses to climate change

    Science.gov (United States)

    Hember, R. A.; Kurz, W. A.; Coops, N. C.; Black, T. A.

    2010-12-01

    Temperate-maritime forests of coastal British Columbia store large amounts of carbon (C) in soil, detritus, and trees. To better understand the sensitivity of these C stocks to climate variability, simulations were conducted using a hybrid version of the model, Physiological Principles Predicting Growth (3-PG), combined with algorithms from the Carbon Budget Model of the Canadian Forest Sector - version 3 (CBM-CFS3) to account for full ecosystem C dynamics. The model was optimized based on a combination of monthly CO2 and H2O flux measurements derived from three eddy-covariance systems and multi-annual stemwood growth (Gsw) and mortality (Msw) derived from 1300 permanent sample plots by means of Markov chain Monte Carlo sampling. The calibrated model serves as an unbiased estimator of stemwood C with enhanced precision over that of strictly-empirical models, minimized reliance on local prescriptions, and the flexibility to study impacts of environmental change on regional C stocks. We report the contribution of each dataset in identifying key physiological parameters and the posterior uncertainty in predictions of net ecosystem production (NEP). The calibrated model was used to spin up pre-industrial C pools and estimate the sensitivity of regional net carbon balance to a gradient of temperature changes, λ=ΔC/ΔT, during three 62-year harvest rotations, spanning 1949-2135. Simulations suggest that regional net primary production, tree mortality, and heterotrophic respiration all began increasing, while NEP began decreasing in response to warming following the 1976 shift in northeast-Pacific climate. We quantified the uncertainty of λ and how it was mediated by initial dead C, tree mortality, precipitation change, and the time horizon in which it was calculated.

  12. Vulnerability Assessment of the Livelihoods in Tanzania’s Semi-Arid Agro-Ecological Zone under Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Msafiri Y. Mkonda

    2018-04-01

    Full Text Available Despite the established literature on the vulnerability to climate change in various parts of Tanzania, it is worthwhile to assess the extent of this vulnerability of the peoples’ livelihoods and predict its future outcome. This is particularly important in the vulnerable ecosystems, that is, the semi-arid zones of Tanzania where the people’s livelihoods are highly attached to the declining local condition. The present study aims to assess the livelihoods vulnerability in Kongwa District, the semi-arid zone of Central Tanzania. In doing so, a wide range of methods were employed during data collection and analyses including surveys, informative interviews, discussions and observation. The study sampled 400 (≤10% respondents during a survey. The Mann-Kendall Test with SPSS V20, Microsoft Excel and Theme content techniques were used for data analyses. The results indicate that climate stress has adversely impacted the quality of soil, vegetation, crop yields and intensified environmental degradation. Since most people depend upon the mentioned affected aspects, it is expected that also the level of livelihood vulnerability has elevated. Further, this situation has greatly contributed to increased poverty and thus, propagates the “tragedy of the common” to the available environmental resources. As a response to increased vulnerability, some farmers have abandoned thousands of hectares of agricultural farms that seemed to be less productive. Despite this, slight measures have been taken by both the government and other key stakeholders to limit vulnerability. The findings of this study provide a theoretical and practical basis for coordinating a sustainable man-environment relationship, ensuring the sustainability of the environment which is the major source of peoples’ livelihoods.

  13. Risk of severe climate change impact on the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang, E-mail: Ursula.Heyder@pik-potsdam.de, E-mail: Sibyll.Schaphoff@pik-potsdam.de [Potsdam Institute for Climate Impact Research, Telegraphenberg A62, 14473 Potsdam (Germany)

    2011-07-15

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO{sub 2} concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  14. Risk of severe climate change impact on the terrestrial biosphere

    International Nuclear Information System (INIS)

    Heyder, Ursula; Schaphoff, Sibyll; Gerten, Dieter; Lucht, Wolfgang

    2011-01-01

    The functioning of many ecosystems and their associated resilience could become severely compromised by climate change over the 21st century. We present a global risk analysis of terrestrial ecosystem changes based on an aggregate metric of joint changes in macroscopic ecosystem features including vegetation structure as well as carbon and water fluxes and stores. We apply this metric to global ecosystem simulations with a dynamic global vegetation model (LPJmL) under 58 WCRP CMIP3 climate change projections. Given the current knowledge of ecosystem processes and projected climate change patterns, we find that severe ecosystem changes cannot be excluded on any continent. They are likely to occur (in > 90% of the climate projections) in the boreal-temperate ecotone where heat and drought stress might lead to large-scale forest die-back, along boreal and mountainous tree lines where the temperature limitation will be alleviated, and in water-limited ecosystems where elevated atmospheric CO 2 concentration will lead to increased water use efficiency of photosynthesis. Considerable ecosystem changes can be expected above 3 K local temperature change in cold and tropical climates and above 4 K in the temperate zone. Sensitivity to temperature change increases with decreasing precipitation in tropical and temperate ecosystems. In summary, there is a risk of substantial restructuring of the global land biosphere on current trajectories of climate change.

  15. Interannual and seasonal dynamics, and the age, of nonstructural carbohydrate pools in the stemwood of temperate trees across a climatic gradient in New England

    Science.gov (United States)

    Richardson, A. D.; Carbone, M. S.; Czimczik, C. I.; Keenan, T. F.; Schaberg, P.; Xu, X.

    2011-12-01

    Like all plants, forest trees accumulate and store surplus mobile carbon (C) compounds as resources to be used to support future growth. This can be viewed as a bet-hedging strategy, providing reserves that the tree can draw on in times of stress-e.g., following disturbance, disease, or extreme climatic events. In the context of climate change, understanding factors influencing the availability of these stored C compounds to support growth and metabolism is essential for predicting the resilience of forests to environmental stress factors. We conducted this study to investigate the role of these stored C pools in the context ecosystem C balance at time scales from days to years. At quarterly intervals over a three year period, we monitored stemwood total nonstructural carbohydrate (TNC) concentrations of the dominant tree species of New England. Work was conducted at three sites along a climatic gradient: an oak-dominated transition hardwood forest (Harvard Forest), a maple-beech-birch northern hardwood forest (Bartlett Experimental Forest), and a spruce-fir forest (Howland Forest). We observed large differences among species both in TNC concentrations, and in how the TNC pool is partitioned to different compounds (starch, sucrose, glucose, fructose, raffinose, xylose and stachyose). Within a species, however, seasonal dynamics were remarkably similar across sites. The interannual variability in maximum TNC concentrations appears to be smaller than interannual variability in annual net ecosystem exchange of CO2. With an additional set of samples, we are using the bomb radiocarbon (14C) spike to estimate the average age of the sugars and starches in the TNC pool, and relating this to factors such as size, age, and recent growth rates of each tree. Initial results suggest that these TNC pools range in age from several years to several decades old. The average ages of starch and sugar pools are related, with the starches generally being older than sugars

  16. Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zones?

    Science.gov (United States)

    Burmeister, Kristin; Lübbecke, Joke F.

    2017-04-01

    Oxygen minimum zones (OMZs) exist in the upwelling regions of the eastern tropical Atlantic and Pacific at intermediate depth. They are a consequence of high biological productivity in combination with weak ventilation. The flow fields in the tropical Atlantic is characterized by Latitudinally Alternating Zonal Jets (LAZJs) with a large vertical scale. It has been suggested that LAZJs play an important role for the ventilation of the OMZ as eastward currents advect oxygen-rich waters from the western boundary towards the OMZ. In the Eastern Tropical North Atlantic (ETNA), the eastward flowing North Equatorial Undercurrent and North Equatorial Countercurrent (NECC) provide the main oxygen supply into the OMZ. Variability in the strength and location of the LAZJs is associated with oxygen variability in the ETNA OMZ. We here want to address the question whether the variability in the zonal current field can be partly attributed to the large-scale climate modes of the tropical Atlantic, namely the Atlantic zonal and meridional mode. An influence of these modes on the NECC has been found in previous studies. For the analysis we are using the output of a global ocean circulation model, in which a 1/10° nest covering the tropical Atlantic is embedded into a global 1/2° model, as well as reanalysis products and satellite data. The zonal current field and oxygen distribution from the high resolution model is compared to observational data. The location and intensity of the current bands during positive and negative phases of the Atlantic climate modes are compared by focusing on individual events and via composite analysis. Based on the results, the potential impact of the Atlantic climate modes on the ventilation of the ETNA OMZ is discussed.

  17. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  18. Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  19. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems

    DEFF Research Database (Denmark)

    del Prado, A; Crosson, P; Olesen, Jørgen E

    2013-01-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quant......The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed...... components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services....

  20. Dynamics of the EEG of human brain in the gradient magnetic fields of geological faults in different geographical and climatic zones

    Science.gov (United States)

    Pobachenko, S. V.; Sokolov, M. V.; Grigoriev, P. E.; Vasilieva, I. V.

    2017-11-01

    There are presented the results of experimental studies of the dynamics of indices of the functional state of a person located within the zones characterized by anomalous parameters of spatial distribution of magnetic field vector values. It is shown that these geophysical modifications have a pronounced effect on the dynamics of electrical activity indices of the human brain, regardless of geographic and climatic conditions.

  1. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    Science.gov (United States)

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  2. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    Energy Technology Data Exchange (ETDEWEB)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  3. A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available Since a representative dataset of the climatological features of a location is important for calculations relating to many fields, such as solar energy system, agriculture, meteorology and architecture, there is a need to investigate the methodology for generating a typical meteorological year (TMY. In this paper, a hybrid method with mixed treatment of selected results from the Danish method, the Festa-Ratto method, and the modified typical meteorological year method is proposed to determine typical meteorological years for 35 locations in six different climatic zones of China (Tropical Zone, Subtropical Zone, Warm Temperate Zone, Mid Temperate Zone, Cold Temperate Zone and Tibetan Plateau Zone. Measured weather data (air dry-bulb temperature, air relative humidity, wind speed, pressure, sunshine duration and global solar radiation, which cover the period of 1994–2015, are obtained and applied in the process of forming TMY. The TMY data and typical solar radiation data are investigated and analyzed in this study. It is found that the results of the hybrid method have better performance in terms of the long-term average measured data during the year than the other investigated methods. Moreover, the Gaussian process regression (GPR model is recommended to forecast the monthly mean solar radiation using the last 22 years (1994–2015 of measured data.

