Sample records for tectonic block rotation

  1. Neogene tectonic block rotations and margin curvature at the Pampean flat slab segment (28º-33º SL, Argentina

    Directory of Open Access Journals (Sweden)

    M.S Japas


    Full Text Available Available paleomagnetic data from the Pampean flat slab segment reveal a heterogeneous rotation pattern that is interpreted herein as the result of the overprinting of late NNW-WNW left-lateral brittle-ductile megashear zones that would be also responsible for the continental margin bending.La base de datos paleomagnéticos disponible para el segmento de losa plana Pampeano revela un patrón de rotaciones heterogéneo como resultado de la sobreimposición de zonas de cizalla frágil-dúctiles regionales, de desplazamiento lateral izquierdo y rumbo NNO a ONO, las que habrían producido además la curvatura del margen continental.

  2. Contemporary block tectonics: California and Nevada. (United States)

    Hill, D.P.


    Well-determined fault plane solution and the gross pattern of late-Cenozoic faulting in California and Nevada show a systematic relation between the orientation of fault planes and slip directions. In general, normal faults have N strikes, reverse faults have E strikes, and dextral and sinstral strike slip faults have NW and NE strikes, respectively. Kinematically, this relation is consistent with the response of clusters of fault-bounded crustal blocks to a regional stress field generated by the relative motion between the Pacific and N American plates. In this stress field, the greatest and least principal (compressive) stresses are restricted to N and E striking vertical planes, respectively. Simple arrangements of block clusters mimic the gross kinematic pattern of Quaternary faulting in California and Nevada. Some implications for contemporary tectonics emphasized by this model involve the W displacement of the Sierra Nevada block with respect to the stable interior of the N American plates, oblique thrusting of the Salinian block over the Pacific plate, and a progressive increase in the offset of the San Andreas fault represented by the 'big bend' through the Transverse Ranges. -from Author

  3. Can Tectonic Loading be Observed as Interseismic Stress Rotation? (United States)

    Hardebeck, J.


    The shear stress on major faults evolves through the seismic cycle, due to tectonic stress loading, coseismic stress release, and earthquake stress transfer. If the seismic cycle stresses are small compared to the background differential stress, the stress orientations should not change during the seismic cycle. However, observed coseismic stress rotations imply that the stress drop is on the order of the differential stress. The coseismic stress rotations suggest that the stress rotates back during the rest of the seismic cycle as the fault is reloaded, raising the possibility that monitoring interseismic stress changes could inform earthquake hazard assessment. I test whether observable interseismic stress rotations in southern California are consistent with tectonic loading. I invert the focal mechanism catalog of Yang et al (BSSA, 2012) for stress orientations in 4 time periods, and look for significant changes in the direction of the maximum horizontal stress axis, SHmax. For a simple loading model, increased shear stress on strike-slip faults should correspond to SHmax rotating towards a 45° angle to the fault strike. For the San Andreas, San Jacinto, Elsinore, and Garlock faults, however, >40% of sample points along the fault experience SHmax rotating away from 45°. To better account for the complexity of loading of the fault system, I compute the SHmax rotation directions predicted by the SCEC Community Stress Model (CSM). I add 33 years of loading from a stressing rate model to a stress model, for different pairs of CSM models, and compute the direction of SHmax rotation. Most pairs of models exhibit similar patterns of SHmax rotation, featuring counter-clockwise rotations centered along the major faults. The observed rotations, in both directions, do not qualitatively match these predicted patterns. I conclude that the interseismic tectonic stress loading in southern California is not detectable, at least over the 33-year time period of the mechanism

  4. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan (United States)

    Kochemasov, G.


    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very

  5. Palaeomagnetic Constrains on the Timing and the Geographical Distribution of Tectonic Rotations in the Betic Chain, Southern Spain. A Review (United States)

    Osete, M. L.; Villalain, J. J.; Pavon-Carrasco, F. J.; Palencia, A.


    The Betic Cordillera is the northern branch of the Betic-Rifean orogen, the westernmost segment of the Mediterranean Alpine orogenic system. Several palaeomagnetic studies have enhanced the important role that block rotations about vertical axes have played in the tectonic evolution of the region. In this work we present a review of published palaeomagnetic data. According with the rotational deformation, the Betics are divided into the central-western area and the eastern Betics. A sequence of rotations for the two regions is also proposed. In central and western Subbetics almost constant clockwise rotations of about 60 are documented in Jurassic limestones. The existence of a pervasive remagnetization of Jurassic limestones, which was coeval with the folding of the studied units and dated as post-Palaeogene, constrains the timing of tectonic rotations in western Subbetics. New palaeomagnetic data from Neogene sedimentary sequences in central Betics indicate that palaeomagnetic clockwise rotations continued after late Miocene. A similar pattern of 40 CW rotations occurred after 20-17 Ma was obtained from the study of the Ronda-Malaga peridotites (western Internal Betics). In eastern Subbetics a more heterogeneous pattern, including very high CW rotations has been observed. But recent rotational deformation in the Internal part of eastern Betics is CCW and related to the left-lateral strike-slip fault systems. Proposed kinematics models for the Betics are discussed under the light of the present available palaeomagnetic information.

  6. Frustration and disorder in granular media and tectonic blocks: implications for earthquake complexity

    Directory of Open Access Journals (Sweden)

    A. Sornette


    Full Text Available We present exploratory analogies and speculations on the mechanisms underlying the organization of faulting and earthquake in the earth crust. The mechanical properties of the brittle lithosphere at scales of the order or larger than a few kilometers are proposed to be analogous to those of non-cohesive granular media, since both systems present stress amplitudes controlled by gravity, and shear band (faulting localization is determined by a type of friction Mohr-Coulomb rupture criterion. here, we explore the implications of this correspondence with respect to the origin of tectonic and earthquake complexity, on the basis of the existing experimental data on granular media available in the mechanical literature. An important observation is that motions and deformations of non-cohesive granular media are characterized by important fluctuations both in time (sudden breaks, avalanches, which are analogous to earthquakes and space (strain localizations, yield surfaces forming sometimes complex patterns. This is in apparent contradiction with the conventional wisdom in mechanics, based on the standard tendency to homogenize, which has led to dismiss fluctuations as experimental noise. On the basis of a second analogy with spinglasses and neural networks, based on the existence of block and grain packing disorder and block rotation "frustration", we suggest that these fluctuations observed both at large scales and at the block scale constitute an intrinsic signature of the mechanics of granular media. The space-time complexity observed in faulting and earthquake phenomenology is thus proposed to result form the special properties of the mechanics of granular media, dominated by the "frustration" of the kinematic deformations of its constitutive blocks.

  7. Gondwana and Cathaysian blocks, palaeotethys sutures and cenozoic tectonics in South-east Asia (United States)

    Hutchison, Charles S.


    The Triassic Indosinian Orogeny followed extinction of the Palaeotethys Ocean resulting in suturing of Gondwana affinity and Cathaysian blocks. The Gondwana affinity Sinoburmalaya block of Peninsular Malaysia, characterized by Carboniferous—Permian mudstones containing glacial dropstones and sparse fauna and flora, is traced extensively into Sumatra. This mudstone facies is flanked on the east by a sandstone-dominated facies and by carbonate localized in the Kinta Valley. The muddy and sandy facies both begin with a basal Carboniferous condensed red bed sequence, which unconformably overlies the older formations of Sinoburmalaya. Both facies also demonstrate a Late Permian conformable transition into overlying limestone. The Cathaysian block of East Malaya is characterized by Late Permian Gigantopteris flora and fusulinid limestones associated with andesitic volcanism. It is similar but not identical to the West Sumatra Carboniferous—Permian block, characterized by Early Permian volcanism, fusulinid limestones and early Cathaysian Jambi flora. The South to SSE trending central Peninsular Malaysian Triassic orogenic belt swings south-east from Singapore to Bangka, then east to Billiton. The Palaeotethys suture (Bentong—Raub Line) forms the western margin of this belt and is therefore unlikely to continue south along the Palaeogene Bengkalis Graben, which transects the north-west—south-east orogenic fabric of Sumatra. The oroclinal bending of the Indosinian Orogen, from a north-west—south-east grain in Sumatra to a northerly grain through Peninsular Malaysia, is attributed to the Palaeocene collision of India and its subsequent indentation into Eurasia. The bending was accomplished by clockwise rotation and right-lateral shear parallel to the orogenic grain. The Mesozoic Palaeotethyan sutures were transformed into Palaeocene and younger shear zones. The outer zones of the orocline experienced pull apart tectonics (Andaman Sea and Sumatra basins) while the

  8. Changes in the earth's rotation by tectonics : gravito-elastodynamics

    NARCIS (Netherlands)

    Vermeersen, L.L.A.


    The rotation of the Earth is not regular. It changes on virtually every timescale we know in both position of the rotation axis and rotation rate. Even in our daily lives we sometimes experience the consequences of such changes, such as the second that is subtracted or added to clocks at the

  9. The Mesozoic Tectonic Dynamics and Chronology in the Eastern North China Block

    Directory of Open Access Journals (Sweden)

    Quanlin Hou


    Full Text Available Mesozoic tectonic events in different areas of the eastern North China Block (NCB show consistency in tectonic time and genesis. The Triassic collision between NCB and Yangtze results in the nearly S-N strong compression in the Dabie, Jiaodong, and west Shandong areas in Middle Triassic-Middle Jurassic. Compression in the Yanshan area in the north part of NCB was mainly affected by the collision between Mongolia Block and NCB, as well as Siberia Block and North China-Mongolia Block in Late Triassic-Late Jurassic. However, in the eastern NCB, compressive tectonic system in Early Mesozoic was inversed into extensional tectonic system in Late Mesozoic. The extension in Late Mesozoic at upper crust mainly exhibits as extensional detachment faults and metamorphic core complex (MCC. The deformation age of extensional detachment faults is peaking at 120–110 Ma in Yanshan area and at 130–110 Ma in the Dabie area. In the Jiaodong area eastern to the Tan-Lu faults, the compression thrust had been continuing to Late Mesozoic at least in upper crust related to the sinistral strike slipping of the Tan-Lu fault zone.The extensional detachments in the eastern NCB would be caused by strong crust-mantle action with upwelling mantle in Late Mesozoic.

  10. Tectonically asymmetric Earth: From net rotation to polarized westward drift of the lithosphere

    Directory of Open Access Journals (Sweden)

    Carlo Doglioni


    Full Text Available The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames, which are arbitrary. We review the geological and geophysical signatures of plate boundaries, and show that they are markedly asymmetric worldwide. Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data. Different assumptions about the depths of hotspot sources (below or within the asthenosphere, which decouples the lithosphere from the deep mantle predict different rates of net rotation of the lithosphere relative to the mantle. The widely used no-net-rotation (NNR reference frame, and low (1°/Ma net rotation (shallow hotspots source, all plates, albeit at different velocity, move westerly along a curved trajectory, with a tectonic equator tilted about 30° relative to the geographic equator. This is consistent with the observed global tectonic asymmetries.

  11. Tectonics (United States)

    John Dewey will complete his term as editor-in-chief of Tectonics at the end of 1984. Clark Burchfiel's term as North American Editor will also end. Tectonics is published jointly with the European Geophysical Society. This newest of AGU's journals has already established itself as an important journal bridging the concerns of geophysics and geology.James A. Van Allen, president of AGU, has appointed a committee to recommend candidates for both editor-in-chief and North American editor for the 1985-1987 term.

  12. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics (United States)

    Preto, Nereo; Franceschi, Marco; Gattolin, Giovanni; Massironi, Matteo; Riva, Alberto; Gramigna, Pierparide; Bertoldi, Luca; Nardon, Sergio


    to recognize this old tectonic phase as syndepositional, and to date it to the latest Anisian ( avisianum and crassus ammonoid biochronozones). The horse-shoe shape of the platform and its margins, rectilinear for long tracts, are explained by the existence of a network of extensional faults, whose activity lasted for part of the growth of the platform. The Latemar is thus a polygonal, fault-block platform controlled by synsedimentary tectonics. The resulting sedimentary architecture is that of a growth wedge, deposited probably on the uplifted side of a submerged half graben. Continuous reactivation of faults at platform margins locally determined anomalous facies transitions, with well layered platform interior directly in contact with the clinostratified slopes.

  13. Tectonic blocks and suture zones of eastern Thailand: evidence from enhanced airborne geophysical analysis

    Directory of Open Access Journals (Sweden)

    Arak Sangsomphong


    Full Text Available Airborne geophysical data were used to analyze the complex structures of eastern Thailand. For visual interpretation, the magnetic data were enhanced by the analytical signal, and we used reduction to the pole (RTP and vertical derivative (VD grid methods, while the radiometric data were enhanced by false-colored composites and rectification. The main regional structure of this area trends roughly in northwest-southeast direction, with sinistral faulting movements. These are the result of compression tectonics (sigma_1 in an east-west direction that generated strike-slip movement during the pre Indian-Asian collision. These faults are cross-cut by the northeast-southwest-running sinistral fault and the northwest-southeast dextral fault, which occurred following the Indian-Asian collision, from the transpession sinistral shear in the northwest-southeast direction. Three distinct geophysical domains are discernible; the Northern, Central and Southern Domains. These three domains correspond very well with the established geotectonic units, as the Northern Domain with the Indochina block, the Central Domain with the Nakhonthai block, the Upper Southern Sub-domain with the Lampang-Chaing Rai block, and the Lower Southern Sub-domain with the Shan Thai block. The Indochina block is a single unit with moderate radiometric intensities and a high magnetic signature. The direction of the east-west lineament pattern is underlain by Mesozoic non-marine sedimentary rock, with mafic igneous bodies beneath this. The Nakhonthai block has a strong magnetic signature and a very weak radiometric intensity, with Late Paleozoic-Early Mesozoic volcanic rock and mélange zones that are largely covered by Cenozoic sediments. The boundaries of this block are the southern extension of the Mae Ping Faults and are oriented in the northwest-southeast direction. The Lampang-Chaing Rai and Shan Thai blocks, with very weak to moderate magnetic signatures and moderate to very

  14. Nuclear pairing reduction due to rotation and blocking

    International Nuclear Information System (INIS)

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.


    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency ω dependence and seniority (number of unpaired particles) ν dependence of the pairing gap Δ-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, Δ-tilde decreases with increasing ω, but the ω dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority ν>2), the pairing gaps stay almost ω independent. As a function of the seniority ν, the bandhead pairing gaps Δ-tilde(ν,ω=0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ-tilde(ν,ω=0) remains greater than 70% of Δ-tilde(ν=0,ω=0).

  15. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian


    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  16. Magmatic and tectonic evolution of the Ladakh Block from field studies (United States)

    Raz, U.; Honegger, K.


    The Ladakh Block is in an intermediate position between the Indian plate in the south and the Karakorum-Tibetan plate in the north. To the west it is separated from the Kohistan Arc by the Nanga Parbat Syntaxis, to the east it is cut off from the Lhasa Block by the Gartok-Nubra Fault. Present data, together with previously published results, show, that the Ladakh Block consists of an island arc in the south and a calc-alkaline batholith in the north with remnants of a continental crust. Migmatitic gneisses and metasedimentary sequences, such as quartzites and metapelites, interbedded with basaltic volcanics and overlain by thick platform carbonates were found as evidence of a continental crust. Remnants of megafossils ( Megalodon and Lithiotis) within the high-grade metamorphic marbles indicate a probable age of Late Triassic to Early Jurassic. These sediments were intruded by a faintly layered hornblende-gabbro, which preceded the calc-alkaline magmatic episode. Gabbro and gabbronorites are found as roof pendants and large inclusions within diorites and granodiorites. The major part of the batholith consists of granodiorite and biotite-granite plutons, ranging from Late Cretaceous to Tertiary. Associated with the intrusives are volcanic rocks with trachyandesite to alkalibasalt and basalt-andesite to rhyolite compositions. Garnet-bearing leucogranites succeeded the emplacement of the major plutons. The magmatic stage ended, finally, by intense fracturing and injections of NE-SW striking andesitic dykes. The southernmost unit of the Ladakh Block is formed by oceanic crust with serpentinized peridotite and hornblende-gabbro and is covered by volcanics of an island-arc type (Dras volcanics). These units are intruded by gabbronorite, as well as Middle and Upper Cretaceous granodiorite and coarse-grained biotite-granite. In a plate tectonic view the Ladakh Block represents a transitional sector between the pure island arc of Kohistan in the west and the Andean type

  17. Nuclear pairing reduction due to rotation and blocking

    International Nuclear Information System (INIS)

    Wu Xi; Zhang Zhenhua; Lei Yi'an; Zeng Jinyan


    Nuclear pairing gaps of well-deformed and superdeformed nuclei are investigated using the particle-number conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly and no spurious states appear. Both the rotational frequency ω-dependence and seniority ν-dependence of the pairing gap Δ-bar are addressed. For the ground-state bands of even-even nuclei, PNC calculations show that in general Δ-bar decreases with increasing ω, but the ω-dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov (NHFB) approach. For the multi quasiparticle bands (seniority ν > 2), the pairing gaps keep almost ω-independent. As a function of the seniority ν, the bandhead pairing gaps Δ-bar (ν, ω = 0) decrease slowly with increasing ν. Even for the highest seniority ν bands identified so far, Δ-bar (ν, ω = 0) keep 70% larger than Δ-bar (ν = 0, ω = 0). (authors)

  18. Widespread remagnetizations and a new view of Neogene tectonic rotations within the Australia-Pacific plate boundary zone, New Zealand (United States)

    Rowan, Christopher J.; Roberts, Andrew P.


    Large, clockwise, vertical axis tectonic rotations of the Hikurangi margin, East Coast, New Zealand, have been inferred over both geological and contemporary timescales, from paleomagnetic and geodetic data, respectively. Previous interpretations of paleomagnetic data have laterally divided the margin into independently rotating domains; this is not a feature of the short-term velocity field, and it is also difficult to reconcile with the large-scale boundary forces driving the rotation. New paleomagnetic results, rigorously constrained by field tests, demonstrate that late diagenetic growth of the iron sulfide greigite has remagnetized up to 65% of sampled localities on the Hikurangi margin. When these remagnetizations are accounted for, similar rates, magnitudes, and timings of tectonic rotation can be inferred for the entire Hikurangi margin south of the Raukumara Peninsula in the last 7-10 Ma. Numerous large (50-80°) declination anomalies from magnetizations acquired in the late Miocene require much greater rates of rotation (8-14° Ma-1) than the presently observed rate of 3-4° Ma-1, which is only likely to be characteristic of the tectonic regime established since 1-2 Ma. These new results are consistent with both long- and short-term deformation on the Hikurangi margin being driven by realignment of the subducting Pacific plate, with collision of the Hikurangi Plateau in the late Miocene potentially being key to both the initiation of tectonic rotations and the widespread remagnetization of Neogene sediments. However, accommodating faster, more coherent rotation of the Hikurangi margin in Neogene reconstructions of the New Zealand plate boundary region, particularly in the late Miocene, remains a challenge.

  19. Ball-and-socket tectonic rotation during the 2013 Mw7.7 Balochistan earthquake (United States)

    Barnhart, William D.; Hayes, Gavin P.; Briggs, Richard W.; Gold, Ryan D.; Bilham, R.


    The September 2013 Mw7.7 Balochistan earthquake ruptured a ∼200-km-long segment of the curved Hoshab fault in southern Pakistan with 10±0.2 m of peak sinistral and ∼1.7±0.8 m of dip slip. This rupture is unusual because the fault dips 60±15° towards the focus of a small circle centered in northwest Pakistan, and, despite a 30° increase in obliquity along strike, the ratios of strike and dip slip remain relatively uniform. Surface displacements and geodetic and teleseismic source inversions quantify a bilateral rupture that propagated rapidly at shallow depths from a transtensional jog near the northern end of the rupture. Static friction prior to rupture was unusually weak (μball-and-socket joint – counter-clockwise in response to India's penetration into the Eurasian plate. This rotation accounts for complexity in the Chaman fault system and, in principle, reduces seismic potential near Karachi; nonetheless, these findings highlight deficiencies in strong ground motion equations and tectonic models that invoke Anderson–Byerlee faulting predictions.

  20. Identification and interpretation of tectonic features from Skylab imagery. [Mojave Desert block of Texas, Arizona, and Chihuahua, Mexico (United States)

    Abdel-Gawad, M. (Principal Investigator)


    The author has identified the following significant results. Two alternate models for the extension of the Texas zone through the Mojave Desert block have been developed: (1) along the Pisgah Line, and (2) along the eastern Transverse Ranges; this model suggests a counterclockwise rotation of the Mojave block. Analysis of S190B photographs of the western Mojave Desert provides strong evidence for the feasibility of identifying recent fault breaks.

  1. Self-Assembled Nanogels of Cholesterol-Bearing Hydroxypropyl Cellulose: A Thermoresponsive Building Block for Nanogel Tectonic Materials. (United States)

    Tahara, Yoshiro; Sakiyama, Mizuki; Takeda, Shigeo; Nishimura, Tomoki; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari


    Hydroxypropyl cellulose (HPC) is a fascinating polysaccharide to use in developing a nanogel to be a thermoresponsive building unit for nanogel tectonic materials. Cholesterol-bearing HPC (Ch-HPC) self-assembled to form nanogels through hydrophobic interactions of the cholesteryl groups in water. Ch-HPC nanogels had a lower critical solution temperature in line with that of native HPC. The particle size of Ch-HPC nanogels was reversibly controlled by the temperature and salting-out effect. The thermoresponsive property was also observed in Ch-HPC nanogel-cross-linked macrogels. These results suggest that a Ch-HPC nanogel is an attractive building block for thermoresponsive nanogel tectonic materials.

  2. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.


    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike

  3. Rheology of the Seismogenic Crust in Southern California: Comparing Lithotectonic Blocks Defined by Past Tectonics and Major Faults (United States)

    Hauksson, E.; Meier, M. A.; Ross, Z. E.


