WorldWideScience

Sample records for telomere repeat addition

  1. The addition of a spin column step in the telomeric repeat application protocol removes telomerase inhibitors.

    Science.gov (United States)

    Chen, Ying-Chieh; Huang, Fong-Chun; Lin, Jing-Jer

    2015-06-01

    Telomerase activity in cancer cells is commonly analyzed by a polymerase chain reaction (PCR)-based assay termed the telomeric repeat amplification protocol (TRAP). However, nonspecific inhibition of Taq polymerase during the PCR step is frequently observed in inhibitor analysis or drug screening. Thus, the removal of excess inhibitors prior to PCR is an essential step for the proper evaluation of telomerase inhibitory effects. Here, a size exclusion spin column was applied to remove small molecular weight inhibitors from the telomerase extension products. The spin column-added protocol, termed sTRAP, provides a more reliable estimation of the inhibitory effects of telomerase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment

    NARCIS (Netherlands)

    Kappei, D.; Butter, F.; Benda, C.; Scheibe, M.; Draskovic, Irena; Stevense, M.; Novo, C.L.; Basquin, C.; Araki, M.; Araki, K.; Krastev, D.B.; Kittler, R.; Jessberger, R.; Londono-Vallejo, J.A.; Mann, M.; Buchholz, F.

    2013-01-01

    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the

  3. TERRA: telomeric repeat-containing RNA.

    Science.gov (United States)

    Luke, Brian; Lingner, Joachim

    2009-09-02

    Telomeres, the physical ends of eukaryotic chromosomes, consist of tandem arrays of short DNA repeats and a large set of specialized proteins. A recent analysis has identified telomeric repeat-containing RNA (TERRA), a large non-coding RNA in animals and fungi, which forms an integral component of telomeric heterochromatin. TERRA transcription occurs at most or all chromosome ends and it is regulated by RNA surveillance factors and in response to changes in telomere length. TERRA functions that are emerging suggest important roles in the regulation of telomerase and in orchestrating chromatin remodelling throughout development and cellular differentiation. The accumulation of TERRA at telomeres can also interfere with telomere replication, leading to a sudden loss of telomere tracts. Such a phenotype can be observed upon impairment of the RNA surveillance machinery or in cells from ICF (Immunodeficiency, Centromeric region instability, Facial anomalies) patients, in which TERRA is upregulated because of DNA methylation defects in the subtelomeric region. Thus, TERRA may mediate several crucial functions at the telomeres, a region of the genome that had been considered to be transcriptionally silent.

  4. Solution structure of the Arabidopsis thaliana telomeric repeat-binding protein DNA binding domain: a new fold with an additional C-terminal helix.

    Science.gov (United States)

    Sue, Shih-Che; Hsiao, Hsin-Hao; Chung, Ben C-P; Cheng, Ying-Hsien; Hsueh, Kuang-Lung; Chen, Chung Mong; Ho, Chia Hsing; Huang, Tai-Huang

    2006-02-10

    The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.

  5. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity.

    Science.gov (United States)

    Cusanelli, Emilio; Chartrand, Pascal

    2015-01-01

    Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.

  6. Creation of a novel telomere-cutting endonuclease based on the EN domain of telomere-specific non-long terminal repeat retrotransposon, TRAS1

    Directory of Open Access Journals (Sweden)

    Yoshitake Kazutoshi

    2010-04-01

    Full Text Available Abstract Background The ends of chromosomes, termed telomeres consist of repetitive DNA. The telomeric sequences shorten with cell division and, when telomeres are critically abbreviated, cells stop proliferating. However, in cancer cells, by the expression of telomerase which elongates telomeres, the cells can continue proliferating. Many approaches for telomere shortening have been pursued in the past, but to our knowledge, cutting telomeres in vivo has not so far been demonstrated. In addition, there is lack of information on the cellular effects of telomere shortening in human cells. Results Here, we created novel chimeric endonucleases to cut telomeres by fusing the endonuclease domain (TRAS1EN of the silkworm's telomere specific non-long terminal repeat retrotransposon TRAS1 to the human telomere-binding protein, TRF1. An in vitro assay demonstrated that the TRAS1EN-TRF1 chimeric endonucleases (T-EN and EN-T cut the human (TTAGGGn repeats specifically. The concentration of TRAS1EN-TRF1 chimeric endonucleases necessary for the cleavage of (TTAGGGn repeats was about 40-fold lower than that of TRAS1EN alone. When TRAS1EN-TRF1 endonucleases were introduced into human U2OS cancer cells using adenovirus vectors, the enzymes localized at telomeres of nuclei, cleaved and shortened the telomeric DNA by double-strand breaks. When human U2OS and HFL-1 fibroblast cells were infected with EN-T recombinant adenovirus, their cellular proliferation was suppressed for about 2 weeks after infection. In contrast, the TRAS1EN mutant (H258A chimeric endonuclease fused with TRF1 (ENmut-T did not show the suppression effect. The EN-T recombinant adenovirus induced telomere shortening in U2OS cells, activated the p53-dependent pathway and caused the senescence associated cellular responses, while the ENmut-T construct did not show such effects. Conclusions A novel TRAS1EN-TRF1 chimeric endonuclease (EN-T cuts the human telomeric repeats (TTAGGGn specifically in

  7. Telomeric Repeat Containing RNA (TERRA): Aging and Cancer.

    Science.gov (United States)

    Sinha, Sonam; Shukla, Samriddhi; Khan, Sajid; Farhan, Mohammad; Kamal, Mohammad Amjad; Meeran, Syed Musthapa

    2015-01-01

    Telomeric repeat containing RNAs (TERRA) are small RNA molecules synthesized from telomeric regions which were previously considered as silent genomic domains. In normal cells, these RNAs are transcribed in a direction from subtelomeric region towards the chromosome ends, but in case of cancer cells, their expression remains limited or absent. Telomerase is a rate limiting enzyme for cellular senescence, cancer and aging. Most of the studies deal with the manipulation of telomerase enzyme in cancer and aging either by synthetic oligonucleotide or by natural phytochemicals. Here, we collected evidences and discussed intensely about the bio-molecular structure of TERRA, naturally occurring ligands of telomerase, and their genetic and epigenetic regulations in aging associated diseases. Due to their capability to act as naturally occurring ligands of telomerase, these RNAs can overcome the limitations possessed by synthetic oligonucleotides, which are aimed against telomerase. Drugs specifically targeting TERRA molecules could modulate telomerase-mediated telomere lengthening. Thus, targeting TERRA-mediated regulation of telomerase would be a promising therapeutic strategy against cancer and age-associated diseases.

  8. Curcusone C induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2.

    Science.gov (United States)

    Wang, Mingxue; Cao, Jiaojiao; Zhu, Jian-Yong; Qiu, Jun; Zhang, Yan; Shu, Bing; Ou, Tian-Miao; Tan, Jia-Heng; Gu, Lian-Quan; Huang, Zhi-Shu; Yin, Sheng; Li, Ding

    2017-11-01

    Telomeric repeat factor 2 (known as TRF2 or TERF2) is a key component of telomere protection protein complex named as Shelterin. TRF2 helps the folding of telomere to form T-loop structure and the suppression of ATM-dependent DNA damage response activation. TRF2 has been recognized as a potentially new therapeutic target for cancer treatment. In our routine screening of small molecule libraries, we found that Curcusone C had significant effect in disrupting the binding between TRF2 and telomeric DNA, with potent antitumor activity against cancer cells. Our result showed that Curcusone C could bind with TRF2 without binding interaction with TRF1 (telomeric repeat factor 1) although these two proteins share high sequence homology, indicating that their binding conformations and biological functions in telomere could be different. Our mechanistic studies showed that Curcusone C bound with TRF2 possibly through its DNA binding site causing blockage of its interaction with telomeric DNA. Further in cellular studies indicated that the interaction of TRF2 with Curcusone C could activate DNA-damage response, inhibit tumor cell proliferation, and cause cell cycle arrest, resulting in tumor cell apoptosis. Our studies showed that Curcusone C could become a promising lead compound for further development for cancer treatment. Here, TRF2 was firstly identified as a target of Curcusone C. It is likely that the anti-cancer activity of some other terpenes and terpenoids are related with their possible effect for telomere protection proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis.

    Science.gov (United States)

    Reig-Viader, Rita; Vila-Cejudo, Marta; Vitelli, Valerio; Buscà, Rafael; Sabaté, Montserrat; Giulotto, Elena; Caldés, Montserrat Garcia; Ruiz-Herrera, Aurora

    2014-05-01

    Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins, and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the cross talk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells. We found that TERRA colocalizes with telomeres during mammalian meiosis and that its expression progressively increases during spermatogenesis until the beginning of spermiogenesis. While both TERRA levels and distribution would be regulated in a gender-specific manner, telomere-TERT colocalization appears to be regulated based on species-specific characteristics of the telomeric structure. Moreover, we found that TERT localization at telomeres is maintained throughout spermatogenesis as a structural component without affecting telomere elongation. Our results represent the first evidence of colocalization between telomerase and telomeres during mammalian gametogenesis. © 2014 by the Society for the Study of Reproduction, Inc.

  10. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase.

    Science.gov (United States)

    Schawalder, James; Paric, Enesa; Neff, Norma F

    2003-10-27

    Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres.

  11. Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase

    Directory of Open Access Journals (Sweden)

    Paric Enesa

    2003-10-01

    Full Text Available Abstract Background Bloom syndrome is one of the most cancer-predisposing disorders and is characterized by genomic instability and a high frequency of sister chromatid exchange. The disorder is caused by loss of function of a 3' to 5' RecQ DNA helicase, BLM. The exact role of BLM in maintaining genomic integrity is not known but the helicase has been found to associate with several DNA repair complexes and some DNA replication foci. Results Chromatin immunoprecipitation of BLM complexes recovered telomere and ribosomal DNA repeats. The N-terminus of BLM, required for NB localization, is the same as the telomere association domain of BLM. The C-terminus is required for ribosomal DNA localization. BLM localizes primarily to the non-transcribed spacer region of the ribosomal DNA repeat where replication forks initiate. Bloom syndrome cells expressing the deletion alleles lacking the ribosomal DNA and telomere association domains have altered cell cycle populations with increased S or G2/M cells relative to normal. Conclusion These results identify telomere and ribosomal DNA repeated sequence elements as chromosomal targets for the BLM DNA helicase during the S/G2 phase of the cell cycle. BLM is localized in nuclear bodies when it associates with telomeric repeats in both telomerase positive and negative cells. The BLM DNA helicase participates in genomic stability at ribosomal DNA repeats and telomeres.

  12. Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators.

    Science.gov (United States)

    Scheibe, Marion; Arnoult, Nausica; Kappei, Dennis; Buchholz, Frank; Decottignies, Anabelle; Butter, Falk; Mann, Matthias

    2013-12-01

    Telomeres are actively transcribed into telomeric repeat-containing RNA (TERRA), which has been implicated in the regulation of telomere length and heterochromatin formation. Here, we applied quantitative mass spectrometry (MS)-based proteomics to obtain a high-confidence interactome of TERRA. Using SILAC-labeled nuclear cell lysates in an RNA pull-down experiment and two different salt conditions, we distinguished 115 proteins binding specifically to TERRA out of a large set of background binders. While TERRA binders identified in two previous studies showed little overlap, using quantitative mass spectrometry we obtained many candidates reported in these two studies. To test whether novel candidates found here are involved in TERRA regulation, we performed an esiRNA-based interference analysis for 15 of them. Knockdown of 10 genes encoding candidate proteins significantly affected total cellular levels of TERRA, and RNAi of five candidates perturbed TERRA recruitment to telomeres. Notably, depletion of SRRT/ARS2, involved in miRNA processing, up-regulated both total and telomere-bound TERRA. Conversely, knockdown of MORF4L2, a component of the NuA4 histone acetyltransferase complex, reduced TERRA levels both globally and for telomere-bound TERRA. We thus identified new proteins involved in the homeostasis and telomeric abundance of TERRA, extending our knowledge of TERRA regulation.

  13. Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn.

    Science.gov (United States)

    Diman, Aurélie; Decottignies, Anabelle

    2017-12-14

    Long noncoding RNAs, produced from distinct regions of the chromosomes, are emerging as new key players in several important biological processes. The long noncoding RNAs add a new layer of complexity to cellular regulatory pathways, from transcription to cellular trafficking or chromatin remodeling. More than 25 years ago, the discovery of a transcriptional activity at telomeres of protozoa ended the long-lasting belief that telomeres were transcriptionally silent. Since then, progressively accumulating evidences established that production of TElomeric Repeat-containing RNA (TERRA) was a general feature of eukaryotic cells. Whether TERRA molecules always originate from the telomeres or whether they can be transcribed from internal telomeric repeats as well is however still a matter of debate. Whether TERRA transcripts always localize to telomeres and play similar roles in all eukaryotic cells is also unclear. We review the studies on TERRA localization in the cell, its composition and some aspects of its transcriptional regulation to summarize the current knowledge and controversies about the genomic origin of TERRA, with a focus on human and mouse TERRA. © 2017 Federation of European Biochemical Societies.

  14. Telomeric repeat-containing RNA (TERRA) related to polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Wang, Caiqin; Shen, Fengxian; Zhu, Yuning; Fang, Yuying; Lu, Shiming

    2017-04-01

    Telomeric repeat-containing RNA (TERRA) participates in the regulation of telomere length, and leucocyte telomere length (LTL) plays an important role in the pathophysiology of polycystic ovary syndrome (PCOS), but little is known about the role of TERRA in PCOS. To evaluate the role of TERRA and peripheral blood LTL in PCOS. Forty women with PCOS and 35 healthy women without PCOS were recruited. A prospective case-control study was performed. RNA fluorescence in situ hybridization (FISH) was used to detect TERRA expression in peripheral blood leucocyte. Quantitative PCR was used to measure TERRA expression and the mean LTL in the PCOS and control groups. We analysed the association between related clinical parameters and the age-adjusted ratio of the telomere repeat length (T/S ratio) or TERRA. Telomeric repeat-containing RNA was expressed in human peripheral blood leucocytes, and the signal was abolished after culture with RNase A. The age-adjusted LTLs were significantly longer in the PCOS group than in the control group (P PCOS group than in the control group (P PCOS group (r = 0·532, P = 0·002; r = -0·477, P = 0·017). We found TERRA expression in human peripheral blood leucocytes, and LTLs were positively associated with PCOS. TERRA and testosterone play an important role in the LTL regulation in PCOS. © 2016 John Wiley & Sons Ltd.

  15. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  16. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats

    Institute of Scientific and Technical Information of China (English)

    Thomas Simonet; Elena Giulotto; Frederique Magdinier; Béatrice Horard; Pascal Barbry; Rainer Waldmann; Eric Gison; Laure-Emmanuelle Zaragosi; Claude Philippe; Kevin Lebrigand; Clémentine Schouteden; Adeline Augereau; Serge Bauwens; Jing Ye; Marco Santagostino

    2011-01-01

    The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mech anisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-iTS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.

  17. Evidence for regulated expression of Telomeric Repeat-containing RNAs (TERRA) in parasitic trypanosomatids.

    Science.gov (United States)

    Damasceno, Jeziel D; Silva, Gabriel LA; Tschudi, Christian; Tosi, Luiz Ro

    2017-08-01

    The Telomeric Repeat-containing RNAs (TERRA) participate in the homeostasis of telomeres in higher eukaryotes. Here, we investigated the expression of TERRA in Leishmania spp. and Trypanosoma brucei and found evidences for its expression as a specific RNA class. The trypanosomatid TERRA are heterogeneous in size and partially polyadenylated. The levels of TERRA transcripts appear to be modulated through the life cycle in both trypanosomatids investigated, suggesting that TERRA play a stage-specific role in the life cycle of these early-branching eukaryotes.

  18. Fluorescent in situ hybridization of the telomere repeat sequence in hamster sperm nuclear structures.

    Science.gov (United States)

    de Lara, J; Wydner, K L; Hyland, K M; Ward, W S

    1993-11-01

    The flat, hooked-shaped architecture of the hamster sperm nucleus makes this an excellent model for in situ hybridization studies of the three dimensional structure of the genome. We have examined the structure of the telomere repeat sequence (TTAGGG)n with respect to the various nuclear structures present in hamster spermatozoa, using fluorescent in situ hybridization. In fully condensed, mature sperm nuclei, the telomere sequences appeared as discrete spots of various sizes interspersed throughout the volume of the nuclei. While the pattern of these signals was non-random, it varied significantly in different nuclei. These discrete telomere foci were seen to gradually lengthen into linear, beaded signals as sperm nuclei were decondensed, in vitro, and were not associated with the nuclear annulus. We also examined the relationship of telomeres to the sperm nuclear matrix, a residual nuclear structure that retains the original size and shape of the nucleus. In these structures the DNA extends beyond the perimeter of the nucleus to form a halo around it, representing the arrangement of the chromosomal DNA into loop domains attached at their bases to the nuclear matrix. Telomere signals in these structures were also linear and equal in length to those of the decondensed nuclei, and each signal represented part of a single DNA loop domain. The telomeres were attached at one end to the nuclear matrix and extended into the halo. Sperm nuclear matrices treated with Eco RI retained the telomere signals. These data support sperm DNA packaging models in which DNA is coiled into discrete foci, rather than spread out linearly along the length of the sperm nucleus.

  19. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, Richard J [ORNL; McDonald, W Hayes [ORNL; Hurst, Gregory {Greg} B [ORNL; Shen, Rong-Fong [National Institute on Aging, National Institutes of Health; Wang, Yisong [ORNL; Liu, Yie [National Institute on Aging, Baltimore

    2010-01-01

    Telomere integrity (including telomere length and capping) is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography - tandem mass spectrometry (MudPIT LC-MS/MS). After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  20. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1.

    Directory of Open Access Journals (Sweden)

    Richard J Giannone

    2010-08-01

    Full Text Available Telomere integrity (including telomere length and capping is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography--tandem mass spectrometry (MudPIT LC-MS/MS. After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  1. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Science.gov (United States)

    M.N. lslam-Faridi; C.D. Nelson; S.P. DiFazio; L.E. Gunter; G.A. Tuskan

    2009-01-01

    The 185-285 rDNA and 55 rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 185-285 rDNA sites and one 55 rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones...

  2. The Role of Telomeric Repeat Binding Factor 1 (TRF1) in Telomere Maintenance and as a Potential Prognostic Indicator in Human Breast Cancer

    Science.gov (United States)

    2008-04-01

    multiple interacting partners, TRF1 Interacting Nuclear Factor 2 (TIN2), Tankyrase, Telomere Repeat Binding Factor 2 ( TRF2 ) and Protection of...with the mRNA levels of the human telomerase reverse transcriptase (hTERT) mRNA or the levels of TRF2 mRNA within breast tumors. • The levels of...TIN2, TRF1, TRF2 and POT1 mRNA are all associated with telomere content. • Visualized TRF1 and TRF2 distribution by Immunohistochemistry

  3. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes.

    Science.gov (United States)

    Wang, Zhuo; Deng, Zhong; Dahmane, Nadia; Tsai, Kevin; Wang, Pu; Williams, Dewight R; Kossenkov, Andrew V; Showe, Louise C; Zhang, Rugang; Huang, Qihong; Conejo-Garcia, José R; Lieberman, Paul M

    2015-11-17

    Telomeric repeat-containing RNA (TERRA) has been identified as a telomere-associated regulator of chromosome end protection. Here, we report that TERRA can also be found in extracellular fractions that stimulate innate immune signaling. We identified extracellular forms of TERRA in mouse tumor and embryonic brain tissue, as well as in human tissue culture cell lines using RNA in situ hybridization. RNA-seq analyses revealed TERRA to be among the most highly represented transcripts in extracellular fractions derived from both normal and cancer patient blood plasma. Cell-free TERRA (cfTERRA) could be isolated from the exosome fractions derived from human lymphoblastoid cell line (LCL) culture media. cfTERRA is a shorter form (∼200 nt) of cellular TERRA and copurifies with CD63- and CD83-positive exosome vesicles that could be visualized by cyro-electron microscopy. These fractions were also enriched for histone proteins that physically associate with TERRA in extracellular ChIP assays. Incubation of cfTERRA-containing exosomes with peripheral blood mononuclear cells stimulated transcription of several inflammatory cytokine genes, including TNFα, IL6, and C-X-C chemokine 10 (CXCL10) Exosomes engineered with elevated TERRA or liposomes with synthetic TERRA further stimulated inflammatory cytokines, suggesting that exosome-associated TERRA augments innate immune signaling. These findings imply a previously unidentified extrinsic function for TERRA and a mechanism of communication between telomeres and innate immune signals in tissue and tumor microenvironments.

  4. The Leishmania amazonensis TRF (TTAGGG repeat-binding factor homologue binds and co-localizes with telomeres

    Directory of Open Access Journals (Sweden)

    Freitas Lucio de H

    2010-05-01

    Full Text Available Abstract Background Telomeres are specialized structures at the end of chromosomes essential for maintaining genome stability and cell viability. The importance of telomeric proteins for telomere maintenance has increased our interest in the identification of homologues within the genus Leishmania. The mammalian TRF1 and TRF2 proteins, for example, bind double-stranded telomeres via a Myb-like DNA-binding domain and are involved with telomere length regulation and chromosome end protection. In addition, TRF2 can modulate the activity of several enzymes and influence the conformation of telomeric DNA. In this work, we identified and characterized a Leishmania protein (LaTRF homologous to both mammalian TRF1 and TRF2. Results LaTRF was cloned using a PCR-based strategy. ClustalW and bl2seq sequence analysis showed that LaTRF shared sequence identity with the Trypanosoma brucei TRF (TbTRF protein and had the same degree of sequence similarities with the dimerization (TRFH and the canonical DNA-binding Myb-like domains of both mammalian TRFs. LaTRF was predicted to be an 82.5 kDa protein, indicating that it is double the size of the trypanosome TRF homologues. Western blot and indirect immunofluorescence combined with fluorescence in situ hybridization showed that LaTRF, similarly to hTRF2, is a nuclear protein that also associates with parasite telomeres. Native and full length LaTRF and a mutant bearing the putative Myb-like domain expressed in bacteria bound double-stranded telomeric DNA in vitro. Chromatin immunoprecipitation showed that LaTRF interacted specifically with telomeres in vivo. Conclusion The nuclear localization of LaTRF, its association and co-localization with parasite telomeres and its high identity with TbTRF protein, support the hypothesis that LaTRF is a Leishmania telomeric protein.

  5. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  6. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Gunter, Lee E [ORNL; DiFazio, Stephen P [West Virginia University

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  7. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity.

    Directory of Open Access Journals (Sweden)

    Chia-Hsin Su

    Full Text Available Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2 and protection of telomeres protein 1 (POT1, whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity.

  8. Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor

    OpenAIRE

    Zhang, Peisu; Casaday-Potts, Rebecca; Precht, Patricia; Jiang, Haiyang; Liu, Yie; Pazin, Michael J.; Mark P Mattson

    2011-01-01

    Telomere repeat-binding factor 2 (TRF2) is critical for telomere integrity in dividing stem and somatic cells, but its role in postmitotic neurons is unknown. Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor (REST), and disruption of this interaction induces neuronal differentiation. Here we report a developmental switch from the expression of TRF2 in proliferating neural progenitor cells to expre...

  9. Nonparametric additive regression for repeatedly measured data

    KAUST Repository

    Carroll, R. J.

    2009-05-20

    We develop an easily computed smooth backfitting algorithm for additive model fitting in repeated measures problems. Our methodology easily copes with various settings, such as when some covariates are the same over repeated response measurements. We allow for a working covariance matrix for the regression errors, showing that our method is most efficient when the correct covariance matrix is used. The component functions achieve the known asymptotic variance lower bound for the scalar argument case. Smooth backfitting also leads directly to design-independent biases in the local linear case. Simulations show our estimator has smaller variance than the usual kernel estimator. This is also illustrated by an example from nutritional epidemiology. © 2009 Biometrika Trust.

  10. What Makes Telomeres Unique?

    Science.gov (United States)

    Sieradzan, Adam K; Krupa, Paweł; Wales, David J

    2017-03-16

    Telomeres are repetitive nucleotide sequences, which are essential for protecting the termini of chromosomes. Thousands of such repetitions are necessary to maintain the stability of the whole chromosome. Several similar repeated telomeric sequences have been found in different species, but why has nature chosen them? What features do telomeres have in common? In this article, we study the physical properties of human-like (TTAGGG), plant (TTTAGG), insect (TTAGG), and Candida guilermondi (GGTGTAC) telomeres in comparison with seven control, nontelomeric sequences. We used steered molecular dynamics with the nucleic acid united residue (NARES) coarse-grained force field, which we compared with the all-atom AMBER14 force field and experimental data. Our results reveal important features in all of the telomeric sequences, including their exceptionally high mechanical resistance and stability to untangling and stretching, compared to those of nontelomeric sequences. We find that the additional stability of the telomeres comes from their ability to form triplex structures and wrap around loose chains of linear DNA by regrabbing the chain. We find that, with slower pulling speed, regrabbing and triplex formation is more frequent. We also found that some of the sequences can form triplexes experimentally, such as TTTTTCCCC, and can mimic telomeric properties.

  11. Relative Telomere Repeat Mass in Buccal and Leukocyte-Derived DNA

    NARCIS (Netherlands)

    Finnicum, Casey T; Dolan, Conor V; Willemsen, Gonneke; Weber, Zachary M; Petersen, Jason L; Beck, Jeffrey J.; Codd, Veryan; Boomsma, Dorret I; Davies, Gareth E; Ehli, Erik A

    2017-01-01

    Telomere length has garnered interest due to the potential role it may play as a biomarker for the cellular aging process. Telomere measurements obtained from blood-derived DNA are often used in epidemiological studies. However, the invasive nature of blood draws severely limits sample collection,

  12. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart.

    Science.gov (United States)

    Weischer, Maren; Bojesen, Stig E; Nordestgaard, Børge G

    2014-03-01

    Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3 × 10(-77)), current smoking (P = 8 × 10(-3)), increased body mass index (P = 7 × 10(-14)), physical inactivity (P = 4 × 10(-17)), but not with increased alcohol intake (P = 0.10). At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (Pweight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population.

  13. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart.

    Directory of Open Access Journals (Sweden)

    Maren Weischer

    2014-03-01

    Full Text Available Cross-sectional studies have associated short telomere length with smoking, body weight, physical activity, and possibly alcohol intake; however, whether these associations are due to confounding is unknown. We tested these hypotheses in 4,576 individuals from the general population cross-sectionally, and with repeat measurement of relative telomere length 10 years apart. We also tested whether change in telomere length is associated with mortality and morbidity in the general population. Relative telomere length was measured with quantitative polymerase chain reaction. Cross-sectionally at the first examination, short telomere length was associated with increased age (P for trend across quartiles = 3 × 10(-77, current smoking (P = 8 × 10(-3, increased body mass index (P = 7 × 10(-14, physical inactivity (P = 4 × 10(-17, but not with increased alcohol intake (P = 0.10. At the second examination 10 years later, 56% of participants had lost and 44% gained telomere length with a mean loss of 193 basepairs. Change in leukocyte telomere length during 10 years was associated inversely with baseline telomere length (P<1 × 10(-300 and age at baseline (P = 1 × 10(-27, but not with baseline or 10-year inter-observational tobacco consumption, body weight, physical activity, or alcohol intake. Prospectively during a further 10 years follow-up after the second examination, quartiles of telomere length change did not associate with risk of all-cause mortality, cancer, chronic obstructive pulmonary disease, diabetes mellitus, ischemic cerebrovascular disease, or ischemic heart disease. In conclusion, smoking, increased body weight, and physical inactivity were associated with short telomere length cross-sectionally, but not with telomere length change during 10 years observation, and alcohol intake was associated with neither. Also, change in telomere length did not associate prospectively with mortality or morbidity in the general population.

  14. Telomeres and human health

    DEFF Research Database (Denmark)

    Bojesen, S E

    2013-01-01

    Telomeres are the tips of chromosomes and consist of proteins and hexanucleotide tandem repeats of DNA. The DNA repeats are shortened at each mitotic division of normal cells, and the telomere length chronicles how many divisions the cell has undergone. Thus, telomere length is a marker of fundam...

  15. Telomeres and Telomerase in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Jih-Kai Yeh

    2016-09-01

    Full Text Available Telomeres are tandem repeat DNA sequences present at the ends of each eukaryotic chromosome to stabilize the genome structure integrity. Telomere lengths progressively shorten with each cell division. Inflammation and oxidative stress, which are implicated as major mechanisms underlying cardiovascular diseases, increase the rate of telomere shortening and lead to cellular senescence. In clinical studies, cardiovascular risk factors such as smoking, obesity, sedentary lifestyle, and hypertension have been associated with short leukocyte telomere length. In addition, low telomerase activity and short leukocyte telomere length have been observed in atherosclerotic plaque and associated with plaque instability, thus stroke or acute myocardial infarction. The aging myocardium with telomere shortening and accumulation of senescent cells limits the tissue regenerative capacity, contributing to systolic or diastolic heart failure. In addition, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. In this review, we summarize the current understanding of telomeres and telomerase in the aging process and their association with cardiovascular diseases. In addition, we discuss therapeutic interventions targeting the telomere system in cardiovascular disease treatments.

  16. Incidence of SUC-RTM telomeric repeated genes in brewing and wild wine strains of Saccharomyces.

    Science.gov (United States)

    Denayrolles, M; de Villechenon, E P; Lonvaud-Funel, A; Aigle, M

    1997-06-01

    When over-expressed, RTM yeast genes confer resistance to the toxicity of molasses. They are found in distiller's and baker's industrial yeasts in multiple copies, scattered on the telomeres and physically linked to the telomeric SUC genes. Because these genes are absent from some laboratory strains, we explored the genomes of other industrial yeasts (brewing strains) and wine wild strains. A collection of 47 wine yeast strains (S. cerevisiae and S. bayanus) and 15 brewing strains, lager, ale and possible ancestors (S. monacensis, S. paradoxus and S. carlsbergensis) were screened for the presence of RTM genes. Only three wine strains and all brewing strains proved to contain RTM sequences in different copy numbers. PCR and chromosome blotting confirm the presence of SUC sequences in tandem with RTM. Moreover, analysis of the entire S. cerevisiae genome sequence shows that three other, non-telomeric, genes related to RTM are scattered on different chromosomes.

  17. Telomeres and disease: enter TERRA.

    Science.gov (United States)

    Maicher, André; Kastner, Lisa; Luke, Brian

    2012-06-01

    Telomere function is tightly regulated in order to maintain chromosomal stability. When telomeres become dysfunctional, the replicative capacity of cells diminishes and cellular senescence ensues. This can lead to impaired tissue replenishment and eventually degenerative disorders, referred to as telomere syndromes. Cancer can also develop as a result of the genomic instability associated with telomere dysfunction. TERRA (TElomeric Repeat containing RNA) is a long non-coding transcript that stems from sub-telomeric regions and continues into the telomeric tract and is therefore a hybrid of both sub-telomeric and telomeric sequence. In general, increased TERRA transcription is associated with telomere shortening and compromised telomere function. Here we will briefly outline the general principles behind telomere dysfunction-associated diseases. Furthermore, we will discuss the few known links that exist between telomere transcription (TERRA) and disease. Finally, we will speculate on how the understanding, and eventual manipulation, of TERRA transcription could potentially be used in terms of therapeutic strategies.

  18. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma.

    Science.gov (United States)

    Deng, Zhong; Wang, Zhuo; Xiang, Chaomei; Molczan, Aliah; Baubet, Valérie; Conejo-Garcia, Jose; Xu, Xiaowei; Lieberman, Paul M; Dahmane, Nadia

    2012-09-15

    Telomeres play crucial roles in the maintenance of genome integrity and control of cellular senescence. Most eukaryotic telomeres can be transcribed to generate a telomeric repeat-containing RNA (TERRA) that persists as a heterogeneous nuclear RNA and can be developmentally regulated. However, the precise function and regulation of TERRA in normal and cancer cell development remains poorly understood. Here, we show that TERRA accumulates in highly proliferating normal and cancer cells, and forms large nuclear foci, which are distinct from previously characterized markers of DNA damage or replication stress. Using a mouse model for medulloblastoma driven by chronic Sonic hedgehog (SHH) signaling, TERRA RNA was detected in tumor, but not adjacent normal cells using both RNA fluorescence in situ hybridization (FISH) and northern blotting. RNA FISH revealed the formation of TERRA foci (TERFs) in the nuclear regions of rapidly proliferating tumor cells. In the normal developing cerebellum, TERRA aggregates could also be detected in highly proliferating zones of progenitor neurons. SHH could enhance TERRA expression in purified granule progenitor cells in vitro, suggesting that proliferation signals contribute to TERRA expression in responsive tissue. TERRA foci did not colocalize with γH2AX foci, promyelocytic leukemia (PML) or Cajal bodies in mouse tumor tissue. We also provide evidence that TERRA is elevated in a variety of human cancers. These findings suggest that elevated TERRA levels reflect a novel early form of telomere regulation during replication stress and cancer cell evolution, and the TERRA RNA aggregates may form a novel nuclear body in highly proliferating mammalian cells.

  19. Mechanisms of telomere loss and their consequences for chromosome instability

    Directory of Open Access Journals (Sweden)

    Keiko eMuraki

    2012-10-01

    Full Text Available The ends of chromosomes in mammals, called telomeres, are composed of a 6 base pair repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.

  20. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture

    Directory of Open Access Journals (Sweden)

    Kez Cleal

    2018-02-01

    Full Text Available Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage–fusion–bridge (BFB cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.

  1. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  2. Telomeres, telomerase and premature ovarian failure

    Directory of Open Access Journals (Sweden)

    Renata Košir Pogačnik

    2011-11-01

    Full Text Available Telomeres are specialized structures at the ends of chromosomes, consisting of six repeated nucleotides in TTAGGG sequence. Genome stability is partly maintained by the architecture of telomeres and is gradually lost as telomeres progressively shorten with each cell replication. Critically shortened telomeres are recognized by DNA repair mechanisms as DNA damage and the cell replication cycle stops. The cell eventually dies or undergoes cell apoptosis. Telomere represents a cellular marker of biological age and are therefore also called cell mitotic clock. The enzyme that counteracts telomere shortening by adding nucleotides to the 3’ end of DNA strand is called telomerase. It is composed of the RNA subunit (TR, which is special type of messenger RNA (mRNA, the catalytic protein subunit (TERT, which works as a reverse transcriptase and numerous additional proteins. Telomerase is active in some germline, epithelial and haemopoietic cells, but in most somatic cells the activity is undetectable. In literature, the length of telomeres is closely connected with premature ovarian failure (POF. POF is generally defined as the onset of menopause before the age of 40. The causes of disease are genetical, autoimmune, iatrogenic or if we cannot establish the cause – idiopathic. A lot of studies examined correlation between idiopathic POF, length of telomeres and telomerase activity. The studies mostly show that women with POF have shortened telomeres and decreased activity of telomerase as compared to healthy women.

  3. Telomeric Repeat-Containing RNAs (TERRA) Decrease in Squamous Cell Carcinoma of the Head and Neck Is Associated with Worsened Clinical Outcome.

    Science.gov (United States)

    Vitelli, Valerio; Falvo, Paolo; G Nergadze, Solomon; Santagostino, Marco; Khoriauli, Lela; Pellanda, Paola; Bertino, Giulia; Occhini, Antonio; Benazzo, Marco; Morbini, Patrizia; Paulli, Marco; Porta, Camillo; Giulotto, Elena

    2018-01-17

    Telomeres are transcribed into noncoding telomeric repeat-containing RNAs (TERRA), which are essential for telomere maintenance. Deregulation of TERRA transcription impairs telomere metabolism and a role in tumorigenesis has been proposed. Head and neck cancer (HNC) is one of the most frequent cancers worldwide, with head and neck squamous cell carcinoma (HNSCC) being the predominant type. Since HNSCC patients are characterized by altered telomere maintenance, a dysfunction in telomere transcription can be hypothesized. In this prospective study, we compared TERRA levels in the tumor and matched normal tissue from 23 HNSCC patients. We then classified patients in two categories according to the level of TERRA expression in the tumor compared to the normal tissue: (1) lower expression in the tumor, (2) higher or similar expression in tumor. A significant proportion of patients in the first group died of the disease within less than 34 months postsurgery, while the majority of patients in the second group were alive and disease-free. Our results highlight a striking correlation between TERRA expression and tumor aggressiveness in HNSCC suggesting that TERRA levels may be proposed as a novel molecular prognostic marker for HNSCC.

  4. Expression of Telomere Repeat Binding Factor 1 and TRF2 in Prostate Cancer and Correlation with Clinical Parameters.

    Science.gov (United States)

    Chen, Wei; Wang, Yong; Li, Fei; Lin, Wei; Liang, Yong; Ma, Zhiwei

    2017-01-01

    The objective of this study was to investigate the expression of telomere repeat binding factor 1 (TRF1) and TRF2 in prostate cancer and their relationships with clinicopathological features. In total 50 prostate cancer tissues and paired benign prostate hyperplasia tissues were analyzed. The telomere-binding proteins TRF1 and TRF2 were measured using immunohistochemical method. Correlation analyses were used to evaluate the association between immunohistochemical score and clinical parameters. The expression of TRF1 was significantly higher in prostate cancer tissue than in benign prostate hyperplasia tissue (χ(2) = 62.69, P TRF2 were observed in both prostate cancer and benign prostate hyperplasia tissue (χ(2) = 1.13, P = 0.76). TRF1 expression was significantly positively correlated with surgical capsular invasion (Spearman's r = 0.43, P = 0.002), seminal vesicle invasion (Spearman's r = 0.35, P = 0.01), lymph nodes metastases (Spearman's r = 0.41, P = 0.003), total prostate specific antigen (r = 0.61, P TRF2 were overexpressed in prostate cancer. There was no specificity of TRF2 in prostate cancer, while TRF1 may be associated with prostate cancer progression.

  5. The Role of Telomeric Repeat Binding Factor 1 (TRF1) in Telomere Maintenance and as a Potential Prognostic Indicator in Human Breast Cancer

    National Research Council Canada - National Science Library

    Bulter, Kimberly S; Griffith, Jeffrey K

    2007-01-01

    .... Through examining the role of TRFI in telomere length control and in breast cancer prngrnssion this project also fosters the education of the candidate through the interaction with several experts...

  6. Expression of Telomere Repeat Binding Factor 1 and TRF2 in Prostate Cancer and Correlation with Clinical Parameters

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Objective. The objective of this study was to investigate the expression of telomere repeat binding factor 1 (TRF1 and TRF2 in prostate cancer and their relationships with clinicopathological features. Methods. In total 50 prostate cancer tissues and paired benign prostate hyperplasia tissues were analyzed. The telomere-binding proteins TRF1 and TRF2 were measured using immunohistochemical method. Correlation analyses were used to evaluate the association between immunohistochemical score and clinical parameters. Results. The expression of TRF1 was significantly higher in prostate cancer tissue than in benign prostate hyperplasia tissue (χ2 = 62.69, P<0.01. Elevated levels of TRF2 were observed in both prostate cancer and benign prostate hyperplasia tissue (χ2 = 1.13, P=0.76. TRF1 expression was significantly positively correlated with surgical capsular invasion (Spearman’s r=0.43, P=0.002, seminal vesicle invasion (Spearman’s r=0.35, P=0.01, lymph nodes metastases (Spearman’s r=0.41, P=0.003, total prostate specific antigen (r=0.61, P<0.05, and Gleason score (r=0.47, P=0.01. However, there were no significant statistical differences between prostate volume (r=0.06, P=0.75 and age (r=0.14, P=0.09. Conclusion. Both TRF1 and TRF2 were overexpressed in prostate cancer. There was no specificity of TRF2 in prostate cancer, while TRF1 may be associated with prostate cancer progression.

  7. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins.

    Science.gov (United States)

    Sepsiova, Regina; Necasova, Ivona; Willcox, Smaranda; Prochazkova, Katarina; Gorilak, Peter; Nosek, Jozef; Hofr, Ctirad; Griffith, Jack D; Tomaska, Lubomir

    2016-01-01

    Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.

  8. Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Regina Sepsiova

    Full Text Available Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs. Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.

  9. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka-Sugiyama, Rie [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugiyama, Tomoyasu, E-mail: sugiyamt@biol.tsukuba.ac.jp [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan)

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  10. G-Tetraplex-Induced FRET within Telomeric Repeat Sequences Using (Py) A-(Per) A as Energy Donor-Acceptor Pair.

    Science.gov (United States)

    Kundu, Rajen

    2016-01-01

    G-tetraplex induced fluorescence resonance energy transfer (FRET) within telomeric repeat sequences has been studied using a nucleoside-tethered FRET pair embedded in the human telomeric G-quadruplex forming sequence (5'-A GGG TT(Py) A GGG TT(Per) A GGG TTA GGG-3', Py=pyrene, Per=perylene). Conformational change from a single strand to an anti-parallel G-quadruplex leads to FRET from energy donor ((Py) A) to acceptor ((Per) A). The distance between the FRET donor/acceptor partners was controlled by changing the number of G-quartet spacer units. The FRET efficiency decreases with increase in G-quartet units. Overall findings indicate that this could be further used for the development of FRET-based sensing and measurement techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Telomeres and human reproduction.

    Science.gov (United States)

    Kalmbach, Keri Horan; Fontes Antunes, Danielle Mota; Dracxler, Roberta Caetano; Knier, Taylor Warner; Seth-Smith, Michelle Louise; Wang, Fang; Liu, Lin; Keefe, David Lawrence

    2013-01-01

    Telomeres mediate biologic aging in organisms as diverse as plants, yeast, and mammals. We propose a telomere theory of reproductive aging that posits telomere shortening in the female germ line as the primary driver of reproductive aging in women. Experimental shortening of telomeres in mice, which normally do not exhibit appreciable oocyte aging, and which have exceptionally long telomeres, recapitulates the aging phenotype of human oocytes. Telomere shortening in mice reduces synapsis and chiasmata, increases embryo fragmentation, cell cycle arrest, apoptosis, spindle dysmorphologies, and chromosome abnormalities. Telomeres are shorter in the oocytes from women undergoing in vitro fertilization, who then produce fragmented, aneuploid embryos that fail to implant. In contrast, the testes are replete with spermatogonia that can rejuvenate telomere reserves throughout the life of the man by expressing telomerase. Differences in telomere dynamics across the life span of men and women may have evolved because of the difference in the inherent risks of aging on reproduction between men and women. Additionally, growing evidence links altered telomere biology to endometriosis and gynecologic cancers, thus future studies should examine the role of telomeres in pathologies of the reproductive tract. Copyright © 2013. Published by Elsevier Inc.

  12. Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor

    Science.gov (United States)

    Zhang, Peisu; Casaday-Potts, Rebecca; Precht, Patricia; Jiang, Haiyang; Liu, Yie; Pazin, Michael J.; Mattson, Mark P.

    2011-01-01

    Telomere repeat-binding factor 2 (TRF2) is critical for telomere integrity in dividing stem and somatic cells, but its role in postmitotic neurons is unknown. Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor (REST), and disruption of this interaction induces neuronal differentiation. Here we report a developmental switch from the expression of TRF2 in proliferating neural progenitor cells to expression of a unique short nontelomeric isoform of TRF2 (TRF2-S) as neurons establish a fully differentiated state. Unlike nuclear TRF2, which enhances REST-mediated gene repression, TRF2-S is located in the cytoplasm where it sequesters REST, thereby maintaining the expression of neuronal genes, including those encoding glutamate receptors, cell adhesion, and neurofilament proteins. In neurons, TRF2-S–mediated antagonism of REST nuclear activity is greatly attenuated by either overexpression of TRF2 or administration of the excitatory amino acid kainic acid. Overexpression of TRF2-S rescues kainic acid-induced REST nuclear accumulation and its gene-silencing effects. Thus, TRF2-S acts as part of a unique developmentally regulated molecular switch that plays critical roles in the maintenance and plasticity of neurons. PMID:21903926

  13. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance.

    KAUST Repository

    Burla, Romina

    2015-06-25

    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively

  14. Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres.

    Science.gov (United States)

    Yu, Eun Young; Kojic, Milorad; Holloman, William K; Lue, Neal F

    2013-07-01

    Recent studies implicate a number of DNA repair proteins in mammalian telomere maintenance. However, because several key repair proteins in mammals are missing from the well-studied budding and fission yeast, their roles at telomeres cannot be modeled in standard fungi. In this report, we explored the dimorphic fungus Ustilago maydis as an alternative model for telomere research. This fungus, which belongs to the phylum Basidiomycota, has a telomere repeat unit that is identical to the mammalian repeat, as well as a constellation of DNA repair proteins that more closely mimic the mammalian collection. We showed that the two core components of homology-directed repair (HDR) in U. maydis, namely Brh2 and Rad51, both promote telomere maintenance in telomerase positive cells, just like in mammals. In addition, we found that Brh2 is localized to telomeres in vivo, suggesting that it acts directly at chromosome ends. We surveyed a series of mutants with DNA repair defects, and found many of them to have short telomeres. Our results indicate that factors involved in DNA repair are probably also needed for optimal telomere maintenance in U. maydis, and that this fungus is a useful alternative model system for telomere research. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks.

    Science.gov (United States)

    Martadinata, Herry; Heddi, Brahim; Lim, Kah Wai; Phan, Anh Tuân

    2011-07-26

    The discovery of long RNA transcripts of telomeric repeats (TERRA) and their potential to form G-quadruplexes stimulated studies on the possible arrangements of G-quadruplexes along TERRA. Here we performed ribonuclease protection assay to investigate the structures formed by long human TERRA. We found that G-quadruplexes comprising four and eight UUAGGG repeats were most resistant to RNase T1 digestion, presumably with the former adopting an all-parallel-stranded propeller-type conformation and the latter forming a structure with two tandemly stacked G-quadruplex subunits each containing three G-tetrad layers. Molecular dynamics simulations of eight-repeat human TERRA sequences consisting of different stacking interfaces between the two G-quadruplex subunits, i.e., 5'-5', 3'-3', 3'-5', and 5'-3', demonstrated stacking feasibility for all but the 5'-3' arrangement. A continuous stacking of the loop bases from one G-quadruplex subunit to the next was observed for the 5'-5' stacking conformation. We also put forward other possible stacking arrangements that involve more than one linker connecting the two G-quadruplex subunits. On the basis of these results, we propose a "beads-on-a-string"-like arrangement along human TERRA, whereby each bead is made up of either four or eight UUAGGG repeats in a one- or two-block G-quadruplex arrangement, respectively. © 2011 American Chemical Society

  16. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  17. Male and female meiosis in the mountain scorpion Zabius fuscus (Scorpiones, Buthidae): heterochromatin, rDNA and TTAGG telomeric repeats.

    Science.gov (United States)

    Adilardi, Renzo Sebastián; Ojanguren-Affilastro, Andrés Alejandro; Mattoni, Camilo Iván; Mola, Liliana María

    2015-08-01

    All cytogenetically studied scorpions present male achiasmatic meiosis and lack heteromorphic sex chromosomes. In contrast, information about female meiosis in scorpions is scarce due to the difficulty of finding meiotic cells. The genus Zabius includes three described species and no chromosome studies have been performed on it until now. We analyzed the constitutive heterochromatin distribution, NORs and telomeric sequences in mitosis and meiosis of males and females of different populations of Zabius fuscus. All specimens presented 2n = 18 holokinetic chromosomes that gradually decreased in size. Male meiosis presented nine bivalents and a polymorphism for one reciprocal translocation in one population. Telomeric signals were detected at every terminal region, confirming also the presence of a (TTAGG) n motif in Buthidae. Constitutive heterochromatin was found in three chromosome pairs at a terminal region; moreover, NORs were embedded in the heterochromatic region of the largest pair. Chromosome size and landmarks allowed us to propose the chromosomes involved in the rearrangement. In four females, cells at different prophase I stages were analyzed. We describe a diffuse stage and the presence of ring-shaped bivalents. We discuss the possible origin of these bivalents in the framework of chiasmatic or achiasmatic female meiosis. These results contribute to increase the scarce evidence of female meiosis in scorpions and raise new questions about its mechanism.

  18. Role of TERRA in the regulation of telomere length.

    Science.gov (United States)

    Wang, Caiqin; Zhao, Li; Lu, Shiming

    2015-01-01

    Telomere dysfunction is closely associated with human diseases such as cancer and ageing. Inappropriate changes in telomere length and/or structure result in telomere dysfunction. Telomeres have been considered to be transcriptionally silent, but it was recently demonstrated that mammalian telomeres are transcribed into telomeric repeat-containing RNA (TERRA). TERRA, a long non-coding RNA, participates in the regulation of telomere length, telomerase activity and heterochromatinization. The correct regulation of telomere length may be crucial to telomeric homeostasis and functions. Here, we summarize recent advances in our understanding of the crucial role of TERRA in the maintenance of telomere length, with focus on the variety of mechanisms by which TERRA is involved in the regulation of telomere length. This review aims to enable further understanding of how TERRA-targeted drugs can target telomere-related diseases.

  19. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Won Kyung [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Eunhee; Cheong, Chaejoon [Magnetic Resonance Team, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 363-883 (Korea, Republic of); Cho, Myeon Haeng [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  20. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis.

    Science.gov (United States)

    Leehy, Katherine A; Lee, Jung Ro; Song, Xiangyu; Renfrew, Kyle B; Shippen, Dorothy E

    2013-04-01

    Telomeres protect chromosome ends from being recognized as DNA damage, and they facilitate the complete replication of linear chromosomes. CST [for CTC1(Cdc13)/STN1/TEN1] is a trimeric chromosome end binding complex implicated in both aspects of telomere function. Here, we characterize TEN1 in the flowering plant Arabidopsis thaliana. We report that TEN1 (for telomeric pathways in association with Stn1, which stands for suppressor of cdc thirteen) is encoded by a previously characterized gene, MERISTEM DISORGANIZATION1 (MDO1). A point mutation in MDO1, mdo1-1/ten1-3 (G77E), triggers stem cell differentiation and death as well as a constitutive DNA damage response. We provide biochemical and genetic evidence that ten1-3 is likely to be a null mutation. As with ctc1 and stn1 null mutants, telomere tracts in ten1-3 are shorter and more heterogeneous than the wild type. Mutants also exhibit frequent telomere fusions, increased single-strand telomeric DNA, and telomeric circles. However, unlike stn1 or ctc1 mutants, telomerase enzyme activity is elevated in ten1-3 mutants due to an increase in repeat addition processivity. In addition, TEN1 is detected at a significantly smaller fraction of telomeres than CTC1. These data indicate that TEN1 is critical for telomere stability and also plays an unexpected role in modulating telomerase enzyme activity.