  4. Influence of climatic and management factors on Eimeria infections in goats from semi-arid zones.

    Science.gov (United States)

    Ruiz, A; González, J F; Rodríguez, E; Martín, S; Hernández, Y I; Almeida, R; Molina, J M

    2006-10-01

    A survey of Eimeria infections was performed in dairy goats and kids (<6 months old) of six farms from a dry desert area of Gran Canaria Island (Spain). The number of oocysts per gram of faeces (OPG) was determined by a modified McMaster technique over a total of 2,616 individual faecal samples taken from the rectum in monthly intervals. Eimeria oocysts were found in 96.1% of the samples with OPG ranging from 1 x 10(2) to 1.4 x 10(6). Kid goats had significantly (P < 0.001) higher OPG counts (46,496 +/- 5,228) than dairy females (2,225 +/- 287). Eight Eimeria species were identified, with Eimeria ninakohlyakimovae (30.0%), Eimeria arloingi (28.6%) and Eimeria alijevi (20.5%) being the most frequent species followed by Eimeria caprina (9.1%), Eimeria christenseni (4.5%), Eimeria jolchijevi (3.4%), Eimeria caprovina (3.2%) and Eimeria hirci (0.7%). Although significant differences were observed among goat groups and herds, the eight species were present in the six farms in both dairy goats and kids. The intensity of oocysts shedding was related to some factors such as the size of the herd and was further influenced by the prevailing climatic conditions of the area. The highest OPG counts were recorded during the hot season in dairy goats and close to weaning time in kids reared in small farms having no prophylactic treatments against eimeriosis.

  5. Specifying residential retrofit packages for 30 % reductions in energy consumption in hot-humid climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Burgett, J.M.; Chini, A.R.; Oppenheim, P. [University of Florida, 573 Rinker Hall, Newell Drive, Gainesville, FL 32611 (United States)

    2013-08-15

    The purpose of this research was to demonstrate the application of energy simulation as an effective tool for specifying cost-effective residential retrofit packages that will reduce energy consumption by 30 %. Single-family homes in the hot-humid climate type of the Southeastern USA were used to demonstrate the application. US census data from both state and federal studies were used to create 12 computer simulation homes representing the most common characteristics of single-family houses specific to this area. Well-recognized energy efficiency measures (EEMs) were simulated to determine their cumulative energy reduction potential. Detailed cost estimates were created for cost-to-benefit analysis. For each of the 12 simulated homes, 4 packages of EEMs were created. The four packages provided home owners options for reducing their energy by 30 % along with the estimated up-front cost and simple payback periods. The simple payback period was used to determine how cost-effective a measure was. The packages are specific to a geographic area to provide a higher degree of confidence in the projected cost and energy savings. The study provides a generic methodology to create a similar 30 % energy reduction packages for other locations and a detailed description of a case study to serve as an example. The study also highlights the value that computer simulation models can have to develop energy efficiency packages cost-effectively and specific to home owner's location and housing type.

  6. Holocene climate variability in the winter rainfall zone of South Africa

    Directory of Open Access Journals (Sweden)

    S. Weldeab

    2013-10-01

    Full Text Available We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ of South Africa occurred during the "Little Ice Age" (700–100 cal years BP most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.

  7. Malaria surveillance-response strategies in different transmission zones of the People's Republic of China: preparing for climate change

    Directory of Open Access Journals (Sweden)

    Yang Guo-Jing

    2012-12-01

    Full Text Available Abstract Background A sound understanding of malaria transmission patterns in the People’s Republic of China (P.R. China is crucial for designing effective surveillance-response strategies that can guide the national malaria elimination programme (NMEP. Using an established biology-driven model, it is expected that one may design and refine appropriate surveillance-response strategies for different transmission zones, which, in turn, assist the NMEP in the ongoing implementation period (2010–2020 and, potentially, in the post-elimination stage (2020–2050. Methods Environmental data obtained from 676 locations across P.R. China, such as monthly temperature and yearly relative humidity (YRH, for the period 1961–2000 were prepared. Smoothed surface maps of the number of months suitable for parasite survival derived from monthly mean temperature and YRH were generated. For each decade, the final malaria prediction map was overlaid by two masked maps, one showing the number of months suitable for parasite survival and the other the length of YRH map in excess of 60%. Results Considering multiple environmental factors simultaneously, the environmental variables suitable for malaria transmission were found to have shifted northwards, which was especially pronounced in northern P.R. China. The unstable suitable regions (transmission periods between five and six months showed increased transmission intensity due to prolonged suitable periods, especially in the central part of the country. Conclusion Adequate and effective surveillance-response strategies for NMEP should be designed to achieve the goal of malaria elimination in P.R. China by 2020, especially in the zones predicted to be the most vulnerable for climate change.

  8. Balanced Sediment Fluxes in Southern California's Mediterranean-climate Zone Salt Marshes

    Science.gov (United States)

    Rosencranz, J. A.; Dickhudt, P.; Ganju, N. K.; Thorne, K.; Takekawa, J.; Ambrose, R. F.; Guntenspergen, G. R.; Brosnahan, S.; MacDonald, G. M.

    2015-12-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many southern California, USA salt marshes import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are also potentially important for marsh stability. We calculated tidal creek sediment fluxes within a sediment starved 1.5 km2 salt marsh (Seal Beach) and a less modified 1 km2 marsh (Mugu) with a watershed sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12000 and 8800 kg in a western channel. This offset 8700 kg export during two months of dry weather, while landward net fluxes in the eastern channel accounted for 33% of the import. During the storm, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1-2 mm near creek levees. An exceptionally high tide sequence at Mugu yielded 4.4 g/s mean sediment flux, importing 1700 kg, accounting for 20% of dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are currently geomorphically stable. Our results suggest that storms and exceptionally high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea-level rise scenarios, results suggest that balanced sediment fluxes may lead to marsh elevational instability, based on estimated mineral sediment deficits.

  9. Salts in soil and water within the arid climate zone. Effects on engineering geology, exemplified from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jergman, K.

    1981-01-01

    In the arid climate zone, where the potential evaporation is much higher than the precipitation, soil and water generally are enriched by salts. In this research project it has been pointed out how salts affect engineering geology in different ways. The extensive study of the Al Khafji area in Saudi Arabia has shown that salts have affected soil and water so that - the crust hardness has increased due to a development of duricrust. The strength of the upper part of the crust is similar to weak rock. - the coastal terrace area moves vertically - groundwater affects the salinization of the soil profile A general description of the effect of salts on engineering geology can be summarized as below: The precipitated salts affect the profile so that 1.Stability changes. 2.Swelling alternatively contraction can occur due to variations of the water content. 3.Vegetation growth becomes difficult or impossible. 4.Excavation work is difficult. 5.Aggregate sources are affected. 6.Concrete corrosion is caused. 7.There is demand for proper field and laboratory tests and for special design criteria.The occurance of salts in the water causes due special conditions that 1.The soil profile is enriched by salts 2. The plants are damaged. 3.Concrete corrosion is developed. 4.The water is not suitable for drinking or irrigation purposes. 5. The density increases to such an extent that it effects the direction of the groundwater flow.

  10. Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco

    Science.gov (United States)

    Kharbouch, Yassine; Mimet, Abdelaziz; El Ganaoui, Mohammed; Ouhsaine, Lahoucine

    2018-07-01

    This study investigates the thermal energy potentials and economic feasibility of an air-conditioned family household-integrated phase change material (PCM) considering different climate zones in Morocco. A simulation-based optimisation was carried out in order to define the optimal design of a PCM-enhanced household envelope for thermal energy effectiveness and cost-effectiveness of predefined candidate solutions. The optimisation methodology is based on coupling Energyplus® as a dynamic simulation tool and GenOpt® as an optimisation tool. Considering the obtained optimum design strategies, a thermal energy and economic analysis are carried out to investigate PCMs' integration feasibility in the Moroccan constructions. The results show that the PCM-integrated household envelope allows minimising the cooling/heating thermal energy demand vs. a reference household without PCM. While for the cost-effectiveness optimisation, it has been deduced that the economic feasibility is stilling insufficient under the actual PCM market conditions. The optimal design parameters results are also analysed.

  11. A study of energy performance and audit of commercial mall in hot-summer/warm-winter climate zone in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhisheng, Li; Jiawen, Liao; Xiaoxia, Wang [School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006 (China); Lin, Yaolin [Building Energy Solutions and Technologies, Inc, San Jose Office, San Jose, CA 95134 (United States); Xuhong, Liu [School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou, Guangdong, 510643 (China)

    2013-08-15

    The building energy performance improvement of large-scale public buildings is very important to release China's energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m{sup 2}, of which lighting energy consumption accounts for 30.03 kWh/m{sup 2} and the lift and elevator energy consumption accounts for 40.46 kWh/m{sup 2}. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m{sup 2} even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.

  12. Comparison of atmosphere/aquatic environment concentration ratio of volatile chlorinated hydrocarbons between temperate regions and Antarctica.