    We analyze waveform relocated seismicity (1981-2016) and other geophysical and geological datasets to determine the rheology of the crust in southern California. First, we calculate earthquake depth histograms (EDH) to quantify the depth distribution of seismicity. In general the EDHs vary between regions with a shallower mean depth and more rapid decay with depth in the brittle-ductile transition zone for high heat flow regions, which results in a shallower 95% seismicity cut-off-depth. Second, we determine depth profiles of crustal yield stress envelopes (YSE) using Byerlee's law and a non-linear dislocation creep law. We analyze the EDHs and YSEs for each lithotectonic block to identify differences in shape that may be related to lithology or past tectonic history of the crust. To model the YSE for each block we correct for measured average heat flow, strain rate, and state of stress. We determine YSEs of five different lithologies for each of the 12 lithotectonic blocks. We investigate if the EDHs are diagnostic of average lithology types. We find that the EDHs to first order follow the shape of the computed YSEs, and that the lithologies of the best matching YSEs conform with geological expectations. In particular, the blocks of the North America plate are mostly dominated by Quartzite lithology while the blocks of the Pacific plate are mostly of Diorite composition except for the Quartz dominated rifted margin in the Salton Trough. Only the extended San Gabriel block exhibits two-layer composition with Quartz underplated by Diorite. This suggests that EDHs can be used to infer the first order shape of the strength profile of the seismogenic crust. We also compare the EDH and the preferred YSE for each block with independent 3D models of Vp, Vs, Vp./Vs, and density to confirm independently the lithology of the crust. Further, we analyze the presence of mid-crustal low velocity zones that may influence the seismicity depth distribution, or onset of ductile flow.

  4. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics (United States)

    Kane, M.F.


    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  5. Automated rotation rate tracking of pigmented cells by a customized block-matching algorithm. (United States)

    Zhang, Guanglie; Ouyang, Mengxing; Mai, John; Li, Wen Jung; Liu, Wing Keung


    This article describes an automated rotation rate tracking algorithm for pigmented cells that undergo rotation in a dielectrophoretic (DEP) force field. In a completely automated process, we preprocess each frame of a video sequence, then analyze the sequence frame by frame using a rotating-circle template with a block-matching algorithm, and finally estimate the rotation rate of the pigmented cells using a pixel-patch correlation. The algorithm has been demonstrated to accurately calculate the DEP-induced rotation rate of the cell up to 250 rpm. Cell rotation rates in various DEP force fields (i.e., by varying the applied voltages, frequencies, and waveforms to induce different force fields) were analyzed using this automated algorithm and reported in this article. Most importantly, the algorithm is accurate even when the cells have simultaneous translational and rotational motions across the video image sequence. Also, the algorithm is capable of tracking changes in rotation speed over a long period of time (90 s) by stably analyzing a massive data set of video image frames.

  6. Paleomagnetic study on the Triassic rocks of the northern Qiangtang Block, Tibetan Plateau and their tectonic implications (United States)

    Yanan, Zhou; Xin, Cheng; Ximing, Peng; Xingfeng, Yang; Hanning, Wu


    The formation and the evolution of the Tibetan Plateau have long been a research focus for the geologists. The tectonic processes of Tibetan Plateau were closely related to the rift of several Gondwana-original blocks which drifted north-toward and reached the southern margin of the Eurasia-plate starting in the Late Paleozoic. According to the geology evidences, it seems that the Qiangtang Block, one of the major blocks of the Tibetan Plateau, located in south hemisphere from the Late Paleozoic and then accreted to the southern margin of the Eurasia during the Jurassic-Cretaceous. However, the detailed drift history of the Qiangtang Block remains uncertainties, especially during the Triassic period. Here, we present two paleomagnetic data from the 236 samples (23sites) drilled from the Triassic strata of the northern edge of the Qiangtang Block in Tibetan Plateau, China. Rock magnetic characteristic suggests that most of the samples were dominated by magnetite and/or hematite. Most samples from the Triassic rocks record obviously two-components: a low temperature component near the present-day field and a high-temperature component separated from the Early and Late Triassic rocks. The high-temperature Component of the Early and the Late Triassic rocks passed the fold test at high confidence level. The corresponding paleopoles for the Early and Late Triassic of the Qiangtang Block are 23.8°N, 210.3°E with A95 = 10.9° and 71.3°N, 257.7°E with A95 =8.7°, respectively. Our new paleomagnetic results, combined with previously published paleopoles from the Qiangtang Block, demonstrate that the Qiangtang Block was located at mid-low latitudes in the southern hemisphere from the Early Permian to the Early Triassic, then moved to mid-low latitudes of the northern (15.9±8.7°N) in the Late Triassic, after that the Qiangtang Terrane northward continually, but the velocity and the distance of drift are far less than this period.

  7. Large-scale block rotations from Late Tortonian to Present in the Gibraltar Arc System: input into the Messinian salinity crisis (United States)

    Crespo-Blanc, Ana; Comas, Menchu; Balanyá, Juan Carlos


    We propose a reconstruction of one of the tightest orogenic arcs on Earth: the Gibraltar Arc System (GAS), which closes the Alpine-Mediterranean orogenic system to the west. This reconstruction, which includes onshore and offshore data, is completed for approximately 9 Ma, a few Ma before the Messinian Salinity Crisis (MSC). By that time a change in the direction of the Africa-Iberia convergence took place, the main shortening in the external wedge was accomplished, most of the low-angle normal fault systems that contribute to crustal-scale extension in the GAS ceased, and a significant emersion along the Africa and Iberia continental margins occurred, due to an overall contractive reorganization in the GAS. Our paleotectonic reconstruction is based on a review in terms of structures and age of the superposed deformational events that took place during the Miocene within the GAS, with special attention to the external zones of its northern branch. Our review and new structural data permit to constrain the timing of vertical axis-rotations evidenced by previously published paleomagnetic data, and to identify homogeneous domains in terms of relationships between timing of deformation events and block rotations. Block-rotations as high as 53° took place from 9 Ma to Present, which represents around 6°/Ma. The size of the rotated blocks reach 150 to 200 km long (measured along-strike). It implies that the rotations were accommodated by relatively rigid large-scale domains instead of smaller segments rotated progressively, which favors a model of vertical-axis block-rotations on top of crustal-scale decoupling levels. These rotations accommodated tightening and lengthening of the GAS and drastically altered its onshore and offshore geometry from 9 Ma onwards. In the back-arc Alboran Basin, this post-Miocene tightening produced inversion on Middle Miocene normal faults, wrench tectonics, the reactivation of shale diapirism and volcanism, and the uplift of the margins

  8. Protoliths of the high-pressure tectonic blocks from the South Carpathians basement units (United States)

    Negulescu, Elena; Săbău, Gavril; Massonne, Hans-Joachim


    Several high-pressure (HP) blocks (eclogites, metagabbronorites, garnet-chloritoid-bearing schists and garnet-kyanite mylonites) hosted in medium-pressure metamorphic complexes from the Lotru Metamorphic Suite (LMS), Leaota Massif (LM), and Făgăraş Massif (FM) were investigated in order to derive the nature of their protoliths based on geochemical data and relict fabrics. The variation diagrams using Niggli values (Niggli, 1954) document a typical pelitic protolith for the HP garnet-chloritoid-bearing schists and garnet-kyanite mylonitic gneiss from the LM. Classification diagrams using major- and trace-element data show that most of the compositions of eclogite and metagabbronorite concentrate in and around the field of basalts. A few elogites from the LM and LMS have compositions similar to picrites, rich in Cr and Ni. Thus, the classification diagrams confirm the assumed basaltic character of the studied eclogites and the fact that alterations did not significantly change the original composition. However, there is one notable exception of a very-high pressure (VHP) eclogite and its metasomatic envelope (Negulescu et al., 2009) from the LM. The tholeiitic and in many instances clear MORB character of the eclogites is also illustrated in the Mullen discriminant plot (Mullen, 1983), in contrast to the VHP-eclogite, as also REE-patterns indicate. The protoliths of the studied eclogites and metagabbronorites range from N-MORB to E-MORB. The VHP-eclogite and its rind display, despite metasomatic alterations, similar REE-patterns and other trace element concentrations, comparable with that of North American shale, thereby supporting the sedimentary origin of their protoliths (Negulescu et al., 2009). The most primitive sample is a Ca, Al-rich eclogite from the FM with an overall low REE concentration, displaying a slight Eu anomaly and a tea-spoon shaped LREE depletion indicative of a cumulate origin. The same origin is also probable for a few eclogites from the

  9. Bandwidth Optimization of Normal Equation Matrix in Bundle Block Adjustment in Multi-baseline Rotational Photography

    Directory of Open Access Journals (Sweden)

    WANG Xiang


    Full Text Available A new bandwidth optimization method of normal equation matrix in bundle block adjustment in multi-baseline rotational close range photography by image index re-sorting is proposed. The equivalent exposure station of each image is calculated by its object space coverage and the relationship with other adjacent images. Then, according to the coordinate relations between equivalent exposure stations, new logical indices of all images are computed, based on which, the optimized bandwidth value can be obtained. Experimental results show that the bandwidth determined by our proposed method is significantly better than its original value, thus the operational efficiency, as well as the memory consumption of multi-baseline rotational close range photography in real-data applications, is optimized to a certain extent.

  10. Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment (United States)

    Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen


    A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.

  11. Magnetostratigraphy and Tectonic Rotation of the Eocene-Oligocene Makah and Hoko River Formations, Northwest Washington, USA

    Directory of Open Access Journals (Sweden)

    Donald R. Prothero


    Full Text Available The Eocene-Oligocene Makah Formation and subjacent middle Eocene Hoko River Formation of the northwestern Olympic Peninsula, Washington, yield mollusks, crustaceans, foraminifera, and early neocete whales; their age has never been precisely established. We sampled several sections; most samples showed a stable single-component remanence held largely in magnetite and passed a Class I reversal test. The upper Refugian (late Eocene and lower Zemorrian (early Oligocene rocks at Baada Point correlate with Chron C13r (33.7–34.7 Ma and Chron C12r (30–33 Ma. The Ozette Highway section of the Makah Formation spanned the early Refugian to late Refugian, with a sequence that correlates with Chrons C15r-C13r (33.7–35.3 Ma, and a long reversed early Zemorrian section that correlates with Chron C12r (30–33 Ma. The type section of the Hoko River Formation correlates with Chron C18r (40.0–41.2 Ma. The area sampled shows about 45∘ of post-Oligocene counterclockwise tectonic rotation, consistent with results obtained from the Eocene-Oligocene rocks in the region.

  12. Petrogenesis and tectonic setting of the Devonian Xiqin A-type granite in the northeastern Cathaysia Block, SE China (United States)

    Cai, Da-wei; Tang, Yong; Zhang, Hui; Lv, Zheng-Hang; Liu, Yun-long


    Most Silurian-Devonian granites in South China are S- or I-type granites, which are suggested to be petrogenetically related to the Wuyi-Yunkai orogeny. In this paper, we present the detailed LA-ICP-MS zircon U-Pb dating, major and trace element geochemical, and Nd-Hf isotopic data for Xiqin A-type granites in the northeastern Cathaysia Block, SE China. Zircon U-Pb dating results show that the Xiqin granites were emplaced at about 410 Ma, indicating that they were generated at the end of Wuyi-Yunkai orogeny. These granites are high in K2O + Na2O (6.31-8.79 wt%), high field strength elements (Zr + Nb + Ce + Y = 427-699 ppm), rare earth elements (total REE = 221-361 ppm) as well as high Ga/Al ratios (10,000 Ga/Al = 2.50-3.10), and show characteristics typical of A-type granites. εHf(t) values of the Xiqin granites mainly vary from -0.4 to -3.1 and yield Mesoproterozoic T2DM(Hf) (mainly ranging from 1.29 to 1.45 Ga). The εNd(t) values are from -1.23 to -2.11 and T2DM(Nd) vary from 1.25 to 1.32 Ga. These isotopic data suggest that the Xiqin granites were generated by partial melting of metavolcanic rocks with minor metasedimentary rocks in the lower crust. Our data on the Xiqin granites, coupled with previous studies of Silurian-Devonian magmatism, suggest that the tectonic regime had changed to a strongly post-collisional extension environment in the Wuyi-Yunkai orogen at least since 410 Ma, and that delamination, which accounts for the change in stress from the compression to extension and asthenospheric upwelling during the early Paleozoic, plays a significant role in the generation of Xiqin A-type granites.

  13. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications (United States)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min


    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  14. Block Slides on Extremely Weak Tectonic Clay Seams in Openly Folded Tertiary Mud-Rocks at Auckland and the Rangitikei Valley, North Island, New Zealand (United States)

    Prebble, Warwick M.; Williams, Ann L.


    Block slides have developed on extremely weak, thin clay seams of tectonic origin, parallel to bedding in gently dipping sandstones and mudstones of Tertiary age. Two areas of noted instability are investigated at Auckland and the Rangitikei valley. Dimensions range from 100 m across × 100 m long for short displacement block slides up to 4 km across × 3 km long for large landslide complexes in which block slides are a major component. Displacements of blocks range from incipient (cm) through short (30 m) to 2 or 3 km for large slides. Many of the Auckland slides are dormant but likely to move in a 2000 year return period earthquake or 100 year high intensity rain storm. At Rangitikei there are many active, younger slides. Sliding rates for active failures vary from a few cm/year to 50 m in 30 min. Host rocks are weak to very weak clayey sandstones and sandy mudstones. The seams are rich in smectite. They have polished and crushed walls, may have slickensides and some contain rounded rock fragments. Laboratory shear strength of the seams is 13 kPa cohesion and 13° friction, with a lower bound of 8° at zero cohesion. Strength is increased at the field scale by waviness, steps and splays. Continuity can be demonstrated over distances of hundreds of metres. Key investigation methods were mapping, shafts and trenches. Tectonic uplift, folding and faulting of the weak Tertiary strata and river down-cutting are perpetuating block slide development.

  15. Multistage tectonic block movements in the Catalan Coastal Ranges (NE Spain) since late Paleozoic assed by apatite and zircon fission-track, and (U-Th)/He. 27th assembly of the European Geophysical Society

    NARCIS (Netherlands)

    Juez-Larré, J.; Andriessen, P.A.M.


    Multistage tectonic block movements in the Catalan Coastal Ranges (NE Spain) since late Paleozoic assed by apatite and zircon fission-track, and (U-Th)/He. 27th assembly of the European Geophysical Society

  16. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David


    to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario......A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... for foot movements and weight distribution in the feet. During the end of the weight-bearing phase of the stride, the weight of the animal was transferred to the front of the digits, creating a rotated disc below the foot that was bounded by an extensional fault at the front and a thrust ramp toward...

  17. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang


    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  18. Space-Frequency Block Code with Matched Rotation for MIMO-OFDM System with Limited Feedback

    Directory of Open Access Journals (Sweden)

    Thushara D. Abhayapala


    Full Text Available This paper presents a novel matched rotation precoding (MRP scheme to design a rate one space-frequency block code (SFBC and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.

  19. Contrasting cooling and exhumation histories of tectonic blocks in the eastern part of the Eastern Alps and its possible relationships with lithospheric dynamics (United States)

    Wölfler, Andreas; Glotzbach, Christoph


    In the European Alps two fundamental changes in the lithospheric structure controlled the geodynamic evolution of the orogen: (1) Late Eocene to Early Oligocene rupturing of the European slab and (2) Early Miocene change in subduction polarity between the Western and Eastern Alps. In particular, the eastern part of the Eastern Alps is a key area which will provide both, information about the surface response to the Eocene/Oligocene slab breakoff and the response to a proposed isostatic rebound due to slab detachment of the European lithosphere in the Miocene (Handy et al., 2015). The eastern part of the Eastern Alps is characterized by fault-bounded blocks with different thermochronological ages, mean elevations and hillslope angles, indicating a variable spatial and temporal evolution throughout the Cenozoic era. The topographic pattern of the study area can be described in terms of (1) high relief with a rugged surface and steep slopes in the Niedere Tauern and (2) lower relief and distinctly smoother topography in the Seckauer Tauern, the Gurktal, Saualpe and Koralpe blocks. Generally, tectonic blocks with higher relief and rugged topography display the youngest apatite fission track (AFT) and apatite (U-Th)/He data (AHe); the Niedere Tauern concurs with middle Miocene AFT and late Miocene/Pliocene AHe ages (Wölfler et al., 2016). The other tectonic blocks generally show Eocene to Oligocene AFT ages (Wölfler et al., 2016 and references therein) and Oligocene to early Miocene AHe ages (Legrain et al., 2014, own preliminary work). New AFT and AHe data from the Gurktal block and Seckauer Tauern indicate that substantial parts of the study area where at near-surface conditions since the Eocene and Oligocene. Thermal history models suggest fast cooling through the AFT and AHe closure temperatures in the Oligocene as a possible response to slab breakoff that was followed by thermal stagnation until the present. In contrast, the neighboring Niedere Tauern experienced

  20. Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing (United States)

    Faure, Michel; Lin, Wei; Chu, Yang; Lepvrier, Claude


    In SE Yunnan, the Ailaoshan Belt has been extensively studied for the ductile shearing coeval with the left-lateral Cenozoic activity of the Red River fault. However, the Late Triassic unconformity of the continental red beds upon metamorphic and ductilely deformed rocks demonstrates that the Ailaoshan Belt was already built up by Early Mesozoic tectonics. From West to East, the belt is subdivided into Western, Central, Eastern Ailaoshan, and Jinping zones. The Western Ailaoshan and Central Ailaoshan zones correspond to a Carboniferous-Permian magmatic arc, and an ophiolitic mélange, respectively. The Eastern Ailaoshan, and the Jinping zones consist of deformed Proterozoic basement and Paleozoic to Early Triassic sedimentary cover series both belonging to the South China Block. This litho-tectonic zonation indicates that the Ailaoshan Belt developed through a SW-directed subduction followed by the collision between Indochina and South China blocks. Crustal thickening triggered per-aluminous magmatism dated at ca 247-240 Ma. Field and microscope-scale top-to-the-NE ductile shearing observed only in the pre-Late Triassic formations, but never in Late Triassic or younger formations, complies with this geodynamic polarity. Furthermore, the late collisional two-mica granitoids and felsic per-aluminous volcanites record a ductile deformation that argues for a continuing crustal shearing deformation after the Early Triassic collision up to the Middle Triassic. Therefore, a two-stage tectonic evolution accounts well for the documented structural and magmatic features. The Triassic architecture of the Ailaoshan Belt, and its geodynamic evolution, correlate well to the South and North with the North Vietnam orogens and the Jinshajiang Belt, respectively.

  1. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic (United States)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan


    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  2. Challenges in transformation of the "traditional block rotation" medical student clinical education into a longitudinal integrated clerkship model. (United States)

    Heddle, William; Roberton, Gayle; Mahoney, Sarah; Walters, Lucie; Strasser, Sarah; Worley, Paul


    Longitudinal integrated clerkships (LIC) in the first major clinical year in medical student training have been demonstrated to be at least equivalent to and in some areas superior to the "traditional block rotation" (TBR). Flinders University School of Medicine is starting a pilot changing the traditional teaching at the major Academic Medical Centre from TBR to LIC (50% of students in other locations in the medical school already have a partial or full LIC programme). This paper summarises the expected challenges presented at the "Rendez-Vous" Conference in October 2012: (a) creating urgency, (b) training to be a clinician rather than imparting knowledge, (c) resistance to change. We discuss the unexpected challenges that have evolved since then: (a) difficulty finalising the precise schedule, (b) underestimating time requirements, (c) managing the change process inclusively. Transformation of a "block rotation" to "LIC" medical student education in a tertiary academic teaching hospital has many challenges, many of which can be anticipated, but some are unexpected.

  3. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David


    for foot movements and weight distribution in the feet. During the end of the weight-bearing phase of the stride, the weight of the animal was transferred to the front of the digits, creating a rotated disc below the foot that was bounded by an extensional fault at the front and a thrust ramp toward...... of the undertrack. The total length of the tectonic disturbance created by the dinosaur is up to three times that of the original footprint. Early, near-surface cementation gave the substrate the rheological properties necessary for development of the observed structures....

  4. Effects of arthroscopy-guided suprascapular nerve block combined with ultrasound-guided interscalene brachial plexus block for arthroscopic rotator cuff repair: a randomized controlled trial. (United States)

    Lee, Jae Jun; Hwang, Jung-Taek; Kim, Do-Young; Lee, Sang-Soo; Hwang, Sung Mi; Lee, Na Rea; Kwak, Byung-Chan


    The aim of this study was to compare the pain relieving effect of ultrasound-guided interscalene brachial plexus block (ISB) combined with arthroscopy-guided suprascapular nerve block (SSNB) with that of ultrasound-guided ISB alone within the first 48 h after arthroscopic rotator cuff repair. Forty-eight patients with rotator cuff tears who had undergone arthroscopic rotator cuff repair were enrolled. The 24 patients in group 1 received ultrasound-guided ISB and arthroscopy-guided SSNB; the remaining 24 patients in group 2 underwent ultrasound-guided ISB alone. Visual analogue scale pain score and patient satisfaction score were checked at 1, 3, 6, 12, 18, 24, and 48 h post-operatively. Group 1 had a lower visual analogue scale pain score at 3, 6, 12, 18, 24, and 48 h post-operatively (1.7  6.0, 6.2 > 4.3, 6.4 > 5.1, 6.9 > 5.9, 7.9 > 7.1). Six patients in group 1 developed rebound pain twice, and the others in group 1 developed it once. All of the patients in group 2 had one rebound phenomenon each (p = 0.010). The mean timing of rebound pain in group 1 was later than that in group 2 (15.5 > 9.3 h, p  4.0, p = 0.001). Arthroscopy-guided SSNB combined with ultrasound-guided ISB resulted in lower visual analogue scale pain scores at 3-24 and 48 h post-operatively, and higher patient satisfaction scores at 6-36 h post-operatively with the attenuated rebound pain compared to scores in patients who received ultrasound-guided ISB alone after arthroscopic rotator cuff repair. The combined blocks may relieve post-operative pain more effectively than the single block within 48 h after arthroscopic cuff repair. Randomized controlled trial, Level I. Identifier: NCT02424630.

  5. Palaeomagnetic results from an archaeological site near Rome (Italy: new insights for tectonic rotation during the last 0.5 Myr

    Directory of Open Access Journals (Sweden)

    M. Pirro


    Full Text Available Approximately 20 km north-east of Rome, along the modern trace of the Tiburtina road, recent archaeological diggings have brought to light a system of aqueduct galleries constructed by Roman engineers. This site falls inside the Acque Albule Basin, a travertine plateau Upper Pleistocene in age, that has been interpreted as a rhombshaped pull-apart basin created by strike-slip faulting within a N-S shear zone. This study provides evidence that two narrow water channels of this aqueduct system were significantly deformed by tectonic movement that occurred subsequent to their construction (II-III century A.D.. The geometry of the deformation pattern is compatible with that expected for a shear zone bounded by N-S oriented, right-lateral faults. The palaeomagnetic study of the volcanic formation («Pozzolane Rosse» Formation, 457± 4 kyr containing the Roman aqueduct system evidences significant clockwise rotation around sub-vertical axis, consistent with the above-mentioned tectonic style.

