WorldWideScience

Sample records for telescope facility irtf

  1. THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

    International Nuclear Information System (INIS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-01-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ∼ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  2. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    Science.gov (United States)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  3. HARDERSEN IRTF ASTEROID NIR REFLECTANCE SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes average near-infrared (NIR) reflectance spectra for 68 main-belt asteroids that were observed at the NASA Infrared Telescope Facility (IRTF),...

  4. IRTF NEAR-IR SPECTROSCOPY OF ASTEROIDS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains low-resolution, near-infrared (0.8 - 2.5 micron) spectra of asteroids obtained with SpeX at the NASA Infrared Telescope Facility (IRTF) on...

  5. IRTF NEAR-IR SPECTROSCOPY OF ASTEROIDS V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains low-resolution, near-infrared (0.8 - 2.5 micron) spectra of asteroids obtained with SpeX at the NASA Infrared Telescope Facility (IRTF) on...

  6. (abstract) Cryogenic Telescope Test Facility

    Science.gov (United States)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  7. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  8. A New Instrument for the IRTF: the MIT Optical Rapid Imaging System (MORIS)

    Science.gov (United States)

    Gulbis, Amanda A. S.; Elliot, J. L.; Rojas, F. E.; Bus, S. J.; Rayner, J. T.; Stahlberger, W. E.; Tokunaga, A. T.; Adams, E. R.; Person, M. J.

    2010-10-01

    NASA's 3-m Infrared Telescope Facility (IRTF) on Mauna Kea, HI plays a leading role in obtaining planetary science observations. However, there has been no capability for high-speed, visible imaging from this telescope. Here we present a new IRTF instrument, MORIS, the MIT Optical Rapid Imaging System. MORIS is based on POETS (Portable Occultation Eclipse and Transit Systems; Souza et al., 2006, PASP, 118, 1550). Its primary component is an Andor iXon camera, a 512x512 array of 16-micron pixels with high quantum efficiency, low read noise, low dark current, and full-frame readout rates of between 3.5 Hz (6 e /pixel read noise) and 35 Hz (49 e /pixel read noise at electron-multiplying gain=1). User-selectable binning and subframing can increase the cadence to a few hundred Hz. An electron-multiplying mode can be employed for photon counting, effectively reducing the read noise to sub-electron levels at the expense of dynamic range. Data cubes, or individual frames, can be triggered to nanosecond accuracy using a GPS. MORIS is mounted on the side-facing widow of SpeX (Rayner et al. 2003, PASP, 115, 362), allowing simultaneous near-infrared and visible observations. The mounting box contains 3:1 reducing optics to produce a 60 arcsec x 60 arcsec field of view at f/12.7. It hosts a ten-slot filter wheel, with Sloan g×, r×, i×, and z×, VR, Johnson V, and long-pass red filters. We describe the instrument design, components, and measured characteristics. We report results from the first science observations, a 24 June 2008 stellar occultation by Pluto. We also discuss a recent overhaul of the optical path, performed in order to eliminate scattered light. This work is supported in part by NASA Planetary Major Equipment grant NNX07AK95G. We are indebted to the University of Hawai'i Institute for Astronomy machine shop, in particular Randy Chung, for fabricating instrument components.

  9. WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope : The next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott C.; Abrams, Don Carlos; Carter, David; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; MacIntosh, Mike; Evans, Chris; Lewis, Ian; Navarro, Ramon; Agocs, Tibor; Dee, Kevin; Rousset, Sophie; Tosh, Ian; Middleton, Kevin; Pragt, Johannes; Terrett, David; Brock, Matthew; Benn, Chris; Verheijen, Marc; Cano Infantes, Diego; Bevil, Craige; Steele, Iain; Mottram, Chris; Bates, Stuart; Gribbin, Francis J.; Rey, Jürg; Rodriguez, Luis Fernando; Delgado, Jose Miguel; Guinouard, Isabelle; Walton, Nic; Irwin, Michael J.; Jagourel, Pascal; Stuik, Remko; Gerlofsma, Gerrit; Roelfsma, Ronald; Skillen, Ian; Ridings, Andy; Balcells, Marc; Daban, Jean-Baptiste; Gouvret, Carole; Venema, Lars; Girard, Paul

    We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing

  10. Multilayer coating facility for the HEFT hard x-ray telescope

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Christensen, Finn Erland; Chen, Hubert

    2001-01-01

    A planar magnetron sputtering facility has been established at the Danish Space Research Institute (DSRI) for the production coating of depth graded multilayers on the thermally slumped glass segments which form the basis for the hard X-ray telescope on the HEFT balloon project. The facility...

  11. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 6–11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years

  12. Thermal-Infrared Surveys of Near-Earth Object Diameters and Albedos with Spitzer and IRTF/MIRSI

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph L.; Chesley, Steven; Emery, Josh; Fazio, Giovanni; Harris, Alan W.; Moskovitz, Nick; Mueller, Michael; Smith, Howard

    2015-08-01

    More than 12000 Near-Earth Objects (NEOs) have been discovered over the past few decades and current discovery surveys find on average 4 new NEOs every night. In comparison to asteroid discovery, the physical characterization of NEOs lags far behind: measured diameters and albedos exist only for roughly 10% of all known NEOs. We describe a current and a future observing program that provide diameter and albedo measurements of a large number of NEOs.In our Spitzer Space Telescope Exploration Science program 'NEOSurvey', we are performing a fast and efficient flux-limited survey in which we measure the diameters and albedos of ~600 NEOs in a total of 710 hrs of observing time. We measure the thermal emission of our targets at 4.5 micron and combine these measurements with optical data in a thermal model. Our diameters and albedos come with highly realistic uncertainties that account for a wide range of potential asteroid properties. Our primary goal is to create a large and uniform catalog of NEO properties, including diameters, albedos, and flux density data. This catalog is publicly accessible and provides the latest results usually within 2 weeks after the observation.Starting in 2016, we will also make use of the refurbished and recommissioned MIRSI mid-infrared imaging camera on NASA's InfraRed Telescope Facility (IRTF) to derive the diameters and albedos of up to 750 NEOs over a period of 3 yrs. MIRSI will be equipped with an optical camera that will allow for simultaneous optical imaging, which will improve our thermal modeling results. With MIRSI, we will focus on newly discovered NEOs that are close to Earth and hence relatively bright.The results from both programs, together with already exisiting diameter and albedo results from the literature, will form the largest database of NEO physical properties available to date. With this data set, we will be able to refine the size distribution of small NEOs and the corresponding impact frequency, and compare the

  13. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  14. Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES

    Science.gov (United States)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Sinclair, J. A.; Giles, R. S.; Irwin, P. G. J.; Encrenaz, T.

    2016-11-01

    Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 μm mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R ∼2000 - 12 , 000 and spatial resolutions of 2-4° latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. The visibility of cool zones and warm belts varies from channel to channel, suggesting complex vertical variations from the radiatively-controlled upper troposphere to the convective mid-troposphere. We identify mid-infrared signatures of Jupiter's 5-μm hotspots via simultaneous M, N and Q-band observations, which are interpreted as temperature and ammonia variations in the northern Equatorial Zone and on the edge of the North Equatorial Belt (NEB). Equatorial plumes enriched in NH3 gas are located south-east of NH3-desiccated 'hotspots' on the edge of the NEB. Comparison of the hotspot locations in several channels across the 5-20 μm range indicate that these anomalous regions tilt westward with altitude. Aerosols and PH3 are both enriched at the equator but are not co-located with the NH3 plumes. The equatorial temperature minimum and PH3/aerosol maxima have varied in amplitude over time, possibly as a result of periodic equatorial brightenings and the fresh updrafts of

  15. Flow-Based Network Management: A Report from the IRTF NMRG Workshop

    NARCIS (Netherlands)

    de Oliveira Schmidt, R.; Sadre, R.; Hendriks, Luuk

    This is the report on the Workshop on Flow-Based Network Management, held within the 37th IRTF NMRG meeting, during IETF 93, on 24th July 2015, in Prague, Czech Republic. Following the tradition of the IRTF NMRG, the workshop focused on technologies, developments, and challenges of using flow-level

  16. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    Science.gov (United States)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  17. REMOTES: reliable and modular telescope solution for seamless operation and monitoring of various observation facilities

    Science.gov (United States)

    Jakubec, M.; Skala, P.; Sedlacek, M.; Nekola, M.; Strobl, J.; Blazek, M.; Hudec, R.

    2012-09-01

    Astronomers often need to put several pieces of equipment together and have to deploy them at a particular location. This task could prove to be a really tough challenge, especially for distant observing facilities with intricate operating conditions, poor communication infrastructure and unreliable power source. To have this task even more complicated, they also expect secure and reliable operation in both attended and unattended mode, comfortable software with user-friendly interface and full supervision over the observation site at all times. During reconstruction of the D50 robotic telescope facility, we faced many of the issues mentioned above. To get rid of them, we based our solution on a flexible group of hardware modules controlling the equipment of the observation site, connected together by the Ethernet network and orchestrated by our management software. This approach is both affordable and powerful enough to fulfill all of the observation requirements at the same time. We quickly figured out that the outcome of this project could also be useful for other observation facilities, because they are probably facing the same issues we have solved during our project. In this contribution, we will point out the key features and benefits of the solution for observers. We will demonstrate how the solution works at our observing location. We will also discuss typical management and maintenance scenarios and how we have supported them in our solution. Finally, the overall architecture and technical aspects of the solution will be presented and particular design and technology decisions will be clarified.

  18. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    Science.gov (United States)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  19. FIEBER-BEYER IRTF MAINBELT ASTEROID SPECTRA V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set contains observations obtained with the NASA IRTF SpeX instrument covering the 0.7 to 2.5 micron near-infrared portion of the spectrum. The data set...

  20. Final design and progress of WEAVE : the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  1. Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  2. Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; López Aguerri, J. Alfonso; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johan; Pico, Sergio; Walton, Nic; Rey, Juerg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc A.W.; Tosh, Ian; Rogers, Kevin; Steele, Iain; Stuik, Remko; Tromp, Neils; Jasko, Attila; Kragt, Jan; Lesman, Dirk; Mottram, Chris; Bates, Stuart; Gribbin, Frank; Rodriguez, Luis Fernando; Delgado, José M.; Martin, Carlos; Cano, Diego; Navarro, Ramón; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; O'Mahony, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Vallenari, Antonella; Baruffolo, Andrea

    We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU

  3. The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies

    Science.gov (United States)

    Kumar, Brajesh; Pandey, Kanhaiya L.; Pandey, S. B.; Hickson, P.; Borra, E. F.; Anupama, G. C.; Surdej, J.

    2018-05-01

    The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k × 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3, and 21.4 mag in the g΄, r΄, and i΄ spectral bands, respectively, in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (˜24 h) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.

  4. Multipurpose 10 in. manipulator-based optical telescope for Omega and the Trident laser facilities

    International Nuclear Information System (INIS)

    Oertel, J.A.; Murphy, T.J.; Berggren, R.R.; Faulkner, J.; Schmell, R.; Little, D.; Archuleta, T.; Lopez, J.; Velarde, J.; Horton, R.F.

    1999-01-01

    We have recently designed and are building a telescope which acts as an imaging light collector relaying the image to an optical table for experiment dependent analysis and recording. The expected primary use of this instrument is a streaked optical pyrometer for witness plate measurements of the hohlraum drive temperature. The telescope is based on the University of Rochester close-quote s 10 in. manipulator (TIM) which allows compatibility between Omega, Trident, and the NIF lasers. The optics capture a f/7 cone of light, have a field of view of 6 mm, have a spatial resolution of 5 - 7 μm per line pair at the object plane, and are optimized for operation at 280 nm. The image is at a magnification of 11.7x, which is convenient for many experiments, but can be changed using additional optics that reside outside the TIM. copyright 1999 American Institute of Physics

  5. A multipurpose TIM-based optical telescope for Omega and the Trident laser facilities

    International Nuclear Information System (INIS)

    Oertel, J.A.; Murphy, T.J.; Berggren, R.R.

    1998-01-01

    The authors have recently designed and are building a telescope which acts as an imaging light collector relaying the image to an optical table for experiment dependent analysis and recording. The expected primary use of this instrument is a streaked optical pyrometer for witness plate measurements of Hohlraum drive temperature. The telescope is based on University of Rochester's Ten-Inch Manipulator (TIM) which allows compatibility between Omega, Trident, and the NIF lasers. The optics capture a f/7 cone of light, have a field of view of 6-mm, have a spatial resolution of 5 to 7-microm per line pair at the object plane, and are optimized for operation at 280-nm. The image is at a magnification of 11.7x, which is convenient for many experiments, but can be changed using additional optics that reside outside the TIM

  6. Gaia science alerts and the observing facilities of the Serbian-Bulgarian mini-network telescopes

    Directory of Open Access Journals (Sweden)

    Damljanović G.

    2014-01-01

    Full Text Available The astrometric European Space Agency (ESA Gaia mission was launched in December 19, 2013. One of the tasks of the Gaia mission is production of an astrometric catalog of over one billion stars and more than 500000 extragalactic sources. The quasars (QSOs, as extragalactic sources and radio emitters, are active galactic nuclei objects (AGNs whose coordinates are well determined via Very Long Baseline Interferometry (VLBI technique and may reach sub-milliarcsecond accuracy. The QSOs are the defining sources of the quasi-inertial International Celestial Reference Frame (ICRF because of their core radio morphology, negligible proper motions (until sub-milliarcsecond per year, and apparent point-like nature. Compact AGNs, visible in optical domain, are useful for a direct link of the future Gaia optical reference frame with the most accurate radio one. Apart from the above mentioned activities, Gaia has other goals such as follow-up of transient objects. One of the most important Gaia's requirements for photometric alerts is a fast observation and reduction response, that is, submition of observations within 24 hours. For this reason we have developed a pipeline. In line with possibilities of our new telescope (D(cm/F(cm=60/600 at the Astronomical Station Vidojevica (ASV, of the Astronomical Observatory in Belgrade, we joined the Gaia-Follow-Up Network for Transients Objects (Gaia-FUN-TO for the photometric alerts. Moreover, in view of the cooperation with Bulgarian colleagues (in the frst place, SV, one of us (GD initiated a local mini-network of Serbian { Bulgarian telescopes useful for the Gaia-FUN-TO and other astronomical purposes. During the next year we expect a new 1.4 m telescope at ASV site. The speed of data processing (from observation to calibration server could be one day. Here, we present an overview of our activities in the Gaia-FUN-TO which includes establishing Serbian { Bulgarian mini-network (of five telescopes at three sites

  7. Time Evolution of Io’s volcanoes Pele and Pillan from 1996 - 2015, as derived from Galileo NIMS, Keck, Gemini, IRTF, and LBTI observations

    Science.gov (United States)

    de Pater, Imke

    2015-11-01

    We present highlights of our observations of Pele and Pillan on Io, and a multi-decade timeline of thermal emission intensities in both regions. Io was regularly observed by Galileo NIMS during 1996-2001. Since 2001 the satellite has been imaged semi-regularly with NIRC2, coupled to an adaptive optics system, on the 10-m Keck telescope. In 1997, Galileo NIMS observed a large and highly-variable eruption close to Pillan Mons; this eruption lasted several months [1]. Since that time no eruptions had been seen (but time coverage was scarce), until our Keck images on 14 August 2007 revealed an active and highly-energetic eruption at a location close to that of the 1997 eruptions. A one-temperature blackbody fit to the data revealed a (blackbody) temperature of 840 ± 40 K over an area of 17 km2, with a total power output of ~500 GW. Using Davies’ (1996) Io Flow Model [2] we find that the oldest lava present is less than 1-2 hours old, having cooled down from the eruption temperature of >1400 K to ~710 K. This young, hot lava suggests that an episode of lava fountaining was underway. Since 2007, several eruptions have been seen in the Pillan region. The 18 February 2015 eruption was discovered during a mutual occultation event with the NASA IRTF. This event was (serendipitously) subsequently imaged with the Large Binocular Telescope Interferometer (LBTI) on 8 March 2015 during a mutual event occultation, and again with the IRTF on 15 March. The site was imaged with the Keck and Gemini-N telescopes between 27 March and May 5, during which time the intensity gradually decreased. Interestingly, the precise location of the eruption had shifted to the north-west from Pillan Patera, where the initial (18 Feb) eruption had taken place. In contrast to the episodicity of Pillan, Pele has been remarkably consistent in its thermal emission during the Galileo era [1] through February 2002, when a blackbody temperature of 940 ± 40 K and an area of 6.5 km2 was measured. Since that

  8. The quest for H_3^+ at Neptune: deep burn observations with NASA IRTF iSHELL

    Science.gov (United States)

    Melin, H.; Fletcher, L. N.; Stallard, T. S.; Johnson, R. E.; O'Donoghue, J.; Moore, L.; Donnelly, P. T.

    2018-03-01

    Emission from the molecular ion H_3^+ is a powerful diagnostic of the upper atmosphere of Jupiter, Saturn, and Uranus, but it remains undetected at Neptune. In search of this emission, we present near-infrared spectral observations of Neptune between 3.93 and 4.00 μm taken with the newly commissioned iSHELL instrument on the NASA Infrared Telescope Facility in Hawaii, obtained 2017 August 17-20. We spent 15.4 h integrating across the disc of the planet, yet were unable to unambiguously identify any H_3^+ line emissions. Assuming a temperature of 550 K, we derive an upper limit on the column integrated density of 1.0^{+1.2}_{-0.8}× 10^{13} m-2, which is an improvement of 30 per cent on the best previous observational constraint. This result means that models are overestimating the density by at least a factor of 5, highlighting the need for renewed modelling efforts. A potential solution is strong vertical mixing of polyatomic neutral species from Neptune's upper stratosphere to the thermosphere, reacting with H_3^+, thus greatly reducing the column integrated H_3^+ densities. This upper limit also provide constraints on future attempts at detecting H_3^+ using the James Webb Space Telescope.

  9. X-ray study of a test quadrant of the SODART telescopes using the expanded beam x-ray optics facility at the Daresbury synchrotron

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.

    1994-01-01

    The imaging properties of a test model of the SODART telescopes have been studied using an expanded beam X-ray facility at the Daresbury synchrotron. The encircled power and the point spread function at three energies 6.627 keV, 8.837 keV and 11.046 keV have been measured using 1D and 2D position...

  10. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  11. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  12. IRTF/SPEX OBSERVATIONS OF THE UNUSUAL KEPLER LIGHT CURVE SYSTEM KIC 8462852

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Sitko, M. L. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 (United States); Marengo, M., E-mail: carey.lisse@jhuapl.edu [Department of Physics and Astronomy, Iowa State University, 12 Physics Hall, Ames, IA 50010 (United States)

    2015-12-20

    We have utilized the NASA/IRTF 3 m SpeX instrument’s high-resolution spectral mode to observe and characterize the near-infrared flux emanating from the unusual Kepler light curve system KIC 8462852. By comparing the resulting 0.8–4.2 μm spectrum to a mesh of model photospheric spectra, the 6 emission line analyses of the Rayner et al. catalog, and the 25 system collections of debris disks we have observed to date using SpeX under the Near InfraRed Debris disk Survey, we have been able to additionally characterize the system. Within the errors of our measurements, this star looks like a normal solar abundance main-sequence F1V to F3V dwarf star without any obvious traces of significant circumstellar dust or gas. Using Connelley and Greene’s emission measures, we also see no evidence of significant ongoing accretion onto the star nor any stellar outflow away from it. Our results are inconsistent with large amounts of static close-in obscuring material or the unusual behavior of a YSO system, but are consistent with the favored episodic giant comet models of a Gyr old stellar system favored by Boyajian et al. We speculate that KIC 8462852, like the ∼1.4 Gyr old F2V system η Corvi, is undergoing a late heavy bombardment, but is only in its very early stages.

  13. The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes

    Science.gov (United States)

    Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano

    2005-12-01

    We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.

  14. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  15. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  16. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  17. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  18. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  19. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  20. ANTARES : The first undersea neutrino telescope

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Carloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th; Charvis, Ph; Chauchot, P.; Chiarusi, T.; Circella, M.; Compere, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; De Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J. -J.; Di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J. -L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J. -F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gomez-Gonzalez, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J-C; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; LeVanSuu, A.; Lefevre, D.; Legou, T.; Lelaizant, G.; Leveque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazeas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Patioselitis, D.; Papaleo, R.; Pavalas, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J. -F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the

  1. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  2. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  3. European Extremely Large Telescope: progress report

    Science.gov (United States)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  4. Jupiter's auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Fletcher, L. N.; Moses, J. I.; Hue, V.; Irwin, P. G. J.

    2018-01-01

    We present a retrieval analysis of TEXES (Texas Echelon Cross Echelle Spectrograph (Lacy et al., 2002)) spectra of Jupiter's high latitudes obtained on NASA's Infrared Telescope Facility on December 10 and 11th 2014. The vertical temperature profile and vertical profiles of C2H2, C2H4 and C2H6 were retrieved at both high-northern and high-southern latitudes and results were compared in 'quiescent' regions and regions known to be affected by Jupiter's aurora in order to highlight how auroral processes modify the thermal structure and hydrocarbon chemistry of the stratosphere. In qualitative agreement with Sinclair et al. (2017a), we find temperatures in auroral regions to be elevated with respect to quiescent regions at two discrete pressures levels at approximately 1 mbar and 0.01 mbar. For example, in comparing retrieved temperatures at 70°N, 60°W (a representative quiescent region) and 70°N, 180°W (centred on the northern auroral oval), temperatures increase by 19.0 ± 4.2 K at 0.98 mbar, 20.8 ± 3.9 K at 0.01 mbar but only by 8.3 ± 4.9 K at the intermediate level of 0.1 mbar. We conclude that elevated temperatures at 0.01 mbar result from heating by joule resistance of the atmosphere and the energy imparted by electron and ion precipitation. However, temperatures at 1 mbar are considered to result either from heating by shortwave radiation of aurorally-produced haze particulates or precipitation of higher energy population of charged particles. Our former conclusion would be consistent with results of auroral-chemistry models, that predict the highest number densities of aurorally-produced haze particles at this pressure level (Wong et al., 2000, 2003). C2H2 and C2H4 exhibit enrichments but C2H6 remains constant within uncertainty when comparing retrieved concentrations in the northern auroral region with quiescent longitudes in the same latitude band. At 1 mbar, C2H2 increases from 278.4 ± 40.3 ppbv at 70°N, 60°W to 564.4 ± 72.0 ppbv at 70°N, 180

  5. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Allekotte, I.; Arnaldi, H.; Asorey, H.; Gomez Berisso, M.; Sofo Haro, M.; Cillis, A.; Rovero, A.C.; Supanitsky, A.D.; Actis, M.; Antico, F.; Bottani, A.; Ochoa, I.; Ringegni, P.; Vallejo, G.; De La Vega, G.; Etchegoyen, A.; Videla, M.; Gonzalez, F.; Pallota, J.; Quel, E.; Ristori, P.; Romero, G.E.; Suarez, A.; Papyan, G.; Pogosyan, L.; Sahakian, V.; Bissaldi, E.; Egberts, K.; Reimer, A.; Reimer, O.; Shellard, R.C.; Santos, E.M.; De Gouveia Dal Pino, E.M.; Kowal, G.; De Souza, V.; Todero Peixoto, C.J.; Maneva, G.; Temnikov, P.; Vankov, H.; Golev, V.; Ovcharov, E.; Bonev, T.; Dimitrov, D.; Hrupec, D.; Nedbal, D.; Rob, L.; Sillanpaa, A.; Takalo, L.; Beckmann, V.; Benallou, M.; Boutonnet, C.; Corlier, M.; Courty, B.; Djannati-Atai, A.; Dufour, C.; Gabici, S.; Guglielmi, L.; Olivetto, C.; Pita, S.; Punch, M.; Selmane, S.; Terrier, R.; Yoffo, B.; Brun, P.; Carton, P.H.; Cazaux, S.; Corpace, O.; Delagnes, E.; Disset, G.; Durand, D.; Glicenstein, J.F.; Guilloux, F.; Kosack, K.; Medina, C.; Micolon, P.; Mirabel, F.; Moulin, E.; Peyaud, B.; Reymond, J.M.; Veyssiere, C.

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA. (authors)

  6. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  7. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several

  8. Virtual Telescope Alignment System

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation space telescopes require two spacecraft to fly in a coordinated fashion in space forming a virtual telescope. Achieving and maintaining this precise...

  9. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  10. Liverpool Telescope 2: beginning the design phase

    Science.gov (United States)

    Copperwheat, Christopher M.; Steele, Iain A.; Barnsley, Robert M.; Bates, Stuart D.; Bode, Mike F.; Clay, Neil R.; Collins, Chris A.; Jermak, Helen E.; Knapen, Johan H.; Marchant, Jon M.; Mottram, Chris J.; Piascik, Andrzej S.; Smith, Robert J.

    2016-07-01

    The Liverpool Telescope is a fully robotic 2-metre telescope located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope began routine science operations in 2004, and currently seven simultaneously mounted instruments support a broad science programme, with a focus on transient followup and other time domain topics well suited to the characteristics of robotic observing. Work has begun on a successor facility with the working title `Liverpool Telescope 2'. We are entering a new era of time domain astronomy with new discovery facilities across the electromagnetic spectrum, and the next generation of optical survey facilities such as LSST are set to revolutionise the field of transient science in particular. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time, and will be designed to meet the challenges of this new era. Following a conceptual design phase, we are about to begin the detailed design which will lead towards the start of construction in 2018, for first light ˜2022. In this paper we provide an overview of the facility and an update on progress.

  11. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  12. Hypervolatiles in a Jupiter-family Comet: Observations of 45P/Honda-Mrkos-Pajdušáková Using iSHELL at the NASA-IRTF

    Science.gov (United States)

    DiSanti, Michael A.; Bonev, Boncho P.; Dello Russo, Neil; Vervack, Ronald J., Jr.; Gibb, Erika L.; Roth, Nathan X.; McKay, Adam J.; Kawakita, Hideyo; Feaga, Lori M.; Weaver, Harold A.

    2017-12-01

    We used the new high spectral resolution cross-dispersed facility spectrograph, iSHELL, at the NASA Infrared Telescope Facility on Maunakea, HI, to observe Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdušáková. We report water production rates, as well as production rates and abundance ratios relative to H2O, for eight trace parent molecules (native ices), CO, CH4, H2CO, CH3OH, HCN, NH3, C2H2, and C2H6, on 2 days spanning UT 2017 January 6/7 and 7/8, shortly following perihelion. Trace species were measured simultaneously with H2O and/or OH prompt emission, a proxy for H2O production, thereby providing a robust and consistent means of establishing the native ice composition of 45P. Its favorable geocentric radial velocity (approximately -35 km s-1) permitted sensitive measures of the “hypervolatiles” CO and CH4, which are substantially undercharacterized in JFCs. Our results represent the most precise ground-based measures of CO and CH4 to date in a JFC, providing a foundation for building meaningful statistics regarding their abundances. The abundance ratio for CH4 in 45P (0.79% ± 0.06% relative to H2O) was consistent with its median value as measured among Oort Cloud comets, whereas CO (0.60% ± 0.04%) was strongly depleted. Compared with all measured comets, HCN (0.049% ± 0.012%) was strongly depleted, CH3OH (3.6% ± 0.3%) was enriched, and the remaining species were consistent with their respective median abundances. The volatile composition measured for 45P could indicate processing of ices prior to their incorporation into its nucleus. Spatial analysis of emissions suggests enhanced release of more volatile species into the sunward-facing hemisphere of the coma.

  13. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  14. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  15. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  16. EUSO-TA prototype telescope

    Energy Technology Data Exchange (ETDEWEB)

    Bisconti, Francesca, E-mail: francesca.bisconti@kit.edu

    2016-07-11

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  17. EUSO-TA prototype telescope

    Science.gov (United States)

    Bisconti, Francesca; JEM-EUSO Collaboration

    2016-07-01

    EUSO-TA is one of the prototypes developed for the JEM-EUSO project, a space-based large field-of-view telescope to observe the fluorescence light emitted by cosmic ray air showers in the atmosphere. EUSO-TA is a ground-based prototype located at the Telescope Array (TA) site in Utah, USA, where an Electron Light Source and a Central Laser Facility are installed. The purpose of the EUSO-TA project is to calibrate the prototype with the TA fluorescence detector in presence of well-known light sources and cosmic ray air showers. In 2015, the detector started the first measurements and tests using the mentioned light sources have been performed successfully. A first cosmic ray candidate has been observed, as well as stars of different magnitude and color index. Since Silicon Photo-Multipliers (SiPMs) are very promising for fluorescence telescopes of next generation, they are under consideration for the realization of a new prototype of EUSO Photo Detector Module (PDM). The response of this sensor type is under investigation through simulations and laboratory experimentation.

  18. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.