  1. DNA-PKcs-interacting protein KIP binding to TRF2 is required for the maintenance of functional telomeres.

    Science.gov (United States)

    Khadka, Prabhat; Lee, Ji Hoon; Baek, Seung Han; Oh, Sue Young; Chung, In Kwon

    2014-10-01

    Human telomeres associate with shelterin, a six-protein complex that protects chromosome ends from being recognized as sites of DNA damage. The shelterin subunit TRF2 (telomeric repeat-binding factor 2) protects telomeres by facilitating their organization into the protective capping structure. We have reported previously that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit)-interacting protein KIP associates with telomerase through an interaction with hTERT (human telomerase reverse transcriptase). In the present study, we identify KIP as a novel interacting partner of TRF2. KIP is able to interact with both TRF2 and DNA-PKcs at telomeres. Because KIP is required for the association between TRF2 and DNA-PKcs, the interplay of these three proteins may provide a mechanism for the recruitment of DNA-PKcs to telomeres. We also show that KIP binding to TRF2 enhances the telomere-binding activity of TRF2, suggesting that KIP acts as a positive regulator of TRF2 function. Furthermore, depletion of KIP induces DNA-damage response foci at telomeres, thereby leading to induction of growth arrest, cellular senescence and altered cell cycle distribution. Collectively, our findings suggest that KIP, in addition to its association with catalytically active telomerase, plays important roles in the maintenance of functional telomeres and the regulation of telomere-associated DNA-damage response. Thus KIP represents a new pathway for modulating telomerase and telomere function in cancer.

  2. Repeated Evolution of Testis-Specific New Genes: The Case of Telomere-Capping Genes in Drosophila

    Directory of Open Access Journals (Sweden)

    Raphaëlle Dubruille

    2012-01-01

    Full Text Available Comparative genome analysis has allowed the identification of various mechanisms involved in gene birth. However, understanding the evolutionary forces driving new gene origination still represents a major challenge. In particular, an intriguing and not yet fully understood trend has emerged from the study of new genes: many of them show a testis-specific expression pattern, which has remained poorly understood. Here we review the case of such a new gene, which involves a telomere-capping gene family in Drosophila. hiphop and its testis-specific paralog K81 are critical for the protection of chromosome ends in somatic cells and male gametes, respectively. Two independent functional studies recently proposed that these genes evolved under a reproductive-subfunctionalization regime. The 2011 release of new Drosophila genome sequences from the melanogaster group of species allowed us to deepen our phylogenetic analysis of the hiphop/K81 family. This work reveals an unsuspected dynamic of gene birth and death within the group, with recurrent duplication events through retroposition mechanisms. Finally, we discuss the plausibility of different evolutionary scenarios that could explain the diversification of this gene family.

  3. Telomere elongation chooses TERRA ALTernatives.

    Science.gov (United States)

    Arora, Rajika; Azzalin, Claus M

    2015-01-01

    Alternative Lengthening of Telomeres (ALT) mechanisms allow telomerase-negative immortal cells to buffer replicative telomere shortening. ALT is naturally active in a number of human cancers and might be selected upon telomerase inactivation. ALT is thought to operate through homologous recombination (HR) occurring between telomeric repeats from independent chromosome ends. Indeed, suppression of a number of HR factors impairs ALT cell proliferation. Yet, how HR is initiated at ALT telomeres remains elusive. Mounting evidence suggests that the long noncoding telomeric RNA TERRA renders ALT telomeres recombinogenic by forming RNA:DNA hybrids with the telomeric C-rich strand. TERRA and telomeric hybrids act in concert with a number of other factors, including the RNA endoribonuclease RNaseH1 and the single stranded DNA binding protein RPA. The functional interaction network built upon these different players seems indispensable for ALT telomere maintenance, and digging into the molecular details of this previously unappreciated network might open the way to novel avenues for cancer treatments.

  4. Telomere functions grounding on TERRA firma.

    Science.gov (United States)

    Azzalin, Claus M; Lingner, Joachim

    2015-01-01

    Long noncoding telomeric repeat-containing RNAs - TERRAs - are transcribed in a regulated manner from telomeres throughout eukaryotes. TERRA molecules consist of chromosome end-specific subtelomeric sequences and telomeric repeats at their 3' ends. Recent work suggests that TERRA sustains several important functions at chromosome ends. TERRA can regulate telomere length through modulation of exonuclease 1 and telomerase, it may promote recruitment of chromatin modifiers to damaged telomeres and thereby enable DNA end-processing, and it may promote telomere protein composition changes during cell cycle progression. Furthermore, telomere transcription regulates chromosome-end mobility within the nucleus. We review how TERRA, by regulated expression and by providing a molecular scaffold for various protein enzymes, can support a large variety of vital functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation

    OpenAIRE

    Arora, Amit; Beilstein, Mark A.; Shippen, Dorothy E.

    2016-01-01

    Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activit...

  6. Human Rap1 modulates TRF2 attraction to telomeric DNA.

    Science.gov (United States)

    Janoušková, Eliška; Nečasová, Ivona; Pavloušková, Jana; Zimmermann, Michal; Hluchý, Milan; Marini, Victoria; Nováková, Monika; Hofr, Ctirad

    2015-03-11

    More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1-TRF2 complex is a critical part of shelterin as it suppresses homology-directed repair in Ku 70/80 heterodimer absence. To understand how Rap1 affects key functions of TRF2, we investigated full-length Rap1 binding to TRF2 and Rap1-TRF2 complex interactions with double-stranded DNA by quantitative biochemical approaches. We observed that Rap1 reduces the overall DNA duplex binding affinity of TRF2 but increases the selectivity of TRF2 to telomeric DNA. Additionally, we observed that Rap1 induces a partial release of TRF2 from DNA duplex. The improved TRF2 selectivity to telomeric DNA is caused by less pronounced electrostatic attractions between TRF2 and DNA in Rap1 presence. Thus, Rap1 prompts more accurate and selective TRF2 recognition of telomeric DNA and TRF2 localization on single/double-strand DNA junctions. These quantitative functional studies contribute to the understanding of the selective recognition of telomeric DNA by the whole shelterin complex. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation.

    Science.gov (United States)

    Arora, Amit; Beilstein, Mark A; Shippen, Dorothy E

    2016-11-16

    Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activity. Here, we show that OB1 of POT1a, but not POT1b, has an intrinsic affinity for telomeric DNA. DNA binding was dependent upon a highly conserved Phe residue (F65) that in human POT1 directly contacts telomeric DNA. F65A mutation of POT1a OB1 abolished DNA binding and diminished telomerase repeat addition processivity. Conversely, AtPOT1b and other POT1b homologs from Brassicaceae and its sister family, Cleomaceae, naturally bear a non-aromatic amino acid at this position. By swapping Val (V63) with Phe, AtPOT1b OB1 gained the capacity to bind telomeric DNA and to stimulate telomerase repeat addition processivity. We conclude that, in the context of DNA binding, variation at a single amino acid position promotes divergence of the AtPOT1b paralog from the ancestral POT1 protein. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The differential processing of telomeres in response to increased telomeric transcription and RNA-DNA hybrid accumulation.

    Science.gov (United States)

    Balk, Bettina; Dees, Martina; Bender, Katharina; Luke, Brian

    2014-01-01

    Telomeres are protective nucleoprotein structures at the ends of eukaryotic chromosomes. Despite the heterochromatic state of telomeres they are transcribed, generating non-coding telomeric repeat-containing RNA (TERRA). Strongly induced TERRA transcription has been shown to cause telomere shortening and accelerated senescence in the absence of both telomerase and homology-directed repair (HDR). Moreover, it has recently been demonstrated that TERRA forms RNA-DNA hybrids at chromosome ends. The accumulation of RNA-DNA hybrids at telomeres also leads to rapid senescence and telomere loss in the absence of telomerase and HDR. Conversely, in the presence of HDR, telomeric RNA-DNA hybrid accumulation and increased telomere transcription promote telomere recombination, and hence, delayed senescence. Here, we demonstrate that despite these similar phenotypic outcomes, telomeres that are highly transcribed are not processed in the same manner as those that accumulate RNA-DNA hybrids.

  9. TERRA and the state of the telomere.

    Science.gov (United States)

    Rippe, Karsten; Luke, Brian

    2015-11-01

    Long noncoding telomeric repeat-containing RNA (TERRA) has been implicated in telomere maintenance in a telomerase-dependent and a telomerase-independent manner during replicative senescence and cancer. TERRA's proposed activities are diverse, thus making it difficult to pinpoint the critical roles that TERRA may have. We propose that TERRA orchestrates different activities at chromosome ends in a manner that depends on the state of the telomere.

  10. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance.

    Directory of Open Access Journals (Sweden)

    Romina Burla

    2015-06-01

    Full Text Available Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous, a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs. Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS and sister telomere associations (STAs, two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results

  11. Approaching TERRA Firma: Genomic Functions of Telomeric Noncoding RNA.

    Science.gov (United States)

    Roake, Caitlin M; Artandi, Steven E

    2017-06-29

    Functions of the telomeric repeat-containing RNA (TERRA), the long noncoding RNA (lncRNA) transcribed from telomeres, have eluded researchers. In this issue of Cell, Graf el al. and Chu et al. uncover new regulatory roles for TERRA at the telomere and at distant genomic sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  13. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis.

    Science.gov (United States)

    Sishc, Brock J; Nelson, Christopher B; McKenna, Miles J; Battaglia, Christine L R; Herndon, Andrea; Idate, Rupa; Liber, Howard L; Bailey, Susan M

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  14. Telomeres and Telomerase in the Radiation Response: implications for instability, reprogramming, and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Brock James Sishc

    2015-11-01

    Full Text Available Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks; DSBs and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles telomeres and telomerase play in the response of human cells to ionizing radiations of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET gamma(γ-rays or high LET high charge, high energy (HZE particles, delivered either acutely or at low dose rates (LDR. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprogramming. Taken together, the results reported here establish the critical importance of

  15. Telomestatin-induced telomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells.

    Science.gov (United States)

    Gomez, Dennis; Wenner, Thomas; Brassart, Bertrand; Douarre, Céline; O'Donohue, Marie-Françoise; El Khoury, Victoria; Shin-Ya, Kazuo; Morjani, Hamid; Trentesaux, Chantal; Riou, Jean-François

    2006-12-15

    Telomestatin is a potent G-quadruplex ligand that interacts with the 3' telomeric overhang, leading to its degradation, and induces a delayed senescence and apoptosis of cancer cells. POT1 and TRF2 were recently identified as specific telomere-binding proteins involved in telomere capping and t-loop maintenance and whose interaction with telomeres is modulated by telomestatin. We show here that the treatment of HT1080 human tumor cells by telomestatin induces a rapid decrease of the telomeric G-overhang and of the double-stranded telomeric repeats. Telomestatin treatment also provokes a strong decrease of POT1 and TRF2 from their telomere sites, suggesting that the ligand triggers the uncapping of the telomere ends. The effect of the ligand is associated with an increase of the gamma-H2AX foci, one part of them colocalizing at telomeres, thus indicating the occurrence of a DNA damage response at the telomere, but also the presence of additional DNA targets for telomestatin. Interestingly, the expression of GFP-POT1 in HT1080 cells increases both telomere and G-overhang length. As compared with HT1080 cells, HT1080GFP-POT1 cells presented a resistance to telomestatin treatment characterized by a protection to the telomestatin-induced growth inhibition and the G-overhang shortening. This protection is related to the initial G-overhang length rather than to its degradation rate and is overcome by increased telomestatin concentration. Altogether these results suggest that telomestatin induced a telomere dysfunction in which G-overhang length and POT1 level are important factors but also suggest the presence of additional DNA sites of action for the ligand.

  16. Telomere Maintenance in the Absence of Telomerase

    National Research Council Canada - National Science Library

    Lundblad, Vicki

    2000-01-01

    .... In the budding yeasts S. cerevisiae and K. lactis, telomerase- independent survival is mediated via RAD52-dependent recombination which results in amplification of telomeric and subtelomeric repeat sequences...

  17. Telomeric localization of the modified DNA base J in the genome of the protozoan parasite Leishmania.

    Science.gov (United States)

    Genest, Paul-André; Ter Riet, Bas; Cijsouw, Tony; van Luenen, Henri G A M; Borst, Piet

    2007-01-01

    Base J or beta-d-glucosylhydroxymethyluracil is a DNA modification replacing a fraction of thymine in the nuclear DNA of kinetoplastid parasites and of Euglena. J is located in the telomeric sequences of Trypanosoma brucei and in other simple repeat DNA sequences. In addition, J was found in the inactive variant surface glycoprotein (VSG) expression sites, but not in the active expression site of T. brucei, suggesting that J could play a role in transcription silencing in T. brucei. We have now looked at the distribution of J in the genomes of other kinetoplastid parasites. First, we analyzed the DNA sequences immunoprecipitated with a J-antiserum in Leishmania major Friedlin. Second, we investigated the co-migration of J- and telomeric repeat-containing DNA sequences of various kinetoplastids using J-immunoblots and Southern blots of fragmented DNA. We find only approximately 1% of J outside the telomeric repeat sequences of Leishmania sp. and Crithidia fasciculata, in contrast to the substantial fraction of non-telomeric J found in T. brucei, Trypanosoma equiperdum and Trypanoplasma borreli. Our results suggest that J is a telomeric base modification, recruited for other (unknown) functions in some kinetoplastids and Euglena.

  18. Telomere Biology—Insights into an Intriguing Phenomenon

    Directory of Open Access Journals (Sweden)

    Shriram Venkatesan

    2017-06-01

    Full Text Available Bacteria and viruses possess circular DNA, whereas eukaryotes with typically very large DNA molecules have had to evolve into linear chromosomes to circumvent the problem of supercoiling circular DNA of that size. Consequently, such organisms possess telomeres to cap chromosome ends. Telomeres are essentially tandem repeats of any DNA sequence that are present at the ends of chromosomes. Their biology has been an enigmatic one, involving various molecules interacting dynamically in an evolutionarily well-trimmed fashion. Telomeres range from canonical hexameric repeats in most eukaryotes to unimaginably random retrotransposons, which attach to chromosome ends and reverse-transcribe to DNA in some plants and insects. Telomeres invariably associate with specialised protein complexes that envelop it, also regulating access of the ends to legitimate enzymes involved in telomere metabolism. They also transcribe into repetitive RNA which also seems to be playing significant roles in telomere maintenance. Telomeres thus form the intersection of DNA, protein, and RNA molecules acting in concert to maintain chromosome integrity. Telomere biology is emerging to appear ever more complex than previously envisaged, with the continual discovery of more molecules and interplays at the telomeres. This review also includes a section dedicated to the history of telomere biology, and intends to target the scientific audience new to the field by rendering an understanding of the phenomenon of chromosome end protection at large, with more emphasis on the biology of human telomeres. The review provides an update on the field and mentions the questions that need to be addressed.

  19. Design of High-Affinity Stapled Peptides To Target the Repressor Activator Protein 1 (RAP1)/Telomeric Repeat-Binding Factor 2 (TRF2) Protein-Protein Interaction in the Shelterin Complex.

    Science.gov (United States)

    Ran, Xu; Liu, Liu; Yang, Chao-Yie; Lu, Jianfeng; Chen, Yong; Lei, Ming; Wang, Shaomeng

    2016-01-14

    Shelterin, a six-protein complex, plays a fundamental role in protecting both the length and the stability of telomeres. Repressor activator protein 1 (RAP1) and telomeric repeat-binding factor 2 (TRF2) are two subunits in shelterin that interact with each other. Small-molecule inhibitors that block the RAP1/TRF2 protein-protein interaction can disrupt the structure of shelterin and may be employed as pharmacological tools to investigate the biology of shelterin. On the basis of the cocrystal structure of RAP1/TRF2 complex, we have developed first-in-class triazole-stapled peptides that block the protein-protein interaction between RAP1 and TRF2. Our most potent stapled peptide binds to RAP1 protein with a Ki value of 7 nM and is >100 times more potent than the corresponding wild-type TRF2 peptide. On the basis of our high-affinity peptides, we have developed and optimized a competitive, fluorescence polarization (FP) assay for accurate and rapid determination of the binding affinities of our designed compounds and this assay may also assist in the discovery of non-peptide, small-molecule inhibitors capable of blocking the RAP1/TRF2 protein-protein interaction.

  20. Telomere Length Correlates with Life Span of Dog Breeds

    Directory of Open Access Journals (Sweden)

    Laura J. Fick

    2012-12-01

    Full Text Available Telomeric DNA repeats are lost as normal somatic cells replicate. When telomeres reach a critically short length, a DNA damage signal is initiated, inducing cell senescence. Some studies have indicated that telomere length correlates with mortality, suggesting that telomere length contributes to human life span; however, other studies report no correlation, and thus the issue remains controversial. Domestic dogs show parallels in telomere biology to humans, with similar telomere length, telomere attrition, and absence of somatic cell telomerase activity. Using this model, we find that peripheral blood mononuclear cell (PBMC telomere length is a strong predictor of average life span among 15 different breeds (p < 0.0001, consistent with telomeres playing a role in life span determination. Dogs lose telomeric DNA ∼10-fold faster than humans, which is similar to the ratio of average life spans between these species. Breeds with shorter mean telomere lengths show an increased probability of death from cardiovascular disease, which was previously correlated with short telomere length in humans.

  1. Expression of Telomere-Associated Proteins is Interdependent to Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand Causes TERRA Upregulation.

    Science.gov (United States)

    Sadhukhan, Ratan; Chowdhury, Priyanka; Ghosh, Sourav; Ghosh, Utpal

    2017-11-13

    Telomere DNA can form specialized nucleoprotein structure with telomere-associated proteins to hide free DNA ends or G-quadruplex structures under certain conditions especially in presence of G-quadruplex ligand. Telomere DNA is transcribed to form non-coding telomere repeat-containing RNA (TERRA) whose biogenesis and function is poorly understood. Our aim was to find the role of telomere-associated proteins and telomere structures in TERRA transcription. We silenced four [two shelterin (TRF1, TRF2) and two non-shelterin (PARP-1, SLX4)] telomere-associated genes using siRNA and verified depletion in protein level. Knocking down of one gene modulated expression of other telomere-associated genes and increased TERRA from 10q, 15q, XpYp and XqYq chromosomes in A549 cells. Telomere was destabilized or damaged by G-quadruplex ligand pyridostatin (PDS) and bleomycin. Telomere dysfunction-induced foci (TIFs) were observed for each case of depletion of proteins, treatment with PDS or bleomycin. TERRA level was elevated by PDS and bleomycin treatment alone or in combination with depletion of telomere-associated proteins.

  2. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    Full Text Available Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  3. Behaviour of Telomere and Telomerase during Aging and Regeneration in Zebrafish

    Science.gov (United States)

    Alcaraz-Pérez, Francisca; García-Navarro, Esther M.; Cayuela, María L.

    2011-01-01

    Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration. PMID:21347393

  4. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Moravec, Martin; Wischnewski, Harry; Bah, Amadou; Hu, Yan; Liu, Na; Lafranchi, Lorenzo; King, Megan C; Azzalin, Claus M

    2016-07-01

    Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres. © 2016 The Authors.

  5. Loss of telomere protection: consequences and opportunities.

    Directory of Open Access Journals (Sweden)

    Jacqueline Johanna Leonarda Jacobs

    2013-04-01

    Full Text Available Telomeres are repetitive sequences at the natural ends of linear eukaryotic chromosomes that protect these from recognition as chromosome breaks. Their ability to do so critically depends on the binding of sufficient quantities of functional shelterin, a six-unit protein complex with specific and crucial roles in telomere maintenance and function. Insufficient telomere length, leading to insufficient concentration of shelterin at chromosome ends, or otherwise crippled shelterin function, causes telomere deprotection. While contributing to aging-related pathologies, loss of telomere protection can act as a barrier to tumorigenesis, as dysfunctional telomeres activate DNA-damage-like checkpoint responses that halt cell proliferation or trigger cell death. In addition, dysfunctional telomeres affect cancer development and progression by being a source of genomic instability. Reviewed here are the different approaches that are being undertaken to investigate the mammalian cellular response to telomere dysfunction and its consequences for cancer. Furthermore, it is discussed how current and future knowledge about the mechanisms underlying telomere damage responses might be applied for diagnostic purposes or therapeutic intervention.

  6. Tumor viruses and replicative immortality--avoiding the telomere hurdle.

    Science.gov (United States)

    Chen, Xinsong; Kamranvar, Siamak Akbari; Masucci, Maria G

    2014-06-01

    Tumor viruses promote cell proliferation in order to gain access to an environment suitable for persistence and replication. The expression of viral products that promote growth transformation is often accompanied by the induction of multiple signs of telomere dysfunction, including telomere shortening, damage of telomeric DNA and chromosome instability. Long-term survival and progression to full malignancy require the bypassing of senescence programs that are triggered by the damaged telomeres. Here we review different strategies by which tumor viruses interfere with telomere homeostasis during cell transformation. This frequently involves the activation of telomerase, which assures both the integrity and functionality of telomeres. In addition, recent evidence suggests that oncogenic viruses may activate a recombination-based mechanism for telomere elongation known as Alternative Lengthening of Telomeres (ALT). This error-prone strategy promotes genomic instability and could play an important role in viral oncogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. yKu70/yKu80 and Rif1 Regulate Silencing Differentially at Telomeres in Candida glabrata▿ ‡

    Science.gov (United States)

    Rosas-Hernández, Lluvia L.; Juárez-Reyes, Alejandro; Arroyo-Helguera, Omar E.; De Las Peñas, Alejandro; Pan, Shih-Jung; Cormack, Brendan P.; Castaño, Irene

    2008-01-01

    Candida glabrata, a common opportunistic fungal pathogen, adheres efficiently to mammalian epithelial cells in culture. This interaction in vitro depends mainly on the adhesin Epa1, one of a large family of cell wall proteins. Most of the EPA genes are located in subtelomeric regions, where they are transcriptionally repressed by silencing. In order to better characterize the transcriptional regulation of the EPA family, we have assessed the importance of C. glabrata orthologues of known regulators of subtelomeric silencing in Saccharomyces cerevisiae. To this end, we used a series of strains containing insertions of the reporter URA3 gene within different intergenic regions throughout four telomeres of C. glabrata. Using these reporter strains, we have assessed the roles of SIR2, SIR3, SIR4, HDF1 (yKu70), HDF2 (yKu80), and RIF1 in mediating silencing at four C. glabrata telomeres. We found that, whereas the SIR proteins are absolutely required for silencing of the reporter genes and the native subtelomeric EPA genes, the Rif1 and the Ku proteins regulate silencing at only a subset of the analyzed telomeres. We also mapped a cis element adjacent to the EPA3 locus that can silence a reporter gene when placed at a distance of 31 kb from the telomere. Our data show that silencing of the C. glabrata telomeres varies from telomere to telomere. In addition, recruitment of silencing proteins to the subtelomeres is likely, for certain telomeres, to depend both on the telomeric repeats and on particular discrete silencing elements. PMID:18836091

  8. Telomerer og telomerase

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known as the biol......In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known...... as the biological clock of the cell, since they shorten with each cell division. Telomerase can elongate telomeres. Telomeres protect chromosome ends against being recognized as double stranded DNA breaks, and are thought to be a guard against cancer. It has furthermore been suggested that telomeres may play a role...

  9. DNA Replication Origins and Fork Progression at Mammalian Telomeres

    Science.gov (United States)

    Higa, Mitsunori; Fujita, Masatoshi; Yoshida, Kazumasa

    2017-01-01

    Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions. PMID:28350373

  10. Repeated production of hydrogen by sulfate re-addition in sulfur deprived culture of Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Pyo; Kim, Kyoung-Rok; Choi, Seung Phill; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Se Jong [Polar BioCenter, Korea Polar Research Institute, KORDI, Incheon 406-840 (Korea, Republic of); Kim, Mi Sun [Biomass Research Team, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2010-12-15

    Biological hydrogen production by the green alga, Chlamydomonas reinhardtii can be induced in conditions of sulfur deprivation. In this study, we investigated the repeated and enhanced hydrogen production afforded by the re-addition of sulfate with monitoring of pH and concentration of chlorophyll and sulfate. Without adjustment of the pH, the optimal concentration of re-added sulfate was 30 {mu}M for the hydrogen production. By the re-addition of 30 {mu}M of sulfate and the adjustment of the pH during 4 cycles of repeated production, we obtained the maximum amount of 789 ml H{sub 2} l{sup -1} culture, which is 3.4 times higher than that of one batch production without adjustment of pH, 236 ml H{sub 2} l{sup -1} culture. This means that the enhancement of the hydrogen production can be achieved by the careful control of the sulfate re-addition and pH adjustment in the sulfur deprived culture. (author)

  11. Telomerers rolle i cancer

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    Telomeres are a double-edged sword when it comes to cancer. On one hand, telomeres limit the cells' ability to divide and thereby restrict the uninhibited growth seen in cancer. On the other hand, short telomeres can initiate the chromosome instability that characterizes cancer. Diseases...... with the combination of short telomeres and high cancer risk are seen, but until now the use of telomeres as predictors of cancer has, in general, been unsuccessful. Telomeres and telomerase play an important role in further cancer development. Researchers are trying to exploit this in the development of new cancer...

  12. Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase.

    Science.gov (United States)

    Nora, Gerald J; Buncher, Noah A; Opresko, Patricia L

    2010-07-01

    WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres.

  13. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  14. A different approach to telomere analysis with ddPRINS in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Palanduz, Sukru; Serakinci, Nedime; Cefle, Kivanc

    2006-01-01

    in patients with B-cell CLL in a comparison with the control group by using ddPRINS technique. Twenty patients with CLL and four healthy donors as a control group were included. We found short telomeres and no detectable telomeric repeats at the sites of chromosome fusion. We hypothesise that the telomeric...

  15. Molecular recognition in complexes of TRF proteins with telomeric DNA.

    Directory of Open Access Journals (Sweden)

    Miłosz Wieczór

    Full Text Available Telomeres are specialized nucleoprotein assemblies that protect the ends of linear chromosomes. In humans and many other species, telomeres consist of tandem TTAGGG repeats bound by a protein complex known as shelterin that remodels telomeric DNA into a protective loop structure and regulates telomere homeostasis. Shelterin recognizes telomeric repeats through its two major components known as Telomere Repeat-Binding Factors, TRF1 and TRF2. These two homologous proteins are therefore essential for the formation and normal function of telomeres. Indeed, TRF1 and TRF2 are implicated in a plethora of different cellular functions and their depletion leads to telomere dysfunction with chromosomal fusions, followed by apoptotic cell death. More specifically, it was found that TRF1 acts as a negative regulator of telomere length, and TRF2 is involved in stabilizing the loop structure. Consequently, these proteins are of great interest, not only because of their key role in telomere maintenance and stability, but also as potential drug targets. In the current study, we investigated the molecular basis of telomeric sequence recognition by TRF1 and TRF2 and their DNA binding mechanism. We used molecular dynamics (MD to calculate the free energy profiles for binding of TRFs to telomeric DNA. We found that the predicted binding free energies were in good agreement with experimental data. Further, different molecular determinants of binding, such as binding enthalpies and entropies, the hydrogen bonding pattern and changes in surface area, were analyzed to decompose and examine the overall binding free energies at the structural level. With this approach, we were able to draw conclusions regarding the consecutive stages of sequence-specific association, and propose a novel aspartate-dependent mechanism of sequence recognition. Finally, our work demonstrates the applicability of computational MD-based methods to studying protein-DNA interactions.

  16. Telomerase and telomeres : From basic biology to cancer treatment

    NARCIS (Netherlands)

    Helder, MN; Wisman, GBA; van der Zee, AGJ

    2002-01-01

    The limited capacity to divide is one of the major differences between normal somatic cells and cancerous cells. This finite life span' of somatic cells is closely linked to loss of telomeric DNA at telomeres, the 'chromosome caps' consisting of repeated (TTAGGG) sequences. In more than 85% of

  17. CTCF driven TERRA transcription facilitates completion of telomere DNA replication.

    Science.gov (United States)

    Beishline, Kate; Vladimirova, Olga; Tutton, Stephen; Wang, Zhuo; Deng, Zhong; Lieberman, Paul M

    2017-12-13

    Telomere repeat DNA forms a nucleo-protein structure that can obstruct chromosomal DNA replication, especially under conditions of replication stress. Transcription of telomere repeats can initiate at subtelomeric CTCF-binding sites to generate telomere repeat-encoding RNA (TERRA), but the role of transcription, CTCF, and TERRA in telomere replication is not known. Here, we have used CRISPR/Cas9 gene editing to mutate CTCF-binding sites at the putative start site of TERRA transcripts for a class of subtelomeres. Under replication stress, telomeres lacking CTCF-driven TERRA exhibit sister-telomere loss and upon entry into mitosis, exhibit the formation of ultra-fine anaphase bridges and micronuclei. Importantly, these phenotypes could be rescued by the forced transcription of TERRA independent of CTCF binding. Our findings indicate that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription. Our findings also demonstrate that CTCF-driven TERRA transcription acts in cis to facilitate telomere repeat replication and chromosome stability.

  18. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation

    OpenAIRE

    Kim, Hyojung; Ham, Sangwoo; Jo, Minkyung; Lee, Gum Hwa; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong

    2017-01-01

    Aging is considered the major risk factor for neurodegenerative diseases including Parkinson’s disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leadi...

  19. Modulation of Telomeres in Alternative Lengthening of Telomeres Type I Like Human Cells by the Expression of Werner Protein and Telomerase

    Directory of Open Access Journals (Sweden)

    Aisha Siddiqa

    2012-01-01

    Full Text Available The alternative lengthening of telomeres (ALT is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, the S. cerevisiae RecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer.

  20. Telomere length alterations unique to invasive lobular carcinoma.

    Science.gov (United States)

    Heaphy, Christopher M; Asch-Kendrick, Rebecca; Argani, Pedram; Meeker, Alan K; Cimino-Mathews, Ashley

    2015-08-01

    Telomeres are nucleoprotein complexes located at the extreme ends of eukaryotic chromosomes and protect chromosomal ends from degradation and recombination. Dysfunctional telomeres contribute to genomic instability, promote tumorigenesis, and, in breast cancer, have been associated with increased cancer risk and poor prognosis. Short telomere lengths have been previously associated with triple-negative and human epidermal growth factor receptor (Her2)--positive ductal carcinomas. However, these investigations have not specifically assessed invasive lobular carcinomas (ILCs), which accounts for 5% to 15% of all invasive breast cancers. Here, we evaluate telomere lengths within 48 primary ILCs with complete characterization of estrogen receptor (ER), progesterone receptor (PR), and Her2 status, including 32 luminal/Her2- (ER+/PR+/Her2-), 8 luminal/Her2+ (ER+/PR+/Her2+), 3 Her2+ (ER-/PR-/Her2+), and 5 triple-negative (ER-/PR-/Her2-) carcinomas. A telomere-specific fluorescence in situ hybridization assay, which provides single-cell telomere length resolution, was used to evaluate telomere lengths and compare with standard clinicopathological markers. In contrast to breast ductal carcinoma, in which more than 85% of cases display abnormally short telomeres, approximately half (52%) of the ILCs displayed either normal or long telomeres. Short telomere length was associated with older patient age. Interestingly, 3 cases (6%) displayed a unique telomere pattern consisting of 1 or 2 bright telomere spots among the normal telomere signals within each individual cancer cell, a phenotype that has not been previously described. Additional studies are needed to further evaluate the significance of the unique bright telomere spot phenotype and the potential utility of telomere length as a prognostic marker in ILC. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae: first data on telomere structure and rDNA location

    Directory of Open Access Journals (Sweden)

    Valentina G. Kuznetsova

    2016-11-01

    Full Text Available Myrmeleontidae, commonly known as “antlions”, are the most diverse family of the insect order Neuroptera, with over 1700 described species (in 191 genera of which 37 species (in 21 genera have so far been studied in respect to standard karyotypes. In the present paper we provide first data on the occurrence of the “insect-type” telomeric repeat (TTAGGn and location of 18S rDNA clusters in the antlion karyotypes studied using fluorescence in situ hybridization (FISH. We show that males of Palpares libelluloides (Linnaeus, 1764 (Palparinae, Acanthaclisis occitanica (Villers, 1789 (Acanthaclisinae and Distoleon tetragrammicus (Fabricius, 1798 (Nemoleontinae have rDNA clusters on a large bivalent, two last species having an additional rDNA cluster on one of the sex chromosomes, most probably the X. (TTAGGn - containing telomeres are clearly characteristic of P. libelluloides and A. occitanica; the presence of this telomeric motif in D. tetragrammicus is questionable. In addition, we detected the presence of the (TTAGGn telomeric repeat in Libelloides macaronius (Scopoli, 1763 from the family Ascalaphidae (owlflies, a sister group to the Myrmeleontidae. We presume that the “insect” motif (TTAGGn was present in a common ancestor of the families Ascalaphidae and Myrmeleontidae within the neuropteran suborder Myrmeleontiformia.

  2. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae): first data on telomere structure and rDNA location.

    Science.gov (United States)

    Kuznetsova, Valentina G; Khabiev, Gadzhimurad N; Anokhin, Boris A

    2016-01-01

    Myrmeleontidae, commonly known as "antlions", are the most diverse family of the insect order Neuroptera, with over 1700 described species (in 191 genera) of which 37 species (in 21 genera) have so far been studied in respect to standard karyotypes. In the present paper we provide first data on the occurrence of the "insect-type" telomeric repeat (TTAGG) n and location of 18S rDNA clusters in the antlion karyotypes studied using fluorescence in situ hybridization (FISH). We show that males of Palpares libelluloides (Linnaeus, 1764) (Palparinae), Acanthaclisis occitanica (Villers, 1789) (Acanthaclisinae) and Distoleon tetragrammicus (Fabricius, 1798) (Nemoleontinae) have rDNA clusters on a large bivalent, two last species having an additional rDNA cluster on one of the sex chromosomes, most probably the X. (TTAGG) n - containing telomeres are clearly characteristic of Palpares libelluloides and Acanthaclisis occitanica ; the presence of this telomeric motif in Distoleon tetragrammicus is questionable. In addition, we detected the presence of the (TTAGG) n telomeric repeat in Libelloides macaronius (Scopoli, 1763) from the family Ascalaphidae (owlflies), a sister group to the Myrmeleontidae. We presume that the "insect" motif (TTAGG) n was present in a common ancestor of the families Ascalaphidae and Myrmeleontidae within the neuropteran suborder Myrmeleontiformia.

  3. Chromatin features of plant telomeric sequences at terminal versus internal positions

    Directory of Open Access Journals (Sweden)

    Eva eMajerová

    2014-11-01

    Full Text Available Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation towards distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich and ARRET (C-rich were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.

  4. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis.

    Science.gov (United States)

    Uzlíková, Magdalena; Fulnečková, Jana; Weisz, Filip; Sýkorová, Eva; Nohýnková, Eva; Tůmová, Pavla

    2017-01-01

    The ends of linear chromosomes, telomeres, are most commonly maintained by the enzyme telomerase. Our study presents the characteristics of telomeres and telomerase from the single-celled parasitic eukaryote Giardia intestinalis. Using fluorescence in situ hybridization, we localized telomeres during all stages of the trophozoite cell cycle and demonstrated differences in the observed number of telomeric foci, indicating telomere clustering. The length of Giardia telomeres was determined in different cell lines derived from WB clinical isolate using terminal restriction fragment analysis and ranged from 0.5 to 2.5kb; moreover, a BAL-31 digestion experiment did not reveal any long interstitial telomeric sequences in the genome. Despite the absence of the specific T motif in the telomerase catalytic subunit, the presence of an active telomerase enzyme synthesising telomeric repeats in Giardia was proved by a Telomere repeat amplification protocol assay, and its localization in nuclei was determined by the expression of recombinant GiTERT. Except for the Giardia-type TAGGG telomeric repeat, Giardia telomerase was proved to synthesize in vitro also other repeat variants, TAAGG and TAAGGG. In summary, despite its unusual characteristics, including a structurally divergent but active telomerase, unique terminal sequences and relatively short telomeres, the present data support the view that the chromosomal termini in Giardia are maintained in a conservative manner that is common to other eukaryotes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Telomeres, histone code, and DNA damage response.

    Science.gov (United States)

    Misri, S; Pandita, S; Kumar, R; Pandita, T K

    2008-01-01

    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability. Copyright 2008 S. Karger

  6. Telomeres: Hallmarks of radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ayouaz, A.; Raynaud, C.; Heride, C.; Revaud, D.; Sabatier, L. [CEA, DSV, IRCM/SRO, F-92265 Fontenay Aux Roses (France)

    2008-07-01

    Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage.This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplifying event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells. (authors)

  7. TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends

    Science.gov (United States)

    Pfeiffer, Verena; Lingner, Joachim

    2012-01-01

    The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities. PMID:22719262

  8. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends.

    Science.gov (United States)

    Pfeiffer, Verena; Lingner, Joachim

    2012-01-01

    The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA-mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5'-3' nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities.

  9. Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1.

    Science.gov (United States)

    Ourliac-Garnier, Isabelle; Poulet, Anaïs; Charif, Razan; Amiard, Simon; Magdinier, Frédérique; Rezaï, Keyvan; Gilson, Eric; Giraud-Panis, Marie-Josèphe; Bombard, Sophie

    2010-06-01

    Telomeres, the nucleoprotein complexes located at the ends of chromosomes, are involved in chromosome protection and genome stability. Telomeric repeat binding factor 1 (TRF1) and telomeric repeat binding factor 2 (TRF2) are the two telomeric proteins that bind to duplex telomeric DNA through interactions between their C-terminal domain and several guanines of the telomeric tract. Since the antitumour drug cisplatin binds preferentially to two adjacent guanines, we have investigated whether cisplatin adducts could affect the binding of TRF1 and TRF2 to telomeric DNA and the property of TRF2 to stimulate telomeric invasion, a process that is thought to participate in the formation of the t-loop. We show that the binding of TRF1 and TRF2 to telomeric sequences selectively modified by one GG chelate of cisplatin is markedly affected by cisplatin but that the effect is more drastic for TRF2 than for TRF1 (3-5-fold more sensitivity for TRF2 than for TRF1). We also report that platinum adducts cause a decrease in TRF2-dependent stimulation of telomeric invasion in vitro. Finally, in accordance with in vitro data, analysis of telomeric composition after cisplatin treatment reveals that 60% of TRF2 dissociate from telomeres.

  10. Cockayne Syndrome group B protein interacts with TRF2 and regulates telomere length and stability.

    Science.gov (United States)

    Batenburg, Nicole L; Mitchell, Taylor R H; Leach, Derrik M; Rainbow, Andrew J; Zhu, Xu-Dong

    2012-10-01

    The majority of Cockayne syndrome (CS) patients carry a mutation in Cockayne Syndrome group B (CSB), a large nuclear protein implicated in DNA repair, transcription and chromatin remodeling. However, whether CSB may play a role in telomere metabolism has not yet been characterized. Here, we report that CSB physically interacts with TRF2, a duplex telomeric DNA binding protein essential for telomere protection. We find that CSB localizes at a small subset of human telomeres and that it is required for preventing the formation of telomere dysfunction-induced foci (TIF) in CS cells. We find that CS cells or CSB knockdown cells accumulate telomere doublets, the suppression of which requires CSB. We find that overexpression of CSB in CS cells promotes telomerase-dependent telomere lengthening, a phenotype that is associated with a decrease in the amount of telomere-bound TRF1, a negative mediator of telomere length maintenance. Furthermore, we show that CS cells or CSB knockdown cells exhibit misregulation of TERRA, a large non-coding telomere repeat-containing RNA important for telomere maintenance. Taken together, these results suggest that CSB is required for maintaining the homeostatic level of TERRA, telomere length and integrity. These results further imply that CS patients carrying CSB mutations may be defective in telomere maintenance.

  11. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  12. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1

    DEFF Research Database (Denmark)

    Rhee, David B; Ghosh, Avik; Lu, Jian

    2011-01-01

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major...... contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors...... affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non...

  13. Oligonucleotide Models of Telomeric DNA and RNA Form a Hybrid G-quadruplex Structure as a Potential Component of Telomeres*

    Science.gov (United States)

    Xu, Yan; Ishizuka, Takumi; Yang, Jie; Ito, Kenichiro; Katada, Hitoshi; Komiyama, Makoto; Hayashi, Tetsuya

    2012-01-01

    Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends. PMID:23012368

  14. No Additional Benefit of Repeat-Sprint Training in Hypoxia than in Normoxia on Sea-Level Repeat-Sprint Ability

    Directory of Open Access Journals (Sweden)

    Paul S.R. Goods, Brian Dawson, Grant J. Landers, Christopher J. Gore, Peter Peeling

    2015-09-01

    Full Text Available To assess the impact of ‘top-up’ normoxic or hypoxic repeat-sprint training on sea-level repeat-sprint ability, thirty team sport athletes were randomly split into three groups, which were matched in running repeat-sprint ability (RSA, cycling RSA and 20 m shuttle run performance. Two groups then performed 15 maximal cycling repeat-sprint training sessions over 5 weeks, in either normoxia (NORM or hypoxia (HYP, while a third group acted as a control (CON. In the post-training cycling RSA test, both NORM (13.6%; p = 0.0001, and 8.6%; p = 0.001 and HYP (10.3%; p = 0.007, and 4.7%; p = 0.046 significantly improved overall mean and peak power output, respectively, whereas CON did not change (1.4%; p = 0.528, and -1.1%; p = 0.571, respectively; with only NORM demonstrating a moderate effect for improved mean and peak power output compared to CON. Running RSA demonstrated no significant between group differences; however, the mean sprint times improved significantly from pre- to post-training for CON (1.1%, NORM (1.8%, and HYP (2.3%. Finally, there were no group differences in 20 m shuttle run performance. In conclusion, ‘top-up’ training improved performance in a task-specific activity (i.e. cycling; however, there was no additional benefit of conducting this ‘top-up’ training in hypoxia, since cycle RSA improved similarly in both HYP and NORM conditions. Regardless, the ‘top-up’ training had no significant impact on running RSA, therefore the use of cycle repeat-sprint training should be discouraged for team sport athletes due to limitations in specificity.

  15. Selaginella moellendoffii telomeres: conserved and unique features in an ancient land plant lineage

    Directory of Open Access Journals (Sweden)

    Eugene V Shakirov

    2012-07-01

    Full Text Available Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendoffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S. moellendorffii and found it to consist of TTTAGGG repeats, typical of most plants. Telomere tracts in S. moellendorffii range from 1-5.5 kb, closely resembling Arabidopsis thaliana. We identified several S. moellendorffii genes encoding sequence homologues of proteins involved in telomere maintenance in other organisms, including CST complex components and the telomere-binding proteins POT1 and TRFL. Notable sequence similarities and differences were uncovered among the telomere-related genes in some of the plant lineages. Taken together, the data indicate that comparative analysis of the telomere complex in early diverging land plants such as S. moellendorffii and green algae will yield important insights into the evolution of telomeres and their protein constituents.

  16. Computel: computation of mean telomere length from whole-genome next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Lilit Nersisyan

    Full Text Available Telomeres are the ends of eukaryotic chromosomes, consisting of consecutive short repeats that protect chromosome ends from degradation. Telomeres shorten with each cell division, leading to replicative cell senescence. Deregulation of telomere length homeostasis is associated with the development of various age-related diseases and cancers. A number of experimental techniques exist for telomere length measurement; however, until recently, the absence of tools for extracting telomere lengths from high-throughput sequencing data has significantly obscured the association of telomere length with molecular processes in normal and diseased conditions. We have developed Computel, a program in R for computing mean telomere length from whole-genome next-generation sequencing data. Computel is open source, and is freely available at https://github.com/lilit-nersisyan/computel. It utilizes a short-read alignment-based approach and integrates various popular tools for sequencing data analysis. We validated it with synthetic and experimental data, and compared its performance with the previously available software. The results have shown that Computel outperforms existing software in accuracy, independence of results from sequencing conditions, stability against inherent sequencing errors, and better ability to distinguish pure telomeric sequences from interstitial telomeric repeats. By providing a highly reliable methodology for determining telomere lengths from whole-genome sequencing data, Computel should help to elucidate the role of telomeres in cellular health and disease.

  17. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication.......0-21.5). The genetic analyses suggested that telomere length was not causally associated with attendance at hospital for depression or with purchase of antidepressant medication. CONCLUSIONS: Short telomeres were not associated with depression in prospective or in causal, genetic analyses.......BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...

  18. Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants

    Science.gov (United States)

    Eisenberg, Dan T. A.; Hayes, M. Geoffrey; Kuzawa, Christopher W.

    2012-01-01

    Telomeres are repeating DNA sequences at the ends of chromosomes that protect and buffer genes from nucleotide loss as cells divide. Telomere length (TL) shortens with age in most proliferating tissues, limiting cell division and thereby contributing to senescence. However, TL increases with age in sperm, and, correspondingly, offspring of older fathers inherit longer telomeres. Using data and samples from a longitudinal study from the Philippines, we first replicate the finding that paternal age at birth is associated with longer TL in offspring (n = 2,023, P = 1.84 × 10−6). We then show that this association of paternal age with offspring TL is cumulative across multiple generations: in this sample, grandchildren of older paternal grandfathers at the birth of fathers have longer telomeres (n = 234, P = 0.038), independent of, and additive to, the association of their father’s age at birth with TL. The lengthening of telomeres predicted by each year that the father’s or grandfather’s reproduction are delayed is equal to the yearly shortening of TL seen in middle-age to elderly women in this sample, pointing to potentially important impacts on health and the pace of senescent decline in tissues and systems that are cell-replication dependent. This finding suggests a mechanism by which humans could extend late-life function as average age at reproduction is delayed within a lineage. PMID:22689985

  19. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  20. Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions.

    Science.gov (United States)

    Nera, Bernadette; Huang, Hui-Shun; Lai, Thao; Xu, Lifeng

    2015-12-07

    The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanism. Here we report that TRF2 overexpression results in replication stalling in duplex telomeric repeat tracts and the subsequent formation of telomeric ultrafine anaphase bridges (UFBs), ultimately leading to stochastic loss of telomeric sequences. These TRF2 overexpression-induced telomere deletions generate chromosome fusions resembling those detected in human cancers and in mammalian cells containing critically shortened telomeres. Therefore, our findings have uncovered a second pathway by which altered TRF2 protein levels can induce end-to-end fusions. The observations also provide mechanistic insight into the molecular basis of genomic instability in tumour cells containing significantly increased TRF2 levels.

  1. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair.

    Directory of Open Access Journals (Sweden)

    Patrick J Rochette

    2010-04-01

    Full Text Available Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere's own integrity should be of paramount importance to the cell. Ultraviolet light (UV, the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD which are both mutagenic and lethal. The human telomeric repeat unit (5'TTAGGG/CCCTAA3' is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP-based technique, immunoprecipitation of DNA damage (IPoD, to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.

  2. Telomere-binding proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Zentgraf, U

    1995-02-01

    The nucleoprotein structure of Arabidopsis thaliana telomeres was investigated. A protein specifically binding to telomeric sequences was characterized by gel mobility shift assays with synthetic oligonucleotides consisting of four 7 bp telomeric repeats of Arabidopsis (TTTAGGG) and crude nuclear protein extracts of Arabidopsis leaves. These DNA-protein binding studies revealed that the binding affinity of this telomere-binding protein to the G-rich single-strand as well as to the double-stranded telomeric DNA is much higher than to the C-rich single-strand. The molecular mass of the protein was identified by SDS-PAGE to be 67 kDa. The isoelectric points were determined to be 5.0, 4.85 and 4.7, respectively, indicating that either one protein with different modifications or three slightly different proteins have been isolated. An RNA component, possibly serving as a template for reverse transcription of a plant telomerase, does not mediate the DNA-protein contact because the DNA-protein interactions were not RNAse-sensitive.

  3. TeloPCR-seq: a high-throughput sequencing approach for telomeres

    Science.gov (United States)

    Bennett, Henrietta W.; Liu, Na; Hu, Yan; King, Megan C.

    2017-01-01

    We have developed a high-throughput sequencing approach that enables us to determine terminal telomere sequences from tens of thousands of individual Schizosaccharomyces pombe telomeres. This method provides unprecedented coverage of telomeric sequence complexity in fission yeast. S. pombe telomeres are composed of modular degenerate repeats that can be explained by variation in usage of the TER1 RNA template during reverse transcription. Taking advantage of this deep sequencing approach, we find that “like” repeat modules are highly correlated within individual telomeres. Moreover, repeat module preference varies with telomere length, suggesting that existing repeats promote the incorporation of like repeats and/or that specific conformations of the telomerase holoenzyme efficiently and/or processively add repeats of like nature. After the loss of telomerase activity, this sequencing and analysis pipeline defines a population of telomeres with altered sequence content. This approach will be adaptable to study telomeric repeats in other organisms and also to interrogate repetitive sequences throughout the genome that are inaccessible to other sequencing methods. PMID:27714790

  4. Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation.

    Directory of Open Access Journals (Sweden)

    Bhupesh K Prusty

    Full Text Available More than 95% of the human population is infected with human herpesvirus-6 (HHV-6 during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6. In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR. Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation.

  5. Telomere Q-PNA-FISH--reliable results from stochastic signals.

    Directory of Open Access Journals (Sweden)

    Andrea Cukusic Kalajzic

    Full Text Available Structural and functional analysis of telomeres is very important for understanding basic biological functions such as genome stability, cell growth control, senescence and aging. Recently, serious concerns have been raised regarding the reliability of current telomere measurement methods such as Southern blot and quantitative polymerase chain reaction. Since telomere length is associated with age related pathologies, including cardiovascular disease and cancer, both at the individual and population level, accurate interpretation of measured results is a necessity. The telomere Q-PNA-FISH technique has been widely used in these studies as well as in commercial analysis for the general population. A hallmark of telomere Q-PNA-FISH is the wide variation among telomere signals which has a major impact on obtained results. In the present study we introduce a specific mathematical and statistical analysis of sister telomere signals during cell culture senescence which enabled us to identify high regularity in their variations. This phenomenon explains the reproducibility of results observed in numerous telomere studies when the Q-PNA-FISH technique is used. In addition, we discuss the molecular mechanisms which probably underlie the observed telomere behavior.