  6. Sedimentary environments and stratigraphy of the carbonate-silicilastic deposits of the Shirgesht Formation: implications for eustasy and local tectonism in the Kalmard Block, Central Iran

    Directory of Open Access Journals (Sweden)

    aram bayetgoll


    Full Text Available Introduction   Sedimentological and sequence stratigraphic analysis providing insight into the main relationships between sequence architecture and stacking pattern, syn/post-depositional tectonics, and eustatic sea-level fluctuations (Gawthorpe and Leeder 2000; Zecchin et al. 2003, 2004; Carpentier et al. 2007. Relative variations in sea level are due to tectonic activity and eustasy. The Shirgesht Formation in the Kalmard Block of Central Iran provides a useful case study for to determine the processes responsible on internal architecture and stacking pattern of depositional sequences in a half-graben basin. In the Shirgesht Formation, siliciclastic and carbonate successions of the Kalmard Basin, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, eustasy, local tectonics, sediment supply, and sedimentary processes (Bayet-Goll 2009, 2014; Hosseini-Barzi and Bayet-Goll 2009.     Material & Methods   Lower Paleozoic successions in Tabas and Kalmard blocks from Central Iran share the faunal and floral characteristics with other Gondwana sectors such as south-western Europe and north Africa–Middle East (Ghaderi et al. 2009. The geology of these areas was outlined by Ruttner et al. (1968 and by Bruton et al. (2004. The Cambrian-Middle Triassic strata in the Kalmard Block were deposited in a shallow water platform that possesses lithologic dissimilarities with the Tabas area (Aghanabati 2004. The occurrence of two active faults indicates clearly that Kalmard basin formed a mobile zone throughout the Paleozoic so that lithostratigraphic units show considerably contrasting facies in comparison with Tabas basin (Hosseini-Barzi and Bayet-Goll 2009; Bayet-Goll 2014 . The Shirgesht Formation in the Block Kalmard is mainly composed of carbonate-siliciclastic successions that disconformability overlain Kalmard Formation (attributed to Pre-Cambrian and is underlain by Gachal (Carboniferous or Rahdar (Devonian

  7. Sedimentary environments and stratigraphy of the carbonate-silicilastic deposits of the Shirgesht Formation: implications for eustasy and local tectonism in the Kalmard Block, Central Iran

    Directory of Open Access Journals (Sweden)

    reza Mousavi-Harami


    Full Text Available   Introduction   Sedimentological and sequence stratigraphic analysis providing insight into the main relationships between sequence architecture and stacking pattern, syn/post-depositional tectonics, and eustatic sea-level fluctuations (Gawthorpe and Leeder 2000 Zecchin et al. 2003, 2004 Carpentier et al. 2007. Relative variations in sea level are due to tectonic activity and eustasy. The Shirgesht Formation in the Kalmard Block of Central Iran provides a useful case study for to determine the processes responsible on internal architecture and stacking pattern of depositional sequences in a half-graben basin. In the Shirgesht Formation, siliciclastic and carbonate successions of the Kalmard Basin, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, eustasy, local tectonics, sediment supply, and sedimentary processes (Bayet-Goll 2009, 2014 Hosseini-Barzi and Bayet-Goll 2009.     Material & Methods   Lower Paleozoic successions in Tabas and Kalmard blocks from Central Iran share the faunal and floral characteristics with other Gondwana sectors such as south-western Europe and north Africa–Middle East (Ghaderi et al. 2009. The geology of these areas was outlined by Ruttner et al. (1968 and by Bruton et al. (2004. The Cambrian-Middle Triassic strata in the Kalmard Block were deposited in a shallow water platform that possesses lithologic dissimilarities with the Tabas area (Aghanabati 2004. The occurrence of two active faults indicates clearly that Kalmard basin formed a mobile zone throughout the Paleozoic so that lithostratigraphic units show considerably contrasting facies in comparison with Tabas basin (Hosseini-Barzi and Bayet-Goll 2009 Bayet-Goll 2014 . The Shirgesht Formation in the Block Kalmard is mainly composed of carbonate-siliciclastic successions that disconformability overlain Kalmard Formation (attributed to Pre-Cambrian and is underlain by Gachal (Carboniferous or

  8. Suprascapular Nerve Block Versus Interscalene Block as Analgesia After Arthroscopic Rotator Cuff Repair: A Randomized Controlled Noninferiority Trial. (United States)

    Desroches, Asuka; Klouche, Shahnaz; Schlur, Charles; Bauer, Thomas; Waitzenegger, Thomas; Hardy, Philippe


    To compare the efficacy of suprascapular nerve block (SSB) and interscalene block (ISB) as postoperative analgesia within the first 24 hours after arthroscopic supraspinatus and/or infraspinatus tendon repair. A single-blind, randomized controlled study was performed between 2013 and 2014. The inclusion criteria were arthroscopic supraspinatus and/or infraspinatus tendon repair confirmed intraoperatively, with or without associated procedures, and informed consent. The exclusion criteria were a previously operated shoulder, repair of the subscapularis tendon, and an allergy to local anesthetics. ISB was performed under ultrasound guidance by an anesthesiologist, whereas SSB was performed based on specific anatomic landmarks by a surgeon. The primary evaluation criterion was mean shoulder pain score during the first postoperative 24 hours assessed on a visual analog scale by the patient. The secondary criteria were complications of locoregional anesthesia, the use of analgesics in the recovery room (the first 2 hours) until postoperative day 7, and pain (visual analog scale) during the first week. Forty-four patients were needed for this noninferiority study. An institutional review board approved the study. Seventy-four patients were randomized, and 59 met the intraoperative inclusion criteria. Six patients were excluded (1 for pneumothorax after ISB, 1 for unsuccessful SSB, and 4 for incomplete questionnaires). None of the patients were lost to follow-up. There was no significant difference between the SSB and ISB groups in mean pain score for the first 24 hours (P = .92) or the first 7 days (P = .05). However, there was significantly less pain in the ISB group in the recovery room (P = .01). Consumption of analgesics was comparable between the groups, but the SSB group took significantly more morphine in the recovery room. In this prospective, randomized controlled study, SSB was as effective as ISB for mean pain control within the first 24 hours but

  9. Tectonic drivers of the Wrangell block: Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska (United States)

    Haynie, K. L.; Jadamec, M. A.


    Intracontinental shear zones can play a key role in understanding how plate convergence is manifested in the upper plate in regions of oblique subduction. However, the relative role of the driving forces from the subducting plate and the resisting force from within intracontinental shear zones is not well understood. Results from high-resolution, geographically referenced, instantaneous 3-D geodynamic models of flat slab subduction at the oblique convergent margin of Alaska are presented. These models investigate how viscosity and length of the Denali fault intracontinental shear zone as well as coupling along the plate boundary interface modulate motion of the Wrangell block fore-arc sliver and slip across the Denali fault. Models with a weak Denali fault (1017 Pa s) and strong plate coupling (1021 Pa s) were found to produce the fastest motions of the Wrangell block (˜10 mm/yr). The 3-D models predict along-strike variation in motion along the Denali fault, changing from dextral strike-slip motion in the eastern segment to oblique convergence toward the fault apex. Models further show that the flat slab drives oblique motion of the Wrangell block and contributes to 20% (models with a short fault) and 28% (models with a long fault) of the observed Quaternary slip rates along the Denali fault. The 3-D models provide insight into the general processes of fore-arc sliver mechanics and also offer a 3-D framework for interpreting hazards in regions of flat slab subduction.

  10. Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran (United States)

    Ahmadirouhani, Reyhaneh; Rahimi, Behnam; Karimpour, Mohammad Hassan; Malekzadeh Shafaroudi, Azadeh; Afshar Najafi, Sadegh; Pour, Amin Beiranvand


    Syste'm Pour l'Observation de la Terre (SPOT) remote sensing satellite data have useful characteristics for lineament extraction and enhancement related to the tectonic evaluation of a region. In this study, lineament features in the Bajestan area associated with the tectonic significance of the Lut Block (LB), east Iran were mapped and characterized using SPOT-5 satellite data. The structure of the Bajestan area is affected by the activity of deep strike-slip faults in the boundary of the LB. Structural elements such as faults and major joints were extracted, mapped, and analyzed by the implementation of high-Pass and standard kernels (Threshold and Sobel) filters to bands 1, 2 and 3 of SPOT-5 Level 2 A scene product of the Bajestan area. Lineament map was produced by assigning resultant filter images to red-green-blue (RGB) colour combinations of three main directions such as N-S, E-W and NE-SW. Results derived from image processing technique and statistical assessment indicate that two main orientations, including NW-SE with N-110 azimuth and NE-SW with N-40 azimuth, were dominated in the Bajestan area. The NW-SE trend has a high frequency in the study area. Based on the results of remote sensing lineament analysis and fieldwork, two dextral and sinistral strike-slip components were identified as main fault trends in the Bajestan region. Two dextral faults have acted as the cause of shear in the south and north of the Bajestan granitoid mass. Furthermore, the results indicate that the most of the lineaments in this area are extensional fractures corresponding to both the dykes emplacement and hydrothermal alteration zones. The application of SPOT-5 satellite data for structural analysis in a study region has great capability to provide very useful information of a vast area with low cost and time-consuming.

  11. Geological characteristics and tectonic significance of unconformities in Mesoproterozoic successions in the northern margin of the North China Block

    Directory of Open Access Journals (Sweden)

    Yongqiang Qu


    Full Text Available Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these unconformities, which have resulted from different geological processes, have been studied. The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.

  12. The Santa Izabel Complex, Gavião Block, Brazil: Components, geocronology, regional correlations and tectonic implications (United States)

    Medeiros, Eder Luis Mathias; Cruz, Simone Cerqueira Pereira; Barbosa, Johildo Salomão Figueiredo; Paquette, Jean Louis; Peucat, Jean Jacques; Jesus, Silvandira dos Santos Góes Pereira de; Barbosa, Rafael Gordilho; Brito, Reinaldo Santana Correia de; Carneiro, Mauricio Antônio


    Cratons, as well as the basement of their marginal orogens, may represent important sites of research regarding the formation and evolution of Archean continental crusts. The Gavião Block is one of the oldest terranes in South America with rocks aged up to 3.6 Ga. Among the Archean units that outcrop in the southern sector of this block is the Santa Izabel Complex, which for the most part is located in the São Francisco Craton, close to its limit with the Araçuaí-West Congo Orogen. This complex has generally been described as comprising ortho- and paraderived rocks that were metamorphosed in high amphibolite facies. Studies in the southern region of this complex have shown the main components: (i) orthogneisses, whose protoliths are the Mesoarchean rocks of the Santa Izabel Magmatic Suite; and (iii) migmatites. and (iv) amphibolitic and metaultramafic enclaves. U-Pb studies (LA-ICPMS and SHRIMP) performed on zircons of the paleosome in metatexites and inherited zircons in migmatites indicate crystallization ages between 3091 ± 24 and 3136 ± 8 Ma for the rocks of the Santa Izabel Magmatic Suite. Inherited zircons aged ca. 3.4 Ga in paleosomes demonstrate the influence of older continental crust in the formation of these rocks. For the Caraguatai Magmatic Suite, the alignment of zircons and monazites suggests a crystallization age around 2.6 Ga. The Rhyacian migmatites were divided into metatexites and diatexites. Diatexites were divided into: (i) discontinuous boudinated early diatexites, which are parallel to stromatic metatexites, composing the gneissic banding. These rocks have diffuse metamorphic banding and features that suggest the action of mylonitization processes; and (ii) late diatexites, forming more continuous bodies, which truncate the gneissic banding. The migmatization occurred in two stages, with time interval between ca. 2.1 Ga and 2.07 Ga. The structural framework reveal the existence of four progressive Rhyacian deformation phases (Dn to Dn

  13. Surface tectonics of nanoporous networks of melamine-capped molecular building blocks formed through interface Schiff-base reactions. (United States)

    Liu, Xuan-He; Wang, Dong; Wan, Li-Jun


    Control over the assembly of molecules on a surface is of great importance for the fabrication of molecule-based miniature devices. Melamine (MA) and molecules with terminal MA units are promising candidates for supramolecular interfacial packing patterning, owing to their multiple hydrogen-bonding sites. Herein, we report the formation of self-assembled structures of MA-capped molecules through a simple on-surface synthetic route. MA terminal groups were successfully fabricated onto rigid molecular cores with 2-fold and 3-fold symmetry through interfacial Schiff-base reactions between MA and aldehyde groups. Sub-molecular scanning tunneling microscopy (STM) imaging of the resultant adlayer revealed the formation of nanoporous networks. Detailed structural analysis indicated that strong hydrogen-bonding interactions between the MA groups persistently drove the formation of nanoporous networks. Herein, we demonstrate that functional groups with strong hydrogen-bond-formation ability are promising building blocks for the guided assembly of nanoporous networks and other hierarchical 2D assemblies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spiral tectonics (United States)

    Hassan Asadiyan, Mohammad


    after one revolution of Mecca-Spiral. Position of Mecca as a geodynamic pole (as well as contribution of lands and waters) satisfies golden ratio with respect to North/South-Pole and Hawaii-Meridian. Mecca with minimum magnetic inclination is a nucleus of global sigmoid (GS). Scorpion-like GS which bended around geomagnetic axis is mature form of primordial Mecca-spiral. Himalaya in the head-center, Rocky/Ands in the tail-bends and Pacific spread between inverse rotations of head-tail. East and West part of GS represent D and T arm respectively. Extended D-arms after one revolution meet each other around Iceland and make constructive interferences therefore highest gravity anomaly formed in the north Atlantic but T-arms after one revolution meet each other in the Indian Ocean and make destructive interferences so lowest gravity anomaly occurred. Earth's face partitionized via tectonic domains each domain has local east and local west and all of them related fractaly to GS. Also we could dissolve earth face via basic topological shape such as sigmoid, Mobius, cup-like, scorpion-like , etc. all of them originated from cycloids.

  15. Geochronology and geochemistry of the Borohoro pluton in the northern Yili Block, NW China: Implication for the tectonic evolution of the northern West Tianshan orogen (United States)

    Wang, Meng; Zhang, Jinjiang; Zhang, Bo; Liu, Kai; Chen, Youxin; Zheng, Yanrong


    The closure of the North Tianshan Ocean between the Junggar Terrane and the Yili Block is a longtime debated issue in literature, because of the different understanding of the Carboniferous volcanic rocks in the northern margin of the Yili Block. This study presents new geochronological and whole-rock geochemical data for the granitic rocks from the Borohoro pluton to provide constraints on the tectonic regime for the northern West Tianshan during the Carboniferous. LA-ICP-MS U-Pb dating results reveal two magmatic phases for the Borohoro pluton. The former magmatic activity in the Early Carboniferous formed the fine-grained granodiorite (332 Ma). The later magmatic activity occurred during the Late Carboniferous (305-300 Ma), forming a diversity of granitic rocks, involving quartz diorite, granodiorite and granite. Geochemical and mineralogical studies reveal that the studied granitic rocks from the Borohoro pluton all belong to metaluminous to weakly peraluminous, calc-alkaline I-type granites. They are characterized by enrichment in LILEs relative to HFSEs, and depletion of Nb, Ti and P, typical of continental arc-type granites. The intermediate SiO2, high Al2O3, and relatively low Fe2O3T, MgO and TiO2 contents reflect that these granitic rocks are mainly crust-derived. But the high Mg# values for most samples and the occurrence of microgranular mafic enclaves indicate that their magma sources were mixed by mantle-derived components. Especially, the Late Carboniferous rocks define an elegant mixing trend in both the Rb-Rb/V and the 1/V-Rb/V diagrams, consistent with mixing between magmas from subcontinental lithospheric mantle and mafic lower crust. Taking into consideration of the facts that all the Devonian to Carboniferous granitoids belong to calc-alkaline I-type granites, and granitoids of A-type didn't appear until the Early Permian, we suggest that the subduction of the North Tianshan Ocean continued to the Late Carboniferous, generating the granitic

  16. Structural pattern at the northwestern sector of the Tepic-Zacoalco rift and tectonic implications for the Jalisco block, western Mexico (United States)

    Urrutia-Fucugauchi, Jaime; González-Morán, Tomás


    Analysis of the aeromagnetic anomalies over the northwestern sector of the Tepic-Zacoalco rift documents a NE-SW pattern of lineaments that are perpendicular to the inferred NW-SE boundary between the Jalisco block and the Sierra Madre Occidental. The boundary lies within the central sector of the Tepic-Zacoalco rift immediately north of the Ceboruco and Tepetiltic stratovolcanoes and extends up to the San Juan stratovolcano, where it intersects the NE-SW magnetic anomaly lineament that runs toward the Pacific coast (which intersects two volcanic centers). This N35°E lineament separates the central rift zone of low amplitude mainly negative anomalies (except those positive anomalies over the stratovolcanoes) from the zone to the north and west characterized by high amplitude positive long wavelength anomalies. The NE-SW lineament is parallel to the western sector of the Ameca graben and the offshore Bahia de Banderas graben and to the structural features of the Punta Mita peninsula at the Pacific coast, and thus seems to form part of a regional NE-SW pattern oblique to the proposed westward or northwestward motion of the Jalisco block. The orientation of this regional structural pattern at the northern end of the Tepic-Zacoalco rift seems consistent with proposed dominant SW-directed extension along the rift during the Pliocene and Quaternary, rather than with NW-SE lateral strike-slip faulting. The orthogonal pattern that characterizes the northernmost boundary of the Tepic-Zacoalco rift is oblique to the pattern observed in the Grande de Santiago river (which conforms the northern limit of the rift) and for the central-eastern sectors of the Ameca graben (south of the rift). This spatial arrangement of major lineaments and structural elements points to a complex tectonic history for the region that includes the rifting of the Gulf of California and margin deformation due to plate convergence and kinematic re-organization events, and which may have resulted in

  17. Performative Tectonics

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Mullins, Michael


    This paper studies two digital generative tools in terms of Performative Tectonics. Performative Tectonics is a term developed in the paper, which links the contemporary development of digital tools to the tectonic tradition of architecture. Within the theoretical framework of this definition......, the paper presents case studies of the structural optimisation software eifForm, and the parametric modelling software Generative-Components....

  18. Middle-Late Mesozoic sedimentary provenances of the Luxi and Jiaolai areas: Implications for tectonic evolution of the North China Block (United States)

    Xu, Jianqiang; Li, Zhong


    Provenances of sedimentary rocks may provide important constraints on the tectonic evolution of the North China Block (NCB). Previous studies have demonstrated that the northern NCB (NNCB) and the Xing-Meng orogenic belt (XMOB) supplied massive detritus southward into the hinterland of the NCB during the Jurassic. In order to study the evolution of sedimentary provenance during the Middle-Late Mesozoic, U-Pb geochronology and Hf isotopic geochemistry of detrital zircon grains and chemical compositions of detrital garnets from sandstones in the Luxi and Jiaolai areas, eastern NCB, were analyzed in combination with published data on the Jurassic sandstones. The Late Paleozoic-Mesozoic (367-139 Ma) zircons in the lowermost Cretaceous Mengyin Formation samples from the Luxi area show εHf(t) values of -15.3 to -3.2 and +1.3 to +10.0, which are very similar to the results of analyses of the Jurassic formations. Further, the increased amount of Mesozoic zircons and granulite-derived garnets in the Mengyin Formation samples, compared to those in the Jurassic samples, indicates there was more detritus supply from the NNCB than from the XMOB. In the overlying Qingshan Formation samples, zircon grains do not exhibit Paleozoic ages, but most of them have Early Cretaceous ages and negative εHf(t) values, which are similar to the zircon grains extracted from the widespread Early Cretaceous igneous rocks in the NCB. This suggests that the provenance might have changed to a locally derived source. In contrast, the zircon population of the Early Cretaceous sandstones from the Jiaolai basin is dominated by grains of mid-Neoproterozoic age (700-900 Ma) which signifies contribution from the Sulu orogen. Moreover, the detrital garnet assemblages of sandstones in the Luxi area are not consistent with those from representative metamorphic rocks in the Sulu orogen. The above results seem to confirm that the Mesozoic sedimentary provenance of the Luxi area had no evident connection with

  19. Multi-quasiparticle and rotational structures in 179W: Fermi alignment, the K-selection rule and blocking

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Byrne, A.P.; Fabricius, B.; Kibedi, T.; Stuchbery, A.E.; Rowley, N.


    High-spin states in 179 W have been studied following the 170 Er( 13 C,4n) reaction. Rotational bands up to I∼53/2h have been identified, based on 1-, 3-, 5- and 7-quasiparticle structures. Different alignment mechanisms compete in the generation of angular momentum at the yrast line. A Fermi-aligned (i 13/2 ) 2 structure, coupled to high-K and to the 7/2 - [514] orbital, forms the negative-parity yrast sequence above I π =31/2 - . This may be called a ''t-band'' since its description within the cranking model requires a ''tilting'' of the cranking axis. The anomalous decay of the K π =35/2 - 5-quasiparticle isomer is explained as arising from destructive interference of transition amplitudes coupling to the Fermi-aligned structure. Detailed analysis of the excitation energies of the multi-quasiparticle states indicates the quenching of both neutron and proton pair correlations, by comparison with blocking calculations. (orig.)

  20. Vertical-axis block rotations linked to normal faulting: paleomagnetic and structural evidence from Miocene to Recent extensional basins in southern Turkey (United States)

    Koç, Ayten; van Hinsbergen, Douwe J. J.; Kaymakcı, Nuretdin; Langereis, Cornelis G.


    Paleomagnetism provides important constraints on complex patterns of vertical axis rotations in orogens. Where normally paleomagnetism is applied to constrain regional rotations, in the vicinity of fault zones often locally varying rotation patterns occur. Here we provide results of an extensive paleomagnetic survey constraining vertical axis rotation in Neogene extensional continental basins in the Taurides, in the eastern flank of the Isparta Angle (SW Turkey). In total, 437 oriented cores were sampled at 43 sites distributed within Miocene-Pliocene continental sedimentary rocks from the basins at the eastern limb (Ilgın and Altınapa Basins) and also central part (Yalvaç Basin) of the Isparta Angle. Despite the more or less coherent overall strike of the mountain belt and sedimentary basins, our results show different senses and varying amounts of vertical rotation within short distances; the Altınapa Basin has undergone only very minor rotations during and after the Miocene, but the paleomagnetic data from Yalvaç and Ilgın basins show 50° clockwise and 20° counter-clockwise rotation, respectively. Following a long history of shortening and thrusting, our study area has undergone regional extension since the mid-Miocene, which is still active in the present-day as portrayed by active seismicity, earthquake focal mechanisms, field data including fault plane solutions, and GPS measurements. This extension is accommodated along major normal faults that end in relay ramps with overlapping, adjacent normal faults. We show that the paleomagnetically determined rotations are related to such relay ramps, in places superimposed on rigid block rotations, and can be used as a first-order tool to quantify horizontal extension. As such, vertical axis rotations and paleomagnetism unravels important insights in the evolution of deformation in major normal fault zones.