    2014-01-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  19. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  20. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  1. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  2. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  3. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  4. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  5. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  6. The Volatile Composition of newly-discovered C/2017 E4 (Lovejoy) before its dissolutionas revealed by iSHELL at NASA/IRTF

    Science.gov (United States)

    Faggi, Sara; Villanueva, Geronimo Luis; Mumma, Michael J.; Paganini, Lucas

    2017-10-01

    In April 2017, we acquired comprehensive high-resolution spectra of newly-discovered comet C/2017 E4 (Lovejoy) as it approached perihelion, and before its disintegration. We detected many cometary emission lines across 4 customized instrument settings (L1-b, L3, Lp1-b and M1) in the (1 - 5) μm range, using iSHELL - the new near-IR high resolution immersion echelle spectrograph on NASA/IRTF (Mauna Kea, Hawaii).In M1, near 5μm, we detected multiple ro-vibrational lines of H2O, CO and the (X-X) system of CN; the latter data constitute a complete survey of CN at these wavelengths. We derived quantitative abundances for CN and addressed its origin by comparing with quantitative production rates for HCN. The ability to quantify both primary and product species eliminates systematic error that may be introduced when measurements are acquired with different astronomical techniques and instruments.In L1, around 3 μm, we detected fluorescence emission from HCN, C2H2, and water, prompt emission from OH, and many other features. Methane, ethane and methanol were detected both in L3 and Lp1 settings. These species are relevant to astrobiology, owing to questions regarding the origin of pre-biotic organics and water on terrestrial planets.The many water emission lines detected in L1-b (and M1) provided an opportunity to retrieve independent measures of rotational temperature for ortho- and para-H2O, thereby reducing systematic uncertainty in the derived ortho-para ratio and nuclear spin temperature. Deuterated species were also sought and results will be presented.The bright Oort cloud comet E4 Lovejoy combined with the new capabilities of iSHELL provided unique results. The individual iSHELL settings cover very wide spectral range with very high accuracy, eliminating many sources of systematic errors when retrieving molecular abundances; future comparisons amongst comets will clarify the nature and meaning of cosmogonic indicators based on composition.Acknowledgments NASA

  7. The Northwest Indiana Robotic Telescope

    Science.gov (United States)

    Slavin, Shawn D.; Rengstorf, A. W.; Aros, J. C.; Segally, W. B.

    2011-01-01

    The Northwest Indiana Robotic (NIRo) Telescope is a remote, automated observing facility recently built by Purdue University Calumet (PUC) at a site in Lowell, IN, approximately 30 miles from the PUC campus. The recently dedicated observatory will be used for broadband and narrowband optical observations by PUC students and faculty, as well as pre-college students through the implementation of standards-based, middle-school modules developed by PUC astronomers and education faculty. The NIRo observatory and its web portal are the central technical elements of a project to improve astronomy education at Purdue Calumet and, more broadly, to improve science education in middle schools of the surrounding region. The NIRo Telescope is a 0.5-meter (20-inch) Ritchey-Chrétien design on a Paramount ME robotic mount, featuring a seven-position filter wheel (UBVRI, Hα, Clear), Peltier (thermoelectrically) cooled CCD camera with 3056 x 3056, square, 12 μm pixels, and off-axis guiding. It provides a coma-free imaging field of 0.5 degrees square, with a plate scale of 0.6 arcseconds per pixel. The observatory has a wireless internet connection, local weather station which publishes data to an internet weather site, and a suite of CCTV security cameras on an IP-based, networked video server. Control of power to every piece of instrumentation is maintained via internet-accessible power distribution units. The telescope can be controlled on-site, or off-site in an attended fashion via an internet connection, but will be used primarily in an unattended mode of automated observation, where queued observations will be scheduled daily from a database of requests. Completed observational data from queued operation will be stored on a campus-based server, which also runs the web portal and observation database. Partial support for this work was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0736592.

  8. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  9. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  10. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  11. A Status Report on the Thirty Meter Telescope Adaptive Optics

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We provide an update on the recent development of the adaptive optics (AO) systems for the Thirty Meter Telescope (TMT) since mid-2011. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 × 60 ...

  12. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  13. Amateur Telescope Making

    Science.gov (United States)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  14. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  15. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  16. The Falcon Telescope Network

    Science.gov (United States)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  17. The Liverpool Telescope: rapid follow-up observation of targets of opportunity with a 2 m robotic telescope

    International Nuclear Information System (INIS)

    Gomboc, Andreja; Bode, Michael F.; Carter, David; Mundell, Carol G.; Newsam, Andrew; Smith, Robert J.; Steele, Iain A.

    2004-01-01

    The Liverpool Telescope, situated at Roque de los Muchachos Observatory, La Palma, Canaries, is the first 2-m, fully instrumented robotic telescope. It recently began observations. Among Liverpool Telescope's primary scientific goals is to monitor variable objects on all timescales from seconds to years. An additional benefit of its robotic operation is rapid reaction to unpredictable phenomena and their systematic follow up, simultaneous or coordinated with other facilities. The Target of Opportunity Programme of the Liverpool Telescope includes the prompt search for and observation of GRB and XRF counterparts. A special over-ride mode implemented for GRB/XRF follow-up enables observations commencing less than a minute after the alert, including optical and near infrared imaging and spectroscopy. In particular, the moderate aperture and rapid automated response make the Liverpool Telescope excellently suited to help solving the mystery of optically dark GRBs and for the investigation of currently unstudied short bursts and XRFs

  18. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  19. The big data telescope

    International Nuclear Information System (INIS)

    Finkel, Elizabeth

    2017-01-01

    On a flat, red mulga plain in the outback of Western Australia, preparations are under way to build the most audacious telescope astronomers have ever dreamed of - the Square Kilometre Array (SKA). Next-generation telescopes usually aim to double the performance of their predecessors. The Australian arm of SKA will deliver a 168-fold leap on the best technology available today, to show us the universe as never before. It will tune into signals emitted just a million years after the Big Bang, when the universe was a sea of hydrogen gas, slowly percolating with the first galaxies. Their starlight illuminated the fledgling universe in what is referred to as the “cosmic dawn”.

  20. Radio telescope control

    CERN Document Server

    Schraml, J

    1972-01-01

    An on-line computer control process developed for the 100-m radio telescope of the Max-Planck-Institut fur Radioastronomie in Bonn is described. The instrument is the largest fully steerable antenna in the world. Its operation started on May 31st 1972. It is controlled by a Ferranti Argus 500 on-line computer. The first part of the paper deals with the process itself, the radio telescope and its operation, and the demands resulting for the control program. The second part briefly describes the computer and its hardware. The final part introduces the architecture of the executive program in general, which has been tailored to meet the demands of the process and the hardware. The communication between the observer and the system, the format of data on magnetic tape and an on-line reduction of position measurements are considered. (0 refs).

  1. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  2. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  3. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  4. Fast Fourier transform telescope

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2009-01-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  5. ALMA Telescope Reaches New Heights

    Science.gov (United States)

    2009-09-01

    (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. The National Radio Astronomy Observatory is the North American partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 40-foot and 23-foot diameter antennas. Russell noted that the first antenna's move to the high site illustrates the international nature of the project. "A Japanese antenna with North American electronics was carried by a European transporter," he explained.

  6. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  7. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10 - 6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  8. SNAP Telescope Latest Developments

    Science.gov (United States)

    Lampton, M.; SNAP Collaboration

    2004-12-01

    The coming era of precision cosmology imposes new demands on space telescopes with regard to spectrophotometric accuracy and image stability. To meet these requirements for SNAP we have developed an all reflecting two-meter-class space telescope of the three-mirror anastigmat type. Our design features a large flat annular field (1.5 degrees = 580mm diameter) and a telephoto advantage of 6, delivering a 22m focal length within an optical package length of only 3.5 meters. The use of highly stable materials (Corning ULE glass and carbon-fiber reinforced cyanate ester resin for the metering structure) combined with agressive distributed thermal control and an L2 orbit location will lead to unmatched figure stability. Owing to our choice of rigid structure with nondeployable solar panels, finite-element models show no structural resonances below 10Hz. An exhaustive stray light study has been completed. Beginning in 2005, two industry studies will develop plans for fabrication, integration and test, bringing SNAP to a highly realistic level of definition. SNAP is supported by the Office of Science, US DoE, under contract DE-AC03-76SF00098.

  9. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.

  10. Cost Modeling for Space Telescope

    Science.gov (United States)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  11. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  12. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    distortions in the optical path, which includes, actually, a laser resonator, a channel for transportation of powerful laser radiation with beam-deflecting mirrors to form the telescope with a compound main mirror;- forming the efficiency criteria of adaptive optical systems;- multi-loop system for adaptive correction of distortions.The paper discusses test results of transporting powerful laser radiation in the horizontal pathway and shows visual appearance of forming optical system of the test complex bench.It is convincingly proved that the use of offered postulates in development or modernization of optical complexes ensures the minimum level of residual distortions and the overall performance of adaptive optics.The offered postulates of adaptive correction of radiation wave-front and a positive experience of their use in full-scale optical complexes will substantially reduce terms and costs in creating effective aids to watch remote objects, as well as to form and supply the energy to the space objects for its various use such as power supply, communication, fight against space debris, ensuring asteroid safety, etc.It is possible to draw a conclusion that the state of domestic optical science, its potential in creation of adaptive means to provide formation and transportation of powerful laser radiation, and results of theoretical and pilot studies, encourage a reasonable hope for future creating a multi-purpose highly effective large-size optic-electronic facility.

  13. Muon telescope based on Micromegas detectors: From design to data acquisition

    Directory of Open Access Journals (Sweden)

    Lázaro Ignacio

    2014-01-01

    Full Text Available We describe the basis of the muon telescope used within the Temporal Tomography Densitometric by the Measure of Muons (T2DM2 project developed in the LSBB URL facilities. The telescope allows measuring the flux of muons, as well as their energy and origin for the characterization of spatial and temporal rock density variations.

  14. Science with the solar optical telescope

    Science.gov (United States)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  15. The SOAR Telescope Project Southern Observatory for Astronomical Research (SOAR)

    Science.gov (United States)

    2003-03-21

    completed SOAR dome and facility. 2. Dome The preliminary design of the dome was handled by M3 (US). A Brazilian firm, Equatorial Sistemas led the...for the Gemini Telescope during construction, now Project Manager at the National Solar Observatory • Robert Shelton, Provost of the University on

  16. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  17. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  18. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  19. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  20. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  1. VLBI observations with the Kunming 40-meter radio telescope

    International Nuclear Information System (INIS)

    Hao Longfei; Wang Min; Yang Jun

    2010-01-01

    The Kunming 40-meter radio telescope is situated in the yard of the Yunnan Astronomical Observatory (Longitude: 102.8 0 East, Latitude: 25.0 0 North) and saw its first light in 2006 May. The Kunming station successfully joined the VLBI tracking of China's first lunar probe 'Chang'E-1 together with the other Chinese telescopes: the Beijing Miyun 50-meter radio telescope, Urumqi Nanshan 25-meter radio telescope, and Shanghai Sheshan 25-meter radio telescope, and received the downlinked scientific data together with the Miyun station from October of 2007 to March of 2009. We give an introduction to the new Chinese VLBI facility and investigate its potential applications. Due to its location, the Kunming station can significantly improve the u - v coverage of the European VLBI Network (EVN), in particular, in long baseline observations. We also report the results of the first EVN fringe-test experiment of N09SX1 with the Kunming station. The first fringes in the European telescopes were successfully detected at 2.3 GHz with the ftp-transferred data on 2009 June 17. From scheduling the observations to performing the post correlations, the Kunming station shows its good compatibility to work with the EVN. The imaging result of the extended source 1156+295 further demonstrates that the Kunming station greatly enhances the EVN performance. (research papers)

  2. The Inner Coma Physical Environments of Ecliptic Comets 45P/Honda-Mrkos-Pajdusakova, 2P/Encke, and 41P/Tuttle-Giacobini-Kresak Revealed Through Long-Slit Spectroscopy at NASA IRTF

    Science.gov (United States)

    Bonev, Boncho P.; DiSanti, Michael A.; Roth, Nathan; Dello Russo, Neil; Vervack, Ronald J.; Gibb, Erika L.; Villanueva, Geronimo Luis; Combi, Michael R.; Fougere, Nicolas; Kawakita, Hideyo; McKay, Adam J.; Saki, Mohammad; Cordiner, Martin; Protopapa, Silvia; de Val-Borro, Miguel

    2017-10-01

    Understanding the physical processes in the inner regions of cometary atmospheres is vital for interpretation of molecular cometary emission at all wavelengths. Furthermore, because ecliptic comets are continuously evaluated as space mission targets, understanding their coma environments is a central theme in both enhancing the science return of past missions (EPOXI, Rosetta) and in selecting future mission targets. With this motivation, we report long-slit high-resolution observations of H2O emission in the comae of three ecliptic comets observed in early 2017: 45P/Honda-Mrkos-Pajdusakova, 2P/Encke, and 41P/Tuttle-Giacobini-Kresak. Using the new crossed-dispersed spectrograph iSHELL at NASA IRTF, we detected a suite of water rovibrational emission lines from these comets and measured the spatial distributions of H2O rotational temperatures and molecular column densities. Both parameters are highly diagnostic of the physical environment in cometary comae, the competition between cooling and heating processes in these environments, and the presence (or lack thereof) of extended coma sources of gas-phase H2O. Comets 2P and 45P allowed a rare glimpse into coma physics at small (staff for their help with these challenging observations, most of which were done during daytime.

  3. Simbol-X Telescope Scientific Calibrations: Requirements and Plans

    International Nuclear Information System (INIS)

    Malaguti, G.; Raimondi, L.; Trifoglio, M.; Angelini, L.; Moretti, A.

    2009-01-01

    The Simbol-X telescope characteristics and the mission scientific requirements impose a challenging calibration plan with a number of unprecedented issues. The 20 m focal length implies for the incoming X-ray beam a divergence comparable to the incidence angle of the mirror surface also for 100 m-long facilities. Moreover this is the first time that a direct focussing X-ray telescope will be calibrated on an energy band covering about three decades, and with a complex focal plane. These problems require a careful plan and organization of the measurements, together with an evaluation of the calibration needs in terms of both hardware and software.

  4. Simbol-X Telescope Scientific Calibrations: Requirements and Plans

    Science.gov (United States)

    Malaguti, G.; Angelini, L.; Raimondi, L.; Moretti, A.; Trifoglio, M.

    2009-05-01

    The Simbol-X telescope characteristics and the mission scientific requirements impose a challenging calibration plan with a number of unprecedented issues. The 20 m focal length implies for the incoming X-ray beam a divergence comparable to the incidence angle of the mirror surface also for 100 m-long facilities. Moreover this is the first time that a direct focussing X-ray telescope will be calibrated on an energy band covering about three decades, and with a complex focal plane. These problems require a careful plan and organization of the measurements, together with an evaluation of the calibration needs in terms of both hardware and software.

  5. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    are cool foreground stars of spectral types dM0 and about dM3, respectively; they are located in our Milky Way Galaxy. The object just to the South of the OT is probably also a star. A V(isual)-band image (PR Photo 22g/99) taken during the night between May 17 and 18 with the VLT/ANTU telescope and FORS1 now shows the OT at magnitude V = 24.5, with still no evidence for the host galaxy that is expected to appear when the afterglow has faded sufficiently. Outlook The great distances (high redshifts) of Gamma-Ray Bursts, plus the fact that a 9th magnitude optical flash was seen when another GRB exploded on January 23 this year, has attracted the attention of astronomers outside the GRB field. In fact, GRBs may soon become a very powerful tool to probe the early universe by guiding us to regions of very early star formation and the (proto)-galaxies and (proto)-clusters of which they are part. They will also allow the study of the chemical composition of absorbing clouds at very large distances. At the end of this year, the NASA satellite HETE-II will be launched, which is expected to provide about 50 GRB alerts per year and, most importantly, accurate localisations in the sky that will allow very fast follow-up observations, while the optical counterparts are still quite bright. It will then be possible to obtain more spectra, also of extremely distant bursts, and many new distance determinations can be made, revealing the distribution of intrinsic brightness of GRB's (the "luminosity function"). Other types of observations (e.g. polarimetry, as above) will also profit, leading to a progressive refinement of the available data. Thus there is good hope that astronomers will soon come closer to identifying the progenitors of these enormous explosions and to understand what is really going on. In this process, the huge light-collecting power of the VLT and the many other facilities at the ESO observatories will undoubtedly play an important role. Notes [1] Gamma-Ray Bursts

  6. Lightweighted ZERODUR for telescopes

    Science.gov (United States)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  7. Advanced Athermal Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38Al). Peregrine's expertise with...

  8. The JCMT Telescope Management System

    Science.gov (United States)

    Tilanus, Remo P. J.; Jenness, Tim; Economou, Frossie; Cockayne, Steve

    Established telescopes often face a challenge when trying to incorporate new software standards and utilities into their existing real-time control system. At the JCMT we have successfully added important new features such as a Relational Database (the Telescope Management System---TMS), an online data Archive, and WWW based utilities to an, in part, 10-year old system. The new functionality was added with remarkably few alterations to the existing system. We are still actively expanding and exploring these new capabilities.

  9. Alt-Az Spacewatch Telescope

    Science.gov (United States)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  10. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  11. Asteroid Observations with NCSFCT’s AZT-8 Telescope

    Directory of Open Access Journals (Sweden)

    Kozhukhov, O.M.

    2017-01-01

    Full Text Available The asteroid observations of the small Solar System bodies were carried out with the AZT-8 telescope (D=0.7 m, f/4 of the National Center of Space Facilities Control and Testing (NCSFCT during 2010-2013. The telescope is located near Yevpatoria, the observatory code according IAU is B17. The observational program included perturbed main belt asteroids and NEO’s for the GAIA FUN-SSO Company. The MPC database contains more than 4500 asteroids positions and magnitudes obtained during this period at AZT-8 telescope. The article presents analysis of the positional accuracy of B17 observations obtained from the comparison with the JPL HORIZONS ephemeris, and data from AstDyS-2 and NEODyS-2 web services.

  12. Alignment and phasing of deployable telescopes

    Science.gov (United States)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  13. Automation of the Lowell Observatory 0.8-m Telescope

    Science.gov (United States)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  14. Using ISS to develop telescope technology

    Science.gov (United States)

    Saenz-Otero, Alvar; Miller, David W.

    2005-08-01

    Future space telescope missions concepts have introduced new technologies such as precision formation flight, optical metrology, and segmented mirrors. These new technologies require demonstration and validation prior to deployment in final missions such as the James Webb Space Telescope, Terrestrial Planet Finder, and Darwin. Ground based demonstrations do not provide the precision necessary to obtain a high level of confidence in the technology; precursor free flyer space missions suffer from the same problems as the final missions. Therefore, this paper proposes the use of the International Space Station as an intermediate research environment where these technologies can be developed, demonstrated, and validated. The ISS provides special resources, such as human presence, communications, power, and a benign atmosphere which directly reduce the major challenges of space technology maturation: risk, complexity, cost, remote operations, and visibility. Successful design of experiments for use aboard the space station, by enabling iterative research and supporting multiple scientists, can further reduce the effects of these challenges of space technology maturation. This paper presents results of five previous MIT Space Systems Laboratory experiments aboard the Space Shuttle, MIR, and the ISS to illustrate successful technology maturation aboard these facilities.

  15. The "Very Cool" James Webb Space Telescope!

    Science.gov (United States)

    Teague, Peter J. B.

    2018-01-01

    For over twenty years, scientists, engineers, technicians, and other personnel have been working on the next generation space telescope. As a partnership between NASA (National Aeronautics and Space Administration), CSA (Canadian Space Agency), and ESA (European Space Angency), the James Webb Space Telescope will complement the previous research performed by the Hubble by utilizing a larger primary mirror, which will also be optimized for infrared wavelengths. This combination will allow JWST to collect data and take images of light having traveled over 13.7 billion light years. This presentation will focus on the mission, as well as the contamination control challenges during the integration and testing in the NASA Goddard Spacecraft Systems Development and Integration Facility (SSDIF), one of the largest cleanrooms in the world. Additional information will be presented regarding space simulation testing down to a cool 20 degrees Kelvin [-424 degrees Fahrenheit] that will occur at Johnson Space Center in Houston, TX, and more testing and integration to happen at Northrop Grumman Corp., in Redondo Beach, CA. Launch of the JWST is currently scheduled for the spring of 2019 at Ariane Spaceport in French Guiana, South America.

  16. Trick or Treat and Telescopes

    Science.gov (United States)

    Buratti, Bonnie J.; Meinke, Bonnie K.; Schmude, Richard W.

    2017-10-01

    Based on an activity that DPS member Richard Schmude Jr. has been doing for years, with over 5000 children reached, DPS initiated in 2016 a pilot program entitled “Trick-or-Treat and Telescopes.” DPS encouraged its members to put out their telescopes during trick-or-treat time on Halloween, in their own lawns or in a neighbor’s lawn with better viewing (or more traffic). The program will be continued in 2017. This year should offer good viewing with a waxing gibbous moon and Saturn visible. The program was also advertised though the Night Sky Network, a consortium of astronomy clubs. The following website gives advice and connections to resources.https://dps.aas.org/education/trick-or-treat-and-telescopes acknowledged.

  17. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  18. Space Telescope maintenance and refurbishment

    Science.gov (United States)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  19. Thermophysical Modeling of Contact Binary Near-Earth Asteroid 1996 HW1

    NARCIS (Netherlands)

    Magri, C.; Howell, E. S.; Nolan, M. C.; Taylor, P. A.; Fernández, Y. R.; Mueller, M.; Rivkin, A. S.; Vervack, R. J., Jr.

    2011-01-01

    Near-Earth asteroid (8567) 1996 HW1 was observed spectroscopically at 1.9-4.0 microns during August- October 2008 using the SpeX instrument at NASA's Infrared Telescope Facility (IRTF). These spectra are being modeled using a new thermophysical program that accounts for the object's spin orientation

  20. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  1. Artificial Intelligence in Autonomous Telescopes

    Science.gov (United States)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  2. Neutrino telescopes in the World

    International Nuclear Information System (INIS)

    Ernenwein, J.-P.

    2007-01-01

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its starting phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations

  3. Push-To Telescope Mathematics

    Science.gov (United States)

    Teets, Donald

    2012-01-01

    Two coordinate systems are related here, one defined by the earth's equator and north pole, the other by the orientation of a telescope at some location on the surface of the earth. Applying an interesting though somewhat obscure property of orthogonal matrices and using the cross-product simplifies this relationship, revealing that a surprisingly…

  4. GISOT: a giant solar telescope

    Science.gov (United States)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  5. The Thirty-Meter Telescope

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the planets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful ...

  6. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  7. Urania In The Marketplace: Telescopes, Real And Fantastic

    Science.gov (United States)

    Rumstay, Kenneth S.

    2012-01-01

    During the twentieth century astronomical imagery was frequently incorporated, by a variety of industrial manufacturers, into advertisements which appeared in popular magazines. Images of great telescopes, especially, were often invoked to capture the public imagination and to associate a product or service with the noble pursuit of astronomical knowledge. These advertisements fall into three general categories: 1)In many cases the advertiser may have participated directly in the construction or operation of a new telescope or observatory. That astronomical facility would then be accurately rendered, usually by a photograph, and often identified. 2) In the case of a product or service which had at best a tangential relation to astronomy, a generic telescope or observatory dome might be pictured, with no identification. The intent would be to co-opt the qualities of precision and timeliness, commonly associated with astronomy, for the advertiser's product. In some cases a well-known observatory (most notably the ones atop Mount Wilson and Mount Palomar) would provide a backdrop, thereby linking the manufacturer with a facility in the public eye. 3) In some cases, a service or product might have no astronomical association whatever. Nonetheless, the advertiser might employ an image of a large telescope to invoke a sense of grandeur which would somehow be transferred, in the reader's mind, to that product. In these cases an artist's conception of some fantastic device would often be prepared. In some cases the artist may have had only the vaguest idea of how telescopes were designed, and as a result some remarkably imaginative examples of astronomical engineering graced the pages of our periodicals. Examples of magazine advertisements from each category, spanning nearly a century, are presented for comparison.

  8. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    Full Text Available Kaitan presisi merupakan alat retensi mekanis yang menghubungkan antara satu atau lebih pegangan gigi tiruan, yang bertujuan untuk menambah retensi dan/atau stabilisasi. Kaitan presisi dapat digunakan secara luas pada gigi tiruan cekat, gigi tiruan sebagian lepasan, overdenture, implant untuk retensi overdenture, dan protesa maksilo fasial. Overdenture dengan kaitan presisi dapat membantu dalam pembagian beban kunyah, meminimalkan trauma pada gigi pegangan dan jaringan lunak, meminimalkan resorbsi tulang, dan meningkatkan estetik dan pengucapan suara. Salah satu jenis dari kaitan presisi adalah telescopic crown, terdiri dari 2 macam mahkota, yaitu mahkota primer yang melekat secara permanen pada gigi penyangga, dan mahkota sekunder yang melekat pada gigi tiruan. Tujuan pemaparan kasus ini adalah untuk memberikan informasi tentang rehabilitasi pasien edentulous sebagian rahang atas dengan telescopic crown..  Pasien wanita berusia 45 tahun datang ke klinik prostodonsia RSGM Prof.Soedomo dengan keluhan ingin dibuatkan gigi tiruan. Pasien kehilangan gigi 11 12 15 16 17 21 22 24 25 26 dan 27 yang diindikasikan untuk pembuatan overdenture gigi tiruan sebagian lepasan (GTS kerangka logam dengan pegangan telescopic crown pada gigi 13 dan 14 dengan sistem parallel-sided crown. Tahap-tahap pembuatan telescopic crown yaitu mencetak model study dengan catatan gigit pendahuluan. Perawatan saluran dilakukan pada akar gigi 13, dilanjutkan pemasangan pasak fiber serta rewalling dinding bukal. Gigi 13 dan 14 dilakukan preparasi mahkota penuh, dilanjutkan dengan pencetakan model kerja untuk coping primer dan kerangka logam dengan metode double impression. Coping primer disementasi pada gigi penyangga, dilanjutkan pasang coba coping sekunder beserta kerangka logam. Selanjutnya dilakukan pencatatan gigit, pencetakan model kerja, penyusunan gigi dan pasang coba penyusunan gigi pada pasien. Prosedur dilanjutkan dengan proses di laboratorium, serta insersi pada

  9. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    Science.gov (United States)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  10. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Oya, I; Anguner, O; Birsin, E; Schwanke, U; Behera, B; Melkumyan, D; Schmidt, T; Sternberger, R; Wegner, P; Wiesand, S; Fuessling, M

    2014-01-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  11. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  12. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    Science.gov (United States)

    Hilchey, J. D.; Nein, M. E.

    1995-02-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  13. The Dutch Open Telescope: History, Status, Prospects

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    After many years of persistent telescope design and telescope construction, R.H. Hammerschlag has installed his Dutch Open Telescope (DOT) on La Palma. I brie y review its history and design. The future of optical solar physics at Utrecht hinges on a recently-funded three- year DOT science

  14. Advanced X-Ray Telescope Mirrors Provide Sharpest Focus Ever

    Science.gov (United States)

    1997-03-01

    Performing beyond expectations, the high- resolution mirrors for NASA's most powerful orbiting X-ray telescope have successfully completed initial testing at Marshall Space Flight Center's X-ray Calibration Facility, Huntsville, AL. "We have the first ground test images ever generated by the telescope's mirror assembly, and they are as good as -- or better than -- expected," said Dr. Martin Weisskopf, Marshall's chief scientist for NASA's Advanced X-ray Astrophysics Facility (AXAF). The mirror assembly, four pairs of precisely shaped and aligned cylindrical mirrors, will form the heart of NASA's third great observatory. The X-ray telescope produces an image by directing incoming X-rays to detectors at a focal point some 30 feet beyond the telescope's mirrors. The greater the percentage of X-rays brought to focus and the smaller the size of the focal spot, the sharper the image. Tests show that on orbit, the mirror assembly of the Advanced X-ray Astrophysics Facility will be able to focus approximately 70 percent of X-rays from a source to a spot less than one-half arc second in radius. The telescope's resolution is equivalent to being able to read the text of a newspaper from half a mile away. "The telescope's focus is very clear, very sharp," said Weisskopf. "It will be able to show us details of very distant sources that we know are out there, but haven't been able to see clearly." In comparison, previous X-ray telescopes -- Einstein and Rosat -- were only capable of focusing X- rays to five arc seconds. The Advanced X-ray Telescope's resolving power is ten times greater. "Images from the new telescope will allow us to make major advances toward understanding how exploding stars create and disperse many of the elements necessary for new solar systems and for life itself," said Dr. Harvey Tananbaum, director of the Advanced X- ray Astrophysics Facility Science Center at the Smithsonian Astrophysical Observatory, in Cambridge, MA -- responsible for the telescope

  15. The Atacama Cosmology Telescope: Instrument

    Science.gov (United States)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  16. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    Science.gov (United States)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy

  17. RHCV Telescope System Operations Manual

    Science.gov (United States)

    2018-01-05

    KRISTOFFER A. SMITH-RODRIGUEZ, LTCOL, USAF Chief, Warfighter Interface Division Airman Systems Directorate This report is published in the...other system components via ASCOM protocols. 1. Start the MaxImDL application using the desktop shortcut (a) Start Observatory dialog, (b...the desktop shortcut (a) Select “Connect Telescope” from Startup menu in Telescope tab (b) Select “Look Up” icon on ribbon menu at the top right of

  18. Telescopic Overdenture: A Case Report

    OpenAIRE

    Shruthi, C. S.; Poojya, R.; Ram, Swati; Anupama,

    2017-01-01

    Patient: This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Discussion: Con...

  19. Telescopic mine roof-support

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A

    1989-05-17

    A mining roof support which includes a main body consisting of a pair of telescopically associated elongated members and which slide relative to each other to extend the support, engaging one of the members. A locking plate which is movable into engagement with the member by means of a lever operated cam causes tilting of the plate to engage the member and then to raise the member and lock it in the raised position. 1 fig.