    Science.gov (United States)

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna

    2009-09-01

    For the purpose of understanding the transport and deposition mechanisms and the air-water distribution of some volatile chlorinated hydrocarbons (VCHCs), their atmosphere/aquatic environment concentration ratio was evaluated. In addition, for the purpose of differentiating VCHC behaviour in a temperate climate from its behaviour in a polar climate, the atmosphere/aquatic environment concentration ratio evaluated in matrices from temperate zones was compared with the concentration ratio evaluated in Antarctic matrices. In order to perform air samplings also at rigid Antarctic temperatures, the sampling apparatus, consisting of a diaphragm pump and canisters, was suitably modified. Chloroform, 1,1,1-trichloroethane, tetrachloromethane, 1,1,2-trichloroethylene and tetrachloroethylene were measured in air, water and snow using specific techniques composed of a purpose-made cryofocusing-trap-injector (for air samples) and a modified purge-and-trap injector (for aqueous samples) coupled to a gas chromatograph with mass spectrometric detection operating in selected ion monitoring mode. The VCHCs were retrieved in all the investigated matrices, both Italian and Antarctic, with concentrations varying from tens to thousands of ng m(-3) in air and from digits to hundreds of ng kg(-1) in water and snow. The atmosphere/aquatic environment concentration ratios were always found to be lower than 1. In particular, the Italian air/water concentration ratios were smaller than the Antarctic ones, by reason of the higher atmospheric photochemical activity in temperate zones. On the other hand, the Antarctic air/snow concentration ratios proved to be largely in favour of snow with respect to the Italian ratios, thus corroborating the hypothesis of a more efficient VCHC deposition mechanism and accumulation on Antarctic snow.

  13. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria...

  14. World temperate fruit production: characteristics and challenges

    Directory of Open Access Journals (Sweden)

    Jorge B. Retamales

    2011-10-01

    Full Text Available In the last 30 years world population has increased 70% but per capita global fruit consumption is only 20% higher. Even though tropical and temperate fruit have similar contributions to the 50 kg/person/year of US consumption of fresh fruit, in the last 30 years this has been slightly greater for temperate fruit. Within fruit consumption, the largest expansion has been for organic fruit which increased more than 50% in the 2002-2006 period. The largest expansion of area planted in the 1996-2006 has been for kiwi (29% and blueberries (20%, while apples (-24% and sour cherries (-13% have had the largest reductions. Nearly 50% of the total global volume of fruit is produced by 5 countries: China, USA, Brazil, Italy and Spain. The main producer (China accounts for 23% of the total. While the main exporters are Spain, USA and Italy, the main importers are Germany, Russia and UK. Demands for the industry have evolved towards quality, food safety and traceability. The industry faces higher productions costs (labor, energy, agrichemicals. The retailers are moving towards consolidation while the customers are changing preferences (food for health. In this context there is greater pressure on growers, processors and retailers. Emerging issues are labor supply, climate change, water availability and sustainability. Recent developments in precision agriculture, molecular biology, phenomics, crop modelling and post harvest physiology should increase yields and quality, and reduce costs for temperate fruit production around the world.

  15. A common framework for greenhouse gas assessment protocols in temperate agroforestry systems: Connecting via GRACEnet

    Science.gov (United States)

    Agroforestry systems offer many ecosystem benefits, but such systems have previously been marginalized in temperate environments due to overriding economic goals and perceived management complexity. In view of adaptation to a changing climate, agroforestry systems offer advantages that require quan...

  16. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    Science.gov (United States)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results

  17. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  18. Climatic and anthropogenic factors changing spawning pattern and production zone of Hilsa fishery in the Bay of Bengal

    Directory of Open Access Journals (Sweden)

    M. Shohidullah Miah

    2015-03-01

    Full Text Available Hilsa (Tenualosa ilisha Hamilton as a single species accounts 12% for more than half of the total marine catches. About 2% of the entire population of the country is directly or indirectly engaged with Hilsa fishing. Hilsa has a wide geographical distribution in Asia from the Persian Gulf to the South China Sea. Particularly large stocks are found in Upper Bay of Bengal (BoB region sustained by the large river systems. The global Hilsa catch is reported 75% from Bangladesh water, 15% from Myanmar, 5% from India and 5% from other countries such as Thailand and Iran. Hilsa is a highly migratory and anadromous fish with the same migratory and same breeding behavior as that of Atlantic Salmon fish (Salmo sp.. Due to various anthropogenic activities, climate change effect, increased siltation and rising of the river basins, the migratory routes as well as spawning grounds of Hilsa are disturbed, displaced or even destroyed. During last two decades hilsa production from inland water declined about 20%, whereas marine water yield increased about 3 times. Major Hilsa to catch has been gradually shifted from inland to marine water. Hilsa fish ascend for spawning migration from sea into estuaries. It has been found that the major spawning areas have been shifted to the lower estuarine regions of Hatia, Sandwip and Bhola. At the spawning ground of Hilsa, the fishing level F=1.36 yr−1, where in the river Meghna the Fmsy=0.6 yr−1 and exploitation rate E=0.70 is (Emsy>0.5. Oceanographic changes viz. high turbidity increased flooding, more tidal action and changes of salinity etc. have accelerated the change of migration patterns of spawning, growth and its production. Hilsa fecundity ranges from 1.5 to 2.0 million eggs for fish ranging in length from 35 to 50 cm. Hilsa fecundity is declining in different areas due to climate change and the declining fecundity impacting greatly on Hilsa production. Due to shifting of the spawning ground at the lower

  19. SWB Groundwater Recharge Analysis, Catalina Island, California: Assessing Spatial and Temporal Recharge Patterns Within a Mediterranean Climate Zone

    Science.gov (United States)

    Harlow, J.

    2017-12-01

    Groundwater recharge quantification is a key parameter for sustainable groundwater management. Many recharge quantification techniques have been devised, each with advantages and disadvantages. A free, GIS based recharge quantification tool - the Soil Water Balance (SWB) model - was developed by the USGS to produce fine-tuned recharge constraints in watersheds and illuminate spatial and temporal dynamics of recharge. The subject of this research is to examine SWB within a Mediterranean climate zone, focusing on the Catalina Island, California. This project relied on publicly available online resources with the exception the geospatial processing software, ArcGIS. Daily climate station precipitation and temperature data was obtained from the Desert Research Institute for the years 2008-2014. Precipitation interpolations were performed with ArcGIS using the Natural Neighbor method. The USGS-National Map Viewer (NMV) website provided a 30-meter DEM - to interpolate high and low temperature ASCII grids using the Temperature Lapse Rate (TLR) method, to construct a D-8 flow direction grid for downhill redirection of soil-moisture saturated runoff toward non-saturated cells, and for aesthetic map creation. NMV also provided a modified Anderson land cover classification raster. The US Department of Agriculture-National Resource Conservation Service (NRCS) Web Soil Survey website provided shapefiles of soil water capacity and hydrologic soil groups. The Hargreaves and Samani method was implemented to determine evapotranspiration rates. The resulting SWB output data, in the form of ASCII grids are easily added to ArcGIS for quick visualization and data analysis (Figure 1). Calculated average recharge for 2008-2014 was 3537 inches/year, or 0.0174 acre feet/year. Recharge was 10.2% of the islands gross precipitation. The spatial distribution of the most significant recharge is in hotspots which dominate the residential hills above Avalon, followed by grassy/unvegetated areas

  20. Characteristics and source apportionment of organic matter in PM(2.5) from cities in different climatic zones of China

    Science.gov (United States)

    Feng, Jialiang

    For the first time, the dependency of the characteristics of organic matter in PM2.5 on geographical and climatic zones in three metropolitan cities of China was studied. Seasonal samples were collected at suburban and urban sites in Beijing, Shanghai and Guangzhou in 2002 and 2003. To further support the above study, seasonal samples were also collected at Changdao Island, a remote island, in Bohai Sea/Yellow Sea. Concentrations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and solvent-extractable organic compounds (SEOC) were analyzed. The characteristics of the n-alkanes, polycyclic aromatic hydrocarbons, n-fatty acids, n-alkanols and molecular markers such as triterpanes were determined and used for source identification. Source apportionment was complemented by Chemical Mass Balance (CMB) modeling using the measured organic species as tracers. The impact of wind speed and wind direction on air quality was studied by back trajectory calculations and analysis. In general, traffic emissions were the largest contributors of OC followed by coal burning, kitchen emissions, vegetative detritus and biomass burning. However, in the space-heating season in Northern China, coal burning was the most important contributor of OC in the suburban areas of Beijing and at Changdao. Beijing had the highest concentration of organic aerosol followed by Guangzhou and Shanghai, while seasonal variation was in reverse order. Dispersion conditions determined by local topographies and meteorology were responsible for this trend. Contrary to common understanding, pollutant concentrations at the suburban sites were higher than the urban sites in all three cities. The main reason was the rapid urbanization of the suburban areas in the immediate vicinity of urban centers since China opened up for economic development, in addition, large numbers of manufacturing plants were relocated from the cities to the countryside in an attempt to clean up the urban

  1. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  2. Holocene millennial/centennial-scale multiproxy cyclicity in temperate eastern Australian estuary sediments

    Science.gov (United States)

    Skilbeck, C. Gregory; Rolph, Timothy C.; Hill, Natalie; Woods, Jonathan; Wilkens, Roy H.