  1. Developing a new synthesis of Arctic Ocean tectonics (United States)

    Coakley, Bernard


    Tectonic models for the Mesozoic opening of the Amerasia Basin are dominated by the "windshield wiper" model, first articulated by Sam Carey in 1958. This theory was developed in the context of an expanding earth paradigm for global tectonics. While the expanding earth theory has been rejected, this zombie hypothesis for the development of the Amerasia Basin lingers on. Most models for the development of the Mesozoic Arctic Ocean work from the large scale down, assuming the overall pattern for the tectonic development of the Amerasia Basin is effectively described by a scissors-like opening, a separation of northern Alaska and Siberia from the conjugate margin of northern Canada, rotating apart around a pivot in the Mackenzie Delta. The problem for these models is how to resolve the space problems caused by the ridges that subdivide the basin. The most prominent of these being the Chukchi Borderland, a large block of extended continental crust, which projects out northward into the basin from the continental shelf north of the Bering Strait. A new approach can be based on first understanding the features in the basin and their inter-relationships, then using that knowledge to infer the larger scale basin tectonics, building a tectonic model from local observations. This approach will be discussed in the light of new results from recent studies in the Amerasia Basin and plans for future activities.

  2. Radiolarian biochronology of upper Anisian to upper Ladinian (Middle Triassic) blocks and tectonic slices of volcano-sedimentary successions in the Mersin Mélange, southern Turkey: New insights for the evolution of Neotethys (United States)

    Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan


    The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.

  3. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn


    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....


    Directory of Open Access Journals (Sweden)

    Qiang Ren


    Full Text Available The Amuria block occupies the eastern part of the Central Asian Orogenic Belt between the Siberia craton and the North China block (NCB and bears important information to understand the evolution of the MongolOkhotsk suture and the amalgamation of East Asia. However, the paleomagnetic database of Amuria remains very poor.

  5. Effects of adding a new PCMH block rotation and resident team to existing longitudinal training within a certified PCMH: primary care residents’ attitudes, knowledge, and experience

    Directory of Open Access Journals (Sweden)

    Anandarajah G


    Full Text Available Gowri Anandarajah,1,2 Christopher Furey,1 Rabin Chandran,1 Arnold Goldberg,3,4 Fadya El Rayess,1 David Ashley,1 Roberta E Goldman,1,5 1Department of Family Medicine, 2Department of Medical Science, Warren Alpert Medical School of Brown University, Providence, RI, 3Department of Family Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 4Department of Family Medicine, Leigh Valley Family Health Network, Allentown, PA, 5Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA Background: Although the patient-centered medical home (PCMH model is considered important for the future of primary care in the USA, it remains unclear how best to prepare trainees for PCMH practice and leadership. Following a baseline study, the authors added a new required PCMH block rotation and resident team to an existing longitudinal PCMH immersion and didactic curriculum within a Level 3-certified PCMH, aiming for “enhanced situated learning”. All 39 residents enrolled in a USA family medicine residency program during the first year of curricular implementation completed this new 4-week rotation. This study examines the effects of this rotation after 1 year. Methods: A total of 39 intervention and 13 comparison residents were eligible participants. This multimethod study included: 1 individual interviews of postgraduate year (PGY 3 intervention vs PGY3 comparison residents, assessing residents’ PCMH attitudes, knowledge, and clinical experience, and 2 routine rotation evaluations. Interviews were audiorecorded, transcribed, and analyzed using immersion/crystallization. Rotation evaluations were analyzed using descriptive statistics and qualitative analysis of free text responses. Results: Authors analyzed 23 interviews (88% and 26 rotation evaluations (67%. Intervention PGY3s’ interviews revealed more nuanced understanding of PCMH concepts and more experience with system-level PCMH

  6. Collision tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Coward, M.P.; Ries, A.C.


    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  7. Tectonic framework of the Hanoe Bay area, southern Baltic Sea

    International Nuclear Information System (INIS)

    Wannaes, K.O.; Floden, T.


    The tectonic framework and the general geologic development of the Hanoe Bay, from the Scanian coast in the west to south of Oeland in the east, has been investigated by means of reflection seismic methods. The Hanoe Bay is in this paper subdivided into four areas of different geologic settings. These are: 1) The Hanoe Bay slope, which forms a southward dipping continuation of the rigid Blekinge coastal plain. 2) The eastward dipping Kalmarsund Slope, which southwards from Oeland forms the western part of the Paleozoic Baltic Syneclise. 3) The Mesozoic Hanoe Bay Halfgraben, which forms the central and southern parts of the Hanoe Bay. The ongoing subsidence of the Halfgraben is estimated to be in the order of 20-60 m during the Quaternary. 4) The Yoldia Structural Element, which forms a deformed, tilted and possibly rotated block of Paleozoic bedrock located east of the Hanoe Bay Halfgraben. Two tectonic phases dominate the post-Paleozoic development of the Hanoe Bay, these are: 1) The Early Kimmerian phase, which initiated subsidence and reactivated older faults. 2) The Late Cretaceous phase, which is the main subsidence phase of the Hanoe Bay Halfgraben. The tectonic fault pattern of the Hanoe Bay is dominated by three directions, i.e. NW-SE, NE-SW and WNW-ESE. The two main tectonic elements of the area are the Kullen-Christiansoe Ridge System (NW-SE) and the Bornholm Gat Tectonic Zone (NE-SW). Sinistral strike-slip movements in order of 2-3 km are interpreted to have occurred along the Bornholm Gat Tectonic Zone during the late Cretaceous. 20 refs, 19 figs

  8. Efficacy of arthroscopically placed pain catheter adjacent to the suprascapular nerve (continuous arthroscopically assisted suprascapular nerve block following arthroscopic rotator-cuff repair

    Directory of Open Access Journals (Sweden)

    Yamakado K


    Full Text Available Kotaro YamakadoDepartment of Orthopaedics, Fukui General Hospital, Fukui, JapanBackground: Rotator-cuff surgery is well recognized to be a painful procedure.Objectives: The purpose of this study was to examine the effectiveness of an arthroscopically placed perineural catheter at the scapular notch to provide a continuous block of the suprascapular nerve (continuous arthroscopically assisted suprascapular nerve block [ca-SSNB] following arthroscopic rotator-cuff repair (ARCR.Materials and methods: This level II, prospective, randomized, controlled trial without postoperative blinding included 40 patients, who had a 48-hour pain pump, with 0.2% ropivacaine infusion and a continuous rate of 3 mL/hour, placed via an arthroscopically placed catheter following ARCR with arthroscopic release of the superior transverse ligament: 21 patients had a ca-SSNB, and 19 patients had a continuous subacromial bursal block (SAB. The visual analog scale (at 6 hours and on the first, second, and third postoperative days and the total number of additional pain-reduction attempts during the 3 postoperative days were calculated.Results: The respective visual analog scale scores (mm obtained from the ca-SSNB and SAB groups were 62.4 and 67.6 (P=0.73 before surgery, 9.1 and 19.4 (P=0.12 at 6 hours after surgery, 24.4 and 44.6 (P=0.019 on the first postoperative day, 19.4 and 40.4 (P=0.0060 on the second postoperative day, and 18.5 and 27.8 (P=0.21 on the third postoperative day. Total additional pain-reduction attempts recorded for the ca-SSNB and SAB groups during the 3 postoperative days were 0.3 times and 1.2 times (P=0.0020, respectively.Conclusion: ca-SSNB was highly effective in controlling postoperative pain after ARCR.Keywords: shoulder, rotator cuff tear, postoperative pain control, continuous suprascapular nerve block, arthroscopic rotator cuff repair

  9. On dynamics of seismicity simulated by the models of blocks-and-faults systems

    Directory of Open Access Journals (Sweden)

    I. A. Vorobieva


    Full Text Available The major results obtained by numerical simulation of block structure dynamics are juxtaposed and analysed: the possibilities to reconstruct tectonic driving forces from territorial distribution of seismicity, clustering of earthquakes in the model, and dependence of the occurrence of strong earthquakes on fragmentation of the media, and on rotation of blocks. These results show that modelling of block structure dynamics is a useful tool to study relations between the geometry of faults and block movements and earthquake flow, including premonitory seismicity patterns, to test the existing earthquake prediction algorithms, and to develop new ones.

  10. Tectonics and sedimentation during convergence of the ALCAPA and Tisza-Dacia continental blocks: The Pienide nappe emplacement and its foredeep (N. Romania)

    NARCIS (Netherlands)

    Tischler, M.; Matenco, L.C.; Filipescu, S.; Gröger, H.; Wetzel, A.; Fügenschuh, B.


    The juxtaposition of the ALCAPA and Tisza-Dacia continental blocks, although one of the key issues in the evolution of the Carpathians, is not well known in terms of associated effects on the sedimentary systems during frontal foreland development. Most of the Contact between ALCAPA and Tisza-Dacia

  11. Numerical Simulation of the Borehole Magnetic Field for Resolving the Possible Rotation of Tectonic Basins and Plates during ICDP and IODP Experiments (United States)

    Lee, S. M.; Parq, J. H.


    An accurate measurement of magnetic field inside the borehole, together with a right set of paleomagnetic measurements on the recovered core samples, should allow one to resolve important elements such as the rotation of the basin or the plate on which the basin is located. The ability to resolve the rotation of the basin can be crucial during drilling experiments by International Continental Scientific Drilling Program (ICDP) and International Ocean Discovery Program (IODP). A good example where the rotation is a central question is the Philippine Sea Plate, which is thought to have rotated about 90° clockwise during the last 55 million years. Despite the significance, previous borehole magnetometers were not accurate enough to achieve such a goal because, among various technical issues, determining the orientation of the sensor inside the borehole to a very high level of accuracy was not easy. The next-generation (third-generation) borehole magnetometer (3GBM) was developed to overcome this difficulty and to bring paleomagnetic investigations to a new level. Even with the new development, however, there are still concerns whether the new instrument can really resolve the rotation because the magnetic field anomalies generated by the sediment is generally very low. In this paper, we present numerical simulations based on finite element method of the magnetic field inside the borehole that were conducted as part of a test to demonstrate that, despite low levels of magnetization, the magnetic fields can be resolved. The results also served as an important input on the design requirements of the borehole magnetometer. Various cases were considered, including the situation where the sedimentary layer is horizontal and inclined. We also explored the cases where volcanic sills were present within the sedimentary layer as they may provide a greater magnetic signature than having sediment alone, and thus improving our chances of determining the rotation. Simulations are

  12. Subsidence stress regime and rotation(s) of a tectonically active sedimentary basin within the Western Alps: the Tertiary Piedmont Basin (Alpine domain, Northwest Italy). In: Tracing Tectonic deformation using the Sedimentary Record, Eds. McCann. (Geological Society of London, Special Publication)

    NARCIS (Netherlands)

    Carrapa, B.; Bertotti, G.V.; Krijgsman, W


    The Oligocene to Miocene Tertiary Piedmont Basin (TPB) is located in the NW part of Italy at the junction between the Apennine and the Alpine thrust belts. The position of the TPB on top of the Alpine/Apennine Orogen poses fundamental questions as to the tectonics of the basin subsidence. Having

  13. Investigating Strain Transfer Along the Southern San Andreas Fault: A Geomorphic and Geodetic Study of Block Rotation in the Eastern Transverse Ranges, Joshua Tree National Park, CA (United States)

    Guns, K. A.; Bennett, R. A.; Blisniuk, K.


    To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.

  14. Caribbean plate tectonics from seismic tomography (United States)

    Ten Brink, U. S.; Villasenor, A.


    New seismic tomography in the Caribbean shows close links between the geometry and dynamics of subducting slabs and the geology of the overriding plate. Unlike most oceanic plates, the Caribbean plate lacks identifiable seafloor magnetic anomalies and fracture zones. The plate's history has therefore been inferred primarily from land geology along the plate boundary, which is complicated by large-scale shear deformation, and from finite rotations of surrounding plates.We used more than 14 million arrival times from 300,000 earthquakes to identify P-wave velocity anomalies. We relate the anomalies to the geometry and dynamics of subducting slabs and to patterns of earthquake activity, volcanism, topographic relief, and tectonic deformation. For example, we detect two separate slabs belonging to the North and South American plates, respectively, which appear to be responsible for morphologic and tectonic differences between the arcs of the Northern (from Guadeloupe northward) and Southern (from Dominica southward) Lesser Antilles. Variations in earthquake activity between Haiti and the Dominican Republic can be explained by a change in slab geometry from an underplated slab beneath Haiti to a subducting slab under the Dominican Republic. A shallow tear in the slab may explain the anomalously deep Puerto Rico Trench and the frequent earthquake swarms there. The westward shift in volcanic activity in the Northern Lesser Antilles from the Miocene Limestone Caribbees to the present arc can be attributed to the limit on convective flow imposed by the 3-D geometry of the slab at depth. A thinned South America slab under the southern Lesser Antilles may result from traction imposed on the slab by a wide forearc wedge. Variations in tectonic deformation of northern South America could be related to the location of the Caribbean Large Igneous Province north of the Maracaibo Block.

  15. The generalized block-localized wavefunction method: A case study on the conformational preference and C-O rotational barrier of formic acid (United States)

    Jia, Jian-Feng; Wu, Hai-Shun; Mo, Yirong


    A Lewis structure corresponding to the most stable electron-localized state is often used as a reference for the measure of electron delocalization effect in the valence bond (VB) theory. As the simplest variant of ab initio VB theory, the generalized block-localized wavefunction (BLW) method defines the wavefunction for an electron-localized state with block-localized orbitals without the orthogonalization constraint on different blocks. The validity of the method can be critically examined with experimental evidences. Here the BLW method has been applied to the investigation of the roles of both the π conjugation and σ hyperconjugation effects in the conformational preference of formic acid for the trans (Z) conformer over the cis (E) conformer. On one hand, our computations showed that the deactivation of the π conjugation or σ hyperconjugation has little impact on the Z-E energy gap, thus neither is decisive and instead the local dipole-dipole electrostatic interaction between the carbonyl and hydroxyl groups is the key factor determining the Z-E energy gap. On the other hand, the present study supported the conventional view that π conjugation is largely responsible for the C-O rotation barrier in formic acid, though the existence of hyperconjugative interactions in the perpendicular structure lowers the barrier considerably.

  16. An approach to multiobjective optimization of rotational therapy. II. Pareto optimal surfaces and linear combinations of modulated blocked arcs for a prostate geometry. (United States)

    Pardo-Montero, Juan; Fenwick, John D


    The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape

  17. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics? (United States)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.


    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.


    Directory of Open Access Journals (Sweden)

    Stowell Harold H.


    Full Text Available The Nason Ridge Migmatitic Gneiss of the Cascades Core is a migmatitic unit comprising concordant pelitic schist and gneiss, amphibolite, and tonalite gneiss, and cross cutting tonalite, quartz-rich granitoid, and pegmatite. There are several generations of 'igneous' lithologies (leucosomes = tonalite, quartz-rich granitoid, and pegmatite some of which are concordant; others clearly crosscut the strongly deformed host rocks. The host rocks are interpreted to be Chiwaukum Schist with metasedimentary (pelitic schist and some gneiss and metavolcanic(amphibolites origins. Metamorphic fabric in the Nason Ridge Migmatitic Gneiss is characterized by preferred orientation of platy minerals (continuous schistosity, compositional layering, mineral lineations (elongate grains and grain aggregates, and non-coaxial deformational features (asymmetric augen, grain offsets,rotated porphyroblasts, etc.. Compositional layering is characterized by quartz-plagioclase lenses and patches (mm to cm scale and by large variations in biotite content. This composite fabric is faulted and folded by mesoscopic structures. The most strongly foliated leucosomes (gneissic tonalites are generally concordant with the regional trend of foliation, while weakly foliated leucosomes (tonalites and pegmatite veins crosscut host rock and tonalite gneisses. Thin melanosome layers (biotiteand amphibole schist are developed locally around quartz - plagioclase lenses and patches. Metamorphism in the Nason Ridge Migmatitic Gneiss and the nearby Chiwaukum Schist likely peaked after intrusion of the Mt. Stuart Batholith ca. 91-94 Ma. Peak temperatures and pressures for the Nason Ridge Migmatitic Gneiss in the Wenatchee Ridge and Pacific Crest areas were 650 - 720 °C and 6 - 9 kbar with a pressure increase of £ 2.0 kbar during metamorphism. Thermodynamic modeling indicates that hydrous partial melting would begin at ca. 660 °C and is relatively pressure independent. Field

  19. JaMBES: A "New" Way of Calculating Plate Tectonic Reconstruction (United States)

    Chambord, A. I.; Smith, E. G. C.; Sutherland, R.


    Calculating the paleoposition of tectonic plates using marine geophysical data has been usually done by using the Hellinger criterion [Hellinger, 1981]. However, for the Hellinger software [Kirkwood et al., 1999] to produce stable results, we find that the input data must be abundant and spatially well distributed. Although magnetic anomalies and fracture zone data have been increasingly abundant since the 1960s, some parts of the globe remain too sparsely explored to provide enough data for the Hellinger code to provide satisfactory rotations. In this poster, we present new software to calculate the paleopositions of tectonic plates using magnetic anomalies and fracture zone data. Our method is based on the theory of plate tectonics as introduced by [Bullard et al., 1965] and [Morgan, 1968], which states that ridge segments (ie. magnetic lineations) and fracture zones are at right angles to each other. In order to test our software, we apply it to a region of the world where climatic conditions hinder the acquisition of magnetic data: the Southwest Pacific, between New Zealand and Antarctica from breakup time to chron 20 (c43Ma). Bullard, E., J. E. Everett, and A. G. Smith (1965), The fit of continents around the atlantic, Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 258(1088), 41-51. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, Journal of Geophysical Research, 86(B10), 9312-9318. Kirkwood, B. H., J. Y. Royer, T. C. Chang, and R. G. Gordon (1999), Statistical tools for estimating and combining finite rotations and their uncertainties, Geophysical Journal International, 137(2), 408-428. Morgan, W. J. (1968), Rises, trenches, great faults, and crustal blocks, Journal of Geophysical Research, 73(6), 1959-1982.

  20. Tectonics of montage

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte


    We build in accordance with specific contemporary conditions, defined by production methods, construction and materials as well as ethics, meaning and values. Exactly this relationship between the work as such and the conditions behind its coming into being is a crucial point. The simultaneity of...... and the creation of meaning forms the core of tectonics. So tectonic thinking is not only about portraying a constructional logic. Tectonics is to create material realities that reveal narrative meaning. Tectonics is to construct with cultural references....

  1. Provenance, tectonics and palaeoclimate of Proterozoic Chandarpur ...

    Indian Academy of Sciences (India)

    climatic condition. The provenance analysis revealed that the Chandarpur clastics were derived from granites and granite–gneisses of a continental block tectonic provenance. Petrographic stud- ies further indicate that high grade metamorphic rocks did not make any perceptible contribution to the Chandarpur system.

  2. Paleomagnetism and Tectonic Evolution of Mexico: Precambrian to Recent (United States)

    Fucugauchi, J. U.


    It is 20yr since publication of the last synthesis of country-wide paleomagnetic data and almost 30yr of first attempt to construct an apparent polar wander path for Mexico. During this time, data has increased ten-fold and a new synthesis may appear long overdue. Mexico constitutes the southern portion of the North American plate, and tectonic models long suggested a complex evolution involving ocean-basin closure, continental collision/break-up, terrane accretion, large-scale motions, orogenic deformation, oceanic plate reorganizations and oceanic basin development. Paleoreconstructions of Atlantic-bordering continents show major overlap of northern South America onto Mexico, highlighting the geometric problem, allocthonous nature and opening room for a diversity of models. Paleomagnetism appears well-suited to tackle these problems, and data had early been used to evaluate tectonic models. Likewise, the larger database is now used to assess models and develop alternatives. This task is greatly aided by new available geochronological, geophysical and geological data. Our new synthesis still shows data gaps, with Paleozoic and Precambrian units poorly represented. Paleomagnetic data and tectonic models require complex large-scale motions of Precambrian and Paleozoic blocks, solutions for opening of Gulf of Mexico and Caribbean Sea, and post-Triassic-Jurassic amalgamation of Mexico and Central America. The southern edge of the North American craton is positioned in northern Mexico, marking the limit for accreted terranes to the south. Possible southern extension of Marathon-Ouachita Paleozoic belt, obscured or truncated when it comes into Mexico, remains unstudied paleomagnetically. Left-lateral motions along faults related to opening of Gulf of Mexico are not supported by paleomagnetism. The Western Cordilleran belt appears laterally displaced in southern US and into Mexico, where the paleomagnetic signature of northward latitudinal translations and clockwise

  3. Scheme of fault tectonic and tectonic activity manifestation in the region of the Crimea nuclear power plant construction

    International Nuclear Information System (INIS)

    Pasynkov, A.L.


    Characteristic of fault tectonics and tectonic activity manifestation in the region of the Crimea nuclear power plant construction is presented. Mosaic-block structure of the area, predetermined by the development of diagonal systems of activated tectonic dislocations with different displacement amplitudes and different stratigraphic ranges of manifestation, was established. Strained-stressed state of the region is determined by the presence of the South-Azov zone of deep fault and Krasnogorsk-Samarlinks fault system. The presented scheme can be used as tectonic basis of seismogenic activity of the region

  4. Paleomagnetic evidence for vertical-axis rotations of crustal blocks in the Woodlark Rift, SE Papua New Guinea: Miocene to present-day kinematics in one of the world's most rapidly extending plate boundary zones (United States)

    Cairns, Elizabeth A.; Little, Timothy A.; Turner, Gillian M.; Wallace, Laura M.; Ellis, Susan


    The continental Woodlark Rift, in SE Papua New Guinea lies west of a propagating oceanic spreading center in the Woodlark Basin and is currently one of few places on Earth where active continental breakup is thought to be occurring. Here north-south extension is localized on a few major normal faults. We determined characteristic remanent magnetization (ChRM) components from demagnetization profiles of >300 individual specimens. From these, 157 components contribute to paleomagnetic directions for six formations. We compare Early Miocene (˜20 Ma) to Late Pliocene (3.0 ± 0.5) ChRM mean directions, at four localities, with contemporaneous expected field directions corresponding to the Australian Plate. Time-varying finite rotations from Cape Vogel Peninsula (28-12°) suggest anticlockwise rotation had begun by ˜15 Ma. This rotation may have been accompanied by rifting, ˜7 Ma earlier than previously inferred. Furthermore, that early extension may have occurred south of the present rift, and that deformation later migrated north of the Peninsula. Pliocene vertical-axis rotations are consistent with GPS-determined plate motions, suggesting that contemporary rift kinematics were established by ˜3 Ma. Finite anticlockwise rotation (10.1 ± 7.6°) in the Amphlett Islands is accordant with seafloor spreading in the Woodlark Basin, suggesting this locality has seen the full Woodlark plate motion since 3 Ma. Clockwise rotation of the Goodenough Bay Block (-6.5 ± 11.2°) since the Late Miocene has accomplished transfer of deformation between major extensional corridors, and an especially rapid local rotation (-16.3 ± 9.5°) in NW Normanby Island may suggest an incipient dextral transfer fault.