  20. Telescopic Overdenture: A Case Report

    Science.gov (United States)

    Shruthi, C. S.; Poojya, R.; Ram, Swati; Anupama

    2017-01-01

    Patient: This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Discussion: Considering the age of the patient and the cost involved, implant supported prosthesis was ruled out as a treatment option for the patient. A telescopic denture was chosen as a favourable treatment option since it overcomes many of the problems posed by conventional complete dentures like progressive bone loss, lower stability and retention, loss of periodontal proprioception and low masticatory efficiency. It also provides minimal tissue coverage and better distribution of forces. Evaluation of occlusion, esthetics, phonetics and comfort after 24 hours, 1 week and 1 month of treatment showed that the patient was happy with the prosthesis and was able to speak and chew well. Conclusion: Telescopic overdentures have better retention and stability as compared to conventional complete dentures. They improve the chewing efficiency, patient comfort and also decrease the alveolar bone resorption. As such they are an excellent alternative to conventional complete denture treatment. PMID:28533736

  1. Academic Training: Deep Space Telescopes

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 20, 21, 22, 23, 24 February from 11:00 to 12:00 - Council Chamber on 20, 21, 23, 24 February, TH Auditorium, bldg 4 - 3-006, on 22 February Deep Space Telescopes G. BIGNAMI / CNRS, Toulouse, F & Univ. di Pavia, I The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo's telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics thro...

  2. Telescopic Overdenture: A Case Report.

    Science.gov (United States)

    Shruthi, C S; Poojya, R; Ram, Swati; Anupama

    2017-03-01

    This report describes the case of a 68 year old female patient who presented with the chief complaint of difficulty in chewing and poor aesthetics due to missing teeth. The patient was interested in saving the remaining natural teeth and desired minimal tissue coverage from the prosthesis. After consideration of all the factors involved, it was deemed advisable to resort to a palate free maxillary telescopic complete denture and a mandibular removable partial denture. Considering the age of the patient and the cost involved, implant supported prosthesis was ruled out as a treatment option for the patient. A telescopic denture was chosen as a favourable treatment option since it overcomes many of the problems posed by conventional complete dentures like progressive bone loss, lower stability and retention, loss of periodontal proprioception and low masticatory efficiency. It also provides minimal tissue coverage and better distribution of forces. Evaluation of occlusion, esthetics, phonetics and comfort after 24 hours, 1 week and 1 month of treatment showed that the patient was happy with the prosthesis and was able to speak and chew well. Telescopic overdentures have better retention and stability as compared to conventional complete dentures. They improve the chewing efficiency, patient comfort and also decrease the alveolar bone resorption. As such they are an excellent alternative to conventional complete denture treatment.

  3. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  4. Twin-Telescope Wettzell (TTW)

    Science.gov (United States)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  5. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  6. Software and control system for the VLT Survey Telescope

    International Nuclear Information System (INIS)

    Schipani, P; Marty, L; Dall'Ora, M; D'Orsi, S; Argomedo, J; Arcidiacono, C; Farinato, J; Magrin, D; Ragazzoni, R; Umbriaco, G

    2013-01-01

    The VLT Survey Telescope (VST) has started the regular operations in 2011 after a successful commissioning at Cerro Paranal (Chile), the site which hosts the best facilities for optical astronomy operated by the European Southern Observatory (ESO). After a short description of the instrument, this paper mainly focuses on the telescope control software, which is in charge of the real-time control of the hardware and of the overall coordination of the operations, including pointing and tracking, active optics and presets. We describe the main features of the software implementation in the context of the ESO observatory standards, and the goals reached during the commissioning phase and in the first year of operations.

  7. VLT Unit Telescopes Named at Paranal Inauguration

    Science.gov (United States)

    1999-03-01

    General, speeches were delivered by the President of the ESO Council and the President of Chile. The speakers praised the great achievement of bringing the very complex, high-technology VLT project this far so successfully and also the wonderful new opportunities for front-line research with this new facility. This would not have been possible without excellent cooperation between the many parties to this project, individuals as well as research institutes, companies and governments, all working towards a common goal. The ceremony was concluded with a discourse on "Understanding the Universe" by Physics Nobel Prize winner, Professor Carlo Rubbia, former Director of CERN. At the end of the day, the President of the ESO Council, the ESO Director General and the Heads of Delegations had the opportunity to witness an observing session with the UT1 from the VLT Control Room. The 300 other guests followed this event via internal video broadcast. Mapuche names for the Unit Telescopes It had long been ESO's intention to provide "real" names to the four VLT Unit Telescopes, to replace the current, somewhat dry and technical designations as UT1 to UT4. Four meaningful names of objects in the sky in the Mapuche language were chosen. This indigeneous people lives mostly in the area south of Santiago de Chile. An essay contest was arranged in this connection among schoolchildren of the Chilean II Region of which Antofagasta is the capital to write about the implications of these names. It drew many excellent entries dealing with the rich cultural heritage of ESO's host country. The jury was unanimous in its choice of the winning essay. This was submitted by 17-year old Jorssy Albanez Castilla from Chuquicamata near the city of Calama. She received the prize, an amateur telescope, during the Paranal Inauguration. Henceforth, the four Unit Telescopes will be known as ANTU (UT1; pronounced an-too ; The Sun), KUEYEN (UT2; qua-yen , like in "quake"; The Moon), MELIPAL (UT3; me-li-pal ; The

  8. Radio Telescopes Reveal Unseen Galactic Cannibalism

    Science.gov (United States)

    2008-06-01

    quasars and blazars are hundreds of times more powerful. The astronomers picked a number of relatively nearby Seyfert galaxies that had previously been observed with visible-light telescopes. They then carefully studied the Seyferts with the VLA, specifically looking for radio waves emitted by hydrogen atoms. The VLA images showed the vast majority of the Seyferts were disturbed by encounters with neighbor galaxies. By comparison, similar VLA images of inactive galaxies showed that very few were disturbed. "This comparison clearly shows a connection between close galactic encounters and the black-hole-powered activity in the cores," said Ya-Wen Tang, who began this work at the Institute of Astronomy & Astrophysics, Academia Sinica (ASIAA), in Taiwan and now is a graduate student at the National Taiwan University. "This is the best evidence yet for the fueling of Seyfert galaxies. Other mechanisms have been proposed, but they have shown little if any difference between Seyferts and inactive galaxies," Tang added. "Our results show that images of the hydrogen gas are a powerful tool for revealing otherwise-invisible gravitational interactions among galaxies," said Jeremy Lim, also of ASIAA. "This is a welcome advance in our understanding of these objects, made possible by the best and most extensive survey ever made of hydrogen in Seyferts," Lim said. Kuo, Tang and Lim worked with Paul Ho, of ASIAA and the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  9. Spectral properties of near-Earth asteroids on cometary orbits

    Science.gov (United States)

    Popescu, M.; Vaduvescu, O.; de Leon, J.; Boaca, I. L.; Gherase, R. M.; Nedelcu, D. A.; INT students, I. N. G.

    2017-09-01

    We studied the spectral distributions of near-Earth asteroids on cometary orbits (NEACOs) in order to identify potential dormant or extinct comets among these objects. We present the spectral observations for 19 NEACOs obtained with Isaac Newton Telescope and Infrared Telescope Facility (IRTF). Although initially classified as asteroid, one of our targets - 2007 VA85 was confirmed to be active comet 333P/LINEAR on its 2016 appearance. We found that the NEACOs population is a mixing of different compositional classes.

  10. History of Robotic and Remotely Operated Telescopes

    Science.gov (United States)

    Genet, Russell M.

    2011-03-01

    While automated instrument sequencers were employed on solar eclipse expeditions in the late 1800s, it wasn't until the 1960s that Art Code and associates at Wisconsin used a PDP minicomputer to automate an 8-inch photometric telescope. Although this pioneering project experienced frequent equipment failures and was shut down after a couple of years, it paved the way for the first space telescopes. Reliable microcomputers initiated the modern era of robotic telescopes. Louis Boyd and I applied single board microcomputers with 64K of RAM and floppy disk drives to telescope automation at the Fairborn Observatory, achieving reliable, fully robotic operation in 1983 that has continued uninterrupted for 28 years. In 1985 the Smithsonian Institution provided us with a suburb operating location on Mt. Hopkins in southern Arizona, while the National Science Foundation funded additional telescopes. Remote access to our multiple robotic telescopes at the Fairborn Observatory began in the late 1980s. The Fairborn Observatory, with its 14 fully robotic telescopes and staff of two (one full and one part time) illustrates the potential for low operating and maintenance costs. As the information capacity of the Internet has expanded, observational modes beyond simple differential photometry opened up, bringing us to the current era of real-time remote access to remote observatories and global observatory networks. Although initially confined to smaller telescopes, robotic operation and remote access are spreading to larger telescopes as telescopes from afar becomes the normal mode of operation.

  11. New discoveries with radio telescopes

    International Nuclear Information System (INIS)

    Schmidt, J.

    1985-01-01

    The author describes in a simple fashion the results obtained by astronomers from ETH Zurich using the broadband 7-m radio telescope in Switzerland to observe the sun over a period of six years. He explains the results in terms of our present understanding of the sun's workings. The astronomers found that a solar eruption is not a single event but consists of tens of thousands of small eruptions or spikes each only 200 km high and producing a burst of radio waves 10-100 times as intense as the background. (T.J.R.A.)

  12. Imaging monolithic silicon detector telescopes

    International Nuclear Information System (INIS)

    Amorini, F.; Sipala, V.; Cardella, G.; Boiano, C.; Carbone, B.; Cosentino, L.; Costa, E.; Di Pietro, A.; Emanuele, U.; Fallica, G.; Figuera, P.; Finocchiaro, P.; La Guidara, E.; Marchetta, C.; Pappalardo, A.; Piazza, A.; Randazzo, N.; Rizzo, F.; Russo, G.V.; Russotto, P.

    2008-01-01

    We show the results of some test beams performed on a new monolithic strip silicon detector telescope developed in collaboration with the INFN and ST-microelectronics. Using an appropriate design, the induction on the ΔE stages, generated by the charge released in the E stage, was used to obtain the position of the detected particle. The position measurement, together with the low threshold for particle charge identification, allows the new detector to be used for a large variety of applications due to its sensitivity of only a few microns measured in both directions

  13. Scrutinizing supergravity models through neutrino telescopes

    CERN Document Server

    Gandhi, R; Nanopoulos, Dimitri V; Yuan, K; Zichichi, Antonino; Gandhi, Raj; Lopez, Jorge L.; Yuan, Kajia

    1994-01-01

    Galactic halo neutralinos ($\\chi$) captured by the Sun or Earth produce high-energy neutrinos as end-products of various annihilation modes. These neutrinos can travel from the Sun or Earth cores to the neighborhood of underground detectors (``neutrino telescopes") where they can interact and produce upwardly-moving muons. We compute these muon fluxes in the context of the minimal $SU(5)$ supergravity model, and the no-scale and dilaton $SU(5)\\times U(1)$ supergravity models. At present, with the Kamiokande 90\\% C.L. upper limits on the flux, only a small fraction of the parameter space of the $SU(5)\\times U(1)$ models is accessible for $m_\\chi\\sim m_{\\rm Fe}$, which in turn implies constraints for the lightest chargino mass around 100 GeV for a range of $\\tan\\beta$ values. We also delineate the regions of parameter space that would be accessible with the improvements of experimental sensitivity expected in the near future at Gran Sasso, Super-Kamiokande, and other facilities such as DUMAND and AMANDA, curren...

  14. Submillimeter heterodyne receiver for the CSO telescope

    International Nuclear Information System (INIS)

    Gulkis, S.

    1988-01-01

    This task is to build a cryogenically cooled 620 to 700 GHz astronomical receiver that will be used as a facility instrument at the CalTech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. The receiver will have applications as a very high resolution spectrometer to investigate spectral lines in planetary and satellite atmospheres, and comets. The receiver will also be used to make continuum measurements of planets, satellites, and asteroids. During FY88, a scale model (200 GHz) SIS mixer radiometer was built and intrgrated into a cryostat designed for use on the CSO telescope. This system will serve as a model to guide the work on the higher frequency mixer. A solid state local oscillator source that covers two bands in the 600 to 700 GHz has been developed under contract JPL and will be delivered before the end of the year. Work has continued on the SIS materials needed for the 620 to 700 GHz mixer. Test hardware has been developed which allow the 1 to 5 curves for SIS material to be easily measured

  15. Space astronomical telescopes and instruments; Proceedings of the Meeting, Orlando, FL, Apr. 1-4, 1991

    Science.gov (United States)

    Bely, Pierre Y.; Breckinridge, James B.

    The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.

  16. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    Science.gov (United States)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  17. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  18. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  19. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  20. Telescoping phenomenon in pathological gambling

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Mooney, Marc E

    2012-01-01

    The course of pathological gambling (PG) in women has been described as having a later age of initiation but a shorter time to problematic gambling ("telescoped"). This study examined evidence for telescoping and its relationship with comorbidities. Seventy-one treatment-seeking individuals with PG...... underwent a diagnostic interview to examine gambling behaviors, age at initiation of gambling, and time from initiation to meeting criteria for PG. The women had a higher mean age at gambling initiation compared with that of the men (mean [SD] age, 31.3 [13.0] years, compared with 22.4 [7.9] years; p = 0.......0003) and a significantly shorter time from initiation of gambling to meeting the criteria for PG (8.33 [8.7] years compared with 11.97 [9.1] years; p = 0.0476) after controlling for demographic and clinical variables. This study presents evidence for a gender-specific course of PG unrelated to psychiatric comorbidities...

  1. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  2. Merz telescopes a global heritage worth preserving

    CERN Document Server

    2017-01-01

    This book comprises a fascinating collection of contributions on the Merz telescopes in Italy that collectively offer the first survey on historical large refracting telescopes in the country, drawing on original documents and photographs. It opens with a general introduction on the importance of Merz telescopes in the history of astronomy and analyses of the local and international contexts in which the telescopes were made. After examination of an example of the interaction between the maker and the astronomer in the construction and maintenance of these refractors, the history of the Merz telescopes at the main Italian observatories in the nineteenth century is described in detail. Expert testimony is also provided on how these telescopes were successfully used until the second half of the twentieth century for research purposes, thus proving their excellent optical qualities.

  3. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  4. Assembly of NASA's Most Powerful X-Ray Telescope Completed

    Science.gov (United States)

    1998-03-01

    Assembly of the world's most powerful X-ray telescope, NASA's Advanced X-ray Astrophysics Facility, was completed last week with the installation of its power-generating twin solar panels. The observatory is scheduled for launch aboard Space Shuttle mission STS-93, in December 1998. The last major components of the observatory were bolted and pinned into place March 4 at TRW Space & Electronics Group in Redondo Beach, Calif., and pre-launch testing of the fully assembled observatory began March 7. "Completion of the observatory's assembly process is a big step forward toward launch scheduled for the end of this year," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "With all the major components in place, we are now concentrating on a thorough pre-launch checkout of the observatory." "We're delighted to reach this major milestone for the program," said Craig Staresinich, TRW's Advanced X-ray Astrophysics Facility program manager. "The entire observatory team has worked hard to get to this point and will continue an exhaustive test program to ensure mission success. We're looking forward to delivering a truly magnificent new space capability to NASA later this summer." The first pre-launch test of the Advanced X-ray Astrophysics Facility was an acoustic test, which simulated the sound pressure environment inside the Space Shuttle cargo bay during launch. A thorough electrical checkout before and after the acoustic test verifies that the observatory and its science instruments can withstand the extreme sound levels and vibrations that accompany launch. "With 10 times the resolution and 50-100 times the sensitivity of any previous X-ray telescope, this observatory will provide us with a new perspective of our universe," said the project's chief scientist, Dr. Martin Weisskopf of Marshall Center. "We'll be able to study sources of X-rays throughout the universe, like colliding galaxies and black

  5. State-of-the-art Space Telescope Digicon performance data

    Science.gov (United States)

    Ginaven, R. O.; Choisser, J. P.; Acton, L.; Wysoczanski, W.; Alting-Mees, H. R.; Smith, R. D., II; Beaver, E. A.; Eck, H. J.; Delamere, A.; Shannon, J. L.

    1980-01-01

    The Digicon has been chosen as the detector for the High Resolution Spectrograph and the Faint Object Spectrograph of the Space Telescope. Both tubes are 512 channel, parallel-output devices and feature CsTe photocathodes on MgF2 faceplates. Using a computer-assisted test facility, the tubes have been characterized with respect to diode array performance, photocathode response (1100-9000 A), and imaging capability. Data are presented on diode dark current and capacitance distributions, pulse height resolution, photocathode quantum efficiency, uniformity and blemishes, dark count rate, distortion, resolution, and crosstalk.

  6. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  7. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  8. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  9. The Timepix Telescope for High Performance Particle Tracking

    CERN Document Server

    Akiba, Kazuyoshi; van Beuzekom, Martin; van Beveren, Vincent; Borghi, Silvia; Boterenbrood, Henk; Buytaert, Jan; Collins, Paula; Dosil Suárez, Alvaro; Dumps, Raphael; Eklund, Lars; Esperante, Daniel; Gallas, Abraham; Gordon, Hamish; van der Heijden, Bas; Hombach, Christoph; Hynds, Daniel; John, Malcolm; Leflat, Alexander; Li, Yi Ming; Longstaff, Ian; Morton, Alexander; Nakatsuka, Noritsugu; Nomerotski, Andre; Parkes, Chris; Perez Trigo, Eliseo; Plackett, Richard; Reid, Matthew M; Rodriguez Perez, Pablo; Schindler, Heinrich; Szumlak, Tomasz; Tsopelas, Panagiotis; Vázquez Sierra, Carlos; Velthuis, Jaap; Wysokinski, Michal

    2013-01-01

    The Timepix particle tracking telescope has been developed as part of the LHCb VELO Upgrade project, supported by the Medipix Collaboration and the AIDA framework. It is a primary piece of infrastructure for the VELO Upgrade project and is being used for the development of new sensors and front end technologies for several upcoming LHC trackers and vertexing systems. The telescope is designed around the dual capability of the Timepix ASICs to provide information about either the deposited charge or the timing information from tracks traversing the 14 x 14mm matrix of 55 x 55 um pixels. The rate of reconstructed tracks available is optimised by taking advantage of the shutter driven readout architecture of the Timepix chip, operated with existing readout systems. Results of tests conducted in the SPS North Area beam facility at CERN show that the telescope typically provides reconstructed track rates during the beam spills of between 3.5 and 7.5 kHz, depending on beam conditions. The tracks are time stamped wi...

  10. The future of small telescopes in the new millennium

    CERN Document Server

    2003-01-01

    The motivation for these volumes is to provide a vision for the future of small telescopes. While this is an admirable task, ultimately I believe that­ as happens all the time in science - the prognostications will be overtaken by a rapidly changing scientific reality. As Virginia Trimble points out in chapter 1, the kinds of big questions that face us as astronomers today are rather different than the ones that drove the construction of astronomical facilities through much of the twentieth century. Right now, it appears that small telescopes will not have a lot of influence in answering those questions, though they will of course contribute enormously to the many issues discussed throughout the three volumes. Weare on the verge of opening a whole new parameter space that may revolutionize the way we think of small telescopes and their role in astronomy - the domain of the rapidly variable sky. While the LSST is the most prominent example, it is a long way in the future. Nemiroff & Rafert (chapter 2) con...

  11. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Science.gov (United States)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  12. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  13. Developments in fiber-positioning technology for the WEAVE instrument at the William Herschel Telescope

    NARCIS (Netherlands)

    Schallig, Ellen; Lewis, Ian J.; Gilbert, James; Dalton, Gavin; Brock, Matthew; Abrams, Don Carlos; Middleton, Kevin; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Carrasco, Esperanza; Trager, Scott C.; Vallenari, Antonella

    2016-01-01

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) on La Palma in the Canary Islands, Spain. It is a multi-object "pick-and-place" fibre-fed spectrograph with a 1000 fibre multiplex behind a new dedicated 2° prime focus corrector. The WEAVE

  14. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  15. Can Radio Telescopes Find Axions?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    axions. Now scientists Katharine Kelley and Peter Quinn at ICRAR, University of Western Australia, have explored how we might use next-generation radio telescopes to search for photons that were created by axions interacting with the magnetic fields of our galaxy.Hope for Next-Gen TelescopesPotential axion coupling strengths vs. mass (click for a closer look). The axion mass is thought to lie between a eV and a meV; two theoretical models are shown with dashed lines. The plot shows the sensitivity of the upcoming SKA and its precursors, ASKAP and MEERKAT. [KelleyQuinn 2017]By using a simple galactic halo model and reasonable assumptions for the central galactic magnetic field even taking into account the time dependence of the field Kelley and Quinn estimate the radio-frequency power density that we would observe at Earth from axions being converted to photons within the Milky Ways magnetic field.The authors then compare this signature to the detection capabilities of upcoming radio telescope arrays. They show that the upcoming Square Kilometer Array and its precursors should have the capability to detect signs of axions across large parts of parameter space.Kelley and Quinn conclude that theres good cause for optimism about future radio telescopes ability to detect axions. And if we did succeed in making a detection, it would be a triumph for both particle physics and astrophysics, finally providing an explanation for the universes dark matter.CitationKatharine Kelley and P. J. Quinn 2017 ApJL 845 L4. doi:10.3847/2041-8213/aa808d

  16. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  17. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  18. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    Science.gov (United States)

    2010-06-01

    with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. Proxy magnetometry with the Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.

    1999-01-01

    Superb movies from the Dutch Open Telescope (DOT) on La Palma have proven the validity of the open concept of this innovative telescope for high-resolution imaging of the solar atmosphere. A five- camera speckle-burst registration system is being installed that should permit consistent and

  20. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...

  1. A virtual reality environment for telescope operation

    Science.gov (United States)

    Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel

    2010-07-01

    Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.

  2. Remote secure observing for the Faulkes Telescopes

    Science.gov (United States)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  3. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  4. Simulation and Track Reconstruction for Beam Telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are an important tool to test new detectors under development in a particle beam. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, its predicted position on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them do not account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framework along with the General Broken ...

  5. Radio Telescopes Reveal Youngest Stellar Corpse

    Science.gov (United States)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  6. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  7. The Origins Space Telescope (OST)

    Science.gov (United States)

    Staguhn, Johannes

    2018-01-01

    The Origins Space Telescope is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies to be submitted by NASA Headquarters to the 2020 Astronomy and Astrophysics Decadal survey. The observatory will provide orders of magnitude improvements in sensitivity over prior missions, in particular for spectroscopy, enabling breakthrough science across astrophysics. The observatory will cover a wavelength range between 5 μm and 600 μm in order to enable the study of the formation of proto-planetary disks, detection of bio-signatures from extra-solar planet's atmospheres, characterization of the first galaxies in the universe, and many more. The five instruments that are currently studied are two imaging far-infrared spectrometers using incoherent detectors, providing up to R 10^5 spectral resolution, one far-infrared infrared heterodyne instrument for even higher spectral resolving powers, one far-infrared continuum imager and polarimeter, plus a mid-infrared coronagraph with imaging and spectroscopy mode. I will describe the scientific and technical capabilities of the observatory with focus on the expected synergies with AtLAST.

  8. Prospects for γ-ray imaging telescopes

    International Nuclear Information System (INIS)

    Carter, J.N.; Dean, A.J.; Ramsden, D.

    1981-01-01

    Apart from the requirement for a new, high angular-resolution gamma-ray telescope for the more precise location of known COS-B gamma-ray sources, there is also a need for another instrument that can be used in a search for the gamma-ray emission from specific X-ray-emitting objects. If there is to be any hope of relating gamma ray emission to specific candidate X-ray objects, then an angular resolution of typically a few minutes of arc is required to resolve adjacent sources in crowded regions of the sky such as the galactic centre. Efforts to improve the angular resolution of track-chamber telescopes are compared. For energies close to 1 MeV telescopes have either used collimators to restrict the field of view or have made use of the kinematics of the Compton scattering process to determine the direction of the incident photon. The use of coded aperture techniques in high angular resolution X-ray astronomy telescopes is reviewed. A practical telescope for astronomy at high energies described by Carter is mentioned. At low energies an imaging telescope could be constructed by making use of position-sensitive detectors initially developed for use in medical physics. Such a telescope is outlined in general terms and its benefits and uses given. (U.K.)

  9. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  10. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  11. Customized overhead cranes for installation of India's largest 3.6m optical telescope at Devasthal, Nainital, India

    Science.gov (United States)

    Bangia, Tarun; Yadava, Shobhit; Kumar, Brijesh; Ghanti, A. S.; Hardikar, P. M.

    2016-07-01

    India's largest 3.6 m aperture optical telescope facility has been recently established at Devasthal site by Aryabhatta Research Institute of Observation Sciences (ARIES), an autonomous Institute under Department of Science and Technology, Government of India. The telescope is equipped with active optics and it is designed to be used for seeinglimited observations at visible and near-infrared wavelengths. A steel building with rotating cylindrical steel Dome was erected to house 3.6m telescope and its accessories at hilltop of Devasthal site. Customized cranes were essentially required inside the building as there were space constraints around the telescope building for operating big external heavy duty cranes from outside, transportation constraints in route for bringing heavy weight cranes, altitude of observatory, and sharp bends etc. to site. To meet the challenge of telescope installation from inside the telescope building by lifting components through its hatch, two Single Girder cranes and two Under Slung cranes of 10 MT capacity each were specifically designed and developed. All the four overhead cranes were custom built to achieve the goal of handling telescope mirror and its various components during installation and assembly. Overhead cranes were installed in limited available space inside the building and tested as per IS 3177. Cranes were equipped with many features like VVVFD compatibility, provision for tandem operation, digital load display, anti-collision mechanism, electrical interlocks, radio remote, low hook height and compact carriage etc. for telescope integration at site.

  12. The RCT 1.3 m robotic telescope: broadband color transformation and extinction calibration

    Energy Technology Data Exchange (ETDEWEB)

    Strolger, L.-G.; Gott, A. M.; Carini, M.; Gelderman, R.; Laney, C. D.; McGruder, C. [Western Kentucky University, Bowling Green, KY 42101 (United States); Engle, S.; Guinan, E. [Villanova University, Villanova, PA 19085 (United States); Treffers, R. R. [Starman Systems, LLC, Alamo, CA 94507 (United States); Walter, D. K., E-mail: strolger@stsci.edu [South Carolina State University, Orangeburg, SC 29117 (United States)

    2014-03-01

    The Robotically Controlled Telescope (RCT) 1.3 m telescope, formerly known as the Kitt Peak National Observatory (KPNO) 50 inch telescope, has been refurbished as a fully robotic telescope, with an autonomous scheduler to take full advantage of the observing site without the requirement of a human presence. Here we detail the current configuration of the RCT and present, as a demonstration of its high-priority science goals, the broadband UBVRI photometric calibration of the optical facility. In summary, we find the linear color transformation and extinction corrections to be consistent with similar optical KPNO facilities, to within a photometric precision of 10% (at 1σ). While there were identified instrumental errors that likely added to the overall uncertainty, associated with since-resolved issues in engineering and maintenance of the robotic facility, a preliminary verification of this calibration gave a good indication that the solution is robust, perhaps to a higher precision than this initial calibration implies. The RCT has been executing regular science operations since 2009 and is largely meeting the science requirements set during its acquisition and redesign.

  13. Manufacturing and control of the aspherical mirrors for the telescope of the satellite Pleiades

    Science.gov (United States)

    Ducollet, Hélène; du Jeu, Christian; Fermé, Jean-Jacques

    2017-11-01

    For the Pleiades space program, SESO has been awarded the contract (fully completed), for the manufacturing of the whole set of telescope mirrors (4 mirrors, 2 flight models). These works did also include the mechanical design, manufacturing and mounting of the attachment flexures between the mirrors and the telescope main structure. This presentation is focused on the different steps of lightweighting, polishing, integration and control of these mirrors as well as a presentation of the existing SESO facilities and capabilities to produce such kind of aspherical components/sub-assemblies.

  14. VLTI First Fringes with Two Auxiliary Telescopes at Paranal

    Science.gov (United States)

    2005-03-01

    ESO Video Newsreel 15, released on March 14, 2005. It provides an introduction to the VLT Interferometer (VLTI) and the two Auxiliary Telescopes (ATs) now installed at Paranal. ESO PR Photo 07a/05 shows the impressive ensemble at the summit of Paranal. From left to right, the enclosure of VLT Antu, Kueyen and Melipal, AT1, the VLT Survey Telescope (VST) in the background, AT2 and VLT Yepun. Located at the summit of the 2,600-m high Cerro Paranal in the Atacama Desert (Chile), ESO's Very Large Telescope (VLT) is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. The VLT is composed of four 8.2-m Unit Telescope (Antu, Kueyen, Melipal and Yepun). They have been progressively put into service together with a vast suite of the most advanced astronomical instruments and are operated every night in the year. Contrary to other large astronomical telescopes, the VLT was designed from the beginning with the use of interferometry as a major goal. The href="/instruments/vlti">VLT Interferometer (VLTI) combines starlight captured by two 8.2- VLT Unit Telescopes, dramatically increasing the spatial resolution and showing fine details of a large variety of celestial objects. The VLTI is arguably the world's most advanced optical device of this type. It has already demonstrated its powerful capabilities by addressing several key scientific issues, such as determining the size and the shape of a variety of stars (ESO PR 22/02, PR 14/03 and PR 31/03), measuring distances to stars (ESO PR 25/04), probing the innermost regions of the proto-planetary discs around young stars (ESO PR 27/04) or making the first detection by infrared interferometry of an extragalactic object (ESO PR 17/03). "Little Brothers" ESO PR Photo 07b/05 ESO PR Photo 07b/05 [Preview - JPEG: 597 x 400 pix - 47k] [Normal - JPEG: 1193 x 800 pix - 330k] [HiRes - JPEG: 5000 x 3354 pix - 10.0M] ESO PR Photo 07c/05 ESO PR Photo 07c/05

  15. Decision Announced in Green Bank Telescope Arbitration Case

    Science.gov (United States)

    2001-02-01

    A decision has been reached by the arbitrator in the dispute between COMSAT Corporation, now part of Lockheed-Martin Global Telecommunications, and Associated Universities, Inc. (AUI) regarding additional costs on the contract to design and construct the Robert C. Byrd Green Bank Telescope (GBT). The GBT, in West Virginia, is the world's largest fully steerable radio telescope, the newest facility in the National Radio Astronomy Observatory's (NRAO) suite of astronomical instruments. The decision, released by the American Arbitration Association (AAA), calls for AUI, which operates the NRAO, to pay COMSAT 4.07 million over the fixed-price contract amount. The contract had standard provisions for disputes, which specify binding arbitration through the AAA for matters that could not be resolved in negotiation. The Robert C. Byrd Green Bank Telescope The contract to design and construct the GBT had an agreed fixed price of 55 million, with work to begin on December 19, 1990 and to be completed by the end of 1994. The contract terms required the telescope to be designed and built to performance specifications, placing most of the performance risks associated with the project on the contractor. The telescope was accepted from the contractor on October 13, 2000, nearly six years later than the original contract delivery date. During the entire period of contract work the only agreed change in scope was a single change order for 150,000 executed in August of 1993. In 1998, COMSAT sought an additional payment of approximately 29 million above the contracted amount, alleging that AUI/NRAO had forced it to conduct unnecessary work on the telescope design and to build the telescope to an unreasonable life cycle (fatigue) specification. COMSAT also claimed that AUI/NRAO was obligated to pay the costs of accommodating what it claimed to be additional wind loads. COMSAT blamed these circumstances for its delay in completing the project on time and within the contract price. AUI

  16. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  17. Ground-Based Telescope Parametric Cost Model

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  18. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  19. The ATHENA telescope and optics status

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark; Ferreira, Ivo; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Barriere, Nicolas; Landgraf, Boris; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heintz; Della Monica Ferreira, Desiree; Massahi, Sonny; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis; Oliver, Paul; Seidel, André

    2017-08-01

    The work on the definition and technological preparation of the ATHENA (Advanced Telescope for High ENergy Astrophysics) mission continues to progress. In parallel to the study of the accommodation of the telescope, many aspects of the X-ray optics are being evolved further. The optics technology chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided.