    2005-05-01

    We have undertaken a comparative study of down-core variation in multiproxy palaeoclimate data (magnetic susceptibility, calcium carbonate content and total organic carbon) from two coastal water bodies (Myall and Tuggerah Lakes) in temperate eastern Australia to identify local, regional and global-forcing factors within Holocene estuarine sediments. The two lakes lie within the same temperate climate zone adjacent to the Tasman Sea, but are not part of the same catchment and drain different geological provinces. One is essentially a freshwater coastal lake whereas the other is a brackish back-barrier lagoon. Despite these differences, data from two sites in each of the two lakes have allowed us to investigate and compare cyclicity in otherwise uniform, single facies sediments within the frequency range of 200-2000 years, limited by the sedimentation rate within the lakes and our sample requirements. We have auto- and cross-correlated strong periodicities at 360 years, 500-530 years, 270-290 years, 420-450 years and 210 years, and subordinate periods of 650 years, 1200-1400 years and 1800 years. Our thesis is that climate is the only regionally available mechanism available to control common millennial and centennial scale cyclicity in these sediments, given the geographical and other differences. However, regional climate may not be the dominant effect at any single time and either location. Within the range of frequency spectral peaks we have identified, several fall within known long-term periodical fluctuations of sun spot activity; however, feedback loops associated with short-term orbital variation, such as Dansgaard-Oeschger cycles, and the relationship between these and palaeo-ENSO variation, are also possible contributors. Copyright

  3. Assessment of the Impacts of Climate Change on Maize Production in the Southern and Western Highlands Sub-agro Ecological Zones of Tanzania

    Directory of Open Access Journals (Sweden)

    Philbert M. Luhunga

    2017-08-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC fourth assessment report confirmed that climate change is unequivocal. It is coming to us faster with larger impacts and bigger risks than even most climate scientists expected as recently as a few years ago. One particular worry is the disastrous consequence to agriculture and food security sectors in many parts of the world, particularly in developing countries. Adaptation is the only option to reduce the impacts of climate change. However, before planning adaptation policies or strategies to climate change, it is important to assess the impacts of climate change at regional and local scale to have scientific evidence that would guide the formulation of such policies or strategies. In this study the impacts of climate change on rain-fed maize (Zea Mays production in the southern and western highlands sub-agro ecological zones of Tanzania are evaluated. High resolution climate simulations from the Coordinated Regional Climate Downscaling Experiment_Regional Climate Models (CORDEX_RCMs were used as input into the Decision Support System for Agro-technological Transfer (DSSAT to simulate maize yield in the historical climate condition (1971–2000, present (2010–2039, mid (2040–2069, and end (2070–2099 centuries. Daily rainfall, solar radiations, minimum and maximum temperatures for the historical (1971–2000 climate condition and future climate projections (2010–2099 under two Representative Concentration Pathways (RCPs RCP4.5 and RCP 8.5 were used to drive DSSAT. The impacts of climate change were assessed by comparing the average maize yields in historical climate condition against the average of simulated maize yields in the present, mid and end centuries under RCP4.5 and RCP8.5. Results of future maize yields estimates from DSSAT driven by individual RCMs under both RCP scenarios (RCP 4.5 and RCP 8.5 differs from one RCM to another and from one scenario to another. This highlight

  4. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada.

    Science.gov (United States)

    Leithead, Mark D; Anand, Madhur; Silva, Lucas C R

    2010-12-01

    Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes-St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.

  5. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  6. Climate Change and Flooding in an Ecologically Fragile Zone of Nigerian Coastal Areas: A Case Study of Ilaje Settlement in Lagos, Nigeria

    Science.gov (United States)

    Oni, A. F.

    2017-12-01

    Climate change exacerbates the environmental condition directly or indirectly. The frequency of climate-related disasters worldwide has been on the increase with their amplitude growing. The consequences of climate-related disaster are not limited to loss of lives and properties alone, but also serious repercussions on post-disaster reconstruction, as well as the cost implications for resilience of the infrastructure and natural environment. In developing countries, the low-income group whose income is below the world poverty line is the most vulnerable to the dangers of climate change. To worsen the case, the political and economic strength of these countries in terms of economic resources, technological development and urban planning management necessary for adapting to climate change are relatively weak. This study takes an inventory of the study area environment to establish its environmental state in terms of the extent of its vulnerability and economic strength. It was found that the study area is vulnerable being a coastal area and could be described as a slum settlement. Also, information on frequency and extent of flooding in association with change in temperature was collected. The results show that the frequency of flood occurrence within the period has increased and the increase was attributed to rise in sea level alongside a significant increase in temperature within the period of study. The implications of the findings on loss of lives/properties and continuous decline in the area economic strength as it relates to resilience of the area was discussed. The study suggests an effective urban land use management and control, as well as redevelopment of resilient infrastructure in the area. The study concludes that the increase in temperature for the period as an indicator of climate change causes rise in sea level and the subsequent increase in flooding occurrence. Key Words: Ecologically Fragile Zone, Climate Change, Flooding and Vulnerability.

  7. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    Science.gov (United States)

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  8. Long-term climate change effects on dynamics of microorganisms and carbon in the root-zone

    DEFF Research Database (Denmark)

    Reinsch, Sabine

    Climate change factors such as elevated CO2 concentration, warming and changes in precipitation patterns have been shown to affect terrestrial carbon (C) cycling. The objective of this Ph.D. project is to track recently assimilated C into belowground compartments to investigate the effects...... of climate change on belowground C allocation. The impacts of climate change as single and combined treatments were applied to heath/grassland vegetation and the short-term terrestrial C turnover was investigated using in-situ 13CO2 pulse-labeling. We developed a mobile and low-cost pulse-labeling setup...... have major impacts on the C balance under changing climatic conditions. A comparison of C allocation under ambient and simulated future climatic conditions showed that the terrestrial C balance might be changed by reducing soil organic matter mineralization. Our results suggest that the impact...

  9. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  10. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  11. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik

    2006-01-01

    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... development of ZoneLib....

  12. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Culp, Thomas D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  13. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  14. Internal strains after recovery of hardness in tempered martensitic steels for fusion reactors

    Science.gov (United States)

    Brunelli, L.; Gondi, P.; Montanari, R.; Coppola, R.

    1991-03-01

    After tempering, with recovery of hardness, MANET steels present internal strains; these residual strains increase with quenching rate prior to tempering, and they remain after prolonged tempering times. On account of their persistence, after thermal treatments which lead to low dislocation and sub-boundary densities, the possibility has been considered that the high swelling resistance of MANET is connected with these centres of strain, probably connected with the formation, in ferrite, of Cr-enriched and contiguous Cr-depleted zones which may act as sinks for interstitials. Comparative observations on the internal strain behaviour of cold worked 316L stainless steel appear consistent with this possibility.

  15. Assessing the hydrological response from an ensemble of CMIP5 climate projections in the transition zone of the Atlantic region (Bay of Biscay)

    Science.gov (United States)

    Meaurio, Maite; Zabaleta, Ane; Boithias, Laurie; Epelde, Ane Miren; Sauvage, Sabine; Sánchez-Pérez, Jose-Miguel; Srinivasan, Raghavan; Antiguedad, Iñaki

    2017-05-01

    The climate changes projected for the 21st century will have consequences on the hydrological response of catchments. These changes, and their consequences, are most uncertain in the transition zones. The study area, in the Bay of Biscay, is located in the transition zone of the European Atlantic region, where hydrological impact of climate change was scarcely studied. In order to address this scarcity, the hydrological impacts of climate change on river discharge were assessed. To do so, a hydrological modelling was carried out considering 16 climate scenarios that include 5 General Circulation Models (GCM) from the 5th report of the Coupled Model Intercomparison Project (CMIP5), 2 statistical downscaling methods and 2 Representative Concentration Pathways. Projections for future discharge (2011-2100) were divided into three 30-year horizons (2030s, 2060s and 2090s) and a comparison was made between these time horizons and the baseline (1961-2000). The results show that the downscaling method used resulted in a higher source of uncertainty than GCM itself. In addition, the uncertainties inherent to the methods used at all the levels do not affect the results equally along the year. In spite of those uncertainties, general trends for the 2090s predict seasonal discharge decreases by around -17% in autumn, -16% in spring, -11% in winter and -7% in summer. These results are in line with those predicted for the Atlantic region (France and the Iberian Peninsula). Trends for extreme flows were also analysed: the most significant show an increase in the duration (days) of low flows. From an environmental point of view, and considering the need to meet the objectives established by the Water Framework Directive (WFD), this will be a major challenge for the future planning on water management.

  16. An abrupt centennial-scale drought event and mid-holocene climate change patterns in monsoon marginal zones of East Asia.

    Directory of Open Access Journals (Sweden)

    Yu Li

    Full Text Available The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0-7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to

  17. Spatial variation in the storages and age-related dynamics of forest carbon sequestration in different climate zones-evidence from black locust plantations on the Loess Plateau of China.

    Science.gov (United States)

    Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin

    2015-01-01

    Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration.

  18. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  19. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  20. Spatial Heterogeneity of Climate Change Effects on Dominant Height of Larch Plantations in Northern and Northeastern China

    Directory of Open Access Journals (Sweden)

    Hao Zang

    2016-07-01

    Full Text Available Determining the response of dominant height growth to climate change is important for understanding adaption strategies. Based on 550 permanent plots from a national forest inventory and climate data across seven provinces and three climate zones, we developed a climate-sensitive dominant height growth model under a mixed-effects model framework. The mean temperature of the wettest quarter and precipitation of the wettest month were found to be statistically significant explanatory variables that markedly improved model performance. Generally, future climate change had a positive effect on stand dominant height in northern and northeastern China, but the effect showed high spatial variability linked to local climatic conditions. The range in dominant height difference between the current climate and three future BC-RCP scenarios would change from −0.61 m to 1.75 m (−6.9% to 13.5% during the period 2041–2060 and from −1.17 m to 3.28 m (−9.1% to 41.0% during the period 2061–2080 across provinces. The impacts of climate change on stand dominant height decreased as stand age increased. Forests in cold and warm temperate zones had a smaller decrease in dominant height, owing to climate change, compared with those in the mid temperate zone. Overall, future climate change could impact dominant height growth in northern and northeastern China. As spatial heterogeneity of climate change affects dominant height growth, locally specific mitigation measures should be considered in forest management.

  1. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Kumar Munesh

    2009-08-01

    Full Text Available Abstract Background The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC. However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known. Results This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha-1 and from 141.6 to 124.8 t C ha-1 in temperature (Quercus leucotrichophora and subtropical (Pinus roxburghii forests, respectively. Conclusion The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation

  2. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    OpenAIRE

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquati...

  3. Evaluation of simulated corn yields and associated uncertainty in different climate zones of China using Daycent Model

    Science.gov (United States)

    Fu, A.; Xue, Y.

    2017-12-01

    Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.

  4. Mercury concentration in the sediments as a function of changing climate in coastal zone of Southern Baltic Sea – preliminary results

    Directory of Open Access Journals (Sweden)

    Bełdowska M.