  6. PRL-3 promotes telomere deprotection and chromosomal instability

    Science.gov (United States)

    Meng, Lin; Yang, Yongyong; Ma, Ting; Xing, Xiaofang; Feng, Qin; Song, Qian; Liu, Caiyun; Tian, Zhihua

    2017-01-01

    Abstract Phosphatase of regenerating liver (PRL-3) promotes cell invasiveness, but its role in genomic integrity remains unknown. We report here that shelterin component RAP1 mediates association between PRL-3 and TRF2. In addition, TRF2 and RAP1 assist recruitment of PRL-3 to telomeric DNA. Silencing of PRL-3 in colon cancer cells does not affect telomere integrity or chromosomal stability, but induces reactive oxygen species-dependent DNA damage response and senescence. However, overexpression of PRL-3 in colon cancer cells and primary fibroblasts promotes structural abnormalities of telomeres, telomere deprotection, DNA damage response, chromosomal instability and senescence. Furthermore, PRL-3 dissociates RAP1 and TRF2 from telomeric DNA in vitro and in cells. PRL-3-promoted telomere deprotection, DNA damage response and senescence are counteracted by disruption of PRL-3–RAP1 complex or expression of ectopic TRF2. Examination of clinical samples showed that PRL-3 status positively correlates with telomere deprotection and senescence. PRL-3 transgenic mice exhibit hallmarks of telomere deprotection and senescence and are susceptible to dextran sodium sulfate-induced colon malignancy. Our results uncover a novel role of PRL-3 in tumor development through its adverse impact on telomere homeostasis. PMID:28482095

  7. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang, E-mail: wchai@wsu.edu

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. - Highlights: • CST localizes at telomeres and ALT-associated PML bodies in ALT cells throughout the cell cycle. • CST is important for promoting telomeric DNA replication in ALT cells. • CST deficiency decreases ECTR formation and increases T-SCE. • CST deficiency impairs ALT cell proliferation and results in multinucleation.

  8. Human Rap1 modulates TRF2 attraction to telomeric DNA

    OpenAIRE

    Janoušková Eliška; Nečasová Ivona; Pavloušková Jana; Zimmermann Michal; Hluchý Milan; Marini Palomeque María Victoria; Nováková Monika; Hofr Ctirad

    2015-01-01

    More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1-TRF2 complex is a critical part of shelterin as it suppresses homology-directed...

  9. Heat shock-induced dissociation of TRF2 from telomeres does not initiate a telomere-dependent DNA damage response.

    Science.gov (United States)

    Petrova, Nadezhda V; Velichko, Artem K; Kantidze, Omar L; Razin, Sergey V

    2014-05-01

    Telomeric repeat binding factor 2 (TRF2) is a well-studied shelterin complex subunit that plays a major role in the protection of chomosome ends and the prevention of the telomere-associated DNA damage response. We show that heat shock induces the dissociation of TRF2 from telomeres in human primary and cancer cell cultures. TRF2 is not simply degraded in response to heat shock, but redistributed thoughout the nucleoplasm. This TRF2 depletion/redistribution does not initiate the DNA damage response at chomosome termini. © 2014 International Federation for Cell Biology.

  10. Chromatin structure in telomere dynamics

    Directory of Open Access Journals (Sweden)

    Alessandra eGalati

    2013-03-01

    Full Text Available The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to de-protected state and their role in telomere functions.

  11. Mathematical model of alternative mechanism of telomere length maintenance.

    Science.gov (United States)

    Kollár, Richard; Bod'ová, Katarína; Nosek, Jozef; Tomáška, L'ubomír

    2014-03-01

    Biopolymer length regulation is a complex process that involves a large number of biological, chemical, and physical subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres-nucleoprotein structures at the ends of linear chromosomes consisting of tandemly repeated DNA sequences and a specialized set of proteins. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady-state approximation. The detailed treatment of kinetic rates yields explicit formulas for expected size distributions of telomeres that demonstrate the key role played by the J factor, a quantitative measure of bending of polymers. The results are in agreement with experimental data and point out interesting phenomena: an appearance of very long telomeric circles if the total telomere density exceeds a critical value (excess mass) and a nonlinear response of the telomere size distributions to the amount of telomeric DNA in the system. The results can be of general importance for understanding dynamics of telomeres in telomerase-independent systems as this mode of telomere maintenance is similar to the situation in tumor cells lacking telomerase activity. Furthermore, due to its universality, the model may also serve as a prototype of an interaction between linear and circular DNA structures in various settings.

  12. Elevated TRF2 in advanced breast cancers with short telomeres.

    Science.gov (United States)

    Diehl, Malissa C; Idowu, Michael O; Kimmelshue, Katherine N; York, Timothy P; Jackson-Cook, Colleen K; Turner, Kristi C; Holt, Shawn E; Elmore, Lynne W

    2011-06-01

    Telomere repeat binding factor 2 (TRF2) binds directly to telomeres and preserves the structural integrity of chromosome ends. In vitro models suggest that expression of TRF2 protein increases during mammary cancer progression. However, a recent study has reported that TRF2 mRNA levels tend to be lower in clinical specimens of malignant breast tissue. Here, we conduct the first large-scale investigation to assess the levels and cellular localization of the TRF2 protein in normal, pre-malignant and malignant breast tissues. Breast tissue arrays, containing normal, ductal carcinoma in situ (DCIS) and invasive carcinoma specimens, were used to assess the expression and localization of TRF2 protein. Telomere lengths were semi-quantitatively measured using a pantelomeric peptide nucleic acid probe. A mixed effects modeling approach was used to assess the relationship between TRF2 expression and telomeric signal scores across disease states or clinical staging. We demonstrate that TRF2 is exclusively nuclear with a trend toward lower expression with increased malignancy. More case-to-case variability of TRF2 immunostaining intensity was noted amongst the invasive carcinomas than the other disease groups. Invasive carcinomas also displayed variable telomere lengths while telomeres in normal mammary epithelium were generally longer. Statistical analyses revealed that increased TRF2 immunostaining intensity in invasive carcinomas is associated with shorter telomeres and shorter telomeres correlate with a higher TNM stage. All immortalized and cancer cell lines within the array displayed strong, nuclear TRF2 expression. Our data indicate that elevated expression of TRF2 is not a frequent occurrence during the transformation of breast cancer cells in vivo, but higher levels of this telomere-binding protein may be important for protecting advanced cancer cells with critically short telomeres. Our findings also reinforce the concept that serially propagated cancer cells

  13. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... in the soils during previous incubation periods ranging from 1.5 to 8 years. Air drying and rewetting every 30th day over an incubation period of 260–500 days caused an increase in the evolution of labeled CO2 ranging from 16 to 121 per cent as compared to controls kept moist continuously. The effect...... of the treatment was least in the soil which had been incubated with the labeled material for the longest time. Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after...

  14. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres.

    Science.gov (United States)

    Cusanelli, Emilio; Romero, Carmina Angelica Perez; Chartrand, Pascal

    2013-09-26

    Elongation of a short telomere depends on the action of multiple telomerase molecules, which are visible as telomerase RNA foci or clusters associated with telomeres in yeast and mammalian cells. How several telomerase molecules act on a single short telomere is unknown. Herein, we report that the telomeric noncoding RNA TERRA is involved in the nucleation of telomerase molecules into clusters prior to their recruitment at a short telomere. We find that telomere shortening induces TERRA expression, leading to the accumulation of TERRA molecules into a nuclear focus. Simultaneous time-lapse imaging of telomerase RNA and TERRA reveals spontaneous events of telomerase nucleation on TERRA foci in early S phase, generating TERRA-telomerase clusters. This cluster is subsequently recruited to the short telomere from which TERRA transcripts originate during S phase. We propose that telomere shortening induces noncoding RNA expression to coordinate the recruitment and activity of telomerase molecules at short telomeres. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Increased brood size leads to persistent eroded telomeres

    Directory of Open Access Journals (Sweden)

    Sophie eReichert

    2014-04-01

    Full Text Available Costs of reproduction can be divided in mandatory costs coming from physiological, metabolic and anatomical changes required to sustain reproduction itself, and in investment-dependent costs that are likely to become apparent when reproductive efforts are exceeding what organisms were prepared to sustain. Interestingly, recent data showed that entering reproduction enhanced breeders’ telomere loss, but no data explored so far the impact of reproductive investment. Telomeres protect the ends of eukaryote chromosomes. Shortened telomeres were associated with shorter lifespan, telomere erosion being then proposed to powerfully quantify life’s insults. Here, we experimentally manipulated brood size in order to modify reproductive investment of adult zebra finches (Taeniopygia guttata below or beyond their (optimal starting investment and tested the consequences of our treatment on parents’ telomere dynamics. We show that an increased brood size led to a reduction in telomere lengths in both parents compared to control and to parents raising a reduced brood. This greater telomere erosion was detected in parents immediately after the reproductive event and the telomere length difference persisted up to one year later. However, we did not detect any effects of brood size manipulation on annual survival of parents kept under laboratory conditions. In addition, telomere lengths at the end of reproduction were not associated with annual survival. Altogether, although our findings highlight that fast telomere erosion can come as a cost of brood size manipulation, they provide mixed correlative support to the emerging hypothesis that telomere erosion could account for the links between high reproductive investment and longevity.

  16. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Benjamin O Farnung

    Full Text Available RNA polymerase II transcribes the physical ends of linear eukaryotic chromosomes into a variety of long non-coding RNA molecules including telomeric repeat-containing RNA (TERRA. Since TERRA discovery, advances have been made in the characterization of TERRA biogenesis and regulation; on the contrary its associated functions remain elusive. Most of the biological roles so far proposed for TERRA are indeed based on in vitro experiments carried out using short TERRA-like RNA oligonucleotides. In particular, it has been suggested that TERRA inhibits telomerase activity. We have exploited two alternative cellular systems to test whether TERRA and/or telomere transcription influence telomerase-mediated telomere elongation in human cancer cells. In cells lacking the two DNA methyltransferases DNMT1 and DNMT3b, TERRA transcription and steady-state levels are greatly increased while telomerase is able to elongate telomeres normally. Similarly, telomerase can efficiently elongate transgenic inducible telomeres whose transcription has been experimentally augmented. Our data challenge the current hypothesis that TERRA functions as a general inhibitor of telomerase and suggest that telomere length homeostasis is maintained independently of TERRA and telomere transcription.

  17. Inulin isoforms differ by repeated additions of one crystal unit cell

    Science.gov (United States)

    Cooper, Peter D.; Barclay, Thomas G.; Ginic-Markovic, Milena; Gerson, Andrea R.; Petrovsky, Nikolai

    2014-01-01

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the ‘energetic unit’ equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an ‘energetic unit’ equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain. PMID:24528745

  18. Inulin isoforms differ by repeated additions of one crystal unit cell.

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2014-03-15

    Inulin isoforms, especially delta inulin, are important biologically as immune activators and clinically as vaccine adjuvants. In exploring action mechanisms, we previously found regular increments in thermal properties of the seven-member inulin isoform series that suggested regular additions of some energetic structural unit. Because the previous isolates carried additional longer chains that masked defining ranges, these were contrasted with new isoform isolates comprising only inulin chain lengths defining that isoform. The new series began with 19 fructose units per chain (alpha-1 inulin), increasing regularly by 6 fructose units per isoform. Thus the 'energetic unit' equates to 6 fructose residues per chain. All isoforms showed indistinguishable X-ray diffraction patterns that were also identical with known inulin crystals. We conclude that an 'energetic unit' equates to one helix turn of 6 fructose units per chain as found in one unit cell of the inulin crystal. Each isoform chain comprised progressively more helix turns plus one additional fructose and glucose residues per chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms.

    Science.gov (United States)

    Wu, Yili; Mitchell, Taylor R H; Zhu, Xu-Dong

    2008-10-01

    XPF-ERCC1, a structure-specific endonuclease, is involved in nucleotide excision repair, crosslink repair and homologous recombination. XPF-ERCC1 is also found to interact with TRF2, a duplex telomeric DNA binding protein. We have previously shown that XPF-ERCC1 is required for TRF2-promoted telomere shortening. However, whether XPF-ERCC1 by itself has a role in telomere length maintenance has not been determined. Here we report that overexpression of XPF induces telomere shortening in XPF-proficient cells whereas XPF complementation suppresses telomere lengthening in XPF-deficient cells. These results suggest that XPF-ERCC1 can function as a negative mediator of telomere length maintenance. In addition, we find that introduction of wild type XPF into XPF-deficient cells leads to over 40% reduction in TRF2 association with telomeric DNA, indicating that XPF-ERCC1 negatively regulates TRF2 binding to telomeric DNA. Furthermore, we show that XPF carrying mutations in the conserved nuclease domain fails to control TRF2 association with telomeric DNA but it is competent for modulating telomere length maintenance. These results imply that XPF-ERCC1 controls TRF2 and telomere length maintenance through two distinctive mechanisms, with the former requiring its nuclease activity. Our results further imply that TRF2 association with telomeres may be deregulated in cells derived from XPF patients.

  20. Telomere maintenance in laser capture microdissection-purified Barrett's adenocarcinoma cells and effect of telomerase inhibition in vivo

    Science.gov (United States)

    Shammas, Masood A; Qazi, Aamer; Batchu, Ramesh B; Bertheau, Robert C; Wong, Jason YY; Rao, Manjula Y; Prasad, Madhu; Chanda, Diptiman; Ponnazhagan, Selvarangan; Anderson, Kenneth C; Steffes, Christopher P; Munshi, Nikhil C; De Vivo, Immaculata; Beer, David G.; Gryaznov, Sergei; Weaver, Donald W; Goyal, Raj K

    2009-01-01

    Purpose: The aims of this study were to investigate telomere function in normal and Barrett's esophageal adenocarcinoma (BEAC) cells purified by laser capture microdissection (LCM) and to evaluate the impact of telomerase inhibition in cancer cells in vitro and in vivo. Experimental Design: Epithelial cells were purified from surgically resected esophagi. Telomerase activity was measured by modified “Telomeric Repeat Amplification Protocol” and telomere length determined by Real-Time PCR assay. To evaluate the impact of telomerase inhibition, adenocarcinoma cell lines were continuously treated with a specific telomerase inhibitor (GRN163L) and live cell number determined weekly. Apoptosis was evaluated by annexin labeling and senescence by beta-galactosidase staining. For in vivo studies, SCID-mice were subcutaneously inoculated with adenocarcinoma cells and following appearance of palpable tumors, injected intraperitoneally with saline or GRN163L. Results: Telomerase activity was significantly elevated whereas telomeres were shorter in BEAC cells relative to normal esophageal epithelial cells. The treatment of adenocarcinoma cells with telomerase inhibitor, GRN163L, led to loss of telomerase activity, reduction in telomere length, and growth arrest through induction of both the senescence and apoptosis. GRN163L induced cell death could also be expedited by addition of chemotherapeutic agents, doxorubicin and ritonavir. Finally, the treatment with GRN163L led to a significant reduction in tumor volume in a subcutaneous tumor model. Conclusions: We show that telomerase activity is significantly elevated whereas telomeres are shorter in BEAC and suppression of telomerase inhibits proliferation of adenocarcinoma cells both in vitro and in vivo. PMID:18676772

  1. Telomere attrition due to infection

    National Research Council Canada - National Science Library

    Ilmonen, Petteri; Kotrschal, Alexander; Penn, Dustin J

    2008-01-01

    Telomeres--the terminal caps of chromosomes--become shorter as individuals age, and there is much interest in determining what causes telomere attrition since this process may play a role in biological aging...

  2. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  3. Telomerers rolle ved aldersbetingede sygdomme

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    Telomeres are specialized DNA structures, protecting the ends of linear chromosomes. The association between telomeres and cellular aging is well-established, and it has been shown that there is a negative correlation between telomere length and chronological age for many types of human tissue. O...

  4. The Presence of Telomere Fusion in Sporadic Colon Cancer Independently of Disease Stage, TP53/KRAS Mutation Status, Mean Telomere Length, and Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Hiromi Tanaka

    2014-10-01

    Full Text Available Defects in telomere maintenance can result in telomere fusions that likely play a causative role in carcinogenesis by promoting genomic instability. However, this proposition remains to be fully understood in human colon carcinogenesis. In the present study, the temporal sequence of telomere dysfunction dynamics was delineated by analyzing telomere fusion, telomere length, telomerase activity, hotspot mutations in KRAS or BRAF, and TP53 of tissue samples obtained from 18 colon cancer patients. Our results revealed that both the deficiency of p53 and the shortening of mean telomere length were not necessary for producing telomere fusions in colon tissue. In five cases, telomere fusion was observed even in tissue adjacent to cancerous lesions, suggesting that genomic instability is initiated in pathologically non-cancerous lesions. The extent of mean telomere attrition increased with lymph node invasiveness of tumors, implying that mean telomere shortening correlates with colon cancer progression. Telomerase activity was relatively higher in most cancer tissues containing mutation(s in KRAS or BRAF and/or TP53 compared to those without these hotspot mutations, suggesting that telomerase could become fully active at the late stage of colon cancer development. Interestingly, the majority of telomere fusion junctions in colon cancer appeared to be a chromatid-type containing chromosome 7q or 12q. In sum, this meticulous correlative study not only highlights the concept that telomere fusion is present in the early stages of cancer regardless of TP53/KRAS mutation status, mean telomere length, and telomerase activity, but also provides additional insights targeting key telomere fusion junctions which may have significant implications for colon cancer diagnoses.

  5. Telomeres and their possible role in chromosome stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.P.; Marder, B.A.; Morgan, W.F. (Univ. of California, San Francisco, CA (United States))

    1993-01-01

    The evidence to date generally supports the hypothesis that telomere capping makes chromosome fragments refractory to subsequent rejoining events, but this control may be somewhat relaxed after chromosome breakage. Cell survival requires that the fragments rejoin before metaphase. Unprotected ends such as those produced by DNA damage are subject to degradation, presumably by endogenous cellular exo- and endonucleases. Telomere repeat sequences may be added to broken chromosome ends to protect the ends from further degradation. That telomeric DNA does not always prevent rejoining raises interesting questions as to what constitutes capping, and how rapidly it occurs after DNA damage in relation to chromosome break rejoining. The prevention of degradation and control of rejoining may be mediated by telomere-specific binding proteins, especially the telomere terminal binding protein. Some of these proteins may be involved in scavenging telomeric DNA when the cell senses that chromosomal breaks have occurred. Although chromosome break rejoining is an efficient process in eukaryotic cells, some breaks are never rejoined and can result in terminal delections and chromatid and isochromatid deletions at metaphase. It is unclear why these breaks are not rejoined, but it may be due to one or more of the following: (1) chance: broken chromosomes are separated, do not approach sufficiently close to one another, and are consequently physically unable to rejoin; (2) a large number of added telomere repeat sequences indicating to the cell that the chromosome has an authentic telomere; (3) some other DNA modification event that protects DNA ends from degradation, e.g., folding back of DNA ends to form a hairpin, as has been implicated in VDJ recombination.

  6. Modified Terminal Restriction Fragment Analysis for Quantifying Telomere Length Using In-gel Hybridization.

    Science.gov (United States)

    Jenkins, Frank J; Kerr, Charles M; Fouquerel, Elise; Bovbjerg, Dana H; Opresko, Patricia L

    2017-07-10

    There are several different techniques for measuring telomere length, each with their own advantages and disadvantages. The traditional approach, Telomere Restriction Fragment (TRF) analysis, utilizes a DNA hybridization technique whereby genomic DNA samples are digested with restriction enzymes, leaving behind telomere DNA repeats and some sub-telomeric DNA. These are separated by agarose gel electrophoresis, transferred to a filter membrane and hybridized to oligonucleotide probes tagged with either chemiluminescence or radioactivity to visualize telomere restriction fragments. This approach, while requiring a larger quantity of DNA than other techniques such as PCR, can measure the telomere length distribution of a population of cells and allows measurement expressed in absolute kilobases. This manuscript demonstrates a modified DNA hybridization procedure for determining telomere length. Genomic DNA is first digested with restriction enzymes (that do not cut telomeres) and separated by agarose gel electrophoresis. The gel is then dried and the DNA is denatured and hybridized in situ to a radiolabeled oligonucleotide probe. This in situ hybridization avoids loss of telomere DNA and improves signal intensity. Following hybridization, the gels are imaged utilizing phosphor screens and the telomere length is quantified using a graphing program. This procedure was developed by the laboratories of Drs. Woodring Wright and Jerry Shay at the University of Texas Southwestern 1 , 2 . Here, we present a detailed description of this procedure, with some modifications.

  7. TERRA-Reinforced Association of LSD1 with MRE11 Promotes Processing of Uncapped Telomeres

    Directory of Open Access Journals (Sweden)

    Antonio Porro

    2014-02-01

    Full Text Available Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2, telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3′ telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres.

  8. TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres.

    Science.gov (United States)

    Porro, Antonio; Feuerhahn, Sascha; Lingner, Joachim

    2014-02-27

    Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3' telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization.

    Science.gov (United States)

    Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano

    2015-07-13

    The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    Science.gov (United States)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  11. The shelterin protein TRF2 inhibits Chk2 activity at telomeres in the absence of DNA damage.

    Science.gov (United States)

    Buscemi, Giacomo; Zannini, Laura; Fontanella, Enrico; Lecis, Daniele; Lisanti, Sofia; Delia, Domenico

    2009-05-26

    The shelterin complex [1] shapes and protects telomeric DNA from being processed as double strand breaks (DSBs) [2, 3]. Here we show that in human undamaged cells, a fraction of the kinase Chk2, a downstream target of ATM and mediator of checkpoint responses and senescence [4, 5], physically interacts with the shelterin subunit TRF2 and colocalizes with this complex at chromosome ends. This interaction, enhanced by TRF2 binding to telomeric DNA, inhibits the activation and senescence-induced function of Chk2 by a mechanism in which TRF2 binding to the N terminus of Chk2 surrounding Thr68 hinders the phosphorylation of this priming site. In response to radiation-induced DSBs, but not chromatin-remodelling agents, the telomeric Chk2-TRF2 binding dissociates in a Chk2 activity-dependent manner. Moreover, active Chk2 phosphorylates TRF2 and decreases its binding to telomeric DNA repeats, corroborating the evidences on the specific TRF2 relocalization in presence of DSBs [6]. Altogether, the capacity of TRF2 to locally repress Chk2 provides an additional level of control by which shelterin restrains the DNA damage response from an unwanted activation [6, 7] and may explain why TRF2 overexpression acts as a telomerase-independent oncogenic stimulus [8].

  12. TERRA, hnRNP A1, and DNA-PKcs Interactions at Human Telomeres.

    Science.gov (United States)

    Le, Phuong N; Maranon, David G; Altina, Noelia H; Battaglia, Christine L R; Bailey, Susan M

    2013-01-01

    Maintenance of telomeres, repetitive elements at eukaryotic chromosomal termini, and the end-capping structure and function they provide, are imperative for preserving genome integrity and stability. The discovery that telomeres are transcribed into telomere repeat containing RNA (TERRA) has revolutionized our view of this repetitive, rather unappreciated region of the genome. We have previously shown that the non-homologous end-joining, shelterin associated DNA dependent protein kinase catalytic subunit (DNA-PKcs) participates in mammalian telomeric end-capping, exclusively at telomeres created by leading-strand synthesis. Here, we explore potential roles of DNA-PKcs and its phosphorylation target heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in the localization of TERRA at human telomeres. Evaluation of co-localized foci utilizing RNA-FISH and three-dimensional (3D) reconstruction strategies provided evidence that both inhibition of DNA-PKcs kinase activity and siRNA depletion of hnRNP A1 result in accumulation of TERRA at individual telomeres; depletion of hnRNP A1 also resulted in increased frequencies of fragile telomeres. These observations are consistent with previous demonstrations that decreased levels of the nonsense RNA-mediated decay factors SMG1 and UPF1 increase TERRA at telomeres and interfere with replication of leading-strand telomeres. We propose that hTR mediated stimulation of DNA-PKcs and subsequent phosphorylation of hnRNP A1 influences the cell cycle dependent distribution of TERRA at telomeres by contributing to the removal of TERRA from telomeres, an action important for progression of S-phase, and thereby facilitating efficient telomere replication and end-capping.

  13. Break-induced telomere synthesis underlies alternative telomere maintenance.

    Science.gov (United States)

    Dilley, Robert L; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D; Wondisford, Anne R; Greenberg, Roger A

    2016-11-03

    Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.

  14. TRF1 and TRF2 differentially modulate Rad51-mediated telomeric and nontelomeric displacement loop formation in vitro.

    Science.gov (United States)

    Bower, Brian D; Griffith, Jack D

    2014-09-02

    A growing body of literature suggests that the homologous recombination/repair (HR) pathway cooperates with components of the shelterin complex to promote both telomere maintenance and nontelomeric HR. This may be due to the ability of both HR and shelterin proteins to promote strand invasion, wherein a single-stranded DNA (ssDNA) substrate base pairs with a homologous double-stranded DNA (dsDNA) template displacing a loop of ssDNA (D-loop). Rad51 recombinase catalyzes D-loop formation during HR, and telomere repeat binding factor 2 (TRF2) catalyzes the formation of a telomeric D-loop that stabilizes a looped structure in telomeric DNA (t-loop) that may facilitate telomere protection. We have characterized this functional interaction in vitro using a fluorescent D-loop assay measuring the incorporation of Cy3-labeled 90-nucleotide telomeric and nontelomeric substrates into telomeric and nontelomeric plasmid templates. We report that preincubation of a telomeric template with TRF2 inhibits the ability of Rad51 to promote telomeric D-loop formation upon preincubation with a telomeric substrate. This suggests Rad51 does not facilitate t-loop formation and suggests a mechanism whereby TRF2 can inhibit HR at telomeres. We also report a TRF2 mutant lacking the dsDNA binding domain promotes Rad51-mediated nontelomeric D-loop formation, possibly explaining how TRF2 promotes nontelomeric HR. Finally, we report telomere repeat binding factor 1 (TRF1) promotes Rad51-mediated telomeric D-loop formation, which may facilitate HR-mediated replication fork restart and explain why TRF1 is required for efficient telomere replication.

  15. Telomeres: Implications for Cancer Development

    Directory of Open Access Journals (Sweden)

    Aina Bernal

    2018-01-01

    Full Text Available Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR. This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.

  16. Worldwide genetic structure in 37 genes important in telomere biology

    Science.gov (United States)

    Mirabello, L; Yeager, M; Chowdhury, S; Qi, L; Deng, X; Wang, Z; Hutchinson, A; Savage, S A

    2012-01-01

    Telomeres form the ends of eukaryotic chromosomes and are vital in maintaining genetic integrity. Telomere dysfunction is associated with cancer and several chronic diseases. Patterns of genetic variation across individuals can provide keys to further understanding the evolutionary history of genes. We investigated patterns of differentiation and population structure of 37 telomere maintenance genes among 53 worldwide populations. Data from 898 unrelated individuals were obtained from the genome-wide scan of the Human Genome Diversity Panel (HGDP) and from 270 unrelated individuals from the International HapMap Project at 716 single-nucleotide polymorphism (SNP) loci. We additionally compared this gene set to HGDP data at 1396 SNPs in 174 innate immunity genes. The majority of the telomere biology genes had low to moderate haplotype diversity (45–85%), high ancestral allele frequencies (>60%) and low differentiation (FST HapMap 3. TERT had higher than expected levels of haplotype diversity, likely attributable to a lack of linkage disequilibrium, and a potential cancer-associated SNP in this gene, rs2736100, varied substantially in genotype frequency across major continental regions. It is possible that the genes under selection could influence telomere biology diseases. As a group, there appears to be less diversity and differentiation in telomere biology genes than in genes with different functions, possibly due to their critical role in telomere maintenance and chromosomal stability. PMID:21731055

  17. The relationship between telomere length and beekeeping among Malaysians.

    Science.gov (United States)

    Nasir, Nurul Fatihah Mohamad; Kannan, Thirumulu Ponnuraj; Sulaiman, Siti Amrah; Shamsuddin, Shaharum; Azlina, Ahmad; Stangaciu, Stefan

    2015-06-01

    The belief that beekeepers live longer than anyone else is present since ages. However, no research has been done to explore the longevity of life in beekeepers. Here, we investigated the telomere length in 30 male beekeepers and 30 male non-beekeepers and associated them with the longevity of life using Southern analysis of terminal restriction fragments (TRFs) generated by Hinf I/Rsa I digestion of human genomic DNA using TeloTAGGG Telomere Length Assay. Interestingly, we found that the telomere length of male beekeepers was significantly longer than those of male non-beekeepers with a p value of less than 0.05, suggesting that beekeepers may have longer life compared to non-beekeepers. We further found that the consumption of bee products for a long period and frequent consumption of bee products per day are associated with telomere length. An increase of year in consuming bee products is associated with a mean increase in telomere length of 0.258 kbp. In addition, an increase in frequency of eating bee products per day was also associated with a mean increase of 2.66 kbp in telomere length. These results suggested that bee products might play some roles in telomere length maintenance.

  18. Observation and Quantification of Telomere and Repetitive Sequences Using Fluorescence In Situ Hybridization (FISH) with PNA Probes in Caenorhabditis elegans.

    Science.gov (United States)

    Seo, Beomseok; Lee, Junho

    2016-08-04

    Telomere is a ribonucleoprotein structure that protects chromosomal ends from aberrant fusion and degradation. Telomere length is maintained by telomerase or an alternative pathway, known as alternative lengthening of telomeres (ALT)(1). Recently, C. elegans has emerged as a multicellular model organism for the study of telomere and ALT(2). Visualization of repetitive sequences in the genome is critical in understanding the biology of telomeres. While telomere length can be measured by telomere restriction fragment assay or quantitative PCR, these methods only provide the averaged telomere length. On the contrary, fluorescence in situ hybridization (FISH) can provide the information of the individual telomeres in cells. Here, we provide protocols and representative results of the method to determine telomere length of C. elegans by fluorescent in situ hybridization. This method provides a simple, but powerful, in situ procedure that does not cause noticeable damage to morphology. By using fluorescently labeled peptide nucleic acid (PNA) and digoxigenin-dUTP-labeled probe, we were able to visualize two different repetitive sequences: telomere repeats and template of ALT (TALT) in C. elegans embryos and gonads.

  19. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles

    OpenAIRE

    Tichy, Elisia D.; David K. Sidibe; Tierney, Matthew T.; Michael J. Stec; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F. Brad; Sacco, Alessandra; Mourkioti, Foteini

    2017-01-01

    Summary Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or hu...

  20. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Ricardo Pariona-Llanos

    Full Text Available Glyceraldehyde 3-phosphate dehydrogenase (GAPDH is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH. We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.

  1. Comparative analysis of whole genome sequencing-based telomere length measurement techniques.

    Science.gov (United States)

    Lee, Michael; Napier, Christine E; Yang, Sile F; Arthur, Jonathan W; Reddel, Roger R; Pickett, Hilda A

    2017-02-01

    Telomeres are regions of repetitive DNA at the ends of human chromosomes that function to maintain the integrity of the genome. Telomere attrition is associated with cellular ageing, whilst telomere maintenance is a prerequisite for malignant transformation. Whole genome sequencing (WGS) captures sequence information from the entire genome, including the telomeres, and is increasingly being applied in research and in the clinic. Several bioinformatics tools have been designed to determine telomere content and length from WGS data, and include Motif_counter, TelSeq, Computel, qMotif, and Telomerecat. These tools utilise different approaches to identify, quantify and normalise telomeric reads; however, it is not known how they compare to one another. Here we describe the details and utility of each tool, and directly compare WGS telomere length output with laboratory-based telomere length measurements. In addition, we evaluate the accessibility, practicality, speed, and additional features of each tool. Each tool was tested using a range of telomere read extraction criteria, to determine the optimal parameters for the specific WGS read length. The aim of this article is to improve the accessibility of WGS telomere length measurement tools, which have the potential to be applied to WGS cohorts for clinical as well as research benefit. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. PARP1 is a TRF2-associated poly(ADP-ribose) polymerase and protects eroded telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Marla V [ORNL; Wu, Jun [ORNL; Wang, Yisong [ORNL; Liu, Yie [ORNL

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  3. PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yie [ORNL; Wu, Jun [ORNL; Schreiber, Valerie [Universite Louis Pasteur, France; Dunlap, John [University of Tennessee, Knoxville (UTK); Dantzer, Francoise [Universite Louis Pasteur, France; Wang, Yisong [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.

  4. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings.

    Directory of Open Access Journals (Sweden)

    Owen M Wolkowitz

    2011-03-01

    Full Text Available Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of "accelerated aging" in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD, whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation.Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio and inflammation (IL-6. Analyses were controlled for age and sex.The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05. Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration was 281 base pairs shorter than that in controls (p<0.05, corresponding to approximately seven years of "accelerated cell aging." Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01 and in the controls (p<0.05 and with inflammation in the depressed subjects (p<0.05.These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening

  5. PIF1 disruption or NBS1 hypomorphism does not affect chromosome healing or fusion resulting from double-strand breaks near telomeres in murine embryonic stem cells

    OpenAIRE

    Reynolds, Gloria E.; Gao, Qing; Miller, Douglas; Snow, Bryan E.; Harrington, Lea A.; Murnane, John P.

    2011-01-01

    Telomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells. PIF1 was investigated because the PIF1 homolog in S. cerevisiae inhibits chromosome healing, as shown by a 1000-fold increase in...

  6. Telomere-Centromere-Driven Genomic Instability Contributes to Karyotype Evolution in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Amanda Gonçalves dos Santos Silva

    2010-01-01

    Full Text Available Aneuploidy and chromosomal instability (CIN are hallmarks of most solid tumors. These alterations may result from inaccurate chromosomal segregation during mitosis, which can occur through several mechanisms including defective telomere metabolism, centrosome amplification, dysfunctional centromeres, and/or defective spindle checkpoint control. In this work, we used an in vitro murine melanoma model that uses a cellular adhesion blockade as a transforming factor to characterize telomeric and centromeric alterations that accompany melanocyte transformation. To study the timing of the occurrence of telomere shortening in this transformation model, we analyzed the profile of telomere length by quantitative fluorescent in situ hybridization and found that telomere length significantly decreased as additional rounds of cell adhesion blockages were performed. Together with it, an increase in telomere-free ends and complex karyotypic aberrations were also found, which include Robertsonian fusions in 100% of metaphases of the metastatic melanoma cells. These findings are in agreement with the idea that telomere length abnormalities seem to be one of the earliest genetic alterations acquired in the multistep process of malignant transformation and that telomere abnormalities result in telomere aggregation, breakage-bridge-fusion cycles, and CIN. Another remarkable feature of this model is the abundance of centromeric instability manifested as centromere fragments and centromeric fusions. Taken together, our results illustrate for this melanoma model CIN with a structural signature of centromere breakage and telomeric loss.

  7. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    Science.gov (United States)

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  8. Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance.

    Science.gov (United States)

    Walker, John R; Zhu, Xu-Dong

    2012-06-01

    Telomeres, heterochromatic structures, found at the ends of linear eukaryotic chromosomes, function to protect natural chromosome ends from nucleolytic attack. Human telomeric DNA is bound by a telomere-specific six-subunit protein complex, termed shelterin/telosome. The shelterin subunits TRF1 and TRF2 bind in a sequence-specific manner to double-stranded telomeric DNA, providing a vital platform for recruitment of additional shelterin proteins as well as non-shelterin factors crucial for the maintenance of telomere length and structure. Both TRF1 and TRF2 are engaged in multiple roles at telomeres including telomere protection, telomere replication, sister telomere resolution and telomere length maintenance. Regulation of TRF1 and TRF2 in these various processes is controlled by post-translational modifications, at times in a cell-cycle-dependent manner, affecting key functions such as DNA binding, dimerization, localization, degradation and interactions with other proteins. Here we review the post-translational modifications of TRF1 and TRF2 and discuss the mechanisms by which these modifications contribute to the function of these two proteins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.

    Science.gov (United States)

    Flynn, Rachel Litman; Centore, Richard C; O'Sullivan, Roderick J; Rai, Rekha; Tse, Alice; Songyang, Zhou; Chang, Sandy; Karlseder, Jan; Zou, Lee

    2011-03-24

    Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.

  10. Predictors of telomere content in dragon lizards

    Science.gov (United States)

    Ballen, Cissy; Healey, Mo; Wilson, Mark; Tobler, Michael; Olsson, Mats

    2012-08-01

    Telomeres shorten as a consequence of DNA replication, in particular in cells with low production of telomerase and perhaps in response to physiological stress from exposure to reactive oxygen species, such as superoxide. This process of telomere attrition is countered by innate antioxidation, such as via the production of superoxide dismutase. We studied the inheritance of telomere length in the Australian painted dragon lizard ( Ctenophorus pictus) and the extent to which telomere length covaries with mass-corrected maternal reproductive investment, which reflects the level of circulating yolk precursor and antioxidant, vitellogenin. Our predictors of offspring telomere length explained 72 % of telomere variation (including interstitial telomeres if such are present). Maternal telomere length and reproductive investment were positively influencing offspring telomere length in our analyses, whereas flow cytometry-estimated superoxide level was negatively impacting offspring telomere length. We suggest that the effects of superoxide on hatchling telomere shortening may be partly balanced by transgenerational effects of vitellogenin antioxidation.

  11. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm.

    Directory of Open Access Journals (Sweden)

    Masayuki Kimura

    2008-02-01

    Full Text Available Leukocyte telomere length (LTL is a complex genetic trait. It shortens with age and is associated with a host of aging-related disorders. Recent studies have observed that offspring of older fathers have longer LTLs. We explored the relation between paternal age and offspring's LTLs in 4 different cohorts. Moreover, we examined the potential cause of the paternal age on offspring's LTL by delineating telomere parameters in sperm donors. We measured LTL by Southern blots in Caucasian men and women (n=3365, aged 18-94 years, from the Offspring of the Framingham Heart Study (Framingham Offspring, the NHLBI Family Heart Study (NHLBI-Heart, the Longitudinal Study of Aging Danish Twins (Danish Twins, and the UK Adult Twin Registry (UK Twins. Using Southern blots, Q-FISH, and flow-FISH, we also measured telomere parameters in sperm from 46 young (50 years donors. Paternal age had an independent effect, expressed by a longer LTL in males of the Framingham Offspring and Danish Twins, males and females of the NHLBI-Heart, and females of UK Twins. For every additional year of paternal age, LTL in offspring increased at a magnitude ranging from half to more than twice of the annual attrition in LTL with age. Moreover, sperm telomere length analyses were compatible with the emergence in older men of a subset of sperm with elongated telomeres. Paternal age exerts a considerable effect on the offspring's LTL, a phenomenon which might relate to telomere elongation in sperm from older men. The implications of this effect deserve detailed study.

  12. The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures

    OpenAIRE

    Pedroso, Ilene M.; Hayward, William; Fletcher, Terace M.

    2009-01-01

    The sequence of human telomeric DNA consists of tandem repeats of 5?-d(TTAGGG)-3?. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by G-quadruplex structures. We analyzed the influence of the arginine-rich, TRF2 N-terminus (TRF2B), a...

  13. Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, Marie-Noëlle; Churikov, Dmitri; Géli, Vincent

    2016-11-01

    Replicative senescence is triggered by short unprotected telomeres that arise in the absence of telomerase. In addition, telomeres are known as difficult regions to replicate due to their repetitive G-rich sequence prone to secondary structures and tightly bound non-histone proteins. Here we review accumulating evidence that telomerase inactivation in yeast immediately unmasks the problems associated with replication stress at telomeres. Early after telomerase inactivation, yeast cells undergo successive rounds of stochastic DNA damages and become dependent on recombination for viability long before the bulk of telomeres are getting critically short. The switch from telomerase to recombination to repair replication stress-induced damage at telomeres creates telomere instability, which may drive further genomic alterations and prepare the ground for telomerase-independent immortalization observed in yeast survivors and in 15% of human cancer. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Telomere Transcripts Target Telomerase in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theresa Kreilmeier

    2016-08-01

    Full Text Available Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA, were identified as blocking telomerase activity (TA, a telomere maintenance mechanism (TMM, in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV and human RNase P RNA H1 (hH1 promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%–3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3–2.6 fold increase in TERRA levels, and a decrease in TA of 25%–58%. Dominant-negative or small hairpin RNA (shRNA viral expression against human telomerase reverse transcriptase (hTERT results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase.

  15. Age, sex, and telomere dynamics in a long-lived seabird with male-biased parental care.

    Directory of Open Access Journals (Sweden)

    Rebecca C Young

    Full Text Available The examination of telomere dynamics is a recent technique in ecology for assessing physiological state and age-related traits from individuals of unknown age. Telomeres shorten with age in most species and are expected to reflect physiological state, reproductive investment, and chronological age. Loss of telomere length is used as an indicator of biological aging, as this detrimental deterioration is associated with lowered survival. Lifespan dimorphism and more rapid senescence in the larger, shorter-lived sex are predicted in species with sexual size dimorphism, however, little is known about the effects of behavioral dimorphism on senescence and life history traits in species with sexual monomorphism. Here we compare telomere dynamics of thick-billed murres (Urialomvia, a species with male-biased parental care, in two ways: 1 cross-sectionally in birds of known-age (0-28 years from one colony and 2 longitudinally in birds from four colonies. Telomere dynamics are compared using three measures: the telomere restriction fragment (TRF, a lower window of TRF (TOE, and qPCR. All showed age-related shortening of telomeres, but the TRF measure also indicated that adult female murres have shorter telomere length than adult males, consistent with sex-specific patterns of ageing. Adult males had longer telomeres than adult females on all colonies examined, but chick telomere length did not differ by sex. Additionally, inter-annual telomere changes may be related to environmental conditions; birds from a potentially low quality colony lost telomeres, while those at more hospitable colonies maintained telomere length. We conclude that sex-specific patterns of telomere loss exist in the sexually monomorphic thick-billed murre but are likely to occur between fledging and recruitment. Longer telomeres in males may be related to their homogamous sex chromosomes (ZZ or to selection for longer life in the care-giving sex. Environmental conditions appeared to

  16. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres.

    Directory of Open Access Journals (Sweden)

    Angela Chan

    2008-10-01

    Full Text Available The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1 and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1A, tlc1-SD, and tlc1-BD, Est2p telomere binding was normal in G1/early S phase but reduced to about 40-50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2A, Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.

  17. Growing old, yet staying young: The role of telomeres in bats' exceptional longevity.

    Science.gov (United States)

    Foley, Nicole M; Hughes, Graham M; Huang, Zixia; Clarke, Michael; Jebb, David; Whelan, Conor V; Petit, Eric J; Touzalin, Frédéric; Farcy, Olivier; Jones, Gareth; Ransome, Roger D; Kacprzyk, Joanna; O'Connell, Mary J; Kerth, Gerald; Rebelo, Hugo; Rodrigues, Luísa; Puechmaille, Sébastien J; Teeling, Emma C

    2018-02-01

    Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telomeres shorten. Using >60 years of cumulative mark-recapture field data, we show that telomeres shorten with age in Rhinolophus ferrumequinum and Miniopterus schreibersii , but not in the bat genus with greatest longevity, Myotis . As in humans, telomerase is not expressed in Myotis myotis blood or fibroblasts. Selection tests on telomere maintenance genes show that ATM and SETX , which repair and prevent DNA damage, potentially mediate telomere dynamics in Myotis bats. Twenty-one telomere maintenance genes are differentially expressed in Myotis , of which 14 are enriched for DNA repair, and 5 for alternative telomere-lengthening mechanisms. We demonstrate how telomeres, telomerase, and DNA repair genes have contributed to the evolution of exceptional longevity in Myotis bats, advancing our understanding of healthy aging.

  18. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs.

    Science.gov (United States)

    Kim, Hyeung; Lee, Ok-Hee; Xin, Huawei; Chen, Liuh-Yow; Qin, Jun; Chae, Heekyung Kate; Lin, Shiaw-Yih; Safari, Amin; Liu, Dan; Songyang, Zhou

    2009-04-01

    In mammalian cells, the telomeric repeat binding factor (TRF) homology (TRFH) domain-containing telomeric proteins TRF1 and TRF2 associate with a collection of molecules necessary for telomere maintenance and cell-cycle progression. However, the specificity and the mechanisms by which TRF2 communicates with different signaling pathways remain largely unknown. Using oriented peptide libraries, we demonstrate that the TRFH domain of human TRF2 recognizes [Y/F]XL peptides with the consensus motif YYHKYRLSPL. Disrupting the interactions between the TRF2 TRFH domain and its targets resulted in telomeric DNA-damage responses. Furthermore, our genome-wide target analysis revealed phosphatase nuclear targeting subunit (PNUTS) and microcephalin 1 (MCPH1) as previously unreported telomere-associated proteins that directly interact with TRF2 via the [Y/F]XL motif. PNUTS and MCPH1 can regulate telomere length and the telomeric DNA-damage response, respectively. Our findings indicate that an array of TRF2 molecules functions as a protein hub and regulates telomeres by recruiting different signaling molecules via a linear sequence code.

  19. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  20. Rad59-facilitated acquisition of Y' elements by short telomeres delays the onset of senescence.

    Directory of Open Access Journals (Sweden)

    Dmitri Churikov

    2014-11-01

    Full Text Available Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1-3-like tracts present between subtelomeric X and Y' elements, which is followed by BIR-mediated non-reciprocal translocation of Y' element and terminal TG1-3 repeats from the donor end onto the shortened telomere. We found that choice of the Y' donor was not random, since both engineered telomere VII-L and native VI-R acquired Y' elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y' translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1-3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y' translocation events taking place during presenescence are genetically separable from Rad51-dependent Y' amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y' translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation.

  1. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Seon Rang [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Park, Jeong-Eun; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Jeong, Jaemin [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Chang-Mo; Yun, Hyun Jin [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Yun, Mi Yong; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Park, In-Chul; Hong, Sung Hee; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kim, Haekwon [Department of Biotechnology, Seoul Woman' s University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Sang Hoon [Department of Biology, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Gil Hong [Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{sub 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.

  2. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage.

    Science.gov (United States)

    Ye, Jing; Lenain, Christelle; Bauwens, Serge; Rizzo, Angela; Saint-Léger, Adelaïde; Poulet, Anaïs; Benarroch, Delphine; Magdinier, Frédérique; Morere, Julia; Amiard, Simon; Verhoeyen, Els; Britton, Sébastien; Calsou, Patrick; Salles, Bernard; Bizard, Anna; Nadal, Marc; Salvati, Erica; Sabatier, Laure; Wu, Yunlin; Biroccio, Annamaria; Londoño-Vallejo, Arturo; Giraud-Panis, Marie-Josèphe; Gilson, Eric

    2010-07-23

    Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres. Copyright 2010 Elsevier Inc. All rights reserved.

  3. E-type cyclins modulate telomere integrity in mammalian male meiosis.

    Science.gov (United States)

    Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J

    2016-06-01

    We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.

  4. Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Weiguang [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China); Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou (China); Wu, Qinqin [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China); Department of Radiation Oncology, Changzhou Tumor Hospital, Soochow University, Changzhou (China); Zhou, Fuxiang; Xie, Conghua [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China); Wu, Changping, E-mail: wcpzlk@163.com [Department of Oncology, The Third Affiliated Hospital, Soochow University, Changzhou (China); Zhou, Yunfeng, E-mail: yfzhouwhu@163.com [Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan (China)

    2014-03-07

    Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.

  5. Telomere longitudinal shortening as a biomarker for dementia status of adults with Down syndrome.

    Science.gov (United States)

    Jenkins, Edmund C; Ye, Lingling; Krinsky-McHale, Sharon J; Zigman, Warren B; Schupf, Nicole; Silverman, Wayne P

    2016-03-01

    Previous studies have suggested that Alzheimer's disease (AD) causes an accelerated shortening of telomeres, the ends of chromosomes consisting of highly conserved TTAGGG repeats that, because of unidirectional 5'-3' DNA synthesis, lose end point material with each cell division. Our own previous work suggested that telomere length of T-lymphocytes might be a remarkably accurate biomarker for "mild cognitive impairment" in adults with Down syndrome (MCI-DS), a population at dramatically high risk for AD. To verify that the progression of cognitive and functional losses due to AD produced this observed telomere shortening, we have now examined sequential changes in telomere length in five individuals with Down syndrome (3F, 2M) as they transitioned from preclinical AD to MCI-DS (N = 4) or dementia (N = 1). As in our previous studies, we used PNA (peptide nucleic acid) probes for telomeres and the chromosome 2 centromere (as an "internal standard" expected to be unaffected by aging or dementia status), with samples from the same individuals now collected prior to and following development of MCI-DS or dementia. Consistent shortening of telomere length was observed over time. Further comparisons with our previous cross-sectional findings indicated that telomere lengths prior to clinical decline were similar to those of other adults with Down syndrome (DS) who have not experienced clinical decline while telomere lengths following transition to MCI-DS or dementia in the current study were comparable to those of other adults with DS who have developed MCI-DS or dementia. Taken together, findings indicate that telomere length has significant promise as a biomarker of clinical progression of AD for adults with DS, and further longitudinal studies of a larger sample of individuals with DS are clearly warranted to validate these findings and determine if and how factors affecting AD risk also influence these measures of telomere length. © 2015 Wiley Periodicals, Inc.

  6. Inheritance of telomere length in a bird.

    Directory of Open Access Journals (Sweden)

    Thorsten Horn

    Full Text Available Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus, in which females are the heterogametic sex (ZW and males are the homogametic (ZZ sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length.

  7. Long Telomeres Bypass the Requirement for Telomere Maintenance in Human Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael A.S. Taboski

    2012-02-01

    Full Text Available Despite the importance of telomere maintenance in cancer cell survival via the elongation of telomeres by telomerase reverse transcriptase (TERT or alternative lengthening of telomeres (ALT, it had not been tested directly whether telomere maintenance is dispensable for human tumorigenesis. We engineered human tumor cells containing loxP-flanked hTERT to enable extensive telomere elongation prior to complete hTERT excision. Despite unabated telomere erosion, hTERT-excised cells formed tumors in mice and proliferated in vitro for up to 1 year. Telomerase reactivation or ALT was not observed, and the eventual loss of telomeric signal coincided with loss of tumorigenic potential and cell viability. Crisis was averted via the reintroduction of active but not inactive hTERT. Thus, telomere maintenance is dispensable for human tumorigenesis when telomere reserves are long. Yet, despite telomere instability and the presence of oncogenic RAS, human tumors remain susceptible to crisis induced by critically short telomeres.

  8. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost.

    Science.gov (United States)

    Fang, Wen; Delapp, Rossane C; Kosson, David S; van der Sloot, Hans A; Liu, Jianguo

    2017-02-01

    Leaching assessment procedures have been used to determine the leachability of heavy metals as input for evaluating the risk from sewage sludge compost land application. However, relatively little attention has been paid to understanding leaching from soils with repeated application of sewage sludge compost with elevated levels of heavy metals. In this paper, leaching assessment is extended to evaluate the potential leaching of heavy metals during repetitive application of composted sewage sludge to soils. Four cycling of compost additions and percolation leaching were conducted to investigate how leaching behavior of heavy metals changed with repeated additions of compost. Results showed that repetitive additions of compost to soil significantly increased the content of organic matter, which favored the formation of reducing condition due to improved microbial activities and oxygen consumption. Establishment of reducing conditions can enhance the leaching concentrations of As by approximately 1 order of magnitude, especially for the soil rich in organic matter. For Cd, Cr, Cu, and Pb, repeated additions of compost will cause accumulation in total contents but not enhancement in leaching concentrations. The infiltration following compost additions will leach out the mobile fraction and the residual fraction might not release in the next cycling of compost addition and infiltration. The cumulative release of Cd, Cr, Cu, and Pb accounted for less than 5% of the total contents during four times of compost applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  10. Paired assessment of liver telomere lengths in hepatocellular cancer is a reliable predictor of disease persistence.