  20. EDUCATIONAL ASTRONOMICAL OBSERVATIONS ON REMOTE ACCESS TELESCOPES

    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko

    2016-01-01

    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  1. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  2. Direct illumination LED calibration for telescope photometry

    International Nuclear Information System (INIS)

    Barrelet, E.; Juramy, C.

    2008-01-01

    A calibration method for telescope photometry, based on the direct illumination of a telescope with a calibrated light source regrouping multiple LEDs, is proposed. Its purpose is to calibrate the instrument response. The main emphasis of the proposed method is the traceability of the calibration process and a continuous monitoring of the instrument in order to maintain a 0.2% accuracy over a period of years. Its specificity is to map finely the response of the telescope and its camera as a function of all light ray parameters. This feature is essential to implement a computer model of the instrument representing the variation of the overall light collection efficiency of each pixel for various filter configurations. We report on hardware developments done for SNDICE, the first application of this direct illumination calibration system which will be installed in Canada France Hawaii telescope (CFHT) for its leading supernova experiment (SNLS)

  3. Proposed National Large Solar Telescope Jagdev Singh

    Indian Academy of Sciences (India)

    proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to ... which can facilitate simultaneous measurements of the solar atmospheric parameters and of the vector ... Intensity variation of. 1% or less.

  4. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  5. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  6. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  7. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  8. The ARC (Astrophysical Research Consortium) telescope project.

    Science.gov (United States)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  9. The ATHENA telescope and optics status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark

    2017-01-01

    chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided...... by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided....

  10. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  11. New infrared telescopic observation of Vesta

    Science.gov (United States)

    Palomba, E.; D'Aversa, E.; Sato, T.; Longobardo, A.; Aoki, S.; Sindoni, G.; Oliva, F.

    2017-09-01

    In this work we present new telescopic observations of the Vesta asteroid made at the Subaru Telescope by using the COMICS IR spectrometer. We were able to obtain 5 different observations in 5 day, at two different epochs. The obtained spectra do not exhibit Reststrahlen bands and show only weak features attributable to the Christiansen peak and to the transparency feature compatible with a fine grain size regolith.

  12. Hartman Testing of X-Ray Telescopes

    Science.gov (United States)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  13. SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES

    International Nuclear Information System (INIS)

    Abt, Helmut A.

    2012-01-01

    I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to 7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

  14. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  15. Research of remote control for Chinese Antarctica Telescope based on iridium satellite communication

    Science.gov (United States)

    Xu, Lingzhe; Yang, Shihai

    2010-07-01

    Astronomers are ever dreaming of sites with best seeing on the Earth surface for celestial observation, and the Antarctica is one of a few such sites only left owing to the global air pollution. However, Antarctica region is largely unaccessible for human being due to lacking of fundamental living conditions, travel facilities and effective ways of communication. Worst of all, the popular internet source as a general way of communication scarcely exists there. Facing such a dilemma and as a solution remote control and data transmission for telescopes through iridium satellite communication has been put forward for the Chinese network Antarctic Schmidt Telescopes 3 (AST3), which is currently under all round research and development. This paper presents iridium satellite-based remote control application adapted to telescope control. The pioneer work in China involves hardware and software configuration utilizing techniques for reliable and secure communication, which is outlined in the paper too.

  16. Open principle for large high-resolution solar telescopes

    NARCIS (Netherlands)

    Hammerschlag, R.H.; Bettonvil, F.C.M.; Jägers, A.P.L.; Sliepen, G.

    2009-01-01

    Vacuum solar telescopes solve the problem of image deterioration inside the telescope due to refractive index fluctuations of the air heated by the solar light. However, such telescopes have a practical diameter limit somewhat over 1 m. The Dutch Open Telescope (DOT) was the pioneering demonstrator

  17. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    Science.gov (United States)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  18. Silicon pore optics for future x-ray telescopes

    Science.gov (United States)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  19. Particle Beam Tests of the Calorimetric Electron Telescope

    CERN Document Server

    Tamura, Tadahisa

    The Calorimetric Electron Telescope (CALET) is a new mission addressing outstanding astrophysics questions including the nature of dark matter, the sources of high-energy particles and photons, and the details of particle acceleration and transport in the galaxy by measuring the high-energy spectra of electrons, nuclei, and gamma-rays. It will launch on HTV-5 (H-II Transfer Vehicle 5) in 2014 for installation on the Japanese Experiment Module–Exposed Facility (JEM-EF) of the International Space Station. The CALET collaboration is led by JAXA and includes researchers from Japan, the U.S. and Italy. The CALET Main Telescope uses a plastic scintillator charge detector followed by a 30 radiation-length (X0) deep particle calorimeter divided into a 3 X0 imaging calorimeter, with scintillating optical fibers interleaved with thin tungsten sheets, and a 27 X0 fully-active total-absorption calorimeter made of lead tungstate scintillators. CALET prototypes were tested at the CERN (European Laboratory for Particle Ph...

  20. Performance of the EUDET-type beam telescopes

    CERN Document Server

    Jansen, H; Bulgheroni, A.; Claus, G.; Corrin, E.; Cussans, D.G.; Dreyling-Eschweiler, J.; Eckstein, D.; Eichhorn, T.; Goffe, M.; Gregor, I.M.; Haas, D.; Muhl, C.; Perrey, H.; Peschke, R.; Roloff, P.; Rubinskiy, I.; Winter, M.

    2016-01-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its width at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be $(2.88\\,\\pm\\,0.08)\\,\\upmu\\meter$. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean i...

  1. Real-time data acquisition and control system for the 349-pixel TACTIC atmospheric Cherenkov imaging telescope

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, K.K.; Koul, R.; Kanda, A.; Kaul, S.R.; Tickoo, A.K. E-mail: aktickoo@apsara.barc.ernet.in; Rannot, R.C.; Chandra, P.; Bhatt, N.; Chouhan, N.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Dhar, V.K.; Kaul, S.K

    2004-07-21

    An interrupt-based multinode data acquisition and control system has been developed for the imaging element of the TACTIC {gamma}-ray telescope. The system which has been designed around a 3-node network of PCs running the QNX real-time operating system, provides single-point control with elaborate GUI facilities for operating the multi-pixel camera of the telescope. In addition to acquiring data from the 349-pixel photomultiplier tube based imaging camera in real time, the system also provides continuous monitoring and control of several vital parameters of the telescope for ensuring the quality of the data. The paper describes the salient features of the hardware and software of the data acquisition and control system of the telescope.

  2. HUBBLE VISION: A Planetarium Show About Hubble Space Telescope

    Science.gov (United States)

    Petersen, Carolyn Collins

    1995-05-01

    In 1991, a planetarium show called "Hubble: Report From Orbit" outlining the current achievements of the Hubble Space Telescope was produced by the independent planetarium production company Loch Ness Productions, for distribution to facilities around the world. The program was subsequently converted to video. In 1994, that program was updated and re-produced under the name "Hubble Vision" and offered to the planetarium community. It is periodically updated and remains a sought-after and valuable resource within the community. This paper describes the production of the program, and the role of the astronomical community in the show's production (and subsequent updates). The paper is accompanied by a video presentation of Hubble Vision.

  3. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  4. Simulation and track reconstruction for beam telescopes

    CERN Document Server

    Maqbool, Salman

    2017-01-01

    Beam telescopes are used for testing new detectors under development. Sensors are placed and a particle beam is passed through them. To test these novel detectors and determine their properties, the particle tracks need to be reconstructed from the known detectors in the telescope. Based on the reconstructed track, it’s predicted hits on the Device under Test (DUT) are compared with the actual hits on the DUT. Several methods exist for track reconstruction, but most of them don’t account for the effects of multiple scattering. General Broken Lines is one such algorithm which incorporates these effects during reconstruction. The aim of this project was to simulate the beam telescope and extend the track reconstruction framework for the FE-I4 telescope, which takes these effects into account. Section 1 introduces the problem, while section 2 focuses on beam telescopes. This is followed by the Allpix2 simulation framework in Section 3. And finally, Section 4 introduces the Proteus track reconstruction framew...

  5. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  6. The Telescope: Outline of a Poetic History

    Science.gov (United States)

    Stocchi, M. P.

    2011-06-01

    Amongst the first editions of Galileo's books, only the Saggiatore has on its frontispiece the image of the telescope. Indeed, the telescope is not pictured on the very emphatic frontispieces of the other books in which Galileo was presenting and defending the results achieved by his celestial observations, such as the Sidereus Nuncius. Many contemporary scientists denied the reliability of the telescope, and some even refused to look into the eyepiece. In the 16th and 17th century, the lenses, mirrors, and optical devices of extraordinary complexity did not have the main task of leading to the objective truth but obtaining the deformation of the reality by means of amazing effects of illusion. The Baroque art and literature had the aim of surprising, and the artists gave an enthusiastic support to the telescope. The poems in praise of Galileo's telescopic findings were quite numerous, including Adone composed by Giovanni Battista Marino, one of the most renowned poets of the time. The Galilean discoveries were actually accepted by the poets as ideologically neutral contributions to the "wonder" in spite they were rejected or even condemned by the scientists, philosophers, and theologians.

  7. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  8. A free market in telescope time?

    Science.gov (United States)

    Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.

    2004-09-01

    As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.

  9. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  10. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  11. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  12. The SPIRIT Telescope Initiative: six years on

    Science.gov (United States)

    Luckas, Paul

    2017-06-01

    Now in its sixth year of operation, the SPIRIT initiative remains unique in Australia, as a robust web-enabled robotic telescope initiative funded for education and outreach. With multiple modes of operation catering for a variety of usage scenarios and a fully supported education program, SPIRIT provides free access to contemporary astronomical tools for students and educators in Western Australia and beyond. The technical solution itself provides an excellent model for low cost robotic telescope installations, and the education program has evolved over time to include a broad range of student experiences-from engagement activities to authentic science. This paper details the robotic telescope solution, student interface and educational philosophy, summarises achievements and lessons learned and examines the possibilities for future enhancement including spectroscopy.

  13. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  14. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  15. Simulation of the Simbol-X Telescope

    International Nuclear Information System (INIS)

    Chauvin, M.; Roques, J. P.

    2009-01-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  16. Simulation of the Simbol-X Telescope

    Science.gov (United States)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  17. Deployable reflector configurations. [for space telescope

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  18. Neutrino telescopes sensitivity to dark matter

    International Nuclear Information System (INIS)

    Albuquerque, I.F.M.; Lamoureux, J.; Smoot, G.F.

    2002-01-01

    The nature of the dark matter of the Universe is yet unknown and most likely is connected with new physics. The search for its composition is underway through direct and indirect detection. Fundamental physical aspects such as energy threshold, geometry and location are taken into account to investigate proposed neutrino telescopes of km3 volume sensitivities to dark matter. These sensitivities are just sufficient to test a few weakly interacting massive particle scenarios. Telescopes of km3 volume, such as IceCube, can definitely discover or exclude superheavy (M>1010 GeV) strong interacting massive particles (simpzillas). Smaller neutrino telescopes such as ANTARES, AMANDA-II and NESTOR can probe a large region of simpzilla parameter space

  19. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  20. The VTIE telescope resource management system

    Science.gov (United States)

    Busschots, B.; Keating, J. G.

    2005-06-01

    The VTIE Telescope Resource Management System (TRMS) provides a frame work for managing a distributed group of internet telescopes as a single "Virtual Observatory". The TRMS provides hooks which allow for it to be connected to any Java Based web portal and for a Java based scheduler to be added to it. The TRMS represents each telescope and observatory in the system with a software agent and then allows the scheduler and web portal to communicate with these distributed resources in a simple transparent way, hence allowing the scheduler and portal designers to concentrate only on what they wish to do with these resources rather than how to communicate with them. This paper outlines the structure and implementation of this frame work.

  1. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  2. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  3. The TACTIC atmospheric Cherenkov imaging telescope

    International Nuclear Information System (INIS)

    Koul, R.; Tickoo, A.K.; Kaul, S.K.; Kaul, S.R.; Kumar, N.; Yadav, K.K.; Bhatt, N.; Venugopal, K.; Goyal, H.C.; Kothari, M.; Chandra, P.; Rannot, R.C.; Dhar, V.K.; Koul, M.K.; Kaul, R.K.; Kotwal, S.; Chanchalani, K.; Thoudam, S.; Chouhan, N.; Sharma, M.; Bhattacharyya, S.; Sahayanathan, S.

    2007-01-01

    The TACTIC (TeV Atomospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope, equipped with a light collector of area ∼9.5m 2 and a medium resolution imaging camera of 349 pixels, has been in operation at Mt. Abu, India, since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its two-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field-of-view of 11x11 pixels (∼3.4 a tx3.4 a t), the telescope records a cosmic ray event rate of ∼2.5Hz at a typical zenith angle of 15 a t. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above ∼1.2TeV energy, at a sensitivity level of ∼5.0σ in ∼25h, along with excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong γ-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV γ-ray emission activity from other active galactic nuclei on a long-term basis

  4. Cosmic inquirers: Modern telescopes and their makers

    International Nuclear Information System (INIS)

    Tucker, W.; Tucker, K.

    1986-01-01

    An historical account is given of major, telescopic instrument-related advancements in 20th-century astronomy, with attention to the roles played by leading figures in the various fields of astronomical research involved. These biographical treatments encompass David Heeshen and the development of the VLA; Riccardo Giacconi and the X-ray astronomy Uhuru, High Energy Astronomy Observatory, and X-ray Explorer, and Einstein Observatory satellites; Allan Jacobson and the Gamma Ray Observatory satellite; the involvements of Frank Low and Gerry Neugebauer in the development of the IR Astronomy Satellite; and C. R. O'Dell's organization of the NASA Space Telescope program. 62 references

  5. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  6. LOBSTER: new space x-ray telescopes

    Science.gov (United States)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  7. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  8. Status of the GroundBIRD Telescope

    Science.gov (United States)

    Choi, J.; Génova-Santos, R.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Kanno, F.; Karatsu, K.; Kiuchi, K.; Koyano, R.; Kutsuma, H.; Lee, K.; Mima, S.; Minowa, M.; Nagai, M.; Nagasaki, T.; Naruse, M.; Oguri, S.; Okada, T.; Otani, C.; Rebolo, R.; Rubiño-Martín, J.; Sekimoto, Y.; Suzuki, J.; Taino, T.; Tajima, O.; Tomita, N.; Uchida, T.; Won, E.; Yoshida, M.

    2018-01-01

    Our understanding of physics at very early Universe, as early as 10-35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  9. The Status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Azuma, R [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Abu-Zayyad, T; Allen, M; Barcikowski, E; Belz, J W; Blake, S A; Brusova, O; Cady, R [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Higashi Osaka, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G; Cho, E J [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda, Chiba (Japan); Cho, L S; Cho, W R [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Cohen, F, E-mail: htokuno@cr.phys.titech.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan)

    2011-04-01

    The purpose of The Telescope Array experiment is to identify origin of the ultra high energy cosmic rays. The Telescope Array is a hybrid detector consists of a surface detector array and air fluorescence detectors. This hybrid detector is observing extensive air showers to measure the energy spectrum, anisotropy and composition of Ultra High Energy Cosmic Rays. The detector construction has been completed in March 2008, and the hybrid observation with the full configuration has been running since that time. In this talk, the status of observation and our prospects are described.

  10. The Telescope Array experiment: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Cohen, F [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa (Japan); Abbasi, R U; Abu-Zayyad, T; Belz, J W; Blake, S A; Brusova, O; Cady, R; Cao, Z [University of Utah, Salt Lake City (United States); Azuma, R [Tokyo Institute of Technology, Tokyo (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G [Hanyang University, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda (Japan); Cho, I S [Yonsei University, Seoul (Korea, Republic of); Chung, T [Ewha Womans University, Seoul (Korea, Republic of); Doyle, T [Utah State University, Logan (United States); Endo, A [Saitama University, Saitama (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp (and others)

    2008-07-15

    Telescope Array (TA) is a hybrid detector of a surface detector array and fluorescence telescopes. This hybrid detector will measure the energy spectrum, anisotropy and composition of ultra-high energy cosmic rays (UHECRs) to identify their origin. The almost construction of the detector has been completed in May 2007, and the detector is running under test and adjustments. The first hybrid observation with the full configuration is planned in beginning of 2008. In this paper the status and prospects of TA detector is described.

  11. Status of the GroundBIRD Telescope

    Directory of Open Access Journals (Sweden)

    Choi J.

    2018-01-01

    Full Text Available Our understanding of physics at very early Universe, as early as 10−35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  12. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  13. Confronting Standard Models of Proto-planetary Disks with New Mid-infrared Sizes from the Keck Interferometer

    OpenAIRE

    Millan-Gabet, Rafael; Che, Xiao; Monnier, John D.; Sitko, Michael L.; Russell, Ray W.; Grady, Carol A.; Day, Amanda N.; Perry, R. B.; Harries, Tim J.; Aarnio, Alicia N.; Colavita, Mark M.; Wizinowich, Peter L.; Ragland, Sam; Woillez, Julien

    2016-01-01

    We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inne...

  14. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  15. Supernovae and cosmology with future European facilities.

    Science.gov (United States)

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  16. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    only observed relatively near celestial objects, like the planets in our solar system, but also looked thousands of millions of light years into space, taking images of the most distant galaxies ever seen. "The observations and spectral measurements taken with Hubble have improved our understanding of the origin and age of the universe. In some cases, the Hubble Space Telescope has already changed our thinking about the evolution of planetary systems, stars and galaxies," points out Roger Bonnet, ESA's Director of Science. Astronomers throughout the world are using the telescope. European astronomers have a significant share in the scientific utilisation of Hubble. The Space Telescope Science Institute in Baltimore, USA, coordinates and schedules the various observations. Europe's centre for coordinating observations from Hubble, the Space Telescope European Coordination Facility, is located at the Headquarters of the European Southern Observatory (ESO) at Garching, near Munich, Germany. The Hubble Space Telescope is the first spacecraft ever built that has been designed for extensive in-orbit maintenance and refurbishment by astronauts. Unlike other satellites launched on unmanned rockets, Hubble is accessible by astronauts in orbit. It has numerous grapple fixtures and handholds for ease of access and the safety of astronauts. Hence the telescope's planned 15-year continuous operating time, despite the harsh environmental conditions, and the ability to upgrade it with more powerful instruments as technology progresses. At regular intervals of 3 to 4 years, the US Space Shuttle visits the telescope in orbit to replace components which have failed or reached the nominal end of their operational lifetime and to replace and upgrade instruments with newer, better ones. STS-104 will be the third Hubble servicing mission, after STS-61 in December 1993 and STS-82 in February 1997. To increase Hubble's scientific capability, Nicollier and his fellow crew members from NASA

  17. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Science.gov (United States)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  18. Commissioning and first tests of the MAGIC telescope

    Science.gov (United States)

    Baixeras, C.; Bastieri, D.; Bigongiari, C.; Blanch, O.; Blanchot, G.; Bock, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Contreras, J. C.; Corti, D.; Cortina, J.; Domingo, C.; Domingo, E.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacone, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kneiske, T.; Laille, A.; López, M.; López, J.; Lorenz, E.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Miralles, L.; Mirzoyan, R.; Moralejo, A.; Wilhelmi, E. Oña; Orduña, R.; Paneque, D.; Paoletti, R.; Pascoli, D.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Roberts, A.; Reyes, R.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Schweizer, T.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Vitale, V.; Volkov, S.; Wagner, R. M.; Wibig, T.; Wittek, W.

    2004-02-01

    Major Atmospheric Gamma Imaging Cherenkov telescope is starting its operations with a set of engineering runs to tune the telescope subsystem elements to be ready for the first physics campaign. Many technical improvements have been developed and implemented in several elements of the telescope to reach the lowest energy threshold ever obtained by an Imaging Atmospheric Cherenkov Telescope. A general description of the telescope is presented. The commissioning of the telescope's elements is described and the expected performances are reviewed with the final detector set-up.

  19. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  20. The telescopic tourist's guide to the Moon

    CERN Document Server

    May, Andrew

    2017-01-01

    Whether you’re interested in visiting Apollo landing sites or the locations of classic sci-fi movies, this is the tourist guide for you! This tourist guide has a twist – it is a guide to a whole different world, which you can visit from the comfort of your backyard with the aid of nothing more sophisticated than an inexpensive telescope. It tells you the best times to view the Moon, the most exciting sights to look out for, and the best equipment to use, allowing you to snap stunning photographs as well as view the sights with your own eyes. Have you ever been inspired by stunning images from the Hubble telescope, or the magic of sci-fi special effects, only to look through a small backyard telescope at the disappointing white dot of a planet or faint blur of a galaxy? Yet the Moon is different. Seen through even a relatively cheap telescope, it springs into life like a real place, with mountains and valleys and rugged craters. With a bit of imagination, you can even picture yourself as a sightseeing visi...

  1. Functional check of telescoping transfer pumps

    International Nuclear Information System (INIS)

    Sharpe, C.L.

    1994-01-01

    Activities are defined which constitute a functional check of a telescoping transfer pump (TTP). This report is written to the Procedures group of HLW and particularly applies to those TTP's which are the sole means of emergency transfer from a HLW waste tank

  2. Laser Truss Sensor for Segmented Telescope Phasing

    Science.gov (United States)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (distribution can be optimized using the range-gated metrology (RGM) approach.

  3. Hydrodynamic experiments on dacryoconarid shell telescoping

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Šimčík, Miroslav; Růžička, Marek; Kulaviak, Lukáš; Lisý, Pavel

    2014-01-01

    Roč. 47, č. 3 (2014), s. 376-396 ISSN 0024-1164 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 ; RVO:67985858 Keywords : dacryoconarid shells * experimental fluid mechanics * narrow cones * Palaeozoic * telescoping Subject RIV: DB - Geology ; Mineralogy; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.454, year: 2014

  4. The 3.5-Meter Telescope Enclosure

    Science.gov (United States)

    1994-04-01

    and acoustic vibrations, and the enclosure cannot be stopped quickly in an emergency. Also, the work of Zago indicates that open-air operation of the...enclosure. This capability is useful during operational testing and maintenance of the telescope. ’ Zago , L., "Design and Performance of Large

  5. FACT. Bokeh alignment for Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a simple, yet extendable method, to align segmented reflectors using their Bokeh. Bokeh alignment does not need a star or good weather nights but can be done anytime, even during the day. Bokeh alignment optimizes the facet orientations by comparing the segmented reflector's Bokeh to a predefined template. The Bokeh is observed using the out of focus image of a nearby point like light source in a distance of about ten times the focal lengths. We introduce Bokeh alignment on segmented reflectors and present its use on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on Canary Island La Palma, as well as on the Cherenkov Telescope Array (CTA) Medium Size Telescope (MST) prototype in Berlin Adlershof.

  6. Space Telescope Pointing Control System software

    Science.gov (United States)

    Dougherty, H.; Rodoni, C.; Rossini, R.; Tompetrini, K.; Nakashima, A.; Bradley, A.

    1982-01-01

    The Space Telescope Pointing Control System software is in the advanced development stage, having been tested on both the airbearing and the static simulator. The overall structure of the software is discussed, along with timing and sizing evaluations. The interaction between the controls analysts and software designer is described.

  7. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  8. Go-To Telescopes Under Suburban Skies

    CERN Document Server

    Monks, Neale

    2010-01-01

    For the last four centuries stargazers have turned their telescopes to the night skies to look at its wonders, but only in this age of computers has it become possible to let the telescope find for you the object you are looking for! So-called “go-to” telescopes are programmed with the locations of thousands of objects, including dazzling distant Suns, stunning neighboring galaxies, globular and open star clusters, the remnants of past supernovae, and many other breathtaking sights. This book does not tell you how to use your Go-to telescope. Your manual will help you do that. It tells you what to look for in the deep sky and why, and what equipment to best see it with. Organized broadly by what is best for viewing in the northern hemisphere in different seasons, Monks further divides the sights of each season into groupings such as “Showpiece Objects,” “Interesting Deep Sky Objects,” and “Obscure and Challenging Deep Sky Objects.” He also tells what objects are visible even in light-polluted ...

  9. Deploying the NASA Meter Class Autonomous Telescope (MCAT) on Ascension Island

    Science.gov (United States)

    Lederer, S. M.; Pace, L.; Hickson, P.; Cowardin, H. M.; Frith, J.; Buckalew, B.; Glesne, T.; Maeda, R.; Douglas, D.; Nishimoto, D.

    2015-01-01

    NASA has successfully constructed the 1.3m Meter Class Autonomous Telescope (MCAT) facility on Ascension Island in the South Atlantic Ocean. MCAT is an optical telescope designed specifically to collect ground-based data for the statistical characterization of orbital debris ranging from Low Earth Orbit (LEO) through Middle Earth Orbits (MEO) and beyond to Geo Transfer and Geosynchronous Orbits (GTO/GEO). The location of Ascension Island has two distinct advantages. First, the near-equatorial location fills a significant longitudinal gap in the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network of telescopes, and second, it allows access to objects in Low Inclination Low-Earth Orbits (LILO). The MCAT facility will be controlled by a sophisticated software suite that operates the dome and telescope, assesses sky and weather conditions, conducts all necessary calibrations, defines an observing strategy (as dictated by weather, sky conditions and the observing plan for the night), and carries out the observations. It then reduces the collected data via four primary observing modes ranging from tracking previously cataloged objects to conducting general surveys for detecting uncorrelated debris. Nightly observing plans, as well as the resulting text file of reduced data, will be transferred to and from Ascension, respectively, via a satellite connection. Post-processing occurs at NASA Johnson Space Center. Construction began in September, 2014 with dome and telescope installation occurring in April through early June, 2015. First light was achieved in June, 2015. Acceptance testing, full commissioning, and calibration of this soon-to-be fully autonomous system commenced in summer 2015. The initial characterization of the system from these tests is presented herein.

  10. Developing a NASA strategy for the verification of large space telescope observatories

    Science.gov (United States)

    Crooke, Julie A.; Gunderson, Johanna A.; Hagopian, John G.; Levine, Marie

    2006-06-01

    In July 2005, the Office of Program Analysis and Evaluation (PA&E) at NASA Headquarters was directed to develop a strategy for verification of the performance of large space telescope observatories, which occurs predominantly in a thermal vacuum test facility. A mission model of the expected astronomical observatory missions over the next 20 years was identified along with performance, facility and resource requirements. Ground testing versus alternatives was analyzed to determine the pros, cons and break points in the verification process. Existing facilities and their capabilities were examined across NASA, industry and other government agencies as well as the future demand for these facilities across NASA's Mission Directorates. Options were developed to meet the full suite of mission verification requirements, and performance, cost, risk and other analyses were performed. Findings and recommendations from the study were presented to the NASA Administrator and the NASA Strategic Management Council (SMC) in February 2006. This paper details the analysis, results, and findings from this study.

  11. The Southern African Large Telescope project

    Science.gov (United States)

    Buckley, David A. H.; Charles, Philip A.; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    The recently completed Southern African Large Telescope (SALT) is a low cost, innovative, 10 m class optical telescope, which began limited scientific operations in August 2005, just 5 years after ground-breaking. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous systems engineering approach has ensured that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array and a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable 10 m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900 nm) and featuring some niche observational capabilities, SALT will have an ability to conduct some unique science. This includes high time resolution studies, for which some initial results have already been obtained. Many of the versatile modes available with the RSS - which is currently being commissioned - are unique and provide unparallelled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (with slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot étalons and interference filters, will extend the multiplex advantage over resolutions from 300 to 9000 and fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (to between 1.5 to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror and AO. Finally, extrapolations of the SALT/HET designs to ELT proportions remain viable and are surely more affordable than conventional

  12. Completion of the Southern African Large Telescope

    Science.gov (United States)

    Buckley, D. A. H.; Charles, P. A.; O'Donoghue, D.; Nordsieck, K. H.