  5. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.


    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  6. The Tectonic Practice

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    has the consequence that it is difficult to create architecture where the technical concerns are an inherent part of the architectural expression. The aim of the thesis is to discuss the role of digital tools in overcoming the distance between the professional specializations and thereby support...... a tectonic practice. The project develops a framework to understand the role of digital tools in the tectonic practice from and discusses how and in which areas the tectonic practice could become supported by digital tools....

  7. Grabens on Io: Evidence for Extensional Tectonics (United States)

    Hoogenboom, T.; Schenk, P.


    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  8. Upright folding during extensional and transtensional tectonics (United States)

    Teyssier, Christian; Fossen, Haakon; Rey, Patrice F.; Whitney, Donna L.


    Upright folds are common structures that develop in response to horizontal shortening in layered material, for example in foreland basins that surround orogens. While the contractional nature of these folds is not in doubt, interpretation of their tectonic setting needs careful consideration. Here we focus on two examples: (1) folds developed in transtension; and (2) folds developed during the flow of deep crust in response to lithospheric extension. In both cases we consider folding of nearly horizontal layers that are either primary (bedding) or secondary (foliation). Strain theory inspired by John Ramsay's work makes predictions for the behavior of material lines and planes as well as strain axes (instantaneous, finite) during transtensional deformation. Results show: folds can form in transtension; fold hinges rotate toward the direction of divergence (and not the shear zone boundary as they do in transpression), providing unique insight into ancient plate motions; fold tightness is controlled by the obliquity of divergence and not finite strain; hinge parallel stretching is always greater than hinge-perpendicular shortening, resulting in constriction strain and boudinage of fold hinges. Taken together these results provide a rigorous framework for interpreting field observations where structures are complex and boundary conditions unclear. These principles are applied to various tectonic settings ranging from active tectonic regions of oblique divergence in western North America to ancient folding that developed during oblique extension of the Western Gneiss Region, deposition of Devonian basins, and exhumation of ultrahigh-pressure rocks in the Norwegian Caledonides. The other class of upright folds that form during extension may require revision of the tectonic interpretation of structural overprints in orogenic cores, for example in gneiss/migmatite domes. Dynamic modeling of extension of thick/hot crust predicts a positive feedback between extension of

  9. How the continents deform: The evidence from tectonic geodesy (United States)

    Thatcher, Wayne R.


    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  10. The Role of Long-Term Tectonic Deformation on the Distribution of Present-Day Seismic Activity in the Caribbean and Central America (United States)

    Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.


    The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.

  11. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) 'The fit of the continents around the Atlantic'. (United States)

    Dewey, John F


    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.


    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova


    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  13. The Seismic Potential of Planet Earth: Results from the First Global Block Model (United States)

    Graham, S. E.; Loveless, J. P.; Meade, B. J.


    Geodetically imaged interseismic deformation can be used to constrain the distribution of elastic strain accumulation, slip partitioning across complex fault patterns, plate rotations, and spatially variable patterns of fault coupling. Integrating previously published and newly developed regional block models, we have created a global block model that accounts for tectonic rotations and a first-order elastic approximation of earthquake cycle processes, fitting 19,500 worldwide GPS velocities to a mean residual velocity of GPS station density is sufficient to resolve locking patterns and slip rates on more complex fault geometries. We show how this model can be used to calculate the following: decadal geodetic moment accumulation rates - estimating the seismic potential of the planet, the frequency distribution of fault slip rates globally, and subduction zone coupling, including the number of potential Mw>8 rupture areas.

  14. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte


    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... architectural practice. In this matter the paper focuses on the need to juxtapose theoretical studies, to bring the present vocabulary of the tectonic further, as well as to spur further practical experiments enabling theory to materialize in the everyday of the current practice....

  15. Interplate coupling, strain partitioning, and block motions deduced from GNSS and GPS/A data in southwest Japan (United States)

    Nishimura, T.


    Contemporary deformation of the Japanese Islands is densely monitored by continuous GNSS networks including the GEONET. Recently geodetic network has expanded to offshore regions and clarify horizontal velocity near trench and trough axes. We present a result on estimating simultaneously interplate coupling on subduction megathrusts and rigid block rotations using a new geometry of tectonic blocks (e.g., microplates) and additional onshore and offshore data which are never used in previous studies (i.e., Loveless and Meade, 2008) in southwest Japan. We used horizontal and vertical velocity at 849 GNSS stations operated by the Geospatial Information Authority of Japan, Japan Coast Guard, Kyoto Univ., and IGS. We estimated interseismic velocities before the 2011 Tohoku-oki earthquake by fitting a linear function to daily GNSS coordinates estimated using GIPSY software. We also used 15 horizontal vectors at offshore GPS/Acoustic stations (Yokota et al., 2016). Surface velocity is assumed to be sum of rigid block rotations and elastic deformation due to locking on faults bounded rigid blocks in the block-fault model. We assumed to divide continental and oceanic plates into 15 and 3 blocks, respectively. We estimated them using a code of DEFNODE (McCaffrey, 2004). Geodetic coupling ratio on a subduction interface along the Nankai Trough shows high in the off-Shikoku and Off-Tokai areas(Fig. 1). In the area offshore the Kii Peninsula, coupling ratio is intermediate and its distribution is heterogeneous. A slip-deficit rate along the trough generally decreases toward east. We found coupling ratio is small along a most part of a trough axis, although uncertainties are still large despite using the offshore data. The San'in shear zone, the Median Tectonic Line, and the Niigata-Kobe Tectonic Zone accommodate 30% of relative motion between stable Amurian and Philippine Sea plates.

  16. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone (United States)

    Laurencin, M.; Marcaillou, B.; Graindorge, D.; Klingelhoefer, F.; Lallemand, S.; Laigle, M.; Lebrun, J.-F.


    The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto Rico-Virgin Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013-2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW trending left-stepping en échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults, and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the south of Puerto Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. The Anegada Passage is formed by a NW-SE extension, possibly related to the rotation or escape of PRVI block due to collision of the Bahamas Bank. Currently, it is deformed by an active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.

  17. Modelling continental deformation within global plate tectonic reconstructions (United States)

    Williams, S.; Whittaker, J.; Heine, C.; Müller, P.


    A limitation of regional and global plate tectonic models is the way continental deformation is represented. Continental blocks are typically represented as rigid polygons - overlaps or gaps between adjacent continental blocks represent extension or compression respectively. Full-fit reconstructions of major ocean basins result in large overlaps between the conjugate continental plates, on the basis that the continental margins are highly extended compared to their pre-rift state. A fundamental challenge in generating more robust global-scale plate reconstructions is the incorporation of a more quantitative description of the kinematics within extended passive margins, based on observations. We have used the conjugate Southern Australia and Wilkes Land, Antarctica margins as a case study, and as part of this work have generated revised sediment thickness maps for these margins. These datasets are used to test different approaches for generating full-fit reconstructions in order to create a framework of methodologies that is globally applicable. One approach is to restore two conjugate continent-ocean boundaries (COBs) to their pre-rift configuration and then use the geometric fitting method of Hellinger (1981) and Royer and Chang (1991), used to generate fits of seafloor isochrons, to generate a “full-fit” Euler pole. To quantitatively restore the COBs to their palinspastic pre-rift configuration we integrate estimates of crustal thickness along small circle paths, defined by an initial estimate of the Euler stage pole describing plate motions during continental rifting. We then use the conjugate sets of restored COB’s as inputs to the geometric fitting method, treating them as isochrons, and so generate poles of rotation for the plate configuration prior to rifting. Two potential shortcomings of this methodology are that (1) the conjugate margins are treated independently, whereas in reality they were actually one continuous continental basin during rifting

  18. Earth's glacial record and its tectonic setting (United States)

    Eyles, N.


    active, compressional plate margins recording a protracted and complex phase of supercontinent assembly between 800 and 550 Ma. Local cordilleran glaciations of volcanic peaks is indicated. Many deposits are preserved within mobile belts that record the subduction of interior oceans now preserved as "welds" between different cratons. Discrimination between glacially-influenced and non-glacial, volcaniclastic mass flow successions continues to be problematic. The second tectonostratigraphic category of Late Proterozoic glacial strata includes successions of glacially-influenced, mostly marine strata deposited along rifted, extensional plate margins. The oldest (Sturtian) glaciclastic sediments result from the break-out of Laurentia from the Late Proterozoic supercontinent starting around 750 Ma along its "palaeo-Pacific" margin with a later (Marinoan) phase of rifting at about 650 Ma. "Passive margin" uplifts and the generation of "adiabatic" ice covers on uplifted crustal blocks triggered widespread glaciation along the "palaeo-Pacific" margin of North America and in Australia. A major phase of rifting along the opposite ("palaeo-Atlantic") margin of Laurentia occurred after 650 Ma and is similarly recorded by glaciclastic strata in basins preserved around the margins of the present day North Atlantic Ocean. Glaciation of the west African platform after 650 Ma is closely related to collision of the West African and Guyanan cratons and uplift of the orogenic belt; the same process, involving uplift around the northern and western margins of the Afro-Arabian platform subsequently triggered Late Ordovician glaciation at about 440 Ma when the south polar region lay over North Africa. Early Silurian glaciation in Bolivia and Brazil was followed by a non-glacial episode and renewed Late Devonian glaciation of northern Brazil and Bolivia. The latter event may have resulted from rotation of Gondwana under the South Pole combined with active orogenesis along the western margin of

  19. Drainage Characteristics of Tectonically Active Areas: An Example from Rajasthan, India

    Directory of Open Access Journals (Sweden)



    is most commonly used to define relative differences in uplift and erosion. The computed values for these parameters indicate ongoing tectonic activity in the area. Migration and/or rejuvenation of rivers, rotational/vertical/lateral move-ments of crustal blocks and several other evidences bear testimony to ongoing neotectonic activities in the region.

  20. Old stories and lost pieces of the Eastern Mediterranean puzzle: a new approach to the tectonic evolution of the Western Anatolia and the Aegean Sea (United States)

    Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem


    During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200

  1. Tectonic Theory and Practice

    DEFF Research Database (Denmark)

    Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning


    defined by Semper as a constructive precondition, a theory for developing a novel tectonic relation between home and system opens up. As a research result the paper suggests a practical spatial exploitation of the actual prefab construction, defining interiority not solely as a visual occupation......’ is an example of this sensuous interior transformation of a house into a home, a level of detailing which is, however, seldom represented in the prefabricated house. Consequently, this paper investigates whether interiority can be developed as a tectonic theory and design principle for uniting home and system......Since the first optimistic originally Modernist prefab visions were formulated there has been, and are still, challenges to be overcome in order to fulfill the increasing need for fast, precise and economically produced homes. The tectonic need to transform a home, into a system of joints...

  2. Transcultural Tectonic Connections

    DEFF Research Database (Denmark)

    Carter, Adrian


    This paper presents an understanding of Jørn Utzon, as one of the most profound exponents of a transcultural and tectonic approach to modern architecture in the late twentieth century. The paper will examine the sources of inspiration, intersections and connections in Utzon’s architecture; which...... of cloud formations over a Hawaiian beach, when Utzon was teaching at the University of Hawai’i at Manoa. It is this ability to make connections and translate ideas from one context to another with poetic architectural vision and tectonic integrity, that is at the heart of Utzon’s architecture Together...... with such original unrealised projects as the subterranean Silkeborg Art Museum, Utzon’s work embodies a visionary approach to architecture that is site specific and poetic, tectonic and humane; informed by a profound appreciation of nature and diversity of human cultures, as sources of inspiration and analogy...

  3. Active faulting and transpression tectonics along the plate boundary in North Africa

    Directory of Open Access Journals (Sweden)

    Mustapha Meghraoui


    Full Text Available We present a synthesis of the active tectonics of the northern Atlas Mountains, and suggest a kinematic model of transpression and block rotation that illustrates the mechanics of this section of the Africa–Eurasia plate boundary. Neotectonic structures and significant shallow seismicity (with Mw >5.0 indicate that coeval E-W-trending, right-lateral faulting and NE-SW, thrust-related folding result from oblique convergence at the plate boundary, which forms a transpressional system. The strain distribution obtained from fault–fold structures and P axes of focal mechanism solutions, and the geodetic (NUVEL-1 and GPS convergence show that the shortening and convergence directions are not coaxial. The transpressional strain is partitioned along the strike and the quantitative description of the displacement field yields a compression-to-transcurrence ratio varying from 33% near Gibraltar, to 50% along the Tunisian Atlas. Shortening directions oriented NNE and NNW for the Pliocene and Quaternary, respectively, and the S shape of the Quaternary anticline axes, are in agreement with the 2.24˚/Myr to 3.9˚/Myr modeled clockwise rotation of the small tectonic blocks and with the paleomagnetic data. The convergence between Africa and Eurasia is absorbed along the Atlas Mountains at the upper crustal level, by means of thrusting above decollement systems, which are controlled by subdued transcurrent faults. The Tell Atlas of northwest Algeria, which has experienced numerous large earthquakes with respect to the other regions, is interpreted as a restraining bend that localizes the strain distribution along the plate boundary.

  4. Tectonically Induced Anomalies Without Large Earthquake Occurrences (United States)

    Shi, Zheming; Wang, Guangcai; Liu, Chenglong; Che, Yongtai


    In this study, we documented a case involving large-scale macroscopic anomalies in the Xichang area, southwestern Sichuan Province, China, from May to June of 2002, after which no major earthquake occurred. During our field survey in 2002, we found that the timing of the high-frequency occurrence of groundwater anomalies was in good agreement with those of animal anomalies. Spatially, the groundwater and animal anomalies were distributed along the Anninghe-Zemuhe fault zone. Furthermore, the groundwater level was elevated in the northwest part of the Zemuhe fault and depressed in the southeast part of the Zemuhe fault zone, with a border somewhere between Puge and Ningnan Counties. Combined with microscopic groundwater, geodetic and seismic activity data, we infer that the anomalies in the Xichang area were the result of increasing tectonic activity in the Sichuan-Yunnan block. In addition, groundwater data may be used as a good indicator of tectonic activity. This case tells us that there is no direct relationship between an earthquake and these anomalies. In most cases, the vast majority of the anomalies, including microscopic and macroscopic anomalies, are caused by tectonic activity. That is, these anomalies could occur under the effects of tectonic activity, but they do not necessarily relate to the occurrence of earthquakes.

  5. Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data

    Directory of Open Access Journals (Sweden)

    R. Reilinger


    Full Text Available This paper reviews the main tectonic features of the Eastern Mediterranean region combining the recent information obtained from GPS measurements, seismicity and neotectonic studies. GPS measurements reveal that the Arabian plate moves northward with respect to Eurasia at a rate of 23 ± 1 mm/yr, 10 mm/yr of this rate is taken up by shortening in the Caucasus. The internal deformation in Eastern Anatolia by conjugate strike-slip faulting and E-W trending thrusts, including the Bitlis frontal thrust, accommodates approximately a 15 mm/yr slip rate. The Northeast Anatolian fault, which extends from the Erzincan basin to Caucasus accommodates about 8 ± 5 mm/yr of left-lateral motion. The neotectonic fault pattern in Eastern Anatolia suggests that the NE Anatolian block moves in an E-ENE direction towards the South Caspian Sea. According to the same data, the Anatolian-Aegean block is undergoing a counter-clockwise rotation. However, from the residuals it appears that this solution can only be taken as a preliminary approximation. The Eulerian rotation pole indicates that slip rate along the North Anatolian fault is about 26 ± 3 mm/yr. This value is 10 mm/yr higher than slip rates obtained from geological data and historical earthquake records and it includes westward drift of the Pontides of a few millimetres/year or more. GPS measurements reveal that the East Anatolian fault accommodates an 11 ± 1 mm/yr relative motion. GPS data suggest that Central Anatolia behaves as a rigid block, but from neotectonic studies, it clearly appears that it is sliced by a number of conjugate strike-slip faults. The Isparta Angle area might be considered a major obstacle for the westward motion of the Anatolian block (Central and Eastern Anatolia. The western flank of this geological structure, the Fethiye-Burdur fault zone appears to be a major boundary with a slip rate of 15-20 mm/yr. The Western Anatolian grabens take up a total of 15 mm/yr NE-SW extension

  6. Tectonic vision in architecture

    DEFF Research Database (Denmark)

    Beim, Anne


    By introducing the concept; Tectonic Visions, The Dissertation discusses the interrelationship between the basic idea, the form principles, the choice of building technology and constructive structures within a given building. Includes Mies van der Rohe, Le Corbusier, Eames, Jorn Utzon, Louis Kahn...

  7. The Plate Tectonics Project (United States)

    Hein, Annamae J.


    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  8. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.


    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  9. Tectonic vision in architecture

    DEFF Research Database (Denmark)

    Beim, Anne


    By introducing the concept; Tectonic Visions, The Dissertation discusses the interrelationship between the basic idea, the form principles, the choice of building technology and constructive structures within a given building. Includes Mies van der Rohe, Le Corbusier, Eames, Jorn Utzon, Louis Kah...

  10. Tectonic design strategies

    DEFF Research Database (Denmark)

    Beim, Anne


    The tectonic realm of architecture concerns elements such as intentions and meaning - the process of translating visions into physical constructions - as well as the actual realization of building structures. This field of architectural making has been characterized by Kenneth Frampton as the poe...

  11. Tectonics of montage

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte


    in architecture. The Italian architectural theorist, Marco Frascari describes the concepts 'construction' and 'construing' as inherent dimensions of tectonics, and according to him both dimensions have to be present in meaningful architecture. This close link between the creation of concrete solutions...

  12. Towards a Tectonic Approach

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Kirkegaard, Poul Henning; Mortensen, Sophie Bondgaard


    with these demands. As the largest potential for energy savings lies in re-insulation of the building envelope, specifically by adding an additional insulation layer, this transformation will dramatically affect the everyday experience of the built environment. Articulating the architectural consequences...... and potentials of this transformation is an urgent matter if it is not to be realized solely as a monotonous technical cladding. In this matter, that of conceiving such extra insulation layer simultaneously as a technical ‘principle’ and as a spatial ‘gesture’ revealing an aesthetic architectural potential...... through this transformation is inevitably a tectonic question. By analyzing three historical examples, Adolf Loos’ Villa Moller, Le Corbusier’s Unité d’Habitation, and Frank Lloyd Wright’s Johnson Wax Administration Building, chosen for their tectonic ability to exploit the technical ‘principle’ defining...

  13. Tectonics wins AAP Award (United States)

    AGU's newest journal, Tectonics, won the 1983 award for excellence in journal design and production given by the Association of American Publishers, Inc. (AAP), in the eighth annual professional and scholarly publishing awards competition. Edited by John F. Dewey, the bimonthly journal is a joint publication of AGU and the European Geophysical Society. Paul E. Tapponnier is the European editor and B.C. Burchfiel is the North American editor. The journal is now in its third year of publication.

  14. A missing-link in the tectonic configuration of the Almacık Block along the North Anatolian Fault Zone (NW Turkey): Active faulting in the Bolu plain based on seismic reflection studies (United States)

    Seyitoğlu, Gürol; Ecevitoğlu, Berkan; Kaypak, Bülent; Esat, Korhan; Çağlayan, Ayşe; Gündoğdu, Oğuz; Güney, Yücel; Işık, Veysel; Pekkan, Emrah; Tün, Muammer; Avdan, Uğur


    The North Anatolian Fault Zone (NAFZ) starts to branch off in the western Bolu plain. The branches of the NAFZ in this location create the Almacık block which is surrounded by the latest surface ruptures of significant earthquakes that occurred between 1944 and 1999, but its northeastern part remains unruptured. The most recently formed rupture, that was a result of the 1999 November 12 Düzce earthquake, ended to the northwest of the Bakacak Fault. The connection between the Bakacak Fault and the main branch of the NAFZ via the Bolu plain has until now remained unknown. This paper establishes that the route of the missing link runs through the Dağkent, Kasaplar and Bürnük faults, a finding achieved with the help of seismic reflection studies. The paper also argues that the cross cutting nature of these newly determined faults and a stress analysis based on focal mechanism solutions of recent earthquakes demonstrate the termination of the suggested pull-apart nature of the Bolu plain.

  15. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska (United States)

    Dixit, N.; Hanks, C.


    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  16. The Agost Basin (Betic Cordillera, Alicante province, Spain): a pull-apart basin involving salt tectonics (United States)

    Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario


    The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results

  17. Tectonic Theory and Practice

    DEFF Research Database (Denmark)

    Frier, Marie; Fisker, Anna Marie; Kirkegaard, Poul Henning


    and assembly processes, seems a paradoxical challenge which has left prefabricated houses raw constructions rather than inhabitable homes. Based on the hypothesis that home is determined spatially via sensuous impressions of interiority at the threshold of furniture: The bath in Le Corbusier’s ‘Villa Savoye......’ is an example of this sensuous interior transformation of a house into a home, a level of detailing which is, however, seldom represented in the prefabricated house. Consequently, this paper investigates whether interiority can be developed as a tectonic theory and design principle for uniting home and system...