    2013-04-01

    Full Text Available Mercury, despite of its many uses in industry, is also highly toxic. It is highly neurotoxic, and because of the ability of mercury to penetrate placental barrier, in some countries ban on predatory fish consumption (the main route of mercury into human organism by pregnant women was introduced. There are very little publications describing the consequences of weather anomalies on contaminants cycles. No research was published concerning the reemission of Hg due to climate change in the Southern Baltic Sea. The study area was situated in the coastal zone of the Gulf of Gdansk - the Southern Baltic. Samples of different species of macrophytobenthos were collected once a month during 2006-2012. Samples of Potamogeton pectinatus, sediments and pore waters were collected once a month from February 2011 to January 2012. The climate changes in the moderate latitudes: extension of the fall season, has contributed to stabilization of high concentrations of mercury in pore waters. Lack of ice cover in the coastal zone and simultaneous occurrence of storms had an impact on supply of the organic matter to the sediments and the increased concentration of Hg. More intense burning of fossil fuels in this season favored the increased metal concentration in the atmosphere and consequently an increase of the atmospheric deposition of metals to the sediments. This led to a fourfold increase of the mercury concentration in sediments as compared to fall season.

  5. Regional and Large-Scale Climate Influences on Tree-Ring Reconstructed Null Zone Position in San Francisco Bay

    Science.gov (United States)

    Stahle, D.; Griffin, D.; Cleaveland, M.; Fye, F.; Meko, D.; Cayan, D.; Dettinger, M.; Redmond, K.

    2007-05-01

    A new network of 36 moisture sensitive tree-ring chronologies has been developed in and near the drainage basins of the Sacramento and San Joaquin Rivers. The network is based entirely on blue oak (Quercus douglasii), which is a California endemic found from the lower forest border up into the mixed conifer zone in the Coast Ranges, Sierra Nevada, and Cascades. These blue oak tree-ring chronologies are highly correlated with winter-spring precipitation totals, Sacramento and San Joaquin streamflow, and with seasonal variations in salinity and null zone position in San Francisco Bay. Null zone is the non-tidal bottom water location where density-driven salinity and river-driven freshwater currents balance (zero flow). It is the area of highest turbidity, water residence time, sediment accumulation, and net primary productivity in the estuary. Null zone position is measured by the distance from the Golden Gate of the 2 per mil bottom water isohaline and is primarily controlled by discharge from the Sacramento and San Joaquin Rivers (and ultimately by winter-spring precipitation). The location of the null zone is an estuarine habitat indicator, a policy variable used for ecosystem management, and can have a major impact on biological resources in the San Francisco estuary. Precipitation-sensitive blue oak chronologies can be used to estimate null zone position based on the strong biogeophysical interaction among terrestrial, aquatic, and estuarine ecosystems, orchestrated by precipitation. The null zone reconstruction is 626-years long and provides a unique long term perspective on the interannual to decadal variability of this important estuarine habitat indicator. Consecutive two-year droughts (or longer) allow the null zone to shrink into the confined upper reaches of Suisun Bay, causing a dramatic reduction in phytoplankton production and favoring colonization of the estuary by marine biota. The reconstruction indicates an approximate 10 year recurrence interval

  6. Erosion processes acting in semi-arid climate zone of the Ebro Basin (Bardenas Reales, NE of Spain)

    International Nuclear Information System (INIS)

    Marin, C.; Desir, G.

    2009-01-01

    Bardenas Reales is an erosive depression located in the central-western part of the Ebro Depression. May different erosion processes act on this zone: gullying, piping, mud slides and armoured mud balls among others that contribute to export great quantity of material outside the basin. Depending on lithology and physico-chemical properties erosion acting processes differ. The knowledge of that processes help us to understand the great amount of soil loss that take place on the studied zone, bigger than those recommended. (Author) 8 refs.

  7. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    Science.gov (United States)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  8. Welding metallurgy of SA508 Cl II heat affected zones

    International Nuclear Information System (INIS)

    Alberry, P.J.; Lambert, J.A.

    1982-01-01

    A weld thermal simulation technique has been used to investigate the metallurgical response of SA508 class II material during welding. Dynamic Ac 1 and Ac 3 data, grain growth kinetics and continuous cooling transformation diagrams have been measured. The heat affected zone structure, grain size and precipitate distribution are described in terms of the weld thermal cycle experienced and compared with a weld heat affected zone. The as-welded hardness and tempering response of a range of possible heat affected zone structures has been established. The tempering effects of various weld thermal cycles are calculated from isothermal tempering data. The likely tempering effects during welding are estimated and compared with the tempering of actual welds during welding and in subsequent conventional post weld heat treatment. 16 figures, 6 tables

  9. CANDIDATE PLANETS IN THE HABITABLE ZONES OF KEPLER STARS

    International Nuclear Information System (INIS)

    Gaidos, Eric

    2013-01-01

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p HZ that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p HZ . Sixty-two planets have p HZ > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone (η ⊕ ) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.

  10. Climatically related millennial-scale fluctuations in strength of California margin oxygen-minimum zone during the past 60 k.y.

    Energy Technology Data Exchange (ETDEWEB)

    Cannariato, K.G.; Kennett, J.P.

    1999-11-01

    A strong oxygen-minimum zone (OMZ) currently exists along the California margin because of a combination of high surface-water productivity and poor intermediate-water ventilation. However, the strength of this OMZ may have been sensitive to late Quaternary ocean-circulation and productivity changes along the margin. Although sediment-lamination strength has been used to trace ocean-oxygenation changes in the past, oxygen levels on the open margin are not sufficiently low for laminations to form. In these regions, benthic foraminifera are highly sensitive monitors of OMZ strength, and their fossil assemblages can be used to reconstruct past fluctuations. Benthic foraminiferal assemblages from Ocean Drilling Program Site 1017, off Point Conception, exhibit major and rapid faunal oscillations in response to late Quaternary millennial-scale climate change (Dansgaard-Oeschger cycles) on the open central California margin. These faunal oscillations can be correlated to and are apparently synchronous with those reported from Santa Barbara Basin. Together they represent major fluctuations in the strength of the OMZ which were intimately associated with global climate change--weakening, perhaps disappearing, during cool periods and strengthening during warm periods. These rapid, major OMZ strength fluctuations were apparently widespread on the Northeast Pacific margin and must have influenced the evolution of margin biota and altered biogeochemical cycles with potential feedbacks to global climate change.

  11. Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs

    Science.gov (United States)

    Nassar, Ahmed K.; Blackburn, G. Alan; Whyatt, J. Duncan

    2016-09-01

    This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST. Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.

  12. Tempered stable laws as random walk limits

    OpenAIRE

    Chakrabarty, Arijit; Meerschaert, Mark M.

    2010-01-01

    Stable laws can be tempered by modifying the L\\'evy measure to cool the probability of large jumps. Tempered stable laws retain their signature power law behavior at infinity, and infinite divisibility. This paper develops random walk models that converge to a tempered stable law under a triangular array scheme. Since tempered stable laws and processes are useful in statistical physics, these random walk models can provide a basic physical model for the underlying physical phenomena.

  13. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp.

    Science.gov (United States)

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-05-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Simulation of whole building coupled hygrothermal-airflow transfer in different climates

    International Nuclear Information System (INIS)

    Qin Menghao; Walton, George; Belarbi, Rafik; Allard, Francis

    2011-01-01

    The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab-Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.

  15. Palaeotemperature reconstructions of the European permafrost zone during Oxygen Isotope Stage 3 compared with climate model results.

    NARCIS (Netherlands)

    van Huissteden, J.; Vandenberghe, J.; Pollard, D.

    2003-01-01

    A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high-resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3

  16. Patterns of divergence across the geographic and genomic landscape of a butterfly hybrid zone associated with a climatic gradient

    Science.gov (United States)

    The process of speciation is impacted by the interaction between the genomic architecture of diverging lineages and the environmental context they occupy. Yet, while climate can have a significant impact on this interaction, its role in determining the patterns of geographic and genomic divergence i...

  17. Variability and correlation of physical attributes of soils cultivated with cacao trees in two climate zones in southern Bahia, Brazil

    Science.gov (United States)

    Cacao (Theobroma cacao) is a very important crop in southern Bahia, Brazil, which needs good climate and soil conditions and management for great productivity. In this region, the culture is developed in a large variety of soils, which indicates differentiated products. The aim of this study was to ...

  18. Simulation of spring barley yield in different climatic zones of Northern and Central Europe. A comparison of nine crop models

    Czech Academy of Sciences Publication Activity Database

    Rötter, R.P.; Palosuo, T.; Kersebaum, K. C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J. E.; Patil, R. H.; Ruget, F.; Takáč, J.; Trnka, Miroslav

    2012-01-01

    Roč. 133, July 2012 (2012), s. 23-36 ISSN 0378-4290 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Climate * Crop growth simulation * Model comparison * Spring barley * Yield variability * Uncertainty Subject RIV: EH - Ecology, Behaviour Impact factor: 2.474, year: 2012

  19. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    Energy Technology Data Exchange (ETDEWEB)

    Heathcote, J.A. [Entec UK Ltd., Shrewsbury (United Kingdom)

    1997-04-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs.

  20. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    International Nuclear Information System (INIS)

    Heathcote, J.A.

    1997-01-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs

  1. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms.

    Directory of Open Access Journals (Sweden)

    Catarina Vinagre

    Full Text Available Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1 tide pools could be considered ecological traps and 2 if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.