    2006-08-01

    The Southern African Large Telescope (SALT) is a low cost (19.7M), innovative, 10-m class optical telescope, which was inaugurated on 10 November 2005, just 5 years after ground-breaking. SALT and its first-light instruments are currently being commissioned, and full science operations are expected to begin later this year. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous Systems Engineering approach was adopted to ensure that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array in a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable and capable 10-m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900nm) and featuring some unique observational capabilities, SALT will have an ability to conduct a wide range of science programs. These will include high time resolution studies, for which some initial results have already been obtained and are presented here. Many of the versatile modes available with the RSS will provide unparalleled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (using laser cut graphite slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot etalons and interference filters, will extend the multiplex advantage over resolutions from R = 300 to 9000 over fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (possibly to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror

  13. OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS

    International Nuclear Information System (INIS)

    Swetz, D. S.; Devlin, M. J.; Dicker, S. R.; Ade, P. A. R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.; Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N.; Chervenak, J.; Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Duenner, R.

    2011-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  14. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.

    2011-06-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  15. The Impact of Radio Interference on Future Radio Telescopes

    Science.gov (United States)

    Mitchell, Daniel A.; Robertson, Gordon J.; Sault, Robert J.

    While future radio telescopes will require technological advances from the communications industry interference from sources such as satellites and mobile phones is a serious concern. In addition to the fact that the level of interference is growing constantly the increased capabilities of next generation instruments make them more prone to harmful interference. These facilities must have mechanisms to allow operation in a crowded spectrum. In this report some of the factors which may limit the effectiveness of these mechanisms are investigated. Radio astronomy is unique among other observing wavelengths in that the radiation can be fully sampled at a rate which completely specifies the electromagnetic environment. Knowledge of phases and antennae gain factors affords one the opportunity to attempt to mitigate interference from the astronomical data. At present several interference mitigation techniques have been demonstrated to be extremely effective. However the observational scales of the new facilities will push the techniques to their limits. Processes such as signal decorrelation varying antenna gain and instabilities in the primary beam will have a serious effect on some of the algorithms. In addition the sheer volume of data produced will render some techniques computationally and financially impossible.

  16. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  17. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  18. The Rainwater Memorial Calibration Facility for X-Ray Optics

    DEFF Research Database (Denmark)

    Brejnholt, Nicolai; Christensen, Finn Erland; Hailey, Charles J.

    2011-01-01

    The Nuclear Spectroscopic Telescope ARray (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5–80 keV) telescope to orbit. The ground calibration of the optics posed a challenge as the need to suppress finite source distance effects over the full optic...... and the energy range of interest were unique requirements not met by any existing facility. In this paper we present the requirements for the NuSTAR optics ground calibration, and how the Rainwater Memorial Calibration Facility, RaMCaF, is designed to meet the calibration requirements. The nearly 175 m long...

  19. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  20. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  1. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  2. Mechanical conceptual design of 6.5 meter telescope: Telescopio San Pedro Mártir (TSPM)

    Science.gov (United States)

    Uribe, Jorge; Bringas, Vicente; Reyes, Noe; Tovar, Carlos; López, Aldo; Caballero, Xóchitl; Martínez, César; Toledo, Gengis; Lee, William; Carramiñana, Alberto; González, Jesús; Richer, Michael; Sánchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Rubio, Saúl; González, Germán.; Hernández, Obed; Segura, José; Macias, Eduardo; García, Mary; Lazaro, José; Rosales, Fabián.; del Llano, Luis

    2016-07-01

    Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going

  3. 21 CFR 886.5870 - Low-vision telescope.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-vision telescope. 886.5870 Section 886.5870...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5870 Low-vision telescope. (a) Identification. A low-vision telescope is a device that consists of an arrangement of lenses or mirrors intended for...

  4. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  5. Performance of the EUDET-type beam telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Hendrik; Spannagel, Simon; Behr, Joerg; Dreyling-Eschweiler, Jan; Eckstein, Doris; Eichhorn, Thomas; Gregor, Ingrid Maria; Muhl, Carsten; Perrey, Hanno; Peschke, Richard; Roloff, Philipp; Rubinskiy, Igor [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bulgheroni, Antonio [INFN, Milano (Italy); EC - Joint Research Centre, Karlsruhe (Germany); Claus, Gilles; Goffe, Mathieu; Winter, Marc [IPHC, Strasbourg (France); Corrin, Emlyn; Haas, Daniel [University of Geneva, DPNC, Geneva (Switzerland); Cussans, David [University of Bristol, Bristol (United Kingdom)

    2016-12-15

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA 26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88 ± 0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24 ± 0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83 ± 0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA 26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams. (orig.)

  6. Performance of the EUDET-type beam telescopes

    International Nuclear Information System (INIS)

    Jansen, H.; Spannagel, S.; Behr, J.

    2016-05-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be (2.88±0.08) μm. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24±0.09) μm. With a 5 GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20 mm is estimated to (1.83±0.03) μm assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams.

  7. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  8. Computerization of a telescope at secondary education

    Science.gov (United States)

    García Santiago, A.; Martos Jumillas, J.

    2017-03-01

    The work we are presenting in this paper is the computerization of a refractor telescope on an EQ3 type equatorial mount through Arduino. The control of the mount is done via three different interfaces: Stellarium, an Android interface for mobile phones and a second interface for PC made with Processing. The aforementioned work was done by the authors with a double purpose: presenting the interest in astronomy in the Mathematics department, and the development of applications within the subject of Technology in 4th ESO. So, it is a collaborative project between both departments. Except for the telescope and the mount, all the resources we have used can be found in any high school: free software (Guadalinex v9), App Inventor and Processing.The project was carried out under the principle of reducing all possible costs given the economic possibilities of the institution.

  9. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  10. A planetary telescope at the ISS

    Science.gov (United States)

    Korablev, O.; Moroz, V.; Avanesov, G.; Rodin, V.; Bellucci, G.; Vid Machenko, A.; Tejfel, V.

    We present the development of a 40-cm telescope to be deployed at the Russian segment of International Space Station (ISS) dedicated to the observations of planets of Solar system, which primary goal will be tracking climate-related changes and other variable phenomena on planets. The most effective will be the observations of Venus, Mars, Jupiter, Saturn, and comets, while other interesting targets will be certainly considered. This space-based observatory will perform monitoring of Solar System objects on regular basis The observatory includes the 40-cm narrow-field (f:20) telescope at a pointing platform with guidance system assuring pointing accuracy of ~10", and an internal tracking system with an accuracy inferior to 1" during tens of minutes. Four focal plane instruments, a camera, two spectrometers and a spectropolarimeter, will perform imaging and spectral observations in the range from ~200 nm to ~3 μm.

  11. Preliminary Multivariable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  12. CFRP solutions for the innovative telescopes design

    Science.gov (United States)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  13. Time to Revisit the Heterogeneous Telescope Network

    Science.gov (United States)

    Hessman, F. V.

    The "Heterogeneous Telescope Network" (HTN) was founded in 2005 as a loose collaboration of people somehow associated with robotic telescopes and/or projects interested in the transient universe. Other than being a very interesting forum for the exchange of ideas, the only lasting contribution of the HTN was a proposed protocol for the operation of a loose e-market for the exchange of telescope time (Allan et al. 2006; White & Allan 2007). Since the last formal meeting in 2007, the HTN has gone into a "Dornröschenschlaf" (a better word than "hibernation") : the players and interest are there, but the public visibility and activity is not. Although the participants knew and know that global networking is the way of the future for many types of science, various things have kept the HTN from taking the idea and actually implementing it: work on simply getting one's own system to work (e.g. myself), career paths of major players (e.g. Allan), dealing with the complexity of ones' own network (TALONS, RoboNet, LCO), and - most importantly - no common science driver big enough to push the participants to try it in earnest. Things have changed, however: robotic telescopes have become easier to create and operate, private networks have matured, large-scale consortia have become more common, event reporting using VOEvent has become the global standard and has a well-defined infrastructure, and large-scale sources of new objects and events are operating or will soon be operating (OGLE, CSS, Pan-STARRs, GAIA). I will review the scientific and sociological prospects for re-invigorating the HTN idea and invite discussion.

  14. Chinese large solar telescopes site survey

    Science.gov (United States)

    Liu, Yu

    2017-04-01

    In order to observe the solar surface with unprecedentedly higher resolution, Chinse solar physics society decided to launch their solar site survey project in 2010 as the first step to look for the best candidate sites for the Chinese next-generation large-aperture solar telescopes, i.e., the 5-8 meter Chinese Giant Solar Telescope, and the 1 meter level coronagraph. We have built two long-term monitoring sites in Daocheng, with altitudes of around 4800 meters above the sea level located in the large Shangri-La mountain area, and we have collected systematic site data since 2014. Clear evidence, including the key parameters of seeing factor, sky brightness and water vapor content, has indicated that the large Shangri-La area owns the potential conditions of excellent seeing level and sufficient amount of clear-sky hours suitable for developing large solar telescopes. We will review the site survey progress and present the preliminary statistical results in this talk.

  15. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  16. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  17. A Cosmic Ray Telescope For Educational Purposes

    International Nuclear Information System (INIS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a 'telescope' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6x1.9x3.7 cm 3 . The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  18. Measuring Visual Double Stars with Robotic Telescopes

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady; Genet, Russell M.; Faisal Al-Zaben, Dewei Li, Yongyao Li, Aren Dennis, Zhixin Cao, Junyao Li, Steven Qu, Jeff Li, Michael Fene, Allen Priest, Stephen Priest, Rex Qiu, , and, Bill Riley

    2016-06-01

    The Astronomy Research Seminars introduce students to scientific research by carrying out the entire process: planning a scientific research project, writing a research proposal, gathering and analyzing observational data, drawing conclusions, and presenting the research results in a published paper and presentation.In 2015 Cuesta College and Russell Genet sponsored a new hybrid format for the seminar enabling distance learning. Boyce Research Initiatives and Education Foundation (BRIEF) conducted the course at The Army and Navy Academy (ANA) in Carlsbad, California, in the spring and fall of 2015.The course objective is to complete the research and publish the paper within one semester. Our program schedule called for observations to be performed within a two week period. Measurement of visual binary stars was chosen because sufficient observations could be made in just two evenings of good weather. We quickly learned that our location by the ocean did not provide reliable weather to use local telescopes.The iTelescope network of robotic telescopes located in Australia, Spain and the U.S. solved the problem. Reservations for these systems are booked online and include date, time, exposure and filters. The high quality telescopes range from 4" to 27" in size with excellent cameras. By watching the weather forecasts for the sites, we were able to schedule our observations within the two week time frame required.Timely and reliable data reduction was the next hurdle. The students were using widely varying equipment (PCs, MACs, tablets, smart phones) with incompatible software. After wasting time trying to be computer technicians, we settled a on standard set of software relying on Mirametrics' Mira Pro x64. We installed the software on an old laptop, downloaded the iTelescope data files, gave the students remote access using GoToMyPC.These efficiencies enabled us to meet the demanding one semester schedule and assure a better learning experience. We have been able to

  19. Cross-Calibrating Sunspot Magnetic Field Strength Measurements from the McMath-Pierce Solar Telescope and the Dunn Solar Telescope

    Science.gov (United States)

    Watson, Fraser T.; Beck, Christian; Penn, Matthew J.; Tritschler, Alexandra; Pillet, Valentín Martinez; Livingston, William C.

    2015-11-01

    In this article we describe a recent effort to cross-calibrate data from an infrared detector at the McMath-Pierce Solar Telescope and the Facility InfraRed Spectropolarimeter (FIRS) at the Dunn Solar Telescope. A synoptic observation program at the McMath-Pierce has measured umbral magnetic field strengths since 1998, and this data set has recently been compared with umbral magnetic field observations from SOHO/MDI and SDO/HMI. To further improve on the data from McMath-Pierce, we compared the data with measurements taken at the Dunn Solar Telescope with far greater spectral resolution than has been possible with space instrumentation. To minimise potential disruption to the study, concurrent umbral measurements were made so that the relationship between the two datasets can be most accurately characterised. We find that there is a strong agreement between the umbral magnetic field strengths recorded by each instrument, and we reduced the FIRS data in two different ways to successfully test this correlation further.

  20. Classic Telescopes A Guide to Collecting, Restoring, and Using Telescopes of Yesteryear

    CERN Document Server

    English, Neil

    2013-01-01

    Classic Telescopes explores the exciting world of telescopes past, as well as the possibilities involved in acquiring these instruments. What are classic telescopes? First, the book takes a look at the more traditional telescopes built by the great instrument makers of the eighteenth and nineteenth centuries and the dynastic houses founded by the likes of John Dollond, Alvan Clark, Thomas Cooke & Sons and Carl Zeiss, plus some lesser-known luminaries, including John Brashear, John Calver, and Henry Fitz. Instruments constructed from the 1950s until as recently as the early 1990s are now also considered 'classic.' There is thus a very active market for buying and selling these 'modern' classics. The author examines some of the most talked about instruments on the amateur Internet forums, including the Unitron refractors, the Questar 90, a classic 6-inch reflector, the RV-6; a 3-inch F/15 achromat by Fullerscopes; the time-honored AstroScan Richfield reflector; and many, many more. Classic telescopes are of...

  1. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  2. Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope

    Science.gov (United States)

    Anche, Ramya Manjunath; Sen, Asoke Kumar; Anupama, Gadiyara Chakrapani; Sankarasubramanian, Kasiviswanathan; Skidmore, Warren

    2018-01-01

    An analytical model has been developed to estimate the polarization effects, such as instrumental polarization (IP), crosstalk (CT), and depolarization, due to the optics of the Thirty Meter Telescope. These are estimated for the unvignetted field-of-view and the wavelengths of interest. The model estimates an IP of 1.26% and a CT of 44% at the Nasmyth focus of the telescope at the wavelength of 0.6 μm at field angle zero with the telescope pointing to zenith. Mueller matrices have been estimated for the primary, secondary, and Nasmyth mirrors. It is found that some of the Mueller matrix elements of the primary and secondary mirrors show a fourfold azimuthal antisymmetry, which indicates that the polarization at the Cassegrain focus is negligible. At the inclined Nasmyth mirror, there is no azimuthal antisymmetry in the matrix elements, and this results in nonzero values for IP and CT, which would negatively impact the polarization measurements at the telescope focus. The averaged Mueller matrix is estimated at the Nasmyth focus at different instrument ports and various zenith angles of the telescope. The variation in the Mueller matrix elements for different coatings is also estimated. The impact of this polarization effect on the science case requirements has been discussed. This analysis will help in achieving precise requirements for future instruments with polarimetric capability.

  3. Advanced Source Deconvolution Methods for Compton Telescopes

    Science.gov (United States)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  4. The Atacama Large Aperture Submm/mm Telescope (AtLAST) Project

    Science.gov (United States)

    Bertoldi, Frank

    2018-01-01

    In the past decade a strong case has been made for the construction of a next generation, 25 to 40-meter large submillimeter telescope, most notably through the CCAT and the Japanese LST projects. Although much effort had been spent on detailed science cases and technological studies, none of these projects have yet secured funding to advance to construction. We invite the interested community to join a study of the scientific merit, technical implementation, and financial path toward what we coin the "Atacama Large Submillimeter Telescope" (AtLAST). Through this community workshop, working groups, and a final report to be released in early 2019, we hope to motivate the global astronomy community to value and support the realization of such a facility.

  5. Remote observing with the Keck Telescopes from the U.S. mainland

    Science.gov (United States)

    Kibrick, Robert I.; Allen, Steve L.; Conrad, Albert

    2000-06-01

    We describe the current status of efforts to establish a high-bandwidth network from the U.S. mainland to Mauna Kea and a facility in California to support Keck remote observing and engineering via the Internet. The California facility will be an extension of the existing Keck remote operations facility located in Waimea, Hawaii. It will be targeted towards short-duration observing runs which now comprise roughly half of all scheduled science runs on the Keck Telescope. Keck technical staff in Hawaii will support remote observers on the mainland via video conferencing and collaborative software tools. Advantages and disadvantages of remote operation from California versus Hawaii are explored, and costs of alternative communication paths examined. We describe a plan for a backup communications path to protect against failure of the primary network. Alternative software models for remote operation are explored, and recent operational results described.

  6. Deep Sky Diving with the ESO New Technology Telescope

    Science.gov (United States)

    1998-01-01

    Technology Telescope. Many of the advanced technological concepts now incorporated into the VLT were first tested in the NTT. When this new facility entered into operation at La Silla in 1990, it represented a break-through in telescope technology and it has since then made many valuable contributions to front-line astronomical projects. Last year, the control and data flow system at the NTT was thoroughly refurbished to the high VLT standards and current observations with the NTT closely simulate the future operation of the VLT. The successful, early tests with the new operations system have been described in ESO Press Release 03/97. The NTT SUSI Deep Field With the possibility to test already now observing procedures which will become standard for the operation of the VLT, a group of astronomers [1] was granted NTT time for observations of Faint Galaxies in an Ultra-Deep Multicolour SUSI field . This is a programme aimed at the study of the distribution of faint galaxies in the field and of gravitational lensing effects (cosmic mirages and deformation of images of distant galaxies caused by the gravitational field of intervening matter). SUSI (SUperb Seeing Imager) is a high-resolution CCD-camera at the NTT that is particularly efficient under excellent sky conditions. The observations were fully defined in advance and were carried out in service mode from February to April 1997 with flexible scheduling by a team of dedicated ESO astronomers (the NTT team). Only in this way was it possible to obtain the exposures under optimal atmospheric conditions, i.e. `photometric' sky and little atmospheric turbulence (seeing better than 1 arcsec). A total of 122 CCD frames were obtained in four colours (blue, green-yellow, red and near-infrared) with a total exposure time of no less than 31.5 hours. The frames cover a 2.3 x 2.3 arcmin `empty' sky field centered south of the high-redshift quasar QSO BR 1202-0725 (z=4.7), located just south of the celestial equator. ESO PR Photo 01a/98

  7. The first telescope of the HEGRA air Cherenkov imaging telescope array

    International Nuclear Information System (INIS)

    Mirzoyan, R.; Kankanian, R.; Krennrich, F.; Mueller, N.; Sander, H.; Sawallisch, P.; Aharonian, F.; Akhperjanian, A.; Beglarian, A.; Fernandez, J.; Fonseca, V.; Grewe, W.; Heusler, A.; Konopelko, A.K.; Lorenz, E.; Merck, M.; Plyasheshnikov, A.V.; Renker, D.; Samorski, M.; Sauerland, K.; Smarsch, E.; Stamm, W.; Ulrich, M.; Wiedner, C.A.; Wirth, H.

    1994-01-01

    In search of VHE γ ray emission from cosmic point sources a system of imaging Cherenkov telescopes is constructed at present on the Canarian island of La Palma; the first telescope has been operational since 1992. The Cherenkov light from air shower particles is collected by a 5 m 2 reflector. The camera at the focus contains 37 photomultipliers which sample the images of the Cherenkov flashes. The subsequent image analysis allows the discrimination of γ ray induced events from the much more abundant charged cosmic ray induced showers. The telescope has an effective energy threshold for γ showers of about 1.5 TeV. During the first year of operation a signal from the Crab nebula was detected. ((orig.))

  8. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  9. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  10. Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope

    Science.gov (United States)

    Chauvin, Maxime; Roques, Jean-Pierre

    2009-08-01

    We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.

  11. Performance of the MAGIC telescopes under moonlight

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  12. PORFIDO: Oceanographic data for neutrino telescopes

    International Nuclear Information System (INIS)

    Cordelli, Marco; Martini, Agnese; Habel, Roberto; Trasatti, Luciano

    2011-01-01

    PORFIDO (Physical Oceanography by RFID Outreach) is a system designed to be installed in the optical modules of the NEMO experiment and possibly, in future underwater neutrino telescopes to gather oceanographic data with a minimum of disturbance to the main project and a very limited budget. The system gathers oceanographic data (temperature, etc.) from passive RFID tags (WISPs) attached to the outside of the NEMO optical modules with an RF reader situated inside the glass sphere, without the need of connectors or penetrators, which are very expensive and offer low reliability. Ten PORFIDOs will be deployed with the NEMO Phase 2 tower in 2011.

  13. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  14. The CERN axion solar telescope (CAST)

    International Nuclear Information System (INIS)

    Aalseth, C.E.; Arik, E.; Autiero, D.; Avignone, F.T.; Barth, K.; Bowyer, S.M.; Brauninger, H.; Brodzinski, R.L.; Carmona, J.M.; Cebrian, S.; Celebi, G.; Cetin, S.; Collar, J.I.; Creswick, R.; Delbart, A.; Delattre, M.; DiLella, L.; De Oliveira, R.; Eleftheriadis, Ch.; Erdutan, N.; Fanourakis, G.; Farach, H.A.; Fiorini, C.; Geralis, Th.; Giomataris, I.; Girard, T.A.; Gninenko, S.N.; Golubev, N.A.; Hasinoff, M.; Hoffmann, D.; Irastorza, I.G.; Jacoby, J.; Jeanneau, F.; Knopf, M.A.; Kovzelev, A.V.; Kotthaus, R.; Krcmar, M.; Krecak, Z.; Lakic, B.; Liolios, A.; Ljubicic, A.; Lutz, G.; Longoni, A.; Luzon, G.; Mailov, A.; Matveev, V.A.; Miley, H.S.; Morales, A.; Morales, J.; Mutterer, M.; Nikolaidis, A.; Nussinov, S.; Ortiz, A.; Pitts, W.K.; Placci, A.; Postoev, V.E.; Raffelt, G.G.; Riege, H.; Sampieto, M.; Sarsa, M.; Savvidis, I.; Stipcevic, M.; Thomas, C.W.; Thompson, R.C.; Valco, P.; Villar, J.A.; Villierme, B.; Walckiers, L.; Wilcox, W.; Zachariadou, K.; Zioutas, K.

    2002-01-01

    A decommissioned LHC test magnet is being prepared as the CERN Axion Solar Telescope (CAST) experiment. The magnet has a field of 9.6 Tesla and length of 10 meters. It is being mounted on a platform to track the sun over ±8 deg. vertically and ±45 deg. , horizontally. A sensitivity in axion-photon coupling gαγγ -11 GeV -1 can be reached for m α ≤ 10 -2 eV, and with a gas filled tube-can reach gαγγ ≤ 10 -10 GeV -1 for axion masses m α < 2eV

  15. Galileo's Instruments of Credit Telescopes, Images, Secrecy

    CERN Document Server

    Biagioli, Mario

    2006-01-01

    In six short years, Galileo Galilei went from being a somewhat obscure mathematics professor running a student boarding house in Padua to a star in the court of Florence to the recipient of dangerous attention from the Inquisition for his support of Copernicanism. In that brief period, Galileo made a series of astronomical discoveries that reshaped the debate over the physical nature of the heavens: he deeply modified the practices and status of astronomy with the introduction of the telescope and pictorial evidence, proposed a radical reconfiguration of the relationship between theology and a

  16. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  17. "HUBBLE, the astronomer, the telescope, the results"

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The fundamental discoveries made by Edwin Hubble in the first quarter of the last century will be presented. The space telescope bearing his name will be introduced, as well as the strategy put in place by NASA and the European Space Agency for its operation and its maintenance on-orbit. The personal experience of the speaker having participated in two of five servicing mission will be exposed and illustrated by pictures taken on-orbit. Finally, the main results obtained by the orbital observatory will be presented, in particular the ones related to the large scale structure of the Universe and its early history

  18. Extragalactic observations with the MAGIC telescopes

    International Nuclear Information System (INIS)

    Shore, S.N.

    2014-01-01

    The MAGIC imaging atmospheric Cherenkov telescopes, both as a single detector and now used in stereo mode, have been observing a variety of active galaxies and galactic clusters for almost a decade. This review provides a brief summary of some of the most recent results for blazars observed in the energy range > 50 GeV to tens of TeV. The very high energy emission observed with MAGIC is essential for disentangling the various contributions and timescales to the observed spectra and variability. (author)

  19. ARTIP: Automated Radio Telescope Image Processing Pipeline

    Science.gov (United States)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  20. Astrobiology with Robotic Telescopes at CAB

    Directory of Open Access Journals (Sweden)

    Luis Cuesta

    2010-01-01

    Full Text Available The key objectives of RTRCAB are the identification of new exoplanets and especially the characterization of the known exoplanets by observing photometric and systematic monitoring of their transits. These telescopes, equipped with advanced technology, optimized control programs, and optical and technical characteristics adequate for this purpose, are ideal to make the observations that are required to carry out these programs. The achievement of these goals is ensured by the existence of three separated geographical stations. In this sense, there are several planned missions that have the same objectives among their scientific goals, like Kepler, CoRoT, GAIA, and PLATO.

  1. Telescopic Partial Dentures-Concealed Technology.

    Science.gov (United States)

    Bhagat, Tushar Vitthalrao; Walke, Ashwini Nareshchandra

    2015-09-01

    The ideal goal of good dentist is to restore the missing part of oral structure, phonetics, his look and the most important is restored the normal health of the patient, which is hampered due to less or insufficient intake of food. Removable partial denture (RPD) treatment option is considered as a notion, which precludes the inevitability of "floating plastic" in edentulous mouth, that many times fail to fulfill the above essential of the patients. In modern dentistry, though the dental implants or fixed partial denture is the better options, but they have certain limitations. However, overdentures and particularly telescopic denture is the overlooked technology in dentistry that would be a boon for such needy patients. Telescopic denture is especially indicated in the distal edentulous area with minimum two teeth bilaterally present with a good amount of periodontal support. This treatment modality is sort of preventive prosthodontics remedy, which in a conservative manner preserve the remaining teeth and helps in conservation of alveolar bone ultimately. There are two tenets related to this option, one is constant conservation edentulous ridge around the retained tooth and the most important is the endless existence of periodontal sensory action that directs and monitor gnathodynamic task. In this option the primary coping or inner coping are cemented on the prepared tooth, and a similar removable outer or inner telescopic crown placed tightly by using a mechanism of tenso-friction, this is firmly attached to a removable RPD in place without moving or rocking of the prosthesis, which is the common compliant of almost all patients of RPD. Copings are also protecting the abutment from tooth decay and also offers stabilization and maintaining of the outer crown. The outer crown engages the inner coping and gives as an anchor for the remainder of the dentition. This work is the review of telescopic prosthesis which is well supported by the case discussion, and

  2. Space Telescope Control System science user operations

    Science.gov (United States)

    Dougherty, H. J.; Rossini, R.; Simcox, D.; Bennett, N.

    1984-01-01

    The Space Telescope science users will have a flexible and efficient means of accessing the capabilities provided by the ST Pointing Control System, particularly with respect to managing the overal acquisition and pointing functions. To permit user control of these system functions - such as vehicle scanning, tracking, offset pointing, high gain antenna pointing, solar array pointing and momentum management - a set of special instructions called 'constructs' is used in conjuction with command data packets. This paper discusses the user-vehicle interface and introduces typical operational scenarios.

  3. PORFIDO: Oceanographic data for neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Cordelli, Marco; Martini, Agnese; Habel, Roberto [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy); Trasatti, Luciano, E-mail: luciano.trasatti@gmail.co [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy)

    2011-01-21

    PORFIDO (Physical Oceanography by RFID Outreach) is a system designed to be installed in the optical modules of the NEMO experiment and possibly, in future underwater neutrino telescopes to gather oceanographic data with a minimum of disturbance to the main project and a very limited budget. The system gathers oceanographic data (temperature, etc.) from passive RFID tags (WISPs) attached to the outside of the NEMO optical modules with an RF reader situated inside the glass sphere, without the need of connectors or penetrators, which are very expensive and offer low reliability. Ten PORFIDOs will be deployed with the NEMO Phase 2 tower in 2011.

  4. Burst Alert Robotic Telescope and Optical Afterglows

    Czech Academy of Sciences Publication Activity Database

    Nekola, Martin; Hudec, René; Jelínek, M.; Kubánek, P.; Polášek, Cyril; Štrobl, Jan

    2009-01-01

    Roč. 18, 3/4 (2009), s. 374-378 ISSN 1392-0049. [INTEGRAL/BART workshop 2009. Karlovy Vary, 26.03.2009-29.03.2009] R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98023; Spanish Ministry of Education and Science(ES) AP2003-1407 Institutional research plan: CEZ:AV0Z10030501 Keywords : gamma rays bursts, * observations * robotic telescopes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.032, year: 2009

  5. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  6. The SARA Consortium: Providing Undergraduate Access to a 0.9-m Telescope at Kitt Peak National Observatory

    Science.gov (United States)

    Wood, M. A.

    2003-12-01

    The Southeastern Research for Astronomy (SARA) operates a 0.9-m telescope at Kitt Peak National Observatory (KPNO). The member institutions are Florida Institute of Technology, East Tennessee State University, Florida International University, The University of Georgia at Athens, Valdosta State University, and Clemson University. The NSF awarded the KPNO #1 0.9-m telescope to the SARA Consortium in 1990. We built a new facility and began routine on-site observations in 1995. We began routine remote observations in 1999 using VNC to export the telescope and CCD control screens, and a web-cam in the dome to provide critical visual feedback on the status of the telescope and dome. The mission of the SARA Consortium is to foster astronomical research and education in the Southeastern United States. Although only two of the member institutions have no graduate programs, all six have a strong emphasis on undergraduate research and education. By pooling our resources, we are able to operate a research-grade facility that none of the individual schools could manage by itself, and in the process we can offer our undergraduate students the opportunity to assist in our research projects as well as to complete their own independent research projects using a facility at a premier site. The SARA Consortium also hosts a NSF REU Summer Intern Program in Astronomy, in which we support 11-12 students that work one-on-one with a SARA faculty mentor. Most of these interns are selected from primarily undergraduate institutions, and have not had significant previous research experience. As part of the program, interns and mentors travel to KPNO for a 4-5 night observing run at the telescope. The SARA NSF REU Program is funded through NSF grant AST-0097616.