    Science.gov (United States)

    Feng, Wendu; Yu, Decai; Li, Binghua; Luo, Ou-Yang; Xu, Tiancheng; Cao, Yajuan; Ding, Yitao

    2017-04-30

    In the present study, we used a small series of highly defined patients, where we had matched timed peripheral blood samples (PBS), as well as paired liver biopsies obtained during collection of blood samples from patients with diagnosed hepatocellular carcinoma (HCC) and compared the correlation between the changes of telomere lengths in these defined samples. Patients included had either HCC alone or in conjunction with either pre-existing hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. PCR-based assay incorporating primers to the telomeric hexamer repeats to polymerize and detect telomeric DNA was used. The average telomere length for each independent assessment was measured by seeing the differences in the intensity of the sample's telomere signal (T) to the signal from a single-copy gene (S-, β-globin) to estimate the standard ratio. Our results provide the first convincing evidence that PBS may be utilized to assay telomere shortening as a predictor for disease persistence in HCC resulting after HBV or HCV infection, but not in non-infectious cause-stimulated HCC. These findings provide incipient opportunity to develop telomere length assessment as a biomarker tool for prediction of HCC in patients with HBV or HCV infection, as well as to gauge responses to chemotherapy and other treatment modalities. © 2017 The Author(s).

  11. The topoisomerase II catalytic inhibitor ICRF-193 preferentially targets telomeres that are capped by TRF2.

    Science.gov (United States)

    Chen, Lianxiang; Zhu, Xiaowei; Zou, Yaru; Xing, Jun; Gilson, Eric; Lu, Yiming; Ye, Jing

    2015-03-01

    The increased level of chromosome instability in cancer cells is not only a driving force for oncogenesis but also can be the Achille's heel of the disease since many chemotherapies kill cells by inducing a nontolerable rate of DNA damage. A wealth of published evidence showed that telomere stability can be more affected than the bulk of the genome by several conventional antineoplastic drugs. In the present study, HT1080 cell lines compromised for either telomere repeats binding factor 2 (TRF2) or POT1 were treated with ICRF-193 (3 μM, 24 h) or bleomycin (1 μM, 24 h). DNA damage was assayed by combining telomeric DNA staining of a (CCCTAA)n PNA probe with immunofluorescence of 53BP1 to score the rate of telomere colocalization with 53BP1 foci. We found that ICRF-193, but not bleomycin, leads to DNA damage preferentially at telomeres, which can be rescued by TRF2 inhibition. POT1 inhibition exacerbates telomere dysfunction induced by ICRF-193. Thus, ICRF-193 induces damage at telomeres properly capped by TRF2 but not by POT1. These findings are expected to broaden our view on the mechanism by which conventional therapeutic molecules act to eliminate cancer cells and how to use TRF2 and POT1 levels as surrogate markers for anti-topoisomerase II sensitivity. Copyright © 2015 the American Physiological Society.

  12. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation

    Directory of Open Access Journals (Sweden)

    Hyojung Kim

    2017-10-01

    Full Text Available Aging is considered the major risk factor for neurodegenerative diseases including Parkinson’s disease (PD. Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD.

  13. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation.

    Science.gov (United States)

    Kim, Hyojung; Ham, Sangwoo; Jo, Minkyung; Lee, Gum Hwa; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong

    2017-10-03

    Aging is considered the major risk factor for neurodegenerative diseases including Parkinson's disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD.

  14. Dynamics of protein binding to telomeres in living cells: implications for telomere structure and function.

    NARCIS (Netherlands)

    K.A. Mattern (Karin); S.J. Swiggers (Susan); A.L. Nigg (Alex); B. Löwenberg (Bob); A.B. Houtsmuller (Adriaan); J.M. Zijlmans (Mark)

    2004-01-01

    textabstractTelomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is

  15. The telomere binding protein TRF2 induces chromatin compaction.

    Science.gov (United States)

    Baker, Asmaa M; Fu, Qiang; Hayward, William; Victoria, Samuel; Pedroso, Ilene M; Lindsay, Stuart M; Fletcher, Terace M

    2011-04-19

    Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  16. Telomere homeostasis in IUGR placentas - A review.

    Science.gov (United States)

    Biron-Shental, Tal; Sadeh-Mestechkin, Dana; Amiel, Aliza

    2016-03-01

    Telomeres are nucleoprotein structures located at the termini of chromosomes. They are essential for chromosome stability. Telomeres become shorter due to mitotic cycles and environmental factors. When telomeres are shortened and therefore dysfunctional, cellular senescence occurs and organ dysfunction might develop. During pregnancy, fetal growth restriction secondary to placental insufficiency has been linked to impaired telomere homeostasis in which telomeres are shorter, telomerase is decreased, and compensatory mechanisms of telomere capture are enhanced. These characteristics, along with increased signs of senescence, indicate telomere dysfunction in trophoblasts from placentas affected by intrauterine growth restriction (IUGR). This review summarizes the information currently available regarding telomere homeostasis in trophoblasts from human pregnancies affected by IUGR. Improved understanding of placental physiology might help in the development of treatment options for fetuses with IUGR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Engineered telomere degradation models dyskeratosis congenita

    National Research Council Canada - National Science Library

    Hockemeyer, Dirk; Palm, Wilhelm; Wang, Richard C; Couto, Suzana S; de Lange, Titia

    2008-01-01

    .... However, mice with extensively shortened telomeres due to telomerase deficiency do not develop the characteristics of DC, raising questions about the etiology of DC and/or mouse models for human telomere dysfunction...

  18. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes

    Science.gov (United States)

    Gladyshev, Eugene A.; Arkhipova, Irina R.

    2007-01-01

    The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group II introns. Here we report that a subset of PLEs found in bdelloid rotifers, basidiomycete fungi, stramenopiles, and plants, representing four different eukaryotic kingdoms, lack the endonuclease domain and are located at telomeres. The 5′ truncated ends of these elements are telomere-oriented and typically capped by species-specific telomeric repeats. Most of them also carry several shorter stretches of telomeric repeats at or near their 3′ ends, which could facilitate utilization of the telomeric G-rich 3′ overhangs to prime reverse transcription. Many of these telomere-associated PLEs occupy a basal phylogenetic position close to the point of divergence from the telomerase-PLE common ancestor and may descend from the missing link between early eukaryotic retroelements and present-day telomerases. PMID:17483479

  19. Getting in (and out of the loop: regulating higher order telomere structures

    Directory of Open Access Journals (Sweden)

    Sarah eLuke-Glaser

    2012-11-01

    Full Text Available The DNA at the ends of linear chromosomes (the telomere folds back onto itself and forms an intramolecular lariat-like structure. Although the telomere loop has been implicated in the protection of chromosome ends from nuclease-mediated resection and unscheduled DNA repair activities, it potentially poses an obstacle to the DNA replication machinery during S phase. Therefore, the coordinated regulation of telomere loop formation, maintenance and resolution is required in order to establish a balance between protecting the chromosome ends and promoting their duplication prior to cell division. Until recently, the only factor know to influence telomere looping in human cells was TRF2, a component of the shelterin complex. Recent work in yeast and mouse cells has uncovered additional regulatory factors that affect the loop structure at telomeres. In the following perspective we will outline what is known about telomere looping and highlight the latest results regarding the regulation of this chromosome end structure. We will speculate about how the manipulation of the telomere loop may have therapeutic implications in terms of diseases associated with telomere dysfunction and uncontrolled proliferation.

  20. Increased chemosensitivity of paclitaxel by telomeric fusion-induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Seon Rang; Juhn, Kyoung Mi; Park, Jeong Eun; Ju, Yeun Jin; Yun, Mi Yong; Lee, Kee Ho [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Gil Hong; Kim, Joon [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    A telomere is a region of repetitive DNA at the end of chromosomes. They protect a cell's chromosomes from fusing with each other or rearranging and so cells are normally destroyed when their telomeres are consumed. Most normal somatic cells lose telomeric repeats after each cell division. Telomeric shortening in humans can induce replicative senescence which blocks cell division. This mechanism appears to prevent genomic instability by limiting the number of cell divisions. Telomerase is an attractive molecular target, since its activity has been found in more than 85% of human cancers. Combination therapy with chemotherapeutic agent is superior to single in overall response rate and progression free survival. In this study, we showed that telomerase null cells are more hypersensitive by paclitaxel treatment than at wild type cells.

  1. Photocrosslinking of human telomeric G-quadruplex loops by anti cyclobutane thymine dimer formation.

    Science.gov (United States)

    Su, Dian G T; Fang, Huafeng; Gross, Michael L; Taylor, John-Stephen A

    2009-08-04

    The unusual structural forms of telomere DNA, which protect the ends of chromosomes during replication, may render it vulnerable to unprecedented photodamage, possibly involving nonadjacent bases that are made proximate by folding. The G-quadruplex for the human telomere sequence consisting of a repeating d(TTAGGG) is one unusual form. Tel22, d[AGGG(TTAGGG)(3)], forms a basket structure in the presence of Na(+) and may form multiple equilibrating structures in the presence of K(+) with hybrid-type structures predominating. UVB irradiation of d[AGGG(TTAGGG)(3)] in the presence of Na(+) results in a cis,syn thymine dimer between two adjacent Ts in a TTA loop and a mixture of nonadjacent anti thymine dimers between various loops. Irradiation in the presence of K(+), however, produces, in addition to these same products, a large amount of specific anti thymine dimers formed between either T in loop 1 and the central T in loop 3. These latter species were not observed in the presence of Na(+). Interloop-specific anti thymine dimers are incompatible with hybrid-type structures, but could arise from a chair or basket-type structure or from triplex intermediates involved in interconverting these structures. If these unique nonadjacent anti thymine dimer photoproducts also form in vivo, they would constitute a previously unrecognized type of DNA photodamage that may interfere with telomere replication and present a unique challenge to DNA repair. Furthermore, these unusual anti photoproducts may be used to establish the presence of G-quadruplex or quadruplex-like structures in vivo.

  2. Persistent telomere cohesion triggers a prolonged anaphase

    Science.gov (United States)

    Kim, Mi Kyung; Smith, Susan

    2014-01-01

    Telomeres use distinct mechanisms (not used by arms or centromeres) to mediate cohesion between sister chromatids. However, the motivation for a specialized mechanism at telomeres is not well understood. Here we show, using fluorescence in situ hybridization and live-cell imaging, that persistent sister chromatid cohesion at telomeres triggers a prolonged anaphase in normal human cells and cancer cells. Excess cohesion at telomeres can be induced by inhibition of tankyrase 1, a poly(ADP-ribose) polymerase that is required for resolution of telomere cohesion, or by overexpression of proteins required to establish telomere cohesion, the shelterin subunit TIN2 and the cohesin subunit SA1. Regardless of the method of induction, excess cohesion at telomeres in mitosis prevents a robust and efficient anaphase. SA1- or TIN2-induced excess cohesion and anaphase delay can be rescued by overexpression of tankyrase 1. Moreover, we show that primary fibroblasts, which accumulate excess telomere cohesion at mitosis naturally during replicative aging, undergo a similar delay in anaphase progression that can also be rescued by overexpression of tankyrase 1. Our study demonstrates that there are opposing forces that regulate telomere cohesion. The observation that cells respond to unresolved telomere cohesion by delaying (but not completely disrupting) anaphase progression suggests a mechanism for tolerating excess cohesion and maintaining telomere integrity. This attempt to deal with telomere damage may be ultimately futile for aging fibroblasts but useful for cancer cells. PMID:24173716

  3. Paternal age and telomere length in twins

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Mangino, Massimo

    2015-01-01

    Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an 'epigenetic' mechanism through which paternal age plays a role in telomere length regulation in humans...

  4. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine.

    Science.gov (United States)

    Zhang, Yong-Wei; Zhang, Zhi-Xiang; Miao, Ze-Hong; Ding, Jian

    2008-03-01

    Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two events and in particular whether TRF2 is involved in this process. In this study, we found that SAL concurrently induced DNA double-strand breaks, telomeric DNA damage, and telomere erosion in lung carcinoma A549 cells. It was unexpected to find that SAL led to disruption of TRF2, independently of either its transcription or proteasome-mediated degradation. By overexpressing the full-length trf2 gene and transfecting TRF2 small interfering RNAs, we showed that TRF2 protein protected both telomeric and genomic DNA from the SAL-elicited events. It is noteworthy that although both the Ataxia-telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) kinases responded to the SAL-induced DNA damages, only ATR was essential for the telomere erosion. The study also showed that the activated ATR augmented the SAL-triggered TRF2 disruption, whereas TRF2 reduction in turn enhanced ATR function. All of these findings suggest the emerging significance of TRF2 protecting both telomeric DNA and genomic DNA on the one hand and reveal the mutual modulation between ATR and TRF2 in sensing DNA damage signaling during cancer development on the other hand.

  5. Molecular architecture of classical cytological landmarks: Centromeres and telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Meyne, J.

    1994-11-01

    Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library is screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.

  6. Tired telomeres: Poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women.

    Science.gov (United States)

    Prather, Aric A; Gurfein, Blake; Moran, Patricia; Daubenmier, Jennifer; Acree, Michael; Bacchetti, Peter; Sinclair, Elizabeth; Lin, Jue; Blackburn, Elizabeth; Hecht, Frederick M; Epel, Elissa S

    2015-07-01

    Poor sleep quality and short sleep duration are associated with increased incidence and progression of a number of chronic health conditions observed at greater frequency among the obese and those experiencing high levels of stress. Accelerated cellular aging, as indexed by telomere attrition in immune cells, is a plausible pathway linking sleep and disease risk. Prior studies linking sleep and telomere length are mixed. One factor may be reliance on leukocytes, which are composed of varied immune cell types, as the sole measure of telomere length. To better clarify these associations, we investigated the relationships of global sleep quality, measured by the Pittsburgh Sleep Quality Index (PSQI), and diary-reported sleep duration with telomere length in different immune cell subsets, including granulocytes, peripheral blood mononuclear cells (PBMCs), CD8+ and CD4+ T lymphocytes, and B lymphocytes in a sample of 87 obese men and women (BMI mean=35.4, SD=3.6; 81.6% women; 62.8% Caucasian). Multiple linear regression analyses were performed adjusting for age, gender, race, education, BMI, sleep apnea risk, and perceived stress. Poorer PSQI global sleep quality was associated with statistically significantly shorter telomere length in lymphocytes but not granulocytes and in particular CD8+ T cells (b=-56.8 base pairs per one point increase in PSQI, SE=20.4, p=0.007) and CD4+ T cells (b=-37.2, SE=15.9, p=0.022). Among separate aspects of global sleep quality, low perceived sleep quality and decrements in daytime function were most related to shorter telomeres. In addition, perceived stress moderated the sleep-CD8+ telomere association. Poorer global sleep quality predicted shorter telomere length in CD8+ T cells among those with high perceived stress but not in low stress participants. These findings provide preliminary evidence that poorer global sleep quality is related to telomere length in several immune cell types, which may serve as a pathway linking sleep and

  7. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence.

    Science.gov (United States)

    Schrumpfová, Petra; Kuchar, Milan; Miková, Gabriela; Skrísovská, Lenka; Kubicárová, Tatiana; Fajkus, Jirí

    2004-04-01

    Telomere-binding proteins participate in forming a functional nucleoprotein structure at chromosome ends. Using a genomic approach, two Arabidopsis thaliana genes coding for candidate Myb-like telomere binding proteins were cloned and expressed in E. coli. Both proteins, termed AtTBP2 (accession Nos. T46051 (protein database) and GI:638639 (nucleotide database); 295 amino acids, 32 kDa, pI 9.53) and AtTBP3 (BAB08466, GI:9757879; 299 amino acids, 33 kDa, pI 9.88), contain a single Myb-like DNA-binding domain at the N-terminus, and a histone H1/H5-like DNA-binding domain in the middle of the protein sequence. Both proteins are expressed in various A. thaliana tissues. Using the two-hybrid system interaction between the proteins AtTBP2 and AtTBP3 and self interactions of each of the proteins were detected. Gel-retardation assays revealed that each of the two proteins is able to bind the G-rich strand and double-stranded DNA of plant telomeric sequence with an affinity proportional to a number of telomeric repeats. Substrates bearing a non-telomeric DNA sequence positioned between two telomeric repeats were bound with an efficiency depending on the length of interrupting sequence. The ability to bind variant telomere sequences decreased with sequence divergence from the A. thaliana telomeric DNA. None of the proteins alone or their mixture affects telomerase activity in vitro. Correspondingly, no interaction was observed between any of two proteins and the Arabidopsis telomerase reverse transcriptase catalytic subunit TERT (accession No. AF172097) using two-hybrid assay.

  8. Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA.

    Science.gov (United States)

    Kondo, Keiko; Mashima, Tsukasa; Oyoshi, Takanori; Yagi, Ryota; Kurokawa, Riki; Kobayashi, Naohiro; Nagata, Takashi; Katahira, Masato

    2018-02-12

    The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.

  9. Coffee Consumption Is Positively Associated with Longer Leukocyte Telomere Length in the Nurses' Health Study.

    Science.gov (United States)

    Liu, Jason J; Crous-Bou, Marta; Giovannucci, Edward; De Vivo, Immaculata

    2016-07-01

    Coffee is an important source of antioxidants, and consumption of this beverage is associated with many health conditions and a lower mortality risk. However, no study, to our knowledge, has examined whether varying coffee or caffeine consumption levels are associated with telomere length, a biomarker of aging whose shortening can be accelerated by oxidative stress. We performed a large comprehensive study on how coffee consumption is associated with telomere length. We used data from the Nurses' Health Study (NHS), a prospective cohort study of female nurses that began in 1976. We examined the cross-sectional association between coffee consumption and telomere length in 4780 women from the NHS. Coffee consumption information was obtained from validated food-frequency questionnaires, and relative telomere length was measured in peripheral blood leukocytes by the quantitative real-time polymerase chain reaction. Unconditional logistic regression was used to obtain ORs when the telomere length outcome was dichotomized at the median. Linear regression was used for tests of trend with coffee consumption and telomere length as continuous variables. Higher total coffee consumption was significantly associated with longer telomeres after potential confounding adjustment. Compared with non-coffee drinkers, multivariable ORs for those drinking 2 to coffee/d were, respectively, 1.29 (95% CI: 0.99, 1.68) and 1.36 (95% CI: 1.04, 1.78) (P-trend = 0.02). We found a significant linear association between caffeine consumption from all dietary sources and telomere length (P-trend = 0.02) after adjusting for potential confounders, but not after additionally adjusting for total coffee consumption (P-trend = 0.37). We found that higher coffee consumption is associated with longer telomeres among female nurses. Future studies are needed to better understand the influence of coffee consumption on telomeres, which may uncover new knowledge of how coffee consumption affects health and

  10. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  11. Associations Between Age, Psychosocial Work Conditions, Occupational Well-Being, and Telomere Length in Geriatric Care Professionals: A Mixed-Methods Study.

    Science.gov (United States)

    Chmelar, Caroline; Jörres, Rudolf A; Kronseder, Angelika; Müller, Andreas; Nowak, Dennis; Weigl, Matthias

    2017-10-01

    We identified associations between age, psychosocial work characteristics, occupational well-being, and-as a measure of biological age-leukocyte telomere length in geriatric care professionals. This is a multisource study of self-reports on psychosocial work characteristics, standardized physician's evaluations of health, and relative telomere length measures of peripheral blood leukocytes. We included 141 geriatric care professionals. Telomere length was assessed by an improved polymerase chain reaction (PCR)-based method. Increased depersonalization was associated with shorter telomeres. Their association with age was not moderated by psychosocial work conditions. There was, however, a significant three-way interaction of social support and work ability with the age-telomere association. Additionally, social support and adverse general health moderated the age-telomere length relationship. A supportive work environment and work-related health may influence the association between age and telomere length.

  12. The JIL-1 kinase affects telomere expression in the different telomere domains of Drosophila.

    Directory of Open Access Journals (Sweden)

    Rute Silva-Sousa

    Full Text Available In Drosophila, the non-LTR retrotransposons HeT-A, TART and TAHRE build a head-to-tail array of repetitions that constitute the telomere domain by targeted transposition at the end of the chromosome whenever needed. As a consequence, Drosophila telomeres have the peculiarity to harbor the genes in charge of telomere elongation. Understanding telomere expression is important in Drosophila since telomere homeostasis depends in part on the expression of this genomic compartment. We have recently shown that the essential kinase JIL-1 is the first positive regulator of the telomere retrotransposons. JIL-1 mediates chromatin changes at the promoter of the HeT-A retrotransposon that are necessary to obtain wild type levels of expression of these telomere transposons. With the present study, we show how JIL-1 is also needed for the expression of a reporter gene embedded in the telomere domain. Our analysis, using different reporter lines from the telomere and subtelomere domains of different chromosomes, indicates that JIL-1 likely acts protecting the telomere domain from the spreading of repressive chromatin from the adjacent subtelomere domain. Moreover, the analysis of the 4R telomere suggests a slightly different chromatin structure at this telomere. In summary, our results strongly suggest that the action of JIL-1 depends on which telomere domain, which chromosome and which promoter is embedded in the telomere chromatin.

  13. Telomere length in early life predicts lifespan.

    Science.gov (United States)

    Heidinger, Britt J; Blount, Jonathan D; Boner, Winnie; Griffiths, Kate; Metcalfe, Neil B; Monaghan, Pat

    2012-01-31

    The attrition of telomeres, the ends of eukaryote chromosomes, is thought to play an important role in cell deterioration with advancing age. The observed variation in telomere length among individuals of the same age is therefore thought to be related to variation in potential longevity. Studies of this relationship are hampered by the time scale over which individuals need to be followed, particularly in long-lived species where lifespan variation is greatest. So far, data are based either on simple comparisons of telomere length among different age classes or on individuals whose telomere length is measured at most twice and whose subsequent survival is monitored for only a short proportion of the typical lifespan. Both approaches are subject to bias. Key studies, in which telomere length is tracked from early in life, and actual lifespan recorded, have been lacking. We measured telomere length in zebra finches (n = 99) from the nestling stage and at various points thereafter, and recorded their natural lifespan (which varied from less than 1 to almost 9 y). We found telomere length at 25 d to be a very strong predictor of realized lifespan (P telomeres at all points at which they were measured. Reproduction increased adult telomere loss, but this effect appeared transient and did not influence survival. Our results provide the strongest evidence available of the relationship between telomere length and lifespan and emphasize the importance of understanding factors that determine early life telomere length.

  14. Interaction of hnRNP A1 with telomere DNA G-quadruplex structures studied at the single molecule level

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Raarup, Merete Krog; Nielsen, Morten Muhlig

    2010-01-01

    the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G......-quadruplex telomeric DNA. Ensemble and single molecule FRET measurements provide further insight into molecular conformation: the telomeric DNA overhang is found to be in a folded state in the absence of hnRNP A1 and to remain predominantly in a compact state when complexed with hnRNP A1. This finding is in contrast...

  15. Telomere lengths, pulmonary fibrosis and telomerase (TERT mutations.

    Directory of Open Access Journals (Sweden)

    Alberto Diaz de Leon

    2010-05-01

    Full Text Available Telomerase is an enzyme that catalyzes the addition of nucleotides on the ends of chromosomes. Rare loss of function mutations in the gene that encodes the protein component of telomerase (TERT have been described in patients with idiopathic pulmonary fibrosis (IPF. Here we examine the telomere lengths and pulmonary fibrosis phenotype seen in multiple kindreds with heterozygous TERT mutations.We have identified 134 individuals with heterozygous TERT mutations from 21 unrelated families. Available medical records, surgical lung biopsies and radiographs were evaluated retrospectively. Genomic DNA isolated from circulating leukocytes has been used to measure telomere lengths with a quantitative PCR assay. We find that telomere lengths of TERT mutation carriers decrease in an age-dependent manner and show progressive shortening with successive generations of mutation inheritance. Family members without TERT mutations have a shorter mean telomere length than normal, demonstrating epigenetic inheritance of shortened telomere lengths in the absence of an inherited TERT mutation. Pulmonary fibrosis is an age-dependent phenotype not seen in mutation carriers less than 40 years of age but found in 60% of men 60 years or older; its development is associated with environmental exposures including cigarette smoking. A radiographic CT pattern of usual interstitial pneumonia (UIP, which is consistent with a diagnosis of IPF, is seen in 74% of cases and a pathologic pattern of UIP is seen in 86% of surgical lung biopsies. Pulmonary fibrosis associated with TERT mutations is progressive and lethal with a mean survival of 3 years after diagnosis. Overall, TERT mutation carriers demonstrate reduced life expectancy, with a mean age of death of 58 and 67 years for males and females, respectively.A subset of pulmonary fibrosis, like dyskeratosis congenita, bone marrow failure, and liver disease, represents a "telomeropathy" caused by germline mutations in telomerase

  16. Regulation of homologous recombination at telomeres in budding yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2010-01-01

    Homologous recombination is suppressed at normal length telomere sequences. In contrast, telomere recombination is allowed when telomeres erode in the absence of telomerase activity or as a consequence of nucleolytic degradation or incomplete replication. Here, we review the mechanisms...... that contribute to regulating mitotic homologous recombination at telomeres and the role of these mechanisms in signalling short telomeres in the budding yeast Saccharomyces cerevisiae....

  17. Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression.

    Science.gov (United States)

    Luo, Zhenhua; Feng, Xuyang; Wang, Haoli; Xu, Weiyi; Zhao, Yong; Ma, Wenbin; Jiang, Songshan; Liu, Dan; Huang, Junjiu; Songyang, Zhou

    2015-06-01

    Telomeric repeat binding factor 2 (TRF2) is essential for telomere maintenance and has been implicated in DNA damage response and aging. Telomere dysfunction induced by TRF2 inhibition can accelerate cellular senescence in human fibroblasts. While previous work has demonstrated that a variety of factors can regulate TRF2 expression transcriptionally and post-translationally, whether microRNAs (miRNAs) also participate in post-transcriptionally modulating TRF2 levels remains largely unknown. To better understand the regulatory pathways that control TRF2, we carried out a large-scale luciferase reporter screen using a miRNA expression library and identified four miRNAs that could target human TRF2 and significantly reduce the level of endogenous TRF2 proteins. In particular, our data revealed that miR-23a could directly target the 3' untranslated region (3'UTR) of TRF2. Overexpression of miR-23a not only reduced telomere-bound TRF2 and increased telomere dysfunction-induced foci (TIFs), but also accelerated senescence of human fibroblast cells, which could be rescued by ectopically expressed TRF2. Our findings demonstrate that TRF2 is a specific target of miR-23a, and uncover a previously unknown role for miR-23a in telomere regulation and cellular senescence. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2.

    Science.gov (United States)

    Picco, Vincent; Coste, Isabelle; Giraud-Panis, Marie-Josèphe; Renno, Toufic; Gilson, Eric; Pagès, Gilles

    2016-07-19

    Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.

  19. TERRA RNA Antagonizes ATRX and Protects Telomeres.

    Science.gov (United States)

    Chu, Hsueh-Ping; Cifuentes-Rojas, Catherine; Kesner, Barry; Aeby, Eric; Lee, Hun-Goo; Wei, Chunyao; Oh, Hyun Jung; Boukhali, Myriam; Haas, Wilhelm; Lee, Jeannie T

    2017-06-29

    Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Telomere length in Chernobyl accident recovery workers in the late period after the disaster.

    Science.gov (United States)

    Reste, Jelena; Zvigule, Gunda; Zvagule, Tija; Kurjane, Natalja; Eglite, Maija; Gabruseva, Natalija; Berzina, Dace; Plonis, Juris; Miklasevics, Edvins

    2014-11-01

    The outcome of the Chernobyl nuclear power plant (CNPP) accident was that a huge number of people were exposed to ionizing radiation. Previous studies of CNPP clean-up workers from Latvia revealed a high occurrence of age-associated degenerative diseases and cancer in young adults, as well as a high mortality as a result of cardiovascular disorders at age 45-54 years. DNA tandem repeats that cap chromosome ends, known as telomeres, are sensitive to oxidative damage and exposure to ionizing radiation. Telomeres are important in aging processes and carcinogenesis. The aim of this study was to investigate the long-term effect of protracted ionizing radiation exposure on telomere length in CNPP clean-up workers. Relative telomere length (RTL) was measured in peripheral blood leukocytes of 595 CNPP clean-up workers and 236 gender- and age-matched controls using real-time quantitative polymerase chain reaction (q-PCR). Close attention was paid to participation year and tasks performed during the worker's stay in Chernobyl, health status, and RTL differences between subgroups. Telomere shortening was not found in CNPP clean-up workers; on the contrary, their RTL was slightly greater than in controls (P = 0.001). Longer telomeres were found in people who worked during 1986, in those undertaking 'dirty' tasks (digging and deactivation), and in people with cancer. Shorter telomeres appeared frequently in those with cataract, osteoporosis, atherosclerosis, or coronary heart disease. We conclude that the longer telomeres revealed in people more heavily exposed to ionizing radiation probably indicate activation of telomerase as a chromosome healing mechanism following damage, and reflect defects in telomerase regulation that could potentiate carcinogenesis. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Stimpson

    Full Text Available The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA. The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2 causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

  2. Analysis of poly(ADP-Ribose polymerases in Arabidopsis telomere biology.

    Directory of Open Access Journals (Sweden)

    Kara A Boltz

    Full Text Available Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose polymerases (PARPs have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one.

  3. Experimentally increased reproductive effort alters telomere length in the blue tit (Cyanistes caeruleus).

    Science.gov (United States)

    Sudyka, J; Arct, A; Drobniak, S; Dubiec, A; Gustafsson, L; Cichoń, M

    2014-10-01

    Telomeres have recently been suggested to play important role in ageing and are considered to be a reliable ageing biomarkers. The life history theory predicts that costs of reproduction should be expressed in terms of accelerated senescence, and some empirical studies do confirm such presumption. Thus, a link between reproductive effort and telomere dynamics should be anticipated. Recent studies have indeed demonstrated that reproduction may trigger telomere loss, but actual impact of reproductive effort has not received adequate attention in experimental studies. Here, we experimentally manipulated reproductive effort by increasing the brood size in the wild blue tit (Cyanistes caeruleus). We show that parents attending enlarged broods experienced larger yearly telomere decay in comparison to control birds attending unaltered broods. In addition, we demonstrate that the change in telomere length differs between sexes, but this effect was independent from our treatment. To our knowledge, this is the first experimental study in the wild revealing that telomere dynamics may be linked to reproductive effort. Thus, telomere shortening may constitute one of the potential proximate mechanisms mediating the costs of reproduction. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. POT1-independent single-strand telomeric DNA binding activities in Brassicaceae.

    Science.gov (United States)

    Shakirov, Eugene V; McKnight, Thomas D; Shippen, Dorothy E

    2009-06-01

    Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single-strand protrusion, termed the G-overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1-like proteins. Here we show that the single-strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, recombinant POT1a and POT1b proteins from A. thaliana, and from two additional Brassicaceae species, Arabidopsis lyrata and Brassica oleracea (cauliflower), fail to bind single-strand telomeric DNA in vitro under the conditions tested. Finally, although we detected four single-strand telomeric DNA binding activities in nuclear extracts from B. oleracea, partial purification and DNA cross-linking analysis of these complexes identified proteins that are smaller than the predicted sizes of BoPOT1a or BoPOT1b. Taken together, these data suggest that POT1 proteins are not the major single-strand telomeric DNA binding activities in A. thaliana and its close relatives, underscoring the remarkable functional divergence of POT1 proteins from plants and other eukaryotes.

  5. Association between childhood trauma and accelerated telomere erosion in adulthood: A meta-analytic study.

    Science.gov (United States)

    Li, Zongchang; He, Ying; Wang, Dong; Tang, Jingsong; Chen, Xiaogang

    2017-10-01

    Childhood trauma has long-term sequelae on health status and contributes to numbers of somatic and mental disorders in later life. Findings from experimental studies in animals suggest that telomere erosion may be a mediator of this relationship. However, results from human studies are heterogeneous. To address these inconsistencies, we performed a meta-analysis regarding the association between childhood trauma and telomere length in adulthood. Articles were identified by systematically searching the Medline, EMBASE and Web of Science databases. Twenty four studies, which include twenty six sample sets and 30,919 participants, met the inclusion criteria for meta-analyses. This meta-analyses revealed that individuals experienced childhood trauma have accelerated telomere erosion in adulthood, with a small effect size (r = -0.05, 95% CI = -0.08-0.03, p childhood trauma revealed a trend in difference between groups (Q = 5.24, p = 0.07). Analyses for individual trauma types revealed a significant association between childhood separation and telomere erosion (r = -0.09, p childhood trauma and accelerated telomere erosion in adulthood, and further revealed that different trauma types have various impacts on telomere. Additional research on the mechanism that links the individual types of childhood trauma with telomere is needed in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Progressive Rearrangement of Telomeric Sequences Added to Both the ITR Ends of the Yeast Linear pGKL Plasmid

    Directory of Open Access Journals (Sweden)

    Gunge Norio

    2003-01-01

    Full Text Available Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. In Saccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid which carried the host telomeric repeats TG1-3 of 300-350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat, suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1-3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids.

  7. Nickel enhances telomeric silencing in Saccharomyces cerevisiae.

    Science.gov (United States)

    Broday, L; Cai, J; Costa, M

    1999-04-06

    Certain nickel compounds including crystalline nickel sulfide (NiS) and subsulfide (Ni3S2) are potent human and animal carcinogens. In Chinese hamster embryo cells, an X-linked senescence gene was inactivated following nickel-induced DNA methylation. Nickel also induced the inactivation of the gpt reporter gene by chromatin condensation and a DNA methylation process in a transgenic gpt+ Chinese hamster cell line (G12), which is located near a heterochromatic region. To determine if nickel can cause gene silencing independently of DNA methylation, based only on the induction of changes in chromatin structure, we measured its effect on gene silencing in Saccharomyces cerevisiae. Growth of yeast in the presence of nickel chloride repressed a telomeric marker gene (URA3) and resulted in a stable epigenetic switch. This phenomenon was dependent on the number of cell doubling prior to selection and also on the distance of the marker gene from the end of the chromosome. The level of TPE (telomeric position effect) increased linearly with elevations of nickel concentration. Addition of magnesium inhibited this effect, but magnesium did not silence the reporter gene by itself. The level of silencing was also assessed following treatment with other transition metals: cobalt, copper and cadmium. In the sublethal range, cobalt induced similar effects as nickel, while copper and cadmium did not change the basal level of gene expression. Silencing by copper and cadmium were evident only at concentrations of those metals where the viability was very low. Copyright 1999 Elsevier Science B.V.

  8. Telomere shortening sensitizes cancer cells to selected cytotoxic agents: in vitro and in vivo studies and putative mechanisms.

    Directory of Open Access Journals (Sweden)

    Orit Uziel

    Full Text Available BACKGROUND: Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening. CONCLUSIONS/SIGNIFICANCE: To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer.

  9. WRN loss induces switching of telomerase-independent mechanisms of telomere elongation.

    Directory of Open Access Journals (Sweden)

    April Renee Sandy Gocha

    Full Text Available Telomere maintenance can occur in the presence of telomerase or in its absence, termed alternative lengthening of telomeres (ALT. ALT adds telomere repeats using recombination-based processes and DNA repair proteins that function in homologous recombination. Our previous work reported that the RecQ-like BLM helicase is required for ALT and that it unwinds telomeric substrates in vitro. WRN is also a RecQ-like helicase that shares many biochemical functions with BLM. WRN interacts with BLM, unwinds telomeric substrates, and co-localizes to ALT-associated PML bodies (APBs, suggesting that it may also be required for ALT processes. Using long-term siRNA knockdown of WRN in three ALT cell lines, we show that some, but not all, cell lines require WRN for telomere maintenance. VA-13 cells require WRN to prevent telomere loss and for the formation of APBs; Saos-2 cells do not. A third ALT cell line, U-2 OS, requires WRN for APB formation, however WRN loss results in p53-mediated apoptosis. In the absence of WRN and p53, U-2 OS cells undergo telomere loss for an intermediate number of population doublings (50-70, at which point they maintain telomere length even with the continued loss of WRN. WRN and the tumor suppressor BRCA1 co-localize to APBs in VA-13 and U-2 OS, but not in Saos-2 cells. WRN loss in U-2 OS is associated with a loss of BRCA1 from APBs. While the loss of WRN significantly increases telomere sister chromatid exchanges (T-SCE in these three ALT cell lines, loss of both BRCA1 and WRN does not significantly alter T-SCE. This work demonstrates that ALT cell lines use different telomerase-independent maintenance mechanisms that variably require the WRN helicase and that some cells can switch from one mechanism to another that permits telomere elongation in the absence of WRN. Our data suggest that BRCA1 localization may define these mechanisms.

  10. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.

    Science.gov (United States)

    Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency ( P integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A. IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the

  11. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  12. Do Telomeres Adapt to Physiological Stress? Exploring the Effect of Exercise on Telomere Length and Telomere-Related Proteins

    Directory of Open Access Journals (Sweden)

    Andrew T. Ludlow

    2013-01-01

    Full Text Available Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress.

  13. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres.

    Science.gov (United States)

    Lin, Jiangguo; Countryman, Preston; Buncher, Noah; Kaur, Parminder; E, Longjiang; Zhang, Yiyun; Gibson, Greg; You, Changjiang; Watkins, Simon C; Piehler, Jacob; Opresko, Patricia L; Kad, Neil M; Wang, Hong

    2014-02-01

    Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.

  14. On the interplay of telomeres, nevi and the risk of melanoma.

    Directory of Open Access Journals (Sweden)

    Clara Bodelon

    Full Text Available The relationship between telomeres, nevi and melanoma is complex. Shorter telomeres have been found to be associated with many cancers and with number of nevi, a known risk factor for melanoma. However, shorter telomeres have also been found to decrease melanoma risk. We performed a systematic analysis of telomere-related genes and tagSNPs within these genes, in relation to the risk of melanoma, dysplastic nevi, and nevus count combining data from four studies conducted in Italy. In addition, we examined whether telomere length measured in peripheral blood leukocytes is related to the risk of melanoma, dysplastic nevi, number of nevi, or telomere-related SNPs. A total of 796 cases and 770 controls were genotyped for 517 SNPs in 39 telomere-related genes genotyped with a custom-made array. Replication of the top SNPs was conducted in two American populations consisting of 488 subjects from 53 melanoma-prone families and 1,086 cases and 1,024 controls from a case-control study. We estimated odds ratios for associations with SNPs and combined SNP P-values to compute gene region-specific, functional group-specific, and overall P-value using an adaptive rank-truncated product algorithm. In the Mediterranean population, we found suggestive evidence that RECQL4, a gene involved in genome stability, RTEL1, a gene regulating telomere elongation, and TERF2, a gene implicated in the protection of telomeres, were associated with melanoma, the presence of dysplastic nevi and number of nevi, respectively. However, these associations were not found in the American samples, suggesting variable melanoma susceptibility for these genes across populations or chance findings in our discovery sample. Larger studies across different populations are necessary to clarify these associations.

  15. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina.

    Science.gov (United States)

    Garcia-Cisneros, A; Pérez-Portela, R; Almroth, B C; Degerman, S; Palacín, C; Sköld, H Nilsson

    2015-11-01

    Telomeres usually shorten during an organism's lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal-Wallis test (K=24.17, significant value: P-value<0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann-Whitney test, V=299, P-value<10(-6); and tube feet tissue Student's t=2.28, P-value=0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation.

  16. Telomere length in alcohol dependence: A role for impulsive choice and childhood maltreatment.

    Science.gov (United States)

    Kang, Jee In; Hwang, Syung Shick; Choi, Jong Rak; Lee, Seung-Tae; Kim, Jieun; Hwang, In Sik; Kim, Hae Won; Kim, Chan-Hyung; Kim, Se Joo

    2017-09-01

    Telomere shortening, a marker of cellular aging, has been considered to be linked with psychosocial stress as well as with chronic alcohol consumption, possibly mediated by oxidative stress and inflammatory response. Recent findings suggested that early life adversity on telomere dynamics may be related to impulsive choice. To further our understanding of the association of impulsive choice and childhood trauma on telomere length, we examined whether delayed discounting and childhood trauma or their interaction is related to leukocyte telomere length, while controlling for multiple potential confounding variables, in patients with alcohol dependence who are considered to have higher impulsive choice and shorter telomere length. We recruited 253 male patients with chronic alcohol dependence. All participants performed the delay discounting task, and the area under curve was used as a measure of delay discounting. Steeper delay discounting represents more impulsive choices. The modified Parent-Child Conflict Tactics Scale was used to measure childhood maltreatment. In addition, confounding factors, including socio-demographic characteristics, the Alcohol Use Disorders Identification Test, the Buss-Perry Aggression Questionnaire, the Resilience Quotient, the Beck Depression Inventory, and the Beck Anxiety Inventory, were also assessed. Hierarchical regression analyses showed a significant main effect of delay discounting (β=0.161, t=2.640, p=0.009), and an interaction effect between delay discounting and childhood maltreatment on leukocyte telomere length (β=0.173, t=2.138, p=0.034). In subsequent analyses stratified by childhood maltreatment, patients with alcohol dependence and high childhood trauma showed a significant relationship between delay discounting and leukocyte telomere length (β=0.279, t=3.183, p=0.002), while those with low trauma showed no association between them. Our findings suggest that higher impulsive choice is associated with shorter telomere

  17. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart.

    Science.gov (United States)

    Kasbek, Christopher; Wang, Feng; Price, Carolyn M

    2013-10-18

    TEN1 is a component of the mammalian CTC1-STN1-TEN1 complex. CTC1 and/or STN1 functions in telomere duplex replication, C-strand fill-in, and genome-wide restart of replication following fork stalling. Here we examine the role of human TEN1 and ask whether it also functions as a specialized replication factor. TEN1 depletion causes an increase in multitelomere fluorescent in situ hybridization (FISH) signals similar to that observed after CTC1 or STN1 depletion. However, TEN1 depletion also results in increased telomere loss. This loss is not accompanied by increased telomere deprotection, recombination, or T-circle release. Thus, it appears that both the multiple telomere signals and telomere loss stem from problems in telomere duplex replication. TEN1 depletion can also affect telomere length, but whether telomeres lengthen or shorten is cell line-dependent. Like CTC1 and STN1, TEN1 is needed for G-overhang processing. Depletion of TEN1 does not effect overhang elongation in mid-S phase, but it delays overhang shortening in late S/G2. These results indicate a role for TEN1 in C-strand fill-in but do not support a direct role in telomerase regulation. Finally, TEN1 depletion causes a decrease in genome-wide replication restart following fork stalling similar to that observed after STN1 depletion. However, anaphase bridge formation is more severe than with CTC1 or STN1 depletion. Our findings indicate that TEN1 likely functions in conjunction with CTC1 and STN1 at the telomere and elsewhere in the genome. They also raise the possibility that TEN1 has additional roles and indicate that TEN1/CTC1-STN1-TEN1 helps solve a wide range of challenges to the replication machinery.

  18. Characterisation of a GC-rich telomeric satellite DNA in Eumeces schneideri Daudin (Reptilia, Scincidae).

    Science.gov (United States)

    Giovannotti, M; Nisi Cerioni, P; Caputo, V; Olmo, E

    2009-01-01

    A hitherto undescribed satellite DNA family (AvaII satDNA) has been isolated and characterised in Eumeces schneideri, a squamate reptile belonging to the family Scincidae. AvaII satDNA is characterised by a monomer length of 208 bp, a GC content of 59% and exhibits a certain degree of CpG methylation. FISH experiments with AvaII satDNA probe produced bright signals (i) at the end of the short arms of all subtelocentric chromosomes except for pair 14, in which the signal was at the end of the long arms, (ii) at the ends of both arms of the small metacentric chromosomes 12, and (iii) in a terminal position on the acrocentric chromosomes 11 and 13. AvaII satDNA repeats were not found in the metacentric pair 3, whereas only a weak interstitial signal occurred in the metacentric pairs 1 and 2. C-banding showed that this satellite represents most of the constitutive heterochromatin in the genome of this skink, and chromomycin A(3) staining produced a clear signal overlapping with the satellite, except for NOR-associated heterochromatin. In addition, quantitative dot blot analysis showed that these repetitive sequences constitute about 3% of the genomic DNA of this lizard. AvaII satDNA sequence analysis revealed the occurrence of short guanine residue stretches for which a function in structural stability of these sequences and a role in recombination with telomeric sequences can be hypothesised. Fibre FISH experiments showed that on some chromatin fibres telomeric sequences and AvaII satellite DNA repeats are intermingled or overlapping. (c) 2009 S. Karger AG, Basel.

  19. Photoreactivity of the linker region of two consecutive G-quadruplexes formed by human telomeric DNA.

    Science.gov (United States)

    Li, Yue; Sugiyama, Hiroshi

    2015-05-25

    We report the application of a photoreaction method for probing two consecutive G-quadruplexes formed by human telomeric DNA. This method can discriminate the loop structure located between two consecutive G-quadruplexes formed by eight TTAGGG repeats in K(+) and Na(+) solutions.

  20. Telomerization of Vinyl Chloride with Chloroform Initiated by Ferrous Chloride-Dimethylacetamide under Ultrasonic Conditions

    Directory of Open Access Journals (Sweden)

    Hua Qian

    2015-01-01

    Full Text Available Telomerization of vinyl chloride with chloroform was investigated using ferrous chloride-dimethylacetamide system, and 42.1% yield, more than four times the one reported before, was achieved. The addition of ultrasound further improved the reaction and yield was raised to 51.9% with trace byproducts at highly reduced reaction time and temperature. Ferrous chloride-dimethylacetamide under ultrasonic irradiation acts as a very efficient catalyst system for the 1 : 1 telomerization.

  1. Evolutionary ecology of telomeres: a review.

    Science.gov (United States)

    Olsson, Mats; Wapstra, Erik; Friesen, Christopher R

    2017-10-06

    Telomere-induced selection could take place if telomere-associated disease risk shortens reproductive life span and differently reduces relative fitness among individuals. Some of these diseases first appear before reproductive senescence and could thus influence ongoing selection. We ask whether we can estimate the components of the breeder's equation for telomeres, in which the response to selection (R, by definition "evolution") is the product of ongoing selection (S) and heritability (h2 ). However, telomere inheritance is a conundrum: in quantitative genetics, traits can usually be allocated to categories with relatively high or low heritability, depending on their association with relative fitness. Telomere traits, however, show wide variation in heritability from zero to one, across taxa, gender, ethnicity, age, and disease status. In spite of this, there is divergence in telomere length among populations, supporting past and ongoing telomere evolution. Rates of telomere attrition and elongation vary among taxa with some, but not complete, taxonomic coherence. For example, telomerase is commonly referred to as "restricted to the germ line in mammals," but inbred mice and beavers have telomerase upregulation in somatic tissue, as do many ectotherms. These observations provoke a simplistic understanding of telomere evolutionary biology-clearly much is yet to be discovered. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.

  2. Leukocyte telomere dynamics in the elderly

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Hjelmborg, Jacob V B; Mortensen, Laust Hvas

    2013-01-01

    Limited data suggest that leukocytes of the elderly display ultra-short telomeres. It was reported that in some elderly persons leukocyte telomere length (LTL) shows age-dependent elongation. Using cross-sectional and longitudinal models, we characterized LTL dynamics in participants......, assuming a 340 bp attrition during this period. This was not significantly different from the empirical observation of 7.5 % of individuals showing LTL elongation. We conclude that accumulation of ultra-short telomeres in leukocytes of the elderly reflects a shift toward shorter telomeres in the entire...

  3. Repeated Cross-linking After a Short Time Does Not Provide Any Additional Biomechanical Stiffness in the Mouse Cornea In Vivo.

    Science.gov (United States)

    Tabibian, David; Kling, Sabine; Hammer, Arthur; Richoz, Olivier; Hafezi, Farhad

    2017-01-01

    To study whether repeated collagen cross-linking (CXL) performed in vivo in mice shows an additive effect on mechanical corneal stiffness. In this experimental study, epithelium-off CXL was performed in a total of 18 eyes from male C57BL/6 mice, with 0.27%-riboflavin solution applied for 20 minutes, followed by ultraviolet-A (UVA) irradiation (365 nm, 9mW/cm(2)) for 2:50 minutes (fluence 1.53 J/cm(2)). CXL was performed as either a single (1×CXL) or a repeated (2×CXL) treatment. Un-irradiated corneas served as controls. In the 2×CXL group, the procedure was performed on day 1 and day 4 to ensure complete reepithelialization between sessions. Biomechanical analysis was performed on day 7. Corneas were harvested with a small scleral ring and mounted on a customized two-dimensional flap holder. The biomechanical measurement consisted of three parts: (1) pre-conditioned during three cycles from 0.04 to 0.4 N, (2) stress relaxation during 120 seconds following 0.4 N force application, and (3) stress-strain curve until break. After the relaxation period of 120 seconds, highly significant differences (P corneas and 2×CXL corneas. No significant difference (P = .70) was detected between the 1×CXL and 2×CXL groups. The stress remaining after relaxation was 355 ± 25.2 kPa in the control group, 457 ± 34.1 kPa in the 1×CXL group, and 463 ± 22.2 kPa in the 2×CXL group. No significant differences in the stress-strain curves were found between the conditions. Repeated CXL 3 days after the first procedure does not further increase corneal stiffness in mice in vivo. [J Refract Surg. 2017;33(1):56-60.]. Copyright 2017, SLACK Incorporated.

  4. TERRA Expression Levels Do Not Correlate with Telomere Length and Radiation Sensitivity in Human Cancer Cell Lines.

    Science.gov (United States)

    Smirnova, Alexandra; Gamba, Riccardo; Khoriauli, Lela; Vitelli, Valerio; Nergadze, Solomon G; Giulotto, Elena

    2013-01-01

    Mammalian telomeres are transcribed into long non-coding telomeric repeat-containing RNA (TERRA) molecules that seem to play a role in the maintenance of telomere stability. In human cells, CpG-island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length. To test this hypothesis we measured telomere length and TERRA levels in single clones isolated from five human cell lines: HeLa (cervical carcinoma), BRC-230 (breast cancer), AKG and GK2 (gastric cancers), and GM847 (SV40 immortalized skin fibroblasts). However, these two parameters did not correlate with each other. Moreover, cell survival to γ-rays did not show a significant variation among the clones, suggesting that, in this cellular system, the intra-population variability in telomere length and TERRA levels does not influence sensitivity to ionizing radiation. This conclusion was supported by the observation that in a cell line in which telomeres were greatly elongated by the ectopic expression of telomerase, TERRA expression levels and radiation sensitivity were similar to the parental HeLa cell line.