  3. Tradeoffs between Maize Silage Yield and Nitrate Leaching in a Mediterranean Nitrate-Vulnerable Zone under Current and Projected Climate Scenarios

    Science.gov (United States)

    Basso, Bruno; Giola, Pietro; Dumont, Benjamin; Migliorati, Massimiliano De Antoni; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco

    2016-01-01

    Future climatic changes may have profound impacts on cropping systems and affect the agronomic and environmental sustainability of current N management practices. The objectives of this work were to i) evaluate the ability of the SALUS crop model to reproduce experimental crop yield and soil nitrate dynamics results under different N fertilizer treatments in a farmer’s field, ii) use the SALUS model to estimate the impacts of different N fertilizer treatments on NO3- leaching under future climate scenarios generated by twenty nine different global circulation models, and iii) identify the management system that best minimizes NO3- leaching and maximizes yield under projected future climate conditions. A field experiment (maize-triticale rotation) was conducted in a nitrate vulnerable zone on the west coast of Sardinia, Italy to evaluate N management strategies that include urea fertilization (NMIN), conventional fertilization with dairy slurry and urea (CONV), and no fertilization (N0). An ensemble of 29 global circulation models (GCM) was used to simulate different climate scenarios for two Representative Circulation Pathways (RCP6.0 and RCP8.5) and evaluate potential nitrate leaching and biomass production in this region over the next 50 years. Data collected from two growing seasons showed that the SALUS model adequately simulated both nitrate leaching and crop yield, with a relative error that ranged between 0.4% and 13%. Nitrate losses under RCP8.5 were lower than under RCP6.0 only for NMIN. Accordingly, levels of plant N uptake, N use efficiency and biomass production were higher under RCP8.5 than RCP6.0. Simulations under both RCP scenarios indicated that the NMIN treatment demonstrated both the highest biomass production and NO3- losses. The newly proposed best management practice (BMP), developed from crop N uptake data, was identified as the optimal N fertilizer management practice since it minimized NO3- leaching and maximized biomass production over

  4. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    Science.gov (United States)

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  5. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    Science.gov (United States)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  6. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    exoplanets, the planet has a temperate climate. The temperature of its gaseous surface is expected to be between 160 degrees and minus twenty degrees Celsius, with minimal variations between day and night. The exact value depends on the possible presence of a layer of highly reflective clouds. The CoRoT satellite, operated by the French space agency CNES [3], identified the planet after 145 days of observations during the summer of 2008. Observations with the very successful ESO exoplanet hunter - the HARPS instrument attached to the 3.6-metre ESO telescope at La Silla in Chile - allowed the astronomers to measure its mass, confirming that Corot-9b is indeed an exoplanet, with a mass about 80% the mass of Jupiter. This finding is being published in this week's edition of the journal Nature. Notes [1] A planetary transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes changes in the apparent brightness of the star and enables the planet's diameter to be measured. Combined with radial velocity measurements made by the HARPS spectrograph, it is also possible to deduce the mass and, hence, the density of the planet. It is this combination that allows astronomers to study this object in great detail. The fact that it is transiting - but nevertheless not so close to its star to be a "hot Jupiter" - is what makes this object uniquely well suited for further studies. [2] Temperate gas giants are, so far, the largest known group of exoplanets discovered. [3] The CoRoT (Convection, Rotation and Transits) space telescope was constructed by CNES, with contributions from Austria, Germany, Spain, Belgium, Brazil and the European Space Agency (ESA). It was specifically designed to detect transiting exoplanets and carry out seismological studies of stars. Its results are supplemented by observations with several ground-based telescopes, among them the IAC-80 (Teide Observatory), the Canada France Hawaii Telescope

  7. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    Science.gov (United States)

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little

  8. Impact of Climate Change on Outdoor Thermal Comfort and Health in Tropical Wet and Hot Zone (Douala, Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2014-04-01

    Full Text Available Abstract Background and purpose:Climate change has an important role on the health and productivity of the occupant of the building. The objective of this study is to estimate the effects of climate change on thermal comfort in hot and wet areas, as in the case of the city of Douala. Materials and Methods:The general circulation model (CSMK3 Model, Scenario B1 was adopted for this purpose.Outdoor daily parameters of temperature, sunshine, and precipitation of last 40 years were analyzed and allowed us to make forecast on this area. The past (1990-2000, the present (2001-2011, and the future (2012-2022 were considered in the hypotheses. Results:It has been found that Douala like some large cities of Africa is already and will be severely hit of advantage by climate change if anything is not going to slow. By 2033, it is expected to have an increase of more than 0.21° C of temperature thus, a decrease of precipitation. Conclusion:In 2023, total discomfort will reign in the dry season, especially in January where humidex could reach 42.9. On the other hand, in the rainy season, humidex will increase of 0.91 compared to year 2013. This effect will have an increase of temperature. When we maintain relative humidity, and we increase temperature, humidex varies enormously and displays a maximum value, with maximum temperature.

  9. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  10. A comparative study of the organic matter in PM 2.5 from three Chinese megacities in three different climatic zones

    Science.gov (United States)

    Feng, Jialiang; Hu, Min; Chan, Chak K.; Lau, P. S.; Fang, Ming; He, Lingyan; Tang, Xiaoyan

    Organic matter in PM 2.5 collected in 2002 and 2003 from three megacities in different climatic zones in China, Beijing (40°N), Shanghai (31°N) and Guangzhou (23°N), was characterized. The focus was on solvent-extractable organic compounds (SEOC), which were used to identify the influences of geography, variation of the season, sources and transport on the concentration and distribution of these homologues. Organic carbon, elemental carbon, and water-soluble organic carbon concentrations were analyzed only for the substantiation of the SEOC findings. Analysis of the fossil fuel residues and the plant wax components in n-alkanes, PAHs, fatty acids and n-alkanols allowed the identification of anthropogenic (coal and petroleum combustion processes, and kitchen emissions) and biogenic (vegetation and microbial) sources. The influence of temperature on the distribution of the SEOC was exemplified by the negative correlation between the relative concentrations of the semivolatile homologues (alkanes and PAHs) and ambient temperature. This is attributable to gas-particle partitioning. Indirectly, ambient temperature dictates the type of vegetation that can grow in a geographical zone. This would influence the distribution of the plant waxes, and finally, it plays a role in the aerosol loading due to energy usage.

  11. The Influence of Weather Anomalies on Mercury Cycling in the Marine Coastal Zone of the Southern Baltic-Future Perspective.

    Science.gov (United States)

    Bełdowska, Magdalena

    2015-01-01

    Despite the decreased emission loads of mercury, historical deposits of this metal in various compartments of the environment may become an additional diffuse source in the future. Global climate change manifests itself in the temperate zone in several ways: warmer winters, shorter icing periods, increased precipitation and heightened frequency of extreme events such as strong gales and floods, all of which cause disturbances in the rate and direction of mercury biogeochemical cycling. The present study was conducted at two sites, Oslonino and Gdynia Orlowo (both in the coastal zone of the Gulf of Gdansk), from which samples were collected once a month between January 2012 and December 2012. In the Southern Baltic region, climate changes can certainly enhance coast to basin fluxes of mercury and the transfer of bioavailable forms of this metal to the food web. They may also, in the future, contribute to uncontrollable increases of mercury in the seawater.

  12. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    Science.gov (United States)

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Characteristics and adaptation of seasonal drought in southern China under the background of climate change. V. Seasonal drought characteristics division and assessment in southern China].

    Science.gov (United States)

    Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song

    2013-10-01

    Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was

  14. Riparian buffer zones as pesticide filters of no-till crops.

    Science.gov (United States)

    Aguiar, Terencio R; Bortolozo, F R; Hansel, F A; Rasera, K; Ferreira, M T

    2015-07-01

    Several studies have pointed to the potential benefits of riparian vegetation as buffer zones for agricultural and industrial pollutants harmful to aquatic ecosystems. However, other studies have called into question its use as an ecological filter, questioning the widths and conditions for which they are effective as a filter. In this work, we have investigated the buffering capacity of the riparian one to retain pesticides in the water-saturated zone, on 27 sites composed by riparian buffer zones with different vegetation structure (woody, shrubs, or grass vegetation) and width (12, 36, and 60 m). Five pesticides were analyzed. The effectiveness of the filtering was largely influenced by the width and vegetation type of the buffer zone. In general, decreasing pesticide removal followed in this order wood > shrubs > grass. The 60 m woody buffer zone was the most effective in the removal of all the pesticides. Only atrazine was detected in this case (0.3 μg L(-1)). Furthermore, a linear correlation (R (2) > 0.97) was observed in their removal for all compounds and buffer zones studied. Thus, preserving the woody vegetation in the riparian zone is important for watershed management and groundwater quality in the no-tillage system in temperate climate.

  15. The effects of climate and landscape position on chemical denudation and mineral transformation in the Santa Catalina mountain critical zone observatory

    Energy Technology Data Exchange (ETDEWEB)

    Lybrand, Rebecca, E-mail: rlybrand@email.arizona.edu [Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 (United States); Rasmussen, Craig [Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 (United States); Jardine, Angie; Troch, Peter [Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721 (United States); Chorover, Jon [Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721 (United States)

    2011-06-15

    Highlights: > Depth to paralithic contact generally increased with elevation. > Q/P ratios were higher in divergent landscape positions compared to adjacent convergent hollows. > Clay mineral assemblages changed as a function of elevation. > Climate, landscape position and erosion interactively control soil and regolith development. - Abstract: Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 deg. C) and precipitation (>50 cm a{sup -1}), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent

  16. The effects of climate and landscape position on chemical denudation and mineral transformation in the Santa Catalina mountain critical zone observatory

    International Nuclear Information System (INIS)

    Lybrand, Rebecca; Rasmussen, Craig; Jardine, Angie; Troch, Peter; Chorover, Jon

    2011-01-01

    Highlights: → Depth to paralithic contact generally increased with elevation. → Q/P ratios were higher in divergent landscape positions compared to adjacent convergent hollows. → Clay mineral assemblages changed as a function of elevation. → Climate, landscape position and erosion interactively control soil and regolith development. - Abstract: Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 deg. C) and precipitation (>50 cm a -1 ), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent

  17. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China

    Science.gov (United States)

    Zhang, S.; Jing, X.