  7. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dournaux, J.L., E-mail: jean-laurent.dournaux@obspm.fr [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); De Franco, A. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Laporte, P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); White, R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Greenshaw, T. [University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Sol, H. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Abchiche, A. [CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon (France); Allan, D. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Amans, J.P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Armstrong, T.P. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Balzer, A.; Berge, D. [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Boisson, C. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, France.

  8. Early laser operations at the Large Binocular Telescope Observatory

    Science.gov (United States)

    Rahmer, Gustavo; Lefebvre, Michael; Christou, Julian; Raab, Walfried; Rabien, Sebastian; Ziegleder, Julian; Borelli, José L.; Gässler, Wolfgang

    2014-08-01

    ARGOS is the GLAO (Ground-Layer Adaptive Optics) Rayleigh-based LGS (Laser Guide Star) facility for the Large Binocular Telescope Observatory (LBTO). It is dedicated for observations with LUCI1 and LUCI2, LBTO's pair of NIR imagers and multi-object spectrographs. The system projects three laser beams from the back of each of the two secondary mirror units, which create two constellations circumscribed on circles of 2 arcmin radius with 120 degree spacing. Each of the six Nd:YAG lasers provides a beam of green (532nm) pulses at a rate of 10kHz with a power of 14W to 18W. We achieved first on-sky propagation on the night of November 5, 2013, and commissioning of the full system will take place during 2014. We present the initial results of laser operations at the observatory, including safety procedures and the required coordination with external agencies (FAA, Space Command, and Military Airspace Manager). We also describe our operational procedures and report on our experiences with aircraft spotters. Future plans for safer and more efficient aircraft monitoring and detection are discussed.

  9. Status And Performance Of The Virgin Islands Robotic Telescope at Etelman Observatory

    Science.gov (United States)

    Morris, David C.; Gendre, Bruce; Neff, James E.; Giblin, Timothy W.

    2016-01-01

    The Virgin Islands Robotic Telescope is an 0.5m robotic telescope located at the easternmost and southernmost optical observatory in the United States at a latitude of 18.5N and longitude of 65W. The observatory is located on the island of St Thomas in the USVI. Astronomers from the College of Charleston, the US Air Force Academy, and the University of the Virgin Islands collaborate to maintain and operate the facility. The primary scientific focus of the facility is the optical follow-up of high-energy transients though a variety of other science interests are also being pursued including follow-up of candidate extra-solar planets, rotation studies of cool stars, and near-Earth asteroid and space situational awareness studies. The facility also supports a wide-reaching education and outreach program dedicated to raising the level of STEAM engagement and enrichment in the USVI. We detail the characteristics, capabilities, and early results from the observatory. The observatory is growing its staff and science activities and potential topics for collaboration will be discussed.

  10. Observational results of a multi-telescope campaign in search of interstellar urea [(NH2)2CO

    International Nuclear Information System (INIS)

    Remijan, Anthony J.; Snyder, Lewis E.; Kuo, Hsin-Lun; Looney, Leslie W.; Friedel, Douglas N.; McGuire, Brett A.; Golubiatnikov, G. Yu; Lovas, Frank J.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; McCall, Benjamin J.; Hollis, Jan M.

    2014-01-01

    In this paper, we present the results of an observational search for gas phase urea [(NH 2 ) 2 CO] observed toward the Sgr B2(N-LMH) region. We show data covering urea transitions from ∼100 GHz to 250 GHz from five different observational facilities: the Berkeley-Illinois-Maryland-Association (BIMA) Array, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the NRAO 12 m telescope, the IRAM 30 m telescope, and the Swedish-ESO Submillimeter Telescope (SEST). The results show that the features ascribed to urea can be reproduced across the entire observed bandwidth and all facilities by best-fit column density, temperature, and source size parameters which vary by less than a factor of two between observations merely by adjusting for telescope-specific parameters. Interferometric observations show that the emission arising from these transitions is cospatial and compact, consistent with the derived source sizes and emission from a single species. Despite this evidence, the spectral complexity of both (NH 2 ) 2 CO and of Sgr B2(N) makes the definitive identification of this molecule challenging. We present observational spectra, laboratory data, and models, and discuss our results in the context of a possible molecular detection of urea.

  11. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  12. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    Science.gov (United States)

    2000-02-01

    The Executive Board of the UK Visible and Infrared Survey Telescope (VISTA) project announced today [1] that it is aiming at the installation of a new and powerful astronomical telescope at the ESO Paranal Observatory (Chile). This 4-metre telescope is a specialised wide-angle facility equipped with powerful cameras and efficient detectors that will enable it to obtain deep images of large sky areas in short time. These survey observations will be made in several wavebands in the optical and, in particular, the near-infrared region of the electromagnetic spectrum. VISTA will become the largest and most effective telescope of its type when it enters into operation in 2004. It is a project of a consortium of 18 UK universities [2]. Construction is expected to start in spring 2000. Funding of the project was announced in May 1999, as one of the first allocations from the "Joint Infrastructure Fund (JIF)", an initiative of the UK Government's Department of Trade and Industry, the Wellcome Trust, and the Higher Education Funding Council for England. ESO's Director General, Dr. Catherine Cesarsky , is very pleased with this decision. She received a mandate from the ESO Council in December 1999 to negotiate a contract with the UK Particle Physics and Astronomy Research Council (PPARC) , acting on behalf of the VISTA Executive Board, for the installation of VISTA at Paranal and now looks forward to settle the associated legal and operational details with her British counterparts at good pace. "The installation of VISTA at Paranal will be of great benefit to all European astronomers", she says. "The placement of a survey telescope of this size next to ESO's VLT, the world's largest optical telescope, opens a plethora of exciting opportunities for joint research projects. Deep observations with VISTA, especially in infrared wavebands, will provide a most valuable, first census of large regions of space. This will most certainly lead to the discoveries of many new and

  13. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  14. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  15. The James Webb Space Telescope Mission

    Science.gov (United States)

    Sonneborn, George

    2010-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under development by NASA for launch in 2014. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe, peer through dusty clouds to see AGN environments and stars forming planetary systems at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at wavelength of 2 microns (0.1 arcsec resolution). The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5-year prime science mission, with propellant for 10 years of science operations. The instruments will provide broad- and narrow-band imaging, coronography, and multi-object and integral-field spectroscopy (spectral resolution of 100 to 3,000) across the 1 - 28 micron wavelength range. Science and mission operations will be conducted from the Space Telescope Science Institute in Baltimore, Maryland.

  16. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  17. Neutron spectrometry with a monolithic silicon telescope.

    Science.gov (United States)

    Agosteo, S; D'Angelo, G; Fazzi, A; Para, A Foglio; Pola, A; Zotto, P

    2007-01-01

    A neutron spectrometer was set-up by coupling a polyethylene converter with a monolithic silicon telescope, consisting of a DeltaE and an E stage-detector (about 2 and 500 microm thick, respectively). The detection system was irradiated with monoenergetic neutrons at INFN-Laboratori Nazionali di Legnaro (Legnaro, Italy). The maximum detectable energy, imposed by the thickness of the E stage, is about 8 MeV for the present detector. The scatter plots of the energy deposited in the two stages were acquired using two independent electronic chains. The distributions of the recoil-protons are well-discriminated from those due to secondary electrons for energies above 0.350 MeV. The experimental spectra of the recoil-protons were compared with the results of Monte Carlo simulations using the FLUKA code. An analytical model that takes into account the geometrical structure of the silicon telescope was developed, validated and implemented in an unfolding code. The capability of reproducing continuous neutron spectra was investigated by irradiating the detector with neutrons from a thick beryllium target bombarded with protons. The measured spectra were compared with data taken from the literature. Satisfactory agreement was found.

  18. The X-ray Telescope of CAST

    CERN Document Server

    Kuster, M.; Cebrian, S.; Davenport, M.; Elefteriadis, C.; Englhauser, J.; Fischer, H.; Franz, J.; Friedrich, P.; Hartmann, R.; Heinsius, F.H.; Hoffmann, D.H.H.; Hoffmeister, G.; Joux, J.N.; Kang, D.; Konigsmann, Kay; Kotthaus, R.; Papaevangelou, T.; Lasseur, C.; Lippitsch, A.; Lutz, G.; Morales, J.; Rodriguez, A.; Struder, L.; Vogel, J.; Zioutas, K.

    2007-01-01

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  19. The x-ray telescope of CAST

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, M [Technische Universitaet Darmstadt, IKP, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Braeuninger, H [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Cebrian, S [Laboratorio de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, E-50009 Zaragoza (Spain)] (and others)

    2007-06-15

    The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant g{sub a{gamma}}{sub {gamma}} can be probed beyond the best astrophysical constraints g{sub a{gamma}}{sub {gamma}} < 1 x 10{sup -10} GeV{sup -1}.

  20. The ROTSE-IIIa telescope system

    International Nuclear Information System (INIS)

    Smith, D.; Akerlof, C.; Kehoe, R.; McKay, T.; Rykoff, E.; Ashley, M.C.B.; Phillips, M.A.; Casperson, D.; Gisler, G.; McGowan, K.; Vestrand, W.T.; Wozniak, P.; Wren, J.; Marshall, S.

    2003-01-01

    We report on the current operating status of the ROTSE-IIIa telescope, currently undergoing testing at Los Alamos National Laboratories in New Mexico. It will be shipped to Siding Spring Observatory, Australia, in first quarter 2002. ROTSE-IIIa has been in automated observing mode since early October, 2001, after completing several weeks of calibration and check-out observations. Calibrated lists of objects in ROTSE-IIIa sky patrol data are produced routinely in an automated pipeline, and we are currently automating analysis procedures to compile these lists, eliminate false detections, and automatically identify transient and variable objects. The manual application of these procedures has already led to the detection of a nova that rose over six magnitudes in two days to a maximum detected brightness of mR ∼ 13.9 and then faded two magnitudes in two weeks. We also readily identify variable stars, includings those suspected to be variables from the Sloan Digital Sky Survey. We report on our system to allow public monitoring of the telescope operational status in real time over the WWW

  1. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  2. Simulators, Remote Labs and Robotic Telescopes

    Science.gov (United States)

    Folhas, Alvaro

    2015-04-01

    There is an increasing gap between students of the twenty-first century and the teaching methodology still stuck in the past century. The myriad stimuli that involve our students, immediate consumption of information, and the availability of resources, should cast the teacher in search methodologies that encourage the student to learn. The simulators, virtual laboratories and remote controlled robotic equipment are examples of high didactic potential resources, created by scientific organizations and universities, to be used in education, providing a direct interaction with science and motivating our students to a future career in science. It is up to us to take advantage of that work, and those resources, to light the sparkle in the eyes of our students. In Astronomy Club I've developed with high school students some practical projects in science, using, over the web, the robotic telescopes through which the students are studying and photographing deep sky objects; or the European network of radio telescope, measuring the speed of the arms of our galaxy in our galactic dance, their temperatures showing where it is more likely to form new stars. Students use these tools, engaging in their own knowledge construction, and forego their Friday afternoons without a hurry to go home for the weekend. That's the spirit we want for the school.

  3. Undergraduate Education with the WIYN 0.9-m Telescope

    Science.gov (United States)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  4. The Associate Principal Astronomer for AI Management of Automatic Telescopes

    Science.gov (United States)

    Henry, Gregory W.

    1998-01-01

    This research program in scheduling and management of automatic telescopes had the following objectives: 1. To field test the 1993 Automatic Telescope Instruction Set (ATIS93) programming language, which was specifically developed to allow real-time control of an automatic telescope via an artificial intelligence scheduler running on a remote computer. 2. To develop and test the procedures for two-way communication between a telescope controller and remote scheduler via the Internet. 3. To test various concepts in Al scheduling being developed at NASA Ames Research Center on an automatic telescope operated by Tennessee State University at the Fairborn Observatory site in southern Arizona. and 4. To develop a prototype software package, dubbed the Associate Principal Astronomer, for the efficient scheduling and management of automatic telescopes.

  5. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  6. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  7. Modeling update for the Thirty Meter Telescope laser guide star dual-conjugate adaptive optics system

    Science.gov (United States)

    Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent

    2010-07-01

    This paper describes the modeling efforts undertaken in the past couple of years to derive wavefront error (WFE) performance estimates for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility laser guide star (LGS) dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The estimates describe the expected performance of NFIRAOS as a function of seeing on Mauna Kea, zenith angle, and galactic latitude (GL). They have been developed through a combination of integrated AO simulations, side analyses, allocations, lab and lidar experiments.

  8. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  9. Thermal emissivity analysis of a GEMINI 8-meter telescopes design

    Science.gov (United States)

    St. Clair Dinger, Ann

    1993-01-01

    The GEMINI 8-meter Telescopes Project is designing twin 8-meter telescopes to be located in Hawaii and Chile. The GEMINI telescopes will have interchangeable secondary mirrors for use in the visible and IR. The APART/PADE program is being used to evaluate the effective IR emissivity of the IR configuration plus enclosure as a function of mirror contamination at three IR wavelengths. The goal is to design a telescope whose effective IR emissivity is no more than 2 percent when the mirrors are clean.

  10. A new concept of imaging system: telescope windows

    Science.gov (United States)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  11. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  12. Detection of the J = 6→5 transition of carbon monoxide

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Erickson, N.R.; Fetterman, H.R.; Clifton, B.J.; Peck, D.D.; Tannenwald, P.E.; Koepf, G.A.; Buhl, D.; McAvoy, N.

    1981-01-01

    The J = 6→5 rotational transition of carbon monoxide has been detected in emission from the KL ''plateau source'' in the Orion molecular cloud. The corrected peak antenna temperature is 100 K, and the FWHM line width is 26 km s -1 . These observations were carried out using the 3 m telescope of the NASA IRTF (Infrared Telescope Facility) on Mauna Kea, Hawaii, and constitute the first astronomical data obtained at submillimeter wavelengths with a heterodyne system using a laser local oscillator. Our data support the idea that the high-velocity dispersion CO in Orion is optically thin and set a lower limit to its temperature of approx.180 K

  13. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Chennamangalam, Jayanth; Karastergiou, Aris; Williams, Christopher [Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); MacMahon, David; Cobb, Jeff; Siemion, Andrew P. V.; Gajjar, Vishal; Werthimer, Dan [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Rajwade, Kaustubh; Lorimer, Duncan R.; McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Armour, Wes, E-mail: jayanth@astro.ox.ac.uk [Oxford e-Research Centre, University of Oxford, Keble Road, Oxford OX1 3QG (United Kingdom)

    2017-02-01

    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L -band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0–5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.

  14. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

    Science.gov (United States)

    Chennamangalam, Jayanth; MacMahon, David; Cobb, Jeff; Karastergiou, Aris; Siemion, Andrew P. V.; Rajwade, Kaustubh; Armour, Wes; Gajjar, Vishal; Lorimer, Duncan R.; McLaughlin, Maura A.; Werthimer, Dan; Williams, Christopher

    2017-02-01

    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L-band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0-5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.

  15. Celebrating 30 years of science from the James Clerk Maxwell Telescope

    Science.gov (United States)

    Robson, Ian; Friberg, Per

    2017-01-01

    The James Clerk Maxwell Telescope (JCMT) has been the world’s most successful single-dish telescope at submillimetre wavelengths since it began operations in 1987. From the pioneering days of single-element photometers and mixers, through to the state-of-the-art imaging and spectroscopic cameras, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of ‘SCUBA’ galaxies, which are responsible for a large fraction of the far-infrared background, the JCMT has pushed the sensitivity limits arguably more than any other facility in this most difficult of wavebands in which to observe. Closer to home, the first images of huge discs of cool debris around nearby stars gave us clues to the evolution of planetary systems, further evidence of the importance of studying astrophysics in the submillimetre region. Now approaching the 30th anniversary of the first observations, the telescope continues to carry out unique and innovative science. In this review article, we look back on some of the major scientific highlights from the past 30 years. PMID:28989775

  16. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

    International Nuclear Information System (INIS)

    Chennamangalam, Jayanth; Karastergiou, Aris; Williams, Christopher; MacMahon, David; Cobb, Jeff; Siemion, Andrew P. V.; Gajjar, Vishal; Werthimer, Dan; Rajwade, Kaustubh; Lorimer, Duncan R.; McLaughlin, Maura A.; Armour, Wes

    2017-01-01

    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L -band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0–5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.

  17. Celebrating 30 years of science from the James Clerk Maxwell Telescope

    Science.gov (United States)

    Robson, Ian; Holland, Wayne S.; Friberg, Per

    2017-09-01

    The James Clerk Maxwell Telescope (JCMT) has been the world's most successful single-dish telescope at submillimetre wavelengths since it began operations in 1987. From the pioneering days of single-element photometers and mixers, through to the state-of-the-art imaging and spectroscopic cameras, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of `SCUBA' galaxies, which are responsible for a large fraction of the far-infrared background, the JCMT has pushed the sensitivity limits arguably more than any other facility in this most difficult of wavebands in which to observe. Closer to home, the first images of huge discs of cool debris around nearby stars gave us clues to the evolution of planetary systems, further evidence of the importance of studying astrophysics in the submillimetre region. Now approaching the 30th anniversary of the first observations, the telescope continues to carry out unique and innovative science. In this review article, we look back on some of the major scientific highlights from the past 30 years.

  18. The UTMOST: A Hybrid Digital Signal Processor Transforms the Molonglo Observatory Synthesis Telescope

    Science.gov (United States)

    Bailes, M.; Jameson, A.; Flynn, C.; Bateman, T.; Barr, E. D.; Bhandari, S.; Bunton, J. D.; Caleb, M.; Campbell-Wilson, D.; Farah, W.; Gaensler, B.; Green, A. J.; Hunstead, R. W.; Jankowski, F.; Keane, E. F.; Krishnan, V. Venkatraman; Murphy, Tara; O'Neill, M.; Osłowski, S.; Parthasarathy, A.; Ravi, V.; Rosado, P.; Temby, D.

    2017-10-01

    The Molonglo Observatory Synthesis Telescope (MOST) is an 18000 m2 radio telescope located 40 km from Canberra, Australia. Its operating band (820-851 MHz) is partly allocated to telecommunications, making radio astronomy challenging. We describe how the deployment of new digital receivers, Field Programmable Gate Array-based filterbanks, and server-class computers equipped with 43 Graphics Processing Units, has transformed the telescope into a versatile new instrument (UTMOST) for studying the radio sky on millisecond timescales. UTMOST has 10 times the bandwidth and double the field of view compared to the MOST, and voltage record and playback capability has facilitated rapid implementaton of many new observing modes, most of which operate commensally. UTMOST can simultaneously excise interference, make maps, coherently dedisperse pulsars, and perform real-time searches of coherent fan-beams for dispersed single pulses. UTMOST operates as a robotic facility, deciding how to efficiently target pulsars and how long to stay on source via real-time pulsar folding, while searching for single pulse events. Regular timing of over 300 pulsars has yielded seven pulsar glitches and three Fast Radio Bursts during commissioning. UTMOST demonstrates that if sufficient signal processing is applied to voltage streams, innovative science remains possible even in hostile radio frequency environments.

  19. Status Of The Development Of A Thin Foil High Throughput X-Ray Telescope For The Soviet Spectrum X-Gamma Mission

    DEFF Research Database (Denmark)

    WESTERGAARD, NJ; BYRNAK, BP; Christensen, Finn Erland

    1989-01-01

    modification of this design is optimized with respect to high energy throughput of the telescope. The mechanical design and the status of the surface preparation technologies are described. Various X-ray and optical test facilities for the measurement of surface roughness, "orange peel", and figure errors...

  20. The NESTOR underwater neutrino telescope project

    Energy Technology Data Exchange (ETDEWEB)

    Rapidis, Petros A. [Institute of Nuclear Physics, National Center for Scientific Research ' Demokritos' , Athens 15310 (Greece)], E-mail: rapidis@inp.demokritos.gr

    2009-04-11

    The NESTOR collaboration is continuing its efforts towards deploying an underwater neutrino telescope. Further site studies (e.g. water light transmission measurements, sedimentation rates, etc.) are being carried out within the context of characterizing a site that may host the proposed KM3NeT infrastructure. In addition, following the successful deployment of a single floor of a NESTOR tower in 2003, five floors are now in the final stages of preparation. The use of these five floors in a form of a truncated tower together with four autonomous strings to be located some 300 m away from the tower is being contemplated. This arrangement, named NuBE (for Neutrino Burst Experiment), that may allow the detection neutrinos in coincidence with Gamma Ray Bursts, will be described.

  1. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  2. Electrostatically telescoping nanotube nonvolatile memory device

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Jiang Qing

    2007-01-01

    We propose a nonvolatile memory based on carbon nanotubes (CNTs) serving as the key building blocks for molecular-scale computers and investigate the dynamic operations of a double-walled CNT memory element by classical molecular dynamics simulations. The localized potential energy wells achieved from both the interwall van der Waals energy and CNT-metal binding energy make the bistability of the CNT positions and the electrostatic attractive forces induced by the voltage differences lead to the reversibility of this CNT memory. The material for the electrodes should be carefully chosen to achieve the nonvolatility of this memory. The kinetic energy of the CNT shuttle experiences several rebounds induced by the collisions of the CNT onto the metal electrodes, and this is critically important to the performance of such an electrostatically telescoping CNT memory because the collision time is sufficiently long to cause a delay of the state transition

  3. Selected results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Bouhou, B.

    2014-01-01

    ANTARES uses sea water as as a detection medium to observe cosmic neutrinos. The ANTARES neutrino telescope is taking data with its complete configuration since 2008. Its main goal is the detection of cosmic neutrinos from the Southern hemisphere sky, coming from Galactic and extragalactic sources. Recently, the ANTARES collaboration has published many results from data collected from 2007 to 2010 using detector configurations containing between 5 to 12 detection strings. Among those, search of point sources and diffuse flux from high energy cosmic neutrinos, both resulted in stringent and competitive upper limits for the flux of cosmic neutrinos. In addition, ANTARES is involved in multi-messenger projects looking for correlations between neutrinos and gamma rays or gravitational wave emitted by sources like Gamma-Ray bursts. In this paper we report on some recent results published by the ANTARES collaboration

  4. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  5. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  6. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  7. Searching for dark matter with neutrino telescopes

    International Nuclear Information System (INIS)

    Hooper, Dan; Silk, Joseph

    2004-01-01

    One of the most interesting mysteries of astrophysics is the puzzle of dark matter. Although numerous techniques have been explored and developed to detect this elusive substance, its nature remains unknown. One such method uses large high-energy neutrino telescopes to look for the annihilation products of dark matter annihilations. In this paper, we briefly review this technique. We describe the calculations used to find the rate of capture of WIMPs in the Sun or Earth and the spectrum of neutrinos produced in the resulting dark matter annihilations. We will discuss these calculations within the context of supersymmetry and models with universal extra dimensions, the lightest supersymmetric particle and lightest Kaluza-Klein particle providing the WIMP candidate in these cases, respectively. We will also discuss the status of some of the experiments relevant to these searches: AMANDA, IceCube and ANTARES

  8. Hubble Space Telescope electrical power system

    Science.gov (United States)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  9. A 25 m Live Optics Telescope

    DEFF Research Database (Denmark)

    Ardeberg, Arne; Andersen, Torben; Owner-Petersen, Mette

    1996-01-01

    A 25 m four mirror live optics telescope is studied. M1 is spherical with 141 segments and f/0.96. M1 is reimaged onto M4 also with 141 segments. Image FWHM is 20 arc min. A horseshoe solution with a simple azimuth platform is applied. M1 segments are supported by a fine...... meniscus form truss structure, tied to the horseshoe by a coarser mesh. A FEM with 10^4 dof was developed and applied. Live optics control M1 and M4 segments (the latter with potential high bandwidth). Correction signals in tilt, coma and defocus are traced. A correlation tracker and a lase guide star...... dynamic effects and image quality resulting from the 141 segment spots. Automatic segment control at a bandwidth of only 1 Hz gives excellent image quality. We foresee to reach a bandwidth > 50 Hz, securing a system partly adaptive, with effects of atmospheric wave front tilt removed through M4 segment...

  10. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  11. JUDE: An Ultraviolet Imaging Telescope pipeline

    Science.gov (United States)

    Murthy, J.; Rahna, P. T.; Sutaria, F.; Safonova, M.; Gudennavar, S. B.; Bubbly, S. G.

    2017-07-01

    The Ultraviolet Imaging Telescope (UVIT) was launched as part of the multi-wavelength Indian AstroSat mission on 28 September, 2015 into a low Earth orbit. A 6-month performance verification (PV) phase ended in March 2016, and the instrument is now in the general observing phase. UVIT operates in three channels: visible, near-ultraviolet (NUV) and far-ultraviolet (FUV), each with a choice of broad and narrow band filters, and has NUV and FUV gratings for low-resolution spectroscopy. We have written a software package (JUDE) to convert the Level 1 data from UVIT into scientifically useful photon lists and images. The routines are written in the GNU Data Language (GDL) and are compatible with the IDL software package. We use these programs in our own scientific work, and will continue to update the programs as we gain better understanding of the UVIT instrument and its performance. We have released JUDE under an Apache License.

  12. Detectors for the Atacama Cosmology Telescope

    Science.gov (United States)

    Marriage, Tobias Andrew

    The Atacama Cosmology Telescope (ACT) will make measurements of the brightness temperature anisotropy in the Cosmic Microwave Background (CMB) on degree to arcminute angular scales. The ACT observing site is located 5200 m near the top of Cerro Toco in the Atacama Desert of northern Chile. This thesis presents research on the detectors which capture the image of the CMB formed at ACT's focal plane. In the first chapter, the primary brightness temperature fluctuations in the Cosmic Microwave Background are reviewed. In Chapter 2, a calculation shows how the CMB brightness is translated by ACT to an input power to the detectors. Chapter 3 describes the ACT detectors in detail and presents the response and sensitivity of the detectors to the input power computed in Chapter 2. Chapter 4 describes the detector fabrication at NASA Goddard Space Flight Center. Chapter 5 summarizes experiments which characterize the ACT detector performance.

  13. The Lifferth Dome for Small Telescopes

    Science.gov (United States)

    Wilson, B. L.; Olsen, C. S.; Iverson, E. P.; Paget, A.; Lifferth, W.; Brown, P. J.; Moody, J. W.

    2004-12-01

    The Lifferth Dome is a pull-off roof designed for small telescopes and other observational equipment. It was specifically designed for the needs of the ROVOR project. The roof itself is completely removed from the observatory housing walls and cranked off to the side below the optical horizon. This is done using two swing arms on either side of the observatory that work in unison to lift the roof off the structure and rotate down and away into a cleared location. The torque is provided by a threaded rod connected to an electric motor at the back of the building. As the motor rotates, the threads turn through a threaded sleeve connected directly to the support arms. Advantages to this design are no lost horizon, no roller surfaces to keep clean, low power and simple limit switches. Operation is by computer control using by National Instruments LabVIEW via the internet. We present its design and construction.

  14. Wave Telescope Technique for MMS Magnetometer

    Science.gov (United States)

    Narita, Y.; Plaschke, F.; Nakamura, R.; Baumjojann, W.; Magnes, W.; Fischer, D.; Voros, Z.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; hide

    2016-01-01

    Multipoint measurements are a powerful method in studying wavefields in space plasmas.The wave telescope technique is tested against magnetic field fluctuations in the terrestrial magnetosheath measured by the four Magnetospheric Multiscale (MMS) spacecraft on a spatial scale of about 20 km.The dispersion relation diagram and the wave vector distribution are determined for the first time in the ion-kinetic range. Moreover, the dispersion relation diagram is determined in a proxy plasma restframe by regarding the low-frequency dispersion relation as a Doppler relation and compensating for the apparent phase velocity. Fluctuations are highly compressible, and the wave vectors have an angle of about 60 from the mean magnetic field. We interpret that the measured fluctuations represent akinetic-drift mirror mode in the magnetosheath which is dispersive and in a turbulent state accompanied by a sideband formation.

  15. XSPECT telescopes on the SRG: optical performance

    DEFF Research Database (Denmark)

    Westergaard, Niels Jørgen Stenfeldt; Polny, Josef; Christensen, Finn Erland

    1994-01-01

    The XSPECT, thin foil, multiply nested telescope on SRG has been designed to achieve a large effective area at energies between 6 and 15 keV. The design goal for the angular resolution is 2 arcmin (HPD). Results of foil figure error measurements are presented. A ray tracing analysis was performed...... including results of earlier scattering measurements and the foil determination. The results of the analysis are compared with test measurements with X rays and show that there is a larger spread in the PSF than the model can account for. The decrease in effective area due to scattering is estimated...... to be 30% when the photons that scatter more than 6 arcmin are regarded as lost. The vignetting at off-axis angles leads to an effective area at the edge of the FOV which is 15% of that of an on-axis source....

  16. The NESTOR underwater neutrino telescope project

    International Nuclear Information System (INIS)

    Rapidis, Petros A.

    2009-01-01

    The NESTOR collaboration is continuing its efforts towards deploying an underwater neutrino telescope. Further site studies (e.g. water light transmission measurements, sedimentation rates, etc.) are being carried out within the context of characterizing a site that may host the proposed KM3NeT infrastructure. In addition, following the successful deployment of a single floor of a NESTOR tower in 2003, five floors are now in the final stages of preparation. The use of these five floors in a form of a truncated tower together with four autonomous strings to be located some 300 m away from the tower is being contemplated. This arrangement, named NuBE (for Neutrino Burst Experiment), that may allow the detection neutrinos in coincidence with Gamma Ray Bursts, will be described.

  17. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  18. Telescopic multi-resolution augmented reality

    Science.gov (United States)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  19. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bisello, D.; Baughman, B. M.; Belli, F.