  5. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    2011-04-01

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  6. Interstitial Telomeric Motifs in Squamate Reptiles: When the Exceptions Outnumber the Rule.

    Science.gov (United States)

    Rovatsos, Michail; Kratochvíl, Lukáš; Altmanová, Marie; Johnson Pokorná, Martina

    2015-01-01

    Telomeres are nucleoprotein complexes protecting the physical ends of linear eukaryotic chromosomes and therefore helping to ensure their stability and integrity. Additionally, telomeric sequences can be localized in non-terminal regions of chromosomes, forming so-called interstitial telomeric sequences (ITSs). ITSs are traditionally considered to be relics of chromosomal rearrangements and thus very informative in the reconstruction of the evolutionary history of karyotype formation. We examined the distribution of the telomeric motifs (TTAGGG)n using fluorescence in situ hybridization (FISH) in 30 species, representing 17 families of squamate reptiles, and compared them with the collected data from another 38 species from literature. Out of the 68 squamate species analyzed, 35 possess ITSs in pericentromeric regions, centromeric regions and/or within chromosome arms. We conclude that the occurrence of ITSs is rather common in squamates, despite their generally conserved karyotypes, suggesting frequent and independent cryptic chromosomal rearrangements in this vertebrate group.

  7. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

    DEFF Research Database (Denmark)

    Kusumoto-Matsuo, Rika; Opresko, Patricia L; Ramsden, Dale

    2010-01-01

    Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere...... maintenance. The DNA-PK complex also functions in both DNA double strand break repair and telomere maintenance. Interaction between WRN and the DNA-PK complex has been reported in DNA double strand break repair, but their possible cooperation at telomeres has not been reported. This study analyzes thein vitro...... D-loop model substrate. In addition, the length of telomeric G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is reversed by overexpression of WRN helicase. These results suggest that WRN and DNA-PKcs may cooperatively prevent G-tail shortening in vivo....

  8. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter

    OpenAIRE

    El Maï, Mounir; Wagner, Kay-Dietrich; Michiels, Jean-François; Ambrosetti, Damien; Borderie, Arnaud; Destree, Sandrine; Renault, Valerie; Djerbi, Nadir; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Wagner, Nicole

    2014-01-01

    Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms’ tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telome...

  9. Chromosomal organization of simple sequence repeats in the ...

    Indian Academy of Sciences (India)

    ... to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in ...

  10. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health

    Directory of Open Access Journals (Sweden)

    Michael L. Wood

    2017-07-01

    Full Text Available Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.

  11. Extended interferon-alpha therapy accelerates telomere length loss in human peripheral blood T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Joel M O'Bryan

    Full Text Available Type I interferons have pleiotropic effects on host cells, including inhibiting telomerase in lymphocytes and antiviral activity. We tested the hypothesis that long-term interferon treatment would result in significant reduction in average telomere length in peripheral blood T lymphocytes.Using a flow cytometry-based telomere length assay on peripheral blood mononuclear cell samples from the Hepatitis-C Antiviral Long-term Treatment against Cirrhosis (HALT-C study, we measured T cell telomere lengths at screening and at months 21 and 45 in 29 Hepatitis-C virus infected subjects. These subjects had failed to achieve a sustained virologic response following 24 weeks of pegylated-interferon-alpha plus ribavirin treatment and were subsequently randomized to either a no additional therapy group or a maintenance dose pegylated-IFNα group for an additional 3.5 years. Significant telomere loss in naïve T cells occurred in the first 21 months in the interferon-alpha group. Telomere losses were similar in both groups during the final two years. Expansion of CD8(+CD45RA(+CD57(+ memory T cells and an inverse correlation of alanine aminotransferase levels with naïve CD8(+ T cell telomere loss were observed in the control group but not in the interferon-alpha group. Telomere length at screening inversely correlated with Hepatitis-C viral load and body mass index.Sustained interferon-alpha treatment increased telomere loss in naïve T cells, and inhibited the accumulation of T cell memory expansions. The durability of this effect and consequences for immune senescence need to be defined.

  12. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder.

    Science.gov (United States)

    Shalev, I; Moffitt, T E; Braithwaite, A W; Danese, A; Fleming, N I; Goldman-Mellor, S; Harrington, H L; Houts, R M; Israel, S; Poulton, R; Robertson, S P; Sugden, K; Williams, B; Caspi, A

    2014-11-01

    There is evidence that persistent psychiatric disorders lead to age-related disease and premature mortality. Telomere length has emerged as a promising biomarker in studies that test the hypothesis that internalizing psychiatric disorders are associated with accumulating cellular damage. We tested the association between the persistence of internalizing disorders (depression, generalized anxiety disorder and post-traumatic stress disorder) and leukocyte telomere length (LTL) in the prospective longitudinal Dunedin Study (n=1037). Analyses showed that the persistence of internalizing disorders across repeated assessments from ages 11 to 38 years predicted shorter LTL at age 38 years in a dose-response manner, specifically in men (β=-0.137, 95% confidence interval (CI): -0.232, -0.042, P=0.005). This association was not accounted for by alternative explanatory factors, including childhood maltreatment, tobacco smoking, substance dependence, psychiatric medication use, poor physical health or low socioeconomic status. Additional analyses using DNA from blood collected at two time points (ages 26 and 38 years) showed that LTL erosion was accelerated among men who were diagnosed with internalizing disorder in the interim (β=-0.111, 95% CI: -0.184, -0.037, P=0.003). No significant associations were found among women in any analysis, highlighting potential sex differences in internalizing-related telomere biology. These findings point to a potential mechanism linking internalizing disorders to accelerated biological aging in the first half of the life course, particularly in men. Because internalizing disorders are treatable, the findings suggest the hypothesis that treating psychiatric disorders in the first half of the life course may reduce the population burden of age-related disease and extend health expectancy.

  13. Lack of association of colonic epithelium telomere length and oxidative DNA damage in Type 2 diabetes under good metabolic control

    Directory of Open Access Journals (Sweden)

    Kennedy Hugh

    2008-10-01

    Full Text Available Abstract Background Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening. Methods We examined telomere length (by flow fluorescent in situ hybridization and oxidative DNA damage (flow cytometry of 8 – oxoguanosine in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9% and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations. Results Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5. Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7. There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1. Conclusion Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.

  14. Problem-Solving Test: Telomere Replication

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    The Nobel Prize in Physiology or Medicine in 2009 was awarded to Elizabeth H. Blackburn, Carol W. Greider, and Jack W. Szostak for the discovery of "how chromosomes are protected by telomeres and the enzyme telomerase." The discovery has important implications in the processes of cellular aging and carcinogenesis. Telomeres are satellite DNA…

  15. Telomere biology in healthy aging and disease

    NARCIS (Netherlands)

    Oeseburg, Hisko; de Boer, Rudolf A.; van Gilst, Wiek H.; van der Harst, Pim

    Aging is a biological process that affects most cells, organisms and species. Telomeres have been postulated as a universal biological clock that shortens in parallel with aging in cells. Telomeres are located at the end of the chromosomes and consist of an evolutionary conserved repetitive

  16. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter.

    Science.gov (United States)

    El Maï, Mounir; Wagner, Kay-Dietrich; Michiels, Jean-François; Ambrosetti, Damien; Borderie, Arnaud; Destree, Sandrine; Renault, Valerie; Djerbi, Nadir; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Wagner, Nicole

    2014-11-06

    Telomeric repeat binding factor 2 (TRF2), which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms' tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telomere capping. Instead, TRF2 binds and transactivates the promoter of the angiogenic tyrosine kinase platelet-derived growth factor receptor β (PDGFRβ). These findings reveal an unexpected role of TRF2 in neoangiogenesis and delineate a distinct function of TRF2 as a transcriptional regulator. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter

    Directory of Open Access Journals (Sweden)

    Mounir El Maï

    2014-11-01

    Full Text Available Telomeric repeat binding factor 2 (TRF2, which plays a central role in telomere capping, is frequently increased in human tumors. We reveal here that TRF2 is expressed in the vasculature of most human cancer types, where it colocalizes with the Wilms’ tumor suppressor WT1. We further show that TRF2 is a transcriptional target of WT1 and is required for proliferation, migration, and tube formation of endothelial cells. These angiogenic effects of TRF2 are uncoupled from its function in telomere capping. Instead, TRF2 binds and transactivates the promoter of the angiogenic tyrosine kinase platelet-derived growth factor receptor β (PDGFRβ. These findings reveal an unexpected role of TRF2 in neoangiogenesis and delineate a distinct function of TRF2 as a transcriptional regulator.

  18. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study

    Science.gov (United States)

    Shalev, I; Moffitt, TE; Sugden, K; Williams, B; Houts, RM; Danese, A; Mill, J; Arseneault, L; Caspi, A

    2012-01-01

    There is increasing interest in discovering mechanisms that mediate the effects of childhood stress on late-life disease morbidity and mortality. Previous studies have suggested one potential mechanism linking stress to cellular aging, disease and mortality in humans: telomere erosion. We examined telomere erosion in relation to children’s exposure to violence, a salient early-life stressor, which has known long-term consequences for well-being and is a major public-health and social-welfare problem. In the first prospective-longitudinal study with repeated telomere measurements in children while they experienced stress, we tested the hypothesis that childhood violence exposure would accelerate telomere erosion from age 5 to age 10 years. Violence was assessed as exposure to maternal domestic violence, frequent bullying victimization and physical maltreatment by an adult. Participants were 236 children (49% females; 42% with one or more violence exposures) recruited from the Environmental-Risk Longitudinal Twin Study, a nationally representative 1994–1995 birth cohort. Each child’s mean relative telomere length was measured simultaneously in baseline and follow-up DNA samples, using the quantitative PCR method for T/S ratio (the ratio of telomere repeat copy numbers to single-copy gene numbers). Compared with their counterparts, the children who experienced two or more kinds of violence exposure showed significantly more telomere erosion between age-5 baseline and age-10 follow-up measurements, even after adjusting for sex, socioeconomic status and body mass index (B = −0.052, s.e. = 0.021, P = 0.015). This finding provides support for a mechanism linking cumulative childhood stress to telomere maintenance, observed already at a young age, with potential impact for life-long health. PMID:22525489

  19. Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis.

    Science.gov (United States)

    Yu, Eun Young; Pérez-Martín, José; Holloman, William K; Lue, Neal F

    2015-10-01

    A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR). These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs). The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and "trapped" the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure.

  20. Mre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Eun Young Yu

    2015-10-01

    Full Text Available A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR. These phenotypes have not been recapitulated in any standard budding or fission yeast mutant. We found that eliminating Ku70 or Ku80 in the yeast-like fungus Ustilago maydis results initially in all the characteristic telomere aberrations of ALT cancer cells, including C-circles, a highly specific marker of ALT. Subsequently the ku mutants experience permanent G2 cell cycle arrest, accompanied by loss of telomere repeats from chromosome ends and even more drastic accumulation of very short ECTRs (vsECTRs. The deletion of atr1 or chk1 rescued the lethality of the ku mutant, and "trapped" the telomere aberrations in the early ALT-like stage. Telomere abnormalities are telomerase-independent, but dramatically suppressed by deletion of mre11 or blm, suggesting major roles for these factors in the induction of the ALT pathway. In contrast, removal of other DNA damage response and repair factors such as Rad51 has disparate effects on the ALT phenotypes, suggesting that these factors process ALT intermediates or products. Notably, the antagonism of Ku and Mre11 in the induction of ALT is reminiscent of their roles in DSB resection, in which Blm is also known to play a key role. We suggest that an aberrant resection reaction may constitute an early trigger for ALT telomeres, and that the outcomes of ALT are distinct from DSB because of the unique telomere nucleoprotein structure.

  1. Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal study.

    Science.gov (United States)

    Shalev, I; Moffitt, T E; Sugden, K; Williams, B; Houts, R M; Danese, A; Mill, J; Arseneault, L; Caspi, A

    2013-05-01

    There is increasing interest in discovering mechanisms that mediate the effects of childhood stress on late-life disease morbidity and mortality. Previous studies have suggested one potential mechanism linking stress to cellular aging, disease and mortality in humans: telomere erosion. We examined telomere erosion in relation to children's exposure to violence, a salient early-life stressor, which has known long-term consequences for well-being and is a major public-health and social-welfare problem. In the first prospective-longitudinal study with repeated telomere measurements in children while they experienced stress, we tested the hypothesis that childhood violence exposure would accelerate telomere erosion from age 5 to age 10 years. Violence was assessed as exposure to maternal domestic violence, frequent bullying victimization and physical maltreatment by an adult. Participants were 236 children (49% females; 42% with one or more violence exposures) recruited from the Environmental-Risk Longitudinal Twin Study, a nationally representative 1994-1995 birth cohort. Each child's mean relative telomere length was measured simultaneously in baseline and follow-up DNA samples, using the quantitative PCR method for T/S ratio (the ratio of telomere repeat copy numbers to single-copy gene numbers). Compared with their counterparts, the children who experienced two or more kinds of violence exposure showed significantly more telomere erosion between age-5 baseline and age-10 follow-up measurements, even after adjusting for sex, socioeconomic status and body mass index (B=-0.052, s.e.=0.021, P=0.015). This finding provides support for a mechanism linking cumulative childhood stress to telomere maintenance, observed already at a young age, with potential impact for life-long health.

  2. Comparative biology of telomeres: where plants stand.

    Science.gov (United States)

    Watson, J Matthew; Riha, Karel

    2010-09-10

    Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure and function began almost 70 years ago in plants and flies, continued through the Nobel Prize winning work on yeast and ciliates, and goes on today in many model and non-model organisms. The basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our current understanding of how telomeres function is a conglomeration of insights gained from many different species. This review will compare the current knowledge of telomeres in plants with other organisms, with special focus on the functional length of telomeric DNA, the search for TRF homologs, the family of POT1 proteins, and the recent discovery of members of the CST complex. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Disruption of direct 3D telomere-TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed-Sternberg cells.

    Science.gov (United States)

    Knecht, Hans; Johnson, Nathalie A; Haliotis, Tina; Lichtensztejn, Daniel; Mai, Sabine

    2017-07-01

    In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed-Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein-Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere-TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere-TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called 'ghost' end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere-TRF2 interaction in the formation of RS cells.

  4. Chromosomal localization of ribosomal and telomeric DNA provides new insights on the evolution of gomphocerinae grasshoppers.

    Science.gov (United States)

    Jetybayev, I E; Bugrov, A G; Karamysheva, T V; Camacho, J P M; Rubtsov, N B

    2012-01-01

    Chromosome location of ribosomal DNA (rDNA) and telomeric repeats was analysed in mitotic chromosomes of 15 species of Gomphocerinae grasshoppers belonging to the tribes Arcypterini, Gomphocerini, Stenobothrini, and Chrysochraontini. Two types of rDNA distribution were found in the Gomphocerini tribe. Type 1, found in 9 species, was characterized by the presence of rDNA in the short arm of the long biarmed chromosomes 2 and 3 and, in some species, also in the X chromosome. Type 2 was found only in Aeropus sibiricus and Stauroderus scalaris and consisted in the presence of pericentromeric rDNA blocks in all chromosomes. A comparison of rDNA distribution in Gomphocerini species with 2n ♂ = 23, 2n ♂ = 21, and 2n ♂ = 17 suggested the possible involvement of chromosome 6 in the ancestral karyotype (2n ♂ = 23) in 1 of the 3 centric fusions that decreased the chromosome number in these species. In the tribe Stenobothrini, Stenobothrus eurasius carried a single rDNA cluster in the X chromosome, likewise 2 Spanish species previously analysed, but Omocestus viridulus unusually showed a single rDNA cluster in the longest autosome. Telomeric repeats were located primarily on the ends of chromosome arms. In 2 species, however, we observed the presence of interstitial clusters outside telomeric regions. The first one, Aeropus sibiricus, exhibited a polymorphic interstitial site of telomeric repeats in chromosome 6 as a consequence of a paracentric inversion. Most remarkably, Chorthippus jacobsoni showed the presence of telomeric repeats in the pericentric regions of the 3 biarmed chromosome pairs originated by centric fusion, thus suggesting that these rearrangements were not of the Robertsonian type but true centric fusion with a probable generation of dicentric chromosomes. Copyright © 2012 S. Karger AG, Basel.

  5. Effects of additional repeated sprint training during preseason on performance, heart rate variability, and stress symptoms in futsal players: a randomized controlled trial.

    Science.gov (United States)

    Soares-Caldeira, Lúcio F; de Souza, Eberton A; de Freitas, Victor H; de Moraes, Solange M F; Leicht, Anthony S; Nakamura, Fábio Y

    2014-10-01

    The aim of this study was to investigate whether supplementing regular preseason futsal training with weekly sessions of repeated sprints (RS) training would have positive effects on repeated sprint ability (RSA) and field test performance. Thirteen players from a professional futsal team (22.6 ± 6.7 years, 72.8 ± 8.7 kg, 173.2 ± 6.2 cm) were divided randomly into 2 groups (AddT: n = 6 and normal training group: n = 7). Both groups performed a RSA test, Yo-Yo intermittent recovery test level 1 (YoYo IR1), squat (SJ) and countermovement jumps (CMJ), body composition, and heart rate variability (HRV) measures at rest before and after 4 weeks of preseason training. Athletes weekly stress symptoms were recorded by psychometric responses using the Daily Analysis of Life Demands for Athletes questionnaire and subjective ratings of well-being scale, respectively. The daily training load (arbitrary units) was assessed using the session of rating perceived exertion method. After the preseason training, there were no significant changes for body composition, SJ, CMJ, and RSAbest. The YoYo IR1, RSAmean, RSAworst, and RSAdecreament were significantly improved for both groups (p ≤ 0.05). The HRV parameters improved significantly within both groups (p ≤ 0.05) except for high frequency (HF, absolute and normalized units, [n.u.]), low frequency (LF) (n.u.), and the LF/HF ratio. A moderate effect size for the AddT group was observed for resting heart rate and several HRV measures. Training load and psychometric responses were similar between both groups. Additional RS training resulted in slightly greater positive changes for vagal-related HRV with similar improvements in performance and training stress during the preseason training in futsal players.

  6. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance.

    Science.gov (United States)

    Chen, Yanlian; Deng, Zhiqiang; Jiang, Shuai; Hu, Qian; Liu, Haiying; Songyang, Zhou; Ma, Wenbin; Chen, Shi; Zhao, Yong

    2015-01-01

    The RNA component of human telomerase (hTR) localizes to Cajal bodies, and it has been proposed that Cajal bodies play a role in the assembly of telomerase holoenzyme and telomerase trafficking. Here, the role of Cajal bodies was examined in Human cells deficient of coilin (i.e. coilin-knockout (KO) cells), in which no Cajal bodies are detected. In coilin-KO cells, a normal level of telomerase activity is detected and interactions between core factors of holoenzyme are preserved, indicating that telomerase assembly occurs in the absence of Cajal bodies. Moreover, dispersed hTR aggregates and forms foci specifically during S and G2 phase in coilin-KO cells. Colocalization of these hTR foci with telomeres implies proper telomerase trafficking, independent of Cajal bodies. Therefore, telomerase adds similar numbers of TTAGGG repeats to telomeres in coilin-KO and controls cells. Overexpression of TPP1-OB-fold blocks cell cycle-dependent formation of hTR foci and inhibits telomere extension. These findings suggest that telomerase assembly, trafficking and extension occur with normal efficiency in Cajal bodies deficient human cells. Thus, Cajal bodies, as such, are not essential in these processes, although it remains possible that non-coilin components of Cajal bodies and/or telomere binding proteins (e.g. TPP1) do play roles in telomerase biogenesis and telomere homeostasis. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes.

    Science.gov (United States)

    Du, Xiaobing; Shen, Johnny; Kugan, Nishan; Furth, Emma E; Lombard, David B; Cheung, Catherine; Pak, Sally; Luo, Guangbin; Pignolo, Robert J; DePinho, Ronald A; Guarente, Leonard; Johnson, F Brad

    2004-10-01

    The Werner and Bloom syndromes are caused by loss-of-function mutations in WRN and BLM, respectively, which encode the RecQ family DNA helicases WRN and BLM, respectively. Persons with Werner syndrome displays premature aging of the skin, vasculature, reproductive system, and bone, and those with Bloom syndrome display more limited features of aging, including premature menopause; both syndromes involve genome instability and increased cancer. The proteins participate in recombinational repair of stalled replication forks or DNA breaks, but the precise functions of the proteins that prevent rapid aging are unknown. Accumulating evidence points to telomeres as targets of WRN and BLM, but the importance in vivo of the proteins in telomere biology has not been tested. We show that Wrn and Blm mutations each accentuate pathology in later-generation mice lacking the telomerase RNA template Terc, including acceleration of phenotypes characteristic of latest-generation Terc mutants. Furthermore, pathology not observed in Terc mutants but similar to that observed in Werner syndrome and Bloom syndrome, such as bone loss, was observed. The pathology was accompanied by enhanced telomere dysfunction, including end-to-end chromosome fusions and greater loss of telomere repeat DNA compared with Terc mutants. These findings indicate that telomere dysfunction may contribute to the pathogenesis of Werner syndrome and Bloom syndrome.

  8. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence.

    Science.gov (United States)

    Fujita, Kaori; Horikawa, Izumi; Mondal, Abdul M; Jenkins, Lisa M Miller; Appella, Ettore; Vojtesek, Borivoj; Bourdon, Jean-Christophe; Lane, David P; Harris, Curtis C

    2010-12-01

    The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we identify a signalling pathway involving p53, Siah1 (a p53-inducible E3 ubiquitin ligase) and TRF2 (telomere repeat binding factor 2; a component of the shelterin complex). Endogenous Siah1 and TRF2 were upregulated and downregulated, respectively, during replicative senescence with activated p53. Experimental manipulation of p53 expression demonstrated that p53 induces Siah1 and represses TRF2 protein levels. The p53-dependent ubiquitylation and proteasomal degradation of TRF2 are attributed to the E3 ligase activity of Siah1. Knockdown of Siah1 stabilized TRF2 and delayed the onset of cellular replicative senescence, suggesting a role for Siah1 and TRF2 in p53-regulated senescence. This study reveals that p53, a downstream effector of telomere-initiated damage signalling, also functions upstream of the shelterin complex.

  9. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    Science.gov (United States)

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-06-20

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Telomeres and telomerase in prostate cancer development and therapy.

    Science.gov (United States)

    Graham, Mindy Kim; Meeker, Alan

    2017-10-01

    Aberrations in telomere biology are among the earliest events in prostate cancer tumorigenesis and continue during tumour progression. Substantial telomere shortening occurs in prostate cancer cells and high-grade prostatic intraepithelial neoplasia. Not all mechanisms of telomere shortening are understood, but oxidative stress from local inflammation might accelerate prostatic telomere loss. Critically short telomeres can drive the accumulation of tumour-promoting genomic alterations; however, continued telomere erosion is unsustainable and must be mitigated to ensure cancer cell survival and unlimited replication potential. Prostate cancers predominantly maintain telomeres by activating telomerase, but alternative mechanisms of telomere extension can occur in metastatic disease. Telomerase activity and telomere length assessment might be useful in prostate cancer diagnosis and prognosis. Telomere shortening in normal stromal cells has been associated with prostate cancer, whereas variable telomere lengths in prostate cancer cells and telomere shortening in cancer-associated stromal cells correlated with lethal disease. Single-agent telomerase-targeted treatments for solid cancers were ineffective in clinical trials but have not been investigated in prostate cancer and might be useful in combination with established regimens. Telomere-directed strategies have not been explored as extensively. Telomere deprotection strategies have the advantage of being effective in both telomerase-dependent and telomerase-independent cancers. Disruption of androgen receptor function in prostate cancer cells results in telomere dysfunction, indicating telomeres and telomerase as potential therapeutic targets in prostate cancer.

  11. The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures.

    Science.gov (United States)

    Zhou, Jia; Fleming, Aaron M; Averill, April M; Burrows, Cynthia J; Wallace, Susan S

    2015-04-30

    G-quadruplex is a four-stranded G-rich DNA structure that is highly susceptible to oxidation. Despite the important roles that G-quadruplexes play in telomere biology and gene transcription, neither the impact of guanine lesions on the stability of quadruplexes nor their repair are well understood. Here, we show that the oxidized guanine lesions 8-oxo-7,8-dihydroguanine (8-oxoG), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) reduce the thermostability and alter the folding of telomeric quadruplexes in a location-dependent manner. Also, the NEIL1 and NEIL3 DNA glycosylases can remove hydantoin lesions but none of the glycosylases, including OGG1, are able to remove 8-oxoG from telomeric quadruplexes. Interestingly, a hydantoin lesion at the site most prone to oxidation in quadruplex DNA is not efficiently removed by NEIL1 or NEIL3. However, NEIL1, NEIL2 and NEIL3 remove hydantoins from telomeric quadruplexes formed by five TTAGGG repeats much more rapidly than the commonly studied four-repeat quadruplex structures. We also show that APE1 cleaves furan in selected positions in Na(+)-coordinated telomeric quadruplexes. In promoter G-quadruplex DNA, the NEIL glycosylases primarily remove Gh from Na(+)-coordinated antiparallel quadruplexes but not K(+)-coordinated parallel quadruplexes containing VEGF or c-MYC promoter sequences. Thus, the NEIL DNA glycosylases may be involved in both telomere maintenance and in gene regulation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Telomere Length and Pulse Pressure in Newly Diagnosed, Antipsychotic-Naive Patients With Nonaffective Psychosis

    Science.gov (United States)

    Fernandez-Egea, Emilio; Bernardo, Miguel; Heaphy, Christopher M.; Griffith, Jeffrey K.; Parellada, Eduard; Esmatjes, Enric; Conget, Ignacio; Nguyen, Linh; George, Varghese; Stöppler, Hubert; Kirkpatrick, Brian

    2009-01-01

    Introduction: Recent studies suggest that in addition to factors such as treatment side effects, suicide, and poor health habits, people with schizophrenia may have an increased risk of diabetes prior to antipsychotic treatment. Diabetes is associated with an increased pulse pressure (PP) and a shortened telomere. We tested the hypothesis that prior to antipsychotic treatment, schizophrenia and related disorders are associated with a shortened telomere, as well as an increased PP. Methods: Telomere content (which is highly correlated with telomere length) and PP were measured in newly diagnosed, antipsychotic-naive patients with schizophrenia and related disorders on first clinical contact and in matched control subjects. Both groups were also administered an oral glucose tolerance test. Results: Compared with control subjects, the patients with psychosis had decreased telomere content and an increased PP. As previously reported, they also had increased glucose concentrations at 2 hours. These differences could not be attributed to differences in age, ethnicity, smoking, gender, body mass index, neighborhood of residence, socioeconomic status, aerobic conditioning, or an increased cortisol concentration in the psychotic subjects. Discussion: These results suggest that prior to antipsychotic use, nonaffective psychosis is associated with reduced telomere content and increased PP, indices that have been linked to an increased risk of diabetes and hypertension. PMID:19279086

  13. Association between telomere length and diabetes mellitus: A meta-analysis.

    Science.gov (United States)

    Wang, Jianfei; Dong, Xu; Cao, Li; Sun, Yangyang; Qiu, Yu; Zhang, Yi; Cao, Ruoqiong; Covasa, Mihai; Zhong, Li

    2016-12-01

    Objective We investigated the relationship between diabetes and telomere length by meta-analysis. Methods We searched five popular databases for articles published between 1990 and 2015 using "diabetes" and "telomere" as search terms. Data were processed with RevMan5, and random- or fixed-effects meta-analysis was applied. The effects of geographical region, diabetes type, body mass index (BMI), age and sex were examined. Funnel plots were applied to evaluate publication bias. Results Seventeen articles were obtained from 571 references. We identified a significant association between telomere length and diabetes mellitus (standardized mean difference [SMD]: -3.41; 95% confidence interval [CI]: -4.01, -2.80; heterogeneity, I(2 )= 99%) by comparing 5575 patients with diabetes and 6349 healthy individuals. The pooled SMD by geographic region indicated a significant association between shortened telomere length and diabetes mellitus (SMD: -3.41; 95% CI: -4.01, -2.80; heterogeneity, I(2 )= 99%). In addition, telomere length was significantly associated with age (SMD: -3.41; 95% CI: -4.01, -2.80), diabetes type (SMD: -3.41; 95% CI: -4.01, -2.80), BMI (SMD: -1.61; 95% CI: -1.98, -1.23) and sex (SMD: -4.94; 95% CI: -9.47, -0.40). Conclusions The study demonstrated a close relationship between diabetes mellitus and telomere length, which was influenced by region, age, diabetes type, BMI and sex.

  14. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity.

    Science.gov (United States)

    Gonzalez-Vasconcellos, Iria; Alonso-Rodríguez, Silvia; López-Baltar, Isidoro; Fernández, José Luis

    2015-01-01

    Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells

    Science.gov (United States)

    Arora, Rajika; Lee, Yongwoo; Wischnewski, Harry; Brun, Catherine M.; Schwarz, Tobias; Azzalin, Claus M.

    2014-01-01

    A fraction of cancer cells maintain telomeres through the telomerase-independent, ‘Alternative Lengthening of Telomeres’ (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA–DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to telomeres specifically in ALT cells and its depletion led to telomeric hybrid accumulation, exposure of single-stranded telomeric DNA, activation of replication protein A at telomeres and abrupt telomere excision. Conversely, overexpression of RNaseH1 weakened the recombinogenic nature of ALT telomeres and led to telomere shortening. Altering cellular RNaseH1 levels did not perturb telomere homoeostasis in telomerase-positive cells. RNaseH1 maintains regulated levels of telomeric RNA–DNA hybrids at ALT telomeres to trigger HR without compromising telomere integrity too severely. PMID:25330849

  16. Telomere sister chromatid exchange and the process of aging.

    Science.gov (United States)

    Blagoev, Krastan B; Goodwin, Edwin H; Bailey, Susan M

    2010-10-01

    Telomeres are a hotspot for sister chromatid exchange (T-SCE). Any biological consequence of this form of instability remained obscure until quantitative modeling revealed a link between elevated T-SCE rates and accelerated cellular replicative senescence. This work strongly suggests that progressive telomere erosion is not the only determinant of replicative capacity; instead, T-SCE need to be considered as an independent factor controlling colony growth and senescence. Additionally high T-SCE rates have been observed in cells with deficiencies in WRN and BLM, the genes that are defective in Werner's and Bloom's syndromes, implying a connection to premature aging. In this Research Perspective we will explore some of the implications this recent work has for human health.

  17. Accelerated telomere shortening in response to life stress.

    Science.gov (United States)

    Epel, Elissa S; Blackburn, Elizabeth H; Lin, Jue; Dhabhar, Firdaus S; Adler, Nancy E; Morrow, Jason D; Cawthon, Richard M

    2004-12-07

    Numerous studies demonstrate links between chronic stress and indices of poor health, including risk factors for cardiovascular disease and poorer immune function. Nevertheless, the exact mechanisms of how stress gets "under the skin" remain elusive. We investigated the hypothesis that stress impacts health by modulating the rate of cellular aging. Here we provide evidence that psychological stress--both perceived stress and chronicity of stress--is significantly associated with higher oxidative stress, lower telomerase activity, and shorter telomere length, which are known determinants of cell senescence and longevity, in peripheral blood mononuclear cells from healthy premenopausal women. Women with the highest levels of perceived stress have telomeres shorter on average by the equivalent of at least one decade of additional aging compared to low stress women. These findings have implications for understanding how, at the cellular level, stress may promote earlier onset of age-related diseases.

  18. Telomeres and telomerase in prostate cancer development and therapy

    OpenAIRE

    Graham, Mindy Kim; Meeker, Alan

    2017-01-01

    Aberrations in telomere biology are among the earliest events in prostate cancer tumorigenesis and continue during tumour progression. Substantial telomere shortening occurs in prostate cancer cells and high-grade prostatic intraepithelial neoplasia. Not all mechanisms of telomere shortening are understood, but oxidative stress from local inflammation might accelerate prostatic telomere loss. Critically short telomeres can drive the accumulation of tumour-promoting genomic alterations; howeve...

  19. Telomere Length in Elite Athletes.

    Science.gov (United States)

    Muniesa, Carlos A; Verde, Zoraida; Diaz-Ureña, Germán; Santiago, Catalina; Gutiérrez, Fernando; Díaz, Enrique; Gómez-Gallego, Félix; Pareja-Galeano, Helios; Soares-Miranda, Luisa; Lucia, Alejandro

    2017-08-01

    Growing evidence suggests that regular moderate-intensity physical activity is associated with an attenuation of leukocyte telomere length (LTL) shortening. However, more controversy exists regarding higher exercise loads such as those imposed by elite-sport participation. The authors investigated LTL differences between young elite athletes (n = 61, 54% men, age [mean ± SD] 27.2 ± 4.9 y) and healthy nonsmoker, physically inactive controls (n = 64, 52% men, 28.9 ± 6.3 y) using analysis of variance (ANOVA). Elite athletes had, on average, higher LTL than control subjects, 0.89 ± 0.26 vs 0.78 ± 0.31, P = .013 for the group effect, with no significant sex (P = .995) or age effect (P = .114). The results suggest that young elite athletes have longer telomeres than their inactive peers. Further research might assess the LTL of elite athletes of varying ages compared with both age-matched active and inactive individuals.

  20. Low Plasma Level of Leucine-Rich Repeat-Containing 17 (LRRc17) Is an Independent and Additive Risk Factor for Osteoporotic Fractures in Postmenopausal Women.

    Science.gov (United States)

    Hong, Namki; Kim, Beom-Jun; Kim, Chong Hwa; Baek, Ki Hyun; Min, Yong-Ki; Kim, Deog-Yoon; Lee, Seung Hun; Koh, Jung-Min; Kang, Moo-Il; Rhee, Yumie

    2016-12-01

    A novel role of leucine-rich repeat-containing 17 (LRRc17), an LRR protein secreted by osteoblasts, as a negative regulator of receptor activator of NF-κB ligand-induced osteoclast differentiation was found. However, the clinical association between LRRc17 and osteoporotic fracture (OF) has not yet been investigated. We hypothesized that low circulating plasma level of LRRc17 might serve as an independent and additive risk factor for OF, including vertebral fractures (VF) and non-vertebral fractures (non-VF). In this case-control study, 102 OF cases and 102 age- and body mass index-matched controls (mean age, 63.2 years) were analyzed among 532 postmenopausal women. VF (n = 49) and non-VF (n = 60) participants were identified using lateral thoracolumbar radiographs and an interviewer-assisted questionnaire, respectively. Median LRRc17 levels were significantly lower in participants with any OF (117.5 versus 197.3 pg/mL, p independent risk factor for OF, which improved risk stratification, particularly in the spines of postmenopausal women. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  1. Identification of TERRA locus unveils a telomere protection role through association to nearly all chromosomes.

    Science.gov (United States)

    López de Silanes, Isabel; Graña, Osvaldo; De Bonis, Maria Luigia; Dominguez, Orlando; Pisano, David G; Blasco, Maria A

    2014-09-03

    Telomeric RNAs (TERRAs) are UUAGGG repeat-containing RNAs that are transcribed from the subtelomere towards the telomere. The precise genomic origin of TERRA has remained elusive. Using a whole-genome RNA-sequencing approach, we identify novel mouse transcripts arising mainly from the subtelomere of chromosome 18, and to a lesser extend chromosome 9, that resemble TERRA in several key aspects. Those transcripts contain UUAGGG-repeats and are heterogeneous in size, fluctuate in abundance in a TERRA-like manner during the cell cycle, are bound by TERRA RNA-binding proteins and are regulated in a manner similar to TERRA in response to stress and the induction of pluripotency. These transcripts are also found to associate with nearly all chromosome ends and downregulation of the transcripts that originate from chromosome 18 causes a reduction in TERRA abundance. Interestingly, downregulation of either chromosome 18 transcripts or TERRA results in increased number of telomere dysfunction-induced foci, suggesting a protective role at telomeres.

  2. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro

    Science.gov (United States)

    Lacroix, Laurent; Liénard, Hélène; Labourier, Emmanuel; Djavaheri-Mergny, Mojgan; Lacoste, Jérôme; Leffers, Henrik; Tazi, Jamal; Hélène, Claude; Mergny, Jean-Louis

    2000-01-01

    Most studies on the structure of DNA in telomeres have been dedicated to the double-stranded region or the guanosine-rich strand and consequently little is known about the factors that may bind to the telomere cytosine-rich (C-rich) strand. This led us to investigate whether proteins exist that can recognise C-rich sequences. We have isolated several nuclear factors from human cell extracts that specifically bind the C-rich strand of vertebrate telomeres [namely a d(CCCTAA)n repeat] with high affinity and bind double-stranded telomeric DNA with a 100× reduced affinity. A biochemical assay allowed us to characterise four proteins of apparent molecular weights 66–64, 45 and 35 kDa, respectively. To identify these polypeptides we screened a λgt11-based cDNA expression library, obtained from human HeLa cells using a radiolabelled telomeric oligonucleotide as a probe. Two clones were purified and sequenced: the first corresponded to the hnRNP K protein and the second to the ASF/SF2 splicing factor. Confirmation of the screening results was obtained with recombinant proteins, both of which bind to the human telomeric C-rich strand in vitro. PMID:10710423

  3. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Elisia D. Tichy

    2017-10-01

    Full Text Available Muscle stem cells (MuSCs contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells.

  4. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles.

    Science.gov (United States)

    Tichy, Elisia D; Sidibe, David K; Tierney, Matthew T; Stec, Michael J; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F Brad; Sacco, Alessandra; Mourkioti, Foteini

    2017-10-10

    Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence

    National Research Council Canada - National Science Library

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    .... However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases...

  6. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence: e0140189

    National Research Council Canada - National Science Library

    Ryusaku Matsumoto; Hidenori Fukuoka; Genzo Iguchi; Yukiko Odake; Kenichi Yoshida; Hironori Bando; Kentaro Suda; Hitoshi Nishizawa; Michiko Takahashi; Shozo Yamada; Wataru Ogawa; Yutaka Takahashi

    2015-01-01

    .... However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases...

  7. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection.

    Directory of Open Access Journals (Sweden)

    Jaspreet S Khurana

    2010-12-01

    Full Text Available Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.

  8. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles.

    Science.gov (United States)

    Yang, Luzhu; Wang, Yanjun; Li, Baoxin; Jin, Yan

    2017-01-15

    Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Relationship between physical activity level, telomere length, and telomerase activity.

    Science.gov (United States)

    Ludlow, Andrew T; Zimmerman, Jo B; Witkowski, Sarah; Hearn, Joe W; Hatfield, Bradley D; Roth, Stephen M

    2008-10-01

    The purpose of this study was to examine the relationship of exercise energy expenditure (EEE) with both telomere length and telomerase activity in addition to accounting for hTERT C-1327T promoter genotype. Sixty-nine (n = 34 males; n = 35 females) participants 50-70 yr were assessed for weekly EEE level using the Yale Physical Activity Survey. Lifetime consistency of EEE was also determined. Subjects were recruited across a large range of EEE levels and separated into quartiles: 0-990, 991-2340, 2341-3540, and >3541 kcal x wk(-1). Relative telomere length and telomerase activity were measured in peripheral blood mononuclear cells (PBMC). The second EEE quartile exhibited significantly longer telomere lengths [1.12 +/- 0.03 relative units (RU)] than both the first and fourth EEE quartiles (0.94 +/- 0.03 and 0.96 +/- 0.03 RU, respectively; P EEE quartiles. An association was observed between telomerase enzyme activity and hTERT genotype with the TT genotype (1.0 x 10(-2) +/- 4.0 x 10(-3) attomoles (amol) per 10,000 cells; n = 19) having significantly greater telomerase enzyme activity than both the CT (1.3 x 10(-3) +/- 3.2 x 10(-3); n = 30) and CC groups (5.0 x 10(-4) +/- 3.9 x 10(-3); n = 20; P = 0.01). These results indicate that moderate physical activity levels may provide a protective effect on PBMC telomere length compared with both low and high EEE levels.

  10. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses' health study.

    Directory of Open Access Journals (Sweden)

    Francine Grodstein

    Full Text Available BACKGROUND: Dementia takes decades to develop, and effective prevention will likely require early intervention. Thus, it is critical to identify biomarkers of preclinical disease, allowing targeting of high-risk subjects for preventive efforts. Since telomeres shorten with age and oxidative stress, both of which are important contributors to the onset of dementia, telomere length might be a valuable biomarker. METHODOLOGY/PRINCIPAL FINDINGS: Among 62 participants of the Nurses' Health Study, we conducted neurologic evaluations, including patient and caregiver interviews, physical exam, neurologic exam, and neuropsychologic testing. We also conducted magnetic resonance imaging (MRI in a sample of 29 of these women. In these preliminary data, after adjustment for numerous health and lifestyle factors, we found that truncated telomeres in peripheral blood leukocytes segregate with preclinical dementia states, including mild cognitive impairment (MCI; the odds of MCI were 12-fold higher (odds ratio = 12.00, 95% confidence interval 1.24-116.5 for those with shorter telomere length compared to longer telomere length. In addition, decreasing telomere length was strongly related to decreasing hippocampal volume (p = 0.038. CONCLUSIONS: These preliminary data suggest that telomere length may be a possible early marker of dementia risk, and merits further study in large, prospective investigations.

  11. Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses' health study.

    Science.gov (United States)

    Grodstein, Francine; van Oijen, Marieke; Irizarry, Michael C; Rosas, H Diana; Hyman, Bradley T; Growdon, John H; De Vivo, Immaculata

    2008-02-13

    Dementia takes decades to develop, and effective prevention will likely require early intervention. Thus, it is critical to identify biomarkers of preclinical disease, allowing targeting of high-risk subjects for preventive efforts. Since telomeres shorten with age and oxidative stress, both of which are important contributors to the onset of dementia, telomere length might be a valuable biomarker. Among 62 participants of the Nurses' Health Study, we conducted neurologic evaluations, including patient and caregiver interviews, physical exam, neurologic exam, and neuropsychologic testing. We also conducted magnetic resonance imaging (MRI) in a sample of 29 of these women. In these preliminary data, after adjustment for numerous health and lifestyle factors, we found that truncated telomeres in peripheral blood leukocytes segregate with preclinical dementia states, including mild cognitive impairment (MCI); the odds of MCI were 12-fold higher (odds ratio = 12.00, 95% confidence interval 1.24-116.5) for those with shorter telomere length compared to longer telomere length. In addition, decreasing telomere length was strongly related to decreasing hippocampal volume (p = 0.038). These preliminary data suggest that telomere length may be a possible early marker of dementia risk, and merits further study in large, prospective investigations.

  12. Short Telomere Length and Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Madrid, Alexander Scheller; Rode, Line; Nordestgaard, Børge Grønne

    2016-01-01

    BACKGROUND: Short telomeres are associated with aging and have been associated with a high risk of ischemic heart disease in observational studies; however, the latter association could be due to residual confounding and/or reverse causation. We wanted to test the hypothesis that short telomeres...... are associated with high risk of ischemic heart disease using a Mendelian randomization approach free of reverse causation and of most confounding. METHODS: We genotyped 3 genetic variants in OBFC1 (oligonucleotide/oligosaccharide binding fold containing 1), TERT (telomerase reverse transcriptase), and TERC...... (telomerase RNA component), which code for proteins and RNA involved in telomere maintenance. We studied 105 055 individuals from Copenhagen; 17 235 of these individuals were diagnosed with ischemic heart disease between 1977 and 2013, and 66 618 had telomere length measured. For genetic studies, we further...

  13. Regulation of TERRA on telomeric and mitochondrial functions in IPF pathogenesis.

    Science.gov (United States)

    Gao, Yulin; Zhang, Jinjin; Liu, Yuxia; Zhang, Songzi; Wang, Youlei; Liu, Bo; Liu, Huizhu; Li, Rongrong; Lv, Changjun; Song, Xiaodong

    2017-12-02

    Aging is a known risk factor of idiopathic pulmonary fibrosis (IPF). However, the pathogenic mechanisms underlying the effects of advanced aging remain largely unknown. Telomeric repeat-containing RNA (TERRA) represents a type of long noncoding RNA. In this study, the regulatory roles of TERRA on human telomeres and mitochondria and IPF epithelial injury model were identified. Blood samples were collected from patients with IPF (n = 24) and matched control individuals (n = 24). The significance of clinical research on the TERRA expression correlated with pulmonary fibrosis was assessed. The expression levels of TERRA in vivo and in vitro were determined through quantitative real-time polymerase chain reaction analysis. Telomerase activity was observed using a fluorescent quantitative TRAP assay kit. The functions of telomeres, mitochondria, and associated genes were analyzed through RNA interference on TERRA. TERRA expression levels significantly increased in the peripheral blood mononuclear cells of IPF patients. The expression levels also exhibited a direct and significantly inverse correlation with the percentage of predicted force vital capacity, which is a physiological indicator of fibrogenesis during IPF progression. This finding was confirmed in the epithelial injury model of IPF in vitro. RNA interference on TERRA expression can ameliorate the functions of telomeres; mitochondria; associated genes; components associated with telomeres, such as telomerase reverse transcriptase, telomerase, and cell nuclear antigen, cyclin D1; and mitochondria-associated cyclin E genes, including the MMP and Bcl-2 family. The RNA interference on TERRA expression can also improve the functions of oxidative-stress-associated genes, such as reactive oxygen species, superoxide dismutase, and catalase, and apoptosis-related genes, such as cytochrome c, caspase-9, and caspase-3. In this study, the regulation of TERRA expression on telomeres and mitochondria during IPF

  14. Telomere length in early life predicts lifespan

    OpenAIRE

    Heidinger, B. J.; Blount, J.D.; Boner, W.; Griffiths, K.; Metcalfe, N.B.; Monaghan, P.

    2012-01-01

    The attrition of telomeres, the ends of eukaryote chromosomes, is thought to play an important role in cell deterioration with advancing age. The observed variation in telomere length among individuals of the same age is therefore thought to be related to variation in potential longevity. Studies of this relationship are hampered by the time scale over which individuals need to be followed, particularly in long-lived species where lifespan variation is greatest. So far, data are based either ...

  15. Telomeres and the ethics of human cloning.

    Science.gov (United States)

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  16. Telomere length is highly inherited and associated with hyperactivity-impulsivity in children with attention deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Danielle Souza Costa

    2015-07-01

    Full Text Available Telomere length (TL is highly heritable, and a shorter telomere at birth may increase the risk of age-related problems. Telomere length (TL is highly heritable, and a shorter telomere at birth may increase the risk of age-related problems. Additionally, a shorter TL may represent a biomarker of chronic stress and has been associated with psychiatric disorders. However, no study has explored whether there is an association between TL and the symptoms of one of the most common neurodevelopmental disorders in childhood: Attention Deficit/Hyperactive Disorder (ADHD. We evaluated 61 (range, 6-16 years ADHD children and their parents between 2012 and 2014. Telomere length was measured with a quantitative polymerase chain reaction method with telomere signal normalized to the signal from a single copy gene (36B4 to generate a T/S ratio. Family data was processed through a GEE model to determine the effect of parental TL on children TL. Inattentive and hyperactive-impulsive symptoms were also evaluated in relation to TL. For the first time, we found general heritability to be the major mechanism explaining interindividual telomere length variation in ADHD (father-child: 95%CI=0.35/0.91, p0.05. The ADHD inattentive dimension was not significant associated with TL in this study (p>0.05. TL was shown to be a potential biomarker of the ADHD symptoms burden in families affected by this neurodevelopmental disorder. However, it is crucial that future studies investigating the rate of telomere attrition in relation to psychiatric problems to consider the strong determination of telomere length at birth by inheritance.

  17. Telomere--the twilight to immortality.

    Science.gov (United States)

    Shukla, Samarth; Acharya, Sourya; Rajput, Devendra; Vagha, S; Grover, Shobha

    2010-09-01

    Besides forming a very important component of the chromosome, the telomeres have extremely significant modes of action and functions, right from maintaining a basic infrastructure and integrity of the chromosome vis a vis the other chromosomes, telomeres are responsible for the cell divisions and replicative senescence of the cell. The number of mitotic divisions which a cell will go through in its life span while passing through the cell cycle is governed inturn by these telomeres, the crux of the entire functioning of these chromosomal components suggests that they are the ticking clocks of the cell and when they diminish or are worn out so does the cell reach it's senility at the fag end of it's replicative life--resulting fate being--the cell is sent to it's grave yard (the final destination). Clinical implications include--regulation of cell life spans, regulating the cell's replicative behavior and it's utility in forming cells which usually are impossible to divide or replicate, telomeres regulate the cloning process,the telomeres play a major role in predicting the fate of a neoplastic cell and finally enhancing the life span of a single cell, the organ, the body as a whole by enzymes which expand the telomeres--the telomerase.

  18. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu–Sir4 interaction

    Science.gov (United States)

    Guintini, Laetitia; Tremblay, Maxime; Toussaint, Martin; D’Amours, Annie; Wellinger, Ralf E.

    2017-01-01

    Abstract Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y’-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y’-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu–Sir4 interaction, but Sir2 and Sir3 independent. PMID:28334768

  19. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu-Sir4 interaction.

    Science.gov (United States)

    Guintini, Laetitia; Tremblay, Maxime; Toussaint, Martin; D'Amours, Annie; Wellinger, Ralf E; Wellinger, Raymund J; Conconi, Antonio

    2017-05-05

    Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y'-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y'-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu-Sir4 interaction, but Sir2 and Sir3 independent. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Expression of Telomeres in Astrocytoma WHO Grade 2 to 4: TERRA Level Correlates with Telomere Length, Telomerase Activity, and Advanced Clinical Grade12

    Science.gov (United States)

    Sampl, Sandra; Pramhas, Sibylle; Stern, Christian; Preusser, Matthias; Marosi, Christine; Holzmann, Klaus

    2012-01-01

    Cancer cells bypass replicative senescence, the major barrier to tumor progression, by using telomerase or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms (TMMs). Correlation between ALT and patient survival was demonstrated for high-grade astrocytomas. Transcription from subtelomeres produces telomeric repeat-containing RNA (TERRA), a natural inhibitor of telomerase activity (TA). This led us to evaluate correlations of TERRA and TMM with tumor grade and outcome in astrocytoma patients. SYBR Green real-time reverse transcription-polymerase chain reaction assays for quantitation of total and chromosome 2p and 18p specific TERRA levels were developed. Tumor samples from 46 patients with astrocytoma grade 2 to 4, tissue controls, and cell lines were assessed. TMMs were evaluated by measuring TA and by detecting long telomeres due to ALT. In glioblastoma multiforme (GBM) grade 4, total TERRA levels were similar to cell lines but 14-, 31-, and 313-fold lower compared with grade 3, grade 2, and nonmalignant tissue, respectively. Total TERRA levels differed from chromosomal levels. Low 2p TERRA levels correlated with dense promoter methylation of subtelomeric CpG islands, indicating that TERRA expression in gliomas may be chromosome specific and epigenetically regulated. Total TERRA levels correlated with diagnosis, with low or absent TA and the presence of ALT, and were tentatively associated with favorable patient prognosis in our cohort (P = .06). TA and short telomeres identified a subset of GBM with a median survival of only 14.8 months. TERRA and TA may be prognostic in astrocytic tumors. PMID:22348177

  1. Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade.