  18. The Aegean: A natural laboratory for tectonics

    International Nuclear Information System (INIS)

    Burchfiel, B C


    The Aegean, a young and active tectonic region, is a natural laboratory for analyzing many tectonic processes that occur in backarc extensional regimes, and the correlation of these processes from landscape development to deeper mantle dynamics. Cenozoic development of the Aegean region was dominated by subduction beneath Europe and coeval upper plate extension modified by westward extrusion of Anatolia. Intraorogenic and backarc extension began during early Cenozoic time within the Balkans and NW Turkey during closure of the Vardar ocean. Extension was manifested by core complex formation and a change in volcanism caused by the evolution of the lithosphere and mantle wedge. Following a short period of local (?) shortening in ∼ early Miocene time, regional extension began and continued to the present. Within the Hellenides, E-W extension and the subduction zone migrated westward as thick and thin crustal units were progressively accreted and were complexly rotated up to 40 0 CW. Within the eastern Balkans and NW Turkey, N-S extension migrated westward and southward, and in the Aegean the volcanic arc and subduction zone migrated southward. Turkish crustal elements rotated complexly CCW, which in concert with the CW rotation in the Hellenides increased the curvature of the subduction zone and lengthened the orogen causing greater subsidence and extension in the Aegean Sea. Westward extrusion of Anatolia from the Arabian collision zone was enhanced by slab roll back in west moving Aegean crust more rapidly westward. Abundant evidence supports slab rollback at different velocities along the subduction zone. In Pliocene time, the North Anatolian fault crossed the Hellenides in a complex transtensional zone and a diffuse zone of left-lateral shear crossed western Turkey at present isolating a relatively undeforming Aegean plate. Major tectonic questions include: What is the geometry and fate of subducted slabs?, How much crust is accreted during subduction of thick

  19. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.


    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  20. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia (United States)

    Zahirovic, S.; Seton, M.; Müller, R. D.


    Tectonic reconstructions of Southeast Asia have given rise to numerous controversies that include the accretionary history of Sundaland and the enigmatic tectonic origin of the proto-South China Sea. We assimilate a diversity of geological and geophysical observations into a new regional plate model, coupled to a global model, to address these debates. Our approach takes into account terrane suturing and accretion histories, the location of subducted slabs imaged in mantle tomography in order to constrain the evolution of regional subduction zones, as well as plausible absolute and relative plate velocities and tectonic driving mechanisms. We propose a scenario of rifting from northern Gondwana in the latest Jurassic, driven by northward slab pull from north-dipping subduction of Tethyan crust beneath Eurasia, to detach East Java, Mangkalihat, southeast Borneo and West Sulawesi blocks that collided with a Tethyan intra-oceanic subduction zone in the mid-Cretaceous and subsequently accreted to the Sunda margin (i.e., southwest Borneo core) in the Late Cretaceous. In accounting for the evolution of plate boundaries, we propose that the Philippine Sea plate originated on the periphery of Tethyan crust forming this northward conveyor. We implement a revised model for the Tethyan intra-oceanic subduction zones to reconcile convergence rates, changes in volcanism and the obduction of ophiolites. In our model the northward margin of Greater India collides with the Kohistan-Ladakh intra-oceanic arc at ∼53 Ma, followed by continent-continent collision closing the Shyok and Indus-Tsangpo suture zones between ∼42 and 34 Ma. We also account for the back-arc opening of the proto-South China Sea from ∼65 Ma, consistent with extension along east Asia and the formation of supra-subduction zone ophiolites presently found on the island of Mindoro. The related rifting likely detached the Semitau continental fragment from South China, which accreted to northern Borneo in the mid

  1. Rotational seismology (United States)

    Lee, William H K.


    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  2. Tectonic Evolution of the Patagonian Orocline: New Insights from a Paleomagnetic Study in Southernmost America (United States)

    Roperch, P. J.; Poblete, F.; Arriagada, C.; Herve, F.; Ramirez de Arellano, C.


    One of the most noteworthy features of the Southern Andes is its bend, where the orogenic trend and main tectonic provinces change from Andean N-S oriented structures to W-E orientations in Tierra del Fuego. Few paleomagnetic studies have been carried out, and whether the bending is a primary curvature or a true orocline is still matter of controversy; also the mechanism of its formation. We have conducted a paleomagnetic study between 50°S to ~56°S, where 146 sites were drilled. Paleomagnetic data were obtained in 44 sites. Results in Early Cretaceous sediments and volcanics rocks confirm a remagnetization event during the mid-Cretaceous and record ~90° of counterclockwise rotation. Paleomagnetic results in mid-Cretaceous intrusives rocks record large counterclockwise rotation (>90°) while Late Cretaceous-Early Eocene intrusive rocks only record ~45° to ~30°. The paleomagnetic results reveal a systematic pattern of rotation—the Fueguian rotation pattern—suggesting that the curvature of Patagonia would have occurred in two stages: the first stage during the collapse and obduction of the Rocas Verdes basin in the mid-Cretaceous and a second stage between the Late Cretaceous and the Paleocene, concomitant with exhumation of Cordillera Darwin and propagation of the fold and thrust belt into the Magallanes foreland. Integrating this result in plate reconstructions shows the Antarctic Peninsula as a prolongation of Patagonia and would have acted as a non-rotational rigid block, facilitating the development of the Patagonia Bend. This land bridge could be a dispersal mechanism for fauna between Australia and South America and would have restricted deep ocean water circulation.

  3. Paleomagnetism of Late Jurassic to Early Cretaceous red beds from the Cardamom Mountains, southwestern Cambodia: Tectonic deformation of the Indochina Peninsula (United States)

    Tsuchiyama, Yukiho; Zaman, Haider; Sotham, Sieng; Samuth, Yos; Sato, Eiichi; Ahn, Hyeon-Seon; Uno, Koji; Tsumura, Kosuke; Miki, Masako; Otofuji, Yo-ichiro


    Late Jurassic to Early Cretaceous red beds of the Phuquoc Formation were sampled at 33 sites from the Sihanoukville and Koah Kong areas of the Phuquoc-Kampot Som Basin, southwestern Cambodia. Two high-temperature remanent components with unblocking temperature ranging 650°-670 °C and 670-690 °C were identified. The magnetization direction for the former component (D = 5.2 °, I = 18.5 ° with α95 = 3.1 ° in situ) reveals a negative fold test that indicates a post-folding secondary nature. However, the latter component, carried by specular hematite, is recognized as a primary remanent magnetization. A tilt-corrected mean direction of D = 43.4 °, I = 31.9 ° (α95 = 3.6 °) was calculated for the primary component at 11 sites, corresponding to a paleopole of 47.7°N, 178.9°E (A95 = 3.6 °). When compared with the 130 Ma East Asian pole, a southward displacement of 6.0 ° ± 3.5 ° and a clockwise rotation of 33.1 ° ± 4.0 ° of the Phuquoc-Kampot Som Basin (as a part of the Indochina Block) with respect to East Asia were estimated. This estimate of the clockwise rotation is ∼15° larger than that of the Khorat Basin, which we attribute to dextral motion along the Wang Chao Fault since the mid-Oligocene. The comparison of the herein estimated clockwise rotation with the counter-clockwise rotation reported from the Da Lat area in Vietnam suggests the occurrence of a differential tectonic rotation in the southern tip of the Indochina Block. During the southward displacement of the Indochina Block, the non-rigid lithosphere under its southern tip moved heterogeneously, while the rigid lithosphere under the Khorat Basin moved homogeneously.

  4. A harbinger of plate tectonics: a commentary on Bullard, Everett and Smith (1965) ‘The fit of the continents around the Atlantic’ (United States)

    Dewey, John F.


    In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142

  5. Population Blocks. (United States)

    Smith, Martin H.


    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  6. Bullet-Block Science Video Puzzle (United States)

    Shakur, Asif


    A science video blog, which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a…

  7. Tectonics and metallogenic provinces (United States)

    Guild, P.W.


    Various theories have been advanced to explain the well-known uneven distribution of metals and ore-deposit types in space and time. Primordial differences in the mantle, preferential concentration of elements in the crust, the prevalence of ore-forming processes at certain times and (or) places, and combinations of one or several of these factors have all been called upon to account for the "metallogenic provinces," which can be defined loosely as regions containing similar deposits of one or a group of metals or minerals. Because many, perhaps most, provinces have complex, multistage origins, the relative importance of inheritance vs. process is still controversial. In recent years the geographic relationship of many geologically young provinces to present-day plate-tectonic positions (accreting or consuming margins, intraplate structures, etc.) has been widely recognized, and the presumption is strong that older provinces had similar relationships to former plates. As most ore deposits resulted from a favorable conjunction of geological processes that are no longer operative, elucidation of their genesis requires reconstruction of the geologic history of the province, with particular emphasis on events coeval with mineralization. Tectonic analysis is an important aspect of this reconstruction; data from orbiting satellites have contributed greatly to this analysis, as the voluminous literature of the past decade testifies. Both the synoptic view of large areas and the ability to emphasize faint contrasts have revealed linear, curvilinear, and circular features not previously recognized from field studies. Some of these undoubtedly reflect basement structures that have contributed to the development, or limit the extent, of metallogenic provinces. Their recognition and delineation will be increasingly valuable to the assessment of resources available and as guides to exploration for the ores needed by future generations. ?? 1983.

  8. Tectonically Undulating Terrestrial Geospheres and Concordant Development of Two Distinct Somatic Types of Man (United States)

    Kochemasov, G. G.

    The human organisms in microgravity conditions loss Ca or become less dense. But variously dense men also develop on Earth due to varying tectonics. As any celestial body, Earth is not a billiard-ball but is complexly warped by a number of standing waves imprinted in the geoid shape. The fundamental wave (long 2π R, R- planet radius) makes tectonic dichotomy (an opposition of the eastern and western oceanic hemispheres), the first overtone (π R) makes sectoring: on the continental eastern hemisphere, for example, around the Pamirs-Hindukush converge 4 sectors. They are 2 opposed differently uplifted (African ++, Asian +) separated by 2 opposed differently subsided (Eurasian -, Indoceanic - -). In rotating Earth the alternating uplifts (++, +) and subsidences (- -, -) require materials of different densities: less dense for uplifts and denser for subsidences. This requirement concerns all geospheres including anthroposphere. The long development of Homo sapiens adapting to graviconditions of uplifting and subsiding blocks produced two distinct somatic types of man: long and narrow (slim) leptosomes and short and broad eirisomes. As shows F. Weidenreich [1], this fundamental division appeared very early in the human history and is observed in all great human races and even in apes. A block uplifting (an increase of the planetary radius) requires diminishing density. This is achieved by distributing the man's weight by the longer stature. Thus appears long and slim leptosome. On the contrary, a block subsidence (diminishing radius) requires increasing density: man is shorter and broader (eirisome). A long existence on intensively moving (up or down) blocks makes these somatic types characteristic of races. Thus, many African tribes developing on intensively moving up continent (more than one kilometer in a few mln. y. ) are leptosomatic; on the contrary, Indians of subsiding western hemisphere are typically eirisomatic with high Rohrer's index; Polynesians of

  9. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.


    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  10. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan


    it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...

  11. Biological modulation of tectonics (United States)

    Sleep, N. H.; Bird, D. K.


    Photosynthesis has had geologic consequences over the Earth's history. In addition to modifying Earth's atmosphere and ocean chemistry, it has also modulated tectonic processes through enhanced weathering and modification of the nature and composition of sedimentary rocks within fold mountain belts and convergent margins. Molecular biological studies indicate that bacterial photosynthesis evolved just once and that most bacterial clades descend from this photosynthetic common ancestor. Iron-based photosynthesis (ideally 4FeO + CO2 + H2O = 2Fe2O3 + CH2O) was the most bountiful anoxygenic niche on land. The back reaction provided energy to heterotrophic microbes and returned FeO to the photosynthetic microbes. Bacterial land colonists evolved into ecosystems that effectively weathered FeO-bearing minerals and volcanic glass. Clays, sands, and dissolved cations from the weathering process entered the ocean and formed our familiar classes sedimentary rocks: shales, sandstones, and carbonates. Marine photosynthesis caused organic carbon to accumulate in black shales. In contrast, non-photosynthetic ecosystems do not cause organic carbon to accumulate in shale. These evolutionary events occurred before 3.8 Ga as black shales are among the oldest rock types (Rosing and Frei, Earth Planet. Sci. Lett. 217, 237-244, 2004). Thick sedimentary sequences deformed into fold mountain belts. They remelted at depth to form granitic rocks (Rosing et al., Palaeoclimatol. Palaeoecol. 232, 99-11, 2006). Regions of outcropping low-FeO rocks including granites, quartzites, and some shales were a direct result. This dearth of FeO favored the evolution of oxic photosynthesis of cyanobacteria from photosynthetic soil bacteria. Black shales have an additional modulation effect on tectonics as they concentrate radioactive elements, particularly uranium (e.g. so that the surface heat flow varies by a factor of ca. 2). Thick sequences of black shales at continental rises of passive margins are

  12. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany

    Directory of Open Access Journals (Sweden)

    Ulrich Schreiber


    Full Text Available In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  13. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.


    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  14. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes (United States)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.


    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  15. Source-to-sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia) (United States)

    Babault, Julien; Viaplana-Muzas, Marc; Legrand, Xavier; Van Den Driessche, Jean; González-Quijano, Manuel; Mudd, Simon M.


    The island of New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. Recent studies have shown that rapid subduction, uplift and exhumation events took place in response to rapid, oblique convergence between the Pacific and the Australian plates. The tectonic and sedimentary evolution of Cenderawasih Bay, in the northwestern part of the New Guinea Island is still poorly understood: this bay links a major structural block, the Kepala Burung block, to the island's Central Ranges. Previous studies have shown that Cenderawasih Bay contains a thick (>8 km) sequence of undated sediments. One hypothesis claims that the embayment resulted from a 3 Ma opening created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate. Alternatively, the current configuration of Cenderawasih Bay could have resulted from the southwest drift of a slice of volcanics and oceanic crust between 8 and 6 Ma. We test these hypotheses using (i) a geomorphologic analysis of the drainage network dynamics, (ii) a reassessment of available thermochronological data, and (iii) seismic lines interpretation. We suggest that sediments started to accumulate in Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the inception of growth of the Central Range, beginning at 12 Ma, resulting in sediment accumulation of up to 12,200 m. This evidence is more consistent with the second hypothesis, and the volume of sediment accumulated means it is unlikely that the embayment was the result of recent (2-3 Ma) rotation of structural blocks. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. Ophiolites, volcanic arc rocks and diorites contribute minor proportions. From the unroofing paths in the Central Range we deduce two rates of solid phase

  16. Planetary Geophysics and Tectonics (United States)

    Zuber, Maria


    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  17. Rotating Wavepackets (United States)

    Lekner, John


    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  18. The rotator

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Gundersen, Hans Jørgen Gottlieb


    The mean particle volume can be stereologically estimated using the nucleator principle. In the present paper, we discuss another principle for estimating mean particle volume, namely the rotator. The vertical rotator has already been previously described and is supplemented in the present paper ...

  19. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.


    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  20. Rotational elasticity (United States)

    Vassiliev, Dmitri


    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint

  1. Tectonics: The meaning of form

    DEFF Research Database (Denmark)

    Christiansen, Karl; Brandt, Per Aage

    Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill and insi......Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill...... perspectives. You can read the chapters in any order you like – from the beginning, end or the middle. There is no correct order. The project is methodologically inductive: the more essays you read, the broader your knowledge of tectonics get....

  2. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole


    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... of geometric forms in concrete. The former was referred to as mould tectonics, the latter concrete tectonics. A study of the concepts of ‘New Production Philosophy’, ‘Mass-customization’, and Digital Tectonics is presented as a basis for investigating their use in concrete casting. Digital modelling...... plastic in which precision is maintained. The ability to reuse the PETG moulds makes the technique a zero waste production. In general it was concluded that problems with existing techniques relate to production time, surface quality and precision and are caused by the use of mould fabrication technique...

  3. Design of bridges against large tectonic deformation (United States)

    Anastasopoulos, I.; Gazetas, G.; Drosos, V.; Georgarakos, T.; Kourkoulis, R.


    The engineering community has devoted much effort to understanding the response of soil-structure systems to seismic ground motions, but little attention to the effects of an outcropping fault offset. The 1999 earthquakes of Turkey and Taiwan, offering a variety of case histories of structural damage due to faulting, have (re)fueled the interest on the subject. This paper presents a methodology for design of bridges against tectonic deformation. The problem is decoupled in two analysis steps: the first (at the local level) deals with the response of a single pier and its foundation to fault rupture propagating through the soil, and the superstructure is modeled in a simplified manner; and the second (at the global level) investigates detailed models of the superstructure subjected to the support (differential) displacements of Step 1. A parametric study investigates typical models of viaduct and overpass bridges, founded on piles or caissons. Fixed-head piled foundations are shown to be rather vulnerable to faulting-induced deformation. End-bearing piles in particular are unable to survive bedrock offsets exceeding 10 cm. Floating piles perform better, and if combined with hinged pile-to-cap connections, they could survive much larger offsets. Soil resilience is beneficial in reducing pile distress. Caisson foundations are almost invariably successful. Statically-indeterminate superstructures are quite vulnerable, while statically-determinate are insensitive (allowing differential displacements and rotations without suffering any distress). For large-span cantilever-construction bridges, where a statically determinate system is hardly an option, inserting resilient seismic isolation bearings is advantageous as long as ample seating can prevent the deck from falling off the supports. An actual application of the developed method is presented for a major bridge, demonstrating the feasibility of design against tectonic deformation.

  4. Raft tectonics in northern Campos Basin; Tectonica de jangada (raft tectonics) na area norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marilia R. de [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)]|[PETROBRAS, Macae, RJ (Brazil). Unidade de Negocio da Bacia de Campos; Fugita, Adhemar M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos da ANP


    In the northern area of Campos Basin salt gliding/spreading processes promoted the break-up and transport of Cretaceous and Tertiary rocks overlying the evaporites. This process is known as raft tectonics, and it represents the most extreme form of thin-skinned extension above the salt decollement surface. Three distinct geotectonic domains were recognized that formed in response to the raft tectonics. The first one, confined to the shallower shelf portion of the basin, is characterized by minor extension (pre-raft domain), probably because of small salt thickness and low gradient. In the second domain (or disorganized rafts domain), located in distal platformal and slope areas, seismic sections show the occurrence of blocks or rafts with angular shapes, sometimes imbricated and frequently discontinuous. In the third domain, or domain of organized rafts, located in bacinal region, seismic sections show a more continuous raft pattern, often folded because of salt compression in the distal portions of the basin. The main purposes of this work is to characterize these three tectonic domains distinguished by raft tectonics, as well as their importance in hydrocarbon accumulations in calcarenites. (author)

  5. Nerve Blocks (United States)

    ... consists of a radiographic table, one or two x-ray tubes and a television-like monitor that is located ... out of this tunnel. Rotating around you, the x-ray tube and electronic x-ray detectors are located opposite ...

  6. Fracture network and distribution of elementary tectonic fracturing bodies. Investigation of tectonic control of uranium mineralization in the Peny Sector (La Crouzille, France)

    International Nuclear Information System (INIS)

    Fraipont, P. de; Horrenberg, J.Cl.; Ruhland, M.; Marquaire, Ch.; Sierak, J.P.


    The effect of fracturing tectonics on the various granite materials in the Limousin region can be seen in the arrangement and spatial distribution of the fracture networks. However, a detailed analysis of the shape and arrangement of the various elementary tectonic bodies intersected by the fracture network is necessary in order to deduce the spatial, geometric and kinematic relations and to find the key tectonic elements which led to the formation and evolution of the mineralized vein system. After a brief summary of the elementary tectonic fracturing bodies identified at Peny, the existing relations between fracturing and mineralization are discussed. From the position in the deposit of the tectonic bodies (slices or scales, shearing lozenges, rolls and rotation-curve structures), it is possible to divide the deposit up into rough sections measuring 100-150m across and to highlight the areas of tectonic mobility where various types of fracturing are superimposed, corresponding to the sectors of uranium mineralization. Lastly, from the way in which the fracturing occurs and then evolves in successive stages, hypotheses concerning the location and distribution of the radiometric indications are drawn up with a view to searching for new deposits. (author)

  7. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China) (United States)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei


    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion


    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin


    nonlinear wave mechanics of the geo-medium, admitting rotational movements of blocks. According to М.V. Stovas, V.Е. Khain and other researchers, rotation of the planet around its axis is of critical importance for understating the origin of geodynamic movements.Based on the review of results from the previous comprehensive geological and geophysical studies, a conclusion is made on the torque origin of rotating block geo-medium which is termed as Peive–Sedov–Sadovsky medium. Analyses of migration of earthquake foci and volcanic eruptions and movements of edges of tectonic plates provided grounds to design a principally new model, and this rotational model is described in the present publication. Blocks and plates interacting with each other in the model are interrelated by long-range elastic fields which comprise a uniform planetary geodynamic medium, i.e. ‘self-consistent’ state of the geo-medium. Briefly reviewed are data about vortex geological structures and rotary motions of blocks and plates; such data have been detected and recorded in abundance in a variety of geophysical fields. It is stressed that similar, in principle, vortex movements / flows are solutions of the well known Dirichlet–Dedekind–Riemann problem of rotating and gravitating liquid drop that is the problem of the Earth’s equilibrium shape. According to the proposed rotational model, geodynamic solutions of the rotational model combine geodynamic flows in the solution of the problem of the Earth’s equilibrium shape and geologic-geophysical vortex structures and movements on the Earth’s surface in one and the same class of phenomena. It is proposed to apply such solutions for establishing a new geological paradigm – new torque (and/or wave / vortex geodynamics.

  9. Tectonics and paleogeography along the Amazon river (United States)

    Costa, João Batista Sena; Léa Bemerguy, Ruth; Hasui, Yociteru; da Silva Borges, Maurício


    The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajó Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajós Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajó Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupá Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajó Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds, and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the

  10. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.


    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  11. Tectonic characteristics and distribution of Putaohua oil Reservoir in Changchang area of Songliao basin (United States)

    Chang, Yan; Liu, Dameng


    Since the Late Jurassic in the Songliao Basin, the tectonic movement of Yanshan and Heshan has experienced a lot of tectonic movement. The tectonic activity has a clearer display on the seismic profile. The tectonic deformation is generally weak in the east, Features. The regional structure of the Chaochang area is located on the Chaoyangou terrace and Changchunling anticline belt in the central depression of the northern part of the Songliao Basin, and across the two tectonic units of the Chaoyanggou terrace and Changchunling anticline. The study area is characterized by a low tectonic pattern in the southwest and northwest. The highest point is located near the Chang72 well in the Changchunling anticline. The elevation is about -100 m, and the lowest point is the Zhou50 Well near the depth of about - 1750 m. Based on the technical means such as splicing, closed difference correction, horizon calibration, seismic interpretation and attribute extraction of 9 seismic blocks in the study area, the seismic interpretation of the top of the Putaohua reservoir is completed, and the next step Style, tectonic evolution characteristics, oil and gas accumulation law and other research work to lay the foundation.

  12. Phanerozoic tectonic evolution of the Circum-North Pacific (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya


    the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  13. Karaton-Tengiz block's forming peculiarities in connection with petroleum and gas content

    International Nuclear Information System (INIS)

    Dal'yan, I.B.