    2010-01-01

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  20. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  1. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  2. Origins Space Telescope: Cosmology and Reionization

    Science.gov (United States)

    Vieira, Joaquin Daniel; Origins Space Telescope

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  3. Origins Space Telescope: Breaking the Confusion Limit

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s.OST will have a background-limited sensitivity for a background 27,000 times lower than the Herschel background caused by thermal emission from Herschel's warm telescope. For continuum observations the confusion limit in a diffraction-limited survey can be reached in very short integration times at longer far-infrared wavelengths. But the confusion limit can be pierced for both the nearest and the farthest objects to be observed by OST. For outer the Solar System the targets' motion across the sky will provide a clear signature in surveys repeated after an interval of days to months. This will provide a size-frequency distribution of TNOs that is not biased toward high albedo objects.For the distant Universe the first galaxies and the first metals will provide a third dimension of spectral information that can be measured with a long-slit, medium resolution spectrograph. This will allow 3Dmapping to measure source densities as a function of redshift. The continuum shape associated with sourcesat different redshifts can be derived from correlation analyses of these 3D maps.Fairly large sky areas can be scanned by moving the spacecraft at a constant angular rate perpendicular to the orientation of the long slit of the spectrograph, avoiding the high overhead of step-and-stare surveying with a large space observatory.We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu

  4. Facilities for High Resolution Imaging of the Sun

    Science.gov (United States)

    von der Lühe, Oskar

    2018-04-01

    The Sun is the only star where physical processes can be observed at their intrinsic spatial scales. Even though the Sun in a mere 150 million km from Earth, it is difficult to resolve fundamental processes in the solar atmosphere, because they occur at scales of the order of the kilometer. They can be observed only with telescopes which have apertures of several meters. The current state-of-the-art are solar telescopes with apertures of 1.5 m which resolve 50 km on the solar surface, soon to be superseded by telescopes with 4 m apertures with 20 km resolution. The US American 4 m DSI Solar Telescope is currently constructed on Maui, Hawaii, and is expected to have first light in 2020. The European solar community collaborates intensively to pursue the 4 m European Solar Telescope with a construction start in the Canaries early in the next decade. Solar telescopes with slightly smaller are also in the planning by the Russian, Indian and Chinese communities. In order to achieve a resolution which approaches the diffraction limit, all modern solar telescopes use adaptive optics which compensates virtually any scene on the solar disk. Multi-conjugate adaptive optics designed to compensate fields of the order on one minute of arc have been demonstrated and will become a facility feature of the new telescopes. The requirements for high precision spectro-polarimetry – about one part in 104 – makes continuous monitoring of (MC)AO performance and post-processing image reconstruction methods a necessity.

  5. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  6. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  7. Aperture and counting rate of rectangular telescopes for single and multiple parallel particles. [Spark chamber telescopes

    Energy Technology Data Exchange (ETDEWEB)

    D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Melone, S [Istituto di Fisica dell' Universita, Ancona, Italy; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati

    1976-06-01

    Expressions for the counting rate of rectangular telescopes in the case of single as well as multiple particles are given. The aperture for single particles is obtained in the form of a double integral and analytical solutions are given for some cases. The intensity for different multiplicities of parallel particles is related to the geometry of the detectors and to the features of the radiation. This allows an absolute comparison between the data recorded by different devices.

  8. Telescope Construction: A Hands-On Approach to Astronomy Education

    Science.gov (United States)

    Sarrazine, Angela R.; Albin, E.

    2009-01-01

    We report on a popular semester-long telescope making course offered at Fernbank Science Center in Atlanta, GA. The program is tailored for junior / senior level high school students and incorporates the current educational performance standards for the state of Georgia. This course steps out of the traditional classroom environment and allows students to explore optics and astronomical concepts by constructing their own telescopes. Student telescopes follow the classic six-inch f/8 Newtonian reflector design, which has proven to be a good compromise between portability and aperture. Participants meet for a few hours, twice weekly, to build their telescopes. Over the course of the semester, raw one-inch thick Pyrex mirror blanks are ground, polished, and figured by hand into precision telescope objectives. Along the way, students are introduced to the Ronchi and Foucault methods for testing optics and once figured, completed mirrors are then chemically silvered. A plywood Dobsonian-style base is built and eventually mated with an optical tube made from a standard eight-inch concrete form tube or sonotube. An evening of star testing the optics and observation is planned at the end of the semester to insure the proper operation of each telescope. In summary, we believe that a hands-on approach to the understanding and use of optical telescopes is a great way not only to instill enthusiasm among students for the night sky, but may perhaps inspire the next generation of professional telescope makers.

  9. Active control of the Chinese Giant Solar Telescope

    Science.gov (United States)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  10. Engineering and science highlights of the KAT-7 radio telescope

    NARCIS (Netherlands)

    Foley, A. R.; Alberts, T.; Armstrong, R. P.; Barta, A.; Bauermeister, E. F.; Bester, H.; Blose, S.; Booth, R. S.; Botha, D. H.; Buchner, S. J.; Carignan, C.; Cheetham, T.; Cloete, K.; Coreejes, G.; Crida, R. C.; Cross, S. D.; Curtolo, F.; Dikgale, A.; de Villiers, M. S.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fender, R. P.; Fijalkowski, M.; Fourie, D.; Frank, B.; George, D.; Gibbs, P.; Goedhart, S.; Grobbelaar, J.; Gumede, S. C.; Herselman, P.; Hess, K. M.; Hoek, N.; Horrell, J.; Jonas, J. L.; Jordaan, J. D. B.; Julie, R.; Kapp, F.; Kotzé, P.; Kusel, T.; Langman, A.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I. J. V.; Loots, A.; Lord, R. T.; Lucero, D. M.; Ludick, J.; Macfarlane, P.; Madlavana, M.; Magnus, L.; Magozore, C.; Malan, J. A.; Manley, J. R.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Mokone, O.; Moss, V.; Mthembu, S.; New, W.; Nicholson, G. D.; van Niekerk, P. C.; Oozeer, N.; Passmoor, S. S.; Peens-Hough, A.; Pińska, A. B.; Prozesky, P.; Rajan, S.; Ratcliffe, S.; Renil, R.; Richter, L. L.; Rosekrans, D.; Rust, A.; Schröder, A. C.; Schwardt, L. C.; Seranyane, S.; Serylak, M.; Shepherd, D. S.; Siebrits, R.; Sofeya, L.; Spann, R.; Springbok, R.; Swart, P. S.; Thondikulam, Venkatasubramani L.; Theron, I. P.; Tiplady, A.; Toruvanda, O.; Tshongweni, S.; van den Heever, L.; van der Merwe, C.; van Rooyen, R.; Wakhaba, S.; Walker, A. L.; Welz, M.; Williams, L.; Wolleben, M.; Woudt, P. A.; Young, N. J.; Zwart, J. T. L.

    2016-01-01

    The construction of the seven-dish Karoo Array Telescope (KAT-7) array in the Karoo region of the Northern Cape in South Africa was intended primarily as an engineering prototype for technologies and techniques applicable to the MeerKAT telescope. This paper looks at the main engineering and

  11. A coded mask telescope for the Spacelab 2 mission

    International Nuclear Information System (INIS)

    Willmore, A.P.; Skinner, G.K.; Eyles, C.J.; Ramsey, B.

    1984-01-01

    A dual coded mask telescope for the Spacelab 2 mission is now in the final stages of preparation at Birmingham University. It is due for launch in late 1984/early 1985 and will be by far the largest and most sophisticated such instrument to be flown in this time-frame. The design and capabilities of the telescope will be described. (orig.)

  12. Deployment of a Pair of 3 M telescopes in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, G; Adams, B; Butler, K; Cardoza, J; Colin, P; Hui, C M; Kieda, D; Kirkwood, D; Kress, D; Kress, M; LeBohec, S; McGuire, C; Newbold, M; Nunez, P; Pham, K [University of Utah, Department of Physics, Salt Lake City, Utah 84112 (United States)

    2008-12-24

    Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

  13. Large fully retractable telescope enclosures still closable in strong wind

    Science.gov (United States)

    Bettonvil, Felix C. M.; Hammerschlag, Robert H.; Jägers, Aswin P. L.; Sliepen, Guus

    2008-07-01

    Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.

  14. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  15. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J.W.; Ahn, K.-B.

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  16. Safety management of an underground-based gravitational wave telescope: KAGRA

    Science.gov (United States)

    Ohishi, Naoko; Miyoki, Shinji; Uchiyama, Takashi; Miyakawa, Osamu; Ohashi, Masatake

    2014-08-01

    KAGRA is a unique gravitational wave telescope with its location underground and use of cryogenic mirrors. Safety management plays an important role for secure development and operation of such a unique and large facility. Based on relevant law in Japan, Labor Standard Act and Industrial Safety and Health Law, various countermeasures are mandated to avoid foreseeable accidents and diseases. In addition to the usual safety management of hazardous materials, such as cranes, organic solvents, lasers, there are specific safety issues in the tunnel. Prevention of collapse, flood, and fire accidents are the most critical issues for the underground facility. Ventilation is also important for prevention of air pollution by carbon monoxide, carbon dioxide, organic solvents and radon. Oxygen deficiency should also be prevented.

  17. Cryogenic Photogrammetry and Radiometry for the James Webb Space Telescope Microshutters

    Science.gov (United States)

    Chambers, Victor J.; Morey, Peter A.; Zukowski, Barbara J.; Kutyrev, Alexander S.; Collins, Nicholas R.

    2012-01-01

    The James Webb Space Telescope (JWST) relies on several innovations to complete its five year mission. One vital technology is microshutters, the programmable field selectors that enable the Near Infrared Spectrometer (NIRSpec) to perform multi-object spectroscopy. Mission success depends on acquiring spectra from large numbers of galaxies by positioning shutter slits over faint targets. Precise selection of faint targets requires field selectors that are both high in contrast and stable in position. We have developed test facilities to evaluate microshutter contrast and alignment stability at their 35K operating temperature. These facilities used a novel application of image registration algorithms to obtain non-contact, sub-micron measurements in cryogenic conditions. The cryogenic motion of the shutters was successfully characterized. Optical results also demonstrated that shutter contrast far exceeds the NIRSpec requirements. Our test program has concluded with the delivery of a flight-qualified field selection subsystem to the NIRSpec bench.

  18. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  19. An optics education program designed around experiments with small telescopes

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.; Dokter, Erin F. C.

    2010-08-01

    The National Optical Astronomy Observatory has led the development of a new telescope kit for kids as part of a strategic plan to interest young children in science. This telescope has been assembled by tens of thousands of children nationwide, who are now using this high-quality telescope to conduct optics experiments and to make astronomical observations. The Galileoscope telescope kit and its associated educational program are an outgrowth of the NSF sponsored "Hands-On Optics" (HOO) project, a collaboration of the SPIE, the Optical Society of America, and NOAO. This project developed optics kits and activities for upper elementary students and has reached over 20,000 middle school kids in afterschool programs. HOO is a highly flexible educational program and was featured as an exemplary informal science program by the National Science Teachers Association. Our new "Teaching with Telescopes" program builds on HOO, the Galileoscope and other successful optical education projects.

  20. Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope

    Science.gov (United States)

    Moore, Anna M.; Davis, John

    2000-07-01

    The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.

  1. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  2. Observations of Anomalous Refraction with Co-housed Telescopes

    Science.gov (United States)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  3. Radio Telescopes to Keep Sharp Eye on Mars Lander

    Science.gov (United States)

    2008-05-01

    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  4. Optical Design of the STAR-X Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  5. First lunar occultation results from the 2.4 m Thai national telescope equipped with ULTRASPEC

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A.; Irawati, P.; Soonthornthum, B. [National Astronomical Research Institute of Thailand, 191 Siriphanich Building, Huay Kaew Road, Suthep, Muang, Chiang Mai 50200 (Thailand); Dhillon, V. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, T. R., E-mail: andrea4work@gmail.com [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2014-11-01

    The recently inaugurated 2.4 m Thai National Telescope (TNT) is equipped with, among other instruments, the ULTRASPEC low-noise, frame-transfer EMCCD camera. At the end of its first official observing season, we report on the use of this facility to record high time resolution imaging using small detector subarrays with a sampling as fast as several 10{sup 2} Hz. In particular, we have recorded lunar occultations of several stars that represent the first contribution to this area of research made from Southeast Asia with a telescope of this class. Among the results, we discuss an accurate measurement of α Cnc, which has been reported previously as a suspected close binary. Attempts by several authors to resolve this star have so far met with a lack of unambiguous confirmation. With our observation we are able to place stringent limits on the projected angular separation (<0.''003) and brightness (Δm > 5) of a putative companion. We also present a measurement of the binary HR 7072, which extends considerably the time coverage available for its yet undetermined orbit. We discuss our precise determination of the flux ratio and projected separation in the context of other available data. We conclude by providing an estimate of the performance of ULTRASPEC at TNT for lunar occultation work. This facility can help to extend the lunar occultation technique in a geographical area where no comparable resources were available until now.

  6. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  7. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  8. Cosmology with the Large Synoptic Survey Telescope: an overview

    Science.gov (United States)

    Zhan, Hu; Tyson, J. Anthony

    2018-06-01

    The Large Synoptic Survey Telescope (LSST) is a high étendue imaging facility that is being constructed atop Cerro Pachón in northern Chile. It is scheduled to begin science operations in 2022. With an ( effective) aperture, a novel three-mirror design achieving a seeing-limited field of view, and a 3.2 gigapixel camera, the LSST has the deep-wide-fast imaging capability necessary to carry out an survey in six passbands (ugrizy) to a coadded depth of over 10 years using of its observational time. The remaining of the time will be devoted to considerably deeper and faster time-domain observations and smaller surveys. In total, each patch of the sky in the main survey will receive 800 visits allocated across the six passbands with exposure visits. The huge volume of high-quality LSST data will provide a wide range of science opportunities and, in particular, open a new era of precision cosmology with unprecedented statistical power and tight control of systematic errors. In this review, we give a brief account of the LSST cosmology program with an emphasis on dark energy investigations. The LSST will address dark energy physics and cosmology in general by exploiting diverse precision probes including large-scale structure, weak lensing, type Ia supernovae, galaxy clusters, and strong lensing. Combined with the cosmic microwave background data, these probes form interlocking tests on the cosmological model and the nature of dark energy in the presence of various systematics. The LSST data products will be made available to the US and Chilean scientific communities and to international partners with no proprietary period. Close collaborations with contemporaneous imaging and spectroscopy surveys observing at a variety of wavelengths, resolutions, depths, and timescales will be a vital part of the LSST science program, which will not only enhance specific studies but, more importantly, also allow a more complete understanding of the Universe through different windows.

  9. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    Science.gov (United States)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  10. Science Programs for a 2-m Class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope

    Science.gov (United States)

    Burton, M. G.; Lawrence, J. S.; Ashley, M. C. B.; Bailey, J. A.; Blake, C.; Bedding, T. R.; Bland-Hawthorn, J.; Bond, I. A.; Glazebrook, K.; Hidas, M. G.; Lewis, G.; Longmore, S. N.; Maddison, S. T.; Mattila, S.; Minier, V.; Ryder, S. D.; Sharp, R.; Smith, C. H.; Storey, J. W. V.; Tinney, C. G.; Tuthill, P.; Walsh, A. J.; Walsh, W.; Whiting, M.; Wong, T.; Woods, D.; Yock, P. C. M.

    2005-08-01

    The cold, dry, and stable air above the summits of the Antarctic plateau provides the best ground-based observing conditions from optical to sub-millimetre wavelengths to be found on the Earth. Pathfinder for an International Large Optical Telescope (PILOT) is a proposed 2m telescope, to be built at Dome C in Antarctica, able to exploit these conditions for conducting astronomy at optical and infrared wavelengths. While PILOT is intended as a pathfinder towards the construction of future grand-design facilities, it will also be able to undertake a range of fundamental science investigations in its own right. This paper provides the performance specifications for PILOT, including its instrumentation. It then describes the kinds of projects that it could best conduct. These range from planetary science to the search for other solar systems, from star formation within the Galaxy to the star formation history of the Universe, and from gravitational lensing caused by exo-planets to that produced by the cosmic web of dark matter. PILOT would be particularly powerful for wide-field imaging at infrared wavelengths, achieving near diffraction-limited performance with simple tip-tilt wavefront correction. PILOT would also be capable of near diffraction-limited performance in the optical wavebands, as well be able to open new wavebands for regular ground-based observation, in the mid-IR from 17 to 40μm and in the sub-millimetre at 200μm.

  11. No Telescoping Effect with Dual Tendon Vibration.

    Directory of Open Access Journals (Sweden)

    Valeria Bellan

    Full Text Available The tendon vibration illusion has been extensively used to manipulate the perceived position of one's own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration on both 'upward-downward' and 'towards-away from the elbow' planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a 'telescoping' effect. Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow, but no evidence of a contraction of the perceived arm length.

  12. Choosing and using a Dobsonian telescope

    CERN Document Server

    English, Neil

    2011-01-01

    In the 1980’s, on the sidewalks of San Francisco, amateur astronomer John Dobson began showing throngs of people how to build and use large aperture scopes, often from scraps. The Dobsonian,‘Dobs,’ are now the best-selling large telescopes in the world. There are a great variety of different Dob styles, ranging from elaborate and decorative creations to simple mass market designs, and new models appear all the time. In this title, Neil English presents the ultimate guide to buying and using a commercial Dobsonian for recreational astronomy. He provides in-depth accounts of the various models (plus accessories) on the market – both economy and premium – together with describing the wealth of innovations that amateurs have made to their Dobs to optimize their performance in the field. Even after thirty years of innovation, the Dobsonian Revolution shows no signs of abating. Find out where the future lies for these large aperture ‘scopes and the exciting avenues John Dobson’s vision will take us ...

  13. TeV gravity at neutrino telescopes

    International Nuclear Information System (INIS)

    Illana, J.I.; Masip, M.; Meloni, D.

    2005-01-01

    Cosmogenic neutrinos reach the Earth with energies around 10 9 GeV, and their interactions with matter will be measured in upcoming experiments (Auger, IceCube). Models with extra dimensions and the fundamental scale at the TeV could imply signals in these experiments. In particular, the production of microscopic black holes by cosmogenic neutrinos has been extensively studied in the literature. Here we make a complete analysis of gravity-mediated interactions at larger distances, where they can be calculated in the eikonal approximation. In these processes a neutrino of energy E ν interacts elastically with a parton inside a nucleon, loses a small fraction y of its energy, and starts a hadronic shower of energy yE ν ν . We analyze the ultraviolet dependence and the relevance of graviton emission in these processes, and show that they are negligible. We also study the energy distribution of cosmogenic events in AMANDA and IceCube and the possibility of multiple-bang events. For any neutrino flux, the observation of an enhanced rate of neutral current events above 100 TeV in neutrino telescopes could be explained by TeV-gravity interactions. The values of the fundamental scale of gravity that IceCube could reach are comparable to those to be explored at the LHC

  14. Buried plastic scintillator muon telescope (BATATA)

    International Nuclear Information System (INIS)

    Alfaro, R.; De Donato, C.; D'Olivo, J.C.; Guzman, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patino Salazar, E.; Salazar Ibarguen, H.; Sanchez, F.A.; Supanitsky, A.D.; Valdes-Galicia, J.F.; Vargas Trevino, A.D.; Vergara Limon, S.; Villasenor, L.M.

    2010-01-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm 2 . Each layer is 4m 2 and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90 0 angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm 2 . The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  15. Buried plastic scintillator muon telescope (BATATA)

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, R. [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); De Donato, C.; D' Olivo, J.C.; Guzman, A.; Medina-Tanco, G. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Moreno Barbosa, E. [Fac. de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Paic, G.; Patino Salazar, E. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Salazar Ibarguen, H. [Fac. de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Sanchez, F.A., E-mail: federico.sanchez@nucleares.unam.m [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Supanitsky, A.D. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Valdes-Galicia, J.F. [Inst. de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Vargas Trevino, A.D.; Vergara Limon, S. [Fac. de Ciencias de la Electronica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Villasenor, L.M. [Inst. de Fisica y Matematicas, Universidad Michoacana de San Nicolas Hidalgo Morelia (Mexico); Observatorio Pierre Auger, Av. San Martin Norte 304 (5613) Malarguee, Prov. Mendoza (Argentina)

    2010-05-21

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm{sup 2}. Each layer is 4m{sup 2} and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90{sup 0} angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm{sup 2}. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2{mu}s data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  16. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Losa Agustín Sánchez

    2017-01-01

    Full Text Available The ANTARES detector is an underwater neutrino telescope, the largest in the Northern Hemisphere and the first one ever built under the sea, located in the Mediterranean Sea 40 km off the Southern coast of France, at a depth of 2.5 km. It comprises 885 photomultiplier tubes distributed along twelve detection lines. The signal due to neutrinos is searched by reconstructing the tracks of secondary particles produced in the surroundings of the detector. The detector is in data taking with its final configuration since 2008. It is aimed at identifying the sources, either steady or flaring, of cosmic neutrinos, and is also suitable for detection of dark matter within the Sun and/or Galactic Centre. ANTARES can contribute in the confirmation of the cosmic neutrino flux observed by IceCube, being particularly competitive for the Galactic Centre, and in general for galactic sources, due its latitude and at lower energies and softer spectra due its configuration. Several multi-messenger analyses have been also attempted, including the search of coincidence signals of neutrinos with gravitational-waves. Additional topics include neutrino oscillations or the search of exotic particles, like nuclearites and magnetic monopoles. Results from the latest analyses are presented.

  17. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Van Elewyck, Véronique

    2014-01-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed

  18. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  19. Aerosol Measurements with the FRAM Telescope

    Directory of Open Access Journals (Sweden)

    Ebr Jan

    2017-01-01

    Full Text Available Precision stellar photometry using a telescope equipped with a CCD camera is an obvious way to measure the total aerosol content of the atmosphere as the apparent brightness of every star is affected by scattering. Achieving high precision in the vertical aerosol optical depth (at the level of 0.01 presents a series of interesting challenges. Using 3.5 years of data taken by the FRAM instrument at the Pierre Auger Observatory, we have developed a set of methods and tools to overcome most of these challenges. We use a wide-field camera and measure stars over a large span in airmass to eliminate the need for absolute calibration of the instrument. The main issues for data processing include camera calibration, source identification in curved field, catalog deficiencies, automated aperture photometry in rich fields with lens distortion and corrections for star color. In the next step, we model the airmass-dependence of the extinction and subtract the Rayleigh component of scattering, using laboratory measurements of spectral sensitivity of the device. In this contribution, we focus on the caveats and solutions found during the development of the methods, as well as several issues yet to be solved. Finally, future outlooks, such as the possibility for precision measurements of wavelength dependence of the extinction are discussed.

  20. Gamma Large Area Silicon Telescope (GLAST)

    International Nuclear Information System (INIS)

    Godfrey, G.L.

    1993-11-01

    The recent discoveries and excitement generated by EGRET have prompted an investigation into modern technologies ultimately leading to the next generation space-based gamma ray telescope. The goal is to design a detector that will increase the data acquisition rate by almost two orders of magnitude beyond EGRET, while at the same time improving on the angular resolution, the energy measurement of reconstructed gamma rays, and the triggering capability of the instrument. The GLAST proposal is based on the assertion that silicon particle detectors are the technology of choice for space application: no consumables, no gas volume, robust (versus fragile), long lived, and self triggering. The GLAST detector is roughly modeled after EGRET in that a tracking module precedes a calorimeter. The GLAST Tracker has planes of thin radiatior interspersed with planes of crossed-strip (x,y) 300-μm-pitch silicon detectors to measure the coordinates of converted electron-positron pairs. The gap between the layers (∼5 cm) provides a lever arm in track fitting resulting in an angular resolution of 0.1 degree at high energy (the low energy angular resolution at 100 MeV would be about 2 degree, limited by multiple scattering). A possible GLAST calorimeter is made of a mosaic of Csl crystals of order 10 r.l. in depth, with silicon photodiodes readout. The increased depth of the GLAST calorimeter over EGRET's extends the energy range to about 300 GeV

  1. Galileo and 400 Years of Telescopic Astronomy

    CERN Document Server

    Grego, Peter

    2010-01-01

    Imagine yourself living 400 years ago, right before the telescope was first used by Galileo to look up into the skies and find unforeseen wonders. You probably believed, with most of the known world, that Earth was at the center of the magnificent parade of planets and stars above you, and the Sun’s purpose in journeying across the sky was to give Earth daylight and warmth. Suddenly, though, your world is turned upside down. The Church, all powerful in its doctrines and teachings of the times, continues to support theories that don’t fit the facts presented by scientists. Scientists in their quest for truth must hide their findings or risk the harsh penalties imposed by the Church. We have gone from a comforting Earth-centered universe to a tiny floating spec in a gigantic cosmos, barely a comma in a lengthy treatise. And we have gone there in a blink of an eye. We may have lost our central position in the universe, but Grego and Mannion show us how much we have gained in understanding the universe around...

  2. VLTI auxiliary telescopes: a full object-oriented approach

    Science.gov (United States)

    Chiozzi, Gianluca; Duhoux, Philippe; Karban, Robert

    2000-06-01

    The Very Large Telescope (VLT) Telescope Control Software (TCS) is a portable system. It is now in use or will be used in a whole family of ESO telescopes VLT Unit Telescopes, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey Telescope and Astronomical Site Monitors in Paranal and La Silla). Although it has been developed making extensive usage of Object Oriented (OO) methodologies, the overall development process chosen at the beginning of the project used traditional methods. In order to warranty a longer lifetime to the system (improving documentation and maintainability) and to prepare for future projects, we have introduced a full OO process. We have taken as a basis the United Software Development Process with the Unified Modeling Language (UML) and we have adapted the process to our specific needs. This paper describes how the process has been applied to the VLTI Auxiliary Telescopes Control Software (ATCS). The ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete process has been applied to the new subsystems, while reused code has been integrated in the UML models. We have used the ATCS on one side to tune the process and train the team members and on the other side to provide a UML and WWW based documentation for the portable VLT TCS.

  3. The Timepix3 Telescope for LHCb Upgrade RD 1 measurements

    CERN Document Server

    Saunders, Daniel Martin

    2016-01-01

    The Timepix3 telescope is a high rate, data driven beam telescope created for LHCb upgrade studies, such as sensor performance for prototypes of the vertex locator (VELO) upgrade. When testing VELO prototypes the readout is identical to the telescope, and additionally, a simple way to integrate triggers from other detectors is also provided, allowing tracks to be synchronised offline with other devices under test. Examples of LHCb upgrade detectors which have been qualified with the Timepix3 telescope are the Upstream Tracker (UT), Scintillating Fibres (SciFi), Ring Imaging CHerenkov (RICH), and Time Of internally Reflected CHerenkov light (TORCH). The telescope was installed in the SPS North hall at CERN. It consists of 8 planes with 300 μ m p-on-n silicon sensors read out by Timepix3 ASICs. Tracks measured with the telescope have excellent temporal ( ∼ 1 ns) and spatial resolution ( 2 μ m). The telescope has been operated with a rate of tracks written to disk up to 5 MHz - limited only by conditions at ...

  4. Carbon Fiber Mirror for a CubeSat Telescope

    Science.gov (United States)

    Kim, Young-Soo; Jang, Jeong Gyun; Kim, Jihun; Nam, Uk Won

    2017-08-01

    Telescope mirrors made by carbon fibers have been increasingly used especially for space applications, and they may replace the traditional glass mirrors. Glass mirrors are easy to fabricate, but needed to be carefully handled as they are brittle. Other materials have also been considered for telescope mirrors, such as metals, plastics, and liquids even. However glass and glass ceramics are still commonly and dominantly used.Carbon fiber has mainly been used for mechanical supports like truss structure and telescope tubes, as it is stiff and light-weight. It can also be a good material for telescope mirrors, as it has additional merits of non-brittle and very low thermal expansion. Therefore, carbon fiber mirror would be suitable for space telescopes which should endure the harsh vibration conditions during launch.A light-weight telescope made by carbon fiber has been designed for a small satellite which would have much less weight than conventional ones. In this poster, mirror materials are reviewed, and a design of carbon fiber telescope is presented and discussed.

  5. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  6. Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs

    Science.gov (United States)

    2008-01-01

    Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the

  7. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  8. Processing of data from innovative parabolic strip telescope.

    Science.gov (United States)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  9. A retrospective of the GREGOR solar telescope in scientific literature

    Science.gov (United States)

    Denker, C.; von der Lühe, O.; Feller, A.; Arlt, K.; Balthasar, H.; Bauer, S.-M.; Bello González, N.; Berkefeld, Th.; Caligari, P.; Collados, M.; Fischer, A.; Granzer, T.; Hahn, T.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kentischer, T.; Klva{ňa, M.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Rendtel, J.; Schmidt, D.; Schmidt, W.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; Waldmann, T.; Wiehr, E.; Wittmann, A. D.; Woche, M.

    2012-11-01

    In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the ``historical'' context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.

  10. Eyes on the Skies 400 Years of Telescopic Discovery

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Adopted as the official book of the International Year of Astronomy (IYA) 2009, this stunningly illustrated history of telescopic discovery spans the range from the first telescopes via the Hubble Space Telescope to next generation platforms, and how they have changed and continue to change our view of the universe, our place in it and where it all came from. Eyes on the Skies features numerous full-page photographs and is printed in high-quality color throughout. Also includes the official IYA DVD with 59 minutes of narrated text, expert comments and interviews, animations, computer simulatio

  11. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  12. Femtosecond laser-assisted cataract surgery and implantable miniature telescope

    Directory of Open Access Journals (Sweden)

    Randal Pham

    2017-09-01

    Conclusions and importance: To our knowledge and confirmed by the manufacturer of the implantable miniature telescope this is the first case ever reported of a patient who has undergone femtosecond laser cataract surgery with corneal astigmatism correction and implantation of the implantable miniature telescope. This is also the first case report of the preoperative use of microperimetry and visual electrophysiology to evaluate a patient's postoperative potential visual acuity. The success of the procedure illustrated the importance of meticulous preoperative planning, the combined use of state-of-the-art technologies and the seamless teamwork in order to achieve the best clinical outcome for patients who undergo implantation of the implantable miniature telescope.