    Science.gov (United States)

    Sampl, Sandra; Pramhas, Sibylle; Stern, Christian; Preusser, Matthias; Marosi, Christine; Holzmann, Klaus

    2012-02-01

    Cancer cells bypass replicative senescence, the major barrier to tumor progression, by using telomerase or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms (TMMs). Correlation between ALT and patient survival was demonstrated for high-grade astrocytomas. Transcription from subtelomeres produces telomeric repeat-containing RNA (TERRA), a natural inhibitor of telomerase activity (TA). This led us to evaluate correlations of TERRA and TMM with tumor grade and outcome in astrocytoma patients. SYBR Green real-time reverse transcription-polymerase chain reaction assays for quantitation of total and chromosome 2p and 18p specific TERRA levels were developed. Tumor samples from 46 patients with astrocytoma grade 2 to 4, tissue controls, and cell lines were assessed. TMMs were evaluated by measuring TA and by detecting long telomeres due to ALT. In glioblastoma multiforme (GBM) grade 4, total TERRA levels were similar to cell lines but 14-, 31-, and 313-fold lower compared with grade 3, grade 2, and nonmalignant tissue, respectively. Total TERRA levels differed from chromosomal levels. Low 2p TERRA levels correlated with dense promoter methylation of subtelomeric CpG islands, indicating that TERRA expression in gliomas may be chromosome specific and epigenetically regulated. Total TERRA levels correlated with diagnosis, with low or absent TA and the presence of ALT, and were tentatively associated with favorable patient prognosis in our cohort (P = .06). TA and short telomeres identified a subset of GBM with a median survival of only 14.8 months. TERRA and TA may be prognostic in astrocytic tumors.

  2. Patients with gout have short telomeres compared with healthy participants: association of telomere length with flare frequency and cardiovascular disease in gout.

    Science.gov (United States)

    Vazirpanah, N; Kienhorst, L B E; Van Lochem, E; Wichers, C; Rossato, M; Shiels, P G; Dalbeth, N; Stamp, L K; Merriman, T R; Janssen, M; Radstake, T R D J; Broen, J Ca

    2017-07-01

    Chronic inflammation associates with increased senescence, which is a strong predictor for cardiovascular disease. We hypothesised that inflammation accelerates senescence and thereby enhances the risk of cardiovascular disease in gout. We assessed replicative senescence by quantifying telomere length (TL) in a discovery cohort of 145 Dutch patients with gout and 273 healthy individuals and validated our results in 474 patients with gout and 293 healthy participants from New Zealand. Subsequently, we investigated the effect of cardiovascular disease on TL of all participants. Also, we measured TL of CD4+ and CD8+ T lymphocytes, B lymphocytes, monocytes, natural killer cells and plasmacytoid dendritic cells. Additionally, we assessed the potential temporal difference in TL and telomerase activity. TL in PBMCs of healthy donors decreased over time, reflecting normal ageing. Patients with gout demonstrated shorter telomeres (p=0.001, R2=0.01873). In fact, the extent of telomere erosion in patients with gout was higher at any age compared with healthy counterparts at any age (pgout with cardiovascular disease had the shortest telomeres and TL was an independent risk factor for cardiovascular disease in patients with gout (p=0.001). TL was inversely associated with the number of gouty flares (p=0.005). Patients with gout have shorter telomeres than healthy participants, reflecting increased cellular senescence. Telomere shortening was associated with the number of flares and with cardiovascular disease in people with gout. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Effects of perinuclear chromosome tethers in the telomeric URA3/5FOA system reflect changes to gene silencing and not nucleotide metabolism

    Directory of Open Access Journals (Sweden)

    Betty Po Kei Poon

    2012-08-01

    Full Text Available Telomeres are repetitive DNA sequences that protect the ends of linear chromosomes. Telomeres also recruit histone deacetylase complexes that can then spread along chromosome arms and repress the expression of subtelomeric genes in a process known as telomere position effect (TPE. In the budding yeast Saccharomyces cerevisiae, association of telomeres with the nuclear envelope is thought to promote TPE by increasing the local concentration of histone deacetylase complexes at chromosome ends. Importantly, our understanding of TPE stems primarily from studies that employed marker genes inserted within yeast subtelomeres. In particular, the prototrophic marker URA3 is commonly used to assay TPE by negative selection on media supplemented with 5-fluoro-orotic acid (5FOA. Recent findings suggested that decreased growth on 5FOA-containing media may not always indicate increased expression of a telomeric URA3 reporter, but can rather reflect an increase in ribonucleotide reductase (RNR function and nucleotide metabolism. Thus, we set out to test if the 5FOA sensitivity of subtelomeric URA3-harbouring cells in which we deleted various factors implicated in perinuclear telomere tethering reflects changes to TPE and/or RNR. We report that RNR inhibition restores 5FOA resistance to cells lacking RNR regulatory factors but not any of the major telomere tethering and silencing factors, including Sir2, Cohibin, Mps3, Heh1, and Esc1. In addition, we find that the disruption of tethering pathways in which these factors participate increases the level of URA3 transcripts originating from the telomeric reporter gene and abrogates silencing of subtelomeric HIS3 reporter genes without altering RNR gene expression. Thus, increased 5FOA sensitivity of telomeric URA3-harbouring cells deficient in telomere tethers reflects the dysregulation of TPE but not RNR. This is key to understanding relationships between telomere positioning, chromatin silencing, and lifespan.

  4. Understanding the stability of DNA G-quadruplex units in long human telomeric strands.

    Science.gov (United States)

    Bugaut, Anthony; Alberti, Patrizia

    2015-06-01

    Human telomeric DNA is composed of GGGTTA repeats. The presence of consecutive guanines makes the telomeric G-strand prone to fold into contiguous (or tandem) G-quadruplexes (G4s). The aim of this study was to provide a clarified picture of the stability of telomeric tandem G4 structures as a function of the number of G4 units and of boundary sequences, and an understanding of the diversity of their melting behaviors in terms of the single G4 units composing them. To this purpose we undertook an UV-spectroscopic investigation of the structure and stability of telomeric repeats potentially able to fold into up to four contiguous G4s, flanked or not by TTA sequences at their 5' and 3' extremities. We explain why the stability of (GGGTTA)4m-1GGG structures (m = 2, 3, 4 …) decreases with increasing the number m of G4 units, whereas the stability of TTA-(GGGTTA)4m-1GGG-TTA structures does not. Our results support that the inner G4 units have similar stabilities, whereas the stabilities of the terminal G4 units are modulated by their flanking nucleotides: in a TTA-(GGGTTA)4m-1GGG-TTA tandem context, the terminal G4 units are roughly as stable as the inner G4 units; while in a (GGGTTA)4m-1GGG tandem context, the G4 at the 5' extremity is more stable than the G4 at the 3' extremity, which in turn is more stable than an inner G4. Our study provides new information about the global and local stability of telomeric tandem G4 structures under near physiological conditions. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The effect of chemotherapeutic agents on telomere length maintenance in breast cancer cell lines

    OpenAIRE

    Motevalli, A; Yasaei, H; Virmouni, SA; Slijepcevic, P; Roberts, T

    2014-01-01

    Copyright @ 2014 the authors. This article is made available through the Brunel Open Access Publishing Fund. It is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Mammalian telomeric DNA consists of tandem repeats of the sequence TTAGGG associated with a specialized set of proteins, known collectively ...

  6. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jue Lin

    2016-01-01

    Full Text Available Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL in CD4+, CD8+CD28+, and CD8+CD28− T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28− cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  7. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Resham Lal Gurung

    Full Text Available BACKGROUND: A major concern of cancer chemotherapy is the side effects caused by the non-specific targeting of both normal and cancerous cells by therapeutic drugs. Much emphasis has been placed on discovering new compounds that target tumour cells more efficiently and selectively with minimal toxic effects on normal cells. METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxic effect of thymoquinone, a component derived from the plant Nigella sativa, was tested on human glioblastoma and normal cells. Our findings demonstrated that glioblastoma cells were more sensitive to thymoquinone-induced antiproliferative effects. Thymoquinone induced DNA damage, cell cycle arrest and apoptosis in the glioblastoma cells. It was also observed that thymoquinone facilitated telomere attrition by inhibiting the activity of telomerase. In addition to these, we investigated the role of DNA-PKcs on thymoquinone mediated changes in telomere length. Telomeres in glioblastoma cells with DNA-PKcs were more sensitive to thymoquinone mediated effects as compared to those cells deficient in DNA-PKcs. CONCLUSIONS/SIGNIFICANCE: Our results indicate that thymoquinone induces DNA damage, telomere attrition by inhibiting telomerase and cell death in glioblastoma cells. Telomere shortening was found to be dependent on the status of DNA-PKcs. Collectively, these data suggest that thymoquinone could be useful as a potential chemotherapeutic agent in the management for brain tumours.

  8. Shortened telomere length in bipolar disorder: a comparison of the early and late stages of disease

    Directory of Open Access Journals (Sweden)

    Florencia M. Barbé-Tuana

    Full Text Available Objective: Bipolar disorder (BD has been associated with increased rates of age-related diseases, such as type II diabetes, metabolic syndrome, osteoporosis, and cardiovascular disorders. Several biological findings have been associated with age-related disorders, including increased oxidative stress, inflammation, and telomere shortening. The objective of this study was to compare telomere length among participants with BD at early and late stages and age- and gender-matched healthy controls. Methods: Twenty-six euthymic subjects with BD and 34 healthy controls were recruited. Genomic DNA was extracted from peripheral blood and mean telomere length was measured using real-time quantitative polymerase chain reaction. Results: Telomere length was significantly shorter in both the early and late subgroups of BD subjects when compared to the respective controls (p = 0.002 and p = 0.005, respectively. The sample size prevented additional subgroup analyses, including potential effects of medication, smoking status, and lifestyle. Conclusion: This study is concordant with previous evidence of telomere shortening in BD, in both early and late stages of the disorder, and supports the notion of accelerated aging in BD.

  9. Work-related exhaustion and telomere length: a population-based study.

    Directory of Open Access Journals (Sweden)

    Kirsi Ahola

    Full Text Available Psychological stress is suggested to accelerate the rate of biological aging. We investigated whether work-related exhaustion, an indicator of prolonged work stress, is associated with accelerated biological aging, as indicated by shorter leukocyte telomeres, that is, the DNA-protein complexes that cap chromosomal ends in cells.We used data from a representative sample of the Finnish working-age population, the Health 2000 Study. Our sample consisted of 2911 men and women aged 30-64. Work-related exhaustion was assessed using the Maslach Burnout Inventory--General Survey. We determined relative leukocyte telomere length using a quantitative real-time polymerase chain reaction (PCR -based method.After adjustment for age and sex, individuals with severe exhaustion had leukocyte telomeres on average 0.043 relative units shorter (standard error of the mean 0.016 than those with no exhaustion (p = 0.009. The association between exhaustion and relative telomere length remained significant after additional adjustment for marital and socioeconomic status, smoking, body mass index, and morbidities (adjusted difference 0.044 relative units, standard error of the mean 0.017, p = 0.008.These data suggest that work-related exhaustion is related to the acceleration of the rate of biological aging. This hypothesis awaits confirmation in a prospective study measuring changes in relative telomere length over time.

  10. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans.

    Science.gov (United States)

    Ahmed, S; Hodgkin, J

    2000-01-13

    The germ line is an immortal cell lineage that is passed indefinitely from one generation to the next. To identify the genes that are required for germline immortality, we isolated Caenorhabditis elegans mutants with mortal germ lines--worms that can reproduce for several healthy generations but eventually become sterile. One of these mortal germline (mrt) mutants, mrt-2, exhibits progressive telomere shortening and accumulates end-to-end chromosome fusions in later generations, indicating that the MRT-2 protein is required for telomere replication. In addition, the germ line of mrt-2 is hypersensitive to X-rays and to transposon activity. Therefore, mrt-2 has defects in responding both to damaged DNA and to normal double-strand breaks present at telomeres. mrt-2 encodes a homologue of a checkpoint gene that is required to sense DNA damage in yeast. These results indicate that telomeres may be identified as a type of DNA damage and then repaired by the telomere-replication enzyme telomerase.

  11. Characterization of RUSI, a telomere-associated satellite DNA, in the genus Rumex (Polygonaceae).

    Science.gov (United States)

    Navajas-Pérez, R; Schwarzacher, T; Ruiz Rejón, M; Garrido-Ramos, M A

    2009-01-01

    A satellite-DNA family (RUSI) has been isolated and characterized in Rumexinduratus Boiss and Reuter (Polygonaceae), an Iberian endemic polygamous sorrel. The RUSI repeats are 170 bp in length and approximately 68% AT-rich containing different variants of degenerate telomere motifs--(TT)(n)AN(GG)(n) -, a typical feature of subtelomeric DNA repeats adjacent to telomeres, which have been referred to as telomere-associated sequences or TASs. In fact, fluorescent in situhybridization showed that this satellite DNA is located in subtelomeric positions of most of the chromosomes of R. induratus, with some centromeric loci. PCR and Southern-blot hybridization assays for sequence conservation in the genus Rumex, indicated that the RUSI sequences are restricted to the genomes of R. induratus and R. scutatus, both species of the section Scutati, suggesting that they are recently evolved. Sequence variation within the two species is high (mean value of sequence differences between repeats of 15% for R. induratus and 7.5% for R. scutatus) and the degree of sequence differentiation between species is low with no species-specific variants, postulated to be due to slowed rates of spreading of sequence variants by molecular homogenizing mechanisms. Characteristics of RUSI sequences are discussed in the light of their chromosomal location and analyzed for their evolutionary and phylogenetic implications. Copyright 2009 S. Karger AG, Basel.

  12. Telomeres and Telomerase in The Aging Heart

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2017-12-01

    Full Text Available BACKGROUND: Aging per se is a risk factor for reduced cardiac function and heart diseases, even when adjusted for aging-associated cardiovascular risk factors. Accordingly, aging-related biochemical and cell-biological changes lead to pathophysiological conditions, especially reduced heart function and heart disease. CONTENT: Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC-1a and PGC-1b in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging. SUMMARY: The aging myocardium with telomere shortening and accumulation of senescent cells restricts the tissue regenerative ability, which contributes to systolic or diastolic heart failure. Moreover, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. KEYWORDS: aging, telomere, telomerase, aging heart, mitochondria, cardiac stem cell

  13. Single-Molecule Studies of Telomeres and Telomerase.

    Science.gov (United States)

    Parks, Joseph W; Stone, Michael D

    2017-05-22

    Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.

  14. Renal failure induces telomere shortening in the rat heart

    NARCIS (Netherlands)

    Wong, L. S.; Windt, W. A.; Roks, A. J.; van Dokkum, R. P.; Schoemaker, R. G.; de Zeeuw, D.; Henning, R. H.

    Background. Renal failure aggravates pathological cardiac remodelling induced by myocardial infarction (MI). Cardiac remodelling is associated with telomere shortening, a marker for biological ageing. We investigated whether mild and severe renal failure shorten cardiac telomeres and excessively

  15. Mice with Pulmonary Fibrosis Driven by Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Juan M. Povedano

    2015-07-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a degenerative disease of the lungs with an average survival post-diagnosis of 2–3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse models that develop IPF owing to either critically short telomeres (telomerase-deficient mice or severe telomere dysfunction in the absence of telomere shortening (mice with Trf1 deletion in type II alveolar cells. We show that both mouse models develop pulmonary fibrosis through induction of telomere damage, thus providing proof of principle of the causal role of DNA damage stemming from dysfunctional telomeres in IPF development and identifying telomeres as promising targets for new treatments.

  16. Linking telomere loss and mitochondrial dysfunction in chronic disease

    DEFF Research Database (Denmark)

    Gonzalez-Ebsen, Ana Carlota; Gregersen, Niels; Olsen, Rikke Kj

    2017-01-01

    Telomeres and mitochondria are known to deteriorate over time. Telomere shortening is associated with aging, early senescence, and premature cell death. Mitochondrial dysfunction produces indiscriminate amounts of reactive oxygen species that may lead to oxidative damage to cellular constituents,...

  17. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  18. SMARCAL1 Resolves Replication Stress at ALT Telomeres

    Directory of Open Access Journals (Sweden)

    Kelli E. Cox

    2016-02-01

    Full Text Available Cancer cells overcome replicative senescence by exploiting mechanisms of telomere elongation, a process often accomplished by reactivation of the enzyme telomerase. However, a subset of cancer cells lack telomerase activity and rely on the alternative lengthening of telomeres (ALT pathway, a recombination-based mechanism of telomere elongation. Although the mechanisms regulating ALT are not fully defined, chronic replication stress at telomeres might prime these fragile regions for recombination. Here, we demonstrate that the replication stress response protein SMARCAL1 is a critical regulator of ALT activity. SMARCAL1 associates with ALT telomeres to resolve replication stress and ensure telomere stability. In the absence of SMARCAL1, persistently stalled replication forks at ALT telomeres deteriorate into DNA double-strand breaks promoting the formation of chromosome fusions. Our studies not only define a role for SMARCAL1 in ALT telomere maintenance, but also demonstrate that resolution of replication stress is a crucial step in the ALT mechanism.

  19. Telomere reprogramming and maintenance in porcine iPS cells.

    Directory of Open Access Journals (Sweden)

    Guangzhen Ji

    Full Text Available Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells. Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  20. Telomeres, workload and life-history in great tits

    OpenAIRE

    Atema, Els

    2017-01-01

    Ageing and the effects of increased workload in great tits A new measurement to quantify variation in quality and rate of ageing between individuals is telomere length. Telomeres are a piece of DNA at the end of chromosomes, and they protect the other DNA. In many species shortening of telomere length with increasing age was demonstrated. This shortening is accelerated by processes that also decrease life expectancy. In this project we discovered that telomeres of great tits differ from telom...

  1. Telomere reprogramming and maintenance in porcine iPS cells.

    Science.gov (United States)

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  2. TRF2 Interaction with Ku Heterotetramerization Interface Gives Insight into c-NHEJ Prevention at Human Telomeres

    Directory of Open Access Journals (Sweden)

    Albert Ribes-Zamora

    2013-10-01

    Full Text Available Telomeres are protected from nonhomologous end-joining (NHEJ to avoid deleterious chromosome fusions, yet they associate with the Ku heterodimer that is principal in the classical NHEJ (c-NHEJ pathway. T-loops have been proposed to inhibit Ku’s association with telomeric ends, thus inhibiting c-NHEJ; however, deficiencies in the t-loop model suggest additional mechanisms are in effect. We demonstrate that TRF2 interacts with Ku at telomeres and via residues in Ku70 helix 5 (α5, which are vital for NHEJ. We show that Ku’s interaction with a TRF2 mutant that induces telomeric fusions is significantly impaired. Additionally, we demonstrate that Ku70 α5 is required for Ku self-association in live cells, which can bridge DNA ends. Together, these findings lead us to propose a model in which telomeres are directly protected from c-NHEJ via TRF2 impeding Ku’s ability to synapse telomere ends.

  3. Telomeres, workload and life-history in great tits

    NARCIS (Netherlands)

    Atema, Els

    2017-01-01

    Ageing and the effects of increased workload in great tits A new measurement to quantify variation in quality and rate of ageing between individuals is telomere length. Telomeres are a piece of DNA at the end of chromosomes, and they protect the other DNA. In many species shortening of telomere

  4. Acute coronary syndrome: Role of the telomere dynamic | Behjati ...

    African Journals Online (AJOL)

    Telomeres, or historically named "terminal genes" are first discovered by Muller working on fruit fly in 1930s. Since then, the great progress was made in understanding the consequences of telomere erosion on the human health and disease states, as age related vascular diseases. The overlapping links between telomere ...

  5. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    Directory of Open Access Journals (Sweden)

    Bingbing Wan

    2013-09-01

    Full Text Available SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM in complex with the TRFH domain of TRF2 (TRF2TRFH and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance.

  6. Effectiveness of two strategies to follow-up ASC-US and LSIL screening results in The Netherlands using repeat cytology with or without additional hrHPV testing: a retrospective cohort study

    NARCIS (Netherlands)

    Siebers, A.G.; Arbyn, M.; Melchers, W.J.; Kemenade, F.J. van; Vedder, J.E.; Linden, H. van der; Ballegooijen, M. van; Bekkers, R.L.; Bulten, J.

    2014-01-01

    PURPOSE: The purpose of the study was to assess the effectiveness of repeat cytology with and without additional high-risk human papilloma virus (hrHPV) testing after atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion (ASC-US/LSIL) screening results.

  7. 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps"

    Directory of Open Access Journals (Sweden)

    Lemieux Bruno

    2010-12-01

    Full Text Available Abstract Background In cancer cells the three-dimensional (3D telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H to diagnostic multinuclear Reed-Sternberg (RS cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Results Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1 stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p Conclusion Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.

  8. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects.

    Science.gov (United States)

    Eisenberg, Dan T A

    2011-01-01

    Telomeres, repetitive DNA sequences found at the ends of linear chromosomes, play a role in regulating cellular proliferation, and shorten with increasing age in proliferating human tissues. The rate of age-related shortening of telomeres is highest early in life and decreases with age. Shortened telomeres are thought to limit the proliferation of cells and are associated with increased morbidity and mortality. Although natural selection is widely assumed to operate against long telomeres because they entail increased cancer risk, the evidence for this is mixed. Instead, here it is proposed that telomere length is primarily limited by energetic constraints. Cell proliferation is energetically expensive, so shorter telomeres should lead to a thrifty phenotype. Shorter telomeres are proposed to restrain adaptive immunity as an energy saving mechanism. Such a limited immune system, however, might also result in chronic infections, inflammatory stress, premature aging, and death--a more "disposable soma." With an increased reproductive lifespan, the fitness costs of premature aging are higher and longer telomeres will be favored by selection. Telomeres exhibit a paternal effect whereby the offspring of older fathers have longer telomeres due to increased telomere lengths of sperm with age. This paternal effect is proposed to be an adaptive signal of the expected age of male reproduction in the environment offspring are born into. The offspring of lineages of older fathers will tend to have longer, and thereby less thrifty, telomeres, better preparing them for an environment with higher expected ages at reproduction. Copyright © 2010 Wiley-Liss, Inc.

  9. Telomere length is shorter in healthy offspring of subjects with coronary artery disease : support for the telomere hypothesis

    NARCIS (Netherlands)

    Brouilette, S. W.; Whittaker, A.; Stevens, S. E.; van der Harst, P.; Goodall, A. H.; Samani, N. J.

    Background: Telomeres are shorter in subjects with coronary artery disease (CAD) and may indicate premature biological ageing. However, whether shorter telomeres are a primary abnormality or secondary to the disease is unclear. Objective: To investigate whether shorter telomeres are a primary

  10. Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it.

    Science.gov (United States)

    Necasová, Ivona; Janoušková, Eliška; Klumpler, Tomáš; Hofr, Ctirad

    2017-09-13

    Telomeric repeat binding factor 2 (TRF2) folds human telomeres into loops to prevent unwanted DNA repair and chromosome end-joining. The N-terminal basic domain of TRF2 (B-domain) protects the telomeric displacement loop (D-loop) from cleavage by endonucleases. Repressor activator protein 1 (Rap1) binds TRF2 and improves telomeric DNA recognition. We found that the B-domain of TRF2 stabilized the D-loop and thus reduced unwinding by BLM and RPA, whereas the formation of the Rap1-TRF2 complex restored DNA unwinding. To understand how the B-domain of TRF2 affects DNA binding and D-loop processing, we analyzed DNA binding of full-length TRF2 and a truncated TRF2 construct lacking the B-domain. We quantified how the B-domain improves TRF2's interaction with DNA via enhanced long-range electrostatic interactions. We developed a structural envelope model of the B-domain bound on DNA. The model revealed that the B-domain is flexible in solution but becomes rigid upon binding to telomeric DNA. We proposed a mechanism for how the B-domain stabilizes the D-loop. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Tetrafluoroethylene telomerization initiated by benzoyl peroxide

    Science.gov (United States)

    Bolshakov, A. I.; Kuzina, S. I.; Kiryukhin, D. P.

    2017-03-01

    The radical telomerization of tetrafluoroethylene initiated by benzoyl peroxide (BP) photolysis at λ ≥ 365 nm is studied in acetone, dichloromethane, carbon tetrachloride, and Freon 114B2 at 25°C. The products of synthesis are a mixture of telomers of different molar masses, segregated into soluble and insoluble fractions. To characterize the radicals initiating telomerization, crystalline BP and its solution in ethanol are subjected to low-temperature (77 K) photolysis, with the liquid system serving as a model for BP behavior in solutions of telogens. It is established that radicals are not only initiators but also participate in chain termination reactions, lowering the telomers' molar mass and thus raising the proportion of the soluble fraction. Telomerization initiated by an initiator compound versus initiation by gamma radiation are compared and discussed.

  12. Identification of seven loci affecting mean telomere length and their association with disease

    NARCIS (Netherlands)

    Codd, Veryan; Nelson, Christopher P.; Albrecht, Eva; Mangino, Massimo; Deelen, Joris; Buxton, Jessica L.; Hottenga, Jouke Jan; Fischer, Krista; Esko, Tonu; Surakka, Ida; Broer, Linda; Nyholt, Dale R.; Mateo Leach, Irene; Salo, Perttu; Hagg, Sara; Matthews, Mary K.; Palmen, Jutta; Norata, Giuseppe D.; O'Reilly, Paul F.; Saleheen, Danish; Amin, Najaf; Balmforth, Anthony J.; Beekman, Marian; de Boer, Rudolf A.; Bohringer, Stefan; Braund, Peter S.; Burton, Paul R.; de Craen, Anton J. M.; Denniff, Matthew; Dong, Yanbin; Douroudis, Konstantinos; Dubinina, Elena; Eriksson, Johan G.; Garlaschelli, Katia; Guo, Dehuang; Hartikainen, Anna-Liisa; Henders, Anjali K.; Houwing-Duistermaat, Jeanine J.; Kananen, Laura; Karssen, Lennart C.; Kettunen, Johannes; Klopp, Norman; Lagou, Vasiliki; van Leeuwen, Elisabeth M.; Madden, Pamela A.; Maegi, Reedik; Magnusson, Patrik K. E.; Mannisto, Satu; McCarthy, Mark I.; Medland, Sarah E.; Mihailov, Evelin; Montgomery, Grant W.; Oostra, Ben A.; Palotie, Aarno; Peters, Annette; Pollard, Helen; Pouta, Anneli; Prokopenko, Inga; Ripatti, Samuli; Salomaa, Veikko; Suchiman, H. Eka D.; Valdes, Ana M.; Verweij, Niek; Vinuela, Ana; Wang, Xiaoling; Wichmann, H-Erich; Widen, Elisabeth; Willemsen, Gonneke; Wright, Margaret J.; Xia, Kai; Xiao, Xiangjun; van Veldhuisen, Dirk J.; Catapano, Alberico L.; Tobin, Martin D.; Hall, Alistair S.; Blakemore, Alexandra I. F.; van Gilst, Wiek H.; Zhu, Haidong; Erdmann, Jeanette; Reilly, Muredach P.; Kathiresan, Sekar; Schunkert, Heribert; Talmud, Philippa J.; Pedersen, Nancy L.; Perola, Markus; Ouwehand, Willem; Kaprio, Jaakko; Martin, Nicholas G.; van Duijn, Cornelia M.; Hovatta, Iris; Gieger, Christian; Metspalu, Andres; Boomsma, Dorret I.; Jarvelin, Marjo-Riitta; Slagboom, P. Eline; Thompson, John R.; Spector, Tim D.; van der Harst, Pim; Samani, Nilesh J.

    Interindividual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. We report here a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in an additional 10,739 individuals. We identified seven loci,

  13. The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures.

    Science.gov (United States)

    Pedroso, Ilene M; Hayward, William; Fletcher, Terace M

    2009-04-01

    The sequence of human telomeric DNA consists of tandem repeats of 5'-d(TTAGGG)-3'. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by G-quadruplex structures. We analyzed the influence of the arginine-rich, TRF2 N-terminus (TRF2(B)), as well as this region plus the TRFH domain of TRF2 (TRF2(BH)), on the structure of G-quadruplexes. Circular dichroism results suggest that oligonucleotides with 4, 7 and 8 5'-d(TTAGGG)-3' repeats form hybrid structures, a mix of parallel/antiparallel strand orientation, in K(+). TRF2(B) stimulated the formation of parallel-stranded structures and, in some cases, intermolecular structures. TRF2(BH) also stimulated intermolecular but not parallel-stranded structures. Only full-length TRF2 and TRF2(BH) stimulated uptake of a telomeric single-stranded oligonucleotide into a plasmid containing telomeric DNA in the presence of K(+). The results in this study suggest that G-quadruplex formation inhibits oligonucleotide uptake into the plasmid, but the inhibition can be overcome by TRF2. This study is the first analysis of the effects of TRF2 domains on G-quadruplex structures and has implications for the role of G-quadruplexes and TRF2 in the formation of t-loops.

  14. Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors.

    Science.gov (United States)

    Lustig, Ana; Shterev, Ivo; Geyer, Susan; Shi, Alvin; Hu, Yiqun; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Maki, Mayumi; Hayashi, Ikue; Furukawa, Kyoji; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Nakachi, Kei; Weng, Nan-Ping; Hayashi, Tomonori

    2016-06-28

    Ionizing radiation (IR) is a major source of cellular damage and the immediate cellular response to IR has been well characterized. But the long-term impact of IR on cell function and its relationship with aging are not known. Here, we examined the IR effects on telomere length and other biomarkers 50 to 68 years post-exposure (two time points per person) in survivors of the atomic bombing at Hiroshima during WWII. We found that telomere length of leukocytes was inversely correlated with the dose of IR (p=0.008), and this effect was primarily found in survivors who were exposed at younger ages; specifically those <12 years old (p=0.0004). Although a dose-related retardation of telomere shortening with age was observed in the cross-sectional data, longitudinal follow-up after 11 years did not show IR exposure-related alteration of the rate of telomere shortening with age. In addition, IR diminished the associations between telomere length and selected aging biomarkers that were observed in survivors with no dose. These included uric acid metabolism, cytokines, and blood T cell counts. These findings showed long-lasting detrimental effects of IR on telomere length of leukocytes in both dose- and age-at-exposure dependent manner, and on alterations of biomarkers with aging.

  15. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-telomeric Roles of Arabidopsis Telomerase

    Directory of Open Access Journals (Sweden)

    Ladislav eDokládal

    2015-11-01

    Full Text Available Telomerase-reverse transcriptase (TERT plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE TERT domain and identified a nuclear-localized protein that contains a RNA recognition motif (RRM. This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  16. The Drosophila HOAP protein is required for telomere capping.

    Science.gov (United States)

    Cenci, Giovanni; Siriaco, Giorgia; Raffa, Grazia D; Kellum, Rebecca; Gatti, Maurizio

    2003-01-01

    HOAP (HP1/ORC-associated protein) has recently been isolated from Drosophila melanogaster embryos as part of a cytoplasmic complex that contains heterochromatin protein 1 (HP1) and the origin recognition complex subunit 2 (ORC2). Here, we show that caravaggio, a mutation in the HOAP-encoding gene, causes extensive telomere-telomere fusions in larval brain cells, indicating that HOAP is required for telomere capping. Our analyses indicate that HOAP is specifically enriched at mitotic chromosome telomeres, and strongly suggest that HP1 and HOAP form a telomere-capping complex that does not contain ORC2.

  17. Telomeres and the natural lifespan limit in humans

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Kark, Jeremy D; Verhulst, Simon

    2017-01-01

    An ongoing debate in demography has focused on whether the human lifespan has a maximal natural limit. Taking a mechanistic perspective, and knowing that short telomeres are associated with diminished longevity, we examined whether telomere length dynamics during adult life could set a maximal...... natural lifespan limit. We define leukocyte telomere length of 5 kb as the 'telomeric brink', which denotes a high risk of imminent death. We show that a subset of adults may reach the telomeric brink within the current life expectancy and more so for a 100-year life expectancy. Thus, secular trends...

  18. Telomere in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2017-12-01

    Full Text Available BACKGROUND: The number of elderly population in the world keep increasing. In their advanced ages, many elderly face years of disability because of multiple chronic diseases, frailty, making them lost their independence. Consequently, this could have impacts on social and economic stability. A huge challenge has been sent for biomedical researchers to compress or at least eliminate this period of disability and increase the health span. CONTENT: Over the past decades, many studies of telomere biology have demonstrated that telomeres and telomere-associated proteins are implicated in human diseases. Accelerated telomere erosion was clearly correlated with a pack of metabolic and inflammatory diseases. Critically short telomeres or the unprotected end, are likely to form telomeric fusion, generating genomic instability, the cornerstone for carcinogenesis. Enlightening how telomeres involved in the mechanisms underlying the diseases’ pathogenesis was expected to uncover new molecular targets for any important diagnosis or therapeutic implications. SUMMARY: Telomere shortening was foreseen as an imporant mechanism to supress tumor by limiting cellular proliferative capacity by regulating senescence check point activation. Many human diseases and carcinogenesis are causally related to defective telomeres, asserting the importance of telomeres sustainment. Thus, telomere length assessment might serve as an important tool for clinical prognostic, diagnostic, monitoring and management. KEYWORDS: telomerase, cellular senescence, aging, cancer

  19. Telomere tracking from birth to adulthood and residential traffic exposure.

    Science.gov (United States)

    Bijnens, Esmée M; Zeegers, Maurice P; Derom, Catherine; Martens, Dries S; Gielen, Marij; Hageman, Geja J; Plusquin, Michelle; Thiery, Evert; Vlietinck, Robert; Nawrot, Tim S

    2017-11-21

    Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length. Among 184 twins of the East Flanders Prospective Twin Survey, telomere length in placental tissue and in buccal cells in young adulthood was measured. Residential addresses at birth and in young adulthood were geocoded and residential traffic and greenness exposure was determined. We investigated individual telomere tracking from birth over a 20 year period (mean age (SD), 22.6 (3.1) years) in association with residential exposure to traffic and greenness. Telomere length in placental tissue and in buccal cells in young adulthood correlated positively (r = 0.31, P adulthood was negatively and significantly associated with residential traffic exposure at the birth address, while traffic exposure at the residential address at adult age was not associated with telomere length. Longitudinal evidence of telomere length tracking from birth to adulthood shows inverse associations of residential traffic exposure in association with telomere length at birth as well as accelerated telomere shortening in the first two decades of life.

  20. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.

    Science.gov (United States)

    Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas

    2017-08-01

    Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  1. Homeostasis of telomere length rather than telomere shortening after allogeneic peripheral blood stem cell transplantation

    NARCIS (Netherlands)

    Roelofs, Helene; de Pauw, Elmar S. D.; Zwinderman, Aeilko H.; Opdam, Sonja M.; Willemze, Roel; Tanke, Hans J.; Fibbe, Willem E.

    2003-01-01

    Hematopoietic reconstitution after stem cell transplantation requires excessive replicative activity because of the limited number of stem cells that are used for transplantation. Telomere shortening has been detected in hematopoietic cells after bone marrow transplantation. This has been thought to

  2. In young men sperm telomere length is related to sperm number and parental age.

    Science.gov (United States)

    Ferlin, A; Rampazzo, E; Rocca, M S; Keppel, S; Frigo, A C; De Rossi, A; Foresta, C

    2013-12-01

    determine whether our findings can be generalized to men at ages typically encountered at fertility centers. Future studies should also try to determine the possible effect of abstinence time and frequency of ejaculation with STL. Our study sheds new light on the association between STL and sperm count and on the inheritance of telomere length (in leukocytes and sperm) in relation to the parents' age at conception. Additional studies are needed to confirm these observations, to clarify if the association between shorter STL and damaged spermatogenesis represents a pathophysiological link, and to determine the effect on offspring telomere length of assisted reproduction techniques performed on couples of advanced age or where the man is oligozoospermic. This work was supported by the Italian Ministry of University and Research (grant no. 2009AMPA9C to C.F.) and Padova University (grant 2010 to A.D.R.). The authors have no competing interests to declare.

  3. A loopy view of telomere evolution

    Directory of Open Access Journals (Sweden)

    Titia eDe Lange

    2015-10-01

    Full Text Available About a decade ago, I proposed that t-loops, the lariat structures adopted by many eukaryotic telomeres, could explain how the transition from circular to linear chromosomes was successfully negotiated by early eukaryotes. Here I reconsider this loopy hypothesis in the context of the idea that eukaryotes evolved through a period of genome invasion by Group II introns.

  4. Paternal age and telomere length in twins

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Mangino, Massimo

    2015-01-01

    . Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age...

  5. Twin correlations of telomere length metrics

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Möller, Sören

    2015-01-01

    BACKGROUND: Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL va...

  6. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1

    DEFF Research Database (Denmark)

    Hansen, K. R.; Ibarra, P. T.; Thon, G.

    2006-01-01

    In Schizosaccharomyces pombe the RNAi machinery and proteins mediating heterochromatin formation regulate the transcription of non-coding centromeric repeats. These repeats share a high sequence similarity with telomere-linked helicase (tlh) genes, implying an ancestral relationship between the two...... types of elements and suggesting that transcription of the tlh genes might be regulated by the same factors as centromeric repeats. Indeed, we found that mutants lacking the histone methyltransferase Clr4, the Pcu4 cullin, Clr7 or Clr8, accumulate high levels of tlh forward and reverse transcripts....... Mutations and conditions perturbing histone acetylation had similar effects further demonstrating that the tlh genes are normally repressed by heterochromatin. In contrast, mutations in the RNAi factors Dcr1, Ago1 or Rdp1 led only to a modest derepression of the tlh genes indicating an alternate pathway...

  7. Functional characterization of the TERRA transcriptome at damaged telomeres.

    Science.gov (United States)

    Porro, Antonio; Feuerhahn, Sascha; Delafontaine, Julien; Riethman, Harold; Rougemont, Jacques; Lingner, Joachim

    2014-10-31

    Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.

  8. The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis

    Directory of Open Access Journals (Sweden)

    LeBel Catherine

    2011-10-01

    Full Text Available Abstract Background The first telomerase-associated protein (Est1 was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD, telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively, the molecular determinants of these interactions have not been elaborated fully. Results To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat, was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS92, NAAIRS122 did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres. Conclusions These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.

  9. Telomeric Retrotransposon HeT-A Contains a Bidirectional Promoter that Initiates Divergent Transcription of piRNA Precursors in Drosophila Germline.

    Science.gov (United States)

    Radion, Elizaveta; Ryazansky, Sergei; Akulenko, Natalia; Rozovsky, Yakov; Kwon, Dmitry; Morgunova, Valeriya; Olovnikov, Ivan; Kalmykova, Alla

    2017-10-27

    PIWI-interacting RNAs (piRNAs) provide the silencing of transposable elements in the germline. Drosophila telomeres are maintained by transpositions of specialized telomeric retroelements. piRNAs generated from sense and antisense transcripts of telomeric elements provide telomere length control in the germline. Previously, we have found that antisense transcription of the major telomeric retroelement HeT-A is initiated upstream of the HeT-A sense transcription start site. Here, we performed a deletion analysis of the HeT-A promoter and show that common regulatory elements are shared by sense and antisense promoters of HeT-A. Therefore, the HeT-A promoter is a bidirectional promoter capable of processive sense and antisense transcription. Ovarian small RNA data show that a solo HeT-A promoter within an euchromatic transgene initiates the divergent transcription of transgenic reporter genes and subsequent processing of these transcripts into piRNAs. These events lead to the formation of a divergent unistrand piRNA cluster at solo HeT-A promoters, in contrast to endogenous telomeres that represent strong dual-strand piRNA clusters. Solo HeT-A promoters are not immunoprecipitated with heterochromatin protein 1 (HP1) homolog Rhino, a marker of the dual-strand piRNA clusters, but are associated with HP1 itself, which provides piRNA-mediated transcriptional repression of the reporter genes. Unlike endogenous dual-strand piRNA clusters, the solo HeT-A promoter does not produce overlapping transcripts. In a telomeric context, however, bidirectional promoters of tandem HeT-A repeats provide a read-through transcription of both genomic strands, followed by Rhi binding. These data indicate that Drosophila telomeres share properties of unistrand and dual-strand piRNA clusters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of a halogenated G-quadruplex ligand from the pyridine dicarboxamide series on the terminal sequence of XpYp telomere in HT1080 cells.

    Science.gov (United States)

    Sidibe, Assitan; Hamon, Florian; Largy, Eric; Gomez, Dennis; Teulade-Fichou, Marie-Paule; Trentesaux, Chantal; Riou, Jean-François

    2012-12-01

    Non-canonical four-stranded structures called G-quadruplexes can form among telomere repeats during its replication. Small molecule ligands able to interact and to stabilize G-quadruplexes were shown to disrupt the binding of essential telomeric components, such as POT1 and to trigger a telomeric dysfunction associated with a delayed growth arrest in tumor cells. We describe here the chemical synthesis and the G-quadruplex binding properties of three halogenated analogs of the 360A ligand that belongs to the 2,6 pyridine dicarboxamide series. 360A is now commonly used as a benchmark both for biophysical and cellular assays as this compound was shown to display a potent affinity and selectivity for telomeric G-quadruplex DNA over duplex DNA and to induce delayed growth inhibition in HT1080 tumor cell line. Two biophysical assays indicate that, in most cases, the presence of the halogen atom seems to slightly improve the interaction with the telomeric quadruplex. For stability reasons, the bromo derivative (360A-Br) was selected for the cellular assays. Since POT1 participates to the fine tuning of the C-strand end resection during telomere replication, we investigated the effect of 360A-Br to alter the terminal nucleotide composition of XpYp telomere in HT1080 cells using C-STELA. HT1080 cells treated for up to 24 days with 360A-Br presented some minor but significant variations of C-strand terminal nucleotide composition, also observed with a partial siRNA depletion of POT1. The relevance of these minor modifications of the telomeric C-strand resection induced by 360A-Br in HT1080 cells are discussed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  12. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere.

    Science.gov (United States)

    Arat, N Özlem; Griffith, Jack D

    2012-12-07

    The TRF2-Rap1 complex suppresses non-homologous end joining and interacts with DNAPK-C to prevent end joining. We previously demonstrated that hTRF2 is a double strand telomere binding protein that forms t-loops in vitro and recognizes three- and four-way junctions independent of DNA sequence. How the DNA binding characteristics of hTRF2 to DNA is altered in the presence of hRap1 however is not known. Here we utilized EM and quantitative gel retardation to characterize the DNA binding properties of hRap1 and the TRF2-Rap1 complex. Both gel filtration chromatography and mass analysis from two-dimensional projections showed that the TRF2-Rap1 complex exists in solution and binds to DNA as a complex consisting of four monomers each of hRap1 and hTRF2. EM revealed for the first time that hRap1 binds to DNA templates in the absence of hTRF2 with a preference for double strand-single strand junctions in a sequence independent manner. When hTRF2 and hRap1 are in a complex, its affinity for ds telomeric sequences is 2-fold higher than TRF2 alone and more than 10-fold higher for telomeric 3' ends. This suggests that as hTRF2 recruits hRap1 to telomeric sequences, hRap1 alters the affinity of hTRF2 and its binding preference on telomeric DNA. Moreover, the TRF2-Rap1 complex has higher ability to re-model telomeric DNA than either component alone. This finding underlies the importance of complex formation between hRap1 and hTRF2 for telomere function and end protection.

  13. Human Rap1 Interacts Directly with Telomeric DNA and Regulates TRF2 Localization at the Telomere*

    Science.gov (United States)

    Arat, N. Özlem; Griffith, Jack D.

    2012-01-01

    The TRF2-Rap1 complex suppresses non-homologous end joining and interacts with DNAPK-C to prevent end joining. We previously demonstrated that hTRF2 is a double strand telomere binding protein that forms t-loops in vitro and recognizes three- and four-way junctions independent of DNA sequence. How the DNA binding characteristics of hTRF2 to DNA is altered in the presence of hRap1 however is not known. Here we utilized EM and quantitative gel retardation to characterize the DNA binding properties of hRap1 and the TRF2-Rap1 complex. Both gel filtration chromatography and mass analysis from two-dimensional projections showed that the TRF2-Rap1 complex exists in solution and binds to DNA as a complex consisting of four monomers each of hRap1 and hTRF2. EM revealed for the first time that hRap1 binds to DNA templates in the absence of hTRF2 with a preference for double strand-single strand junctions in a sequence independent manner. When hTRF2 and hRap1 are in a complex, its affinity for ds telomeric sequences is 2-fold higher than TRF2 alone and more than 10-fold higher for telomeric 3′ ends. This suggests that as hTRF2 recruits hRap1 to telomeric sequences, hRap1 alters the affinity of hTRF2 and its binding preference on telomeric DNA. Moreover, the TRF2-Rap1 complex has higher ability to re-model telomeric DNA than either component alone. This finding underlies the importance of complex formation between hRap1 and hTRF2 for telomere function and end protection. PMID:23086976

  14. Short telomeres in hatchling snakes: erythrocyte telomere dynamics and longevity in tropical pythons.

    Directory of Open Access Journals (Sweden)

    Beata Ujvari

    Full Text Available BACKGROUND: Telomere length (TL has been found to be associated with life span in birds and humans. However, other studies have demonstrated that TL does not affect survival among old humans. Furthermore, replicative senescence has been shown to be induced by changes in the protected status of the telomeres rather than the loss of TL. In the present study we explore whether age- and sex-specific telomere dynamics affect life span in a long-lived snake, the water python (Liasis fuscus. METHODOLOGY/PRINCIPAL FINDINGS: Erythrocyte TL was measured using the Telo TAGGG TL Assay Kit (Roche. In contrast to other vertebrates, TL of hatchling pythons was significantly shorter than that of older snakes. However, during their first year of life hatchling TL increased substantially. While TL of older snakes decreased with age, we did not observe any correlation between TL and age in cross-sectional sampling. In older snakes, female TL was longer than that of males. When using recapture as a proxy for survival, our results do not support that longer telomeres resulted in an increased water python survival/longevity. CONCLUSIONS/SIGNIFICANCE: In fish high telomerase activity has been observed in somatic cells exhibiting high proliferation rates. Hatchling pythons show similar high somatic cell proliferation rates. Thus, the increase in TL of this group may have been caused by increased telomerase activity. In older humans female TL is longer than that of males. This has been suggested to be caused by high estrogen levels that stimulate increased telomerase activity. Thus, high estrogen levels may also have caused the longer telomeres in female pythons. The lack of correlation between TL and age among old snakes and the fact that longer telomeres did not appear to affect python survival do not support that erythrocyte telomere dynamics has a major impact on water python longevity.

  15. Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids.

    Science.gov (United States)

    Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E; Pandya, Unnati M; Li, Bibo

    2017-06-02

    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Structural Insight into the interaction of Flavonoids with Human Telomeric Sequence

    Science.gov (United States)

    Tawani, Arpita; Kumar, Amit

    2015-01-01

    Flavonoids are a group of naturally available compounds that are an attractive source for drug discovery. Their potential to act as anti-tumourigenic and anti-proliferative agents has been reported previously but is not yet fully understood. Targeting human telomeric G-quadruplex DNA could be one of the mechanisms by which these flavonoids exert anticancer activity. We have performed detailed biophysical studies for the interaction of four representative flavonoids, Luteolin, Quercetin, Rutin and Genistein, with the human telomeric G-quadruplex sequence tetramolecular d-(T2AG3T) (Tel7). In addition, we used NMR spectroscopy to derive the first model for the complex formed between Quercetin and G-quadruplex sequence. The model showed that Quercetin stabilises the G-quadruplex structure and does not open the G-tetrad. It interacts with the telomeric sequence through π-stacking at two sites: between T1pT2 and between G6pT7. Based on our findings, we suggest that Quercetin could be a potent candidate for targeting the telomere and thus, act as a potent anti-cancer agent. PMID:26627543

  17. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers.

    Science.gov (United States)

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-08-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure.

    Science.gov (United States)

    Baker, Asmaa M; Fu, Qiang; Hayward, William; Lindsay, Stuart M; Fletcher, Terace M

    2009-08-01

    Eukaryotic DNA is packaged into chromatin, which regulates genome activities such as telomere maintenance. This study focuses on the interactions of a myb/SANT DNA-binding domain from the telomere-binding protein, TRF2, with reconstituted telomeric nucleosomal array fibers. Biophysical characteristics of the factor-bound nucleosomal arrays were determined by analytical agarose gel electrophoresis (AAGE) and single molecules were visualized by atomic force microscopy (AFM). The TRF2 DNA-binding domain (TRF2 DBD) neutralized more negative charge on the surface of nucleosomal arrays than histone-free DNA. Binding of TRF2 DBD at lower concentrations increased the radius and conformational flexibility, suggesting a distortion of the fiber structure. Additional loading of TRF2 DBD onto the nucleosomal arrays reduced the flexibility and strongly blocked access of micrococcal nuclease as contour lengths shortened, consistent with formation of a unique, more compact higher-order structure. Mirroring the structural results, TRF2 DBD stimulated a strand invasion-like reaction, associated with telomeric t-loops, at lower concentrations while inhibiting the reaction at higher concentrations. Full-length TRF2 was even more effective at stimulating this reaction. The TRF2 DBD had less effect on histone-free DNA structure and did not stimulate the t-loop reaction with this substrate, highlighting the influence of chromatin structure on the activities of DNA-binding proteins.

  19. Emotions and family interactions in childhood: Associations with leukocyte telomere length emotions, family interactions, and telomere length.