    2017-12-01

    Rainwater harvesting is now increasingly used to manage urban flood and alleviate water scarcity crisis. In this study, a computational tool based on water balance equation is developed to assess stormwater capture and water saving efficiency and economic viability of rainwater harvesting systems (RHS) in eight cities across four climatic zones of China. It requires daily rainfall, contributing area, runoff losses, first flush volume, storage capacity, daily water demand and economic parameters as inputs. Three non-potable water demand scenarios (i.e., toilet flushing, lawn irrigation, and combination of them) are considered. The water demand for lawn irrigation is estimated using the Cropwat 8.0 and Climwat 2.0. Results indicate that higher water saving efficiency and water supply time reliability can be achieved for RHS with larger storage capacities, for lower water demand scenarios and located in more humid regions, while higher stormwater capture efficiency is associated with larger storage capacity, higher water demand scenarios and less rainfall. For instance, a 40 m3 RHS in Shanghai (humid climate) for lawn irrigation can capture 17% of stormwater, while its water saving efficiency and time reliability can reach 96 % and 98%, respectively. The water saving efficiency and time reliability of a 20 m3 RHS in Xining (semi-arid climate) for toilet flushing are 19% and 16%, respectively, but it can capture 63% of stormwater. With the current values of economic parameters, economic viability of RHS can be achieved in humid and semi-humid regions for reasonably designed RHS; however, it is not financially viable to install RHS in arid regions as the benefit-cost ratio is much smaller than 1.0.

  18. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain

    Directory of Open Access Journals (Sweden)

    Patricia Jimeno-Sáez

    2018-02-01

    Full Text Available Streamflow data are of prime importance to water-resources planning and management, and the accuracy of their estimation is very important for decision making. The Soil and Water Assessment Tool (SWAT and Artificial Neural Network (ANN models have been evaluated and compared to find a method to improve streamflow estimation. For a more complete evaluation, the accuracy and ability of these streamflow estimation models was also established separately based on their performance during different periods of flows using regional flow duration curves (FDCs. Specifically, the FDCs were divided into five sectors: very low, low, medium, high and very high flow. This segmentation of flow allows analysis of the model performance for every important discharge event precisely. In this study, the models were applied in two catchments in Peninsular Spain with contrasting climatic conditions: Atlantic and Mediterranean climates. The results indicate that SWAT and ANNs were generally good tools in daily streamflow modelling. However, SWAT was found to be more successful in relation to better simulation of lower flows, while ANNs were superior at estimating higher flows in all cases.

  19. Classifying urban meteorological stations sites by 'local climate zones': Preliminary results for the city of Novi Sad (Serbia

    Directory of Open Access Journals (Sweden)

    Savić Stevan

    2013-01-01

    Full Text Available Conventional approach in the investigation of urban climate of Novi Sad has been done through simple urban-rural air temperature differences. These inter-urban air temperature differences showed how much is city warmer than its surroundings, so-called urban heat island (UHI effect. Temperature differences exist inside the city as well. To get to know the intensity of these intra-urban temperature differences, installation of meteorological stations in different parts of the city or mobile measurements are needed. In 2012 started IPA HUSRB project made by Department of Climatology and Landscape Ecology (University of Szeged and Faculty of Sciences (University of Novi Sad. The main goal of this project is the development and installation of wireless urban meteorological network (temperature and relative humidity sensors in Szeged and Novi Sad. Before the deployment of sensors, necessary metadata about each potential urban meteorological station site needs to be collected. Field work, collected metadata and Stewart and Oke climate-based classification system from 2012 were used for defining the potential urban meteorological stations sites on the territory of the city of Novi Sad (Serbia and its surroundings.

  20. Spatiotemporal Patterns of Ice Mass Variations and the Local Climatic Factors in the Riparian Zone of Central Valley, California

    Science.gov (United States)

    Inamdar, P.; Ambinakudige, S.

    2016-12-01

    Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.

  1. Spatial variation in the storages and age-related dynamics of forest carbon sequestration in different climate zones-evidence from black locust plantations on the Loess Plateau of China.

    Directory of Open Access Journals (Sweden)

    Taijun Li

    Full Text Available Knowledge about the long-term influences of climate change on the amount of potential carbon (C sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L. in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001. The C carrying capacity of the plantations was measured at 166.4 Mg C ha-1 (1 Mg = 106 g in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010. However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y. The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011, yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y. The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y, the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration.

  2. Impending sources of energy to replace fire wood in semi arid climatic zones: A case study in Ethiopia

    Directory of Open Access Journals (Sweden)

    Mihret Dananto Ulsido

    2013-06-01

    Full Text Available The present study paper shows an alternative source of energy that can decrease the extensive use of fire wood in Ethiopia. The country’s entire rural area and significant part of urban population is completely dependent on fire wood as a source of energy. This practice takes its own toll, the forest is on the verge of being wiped out and as a result a clear change of climate and loss of natural biodiversity resources is visible. Fire wood is not the only source of energy available in the country. In this paper, based on their low cost, construction material availability and the required unskilled labor it is shown that biogas and solar energy are potentially feasible source of energy to replace firewood for cooking.

  3. The Climate-Population Nexus in the East African Horn: Emerging Degradation Trends in Rangeland and Pastoral Livelihood Zones

    Science.gov (United States)

    Pricope, N. G.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.

    2014-12-01

    Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. We identify regions where significant rainfall decrease from 1979-2011 over the entire continent of Africa couples with significant human population density increase. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that widespread degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using two underutilized MODIS products, we observe significant changes in vegetation patterns and productivity over the last decade all across the East African Horn. We observe significant vegetation browning trends in areas experiencing drying precipitation trends in addition to increasing population pressures. We also found that the drying precipitation trends only partially statistically explain the vegetation browning trends, further indicating that other factors such as population pressures and land use changes are responsible for the observed declining vegetation health. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, indicating potential long-term degradation of rangelands on which approximately 10 million people depend. These findings have serious implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected

  4. Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China.

    Science.gov (United States)

    Li, Meng; Chu, Ronghao; Shen, Shuanghe; Islam, Abu Reza Md Towfiqul

    2018-06-01

    Pan evaporation (E pan ), which we examine in this study to better understand atmospheric evaporation demand, represents a pivotal indicator of the terrestrial ecosystem and hydrological cycle, particularly in the Huai River Basin (HRB) in eastern China, where high potential risks of drought and flooding are commonly observed. In this study, we examine the spatiotemporal trend patterns of climatic factors and E pan by using the Mann-Kendall test and the Theil-Sen estimator based on a daily meteorological dataset from 89 weather stations during 1965-2013 in the HRB. Furthermore, the PenPan model is employed to estimate E pan at a monthly time scale, and a differential equation method is applied to quantify contributions from four meteorological variables to E pan trends. The results show that E pan significantly decreased (P<0.001) at an average rate of -8.119mm·a -2 at annual time scale in the whole HRB, with approximately 90% of stations occupied. Meanwhile, the generally higher E pan values were detected in the northern HRB. The values of the aerodynamic components in the PenPan model were much greater than those of the radiative components, which were responsible for the variations in the E pan trend. The significantly decreasing wind speed (u 2 ) was the most dominant factor that controlled the decreasing E pan trend at each time scale, followed by the notable decreasing net radiation (R n ) at the annual time scale also in growing season and summer. However, the second dominant factor shifted to the mean temperature (T a ) during the spring and winter and the vapor pressure deficit (vpd) during the autumn. These phenomena demonstrated a positive link between the significance of climate variables and their control over the E pan trend. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America

    Science.gov (United States)

    Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...

  6. Soil quality differences in a mature alley cropping system in temperate North America

    Science.gov (United States)

    Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...

  7. Sperm competition in tropical versus temperate zone birds

    Czech Academy of Sciences Publication Activity Database

    Albrecht, Tomáš; Kleven, O.; Kreisinger, J.; Laskemoen, T.; Omotoriogun, T. C.; Ottosson, U.; Reif, J.; Sedláček, O.; Hořák, D.; Robertson, R. J.; Lifjeld, J. T.

    2013-01-01

    Roč. 280, č. 1752 (2013), s. 20122434 ISSN 0962-8452 R&D Projects: GA ČR(CZ) GAP505/11/1617; GA ČR(CZ) GAP506/12/2472 Institutional support: RVO:68081766 Keywords : clutch size * extra-pair paternity * life history * post-copulatory sexual selection * sperm phenotype Subject RIV: EG - Zoology Impact factor: 5.292, year: 2013

  8. Will afforestation in temperate zones warm the earth?

    Science.gov (United States)

    David B. South; Xuhui Lee; Michael G. Messina

    2012-01-01

    For decades, forest researchers have known that afforestation can lower the surface albedo and that landscapes with low albedo will absorb more solar radiation than more reflective surfaces. As a result, afforestation will typically darken the surface of the Earth (when compared to grasslands or deserts). This darkening of the landscape can be measured and the local...

  9. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation

    DEFF Research Database (Denmark)

    Jeppesen, Erik; Kronvang, Brian; Olesen, Jørgen E

    2011-01-01

    and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations...... shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm...... agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re...

  10. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    Science.gov (United States)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more

  11. Resilient Governance of Water Regimes in Variable Climates: Lessons from California’s Hydro-Ecological Zones

    Directory of Open Access Journals (Sweden)

    Jeff Romm

    2018-02-01

    Full Text Available Highly variable water regimes, such as California’s, contain distinctive problems in the pursuit of secure timing, quantities and distributions of highly variable flows. Their formal and informal systems of water control must adapt rapidly to forceful and unpredictable swings on which the survival of diversified ecosystems, expansive settlement patterns and market-driven economies depends. What constitutes resilient water governance in these high-variability regimes? Three bodies of theory—state resource government, resilience and social mediation—inform our pursuit of governance that adapts effectively to these challenges. Using evidence drawn primarily from California research and participation in the policy and practice of water governance, we identify two stark barriers to learning, adaptation and resilience in high-variability conditions: (1 the sharp divide between modes of governance for ecological (protective and for social (distributive resilience and (2 the separation between predominant paradigms of water governance in “basins” (shared streamflow and in “plains” (minimized social risk. These sources of structural segregation block adaptive processes and diminish systemic resilience, creating need for mediating spaces that increase permeability, learning and adaptation across structural barriers. We propose that the magnitude and diversity of need are related directly to the degree of hydro-climatic variability.