  13. Optical telescope BIRT in ORIGIN for gamma ray burst observing

    DEFF Research Database (Denmark)

    Content, Robert; Content, Robert; Sharples, Ray

    2012-01-01

    The ORIGIN concept is a space mission with a gamma ray, an X-ray and an optical telescope to observe the gamma ray bursts at large Z to determine the composition and density of the intergalactic matter in the line of sight. It was an answer to the ESA M3 call for proposal. The optical telescope i...... length. All 3 instruments use the same 2k x 2k detector simultaneously so that telescope pointing and tip-tilt control of a fold mirror permit to place the gamma ray burst on the desired instrument without any other mechanism. © 2012 SPIE....

  14. Modal vibration testing of the DVA-1 radio telescope

    Science.gov (United States)

    Byrnes, Peter W. G.; Lacy, Gordon

    2016-07-01

    The Dish Verification Antenna 1 (DVA-1) is a 15m aperture offset Gregorian radio telescope featuring a rim-supported single piece molded composite primary reflector on an altitude-azimuth pedestal mount. Vibration measurements of the DVA-1 telescope were conducted over three days in October 2014 by NSI Herzberg engineers. The purpose of these tests was to measure the first several natural frequencies of the DVA-1 telescope. This paper describes the experimental approach, in particular the step-release method, and summarizes some interesting results, including unexpectedly high damping of the first mode over a narrow range of zenith angles.

  15. Preliminary Multi-Variable Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.

  16. Payload maintenance cost model for the space telescope

    Science.gov (United States)

    White, W. L.

    1980-01-01

    An optimum maintenance cost model for the space telescope for a fifteen year mission cycle was developed. Various documents and subsequent updates of failure rates and configurations were made. The reliability of the space telescope for one year, two and one half years, and five years were determined using the failure rates and configurations. The failure rates and configurations were also used in the maintenance simulation computer model which simulate the failure patterns for the fifteen year mission life of the space telescope. Cost algorithms associated with the maintenance options as indicated by the failure patterns were developed and integrated into the model.

  17. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3

  18. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  19. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  20. The Etelman Observatory and the Virgin Islands Robotic Telescope: 2017 Milestone Achievements and Determined Resilience in the USVI

    Science.gov (United States)

    Morris, David C.; Gendre, Bruce; Orange, N. Brice; Cucchiara, Antonino; Giblin, Timothy W.; Klotz, Alain; Thierry, Pierre

    2018-01-01

    The Virgin Islands Robotic Telescope (VIRT) is an 0.5m robotic telescope located at the easternmost and southernmost optical observatory in the United States at a latitude of 18.5N and longitude of 65W. The observatory is located on the island of St Thomas in the United States Virgin Islands (USVI). Astronomers from the College of Charleston, the US Air Force Academy and the University of the Virgin Islands (UVI) collaborate to maintain and operate the facility. Science goals of the facility include optical follow-up of high-energy transients, extra-solar planet observations, and near-Earth asteroid searches. The facility also supports a wide-reaching education and outreach program dedicated to raising the level of STEM engagement and enrichment in the USVI and is a primary research facility for students in UVI's new Physics Degree with a Concentration in Astronomy. The VIRT has begun reacting autonomously to the gamma-ray coordinates network (GCN) alerts in 2017 and, despite the challenges presented to the Caribbean region by hurricanes Irma and Maria, was a participant in the follow-up campaign of GW170817, the first source simultaneously detected in gravitational waves and electromagnetic waves. We detail the robotization and automation of the VIRT, provide an update on its characteristics and capabilities and discuss recent science results from the observatory as well as ongoing progress in the recovery from damage caused by hurricanes Irma and Maria.

  1. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  2. Origins Space Telescope: 3D infrared surveys of star formation and black hole growth in galaxies over cosmic time

    Science.gov (United States)

    Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT

    2018-01-01

    In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.

  3. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  4. Database architectures for Space Telescope Science Institute

    Science.gov (United States)

    Lubow, Stephen

    1993-08-01

    At STScI nearly all large applications require database support. A general purpose architecture has been developed and is in use that relies upon an extended client-server paradigm. Processing is in general distributed across three processes, each of which generally resides on its own processor. Database queries are evaluated on one such process, called the DBMS server. The DBMS server software is provided by a database vendor. The application issues database queries and is called the application client. This client uses a set of generic DBMS application programming calls through our STDB/NET programming interface. Intermediate between the application client and the DBMS server is the STDB/NET server. This server accepts generic query requests from the application and converts them into the specific requirements of the DBMS server. In addition, it accepts query results from the DBMS server and passes them back to the application. Typically the STDB/NET server is local to the DBMS server, while the application client may be remote. The STDB/NET server provides additional capabilities such as database deadlock restart and performance monitoring. This architecture is currently in use for some major STScI applications, including the ground support system. We are currently investigating means of providing ad hoc query support to users through the above architecture. Such support is critical for providing flexible user interface capabilities. The Universal Relation advocated by Ullman, Kernighan, and others appears to be promising. In this approach, the user sees the entire database as a single table, thereby freeing the user from needing to understand the detailed schema. A software layer provides the translation between the user and detailed schema views of the database. However, many subtle issues arise in making this transformation. We are currently exploring this scheme for use in the Hubble Space Telescope user interface to the data archive system (DADS).

  5. Multilayer active shell mirrors for space telescopes

    Science.gov (United States)

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  6. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  7. Grism and immersion grating for space telescope

    Science.gov (United States)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  8. NASA Infrared Telescope Facility Comet Halley monitoring program 2: Post-perihelion results

    International Nuclear Information System (INIS)

    Tokunaga, A.T.; Golisch, W.F.; Griep, D.M.; Kaminski, C.D.; Hanner, M.S.

    1988-01-01

    The post perihelion results of a 1 to 20 micrometer infrared monitoring program of Comet Halley are presented. These results complement previous observations of the pre-perihelion passages of Halley. The observations cover the time period of Mar. 1986 to the present time. During the time the comet was observable, two or more observations were obtained per month. The most interesting results were: (1) a detectable change in the J-H and H-K colors of Halley, and (2) a search for a nucleus rotation at J during 20 Feb. to 10 Mar. was unsuccessful. The perihelion J-H and K-K colors were constant at 0.48 + or - 0.01 and 0.17, respectively. A preliminary reduction of the data is given. It is concluded that the colors were at first similar to pre-perihelion and then changed from July onward to be bluer and more similar to the solar colors. This suggests that a change may have occurred in the composition of the dust coma of Halley in July 1986

  9. Studies for a silicon telescope to extend the magnet facility at the DESY test beam

    Energy Technology Data Exchange (ETDEWEB)

    Tsionou, Dimitra [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2016-07-01

    The International Large Detector is a detector concept for the International Linear Collider (ILC) which uses a Time Projection Chamber (TPC) as its main tracking detector. Within the framework of the LCTPC collaboration, a large prototype (LP) TPC has been built as a demonstrator. The LP has been equipped with Micro-Pattern Gas Detector modules and studied with an electron beam (1-6 GeV) in a 1 Tesla magnetic field at DESY. To extend the capabilities of the test beam setup, an external silicon tracker to be installed inside the magnet will be discussed. The silicon detector will provide high precision space points in front and behind the TPC inside the magnet. It will provide reference tracks that will allow to determine the momentum of the tracks passing the TPC, and which will help in correcting for field distortion effects in the LPTPC volume. In order to meet these requirements, simulation studies have been performed to determine the layout of the system and have placed stringent requirements on the sensor spatial resolution of better than 10 μ m. These studies will be presented along with the hardware options under evaluation.

  10. Design and development of telescope control system and software for the 50/80 cm Schmidt telescope

    Science.gov (United States)

    Kumar, T. S.; Banavar, R. N.

    2012-09-01

    In this paper, we describe the details of telescope controller design for the 50/80 cm Schmidt telescope at the Aryabhatta Research Institute of observational sciencES. The GUI based software for commanding the telescope is developed in Visual C++. The hardware architecture features a distributed network of microcontrollers over CAN. The basic functionality can also be implemented using the dedicated RS232 port per board. The controller is able to perform with negligible rms velocity errors. At fine speeds limit cycles are exhibited due to nonlinear friction. At speeds over 3.90 × 10-02 radians/sec, the PI controller performs with peak errors less than 1%.

  11. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  12. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    Science.gov (United States)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International

  13. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  14. Light Weight, Scalable Manufacturing of Telescope Optics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future X-ray astronomy missions will require X-ray optics that have large effective areas, are lightweight, and cost effective. Recent X-ray telescopes, such...

  15. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  16. A semiconductor counter telescope for neutron reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Lalovic, B I; Ajdacic, V S [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    A counter telescope consisting of two or three semiconductor counters for {delta}E/{delta}x vs. E analysis was made for studying nuclear reactions induced by 14.4 MeV neutrons. Various factors important for the telescope performance are discussed in details and some solutions for getting an optimum resolution and a low background are given. Protons, deuterons and alpha particles resulting from scattering and reactions of 14.4 MeV neutrons on deuterium, tritium, praseodymium and niobium were detected, and pulses from the counters recorded on a two-dimensional analyzer. These experiments have shown that the telescope compares favorably with other types of telescopes with regards to the upper limit of neutron flux which can be used, (DELTADELTA)x and E resolution, versatility and compactness (author)

  17. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    Science.gov (United States)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  18. Hubble Space Telescope: Should NASA Proceed with a Servicing Mission?

    National Research Council Canada - National Science Library

    Morgan, Daniel

    2006-01-01

    The National Aeronautics and Space Administration (NASA) estimates that without a servicing mission to replace key components, the Hubble Space Telescope will cease scientific operations in 2008 instead of 2010...

  19. FRAM telescope - monitoring of atmospheric extinction and variable star photometry

    Science.gov (United States)

    Jurysek, J.; Honkova, K.; Masek, M.

    2015-02-01

    The FRAM (F/(Ph)otometric Robotic Atmospheric Monitor) telescope is a part of the Pierre Auger Observatory (PAO) located near town Malargüe in Argentina. The main task of the FRAM telescope is the continuous night - time monitoring of the atmospheric extinction and its wavelength dependence. The current methodology of the measurement of a atmospheric extinction and for instrumentation properties also allows simultaneous observation of other interesting astronomical targets. The current observations of the FRAM telescope are focused on the photometry of eclipsing binaries, positional refinement of minor bodies of the Solar system and observations of optical counterparts of gamma ray bursts. In this contribution, we briefly describe the main purpose of the FRAM telescope for the PAO and we also present its current astrono mical observing program.

  20. Radio telescope reflectors historical development of design and construction

    CERN Document Server

    Baars, Jacob W M

    2018-01-01

    This book demonstrates how progress in radio astronomy is intimately linked to the development of reflector antennas of increasing size and precision. The authors describe the design and construction of major radio telescopes as those in Dwingeloo, Jodrell Bank, Parkes, Effelsberg and Green Bank since 1950 up to the present as well as millimeter wavelength telescopes as the 30m MRT of IRAM in Spain, the 50m LMT in Mexico and the ALMA submillimeter instrument. The advances in methods of structural design and coping with environmental influences (wind, temperature, gravity) as well as application of new materials are explained in a non-mathematical, descriptive and graphical way along with the story of the telescopes. Emphasis is placed on the interplay between astronomical and electromagnetic requirements and structural, mechanical and control solutions. A chapter on management aspects of large telescope projects closes the book. The authors address a readership with interest in the progress of engineering sol...

  1. A buyer's and user's guide to astronomical telescopes & binoculars

    CERN Document Server

    Mullaney, James

    2007-01-01

    This exciting, upbeat new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand and model of such instruments on today's market.

  2. Solar Hα and white light telescope at Hvar Observatory

    Czech Academy of Sciences Publication Activity Database

    Čalogovic, J.; Dumbovic, M.; Novak, S.; Vršnak, B.; Brajša, R.; Pötzi, W.; Hirtenfellner-Polanec, W.; Veronig, A.; Hanslmeier, A.; Klvaňa, Miroslav; Ambrož, Pavel

    2012-01-01

    Roč. 36, č. 2012 (2012), s. 83-88 ISSN 1845-8319 Institutional support: RVO:67985815 Keywords : solar observations * telescope * photosphere Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. Reception and dissemination of American amateur telescope making in Sweden

    Science.gov (United States)

    Karnfelt, Johan

    2017-04-01

    This paper discusses the appropriation of the American Amateur Telescope Making (ATM) movement in Sweden in the 1940s and 1950s. A key player was the Swedish Astronomical Society, which in 1943, and inspired by the American example, launched a campaign to raise interest in ATM and disseminate the necessary knowledge amongst potential amateur astronomers. The campaign was successful and in just a few years it quadrupled the number of amateurs with access to telescopes. Swedish amateurs kept on building telescopes through the 1950s, but the activities then stalled with the introduction of cheap mass-market telescopes. The appropriation of ATM in Sweden is an important example of how technical innovations have shaped the course of amateur astronomy.

  4. Where size does matter: foldable telescope design for microsat application

    Science.gov (United States)

    Segert, Tom; Danziger, Björn; Lieder, Matthias

    2017-11-01

    The DOBSON SPACE TELESCOPE Project (DST) at the Technical University of Berlin (TUB) believes that micro satellites can be a challenging competitor in the high resolution remote sensing market. Using a micro satellite as basis for a remote sensing platform will dramatically reduce the cost for the end users thereby initiating the predicted remote sensing boom. The Challenging task is that an optic required for a GSD smaller than 1m is much bigger than the given room for secondary payload. In order to break the volume limits of hitchhiker payloads the DST team develops an optical telescope with deployable structures. The core piece of DST is a 20 inch modified Cassegrain optic. Stored during ascend the instrument fits in a box measuring 60 x 60 x 30cm (including telescope and optical plane assembly). After the satellite was released into free space the telescope unfolds and collimates automatically.

  5. Secondary mirror system for the European Solar Telescope (EST)

    Science.gov (United States)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  6. Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA)

    National Research Council Canada - National Science Library

    Johnson, W. N; Dermer, C; Kroeger, R. A; Kurfess, J. D; Gehrels, N; Grindlay, J; Leising, M. D; Prince, T; Purcell, W; Ryan, J; Tumer, T

    1995-01-01

    We present a space mission concept for a low energy gamma-ray telescope, ATHENA, which is under investigation as the next major advance in gamma-ray spectroscopy following the current COMPTON Gamma...

  7. STEP flight experiments Large Deployable Reflector (LDR) telescope

    Science.gov (United States)

    Runge, F. C.

    1984-01-01

    Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.

  8. GIRL: German Infrared Laboratory. Telescope study, phase B

    Science.gov (United States)

    Schlegelmilch, R.; Zeiss, C.

    1981-01-01

    The construction and mounting of mirrors for an infrared telescope are described. Tests conducted to determine the thermal and stress characteristics of various types of mounting for main and collection mirrors are also discussed.

  9. The Lovell Telescope and its role in pulsar astronomy

    Science.gov (United States)

    Lyne, Andrew; Morison, Ian

    2017-12-01

    This year marks the 60th anniversary of the commissioning of the 250-ft telescope at Jodrell Bank Observatory, and the 50th anniversary of the discovery of pulsars at Cambridge. Both events resulted in enduring astronomical researches that have become intimately entwined, and here we celebrate them with a brief historical account of their relationship. We describe how the completion of the telescope in October 1957 coincided with the launch of Sputnik 1 at the start of the space race, a timely circumstance that was the financial saviour of Bernard Lovell's ambitious project. The telescope established a vital role in space tracking and, by the time that pulsars were discovered a decade later, was supported by an infrastructure that allowed their prompt, successful observation. Technical innovations to both the telescope and its receivers since then have continued to make it a superb tool for world-leading pulsar investigations and the study of the radio Universe.

  10. Light Weight, Scalable Manufacturing of Telescope Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future X-ray astronomy missions will require X-ray optics that have large effective areas, are lightweight, and cost effective. Recent X-ray telescopes, such...

  11. The 1.5 meter solar telescope GREGOR

    Czech Academy of Sciences Publication Activity Database

    Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S.K.; Balthasar, H.; Bello González, N.; Berkefeld, T.; Collados Vera, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K.G.; Schmidt, D.; Sigwarth, M.; Sobotka, Michal; Soltau, D.; Staude, J.; Strassmeier, K.G.; Waldmann, T.A.

    2012-01-01

    Roč. 333, č. 9 (2012), s. 796-809 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : high angular resolution * magnetic fields * telescopes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.399, year: 2012

  12. Precollimator Manufacturing for X-ray Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-based x-ray telescopes currently involve the use of a precollimator (PC) to shield the optics from stray light. Each PC consists of cylindrical aluminum ribs...

  13. Low-cost programmable pulse generator for particle telescope calibration

    CERN Document Server

    Sanchez, S; Seisdedos, M; Meziat, D; Carbajo, M; Medina, J; Bronchalo, E; Peral, L D; Rodríguez-Pacheco, J

    1999-01-01

    In this paper we present a new calibration system for particle telescopes including multipulse generator and digital controller. The calibration system generates synchronized pulses of variable height for every detector channel on the telescope. The control system is based on a commercial microcontroller linked to a personal computer through an RS-232 bidirectional line. The aim of the device is to perform laboratory calibration of multi-detector telescopes prior to calibration at accelerator. This task includes evaluation of linearity and resolution of each detector channel, as well as coincidence logic. The heights of the pulses sent to the detectors are obtained by Monte Carlo simulation of telescope response to a particle flux of any desired geometry and composition.

  14. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  15. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  16. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  17. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  18. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  19. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  20. Resurfacing the Jodrell Bank Mk II radio telescope

    Science.gov (United States)

    Spencer, R. E.; Haggis, J. S.; Morrison, I.; Davis, R. J.; Melling, R. J.

    The improvement of the short-wavelength performance of the Jodrell Bank Mk II radio telescope is described. A final rms profile error of 0.6 mm was achieved due to the invention of an inexpensive technique of panel construction and measurement combined with the use of radio-astronomical holographic techniques to measure the telescope under actual operating conditions. Some further improvements to extend the short wavelength performance are suggested.

  1. Simulation of Telescope Detectivity for Geo Survey and Tracking

    Science.gov (United States)

    Richard, P.

    2014-09-01

    As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.

  2. Mobile Tracking Systems Using Meter Class Reflective Telescopes

    Science.gov (United States)

    Sturzenbecher, K.; Ehrhorn, B.

    This paper is a discussion on the use of large reflective telescopes on mobile tracking systems with modern instrument control systems. Large optics can be defined as reflective telescopes with an aperture of at least 20 inches in diameter. New carbon composite construction techniques allow for larger, stronger, and lighter telescopes ranging from 240 pounds for a 20 inch, to 800 pounds for a 32 inch, making them ideal for mobile tracking systems. These telescopes have better light gathering capability and produce larger images with greater detail at a longer range than conventional refractive lenses. In a mobile configuration these systems provide the ability to move the observation platform to the optimal location anywhere in the world. Mounting and systems integration - We will discuss how large telescopes can be physically fit to the mobile tracking system and the integration with the tracking systems' digital control system. We will highlight the remote control capabilities. We will discuss special calibration techniques available in a modern instrument control system such as star calibration, calibration of sensors. Tracking Performance - We will discuss the impact of using large telescopes on the performance of the mobile tracking system. We will highlight the capabilities for auto-tracking and sidereal rate tracking in a mobile mount. Large optics performance - We will discuss the advantages of two-mirror Ritchey-Chrétien reflective optics which offer in-focus imaging across the spectrum, from visible to Long Wave Infrared. These zero expansion optics won't lose figure or focus during temperature changes. And the carbon composite telescope tube is thermally inert. The primary mirror is a modern lightweight "dish" mirror for low thermal mass and is center supported/self balancing. Applications - We will discuss Visible - IR Imaging requirements, Optical Rangefinders, and capabilities for special filters to increase resolution in difficult conditions such as

  3. The LAM space active optics facility

    Science.gov (United States)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  4. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  5. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  6. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  7. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  8. A New Observing Tool for the James Clerk Maxwell Telescope

    Science.gov (United States)

    Folger, Martin; Bridger, Alan; Dent, Bill; Kelly, Dennis; Adamson, Andy; Economou, Frossie; Hirst, Paul; Jenness, Tim

    A new Observing Tool (OT) has been developed at the UK Astronomy Technology Centre, Edinburgh, UK and the Joint Astronomy Centre, Hilo, Hawaii, USA. It is based on the Gemini Observing Tool and provides the first graphical observation preparation tool for the James Clerk Maxwell Telescope (JCMT) as well as being the first use of the OT for a non-optical/IR telescope. The OT allows the observer to assemble high level Science Programs using graphical representations of observation components such as instrument, target, and filter. This is later translated into low level control sequences for telescope and instruments. The new OT is designed to work on multiple telescopes: currently the UK Infrared Telescope (UKIRT) and JCMT. Object-oriented design makes the inclusion of telescope and instrument specific packages easy. The OT is written in Java using GUI packages such as Swing and JSky. A new component for the JCMT OT is the graphical Frequency Editor for Heterodyne instruments. It can be used to specify parameters such as frequencies, bandwidths, and sidebands of multiple subsystems, while graphically displaying the front-end frequency, emission lines and atmospheric transmission. In addition, Flexible Scheduling support has been added to the OT. The observer can define scheduling constraints by arranging observations graphically. Science Programs can be saved as XML or sent directly from the OT to a database (via SOAP).

  9. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    Science.gov (United States)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  10. Memory and time: Backward and forward telescoping in Alzheimer's disease.

    Science.gov (United States)

    El Haj, Mohamad; Janssen, Steve M J; Antoine, Pascal

    2017-10-01

    Backward and forward telescoping are opposite timing biases. The former refers to misattributing events to earlier dates, whereas the latter refers to misattributing events to later dates. The present study investigated both biases in participants with Alzheimer's Disease (AD) and healthy older adults, matched on age, sex, and education level. Participants were asked to recall the years when five remote and five recent public events had occurred. They were also assessed with a cognitive and clinical battery that included a context memory task on which they had to associate letters and locations. Results showed backward telescoping for recent events and forward telescoping for remote events in AD participants and older adults. Furthermore, poorer context recall was observed in AD participants and older adults displaying backward telescoping than in those displaying forward telescoping. These findings suggest an association between the amount of contextual information recalled and the direction of the timing bias. Backward telescoping can be associated with deficiencies in retrieving context characteristics of events, which have been associated with retrograde amnesia and pathological changes to the hippocampus in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A decade of cost-reduction in very large telescopes - The SST as prototype of special-purpose telescopes

    Science.gov (United States)

    Smith, Harlan J.

    1989-10-01

    Many design and technical innovations over the past ten or fifteen years have reduced the costs of very large telescopes by nearly an order of magnitude over those of classical designs. Still a further order of magnitude reduction is possible if the telescope is specialized for on-axis spectroscopy, giving up especially the luxuries of wide field, multiple focal positions, and access to all the sky at will. The SST (Spectroscopic Survey Telescope) will use eighty-five 1-m circular mirrors mounted in a steel frame composed of hundreds of interlocking tetrahedrons, keeping a fixed elevation angle of 60 deg with rotation only in azimuth. Using an optical fiber it will feed as much light to spectrographs as can be done by a conventional 8-m telescope, yet has a target basic completion cost of only $6 million.

  12. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  13. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    Today, forty 16-18 year old students and their teachers are concluding a one-week, educational `working visit' to the ESO Headquarters in Garching (See ESO Press Release 14/95 of 8 November 1995). They are the winners of the Europe-wide contest `Europe Towards the Stars', organised by ESO with the support of the European Union, under the auspices of the Third European Week for Scientific and Technological Culture. From November 14-20, they have worked with professional ESO astronomers in order to get insight into the methods and principles of modern astronomy and astrophysics, as carried out at one of the world's foremost international centres. This included very successful remote observations with the ESO 3.5-m New Technology Telescope (NTT) and the 1.4-m Coude Auxiliary Telescope (CAT) via a satellite link between the ESO Headquarters and the La Silla observatory in Chile, 12,000 kilometres away. After a general introduction to modern astronomy on the first day of the visit, the participants divided into six teams, according to their interests. Some chose to observe distant galaxies, others prefered to have a closer look on binary stars, and one team decided to investigate a star which is thought to be surrounded by a proto-planetary system. Each team was supported by an experienced ESO astronomer. Then followed the observations at the remote consoles during three nights, the first at the NTT and the following at the CAT. Each team had access to the telescope during half a night. Although the work schedule - exactly as in `real' science - was quite hard, especially during the following data reduction and interpretative phase, all teams managed extremely well and in high spirits. The young astronomers' observations were favoured by excellent atmospheric conditions. At the NTT, the seeing was better than 0.5 arcsecond during several hours, an exceptional value that allows very good images to be obtained. All observations represent solid and interesting science, and

  14. Telescopic retainers: an old or new solution? A second chance to have normal dental function.

    Science.gov (United States)

    Breitman, Joseph B; Nakamura, Scott; Freedman, Arnold L; Yalisove, Irving L

    2012-01-01

    This article is an overview of the biomechanics and advantages of telescopic retainers. Telescopic retainers offer more possibilities than any other treatment modality available in modern dentistry. Telescopic implant fixtures make the already versatile technique even more flexible. Telescopes should not be forgotten as a treatment modality, but should be embraced as a great option. © 2011 by the American College of Prosthodontists.

  15. Status of the Daniel K. Inouye Solar Telescope: unraveling the mysteries the Sun.

    Science.gov (United States)

    Rimmele, Thomas R.; Pillet, Valentin; Goode, Philip R.; Knoelker, Michael; Kuhn, Jeffrey Richard; Rosner, Robert; Casini, Roberto; Lin, Haosheng; von der Luehe, Oskar; Woeger, Friedrich; Tritschler, Alexandra; Fehlmann, Andre; Jaeggli, Sarah A.; Schmidt, Wolfgang; De Wijn, Alfred; Rast, Mark; Harrington, David M.; Sueoka, Stacey R.; Beck, Christian; Schad, Thomas A.; Warner, Mark; McMullin, Joseph P.; Berukoff, Steven J.; Mathioudakis, Mihalis; DKIST Team

    2018-06-01

    The 4m Daniel K. Inouye Solar Telescope (DKIST) currently under construction on Haleakala, Maui will be the world’s largest solar telescope. Designed to meet the needs of critical high resolution and high sensitivity spectral and polarimetric observations of the sun, this facility will perform key observations of our nearest star that matters most to humankind. DKIST’s superb resolution and sensitivity will enable astronomers to address many of the fundamental problems in solar and stellar astrophysics, including the origin of stellar magnetism, the mechanisms of coronal heating and drivers of the solar wind, flares, coronal mass ejections and variability in solar and stellar output. DKIST will also address basic research aspects of Space Weather and help improve predictive capabilities. In combination with synoptic observations and theoretical modeling DKIST will unravel the many remaining mysteries of the Sun.The construction of DKIST is progressing on schedule with 80% of the facility complete. Operations are scheduled to begin early 2020. DKIST will replace the NSO facilities on Kitt Peak and Sac Peak with a national facility with worldwide unique capabilities. The design allows DKIST to operate as a coronagraph. Taking advantage of its large aperture and infrared polarimeters DKIST will be capable to routinely measure the currently illusive coronal magnetic fields. The state-of-the-art adaptive optics system provides diffraction limited imaging and the ability to resolve features approximately 20 km on the Sun. Achieving this resolution is critical for the ability to observe magnetic structures at their intrinsic, fundamental scales. Five instruments will be available at the start of operations, four of which will provide highly sensitive measurements of solar magnetic fields throughout the solar atmosphere – from the photosphere to the corona. The data from these instruments will be distributed to the world wide community via the NSO/DKIST data center

  16. Optimal networks of future gravitational-wave telescopes

    Science.gov (United States)

    Raffai, Péter; Gondán, László; Heng, Ik Siong; Kelecsényi, Nándor; Logue, Josh; Márka, Zsuzsa; Márka, Szabolcs

    2013-08-01

    We aim to find the optimal site locations for a hypothetical network of 1-3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ˜58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms).

  17. Optimal networks of future gravitational-wave telescopes

    International Nuclear Information System (INIS)

    Raffai, Péter; Márka, Zsuzsa; Márka, Szabolcs; Gondán, László; Kelecsényi, Nándor; Heng, Ik Siong; Logue, Josh

    2013-01-01

    We aim to find the optimal site locations for a hypothetical network of 1–3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit (FoMs) and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three FoMs with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four FoMs separately in example cases where the location of the first telescope has been predetermined. We found that based on the combined metric, placing the first telescope to Australia provides the most options for optimal site selection when extending the network with a second instrument. We suggest geographical regions where a potential second and third telescope could be placed to get optimal network performance in terms of our FoMs. Additionally, we use a similar approach to find the optimal location and orientation for the proposed LIGO-India detector within a five-detector network with Advanced LIGO (Hanford), Advanced LIGO (Livingston), Advanced Virgo, and KAGRA. We found that the FoMs do not change greatly in sites within India, though the network can suffer a significant loss in reconstructing signal polarizations if the orientation angle of an L-shaped LIGO-India is not set to the optimal value of ∼58.2°( + k × 90°) (measured counterclockwise from East to the bisector of the arms). (paper)

  18. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    Science.gov (United States)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  19. NST: Thermal Modeling for a Large Aperture Solar Telescope

    Science.gov (United States)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  20. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.