    Science.gov (United States)

    Robles, Theodore F; Carroll, Judith E; Bai, Sunhye; Reynolds, Bridget M; Esquivel, Stephanie; Repetti, Rena L

    2016-01-01

    Conceptualizations of links between stress and cellular aging in childhood suggest that accumulating stress predicts shorter leukocyte telomere length (LTL). At the same time, several models suggest that emotional reactivity to stressors may play a key role in predicting cellular aging. Using intensive repeated measures, we tested whether exposure or emotional "reactivity" to conflict and warmth in the family were related to LTL. Children (N=39; 30 target children and 9 siblings) between 8 and 13 years of age completed daily diary questionnaires for 56 consecutive days assessing daily warmth and conflict in the marital and the parent-child dyad, and daily positive and negative mood. To assess exposure to conflict and warmth, diary scale scores were averaged over the 56 days. Mood "reactivity" was operationalized by using multilevel modeling to generate estimates of the slope of warmth or conflict scores (marital and parent-child, separately) predicting same-day mood for each individual child. After diary collection, a blood sample was collected to determine LTL. Among children aged 8-13 years, a stronger association between negative mood and marital conflict, suggesting greater negative mood reactivity to marital conflict, was related to shorter LTL (B=-1.51, paffection, suggesting positive mood reactivity, was related to longer LTL (B=1.15, pfamily and marital conflict and warmth, and positive and negative mood over a two-month period. To our knowledge, these findings, although cross-sectional, represent the first evidence showing that link between children's affective responses and daily family interactions may have implications for telomere length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The yeast VPS genes affect telomere length regulation.

    Science.gov (United States)

    Rog, Ofer; Smolikov, Sarit; Krauskopf, Anat; Kupiec, Martin

    2005-01-01

    Eukaryotic cells invest a large proportion of their genome in maintaining telomere length homeostasis. Among the 173 non-essential yeast genes found to affect telomere length, a large proportion is involved in vacuolar traffic. When mutated, these vacuolar protein-sorting (VPS) genes lead to telomeres shorter than those observed in the wild type. Using genetic analysis, we characterized the pathway by which VPS15, VPS34, VPS22, VPS23 and VPS28 affect the telomeres. Our results indicate that these VPS genes affect telomere length through a single pathway and that this effect requires the activity of telomerase and the Ku heterodimer, but not the activity of Tel1p or Rif2p. We present models to explain the link between vacuolar traffic and telomere length homeostasis.

  1. Short Telomere Load, Telomere Length, and Subclinical Atherosclerosis: The PESA Study.

    Science.gov (United States)

    Fernández-Alvira, Juan M; Fuster, Valentin; Dorado, Beatriz; Soberón, Nora; Flores, Ignacio; Gallardo, Mercedes; Pocock, Stuart; Blasco, María A; Andrés, Vicente

    2016-05-31

    Leucocyte telomere length (LTL) shortening is associated with cardiovascular ischemic events and mortality in humans, but data on its association with subclinical atherosclerosis are scarce. Whether the incidence and severity of subclinical atherosclerosis are associated with the abundance of critically short telomeres, a major trigger of cellular senescence, remains unknown. The authors conducted a cross-sectional exploration of the association between subclinical atherosclerosis burden and both average LTL and the abundance of short telomeres (%LTLSubclinical Atherosclerosis) study. Subclinical atherosclerosis was evaluated by coronary artery calcium scan and 2-dimensional/3-dimensional ultrasound in different aortic territories. Statistical significance of differences among multiple covariates was assessed with linear regression models. Independent associations of telomere parameters with plaque presence were evaluated using general linear models. In men and women, age was inversely associated with LTL (Pearson's r = -0.127, p subclinical atherosclerosis. Longitudinal follow-up of PESA participants will assess long-term associations between telomere length and progression of subclinical atherosclerosis. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  3. Telomere length elongation after weight loss intervention in obese adults.

    Science.gov (United States)

    Carulli, L; Anzivino, C; Baldelli, E; Zenobii, M F; Rocchi, M B L; Bertolotti, M

    2016-06-01

    Telomeres may be considered markers of biological aging, shorter telomere length is associated with some age-related diseases; in several studies short telomere length has also been associated to obesity in adults and adolescents. However the relationship between telomere complex functions and obesity is still not clear. Aim of the study was to assess telomere length (TL) in adults' obese subjects before and after weight loss obtained by placement of bioenteric intragastric balloon (BIB) for 6months. We enrolled 42 obese subjects before and after BIB placement as weight loss intervention. Blood samples were collected in order to obtain DNA from leukocyte to measure TL by quantitative PCR. Data were analyzed only in 37 subjects with complete data; all presented important body weight loss (124.06±26.7 vs 105.40±23.14, pweight loss (r=0.44, p=0.007) as well as an inverse correlation between TL at baseline and TL elongation (r=-0.35, p=0.03).The predictors of TL elongation were once again weight loss and short TL at baseline (respectively p=0.007 and p=0.003). Our study shows that weight loss is associated to telomere lengthening in a positive correlation: the greater weight loss the greater telomere lengthening; moreover telomere lengthening is more significant in those subjects with shortest telomeres at baseline. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome.

    Directory of Open Access Journals (Sweden)

    Sidney H Wang

    Full Text Available Heterochromatin assembly and its associated phenotype, position effect variegation (PEV, provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats of the Y chromosome short arm (Ys. Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR3-9, but no sensitivity to Su(z2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.

  5. Rap1 and Cdc13 have complementary roles in preventing exonucleolytic degradation of telomere 5' ends.

    Science.gov (United States)

    Runnberg, Rikard; Narayanan, Saishyam; Cohn, Marita

    2017-08-18

    Telomere DNA ends with a single-stranded 3' overhang. Long 3' overhangs may cause aberrant DNA damage responses and accelerate telomere attrition, which is associated with cancer and aging, respectively. Genetic studies have indicated several important players in preventing 5' end hyper-resection, yet detailed knowledge about the molecular mechanism in which they act is still lacking. Here, we use an in vitro DNA 5' end protection assay, to study how N. castellii Cdc13 and Rap1 protect against 5' exonucleolytic degradation by λ-exonuclease. The homogeneous telomeric repeat sequence of N. castellii allows us to study their protection ability at exact binding sites relative to the 5' end. We find efficient protection by both Cdc13 and Rap1 when bound close to the 5' end. Notably, Rap1 provides protection when binding dsDNA at a distance from the 5' end. The DNA binding domain of Rap1 is sufficient for 5' end protection, and its wrapping loop region is essential. Intriguingly, Rap1 facilitates protection also when its binding site contains 2 nt of ssDNA, thus spanning across the ds-ss junction. These results highlight a role of Rap1 in 5' end protection and indicate that Cdc13 and Rap1 have complementary roles in maintaining proper 3' overhang length.

  6. Live cell CRISPR-imaging in plants reveals dynamic telomere movements

    KAUST Repository

    Dreissig, Steven

    2017-05-16

    Elucidating the spatio-temporal organization of the genome inside the nucleus is imperative to understand the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies which reveal genomic information and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial CRISPR-Cas9 system. By fusing eGFP/mRuby2 to the catalytically inactive version of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm within 30 minutes during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for imaging of multiple genomic loci in live plants cells. CRISPR-imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells.

  7. Telomeres, replicative senescence and human ageing.

    Science.gov (United States)

    Kipling, D

    2001-02-28

    Ageing concerns the extracellular environment and cells that are either post-mitotic or capable of division during life. Primary human cells have a finite division capacity in culture before they enter a state of viable cell cycle arrest termed senescence. Cell division occurs during life in many tissues, either as part of normal tissue function or in response to tissue damage. The accumulation of cells at the end of their replicative lifespan in the elderly might contribute to aged tissue either because of a reduced ability to undergo proliferation or because of the known altered gene-expression patterns of senescent cells. This has been illustrated experimentally using a transgenic telomerase-negative mouse, which shows some premature ageing phenotypes. The mechanism whereby cells count divisions uses the gradual erosion of the ends of chromosomes (telomeres) with cell division caused by the repression of the telomere-maintenance enzyme telomerase in most human cells. Telomere erosion ultimately triggers replicative senescence in many cell types; this can be prevented experimentally by forcibly expressing telomerase. This extends the lifespan of normal human cells and those from progeroid syndromes such as Werner's. Telomere-driven senescence did not evolve to cause ageing, but is instead a by-product of a system devised to provide a tumour-suppression function, a concept that fits well with evolutionary arguments regarding trade-offs between somatic maintenance and reproduction. Work in the future will focus on the development of new animal models to critically address the quantitative significance of this ageing mechanism.

  8. The effects of nucleoside analogs on telomerase and telomeres in Tetrahymena.

    Science.gov (United States)

    Strahl, C; Blackburn, E H

    1994-03-25

    The ribonucleoprotein enzyme telomerase is a specialized type of cellular reverse transcriptase which synthesizes one strand of telomeric DNA, using as the template a sequence in the RNA moiety of telomerase. We analyzed the effects of various nucleoside analogs, known to be chain-terminating inhibitors of retroviral reverse transcriptases, on Tetrahymena thermophila telomerase activity in vitro. We also analyzed the effects of such analogs on telomere length and maintenance in vivo, and on vegetative growth and mating of Tetrahymena cells. Arabinofuranyl-guanosine triphosphate (Ara-GTP) and ddGTP both efficiently inhibited telomerase activity in vitro, while azidothymidine triphosphate (AZT-TP), dideoxyinosine triphosphate (ddITP) or ddTTP were less efficient inhibitors. All of these nucleoside triphosphate analogs, however, produced analog-specific alterations of the normal banding patterns seen upon gel electrophoresis of the synthesis products of telomerase, suggesting that their chain terminating and/or competitive actions differ at different positions along the RNA template. The analogs AZT, 3'-deoxy-2',3'-didehydrothymidine (d4T) and Ara-G in nucleoside form caused consistent and rapid telomere shortening in vegetatively growing Tetrahymena. In contrast, ddG or ddI had no effect on telomere length or cell growth rates. AZT caused growth rates and viability to decrease in a fraction of cells, while Ara-G had no such effects even after several weeks in culture. Neither AZT, Ara-G, acycloguanosine (Acyclo-G), ddG nor ddI had any detectable effect on cell mating, as assayed by quantitation of the efficiency of formation of progeny from mated cells. However, AZT decreased the efficiency of programmed de novo telomere addition during macronuclear development in mating cells.

  9. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Ahmed G.K.; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ueno, Masaru, E-mail: scmueno@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1{sup +} or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. - Ηighlights: • We show link between long G2 and accumulation of toxic recombination intermediates. • Accumulation of recombination intermediates at telomere results in TBZ sensitivity. • Activation of DNA damage checkpoint worsens cells' viability in presence of TBZ.

  10. Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism.

    Directory of Open Access Journals (Sweden)

    Xi Long

    Full Text Available Telomeres are specialized chromatin structures found at the end of chromosomes and are crucial to the maintenance of eukaryotic genome stability. Human telomere DNA is comprised of the repeating sequence (T2AG3n, which is predominantly double-stranded but terminates with a 3' single-stranded tail. The guanine-rich tail can fold into secondary structures known as a G-quadruplexes (GQs that may exist as a polymorphic mixture of anti-parallel, parallel, and several hybrid topological isomers. Using single-molecule Förster resonance energy transfer (smFRET, we have reconstructed distributions of telomere DNA GQ conformations generated by an in situ refolding protocol commonly employed in single-molecule studies of GQ structure, or using a slow cooling DNA annealing protocol typically used in the preparation of GQ samples for ensemble biophysical analyses. We find the choice of GQ folding protocol has a marked impact on the observed distributions of DNA conformations under otherwise identical buffer conditions. A detailed analysis of the kinetics of GQ folding over timescales ranging from minutes to hours revealed the distribution of GQ structures generated by in situ refolding gradually equilibrates to resemble the distribution generated by the slow cooling DNA annealing protocol. Interestingly, conditions of low ionic strength, which promote transient GQ unfolding, permit the fraction of folded DNA molecules to partition into a distribution that more closely approximates the thermodynamic folding equilibrium. Our results are consistent with a model in which kinetic partitioning occurs during in situ folding at room temperature in the presence of K(+ ions, producing a long-lived non-equilibrium distribution of GQ structures in which the parallel conformation predominates on the timescale of minutes. These results suggest that telomere DNA GQ folding kinetics, and not just thermodynamic stability, likely contributes to the physiological ensemble GQ

  11. The telomere lengthening conundrum - it could be biology.

    Science.gov (United States)

    Bateson, Melissa; Nettle, Daniel

    2017-04-01

    Longitudinal studies of human leucocyte telomere length often report a percentage of individuals whose telomeres appear to lengthen. However, based on theoretical considerations and empirical data, Steenstrup et al. (Nucleic Acids Research, 2013, vol 41(13): e131) concluded that this lengthening is unlikely to be a real biological phenomenon and is more likely to be an artefact of measurement error. We dispute the logic underlying this claim. We argue that Steenstrup et al.'s analysis is incomplete because it failed to compare predictions derived from assuming a scenario with no true telomere lengthening with alternative scenarios in which true lengthening occurs. To address this deficit, we built a computational model of telomere dynamics that allowed us to compare the predicted percentage of observed telomere length gainers given differing assumptions about measurement error and the true underling dynamics. We modelled a set of scenarios, all assuming measurement error, but both with and without true telomere lengthening. We found a range of scenarios assuming some true telomere lengthening that yielded either similar or better quantitative fits to the empirical data on the percentage of individuals showing apparent telomere lengthening. We conclude that although measurement error contributes to the prevalence of apparent telomere lengthening, Steenstrup et al.'s conclusion was too strong, and current data do not allow us to reject the hypothesis that true telomere lengthening is a real biological phenomenon in epidemiological studies. Our analyses highlight the need for process-level models in the analysis of telomere dynamics. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

    Directory of Open Access Journals (Sweden)

    Wang Xueying

    2008-10-01

    Full Text Available Abstract Background Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. Results The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. Conclusion New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.

  13. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women.

    Directory of Open Access Journals (Sweden)

    Jung-Ha Kim

    Full Text Available PURPOSE: Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function. METHODS: The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15, and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE were performed. RESULTS: Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001 and K-MMSE score (r=0.06, p=0.02. Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04. Age (r=-0.15, p=0.09, waist circumference (r=-0.16, p=0.07, and serum ferritin level (r=-0.13, p=0.07 tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise. CONCLUSIONS: This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest

  14. Acute coronary syndrome: Role of the telomere dynamic

    African Journals Online (AJOL)

    USER

    2010-05-03

    May 3, 2010 ... telomeres showed an inverse correlation with pulse pressure, biologic marker of vascular aging and predictor of increased mortality rate, in men (Benetos, 2001). This relation was inconsistent in females (Benetos, 2001). Effects of telomere length on the future cardiovascular risks have been determined in ...

  15. Common variants near TERC are associated with mean telomere length

    NARCIS (Netherlands)

    Codd, Veryan; Mangino, Massimo; van der Harst, Pim; Braund, Peter S.; Kaiser, Michael; Beveridge, Alan J.; Rafelt, Suzanne; Moore, Jasbir; Nelson, Chris; Soranzo, Nicole; Zhai, Guangju; Valdes, Ana M.; Blackburn, Hannah; Mateo Leach, Irene; de Boer, Rudolf A.; Goodall, Alison H.; Ouwehand, Willem; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Navis, Gerjan; Burton, Paul R.; Tobin, Martin D.; Hall, Alistair S.; Thompson, John R.; Spector, Tim; Samani, Nilesh J.

    We conducted genome-wide association analyses of mean leukocyte telomere length in 2,917 individuals, with follow-up replication in 9,492 individuals. We identified an association with telomere length on 3q26 (rs12696304, combined P = 3.72 x 10(-14)) at a locus that includes TERC, which encodes the

  16. Acute coronary syndrome: Role of the telomere dynamic

    African Journals Online (AJOL)

    USER

    2010-05-03

    May 3, 2010 ... Telomeres, or historically named "terminal genes" are first discovered by Muller working on fruit fly in. 1930s. Since then, the great progress was made in understanding the consequences of telomere erosion on the human health and disease states, as age related vascular diseases. The overlapping.

  17. Telomeres and HIV-1 infection: in search of exhaustion

    NARCIS (Netherlands)

    Wolthers, K. C.; Miedema, F.

    1998-01-01

    Telomere length analysis could be helpful in determining if exhaustion and replicative senescence are involved in HIV-1 pathogenesis. Evidence that CD8+ T cells have shorter telomeres may point towards an increased turnover of CD8+ T cells and exhaustion of the CD8+ T-cell responses in HIV-1

  18. Gender and telomere length : Systematic review and meta-analysis

    NARCIS (Netherlands)

    Gardner, Michael; Bann, David; Wiley, Laura; Cooper, Rachel; Hardy, Rebecca; Nitsch, Dorothea; Martin-Ruiz, Carmen; Shiels, Paul; Sayer, Avan Aihie; Barbieri, Michelangela; Bekaert, Sofie; Bischoff, Claus; Brooks-Wilson, Angela; Chen, Wei; Cooper, Cyrus; Christensen, Kaare; De Meyer, Tim; Deary, Ian; Der, Geoff; Roux, Ana Diez; Fitzpatrick, Annette; Hajat, Anjum; Halaschek-Wiener, Julius; Harris, Sarah; Hunt, Steven C.; Jagger, Carol; Jeon, Hyo-Sung; Kaplan, Robert; Kimura, Masayuki; Lansdorp, Peter; Li, Changyong; Maeda, Toyoki; Mangino, Massimo; Nawrot, Tim S.; Nilsson, Peter; Nordfjall, Katarina; Paolisso, Giuseppe; Ren, Fu; Riabowol, Karl; Robertson, Tony; Roos, Goran; Staessen, Jan A.; Spector, Tim; Tang, Nelson; Unryn, Brad; van der Harst, Pim; Woo, Jean; Xing, Chao; Yadegarfar, Mohammad E.; Park, Jae Yong; Young, Neal; Kuh, Diana; von Zglinicki, Thomas; Ben-Shlomo, Yoav

    Background: It is widely believed that females have longer telomeres than males, although results from studies have been contradictory. Methods: We carried out a systematic review and meta-analyses to test the hypothesis that in humans, females have longer telomeres than males and that this

  19. Quantitative theory of telomere length regulation and cellular senescence.

    Science.gov (United States)

    Rodriguez-Brenes, Ignacio A; Peskin, Charles S

    2010-03-23

    In normal somatic cells, telomere length shortens with each cell replication. This progressive shortening is associated with cellular senescence and apoptosis. Germ cells, stem cells, and the majority of cancer cells express telomerase, an enzyme that extends telomere length and, when expressed at sufficient levels, can immortalize or extend the life span of a cell line. It is believed that telomeres switch between two states: capped and uncapped. The telomere state determines its accessibility to telomerase and also the onset of senescence. One hypothesis is that the t loop, a large lariat-like structure, represents the capped state. In this paper we model a telomere state on the basis of the biophysics of t-loop formation, allowing us to develop a single mathematical model that accounts for two processes: telomere length regulation for telomerase positive cells and cellular senescence in somatic cells. The model predicts the steady-state length distribution for telomerase positive cells, describes the time evolution of telomere length, and computes the life span of a cell line on the basis of the levels of TRF2 and telomerase expression. The model reproduces a wide range of experimental behavior and fits data from immortal cell lines (HeLa S3 and 293T) and somatic cells (human diploid fibroblasts) well. We conclude that the t loop as the capped state is a quantitatively reasonable model of telomere length regulation and cellular senescence.

  20. Genetic association study of selected candidate genes (ApoB, LPL, Leptin and telomere length in obese and hypertensive individuals

    Directory of Open Access Journals (Sweden)

    Saini Divyalakshmi

    2009-09-01

    Full Text Available Abstract Background A genetic study was carried out among obese and hypertensive individuals from India to assess allelic association, if any, at three candidate loci: Apolipoprotein B (ApoB minisatellite and two tetranucleotide repeat loci; LPL (Lipoprotein lipase and Leptin. Attempt has also been made to find out whether telomere length attrition is associated with hypertension and obese individuals. Methods Venous blood samples were collected from 37 normal, 35 obese and 47 hypertensive individuals. Genomic DNA was extracted from peripheral blood mononuclear cells (PBMC and PCR amplifications were achieved using locus specific primers. Genotyping of ApoB minisatellite was performed using 4% polyacrylamide gel electrophoresis (PAGE followed by silver staining, whereas LPL and Leptin loci were genotyped using ALF Express™ DNA sequencer. Telomere length was determined using a recently developed real time based quantitative PCR, where the relative telomere length was determined by calculating the relative ratio of telomere (T and single copy gene (S PCR products which is expressed as T/S ratio. Results All the three loci are highly polymorphic, display high heterozygosity and conform to Hardy-Weinberg's equilibrium expectations. ApoB minisatellite displayed 14 alleles, whereas LPL and Leptin tetranucleotide loci were having 9 and 17 alleles, respectively. Interestingly two new alleles (9 and 11 repeats were detected at ApoB locus for the first time. The alleles at Leptin locus were classified as Class I (lower alleles: 149-200 bp and Class II alleles (higher alleles: >217 bp. Higher alleles at ApoB (>39 repeats, predominant allele 9 at LPL and alleles 164 bp and 224 bp at Leptin loci have shown allelic association with hypertensive individuals. After adjusting the influence of age and gender, the analysis of co-variance (ANCOVA revealed the relative telomere length (T/S ratio in hypertensive individuals to be (1.01 ± 0.021, which was

  1. Autonomous replication of foreign DNA in Histoplasma capsulatum: role of native telomeric sequences.

    OpenAIRE

    Woods, J P; Goldman, W E

    1993-01-01

    Genetic transformation of the dimorphic pathogenic fungus Histoplasma capsulatum can result in chromosomal integration of the transforming DNA or the generation of multicopy linear plasmids carrying the transforming DNA. We showed previously that Escherichia coli plasmids do not replicate autonomously in H. capsulatum without significant modifications, one of which is the in vivo addition of Histoplasma telomeres at the termini of linear DNA. To address the requirements for autonomous replica...

  2. Telomere Length – a New Biomarker in Medicine

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozłowska

    2015-12-01

    Full Text Available A number of xenobiotics in the environment and workplace influences on our health and life. Biomarkers are tools for measuring such exposures and their effects in the organism. Nowadays, telomere length, epigenetic changes, mutations and changes in gene expression pattern have become new molecular biomarkers. Telomeres play the role of molecular clock, which influences on expectancy of cell life and thus aging, the formation of damages, development diseases and carcinogenesis. The telomere length depends on mechanisms of replication and the activity of telomerase. Telomere length is currently used as a biomarker of susceptibility and/or exposure. This paper describes the role of telomere length as a biomarker of aging cells, oxidative stress, a marker of many diseases including cancer, and as a marker of environmental and occupational exposure.

  3. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Alexandra M. Pinzaru

    2016-06-01

    Full Text Available Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1 function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  4. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder

    NARCIS (Netherlands)

    Boks, Marco P.; van Mierlo, Hans C.; Rutten, Bart P. F.; Radstake, Timothy R. D. J.; De Witte, Lot; Geuze, Elbert; Horvath, Steve; Schalkwyk, Leonard C.; Vinkers, Christiaan H.; Broen, Jasper C. A.; Vermetten, Eric

    Several studies have reported an association between traumatic stress and telomere length suggesting that traumatic stress has an impact on ageing at the cellular level. A newly derived tool provides an additional means to investigate cellular ageing by estimating epigenetic age based on DNA

  5. Realizing the Translational Potential of Telomere Length Variation as a Tissue-Based Prognostic Marker for Prostate Cancer

    Science.gov (United States)

    2015-10-01

    488/Cy2, Alexa 568/Cy3, and Alexa 633/Cy5. The system contains an ultra -precise motorized stage for 8 slides for high throughput scanning. In addition...Kulac I, Graham MK , Joshu CE, De Marzo AM, Platz EA, Meeker AK. Tissue-based telomere length measurements as a biomarker for individualized prostate

  6. A balance between elongation and trimming regulates telomere stability in stem cells

    Science.gov (United States)

    Rivera, Teresa; Haggblom, Candy; Cosconati, Sandro; Karlseder, Jan

    2016-01-01

    Telomere length maintenance ensures self-renewal of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), however the mechanisms governing telomere length homeostasis in these cell types are unclear. Here, we report that telomere length is determined by the balance between telomere elongation mediated by telomerase and telomere trimming, controlled by the homologous recombination proteins XRCC3 and Nbs1 that generate single-stranded C-rich telomeric DNA and double-stranded telomeric circular DNA (T-circles), respectively. We found that reprogramming of differentiated cells induces T-circle and single stranded C-rich telomeric DNA accumulation, indicating the activation of telomere trimming pathways that compensate telomerase dependent telomere elongation in hiPSCs. Excessive telomere elongation compromises telomere stability and promotes the formation of partially single-stranded telomeric DNA circles (C-circles) in hESCs, suggesting heightened sensitivity of stem cells to replication stress at overly long telomeres. Thus, tight control of telomere length homeostasis is essential to maintain telomere stability in hESCs. PMID:27918544

  7. Estimation of the amount of telomere molecules in different human age groups and the telomere increasing effect of acupuncture and shiatsu on St.36, using synthesized basic units of the human telomere molecules as reference control substances for the bi-digital O-ring test resonance phenomenon.

    Science.gov (United States)

    Omura, Y; Shimotsura, Y; Ooki, M; Noguchi, T

    1998-01-01

    It is well established that the telomeres at the ends of chromosomes are composed of long arrays of (TTAGGG)n x (CCCTAA)n that form a nucleoprotein complex required for the replication and protection of chromosome ends. Throughout the cell cycle, telomeres also contain a protein component related to the proto-oncogene Myb that is known as TRF1 (telomere TTAGGG repeat binding factor 1) that binds to the duplex array of TTAGGG repeats in the telomere. Previous studies have shown that TRF1 appears to play a role in controlling the length of telomeres by acting as an inhibitor of telomerase. The amount of each of the TRF1(C-19) & TRF1(N-19) was identical to the amount of telomere of the same organ of the same apparently normal individual. Using synthesized basic unit of TTAGGG, as well as CCCTAA, as separate reference control substances for the Bi-Digital O-Ring Test of Resonance Phenomenon between 2 identical substances, we were able to non-invasively measure the approximate amount of TTAGGG and CCCTAA units, in both normal and cancerous human cells. We examined about 30 apparently normal subjects (both Asian and Caucasian in both sex). The subjects' ages ranged from infancy to 76 years. Each subject was first examined using TTAGGG as a control substance and then examined using CCCTAA as a control substance. The amount of telomere in various cancer tissues are almost always higher than that of normal tissue of the same organ. The measured amounts of both TTAGGG and CCCTAA were found to be in an average of 1500-1600 ng for human fetus or infancy and decreased with the advance of age in both sex with the exception of the heart, brain, eyes (retina), testes, and ovaries, which usually remain at the level of the infant, or reduced very little. Individuals in the same age group had a similar range of amounts of both TTAGGG and CCCTAA in the same organ of the same individual, (except for those with unusually low telomeres often had chronic degenerative diseases, and those

  8. Sub-fertile sperm cells exemplify telomere dysfunction.

    Science.gov (United States)

    Biron-Shental, Tal; Wiser, Amir; Hershko-Klement, Anat; Markovitch, Ofer; Amiel, Aliza; Berkovitch, Arie

    2017-09-13

    The purpose of this study was to evaluate telomere homeostasis in sub-fertile compared to fertile human sperm. This observational, comparative study included 16 sub-fertile men who required intracytoplasmic sperm injection and 10 fertile men. At least 100 sperm cells from each participant were assessed. Main outcome measures were telomere length and telomere aggregates. Telomerase RNA component (TERC) copy number and telomere capture were assessed using fluorescence in situ hybridization technique and human telomerase reverse transcriptase (hTERT) using immunohistochemistry. Clinical backgrounds were similar. The percentage of sperm cells with shorter telomeres was higher among the sub-fertile compared to the fertile participants (3.3 ± 3.1 vs. 0.6 ± 1.2%, respectively; P < 0.005). The percentage of cells with telomere aggregates was significantly higher in the sub-fertile group (15.12 ± 3.73 vs. 4.73 ± 3.73%; P < 0.005). TERC gene copy number was similar between groups. The percentage of cells that were positive for hTERT was lower in the sub-fertile group (3.81 ± 1.27 vs. 8.42 ± 1.80%; P < 0.005). Telomere capture rates were higher among the sub-fertile sperm cells (P < 0.005). Sub-fertile sperm cells have short telomeres that are elongated by the alternative pathway of telomere capture. Dysfunctional telomeres may affect sperm fertilizability.

  9. Correlation of chromosomal instability, telomere length and telomere maintenance in microsatellite stable rectal cancer: a molecular subclass of rectal cancer.

    Science.gov (United States)

    Boardman, Lisa A; Johnson, Ruth A; Viker, Kimberly B; Hafner, Kari A; Jenkins, Robert B; Riegert-Johnson, Douglas L; Smyrk, Thomas C; Litzelman, Kristin; Seo, Songwon; Gangnon, Ronald E; Engelman, Corinne D; Rider, David N; Vanderboom, Russell J; Thibodeau, Stephen N; Petersen, Gloria M; Skinner, Halcyon G

    2013-01-01

    Colorectal cancer (CRC) tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN) and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS) and is historically considered to be chromosomally unstable (CIN+). However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-). MSS CIN- tumors have not been assessed for telomere attrition. MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher) or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]). Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH. Tumors were classified as chromosomally stable (CIN-) and chromosomally instable (CIN+) by degree of DNA copy number changes. CIN- tumors (35%; n=6) had fewer copy number changes (cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.

  10. Father Loss and Child Telomere Length.

    Science.gov (United States)

    Mitchell, Colter; McLanahan, Sara; Schneper, Lisa; Garfinkel, Irv; Brooks-Gunn, Jeanne; Notterman, Daniel

    2017-08-01

    Father loss during childhood has negative health and behavioral consequences, but the biological consequences are unknown. Our goal was to examine how father loss (because of separation and/or divorce, death, or incarceration) is associated with cellular function as estimated by telomere length. Data come from the 9-year follow-up of the Fragile Families and Child Wellbeing Study, a birth cohort study of children in 20 large American cities (N = 2420). Principal measures are as follows: salivary telomere length (sTL), mother reports of father loss, and polymorphisms in genes related to serotonergic and dopaminergic signaling. At 9 years of age, children with father loss have significantly shorter telomeres (14% reduction). Paternal death has the largest association (16%), followed by incarceration (10%), and separation and/or divorce (6%). Changes in income partially mediate these associations (95% mediation for separation and/or divorce, 30% for incarceration, and 25% for death). Effects are 40% greater for boys and 90% greater for children with the most reactive alleles of the serotonin transporter genes when compared with those with the least reactive alleles. No differences were found by age at father loss or a child's race/ethnicity. Father loss has a significant association with children's sTL, with the death of a father showing the largest effect. Income loss explains most of the association between child sTL and separation and/or divorce but much less of the association with incarceration or death. This underscores the important role of fathers in the care and development of children and supplements evidence of the strong negative effects of parental incarceration. Copyright © 2017 by the American Academy of Pediatrics.

  11. Correlation of chromosomal instability, telomere length and telomere maintenance in microsatellite stable rectal cancer: a molecular subclass of rectal cancer.

    Directory of Open Access Journals (Sweden)

    Lisa A Boardman

    Full Text Available Colorectal cancer (CRC tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS and is historically considered to be chromosomally unstable (CIN+. However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-. MSS CIN- tumors have not been assessed for telomere attrition.MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]. Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH.Tumors were classified as chromosomally stable (CIN- and chromosomally instable (CIN+ by degree of DNA copy number changes. CIN- tumors (35%; n=6 had fewer copy number changes (<17% of their clones with DNA copy number changes than CIN+ tumors (65%; n=13 which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066 and in those in which telomerase was not activated (p=0.004. Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040; and tended to be CIN+ (p=0.0949.MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.

  12. Structure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K(+) solution.

    Science.gov (United States)

    Martadinata, Herry; Phan, Anh Tuân

    2013-04-02

    Telomeric repeat-containing RNAs (TERRA) are transcription products of the telomeres. Human TERRA sequences containing UUAGGG repeats can form parallel-stranded G-quadruplexes. The stacking interaction of such structures was shown to be important for ligand targeting and higher-order arrangement of G-quadruplexes in long TERRA sequences. Here we report on the first high-resolution structure of a stacked G-quadruplex formed by the 10-nucleotide human TERRA sequence r(GGGUUAGGGU) in potassium solution. This structure comprises two dimeric three-layer parallel-stranded G-quadruplex blocks, which stack on each other at their 5'-ends. The adenine in each UUA loop is nearly coplanar with the 5'-end G-tetrad forming an A·(G·G·G·G)·A hexad, thereby increasing the stacking contacts between the two blocks. Interestingly, this stacking and loop conformation is different from all structures previously reported for the free human TERRA but resembles the structure previously determined for a complex between a human TERRA sequence and an acridine ligand. This stacking conformation is a potential target for drugs that recognize or induce the stacking interface.

  13. Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length.

    Science.gov (United States)

    Ciudad, Toni; Andaluz, Encarnación; Steinberg-Neifach, Olga; Lue, Neal F; Gow, Neil A R; Calderone, Richard A; Larriba, Germán

    2004-08-01

    Chromosomal rearrangements are common in both clinical isolates and spontaneous mutants of Candida albicans. It appears that many of these rearrangements are caused by translocations around the major sequence repeat (MSR) that is present in all chromosomes except chromosome 3, suggesting that homologous recombination (HR) may play an important role in the survival of this organism. In order to gain information on these processes, we have cloned the homologue of RAD52, which in Saccharomyces cerevisiae is the only gene required for all HR events. CaRAD52 complemented poorly a rad52 mutant of S. cerevisiae. Two null Carad52Delta/Carad52Delta mutants were constructed by sequential deletion of both alleles and two reconstituted strains were obtained by reintegration of the gene. Characterization of these mutants indicated that HR plays an essential role in the repair of DNA lesions caused by both UV light and the radiomimetic compound methyl-methane-sulphonate (MMS), whereas the non-homologous end-joining pathway (NHEJ) is used only in the absence of Rad52p or after extensive DNA damage. Repair by HR is more efficient in exponentially growing than in stationary cells, probably because a larger number of cells are in late S or G2 phases of the cell cycle (and therefore, can use a sister chromatid as a substrate for recombinational repair), whereas stationary phase cells are mainly in G0 or G1, and only can be repaired using the chromosomal homologue. In addition, CaRad52p is absolutely required for the integration of linear DNA with long flanking homologous sequences. Finally, the absence of CaRad52p results in the lengthening of telomeres, even in the presence of an active telomerase, an observation not described in any other organism. This raises the possibility that both telomerase and homologous recombination may function simultaneously at C. albicans telomeres.

  14. Relationship between interpersonal sensitivity and leukocyte telomere length.

    Science.gov (United States)

    Suzuki, Akihito; Matsumoto, Yoshihiko; Enokido, Masanori; Shirata, Toshinori; Goto, Kaoru; Otani, Koichi

    2017-10-10

    Telomeres are repetitive DNA sequences located at the ends of chromosomes, and telomere length represents a biological marker for cellular aging. Interpersonal sensitivity, excessive sensitivity to the behavior and feelings of others, is one of the vulnerable factors to depression. In the present study, we examined the effect of interpersonal sensitivity on telomere length in healthy subjects. The subjects were 159 unrelated healthy Japanese volunteers. Mean age ± SD (range) of the subjects was 42.3 ± 7.8 (30-61) years. Interpersonal sensitivity was assessed by the Japanese version of the Interpersonal Sensitivity Measure (IPSM). Leukocyte telomere length was determined by a quantitative real-time PCR method. Higher scores of the total IPSM were significantly (β = -0.163, p = 0.038) related to shorter telomere length. In the sub-scale analysis, higher scores of timidity were significantly (β = -0.220, p = 0.044) associated with shorter telomere length. The present study suggests that subjects with higher interpersonal sensitivity have shorter leukocyte telomere length, implying that interpersonal sensitivity has an impact on cellular aging.

  15. Protection of Drosophila chromosome ends through minimal telomere capping.

    Science.gov (United States)

    Dubruille, Raphaëlle; Loppin, Benjamin

    2015-05-15

    In Drosophila, telomere-capping proteins have the remarkable capacity to recognize chromosome ends in a sequence-independent manner. This epigenetic protection is essential to prevent catastrophic ligations of chromosome extremities. Interestingly, capping proteins occupy a large telomere chromatin domain of several kilobases; however, the functional relevance of this to end protection is unknown. Here, we investigate the role of the large capping domain by manipulating HOAP (encoded by caravaggio) capping-protein expression in the male germ cells, where telomere protection can be challenged without compromising viability. We show that the exhaustion of HOAP results in a dramatic reduction of other capping proteins at telomeres, including K81 [encoded by ms(3)K81], which is essential for male fertility. Strikingly however, we demonstrate that, although capping complexes are barely detected in HOAP-depleted male germ cells, telomere protection and male fertility are not dramatically affected. Our study thus demonstrates that efficient protection of Drosophila telomeres can be achieved with surprisingly low amounts of capping complexes. We propose that these complexes prevent fusions by acting at the very extremity of chromosomes, reminiscent of the protection conferred by extremely short telomeric arrays in yeast or mammalian systems. © 2015. Published by The Company of Biologists Ltd.

  16. Telomere Length and the Cancer–Atherosclerosis Trade-Off

    Science.gov (United States)

    Stone, Rivka C.; Horvath, Kent; Kark, Jeremy D.; Susser, Ezra; Tishkoff, Sarah A.; Aviv, Abraham

    2016-01-01

    Modern humans, the longest-living terrestrial mammals, display short telomeres and repressed telomerase activity in somatic tissues compared with most short-living small mammals. The dual trait of short telomeres and repressed telomerase might render humans relatively resistant to cancer compared with short-living small mammals. However, the trade-off for cancer resistance is ostensibly increased age-related degenerative diseases, principally in the form of atherosclerosis. In this communication, we discuss (a) the genetics of human telomere length, a highly heritable complex trait that is influenced by genetic ancestry, sex, and paternal age at conception, (b) how cancer might have played a role in the evolution of telomere biology across mammals, (c) evidence that in modern humans telomere length is a determinant (rather than only a biomarker) of cancer and atherosclerosis, and (d) the potential influence of relatively recent evolutionary forces in fashioning the variation in telomere length across and within populations, and their likely lasting impact on major diseases in humans. Finally, we propose venues for future research on human telomere genetics in the context of its potential role in shaping the modern human lifespan. PMID:27386863

  17. Aberrant leukocyte telomere length in Birdshot Uveitis.

    Directory of Open Access Journals (Sweden)

    Nadia Vazirpanah

    Full Text Available Birdshot Uveitis (BU is an archetypical chronic inflammatory eye disease, with poor visual prognosis, that provides an excellent model for studying chronic inflammation. BU typically affects patients in the fifth decade of life. This suggests that it may represent an age-related chronic inflammatory disease, which has been linked to increased erosion of telomere length of leukocytes.To study this in detail, we exploited a sensitive standardized quantitative real-time polymerase chain reaction to determine the peripheral blood leukocyte telomere length (LTL in 91 genotyped Dutch BU patients and 150 unaffected Dutch controls.Although LTL erosion rates were very similar between BU patients and healthy controls, we observed that BU patients displayed longer LTL, with a median of log (LTL = 4.87 (= 74131 base pair compared to 4.31 (= 20417 base pair in unaffected controls (P<0.0001. The cause underpinning the difference in LTL could not be explained by clinical parameters, immune cell-subtype distribution, nor genetic predisposition based upon the computed weighted genetic risk score of genotyped validated variants in TERC, TERT, NAF1, OBFC1 and RTEL1.These findings suggest that BU is accompanied by significantly longer LTL.

  18. Telomere length and cortisol reactivity in children of depressed mothers.

    Science.gov (United States)

    Gotlib, I H; LeMoult, J; Colich, N L; Foland-Ross, L C; Hallmayer, J; Joormann, J; Lin, J; Wolkowitz, O M

    2015-05-01

    A growing body of research demonstrates that individuals diagnosed with major depressive disorder (MDD) are characterized by shortened telomere length, which has been posited to underlie the association between depression and increased instances of medical illness. The temporal nature of the relation between MDD and shortened telomere length, however, is not clear. Importantly, both MDD and telomere length have been associated independently with high levels of stress, implicating dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and anomalous levels of cortisol secretion in this relation. Despite these associations, no study has assessed telomere length or its relation with HPA-axis activity in individuals at risk for depression, before the onset of disorder. In the present study, we assessed cortisol levels in response to a laboratory stressor and telomere length in 97 healthy young daughters of mothers either with recurrent episodes of depression (i.e., daughters at familial risk for depression) or with no history of psychopathology. We found that daughters of depressed mothers had shorter telomeres than did daughters of never-depressed mothers and, further, that shorter telomeres were associated with greater cortisol reactivity to stress. This study is the first to demonstrate that children at familial risk of developing MDD are characterized by accelerated biological aging, operationalized as shortened telomere length, before they had experienced an onset of depression; this may predispose them to develop not only MDD but also other age-related medical illnesses. It is critical, therefore, that we attempt to identify and distinguish genetic and environmental mechanisms that contribute to telomere shortening.

  19. Translating Measures of Biological Aging to Test Effectiveness of Geroprotective Interventions: What Can We Learn from Research on Telomeres?

    Directory of Open Access Journals (Sweden)

    Waylon J. Hastings

    2017-11-01

    Full Text Available Intervention studies in animals suggest molecular changes underlying age-related disease and disability can be slowed or reversed. To speed translation of these so-called “geroprotective” therapies to prevent age-related disease and disability in humans, biomarkers are needed that can track changes in the rate of human aging over the course of intervention trials. Algorithm methods that measure biological processes of aging from combinations of DNA methylation marks or clinical biomarkers show promise. To identify next steps for establishing utility of these algorithm-based measures of biological aging for geroprotector trials, we considered the history a candidate biomarker of aging that has received substantial research attention, telomere length. Although telomere length possesses compelling biology to recommend it as a biomarker of aging, mixed research findings have impeded clinical and epidemiologic translation. Strengths of telomeres that should be established for algorithm biomarkers of aging are correlation with chronological age across the lifespan, prediction of disease, disability, and early death, and responsiveness to risk and protective exposures. Key challenges in telomere research that algorithm biomarkers of aging must address are measurement precision and reliability, establishing links between longitudinal rates of change across repeated measurements and aging outcomes, and clarity over whether the biomarker is a causal mechanism of aging. These strengths and challenges suggest a research agenda to advance translation of algorithm-based aging biomarkers: establish validity in young-adult and midlife individuals; test responsiveness to exposures that shorten or extend healthy lifespan; and conduct repeated-measures longitudinal studies to test differential rates of change.

  20. Cancer cells with alternative lengthening of telomeres do not display a general hypersensitivity to ATR inhibition

    Directory of Open Access Journals (Sweden)

    Katharina I Deeg

    2016-08-01

    Full Text Available Telomere maintenance is a hallmark of cancer as it provides cancer cells with cellular immortality. A significant fraction of tumors uses the alternative lengthening of telomeres (ALT pathway to elongate their telomeres and to gain an unlimited proliferation potential. Since the ALT pathway is unique to cancer cells, it represents a potentially valuable, currently unexploited target for anticancer therapies. Recently, it was proposed that ALT renders cells hypersensitive to ataxia telangiectasia- and RAD3-related (ATR protein inhibitors (Flynn et al., Science 347, 273. Here, we measured the response of various ALT or telomerase positive cell lines to the ATR inhibitor VE-821. In addition, we compared the effect of the inhibitor on cell viability in isogenic cell lines, in which ALT was active or suppressed. In these experiments a general ATR inhibitor sensitivity of cells with ALT could not be confirmed. We rather propose that the observed variations in sensitivity reflect differences between cell lines that are unrelated to ALT.

  1. Telomeres and Telomerase in Hematopoietic Dysfunction: Prognostic Implications and Pharmacological Interventions

    Directory of Open Access Journals (Sweden)

    Theresa Vasko

    2017-10-01

    Full Text Available Leukocyte telomere length (TL has been suggested as a marker of biological age in healthy individuals, but can also reflect inherited and acquired hematopoietic dysfunctions or indicate an increased turnover of the hematopoietic stem and progenitor cell compartment. In addition, TL is able to predict the response rate of tyrosine kinase inhibitor therapy in chronic myeloid leukemia (CML, indicates clinical outcomes in chronic lymphocytic leukemia (CLL, and can be used as screening tool for genetic sequencing of selected genes in patients with inherited bone marrow failure syndromes (BMFS. In tumor cells and clonal hematopoietic disorders, telomeres are continuously stabilized by reactivation of telomerase, which can selectively be targeted by telomerase-specific therapy. The use of the telomerase inhibitor Imetelstat in patients with essential thrombocythmia or myelofibrosis as well as the use of dendritic cell-based telomerase vaccination in AML patients with complete remissions are promising examples for anti-telomerase targeted strategies in hematologic malignancies. In contrast, the elevation in telomerase levels through treatment with androgens has become an exciting clinical intervention for patients with BMFS. Here, we review recent developments, which highlight the impact of telomeres and telomerase targeted therapies in hematologic dysfunctions.

  2. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe.

    Science.gov (United States)

    Habib, Ahmed G K; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko; Ueno, Masaru

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1(+) or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Highly Aggressive Metastatic Melanoma Cells Unable to Maintain Telomere Length.

    Science.gov (United States)

    Viceconte, Nikenza; Dheur, Marie-Sophie; Majerova, Eva; Pierreux, Christophe E; Baurain, Jean-François; van Baren, Nicolas; Decottignies, Anabelle

    2017-06-20

    Unlimited replicative potential is one of the hallmarks of cancer cells. In melanoma, hTERT (telomerase reverse transcriptase) is frequently overexpressed because of activating mutations in its promoter, suggesting that telomerase is necessary for melanoma development. We observed, however, that a subset of melanoma metastases and derived cell lines had no telomere maintenance mechanism. Early passages of the latter displayed long telomeres that progressively shortened and fused before cell death. We propose that, during melanoma formation, oncogenic mutations occur in precursor melanocytes with long telomeres, providing cells with sufficient replicative potential, thereby bypassing the need to re-activate telomerase. Our data further support the emerging idea that long telomeres promote melanoma formation. These observations are important when considering anticancer therapies targeting telomerase. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Highly Aggressive Metastatic Melanoma Cells Unable to Maintain Telomere Length

    Directory of Open Access Journals (Sweden)

    Nikenza Viceconte

    2017-06-01

    Full Text Available Unlimited replicative potential is one of the hallmarks of cancer cells. In melanoma, hTERT (telomerase reverse transcriptase is frequently overexpressed because of activating mutations in its promoter, suggesting that telomerase is necessary for melanoma development. We observed, however, that a subset of melanoma metastases and derived cell lines had no telomere maintenance mechanism. Early passages of the latter displayed long telomeres that progressively shortened and fused before cell death. We propose that, during melanoma formation, oncogenic mutations occur in precursor melanocytes with long telomeres, providing cells with sufficient replicative potential, thereby bypassing the need to re-activate telomerase. Our data further support the emerging idea that long telomeres promote melanoma formation. These observations are important when considering anticancer therapies targeting telomerase.

  5. Childhood adversity, social support, and telomere length among perinatal women.

    Science.gov (United States)

    Mitchell, Amanda M; Kowalsky, Jennifer M; Epel, Elissa S; Lin, Jue; Christian, Lisa M

    2018-01-01

    Adverse perinatal health outcomes are heightened among women with psychosocial risk factors, including childhood adversity and a lack of social support. Biological aging could be one pathway by which such outcomes occur. However, data examining links between psychosocial factors and indicators of biological aging among perinatal women are limited. The current study examined the associations of childhood socioeconomic status (SES), childhood trauma, and current social support with telomere length in peripheral blood mononuclear cells (PBMCs) in a sample of 81 women assessed in early, mid, and late pregnancy as well as 7-11 weeks postpartum. Childhood SES was defined as perceived childhood social class and parental educational attainment. Measures included the Childhood Trauma Questionnaire, Center for Epidemiologic Studies-Depression Scale, Multidimensional Scale of Perceived Social Support, and average telomere length in PBMCs. Per a linear mixed model, telomere length did not change across pregnancy and postpartum visits; thus, subsequent analyses defined telomere length as the average across all available timepoints. ANCOVAs showed group differences by perceived childhood social class, maternal and paternal educational attainment, and current family social support, with lower values corresponding with shorter telomeres, after adjustment for possible confounds. No effects of childhood trauma or social support from significant others or friends on telomere length were observed. Findings demonstrate that while current SES was not related to telomeres, low childhood SES, independent of current SES, and low family social support were distinct risk factors for cellular aging in women. These data have relevance for understanding potential mechanisms by which early life deprivation of socioeconomic and relationship resources affect maternal health. In turn, this has potential significance for intergenerational transmission of telomere length. The predictive value of

  6. Molecular adaptation of telomere associated genes in mammals.

    Science.gov (United States)

    Morgan, Claire C; Mc Cartney, Ann M; Donoghue, Mark T A; Loughran, Noeleen B; Spillane, Charles; Teeling, Emma C; O'Connell, Mary J

    2013-11-15

    Placental mammals display a huge range of life history traits, including size, longevity, metabolic rate and germ line generation time. Although a number of general trends have been proposed between these traits, there are exceptions that warrant further investigation. Species such as naked mole rat, human and certain bat species all exhibit extreme longevity with respect to body size. It has long been established that telomeres and telomere maintenance have a clear role in ageing but it has not yet been established whether there is evidence for adaptation in telomere maintenance proteins that could account for increased longevity in these species. Here we carry out a molecular investigation of selective pressure variation, specifically focusing on telomere associated genes across placental mammals. In general we observe a large number of instances of positive selection acting on telomere genes. Although these signatures of selection overall are not significantly correlated with either longevity or body size we do identify positive selection in the microbat species Myotis lucifugus in functionally important regions of the telomere maintenance genes DKC1 and TERT, and in naked mole rat in the DNA repair gene BRCA1. These results demonstrate the multifarious selective pressures acting across the mammal phylogeny driving lineage-specific adaptations of telomere associated genes. Our results show that regardless of the longevity of a species, these proteins have evolved under positive selection thereby removing increased longevity as the single selective force driving this rapid rate of evolution. However, evidence of molecular adaptations specific to naked mole rat and Myotis lucifugus highlight functionally significant regions in genes that may alter the way in which telomeres are regulated and maintained in these longer-lived species.

  7. The heritability of leucocyte telomere length dynamics

    DEFF Research Database (Denmark)

    Hjelmborg, Jacob B; Dalgård, Christine; Möller, Sören

    2015-01-01

    BACKGROUND: Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL...... variation among adults. A number of studies have estimated the heritability of LTL, but none has assessed the heritability of age-dependent LTL attrition. METHODS: We examined the heritability of LTL dynamics based on a longitudinal evaluation (an average follow-up of 12 years) in 355 monozygotic and 297...... dizygotic same-sex twins (aged 19-64 years at baseline). RESULTS: Heritability of LTL at baseline was estimated at 64% (95% CI 39% to 83%) with 22% (95% CI 6% to 49%) of shared environmental effects. Heritability of age-dependent LTL attrition rate was estimated at 28% (95% CI 16% to 44%). Individually...