  12. Hydrological Design of Two Low-Impact Development Techniques in a Semi-Arid Climate Zone of Central Mexico

    Directory of Open Access Journals (Sweden)

    Liliana Lizárraga-Mendiola

    2017-07-01

    Full Text Available This paper deals with the design of a bioretention cell and an infiltration trench in a semi- arid micro watershed. The study area was analyzed by characteristics such as slope changes (S, direction and maximum length of the urban runoff (L, and soil use (runoff coefficient, Rc. The bioretention cell was designed by the calculation of variables such as drainage area (A, concentration time (Tc, rainfall intensity (i, maximum peak drained (Qmax, inlet and outlet runoff (Qa and Qout, respectively, temperature (T, evaporation (Ev, potential evapotranspiration (PEm, consumptive use (U for tolerant plants to semi-arid climates, and soil infiltration capacity (Inf. To design the infiltration trench, only Tc, Qmax, and i were taken into account. The results showed that the designed bioretention cell could retain between 5.37% and 2.25% of runoff volume. As the efficiency of the bioretention cell can be defined by the need for additional irrigation, our results showed that the cell is inefficient in some of the dry months (November and December, even in years characterized by abundant rainfall. Besides, it was shown that the designed infiltration trench could store or infiltrate the water from typical rain events. Based on these results, it is the implementation of more Low-Impact Development (LID for runoff management in the study area is recommended.

  13. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    Energy Technology Data Exchange (ETDEWEB)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada); National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Cao, X., E-mail: Xinjin.cao@cnrc-nrc.gc.ca [National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Pham, X-T., E-mail: Tan.pham@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada); Wanjara, P., E-mail: Priti.wanjara@cnrc-nrc.gc.ca [National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Fihey, J.L., E-mail: jean-luc.fihey@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada)

    2017-01-15

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triple junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.

  14. Forests in a water limited world under climate change

    International Nuclear Information System (INIS)

    Mátyás, Csaba; Sun, Ge

    2014-01-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses. (paper)

  15. Mechanism of Secondary Hardening in Rapid Tempering of Dual-Phase Steel

    Science.gov (United States)

    Saha, Dulal Chandra; Nayak, Sashank S.; Biro, Elliot; Gerlich, Adrian P.; Zhou, Y.

    2014-12-01

    Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman-Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.

  16. Impacts of extensive driftnet fishery and late 1990s climate regime shift on dominant epipelagic nekton in the Transition Region and Subtropical Frontal Zone: Implications for fishery management

    Science.gov (United States)

    Ichii, T.; Nishikawa, H.; Igarashi, H.; Okamura, H.; Mahapatra, K.; Sakai, M.; Wakabayashi, T.; Inagake, D.; Okada, Y.

    2017-01-01

    We investigated the impacts of extensive anthropogenic (high seas driftnet squid fishery) and natural (late 1990s major climate regime shift) events on dominant epipelagic fish, squid, and shark in the central North Pacific Transition Region based on a driftnet survey covering the years 1979-2006. Fishing was conducted by Japan, Korea and Taiwan to target neon flying squid in the period 1979-1992, resulting in a decline in stocks of the target species and non-target species (Pacific pomfret and juvenile blue shark), which were by-catch of this fishery. The catch was found to be at the maximum sustainable yield (MSY) level for neon flying squid, the underfished level for juvenile blue shark, but the overfished level for Pacific pomfret. The MSY of Pacific pomfret indicated that this species is more susceptible to exploitation than previously considered. In response to the late 1990s regime shift, neon flying squid and Pacific saury showed low stock levels in 1999-2002 and 1998-2002, respectively, as a result of reduced productivity in their nursery grounds (the Subtropical Frontal Zone and Kuroshio Extension Bifurcation Region, respectively). On the other hand, Pacific pomfret showed no decreasing trend in stock during the low- and intermediate-productivity regimes because of the high productivity of their main spawning/nursery ground (Transition Zone Chlorophyll Front), which was independent of the regime shifts. Thus, squid and saury appear to be more susceptible to the regime shift than pomfret. We discuss the implications for stock management of the species-specific responses to the fishery and the regime shift.

  17. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Directory of Open Access Journals (Sweden)

    Marisa Silva

    2015-03-01

    Full Text Available Harmful Algal Blooms (HAB are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.

  18. Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation

    Science.gov (United States)

    Silva, Marisa; Pratheepa, Vijaya K.; Botana, Luis M.; Vasconcelos, Vitor

    2015-01-01

    Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB. PMID:25785464

  19. Vegetation Responses to Climate Variability in the Northern Arid to Sub-Humid Zones of Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Khaldoun Rishmawi

    2016-11-01

    Full Text Available In water limited environments precipitation is often considered the key factor influencing vegetation growth and rates of development. However; other climate variables including temperature; humidity; the frequency and intensity of precipitation events are also known to affect productivity; either directly by changing photosynthesis and transpiration rates or indirectly by influencing water availability and plant physiology. The aim here is to quantify the spatiotemporal patterns of vegetation responses to precipitation and to additional; relevant; meteorological variables. First; an empirical; statistical analysis of the relationship between precipitation and the additional meteorological variables and a proxy of vegetation productivity (the Normalized Difference Vegetation Index; NDVI is reported and; second; a process-oriented modeling approach to explore the hydrologic and biophysical mechanisms to which the significant empirical relationships might be attributed. The analysis was conducted in Sub-Saharan Africa; between 5 and 18°N; for a 25-year period 1982–2006; and used a new quasi-daily Advanced Very High Resolution Radiometer (AVHRR dataset. The results suggest that vegetation; particularly in the wetter areas; does not always respond directly and proportionately to precipitation variation; either because of the non-linearity of soil moisture recharge in response to increases in precipitation; or because variations in temperature and humidity attenuate the vegetation responses to changes in water availability. We also find that productivity; independent of changes in total precipitation; is responsive to intra-annual precipitation variation. A significant consequence is that the degree of correlation of all the meteorological variables with productivity varies geographically; so no one formulation is adequate for the entire region. Put together; these results demonstrate that vegetation responses to meteorological variation are more

  20. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Inland glacier and lake dynamics on the Tibetan Plateau (TP and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53 ± 0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion.

  1. On choice of tempered steels

    International Nuclear Information System (INIS)

    Govorov, A.A.; Pan'shin, I.F.; Rakhmanov, V.I.

    1978-01-01

    For the purpose of developing a graphical method for choosing structural steels, a change in the propagation work of a crack and in the critical temperature of brittleness of 40, 40Kh, 40KhN, and 40KhNM steels, was examined depending on the hardness after hardening and tempering. A diagram enabling to choose the grade of steel for making an article of known dimensions according to the preset values of its mechanical properties has been plotted. The developed selection scheme takes into account the hardenability of steels and the influence of the hardness after thermal treatment on the cold-shortness of steel

  2. Chilling and heat requirements for flowering in temperate fruit trees.

    Science.gov (United States)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  3. Chilling and heat requirements for flowering in temperate fruit trees

    Science.gov (United States)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  4. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Science.gov (United States)

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  5. Modeling complex effects of multiple environmental stresses on carbon dynamics of Mid-Atlantic temperate forests

    Science.gov (United States)

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough

    2007-01-01

    We used our GIS variant of the PnET-CN model to investigate changes of forest carbon stocks and fluxes in Mid-Atlantic temperate forests over the last century (1900-2000). Forests in this region are affected by multiple environmental changes including climate, atmospheric CO2 concentration, N deposition and tropospheric ozone, and extensive land disturbances. Our...

  6. Analysis of yield and plant traits of oilseed rape (Brassica napus L. cultivated in temperate region in light of the possibilities of sowing in arid areas

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2016-12-01

    Full Text Available This work is a review of selected literature on the species of Brassica with the greatest economic significance. Oilseed rape (Brassica napus ssp. oleifera currently ranks third worldwide among oilseed crops used for oil production and is the most important in the temperate zone. The manifold uses of rape include not only human consumption of oil, but also the use of post-extraction meal to feed livestock as well as industrial applications as a source of bioenergy or cellulose. The improvement in the economic position of rape among crop plants is also due to the doubling of its yield between 1970 and 2009; the average annual increase in seed yield worldwide was 27 kg ha−1 yr−1. The yield level in Europe exceeds the average yields achieved in the world, particularly in Asia. Recently, the cultivation of oilseed rape was started on a relatively large acreage in Iran where the yield amounted 2.1 t ha−1, exceeding the yields of China and India. In Poland, the acreage of oilseed rape cultivation between 1965 and 2013 increased 3–4 times, and during this period the annual increase in seed yield was 29 kg ha−1 yr−1. Under the field conditions of the temperate climate zone, winter oilseed rape yield is mainly determined by agro-climatic conditions during the growing period, the level of nitrogen fertilization, and the production potential of varieties, which is currently highest in hybrids. There is a noticeable tendency of hybrids towards formation of more siliques by individual oilseed plants. Different production categories of plants appear in a rape crop. Semi-dwarf varieties of winter rapeseed are distinguished by greater silique density, particularly on the main shoot. Moreover, these hybrids are characterized by faster growth of the root system, which enables them to take up nitrogen from the soil more efficiently.

  7. Does climate undermine subjective well-being? A 58-nation study

    NARCIS (Netherlands)

    Fischer, Ronald; Van de Vliert, Evert

    The authors test predictions from climato-economic theories of culture that climate and wealth interact in their influence on psychological processes. Demanding climates (defined as colder than temperate and hotter than temperate climates) create potential threats for humans. If these demands can be

  8. Land use and urban morphology parameters for Vienna required for initialisation of the urban canopy model TEB derived via the concept of "local climate zones"

    Science.gov (United