    The Pustynnoye, Tazhigali, Korolevskoe and Tengiz deposit are discovered within Karaton-Tengiz block. petroleum sediments confine to carbonate sediments. Tengiz deposit confines to the same name tectonic sedimentation large anticline elevation. (author)

  14. Global tectonics and space geodesy. (United States)

    Gordon, R G; Stein, S


    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries \\m=~\\1 to 60 kilometers wide. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover \\m=~\\15 percent of Earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, is providing the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities averaged over millions of years.

  15. Continental tectonics and continental kinetics

    International Nuclear Information System (INIS)

    Allegre, C.J.; Jaupart, C.; Paris-7 Univ., 75


    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  16. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.


    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic

  17. Strike-slip tectonics during rift linkage (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.


    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  18. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin (United States)

    Bowen, R. L.; Sundeen, D. A.


    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  19. Framework for Tectonic Thinking, a Conceptual Approach

    DEFF Research Database (Denmark)

    Garritzmann, Udo


    This research paper is a contribution to the field of architectural design theory in the area of tectonics. From the designer’s point of view, it will develop an overarching conceptual framework for tectonic thinking (FTT), which will serve as a tool for the comparative analysis and interpretation...... of a wide range of tectonic motifs and design positions. The understanding of tectonics will be broadened and differentiated. The conceptual framework will be developed in writing and in hand-drawn mappings. This comparative method assumes not one single, supposedly right, meaning of tectonics, but several...... a value judgement beforehand about any of these positions. Also a-tectonic design positions will be regarded as valid positions within this framework....

  20. Morphometric analysis of El Salvador Fault Zone. Implications to the tectonic evolution. Central America. (United States)

    Alonso-Henar, Jorge; Jesús Martínez-Díaz, José; Álvarez-Gómez, José Antonio


    It is considered that the study of the recent topography development, and the use of geomorphological indexes are good tools for the quantification of the active tectonics. We have used quantitative geomorphology in order to improve our understanding of the recent activity and tectonic evolution of the El Salvador Fault Zone (ESFZ); an E-W oriented strike-slip fault zone that extends 150 km through El Salvador (Martínez-Díaz et al. 2004). Previous studies propose a transtensive tectonic regime at the Central America Volcanic Arc in El Salvador, which induces relative vertical motions on the faults within El Salvador Fault Zone (i.e. Álvarez-Gómez et al., 2008, Cáceres et al. 2005,). This relative vertical displacement can be quantified with the use of hypsometry as a geomorphological character. The morphometric analysis done contributes to a better understanding of the ESFZ. We have defined km scale tectonic block relative displacements that may be useful to constrain the strain distribution along the ESFZ, length of segments with homogeneous vertical movements and lateral relay of active structures. This study supports the hypothesis of a recent migration in the maximum shortening direction, and the accomodation of the current deformation through the reactivation of pre-existing structures inherited from a previous tectonic frame. A similar tectonic evolution as described Weinberg (1992) in Nicaragua, is interpreted from the results of this study.

  1. Navigating Towards Digital Tectonic Tools

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning


    The computer holds a great potential to break down the barriers between architecture and the technical aspects relating to architecture, thus supporting innovative architecture with an inner correspondence between form and technique. While the differing values in architecture and technique can seem...... a tectonic tool should encompass. Secondly the ability and validity of the model are shown by applying it to a case study of Jørn Utzon’s work on Minor Hall in Sydney Opera House - for the sake of exemplification the technical field focused on in this paper is room acoustics. Thirdly the relationship between...

  2. Do cratons preserve evidence of stagnant lid tectonics?

    Directory of Open Access Journals (Sweden)

    Derek Wyman


    Full Text Available Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ∼3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume – volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ∼2.9 Ga and ∼2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ∼2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.

  3. The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin

    Directory of Open Access Journals (Sweden)

    Renata da Silva Schmitt

    Full Text Available ABSTRACT: The Cabo Frio Tectonic Domain is composed of a Paleoproterozoic basement tectonically interleaved with Neoproterozoic supracrustal rocks (Buzios-Palmital successions. It is in contact with the Neoproterozoic-Cambrian Ribeira Orogen along the SE Brazilian coast. The basement was part of at least three continental margins: (a 1.97 Ga; (b 0.59 - 0.53 Ga; (c 0.14 Ga to today. It consists of continental magmatic arc rocks of 1.99 to 1.94 Ga. Zircon cores show a 2.5 - 2.6 Ga inheritance from the ancient margin of the Congo Craton. During the Ediacaran, this domain was thinned and intruded by tholeiitic mafic dykes during the development of an oceanic basin at ca. 0.59 Ma. After the tectonic inversion, these basin deposits reached high P-T metamorphic conditions, by subduction of the oceanic lithosphere, and were later exhumed as nappes over the basement. The Cabo Frio Tectonic Domain collided with the arc domain of the Ribeira Orogen at ca. 0.54 Ga. It is not an exotic block, but the eastern transition between this orogen and the Congo Craton. Almost 400 m.y. later, the South Atlantic rift zone followed roughly this suture, not coincidently. It shows how the Cabo Frio Tectonic Domain was reactivated as a continental margin in successive extensional and convergent events through geological time.

  4. Rotational scanography

    International Nuclear Information System (INIS)

    Moore, R.; Amplatz, K.


    With rotational scanography contrast and resolution of X-ray images are improved. The technique bases on the principle of a narrow X-ray passing along an object, thus exposing the whole film. The X-ray is limited by a primary shield next to the X-ray tube. A second shield between object and film prevents that scattered rays spoil the film. The X-ray tube is turned around a horizontal axis, whilst the shield is shifted so that the irradiation intensity remains constant and the smallest projected focal size is obtained. This technique permits to enlarge the X-ray images by 3 or 6 times its size. Thus, films up to a length of 96 cm can be exposed. Main advantages of rotary scanography are reduced exposure to radiation of patient and applicant, improved contrast and resolution of the X-ray image, and a larger play of exposure for the X-ray technique. Disadvantages are a longer exposure time and the consequently increased demands on X-ray generator and treatment head. When a multi-slit shield is used, the patient must be cooperative in order to prevent movement artifacts. This imaging technique is highly sensitive to artifacts, particularly if the tube voltage provides large fluctuations. Supplementary units are necessary. The significance of the rotational scanography is that it permits the reduction of the radiation dose, whilst contrast and resolution of the images are improved. This can be illustrated by X-ray images of a CT-phantom and of pelvic, hand and gastrointenstinal phantoms. (orig./MG) [de

  5. Earthquakes as Expressions of Tectonic Activity

    Indian Academy of Sciences (India)

    With an introduction to the ideas of plate tectonics and earthquake terminology, this article introduces ... timum thickness, to generate a fragmented architecture. A hard and fragmented outer shell, floating on the ... The basic idea of the plate tectonic model is that the outer shell of the Earth is divided into several plates, both ...

  6. Plate Tectonic Cycle. K-6 Science Curriculum. (United States)

    Blueford, J. R.; And Others

    Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…

  7. Geomorphological features of active tectonics and ongoing ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6. Geomorphological features of active tectonics and ... concluded that the region is still tectonically active. The information would be very important in identifying the areas of hazard prone and also planning and designing of the socio-economic projects.

  8. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen


    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  9. Growth of a tectonic ridge

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, R.W.; Messerich, J.A. [Geological Survey, Denver, CO (United States); Johnson, A.M. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences


    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  10. The Ecology of Urban Tectonics

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier


    unfairly neglected when accounting for the great modern heroes of Danish architecture. Just recently, examples of his work have been thoroughly presented in the Danish architectural magazine; ‘Arkitekten’. (Keiding 2013) This paper analyses two works of Hansen: Bremerholm Transformer Station and Bellahøj......’. In this way Hansen’s work sets an example in itself as built heritage, but in addition, they set a methodological example when valued in relation to Frampton’s notion of the arrière-garde. Hansen’s work witnesses a critical and reflective ability on his behalf that enables him to act in everyday practice....... In concluding, it is our finding, that it is exactly here that research into the field of tectonics holds it potential. NOT as “optimization of advanced technology” and visual occupation with structural elements as such and NOT as “the ever-present tendency to regress into nostalgic historicism or the glibly...

  11. Geologic and tectonic characteristics of rockbursts

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Charlamov, V.A.; Kondratyev, S.V.; Rybnov, Y.S.; Shemyakin, V.M.; Sisov, I.A.; Syrnikov, N.M.; Turuntaev, S.B.; Vasilyeva, T.V. [Lawrence Livermore National Lab., CA (United States)


    The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that case to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.

  12. Pre-lithification tectonic foliation development in a clastic sedimentary rock sequence from SW Ireland (United States)

    Meere, Patrick; Mulchrone, Kieran; McCarthy, David


    The current orthodoxy regarding the development of regionally developed penetrative tectonic cleavage fabrics in sedimentary rocks is that it postdates lithification of those rocks. It is well established that fabric development under these circumstances is achieved by a combination of grain rigid body rotation, crystal-plastic deformation and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal nature of cleavage development commonly observed in low grade metamorphic rocks. While there have been advocates for the development of tectonic cleavages before host rock lithification these are currently viewed as essentially local aberrations without regional significance. In this study we combine new field observations with strain analysis, element mapping and modelling to characterise Acadian (>50%) crustal shortening in a Devonian clastic sedimentary sequence from the Dingle Peninsula of south west Ireland. Fabrics in these rocks reflect significant levels of tectonic shortening are a product of grain translation, rigid body rotation and repacking of intra- and extra-formational clasts during deformation of an unconsolidated clastic sedimentary sequence. There is an absence of the expected domainal cleavage structure and intra-clast deformation expected with conventional cleavage formation. This study requires geologists to consider the possibility such a mechanism contributing to tectonic strain in a wide range of geological settings and to look again at field evidence that indicates early sediment mobility during deformation.

  13. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.


    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  14. Tectonic, volcanic, and climatic geomorphology study of the Sierras Pampeanas Andes, northwestern Argentina (United States)

    Bloom, A. L.; Strecker, M. R.; Fielding, E. J.


    A proposed analysis of Shuttle Imaging Radar-B (SIR-B) data extends current research in the Sierras Pampeanas and the Puna of northwestern Argentina to the determination - by the digital analysis of mountain-front sinuousity - of the relative age and amount of fault movement along mountain fronts of the late-Cenozoic Sierras Pampeanas basement blocks; the determination of the age and history of the boundary across the Andes at about 27 S latitude between continuing volcanism to the north and inactive volcanism to the south; and the determination of the age and extent of Pleistocene glaciation in the High Sierras, as well as the comparative importance of climatic change and tectonic movements in shaping the landscape. The integration of these studies into other ongoing geology projects contributes to the understanding of landform development in this active tectonic environment and helps distinguish between climatic and tectonic effects on landforms.

  15. Prelithification and synlithification tectonic foliation development in a clastic sedimentary sequence


    Meere, Patrick A.; Mulchrone, Kieran F.; McCarthy, Dave J.; Timmerman, Martin J.; Dewey, John F.


    The current view regarding the timing of regionally developed penetrative tectonic fabrics in sedimentary rocks is that their development postdates lithification of those rocks. In this case, fabric development is achieved by a number of deformation mechanisms, including grain rigid body rotation, crystal-plastic deformation, and pressure solution. The latter is believed to be the primary mechanism responsible for the domainal structure of cleavage in low-grade metamorphic rocks. In this stud...

  16. Tectonic controls on the Yamanlar volcano and Yuntdağı volcanic region, western Turkey: Implications for an incremental deformation (United States)

    Karaoğlu, Özgür


    Over the past ten years, it has been proposed that the western part of the Menderes Massif was strongly structurally-controlled by the İzmir-Balıkesir transfer zone (İBTZ). Yamanlar volcano is a key area for understanding the deformation of Miocene volcanoes in western Turkey because of its progressive extensional tectonics. Structural analysis provides that this volcano has undergone the incremental tectonic controls in western Turkey since Early Miocene. The volcano experienced deformation and erosional processes associated with activity of intense tectonic regime that resulted in the dissection of the southern flank of the volcano mostly by NE-SW-striking oblique and strike-slip faults together with cross-cutting faults during and after Miocene period. The orientation of volcanic domes, dykes and intrusive bodies indicates successive and reactive tectonic phases that caused incremental complex movements of numerous fault blocks during the destruction area of the Yamanlar volcano.

  17. Plate tectonic reconstruction of the Carpathian-Pannonian region (United States)

    Csontos, L.; Vörös, A.


    Plate tectonics of the Carpathian area is controlled by microcontinents between the European and African margins and the relative movements of these margins. Beside the generally accepted Apulian (Austroalpine, West Carpathian, Dinaric) microcontinents two others: the Bihor-Getic (Tisza) and Drina-Ivanjica are introduced. The first was attached to the European margin, the second to the Apulian microcontinent. During Permian a major ocean was obliquely subducted south of the Apulian microcontinents. Drina-Ivanjica rifted off the Apulian microcontinent in the Late Permian-Middle Triassic, as a consequence of back-arc rifting. Short-lived oceans subducted by the end of Jurassic, causing Drina-Ivanjica to collide with the internal Dinaric-West Carpathian and Bihor-Getic margins. An external Penninic-Váhic ocean tract began opening in the Early Jurassic, separating the East Alpine-West Carpathian microcontinent (and its fauna) from the European shelf. Further south, the Severin-Ceahlau-Magura also began opening in the Early Jurassic, but final separation of the Bihor-Getic (and its fauna) from the European shelf did not take place until the Middle-Late Jurassic. Two oroclinal bends: the Alcapa on the Dinaric margin and the Tisza-Dacia on the South Carpathian-Getic margin are essential elements of these reconstructions. Their bending (Aptian and Albian-Maastrichtian, respectively) are suggested by paleomagnetic and tectonic transport data. The two oroclinal bends are finally opposed and pushed into the Carpathian embayment by the Paleogene. In Miocene a back-arc basin develops on older tectonic elements. Differential rotations affect the wealded microcontinents.

  18. Towards a tectonic sustainable building practice

    DEFF Research Database (Denmark)

    Beim, Anne


    and environmental problems? The objective of the project is to analyse and develop the tectonic practice based on case studies, in relation to: • Cultural anchoring and identity creation • Building culture and creative processes • Sustainability, lifecycle and resource management The research project is divided...... into a main project and various subprojects, respectively, two levels that mutually feed each other.The main project, which constitutes the general level, seeks to identify a coherent strategy towards a new tectonically sustainable building culture.The subprojects look at partial issues and go into specific...... questions dealing with central aspects of the overall project: tectonics, identity creation, cultural heritage/recycling and sustainability....

  19. Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics (United States)

    McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.


    An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.

  20. Global Patterns of Tectonism on Titan from Mountain Chains and Virgae (United States)

    Cook, C.; Barnes, J. W.; Radebaugh, J.; Hurford, T.; Ktatenhorn, S. A.


    This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display patterns of surface tectonic features that imply global stress fields driven or modified by global forces. Patterns such as these are seen in Europa's tidally induced fracture patterns, Enceladus's tiger stripes, and Ganymede's global expansion induced normal fault bands. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays possible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored dark linear streaks termed virgae by the IAU. Imaged by Cassini with the RADAR instrument, mountain chains near the equator are observed with a predominante east-west orientation (Liu et al. 2012, Mitri et al. 2010). Orientations such as these can be explained by modifications in the global tidal stress field induced by global contraction followed by rotational spin-up. Also, due to Titan's eccentric orbit, its current rotation rate may be in an equilibrium between tidal spin-up near periapsis and spin-down near apoapsis (Barnes and Fortney 2003). Additional stress from rotational spin-up provides an asymmetry to the stress field. This, combined with an isotropic stress from radial contraction, favors the formation of equatorial mountain chains in an east-west direction. The virgae, which have been imaged by Cassini with both the Visual and Infrared Mapping Spectrometer (VIMS) and Imaging Science Subsystem (ISS) instruments, are located predominately near 30 degrees latitude in either hemisphere. Oriented with a pronounced elongation in the east-west direction, all observed virgae display similar characteristics: similar relative albedos as the surrounding terrain however darkened with an apparent neutral absorber, broken-linear or rounded sharp edges, and connected, angular elements

  1. The quasi-rigid premise in Precambrian tectonics (United States)

    Piper, J. D. A.


    A simple test of the proposition that movements between multiple continental fragments driven by plate tectonics took place during the earlier eons of geological time is presented. A random distribution is derived when the collective palaeomagnetic poles are rotated into any quasi-rigid reconstruction. The test surmounts the most serious limitation of Precambrian palaeomagnetic data, namely, that the ages of magnetization are mostly poorly known. Confirmation of the quasi-rigid premise is derived in a debased form, but is not suppressed, by the deficiencies of the database. This palaeomagnetic constraint explains the distinctive isotopic, geochemical, and lithofacies signatures of the Proterozoid eon and is independently supported by the trend and long temporal continuity of crustal lineaments.

  2. Miocene Tectonics at the Pannonian - Carpathian Transition: The Bogdan Voda - Dragos Voda fault system, northern Romania (United States)

    Tischler, M.; Gröger, H.; Marin, M.; Schmid, S. M.; Fügenschuh, B.


    Tertiary tectonics in the Pannonian-Carpathian transition zone was dominated by opposed rotations of Alcapa and Tisza-Dacia, separated by the Mid-Hungarian lineament (MHL). While in the Pannonian basin the MHL is well known from geophysical and borehole data, its northeastern continuation remains a matter of discussion. Our field based study, located in the Maramures mountains of northern Romania, provides new kinematic data from the Bogdan Voda fault, a first order candidate for the prolongation of the MHL to the northeast. In the Burdigalian, the Pienides (unmetamorphic flysch nappes) were emplaced onto the autochthonous Paleogene flysch units. Kinematic data consistently indicate top to the SE-directed thrusting of the Pienides and selected imbrications in the autochthonous units. Between Langhian and Tortonian these thrust contacts were offset by the E-W trending Bogdan Voda fault and its eastern continuation, the Dragos-Voda fault. These two faults share a common polyphase history, at least since the Burdigalian. Kinematic data derived from mesoscale faults indicate sinistral strike-slip displacement, in good agreement with kinematics inferred from map view. The NE-SW trending Greben fault, another fault of regional importance, was coevally active as a normal fault. From stratigraphic arguments major activity of this fault system is constrained to the time interval between 16.4-10 Ma. While deformation is strongly concentrated in the sedimentary units, the easterly located basement units are affected by abundant minor faults of similar kinematics covering a wide area. These SW-NE trending strike slip faults feature a normal component and resemble an imbricate fan geometry. Since Burdigalian thrusting is consistently SE-directed on either side of the Bogdan-Dragos Voda fault, major post-Burdigalian differential rotations can be excluded for the northern and southern block respectively. Hydrothermal veins within Pannonian volcanic units are aligned along the

  3. Rotating Cavitation Supression Project (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  4. Post late Paleozoic tectonism in the Southern Catalan Coastal Ranges (NE Spain), assessed by apatite fission tracks analysis

    NARCIS (Netherlands)

    Juez-Larré, J.; Andriessen, P.A.M.


    We report the first apatite fission-track thermochronologic data for 17 samples from the southern Catalan Coastal Ranges of NE Spain. Thermal histories of Carboniferous metasediments, Late Hercynian intrusions and Lower-Triassic Buntsandstein sediments from three tectonics blocks, Miramar, Prades

  5. Seismicity and tectonics of Bangladesh

    International Nuclear Information System (INIS)

    Hossain, K.M.


    Northern and eastern Bangladesh and surrounding areas belong to a seismically active zone and are associated with the subduction of the Indian plate. The seismicity and tectonics have been studied in detail and the observations have been correlated to understand the earthquake phenomenon in the region. The morphotectonic behaviour of northern Bangladesh shows that it is deeply related to the movement of the Dauki fault system and relative upliftment of the Shillong plateau. Contemporary seismicity in the Dauki fault system is relatively quiet comparing to that in the Naga-Disang-Haflong thrust belt giving rise to the probability of sudden release of energy being accumulated in the vicinity of the Dauki fault system. This observation corresponds with the predicted average return period of a large earthquake (1897 type) and the possibility of M > 8 earthquake in the vicinity of the Dauki fault within this century should not be ruled out. The seismicity in the folded belt in the east follows the general trend of Arakan-Yoma anticlinorium and represents shallow and low-angled thrust movements in conformity with the field observation. Seismotectonic behaviour in the deep basin part of Bangladesh demonstrates that an intraplate movement in the basement rock has been taking place along the deep-seated faults causing relative upliftment and subsidence in the basin. Bangladesh has been divided into three seismic zones on the basis of morphotectonic and seismic behaviour. Zone-I has been identified as the zone of high seismic risk. (author). 43 refs, 5 figs, 3 tabs

  6. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole


    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break with the indu......Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...... an increased customisation of casting moulds. The hypothesis of this research is that the techniques used in this research do not fully address the tectonic potentials of concrete which gives rise to the primary research question: Is it possible to enhance existing or develop new concrete casting techniques...

  7. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak


    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  8. Tectonic vocabulary and materialization: Discourse on the future of tectonic architectural research in the Nordic countries

    DEFF Research Database (Denmark)

    Beim, Anne; Bundgaard, Charlotte; Hvejsel, Marie Frier


    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... to establish a Nordic Network for Research and Teaching in Tectonics is currently forming. This paper seeks to jointly reflect upon these initiatives in order to bring them further, with the intention to clad a discourse on the future of tectonic architectural research that addresses the conditions of everyday...

  9. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.


    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  10. The revised tectonic history of Tharsis (United States)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand


    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  11. Alignment of suprathermally rotating grains (United States)

    Lazarian, A.


    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.

  12. Strike-slip and extrusion tectonics of the Greater Caucasus-Kopetdagh region (United States)

    Kopp, M. L.


    In the Paleogene-Early Miocene, the areas of the modern Greater Caucasus and Kopetdagh were occupied by marginal seas (parts of the Paratethys intracontinental sea) inheriting the Cretaceous back-arc basins. In the Early Miocene, a collisional compression of the seas began at the time when the Arabian plate detached from Africa to move northward. The compression proceeded in a good accordance with the Arabia movement that was manifested in a general synchroneity of the Late Alpine orogenies in the Caucasus and Kopetdagh with the rifting and spreading phases in the Aden Gulf and the Red Sea. The earliest orogeny was the Styrian one of the terminal Early Miocene. It corresponds to the initial stage of the rift opening and was mostly pronounced in the east, in Kopetdagh and East Iran, where a recent structure has been formed by the initial Middle Miocene. In the Greater Caucasus, the Styrian deformations occurred in its central part only (i.e., in front of the Arabian plate northern tip) where the main Caucasian thrusts and conjugate asymmetrical megaanticline of the Central Caucasus were formed. An essential feature of the earliest, Styrian, structure of the whole Caucasus-Kopetdagh region was a series of regional right-lateral strike-slip faults. In the Kopetdagh, the strike-slips have no submeridional but northwestern direction although they occurred in the northern continuation of the submeridional right-lateral strike-slip faults framing the Lut block. In the Caucasus, they became even sublatitudinal, in parallel with the North Anatolian fault, thus constituting a single domain with the latter. So, the right-lateral strike-slip faults of East Iran, Kopetdagh, and the Caucasus compose an extensive arc convex to the north and appeared probably as a result of the right-lateral shear caused by the known counterclockwise rotation of the Arabian lithospheric plate. The Middle Miocene was characterized by a tectonic pause both in the Red Sea-Aden rift system and in the

  13. Rotational Seismology: AGU Session, Working Group, and Website (United States)

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.