  8. The telomere lengthening conundrum - artifact or biology?

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Hjelmborg, Jacob V B; Kark, Jeremy D

    2013-01-01

    Recent longitudinal studies of age-dependent leukocyte telomere length (LTL) attrition have reported that variable proportions of individuals experience LTL lengthening. Often, LTL lengthening has been taken at face value, and authors have speculated about the biological causation of this finding......-dependent LTL attrition in longitudinal studies. We find that LTL lengthening is far less frequent in studies with long follow-up periods and those that used a high-precision Southern blot method (as compared with quantitative polymerase chain reaction determination, which is associated with larger laboratory...... error). We conclude that the LTL lengthening observed in longitudinal studies is predominantly, if not entirely, an artifact of measurement error, which is exacerbated by short follow-up periods. We offer specific suggestions for design of longitudinal studies of LTL attrition to diminish this artifact....

  9. The heritability of telomere length among the elderly and oldest-old

    DEFF Research Database (Denmark)

    Bischoff, Claus; Graakjaer, Jesper; Petersen, Hans Christian

    2005-01-01

    replication problem, explains why the telomere erodes at each cellular turnover. Telomere length is regulated by a number of associated proteins through a number of different signaling pathways. The determinants of telomere length were studied using whole blood samples from 287 twin pairs aged 73 to 95 years......A tight link exists between telomere length and both population doublings of a cell culture and age of a given organism. The more population doublings of the cell culture or the higher the age of the organism, the shorter the telomeres. The proposed model for telomere shortening, called the end...

  10. Does oxidative stress shorten telomeres in vivo? A review.

    Science.gov (United States)

    Reichert, Sophie; Stier, Antoine

    2017-12-01

    The length of telomeres, the protective caps of chromosomes, is increasingly used as a biomarker of individual health state because it has been shown to predict chances of survival in a range of endothermic species including humans. Oxidative stress is presumed to be a major cause of telomere shortening, but most evidence to date comes from in vitro cultured cells. The importance of oxidative stress as a determinant of telomere shortening in vivo remains less clear and has recently been questioned. We, therefore, reviewed correlative and experimental studies investigating the links between oxidative stress and telomere shortening in vivo While correlative studies provide equivocal support for a connection between oxidative stress and telomere attrition (10 of 18 studies), most experimental studies published so far (seven of eight studies) partially or fully support this hypothesis. Yet, this link seems to be tissue-dependent in some cases, or restricted to particular categories of individual (e.g. sex-dependent) in other cases. More experimental studies, especially those decreasing antioxidant protection or increasing pro-oxidant generation, are required to further our understanding of the importance of oxidative stress in determining telomere length in vivo Studies comparing growing versus adult individuals, or proliferative versus non-proliferative tissues would provide particularly important insights. © 2017 The Author(s).

  11. Television Watching and Telomere Length Among Adults in Southwest China.

    Science.gov (United States)

    Xue, Hong-Mei; Liu, Qian-Qian; Tian, Guo; Quan, Li-Ming; Zhao, Yong; Cheng, Guo

    2017-09-01

    To explore the independent associations of sedentary behavior and physical activity with telomere length among Chinese adults. Data on total time of sedentary behavior, screen-based sedentary behavior (including television watching and computer or phone use), moderate to vigorous physical activity, and dietary intake of 518 adults in Chengdu, Guizhou, and Xiamen in China (54.25% women) aged 20 to 70 years were obtained between 2013 and 2015 through questionnaires. Height, weight, and waist circumference were measured to calculate body mass index and percentage of body fat. Telomere length was measured through Southern blot technique. Television watching was inversely related to adjusted telomere length (-71.75 base pair; SE = 34.40; P  = .04). Furthermore, a similar trend between telomere length and television watching was found in the group aged 20 to 40 years after adjusting for all covariates. Adults aged 20 to 40 years in the highest tertile of daily time spent on watching television had 4.0% shorter telomere length than adults in the lowest tertile (P = .03). Although the association is modest, television watching is inversely related to telomere length among Chinese adults, warranting further investigation in large prospective studies.

  12. Structure and function of the telomeric CST complex

    Directory of Open Access Journals (Sweden)

    Cory Rice

    2016-01-01

    Full Text Available Telomeres comprise the ends of eukaryotic chromosomes and are essential for cell proliferation and genome maintenance. Telomeres are replicated by telomerase, a ribonucleoprotein (RNP reverse transcriptase, and are maintained primarily by nucleoprotein complexes such as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, TPP1 and CST (Cdc13/Ctc1, Stn1, Ten1. The focus of this review is on the CST complex and its role in telomere maintenance. Although initially thought to be unique to yeast, it is now evident that the CST complex is present in a diverse range of organisms where it contributes to genome maintenance. The CST accomplishes these tasks via telomere capping and by regulating telomerase and DNA polymerase alpha-primase (polα-primase access to telomeres, a process closely coordinated with the shelterin complex in most organisms. The goal of this review is to provide a brief but comprehensive account of the diverse, and in some cases organism-dependent, functions of the CST complex and how it contributes to telomere maintenance and cell proliferation.

  13. The Effect of Physical Activity agains the Telomere Length in the Leukocytes Cells of KONI Athletes

    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih

    2017-07-01

    Full Text Available Telomeres are strands of non coding DNA at the ends of chromosomes that have the primary function to protect DNA from damage and maintain chromosomal stability. Physical exercise will increase the antioxidant activity can increase telomere proteins, lengthen telomeres and or protein networks associated with telomere so that the telomere remains long, or stopping telomere shortening. Telomere length was also associated with age. The purpose of the research was to determine telomere length of leukocyte cells in the KONI (Indonesian National Sports Committee athletes in Jakarta. The research method is descriptive, by measuring telomere length using quantitative PCR on leukocyte cells. Samples are KONI athletes from several sports, including men and women athletes, with ages between 15-20 years. Used a control group (not athletes is students of the Faculty of Medicine, University of YARSI. The results showed that there was no significant difference (p> 0.05 between telomere length group of athletes with the control group in both sexes. Similarly, telomere length between athlete male with female athletes also showed no significant difference (p> 0.05. It was concluded that physical exercise in athletes KONI at the age of 15- 20 years had no effect on telomere length in leukocytes. The results of this study provide information about the telomere length in Indonesian athletes at an early age.

  14. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  15. Discovery of selective ligands for telomeric RNA G-quadruplexes (TERRA) through 19F-NMR based fragment screening.

    Science.gov (United States)

    Garavís, Miguel; López-Méndez, Blanca; Somoza, Alvaro; Oyarzabal, Julen; Dalvit, Claudio; Villasante, Alfredo; Campos-Olivas, Ramón; González, Carlos

    2014-07-18

    Telomeric repeat-containing RNA (TERRA) is a novel and very attractive antitumoral target. Here, we report the first successful application of (19)F-NMR fragment-based screening to identify chemically diverse compounds that bind to an RNA molecule such as TERRA. We have built a library of 355 fluorinated fragments, and checked their interaction with a long telomeric RNA as a target molecule. The screening resulted in the identification of 20 hits (hit rate of 5.6%). For a number of binders, their interaction with TERRA was confirmed by (19)F- and (1)H NMR as well as by CD melting experiments. We have also explored the selectivity of the ligands for RNA G-quadruplexes and found that some of the hits do not interact with other nucleic acids such as tRNA and duplex DNA and, most importantly, favor the propeller-like parallel conformation in telomeric DNA G-quadruplexes. This suggests a selective recognition of this particular quadruplex topology and that different ligands may recognize specific sites in propeller-like parallel G-quadruplexes. Such features make some of the resulting binders promising lead compounds for fragment based drug discovery.

  16. Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein.

    Science.gov (United States)

    Daniel, Katrin; Tränkner, Daniel; Wojtasz, Lukasz; Shibuya, Hiroki; Watanabe, Yoshinori; Alsheimer, Manfred; Tóth, Attila

    2014-05-22

    Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. CCDC79 is a meiosis-specific telomere

  17. The Ctf18RFC clamp loader is essential for telomere stability in telomerase-negative and mre11 mutant alleles.

    Directory of Open Access Journals (Sweden)

    Honghai Gao

    Full Text Available The function of the replication clamp loaders in the semi-conservative telomere replication and their relationship to telomerase- and recombination mechanisms of telomere addition remains ambiguous. We have investigated the variant clamp loader Ctf18 RFC (Replication Factor C. To understand the role of Ctf18 at the telomere, we first investigated genetic interactions after loss of Ctf18 and TLC1 (the yeast telomerase RNA. We find that the tlc1Δ ctf18Δ double mutant confers a rapid >1000-fold decrease in viability. The rate of loss was similar to the kinetics of cell death in rad52Δ tlc1Δ cells. However, the Ctf18 pathway is distinct from Rad52, required for the repair of DSBs, as demonstrated by the synthetic lethality of rad52▵ tlc1Δ ctf18Δ triple mutants. These data suggest that each mutant elicits non-redundant defects acting on the same substrate. Second, interactions of the yeast hyper-recombinational mutant, mre11A470T, with ctf18▵ confer a synergistic cold sensitivity. The phenotype of these double mutants ultimately results in telomere loss and the generation of recombinational survivors. We observed a similar synergism between single mutants that led to hypersensitivity to the DNA alkylating agent, methane methyl sulphonate (MMS, the replication fork inhibitor hydroxyurea (HU, and to a failure to separate telomeres of sister chromatids. Hence, ctf18Δ and mre11A470T act in different pathways on telomere substrates for multiple phenotypes. The mre11A470T cells also displayed a DNA damage response (DDR at 15°C but not at 30°C while ctf18Δ mutants conferred a constitutive DDR activity. Both the 15°C DDR pattern and growth rate were reversible at 30°C and displayed telomerase activity in vivo. We hypothesize that Ctf18 confers protection against stalling and/or breaks at the replication fork in cells that either lack, or are compromised for, telomerase activity. This Ctf18-based function is likely to contribute another level

  18. Expression of Shelterin Component POT1 Is Associated with Decreased Telomere Length and Immunity Condition in Humans with Severe Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Ting Wang

    2014-01-01

    Full Text Available Abnormal telomere attrition has been found to be closely related to patients with SAA in recent years. To identify the incidence of telomere attrition in SAA patients and investigate the relationship of telomere length with clinical parameters, SAA patients (n=27 and healthy controls (n=15 were enrolled in this study. Telomere length of PWBCs was significantly shorter in SAA patients than in controls. Analysis of gene expression of Shelterin complex revealed markedly low levels of POT1 expression in SAA groups relative to controls. No differences in the gene expression of the other Shelterin components—TRF1, TRF2, TIN2, TPP1, and RAP1—were identified. Addition of IFN-γ to culture media induced a similar fall in POT1 expression in bone marrow cells to that observed in cells cultured in the presence of SAA serum, suggesting IFN-γ is the agent responsible for this effect of SAA serum. Furthermore, ATR, phosphorylated ATR, and phosphorylated ATM/ATR substrate were all found similarly increased in bone marrow cells exposed to SAA serum, TNF-α, or IFN-γ. In summary, SAA patients have short telomeres and decreased POT1 expression. TNF-α and IFN-γ are found at high concentrations in SAA patients and may be the effectors that trigger apoptosis through POT1 and ATR.

  19. Association of human telomerase reverse transcriptase gene polymorphisms, serum levels, and telomere length with renal cell carcinoma risk and pathology.

    Science.gov (United States)

    de Martino, Michela; Taus, Christopher; Lucca, Ilaria; Hofbauer, Sebastian L; Haitel, Andrea; Shariat, Shahrokh F; Klatte, Tobias

    2016-10-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the human telomerase and plays a key role in telomere restitution and gene regulation. Evidence suggests that hTERT is linked with the risk and progression of several malignancies, but there are no comprehensive data in renal cell carcinoma (RCC). In this case-control study, we assessed seven polymorphic hTERT gene variants (MNS16A, rs2736100, rs2736098, rs7726159, rs2853677, rs13172201, and rs10069690), hTERT serum levels, and the telomere length of 663 individuals, including 243 with clear cell RCC and 420 age- and gender-matched healthy controls. The SL and SS genotypes of MNS16A were associated with a decreased risk for RCC on the multivariable logistic regression analysis (SL-OR 0.72, SS-OR 0.37, P < 0.001). The GG genotype of rs2736098 was associated with a decreased risk for RCC compared with AA (OR 0.18, P < 0.001). Both telomere length and hTERT serum levels increased with every G allele in rs2736098 (P = 0.008). Pretherapeutic hTERT serum levels were higher in patients with advanced tumor stages (P = 0.037) and distant metastases (P = 0.006). Rs2736100, rs7726159, rs2853677, rs13172201, and rs10069690 were not linked with RCC risk, and none of the polymorphisms was associated with RCC pathology. In conclusion, the polymorphic number of tandem repeats in hTERT (MNS16A) and rs2736098 may be linked with the risk for RCC. Rs2736098 may have an important role in telomere length restitution and serum hTERT levels may represent a novel biomarker for RCC. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus.

    Directory of Open Access Journals (Sweden)

    Denise Aydinonat

    Full Text Available Telomeres, the caps of eukaryotic chromosomes, control chromosome stability and cellular senescence, but aging and exposure to chronic stress are suspected to cause attrition of telomere length. We investigated the effect of social isolation on telomere length in the highly social and intelligent African Grey parrot (Psittacus erithacus erithacus. Our study population consisted of single-housed (n = 26 and pair-housed (n = 19 captive individuals between 0.75 to 45 years of age. Relative telomere length of erythrocyte DNA was measured by quantitative real-time PCR. We found that telomere length declined with age (p<0.001, and socially isolated parrots had significantly shorter telomeres compared to pair-housed birds (p<0.001 - even among birds of similar ages. Our findings provide the first evidence that social isolation affects telomere length, which supports the hypothesis that telomeres provide a biomarker indicating exposure to chronic stress.

  1. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus).

    Science.gov (United States)

    Aydinonat, Denise; Penn, Dustin J; Smith, Steve; Moodley, Yoshan; Hoelzl, Franz; Knauer, Felix; Schwarzenberger, Franz

    2014-01-01

    Telomeres, the caps of eukaryotic chromosomes, control chromosome stability and cellular senescence, but aging and exposure to chronic stress are suspected to cause attrition of telomere length. We investigated the effect of social isolation on telomere length in the highly social and intelligent African Grey parrot (Psittacus erithacus erithacus). Our study population consisted of single-housed (n = 26) and pair-housed (n = 19) captive individuals between 0.75 to 45 years of age. Relative telomere length of erythrocyte DNA was measured by quantitative real-time PCR. We found that telomere length declined with age (pparrots had significantly shorter telomeres compared to pair-housed birds (p<0.001) - even among birds of similar ages. Our findings provide the first evidence that social isolation affects telomere length, which supports the hypothesis that telomeres provide a biomarker indicating exposure to chronic stress.

  2. Acacetin and Chrysin, Two Polyphenolic Compounds, Alleviate Telomeric Position Effect in Human Cells

    Directory of Open Access Journals (Sweden)

    Amina Boussouar

    2013-01-01

    Full Text Available We took advantage of the ability of human telomeres to silence neighboring genes (telomere position effect or TPE to design a high-throughput screening assay for drugs altering telomeres. We identified, for the first time, that two dietary flavones, acacetin and chrysin, are able to specifically alleviate TPE in human cells. We further investigated their influence on telomere integrity and showed that both drugs drastically deprotect telomeres against DNA damage response. However, telomere deprotection triggered by shelterin dysfunction does not affect TPE, indicating that acacetin and chrysin target several functions of telomeres. These results show that TPE-based screening assays represent valuable methods to discover new compounds targeting telomeres.

  3. Ageing and reproduction: antioxidant supplementation alleviates telomere loss in wild birds

    National Research Council Canada - National Science Library

    Badás, E. P; Martínez, J; Rivero de Aguilar Cachafeiro, J; Miranda, F; Figuerola, J; Merino, S

    2015-01-01

    .... However, the effects of nutritional status and infection on ageing remain unknown. Telomeres function as protective caps at the ends of eukaryotic chromosomes, and changes in telomere length is a commonly used proxy for ageing...

  4. Migration and stress during reproduction govern telomere dynamics in a seabird

    Science.gov (United States)

    Schultner, Jannik; Moe, Børge; Chastel, Olivier; Bech, Claus; Kitaysky, Alexander S.

    2014-01-01

    Changes in telomere length are believed to reflect changes in physiological state and life expectancy in animals. However, much remains unknown about the determinants of telomere dynamics in wild populations, and specifically the influence of conditions during highly mobile life-history stages, for example migration. We tested whether telomere dynamics were associated with migratory behaviour and/or with stress during reproduction in free-living seabirds. We induced short-term stress during reproduction in chick-rearing, black-legged kittiwakes (Rissa tridactyla), tracked winter migration with geolocators and measured telomere length before and after winter migration. We found that time spent at wintering grounds correlated with reduced telomere loss, while stress during reproduction accelerated telomere shortening. Our results suggest that different life-history stages interact to influence telomere length, and that migratory patterns may be important determinants of variation in an individual's telomere dynamics. PMID:24429681

  5. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection.

    Science.gov (United States)

    Blackburn, Elizabeth H; Epel, Elissa S; Lin, Jue

    2015-12-04

    Telomeres are the protective end-complexes at the termini of eukaryotic chromosomes. Telomere attrition can lead to potentially maladaptive cellular changes, block cell division, and interfere with tissue replenishment. Recent advances in the understanding of human disease processes have clarified the roles of telomere biology, especially in diseases of human aging and in some aging-related processes. Greater overall telomere attrition predicts mortality and aging-related diseases in inherited telomere syndrome patients, and also in general human cohorts. However, genetically caused variations in telomere maintenance either raise or lower risks and progression of cancers, in a highly cancer type-specific fashion. Telomere maintenance is determined by genetic factors and is also cumulatively shaped by nongenetic influences throughout human life; both can interact. These and other recent findings highlight both causal and potentiating roles for telomere attrition in human diseases. Copyright © 2015, American Association for the Advancement of Science.

  6. Examining the Role of Msh2 and Mre11 in Telomere Rescue

    National Research Council Canada - National Science Library

    Meyer, Damon

    2007-01-01

    .... Continuously dividing human somatic cells and S. cerevisiae cells lacking functional telomerase, a ribonucleoprotein complex required for telomere replication, experience progressive telomere degradation that culminates in replicative senescence 5,6...

  7. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  8. The C. elegans maternal-effect gene clk-2 is essential for embryonic development, encodes a protein homologous to yeast Tel2p and affects telomere length.

    Science.gov (United States)

    Bénard, C; McCright, B; Zhang, Y; Felkai, S; Lakowski, B; Hekimi, S

    2001-10-01

    The Caenorhabditis elegans maternal-effect clk genes are involved in the temporal control of development and behavior. We report the genetic and molecular characterization of clk-2. A temperature-sensitive mutation in the gene clk-2 affects embryonic and post-embryonic development, reproduction, and rhythmic behaviors. Yet, virtually all phenotypes are fully maternally rescued. Embryonic development strictly requires the activity of maternal clk-2 during a narrow time window between oocyte maturation and the two- to four-cell embryonic stage. Positional cloning of clk-2 reveals that it encodes a protein homologous to S. cerevisiae Tel2p. In yeast, the gene TEL2 regulates telomere length and participates in gene silencing at subtelomeric regions. In C. elegans, clk-2 mutants have elongated telomeres, and clk-2 overexpression can lead to telomere shortening. Tel2p has been reported to bind to telomeric DNA repeats in vitro. However, we find that a functional CLK-2::GFP fusion protein is cytoplasmic in worms. We discuss how the phenotype of clk-2 mutants could be the result of altered patterns of gene expression.

  9. Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird

    OpenAIRE

    Bauch, Christina; Peter H. Becker; Verhulst, Simon

    2013-01-01

    Telomere length is associated with cellular senescence, lifestyle and ageing. Short telomeres indicate poor health in humans and reduced life expectancy in several bird species, but little is known about telomeres in relation to phenotypic quality in wild animals. We investigated telomere lengths in erythrocytes of known-age common terns (Sterna hirundo), a migratory seabird, in relation to arrival date and reproductive performance. Cross-sectional data revealed that, independent of age, indi...

  10. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis)

    OpenAIRE

    Franz Hoelzl; Steve Smith; Cornils, Jessica S.; Denise Aydinonat; Claudia Bieber; Thomas Ruf

    2016-01-01

    Telomere shortening is thought to be an important biomarker for life history traits such as lifespan and aging, and can be indicative of genome integrity, survival probability and the risk of cancer development. In humans and other animals, telomeres almost always shorten with age, with more rapid telomere attrition in short-lived species. Here, we show that in the edible dormouse (Glis glis) telomere length significantly increases from an age of 6 to an age of 9 years. While this finding cou...

  11. Maternal pre-pregnancy body mass index and newborn telomere length

    OpenAIRE

    Martens, Dries S.; Plusquin, Michelle; Gyselaers, Wilfried; De Vivo, Immaculata; Nawrot, Tim

    2016-01-01

    Background: Newborn telomere length sets telomere length for later life. At birth, telomere length is highly variable among newborns and the environmental factors during in utero life for this observation remain largely unidentified. Obesity during pregnancy might reflect an adverse nutritional status affecting pregnancy and offspring outcomes, but the association of maternal pre-pregnancy body mass index (BMI) with newborn telomere length, as a mechanism of maternal obesity, on the next gene...

  12. Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data

    NARCIS (Netherlands)

    Farmery, James H. R.; Smith, Mike L.; Lynch, Andy G.; Huissoon, Aarnoud; Furnell, Abigail; Mead, Adam; Levine, Adam P.; Manzur, Adnan; Thrasher, Adrian; Greenhalgh, Alan; Parker, Alasdair; Sanchis-Juan, Alba; Richter, Alex; Gardham, Alice; Lawrie, Allan; Sohal, Aman; Creaser-Myers, Amanda; Frary, Amy; Greinacher, Andreas; Themistocleous, Andreas; Peacock, Andrew J.; Marshall, Andrew; Mumford, Andrew; Rice, Andrew; Webster, Andrew; Brady, Angie; Koziell, Ania; Manson, Ania; Chandra, Anita; Hensiek, Anke; Veld, Anna Huis In't; Maw, Anna; Kelly, Anne M.; Moore, Anthony; Vonk Noordegraaf, Anton; Attwood, Antony; Herwadkar, Archana; Ghofrani, Ardi; Houweling, Arjan C.; Girerd, Barbara; Furie, Bruce; Treacy, Carmen M.; Millar, Carolyn M.; Sewell, Carrock; Roughley, Catherine; Titterton, Catherine; Williamson, Catherine; Hadinnapola, Charaka; Deshpande, Charu; Toh, Cheng-Hock; Bacchelli, Chiara; Patch, Chris; Geet, Chris Van; Babbs, Christian; Bryson, Christine; Penkett, Christopher J.; Rhodes, Christopher J.; Watt, Christopher; Bethune, Claire; Booth, Claire; Lentaigne, Claire; McJannet, Coleen; Church, Colin; French, Courtney; Samarghitean, Crina; Halmagyi, Csaba; Gale, Daniel; Greene, Daniel; Hart, Daniel; Allsup, David; Bennett, David; Edgar, David; Kiely, David G.; Gosal, David; Perry, David J.; Keeling, David; Montani, David; Shipley, Debbie; Whitehorn, Deborah; Fletcher, Debra; Krishnakumar, Deepa; Grozeva, Detelina; Kumararatne, Dinakantha; Thompson, Dorothy; Josifova, Dragana; Maher, Eamonn; Wong, Edwin K. S.; Murphy, Elaine; Dewhurst, Eleanor; Louka, Eleni; Rosser, Elisabeth; Chalmers, Elizabeth; Colby, Elizabeth; Drewe, Elizabeth; McDermott, Elizabeth; Thomas, Ellen; Staples, Emily; Clement, Emma; Matthews, Emma; Wakeling, Emma; Oksenhendler, Eric; Turro, Ernest; Reid, Evan; Wassmer, Evangeline; Raymond, F. Lucy; Hu, Fengyuan; Kennedy, Fiona; Soubrier, Florent; Flinter, Frances; Kovacs, Gabor; Polwarth, Gary; Ambegaonkar, Gautum; Arno, Gavin; Hudson, Gavin; Woods, Geoff; Coghlan, Gerry; Hayman, Grant; Arumugakani, Gururaj; Schotte, Gwen; Cook, H. Terry; Alachkar, Hana; Lango Allen, Hana; Lango-Allen, Hana; Stark, Hannah; Stauss, Hans; Schulze, Harald; Boggard, Harm J.; Baxendale, Helen; Dolling, Helen; Firth, Helen; Gall, Henning; Watson, Henry; Longhurst, Hilary; Markus, Hugh S.; Watkins, Hugh; Simeoni, Ilenia; Emmerson, Ingrid; Roberts, Irene; Quinti, Isabella; Wanjiku, Ivy; Gibbs, J. Simon R.; Thaventhiran, James; Whitworth, James; Hurst, Jane; Collins, Janine; Suntharalingam, Jay; Payne, Jeanette; Thachil, Jecko; Martin, Jennifer M.; Martin, Jennifer; Carmichael, Jenny; Maimaris, Jesmeen; Paterson, Joan; Pepke-Zaba, Joanna; Heemskerk, Johan W. M.; Gebhart, Johanna; Davis, John; Pasi, John; Bradley, John R.; Wharton, John; Stephens, Jonathan; Rankin, Julia; Anderson, Julie; Vogt, Julie; von Ziegenweldt, Julie; Rehnstrom, Karola; Megy, Karyn; Talks, Kate; Peerlinck, Kathelijne; Yates, Katherine; Freson, Kathleen; Stirrups, Kathleen; Gomez, Keith; Smith, Kenneth G. C.; Carss, Keren; Rue-Albrecht, Kevin; Gilmour, Kimberley; Masati, Larahmie; Scelsi, Laura; Southgate, Laura; Ranganathan, Lavanya; Ginsberg, Lionel; Devlin, Lisa; Willcocks, Lisa; Ormondroyd, Liz; Lorenzo, Lorena; Harper, Lorraine; Allen, Louise; Daugherty, Louise; Chitre, Manali; Kurian, Manju; Humbert, Marc; Tischkowitz, Marc; Bitner-Glindzicz, Maria; Erwood, Marie; Scully, Marie; Veltman, Marijke; Caulfield, Mark; Layton, Mark; McCarthy, Mark; Ponsford, Mark; Toshner, Mark; Bleda, Marta; Wilkins, Martin; Mathias, Mary; Reilly, Mary; Afzal, Maryam; Brown, Matthew; Rondina, Matthew; Stubbs, Matthew; Haimel, Matthias; Lees, Melissa; Laffan, Michael A.; Browning, Michael; Gattens, Michael; Richards, Michael; Michaelides, Michel; Lambert, Michele P.; Makris, Mike; de Vries, Minka; Mahdi-Rogers, Mohamed; Saleem, Moin; Thomas, Moira; Holder, Muriel; Eyries, Mélanie; Clements-Brod, Naomi; Canham, Natalie; Dormand, Natalie; Zuydam, Natalie Van; Kingston, Nathalie; Ghali, Neeti; Cooper, Nichola; Morrell, Nicholas W.; Yeatman, Nigel; Roy, Noémi; Shamardina, Olga; Alavijeh, Omid S.; Gresele, Paolo; Nurden, Paquita; Chinnery, Patrick; Deegan, Patrick; Yong, Patrick; Man, Patrick Yu Wai; Corris, Paul A.; Calleja, Paul; Gissen, Paul; Bolton-Maggs, Paula; Rayner-Matthews, Paula; Ghataorhe, Pavandeep K.; Gordins, Pavel; Stein, Penelope; Collins, Peter; Dixon, Peter; Kelleher, Peter; Ancliff, Phil; Yu, Ping; Tait, R. Campbell; Linger, Rachel; Doffinger, Rainer; Machado, Rajiv; Kazmi, Rashid; Sargur, Ravishankar; Favier, Remi; Tan, Rhea; Liesner, Ri; Antrobus, Richard; Sandford, Richard; Scott, Richard; Trembath, Richard; Horvath, Rita; Hadden, Rob; MackenzieRoss, Rob V.; Henderson, Robert; MacLaren, Robert; James, Roger; Ghurye, Rohit; DaCosta, Rosa; Hague, Rosie; Mapeta, Rutendo; Armstrong, Ruth; Noorani, Sadia; Murng, Sai; Santra, Saikat; Tuna, Salih; Johnson, Sally; Chong, Sam; Lear, Sara; Walker, Sara; Goddard, Sarah; Mangles, Sarah; Westbury, Sarah; Mehta, Sarju; Hackett, Scott; Nejentsev, Sergey; Moledina, Shahin; Bibi, Shahnaz; Meehan, Sharon; Othman, Shokri; Revel-Vilk, Shoshana; Holden, Simon; McGowan, Simon; Staines, Simon; Savic, Sinisa; Burns, Siobhan; Grigoriadou, Sofia; Papadia, Sofia; Ashford, Sofie; Schulman, Sol; Ali, Sonia; Park, Soo-Mi; Davies, Sophie; Stock, Sophie; Ali, Souad; Deevi, Sri V. V.; Gräf, Stefan; Ghio, Stefano; Wort, Stephen J.; Jolles, Stephen; Austin, Steve; Welch, Steve; Meacham, Stuart; Rankin, Stuart; Walker, Suellen; Seneviratne, Suranjith; Holder, Susan; Sivapalaratnam, Suthesh; Richardson, Sylvia; Kuijpers, Taco; Bariana, Tadbir K.; Bakchoul, Tamam; Everington, Tamara; Renton, Tara; Young, Tim; Aitman, Timothy; Warner, Timothy Q.; Vale, Tom; Hammerton, Tracey; Pollock, Val; Matser, Vera; Cookson, Victoria; Clowes, Virginia; Qasim, Waseem; Wei, Wei; Erber, Wendy N.; Ouwehand, Willem H.; Astle, William; Egner, William; Turek, Wojciech; Henskens, Yvonne; Tan, Yvonne

    2018-01-01

    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously

  13. Dynamic Length Changes of Telomeres and Their Nuclear Organization in Chronic Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Samassekou, Oumar [Manitoba Institute of Cell Biology, Cancer Care Manitoba, Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0V9 (Canada)

    2013-08-22

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the t(9;22) translocation. As in most cancers, short telomeres are one of the features of CML cells, and telomere shortening accentuates as the disease progresses from the chronic phase to the blastic phase. Although most individual telomeres are short, some of them are lengthened, and long individual telomeres occur non-randomly and might be associated with clonal selection. Telomerase is the main mechanism used to maintain telomere lengths, and its activity increases when CML evolves toward advanced stages. ALT might be another mechanism employed by CML cells to sustain the homeostasis of their telomere lengths and this mechanism seems predominant at the early stage of leukemogenesis. Also, telomerase and ALT might jointly act to maintain telomere lengths at the chronic phase, and as CML progresses, telomerase becomes the major mechanism. Finally, CML cells display an altered nuclear organization of their telomeres which is characterized by the presence of high number of telomeric aggregates, a feature of genomic instability, and differential positioning of telomeres. CML represents a good model to study mechanisms responsible for dynamic changes of individual telomere lengths and the remodeling of telomeric nuclear organization throughout cancer progression.

  14. Dietary restraint and telomere length in pre- and postmenopausal women.

    Science.gov (United States)

    Kiefer, Amy; Lin, Jue; Blackburn, Elizabeth; Epel, Elissa

    2008-10-01

    Leukocyte telomere shortening can serve as a biomarker of aging, as telomere length (TL) can decline with age and shortening is positively associated with morbidity and mortality. It is therefore important to identify psychological and behavioral factors linked to accelerated telomere shortening. Stress and poorer metabolic health (greater adiposity, insulin resistance, and cortisol) correlate with shorter telomeres. Self-reported dietary restraint (DR), defined as chronic preoccupation with weight and attempts at restricting food intake, is linked to greater perceived stress, cortisol, and weight gain, when assessed in community studies (versus in weight loss programs). To test for an association between DR and TL in healthy women across a range of ages. We examined whether DR is linked to TL in two samples, one of premenopausal women (aged 20-50 years;N = 36) and one of postmenopausal women (aged 53-69 years; N = 20). In both samples, higher levels of DR were associated with shorter leukocyte TL, independent of body mass index, smoking, and age. Chronic DR, as assessed by self-report (i.e. not caloric restriction), may be a risk factor for premature telomere shortening. Potential mechanisms are discussed.

  15. Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint.

    Science.gov (United States)

    Musarò, Mariarosaria; Ciapponi, Laura; Fasulo, Barbara; Gatti, Maurizio; Cenci, Giovanni

    2008-03-01

    In both yeast and mammals, uncapped telomeres activate the DNA damage response (DDR) and undergo end-to-end fusion. Previous work has shown that the Drosophila HOAP protein, encoded by the caravaggio (cav) gene, is required to prevent telomeric fusions. Here we show that HOAP-depleted telomeres activate both the DDR and the spindle assembly checkpoint (SAC). The cell cycle arrest elicited by the DDR was alleviated by mutations in mei-41 (encoding ATR), mus304 (ATRIP), grp (Chk1) and rad50 but not by mutations in tefu (ATM). The SAC was partially overridden by mutations in zw10 (also known as mit(1)15) and bubR1, and also by mutations in mei-41, mus304, rad50, grp and tefu. As expected from SAC activation, the SAC proteins Zw10, Zwilch, BubR1 and Cenp-meta (Cenp-E) accumulated at the kinetochores of cav mutant cells. Notably, BubR1 also accumulated at cav mutant telomeres in a mei-41-, mus304-, rad50-, grp- and tefu-dependent manner. Our results collectively suggest that recruitment of BubR1 by dysfunctional telomeres inhibits Cdc20-APC function, preventing the metaphase-to-anaphase transition.

  16. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gourronc, Francoise A. [Department of Microbiology, University of Iowa (United States); Klingelhutz, Aloysius J., E-mail: al-klingelhutz@uiowa.edu [Department of Microbiology, University of Iowa (United States)

    2012-02-01

    It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.

  17. Test anxiety and telomere length: Academic stress in adolescents may not cause rapid telomere erosion.

    Science.gov (United States)

    Zou, Yaru; Leong, Waiian; Yao, Mingling; Hu, Xuefei; Lu, Sixiao; Zhu, Xiaowei; Chen, Lianxiang; Tong, Jianjing; Shi, Jingyi; Gilson, Eric; Ye, Jing; Lu, Yiming

    2017-02-14

    Academic stress (AS) is one of the most important health problems experienced by students, but no biomarker of the potential psychological or physical problems associated with AS has yet been identified. As several cross-sectional studies have shown that psychiatric conditions accelerate aging and shorten telomere length (TL), we explored whether AS affected TL.Between June 2014 and July 2014, we recruited 200 junior high school students with imminent final examinations for participation in this study. The students were divided into three subgroups (mild, moderate, and severe anxiety) using the Sarason Test Anxiety Scale (TAS). Saliva samples were collected for TL measurement via quantitative polymerase chain reaction (qPCR).Students from both a specialized and a general school suffered from anxiety (p > 0.05). A total 35% had severe anxiety (score: 26.09±3.87), 33% had moderate anxiety (16.98±2.64), and 32% had mild anxiety (7.89±1.92). The TAS values differed significantly (p 0.05): 1.14±0.46 for those with severe anxiety, 1.02±0.40 for those with moderate anxiety, and 1.12±0.45 for those with mild anxiety.Previous reports have found that AS is very common in Asian adolescents. We found no immediate telomere shortening in adolescents with AS. Longitudinal observations are required to determine if TL is affected by AS.

  18. [DNA-fingerprinting of representatives of Bovinae subfamilies using the telomere markers (TTAGGG)4].

    Science.gov (United States)

    Semenova, S K; Vasil'ev, V A; Steklenev, E P; Prosniak, M I; Ryskov, A P

    1999-01-01

    The (TTAGGG)4 oligonucleotide homologous to telomeric tandem repeats of human chromosomes was used for the first time as a multilocus hybridization probe for the analysis of genome variability in the two genera (Bos and Bison) of the Bovinae subfamily. DNA profiles for cattle, banteng, aurochs, and bison were obtained. Hybridization spectra were represented by the discrete individual- and species-specific bands characterized by codominant inheritance. For comparison, DNA profiles of the same samples obtained using the bacteriophage M13 DNA probe are presented. The usefulness of the microsatellite examined for the testing of pedigrees, description of intra- and interbreed variability as well as for determining relationships and the origins of the species of the Bovinae subfamily is discussed.

  19. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  20. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability.

    Science.gov (United States)

    Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca

    2016-09-01

    Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.

  1. Origin of Ion Specificity of Telomeric DNA G-Quadruplexes Investigated by Free-Energy Simulations.

    Science.gov (United States)

    Siebenmorgen, Till; Zacharias, Martin

    2017-06-06

    Telomeric DNA consists of tandem repeats of the sequence d(TTAGGG) that form G-quadruplex structures made of stacked guanines with monovalent cations bound at a central cavity. Although different ions can stabilize a G-quadruplex structure, the preferred bound ions are typically K(+) or Na(+). Several different strand-folding topologies have been reported for Q-quadruplexes formed from telomeric repeats depending on DNA length and ion solution condition. This suggests a possible dependence of the ion selectivity of the central pore on the folding topology of the quadruplex. Molecular dynamics free energy perturbation has been employed to systematically study the relative affinity of the central quadruplex pore for different cation types and the associated energetic and solvation contributions to ion selectivity. The calculations have been performed on two different common quadruplex folding topologies. For both topologies, the same ion selectivity was found with a preference for K(+) followed by Rb(+) and Na(+), which agrees with the experimentally determined preference for most investigated quadruplexes. The selectivity is determined by a balance between attractive Coulomb interactions and loss of hydration but also modulated by van der Waals contributions. Specificity is mediated by the central guanines and no significant contribution of the nucleic acid backbone. The simulations indicate that different topologies might be stabilized by ions bound at the surface or alternative sites of the quadruplex because the ion specificity of the central pore does not depend on the strand folding topology. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner.

    Directory of Open Access Journals (Sweden)

    Alessandra Galati

    Full Text Available Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres.By means of chromatin immunoprecipitation (ChIP and Micrococcal Nuclease (MNase mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping.Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.

  3. TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner.

    Science.gov (United States)

    Galati, Alessandra; Magdinier, Frédérique; Colasanti, Valentina; Bauwens, Serge; Pinte, Sébastien; Ricordy, Ruggero; Giraud-Panis, Marie-Josèphe; Pusch, Miriam Caroline; Savino, Maria; Cacchione, Stefano; Gilson, Eric

    2012-01-01

    Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres.By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping.Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.

  4. Telomere length as a potential biomarker of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Joyeeta Bhattacharyya

    2017-01-01

    Full Text Available Coronary artery disease (CAD is a multifactorial disease whose prevalence remains unabated especially in developing countries. Both lifestyle factors and genetic predisposition contribute to this disorder. Though notable achievements have been made in the medical, interventional and surgical management of CAD, the need for its prevention is more important. Among other modalities, this calls for defining evidence-based new biomarkers, which on their own or in combination with other known biomarkers may predict the risk of CAD to enable institution of appropriate preventive strategies. In the present communication, we have discussed the usefulness of shortening of telomeres as a potential biomarker of CAD. Clinical research evidence in favour of telomere shortening in CAD is well documented in different ethnic populations of the world. Establishing a well-standardized and accurate method of evaluating telomere length is essential before its routine use in preventive cardiology.

  5. Mathematical model of alternative mechanism of telomere length maintenance

    CERN Document Server

    Kollár, Richard; Nosek, Jozef; Tomaska, Lubomir

    2014-01-01

    Biopolymer length regulation is a complex process that involves a large number of subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres---nucleo-protein structures at the ends of linear chromosomes. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady state approximation. The detailed treatment of kinetic rates yields explicit formulae f...

  6. Estimating telomere length from whole genome sequence data.

    Science.gov (United States)

    Ding, Zhihao; Mangino, Massimo; Aviv, Abraham; Spector, Tim; Durbin, Richard

    2014-05-01

    Telomeres play a key role in replicative ageing and undergo age-dependent attrition in vivo. Here, we report a novel method, TelSeq, to measure average telomere length from whole genome or exome shotgun sequence data. In 260 leukocyte samples, we show that TelSeq results correlate with Southern blot measurements of the mean length of terminal restriction fragments (mTRFs) and display age-dependent attrition comparably well as mTRFs. © The Author(s) 2014. Published by Oxford University Press [on behalf of insert name of society].

  7. Association of Telomere Length with Breast Cancer Prognostic Factors.

    Directory of Open Access Journals (Sweden)

    Kaoutar Ennour-Idrissi

    Full Text Available Telomere length, a marker of cell aging, seems to be affected by the same factors thought to be associated with breast cancer prognosis.To examine associations of peripheral blood cell-measured telomere length with traditional and potential prognostic factors in breast cancer patients.We conducted a cross-sectional analysis of data collected before surgery from 162 breast cancer patients recruited consecutively between 01/2011 and 05/2012, at a breast cancer reference center. Data on the main lifestyle factors (smoking, alcohol consumption, physical activity were collected using standardized questionnaires. Anthropometric factors were measured. Tumor biological characteristics were extracted from pathology reports. Telomere length was measured using a highly reproducible quantitative PCR method in peripheral white blood cells. Spearman partial rank-order correlations and multivariate general linear models were used to evaluate relationships between telomere length and prognostic factors.Telomere length was positively associated with total physical activity (rs = 0.17, P = 0.033; Ptrend = 0.069, occupational physical activity (rs = 0.15, P = 0.054; Ptrend = 0.054 and transportation-related physical activity (rs = 0.19, P = 0.019; P = 0.005. Among post-menopausal women, telomere length remained positively associated with total physical activity (rs = 0.27, P = 0.016; Ptrend = 0.054 and occupational physical activity (rs = 0.26, P = 0.021; Ptrend = 0.056 and was only associated with transportation-related physical activity among pre-menopausal women (rs = 0.27, P = 0.015; P = 0.004. No association was observed between telomere length and recreational or household activities, other lifestyle factors or traditional prognostic factors.Telomeres are longer in more active breast cancer patients. Since white blood cells are involved in anticancer immune responses, these findings suggest that even regular low-intensity physical activity, such as that

  8. Deoxyribonucleic acid telomere length shortening can predict the incidence of non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Ping, Fan; Li, Zeng-Yi; Lv, Ke; Zhou, Mei-Cen; Dong, Ya-Xiu; Sun, Qi; Li, Yu-Xiu

    2017-03-01

    To investigate the effect of telomere shortening and other predictive factors of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes mellitus patients in a 6-year prospective cohort study. A total of 70 type 2 diabetes mellitus (mean age 57.8 ± 6.7 years) patients without NAFLD were included in the study, and 64 of them were successfully followed up 6 years later, excluding four cases with significant alcohol consumption. NAFLD was diagnosed by the hepatorenal ratio obtained by a quantitative ultrasound method using NIH image analysis software. The 39 individuals that developed NAFLD were allocated to group A, and the 21 individuals that did not develop NAFLD were allocated to group B. Fluorescent real-time quantitative polymerase chain reaction was used to measure telomere length. There was no significant difference between the two groups in baseline telomere length; however, at the end of the 6th year, telomere length had become shorter in group A compared with group B. There were significant differences between these two groups in baseline body mass index, waistline, systolic blood pressure, glycated hemoglobin and fasting C-peptide level. In addition, the estimated indices of baseline insulin resistance increased in group A. Fasting insulin level, body mass index, systolic blood pressure at baseline and the shortening of telomere length were independent risk factors of NAFLD in type 2 diabetes mellitus patients. Telomere length became shorter in type 2 diabetes mellitus patients who developed NAFLD over the course of 6 years. Type 2 diabetes mellitus patients who developed NAFLD had more serious insulin resistance compared with those who did not develop NAFLD a long time ago. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  9. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    Science.gov (United States)

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  10. Fission Yeast Exo1 and Rqh1-Dna2 Redundantly Contribute to Resection of Uncapped Telomeres.

    Directory of Open Access Journals (Sweden)

    Tomoko Nanbu

    Full Text Available The uncapping of telomeres induces a DNA damage response. In Schizosaccharomyces pombe, deletion of pot1+ causes telomere uncapping and rapid telomere resection, resulting in chromosome fusion. Using the nmt-pot1-aid strain, we previously reported that Pot1 shut-off causes telomere loss and chromosome fusion in S. pombe. However, the factors responsible for the resection of uncapped telomeres remain unknown. In this study, we investigated these factors and found that concomitant deletion of rqh1+ and exo1+ alleviated the loss of telomeres following Pot1 shut-off, suggesting that Rqh1 and Exo1 are redundantly involved in the resection of uncapped telomeres. We also investigated the role of Rqh1 helicase activity and found it to be essential for the resection of uncapped telomeres. Moreover, we found that Dna2 and Exo1 function redundantly in the resection of uncapped telomeres. Taken together, these results suggest that Exo1 and Rqh1-Dna2 redundantly contribute to the resection of uncapped telomeres. Therefore, our results demonstrate that nmt-pot1-aid is an important model strain to study the role of helicases and nucleases in the resection of uncapped telomeres and to improve our understanding of DNA double-strand break repair.

  11. Regulated expression of the lncRNA TERRA and its impact on telomere biology.

    Science.gov (United States)

    Oliva-Rico, Diego; Herrera, Luis A

    2017-10-01

    The telomere protects against genomic instability by minimizing the accelerated end resection of the genetic material, a phenomenon that results in severe chromosome instability that could favor the transformation of a cell by enabling the emergence of tumor-promoting mutations. Some mechanisms that avoid this fate, such as capping and loop formation, have been very well characterized; however, telomeric non-coding transcripts, such as long non-coding RNAs (lncRNAs), should also be considered in this context because they play roles in the organization of telomere dynamics, involving processes such as replication, degradation, extension, and heterochromatin stabilization. Although the mechanism through which the expression of telomeric transcripts regulates telomere dynamics is not yet clear, a non-coding RNA component opens the research options in telomere biology and the impact that it can have on telomere-associated diseases such as cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Sarah K Brennan

    2010-09-01

    Full Text Available Plasma cells constitute the majority of tumor cells in multiple myeloma (MM but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC. These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1 as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.

  13. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder.

    Science.gov (United States)

    Boks, Marco P; van Mierlo, Hans C; Rutten, Bart P F; Radstake, Timothy R D J; De Witte, Lot; Geuze, Elbert; Horvath, Steve; Schalkwyk, Leonard C; Vinkers, Christiaan H; Broen, Jasper C A; Vermetten, Eric

    2015-01-01

    Several studies have reported an association between traumatic stress and telomere length suggesting that traumatic stress has an impact on ageing at the cellular level. A newly derived tool provides an additional means to investigate cellular ageing by estimating epigenetic age based on DNA methylation profiles. We therefore hypothesise that in a longitudinal study of traumatic stress both indicators of cellular ageing will show increased ageing. We expect that particularly in individuals that developed symptoms of post-traumatic stress disorder (PTSD) increases in these ageing parameters would stand out. From an existing longitudinal cohort study, ninety-six male soldiers were selected based on trauma exposure and the presence of symptoms of PTSD. All military personnel were deployed in a combat zone in Afghanistan and assessed before and 6 months after deployment. The Self-Rating Inventory for PTSD was used to measure the presence of PTSD symptoms, while exposure to combat trauma during deployment was measured with a 19-item deployment experiences checklist. These groups did not differ for age, gender, alcohol consumption, cigarette smoking, military rank, length, weight, or medication use. In DNA from whole blood telomere length was measured and DNA methylation levels were assessed using the Illumina 450K DNA methylation arrays. Epigenetic ageing was estimated using the DNAm age estimator procedure. The association of trauma with telomere length was in the expected direction but not significant (B=-10.2, p=0.52). However, contrary to our expectations, development of PTSD symptoms was associated with the reverse process, telomere lengthening (B=1.91, p=0.018). In concordance, trauma significantly accelerated epigenetic ageing (B=1.97, p=0.032) and similar to the findings in telomeres, development of PTSD symptoms was inversely associated with epigenetic ageing (B=-0.10, p=0.044). Blood cell count, medication and premorbid early life trauma exposure did not

  14. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  15. Dynamics of telomere length in different age groups in a Latvian population.

    Science.gov (United States)

    Zole, Egija; Pliss, Liana; Ranka, Renate; Krumina, Astrida; Baumanis, Viesturs

    2013-12-01

    The shortening of telomeres with ageing is a well-documented observation; however, the reported number of nucleotides in telomeres varies between different laboratories and studies. Such variability is likely caused by ethnic differences between the populations studied. Until now, there were no studies that investigated the variability of telomere length in a senescent Latvian population of the most common mitochondrial haplogroups, defined as H (45%), U (25%), Y chromosomal N1c (40%) and R1a1 (40%). Telomere length was determined in 121 individuals in different age groups, including a control group containing individuals of 20-40 years old and groups of individuals between 60-70 years old, 71-80 years old, 81-90 years old, and above 90 years old. Telomere length was determined using the Southern blot telomeric restriction fragment assay (TRF). Decreased telomere length with ageing was confirmed, but a comparison of centenarians and individuals between 60-90 years of age did not demonstrate a significant difference in telomere length. However, significant variability in telomere length was observed in the control group, indicating probable rapid telomere shortening in some individuals that could lead up to development of health status decline appearing with ageing. Telomere length measured in mononuclear blood cells (MNC) was compared with the telomere length measured in whole peripheral white blood cells (WBC) using TRF. Telomere length in MNC was longer than in WBC for the control group with individuals 20 to 40 years old; in contrast, for the group of individuals aged 65 to 85 years old, measured telomere length was shorter in MNC when compared to WBC.

  16. DCAF4, a novel gene associated with leucocyte telomere length

    Science.gov (United States)

    Mangino, Massimo; Christiansen, Lene; Stone, Rivka; Hunt, Steven C; Horvath, Kent; Eisenberg, Dan T A; Kimura, Masayuki; Petersen, Inge; Kark, Jeremy D; Herbig, Utz; Reiner, Alex P; Benetos, Athanase; Codd, Veryan; Nyholt, Dale R; Sinnreich, Ronit; Christensen, Kaare; Nassar, Hisham; Hwang, Shih-Jen; Levy, Daniel; Bataille, Veronique; Fitzpatrick, Annette L; Chen, Wei; Berenson, Gerald S; Samani, Nilesh J; Martin, Nicholas G; Tishkoff, Sarah; Schork, Nicholas J; Kyvik, Kirsten Ohm; Dalgård, Christine; Spector, Timothy D; Aviv, Abraham

    2015-01-01