    . Igel, W.H.K. Lee, and M. Todorovska during the 2006 AGU Fall Meeting. The goal of this session was to discuss rotational sensors, observations, modeling, theoretical aspects, and potential applications of rotational ground motions. The session was accompanied by the inauguration of an International Working Group on Rotational Seismology (IWGoRS) which aims to promote investigations of all aspects of rotational motions in seismology and their implications for related fields such as earthquake engineering, geodesy, strong-motion seismology, and tectonics, as well as to share experience, data, software, and results in an open Web-based environment. The primary goal of this article is to make the Earth Science Community aware of the emergence of the field of rotational seismology.

  14. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang


    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  15. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  16. Numbers of center points appropriate to blocked response surface experiments (United States)

    Holms, A. G.


    Tables are given for the numbers of center points to be used with blocked sequential designs of composite response surface experiments as used in empirical optimum seeking. The tables also give the star point radii for exact orthogonal blocking. The center point options vary from a lower limit of one to an upper limit equal to the numbers proposed by Box and Hunter for approximate rotatability and uniform variance, and exact orthogonal blocking. Some operating characteristics of the proposed options are described.

  17. Palaeomagnetism and magnetic properties of the Cappadocian ignimbrite succession, central Turkey and Neogene tectonics of the Anatolian collage (United States)

    Piper, J. D. A.; Gürsoy, H.; Tatar, O.


    The Cappadocian ignimbrite succession of central-southern Anatolia comprises at least nine major and two minor calc-alkaline rhyolitic sheets emplaced at 1-2-Ma intervals between 11.2 and 1.1 Ma. It records the last phase of Neotethyan subduction during final emplacement of the Tauride orogen in southern Turkey. This study reports magnetostratigraphy and describes associated rock magnetic properties. Remanence resides in Ti-poor titanomagnetites. Haematisation is locally produced by post-emplacement oxidation but does not contribute significantly to the palaeomagnetic signature although secondary processes within the ignimbrite sheets have produced composite isothermal remanent magnetisation spectra and variable intensities of magnetisation. Weak anisotropy of magnetic susceptibility describes tensors with maximum axes close to bedding and minimum axes perpendicular to this plane. Directions of kmax with weak imbrication mostly suggest flow away from centres of eruption located by gravity and remote sensing. Older ignimbrites (Upper and Lower Göreme, Akdag-Zelve) from the Çardak Centre are all of normal polarity. Later ignimbrites, partly erupted from the Derinkuyu Centre, comprise the Sarımaden (R), Cemilköy (R), Tahar (R), Kızılkaya (R), Incesu (N) and Valibaba-Sofular (R) ignimbrites. The overall (reversed) group mean is D/ I=174/-51° ( N=10 units, R=9.84, α95=6.6°, k=55) and all magnetisation directions from the Upper Göreme (9.0 Ma) onwards are rotated anticlockwise with respect to Eurasian and African palaeofields. This sense of rotation characterises most of central Anatolia and averages 9±5° in this sector. The rotation rate from 8 to 1 Ma BP was ˜1.25°/Ma but it appears to have accelerated during the latter part of the Quaternary to about an order higher than rates determined from GPS. Rotation has resulted from extrusion of fault blocks during tectonic escape of the Anatolian collage to the southwest and followed crustal thickening as the

  18. Palaeomagnetism of the Cappadocian Volcanic Succession, Central Turkey: Major ignimbrite emplacement during two short (Miocene) episodes and Neogene tectonics of the Anatolian collage (United States)

    Piper, J. D. A.; Koçbulut, F.; Gürsoy, H.; Tatar, O.; Viereck, L.; Lepetit, P.; Roberts, A. P.; Akpınar, Z.


    Chron (2.58-3.60 Ma). All pre-İncesu ignimbrites are rotated uniformly anticlockwise and the overall (reversed) group mean direction of magnetisation is D/I = 170.8/- 52.4° (N = 9, R = 8.91, α95 = 5.4°, k = 91). The implied tectonic rotation in this sector of central Anatolia (16 ± 4° relative to Eurasia) is young and postdates the 5.3-7.1 Ma Acıgöl Centre whilst largely predating emplacement of the İncesu ignimbrite. Whilst rotational deformation within Anatolia is young, it proves to be distributed with a temporal variation from block to block. It is embraced by a complex post-Miocene tectonic regime of strike slip and extension during tectonic escape and suction towards the Hellenic Arc to the west.

  19. Interpretation of remagnetization directions by Small Circle methods. Application to various tectonic problems (United States)

    José Villalaín, Juan; Casas, Antonio; Calvín, Pablo; Soto-Marín, Ruth; Torres, Sara; Moussaid, Bennacer


    Secondary magnetizations have been used to constraint geological models in spite of the difficulties of dating the remanence age and the uncertainty in applying the valid tectonic correction, specially if the remagnetization is syntectonic. The fold test is the main tool used traditionally to identify and interpret remagnetization. In particular, the incremental fold test has been applied to attempt calculating the appropriate tectonic correction in synfolding remanences. However the fold test assumes symmetrical deformation giving erroneous solutions when dealing with asymmetrical folding. This strongly limits the use of the fold test because asymmetric tectonic evolution is very common in different geological processes. Therefore, it is necessary to use alternative techniques for analyzing remagnetization directions. In this sense, the use of small circles (SC) represents a very interesting option because it allows considering asymmetric deformations and degrees of freedom which fold test restricts. A SC is defined by a complete rotation of the in situ site mean paleomagnetic direction about the strike of bedding (i.e. the apical angle of its cone is the angle between the paleomagnetic vector and the strike of beds). In this presentation we analyze the use of SC for analysis of remagnetization directions in two phases: a) determination of the magnetic field direction at the remagnetization acquisition time by calculating the SC intersection (SCI) by methods described by Shipunov (1997) or Waldhör and Appel (2006). This obtained direction can be used to date the remagnetization by comparison with the APWP, but also as reference direction for restoration of the rotated remagnetization directions. And b) calculation of the bedding plane at the moment of the acquisition of the remagnetization (paleodip) by restoring the in situ remagnetization directions using each SC as described Villalaín et al. (2003), Henry et al. (2004) and Villalaín et al. (2015). In this

  20. Tectonic evolution of the Cretaceous Ankara Ophiolitic Mélange during the Late Cretaceous to pre-Miocene interval in Central Anatolia, Turkey (United States)

    Rojay, Bora


    The chaotic tectonic belt, which is distinguished in northern Anatolia, is called the - Ankara Accretionary Complex - in the Ankara region, central Anatolia. The belt is differentiated into three imbricated tectonic subbelts, namely, pre-Triassic metamorphics, Mélange with calcareous blocks and Cretaceous mélange with ophiolitic blocks (Ankara Ophiolitic Mélange). The Ankara Ophiolitic Mélange (AOM) is a chaotic tectono-sedimentary mixture made up of detached blocks of Mesozoic ultramafic rocks, Cretaceous pillow basalts, Cretaceous radiolarites, Upper Jurassic-Cretaceous limestones and closely associated Upper Cretaceous basinal sequences. The detached and dismembered blocks lie within a highly sheared and brecciated ophiolitic detrital matrix or a block-on-block to sheared sedimentary matrix that varies along the mélange belt. Cenomanian-Turonian and Turonian-Santonian trench-linked basin deposits onlap the Cenomanian sedimentary and Cretaceous ophiolitic mélanges. The elements of the ophiolitic mélange were comixed as a result of tectonic recycling in the accretionary wedge. The belt is unconformably overlain by Campanian-Maastrichtian to Paleogene accretionary fore-arc basin deposits. The AOM developed in an accretionary wedge setting in which oceanic leading edge of the Anatolide-Tauride platform subducted toward north during the post-Barremian-pre-Campanian period. The AOM emplaced episodically and progressively as a result of in thrust tectonics with vergence ranging from SSW to SE during the post-Turonian to pre-Miocene in the Ankara terrain.

  1. Tectonic evolution of the South Fiji Basin: UNCLOS helps tackle regional tectonics (United States)

    Herzer, R.; Roest, W.; Barker, D.; Mortimer, N.; Mauffret, A.; Lafoy, Y.


    Marine surveys to study the evolution of remnant arcs and backarc basins north of New Zealand have been complemented by UNCLOS surveys by three countries - France, New Zealand and Australia - with potential extended continental shelf claims in the region. The UNCLOS factor allowed 9 cruises to focus on the region in the past 9 years, collecting approximately 30,000 km of seismic reflection (5,000 deep crustal), 263,700 sq km of swath bathymetry, and 70 dredge samples. Feedback through sharing or publishing data and joint participation allowed efficient planning and deployment of academic and UNCLOS cruises. Two models for South Fiji (SFB) and Norfolk (NB) basin evolution arise from current studies: at the level of the Three Kings Ridge - NB - southern SFB both involve Pacific trench roll-back and southward propagating spreading, but one also uses two subduction systems and arc-continent collision. Linked spreading of the NB and SFB is invoked in both models, but the veracity and geodynamics of the link are not investigated. A growing body of petrological and radiometric evidence and the tectonics of the New Zealand continental margin point to tandem Early Miocene spreading of the SFB and NB despite published magnetic interpretations that would confine SFB spreading to the Oligocene. The Franco-NZ NOUCAPLAC-1 cruise, the last cruise relevant to UNCLOS in this region, included a scientific objective to investigate the SFB-NB link in the critical area bounded by the Loyalty Ridge (LR), the Cook Fracture Zone (CFZ), the Bounty spreading centre (BSC) and the Julia Lineament (JL) with swath mapping, magnetics and seismic reflection. Initial results show a complex bathymetry where a possible link between the BSC and the CFZ involves ridge propagation, overlapping spreading centres, rift blocks and overprinting volcanoes. The link to the JL was not adequately tested due to sparse coverage. Closer to the LR, a thick, faulted sedimentary basin was found.

  2. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan


    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  3. Estimation of the Rotational Terms of the Dynamic Response Matrix

    Directory of Open Access Journals (Sweden)

    D. Montalvão


    Full Text Available The dynamic response of a structure can be described by both its translational and rotational receptances. The latter ones are frequently not considered because of the difficulties in applying a pure moment excitation or in measuring rotations. However, in general, this implies a reduction up to 75% of the complete model. On the other hand, if a modification includes a rotational inertia, the rotational receptances of the unmodified system are needed. In one method, more commonly found in the literature, a so called T-block is attached to the structure. Then, a force, applied to an arm of the T-block, generates a moment together with a force at the connection point. The T-block also allows for angular displacement measurements. Nevertheless, the results are often not quite satisfactory. In this work, an alternative method based upon coupling techniques is developed, in which rotational receptances are estimated without the need of applying a moment excitation. This is accomplished by introducing a rotational inertia modification when rotating the T-block. The force is then applied in its centroid. Several numerical and experimental examples are discussed so that the methodology can be clearly described. The advantages and limitations are identified within the practical application of the method.

  4. Tectonic evolution, structural styles, and oil habitat in Campeche Sound, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Angeles-Aquino, F.J.; Reyes-Nunez, J.; Quezada-Muneton, J.M.; Meneses-Rocha, J.J. [Pemex Exploracion-Produccion, Mexico City (Mexico)


    Campeche Sound is located in the southern part of the Gulf of Mexico. This area is Mexico`s most important petroleum province. The Mesozoic section includes Callovian salt deposits; Upper Jurassic sandstones, anhydrites, limestones, and shales; and Cretaceous limestones, dolomites, shales, and carbonate breccias. The Cenozoic section is formed by bentonitic shales and minor sandstones and carbonate breccias. Campeche Sound has been affected by three episodes of deformation: first extensional tectonism, then compressional tectonism, and finally extensional tectonism again. The first period of deformation extended from the middle Jurassic to late Jurassic and is related to the opening of the Gulf of Mexico. During this regime, tilted block faults trending northwest-southwest were dominant. The subsequent compressional regime occurred during the middle Miocene, and it was related to northeast tangential stresses that induced further flow of Callovian salt and gave rise to large faulted, and commonly overturned, anticlines. The last extensional regime lasted throughout the middle and late Miocene, and it is related to salt tectonics and growth faults that have a middle Miocene shaly horizon as the main detachment surface. The main source rocks are Tithonian shales and shaly limestones. Oolite bars, slope and shelf carbonates, and regressive sandstones form the main reservoirs. Evaporites and shales are the regional seals. Recent information indicates that Oxfordian shaly limestones are also important source rocks.

  5. Reducing risk where tectonic plates collide (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.


    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  6. A planetary perspective on Earth evolution: Lid Tectonics before Plate Tectonics (United States)

    Piper, John D. A.


    Plate Tectonics requires a specific range of thermal, fluid and compositional conditions before it will operate to mobilise planetary lithospheres. The response to interior heat dispersion ranges from mobile lids in constant motion able to generate zones of subduction and spreading (Plate Tectonics), through styles of Lid Tectonics expressed by stagnant lids punctured by volcanism, to lids alternating between static and mobile. The palaeomagnetic record through Earth history provides a test for tectonic style because a mobile Earth of multiple continents is recorded by diverse apparent polar wander paths, whilst Lid Tectonics is recorded by conformity to a single position. The former is difficult to isolate without extreme selection whereas the latter is a demanding requirement and easily recognised. In the event, the Precambrian palaeomagnetic database closely conforms to this latter property over very long periods of time (~ 2.7-2.2 Ga, 1.5-1.3 Ga and 0.75-0.6 Ga); intervening intervals are characterised by focussed loops compatible with episodes of true polar wander stimulated by disturbances to the planetary figure. Because of this singular property, the Precambrian palaeomagnetic record is highly effective in showing that a dominant Lid Tectonics operated throughout most of Earth history. A continental lid comprising at least 60% of the present continental area and volume had achieved quasi-integrity by 2.7 Ga. Reconfiguration of mantle and continental lid at ~ 2.2 Ga correlates with isotopic signatures and the Great Oxygenation Event and is the closest analogy in Earth history to the resurfacing of Venus. Change from Lid Tectonics to Plate Tectonics is transitional and the geological record identifies incipient development of Plate Tectonics on an orogenic scale especially after 1.1 Ga, but only following break-up of the continental lid (Palaeopangaea) in Ediacaran times beginning at ~ 0.6 Ga has it become comprehensive in the style evident during the

  7. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  8. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong


    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  9. Rotating out-of-plane micromirror (United States)

    Oak, Sahil; Edmiston, Greg; Sivakumar, Ganapathy; Ramirez, Gabriel; Dallas, Tim


    This paper presents a novel, micro-actuated system for beam steering or optical multiplexing applications. The system consists of polysilicon micromirror which is held at ~45° angle on a gear which has a rotational freedom of 360°. In this work, we use serpentine springs attached to a mirror with position specific "catch blocks" to hold the mirror at a desired angle on top of a rotating gear. Out-of-plane assembly is achieved using a simple, postprocessing procedure. The mirror platform is driven by an electrostatically actuated rotary drive. The mirror was tested for robustness and optical performance. Good correlation was found between experiment and various simulations.

  10. Extensional Seismogenic Stress and Tectonic Movement on the Central Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiren Xu


    Full Text Available Various earthquake fault types, mechanism solutions and stress fields, as well as GPS and geothermal data are analyzed for the study of the crustal movements on the Tibetan plateau and their tectonic implications. The results show that a lot of the normal faulting type-event concentrated at altitudes greater than 4000 m on the central Tibetan plateau. The altitudes concentrating normal faulting type-events can be zoned two parts: the western part, the Lhasa block, and the eastern part, the Qiangtang-Changdu region. The azimuths of T-axes are in a general E-W direction in the Lhasa block and NW-SE or NNW-SSE in the Qiangtang-Changdu region at the altitudes of the Tibetan plateau. The tensional stresses in E-W direction and NW-SE direction predominate normal faulting earthquake occurrence in the Lhasa block and the Qiangtang-Changdu region, respectively. The slipping displacements of the normal-faulting-type events have great components in near E-W direction and NW-SE direction in the Lhasa block and the Qiangtang-Changdu region, respectively. The extensions are probably an eastward or southeastward extensional motion, being mainly tectonic activity phenomena in the plateau altitudes. The extensional motions due to normal-fault earthquakes are important tectonic activity regimes on the high altitudes of the plateau. The easterly crustal extensions on the plateau are attributable to the gravitational collapse of the high plateau and eastward extrusion of hotter mantle materials beneath the eastern boundary of the plateau. Numbers of thrust-fault and strike-slip-fault earthquakes with strong compressive stress in a general NNE-SSW direction occur on the edges of the plateau.

  11. Provenance, tectonic setting and source-area weathering of the ...

    Indian Academy of Sciences (India)

    s12040-017-0803-5. Provenance, tectonic setting and source-area weathering of the lower Cambrian ... (2010) carried out detrital zircon studies in order to correlate ...... and tectonic evolution of the Central Asian Orogenic Belt;. Chinese Sci. Bull.

  12. A Paleomagnetic study on the tectonic evolution of the Nigde-Kirsehir massif and the Taurides since the Mesozoic-Cenozoic (United States)

    Cengiz Cinku, M.; Mumtaz Hisarli, Z.; Hirt, A. M.; Ulker, B.; Oksum, E.; Kaya, N.; Setzer, F.; Yilmaz, Y.-; Orbay, N.


    The main tectonic domains of Turkey consist of several different assemblages of microcontinents represented by the Istranca massif, Istanbul Zone, Sakarya Zone, Nigde-Kirsehir Massif, Anatolide-Tauride block, and the Arabian platform. It is widely reported that the borders between these fragments are represented by suture zones, which resulted from the closure of different branches of the Neotethian Ocean. The northern suture zone, the Izmir-Ankara-Erzincan suture zone, is well known, whereas the suture zone between the Nigde-Kirsehir massif and the Taurides has been a subject of debate. It has been proposed that the Nigde-Kirsehir massif rifted from the Taurides-Anatolides in the Mesozoic and that the Intra-Tauride Ocean lay between these blocks. Other researchers have alternatively proposed that the Intra-Tauride Ocean between the Taurides-Anatolides and the Nigde-Kirsehir massif never existed, and assume that the it is a promontory of the Taurides. Paleomagnetic rotations obtained from a previous study indicate oroclinal bending in the Late Cretaceous in the northern part of the Nigde-Kirsehir massif due to its northwards indentation onto the Sakarya zone. However the southern deformation history of the Nigde-Kirsehir massif during Mesozoic has not been investigated. We have carried out a paleomagnetic study on the southern part of the massif, using a total of 120 sites that are of Late Jurassic to Miocene in age, to constrain the paleotectonic evolution of the Nigde-Kirsehir massif and its surrounding area. A paleolatitude of 17°N is obtained for the Late Jurassic-Lower Cretaceous Tauride carbonate platform, whereas Late Cretaceous arc volcanics from the suture zone around the Nigde-Kirsehir massif (Mersin ophiolite, Pozanti ophiolite) indicate a ~20°N paleolatitude. Both the Late Jurassic to Middle Eocene paleomagnetic declinations from the southeastern part of the investigation area indicates counterclockwise rotation, whereas Late Cretaceous declinations

  13. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    A new 3-parameter family of homogeneous 2-by-2 block shifts is described. These are the first examples of irreducible homogeneous bilateral block shifts of block size larger than 1. Author Affiliations. Adam Korányi1. Department of Mathematics, The Graduate Center, City University of New York, New York, NY 10016, USA ...


    Directory of Open Access Journals (Sweden)

    M. M. Buslov


    Full Text Available The terrain analysis concept envisages primarily a possibility of approximation of fragments / terrains of various geodynamic settings which belong to different plates. The terrain analysis can supplement the theory of plate tectonics in solving problems of geodynamics and tectonics of regions of the crust with complex structures. The Central Asian belt is among such complicated regions. Terrain structures occurred as a result of combined movements in the system of 'frontal' and/or oblique subduction – collision. In studies of geological objects, it is required first of all to prove their (vertical and horizontal autochthony in relations to each other and then proceed to paleogeodynamic, paleotectonic and paleogeographic reconstructions. Obviously, such a complex approach needs data to be obtained by a variety of research methods, including those applied to study geologic structures, stratigraphy, paleontology, paleogeography, lithothlogy, geochemistry, geochronology, paleomagnetism etc. Only by correlating such data collected from inter-disciplinary studies of the regions, it is possible to establish reliable characteristics of the geological settings and avoid mistakes and misinterpretations that may be associated with the 'stratigraphic' approach to solutions of both regional and global problems of geodynamics and tectonics of folded areas. The terrain analysis of the Central Asian folded belt suggests that its tectonic structure combines marginal continental rock complexes that were formed by the evolution of two major oceanic plates. One of them is the plate of the Paleo-Asian Ocean. As the analogue of the current Indo-Atlantic segment of Earth, it is characterised by the presence of continental blocks in the composition of the oceanic crust and the formation of oceanic basins resulting from the breakup of Rodinia and Gondvana. In the course of its evolution, super-continents disintegrated, and the blocks were reunited into the Kazakhstan

  15. Plate Tectonics and Continental Drift: Classroom Ideas. (United States)

    Stout, Prentice K.


    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  16. 3D monitoring of active tectonic structures

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Košťák, Blahoslav; Vilímek, V.


    Roč. 36, 1-2 (2003), s. 103-112 ISSN 0264-3707 R&D Projects: GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z3046908 Keywords : tectonics * monitoring * active structures Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.754, year: 2003

  17. Radial Extension, Prototypicality, and Tectonic Equivalence

    Directory of Open Access Journals (Sweden)

    Shaver Stephen R.


    Full Text Available In his book “Without Metaphor, No Saving God: Theology After Cognitive Linguistics”, Robert Masson describes a metaphoric process by which newly accepted truths emerge: for example, in the assertion “Jesus is the Messiah,” Christians reconfigure the field of meanings associated with an existing concept from the Hebrew scriptures (messiah by asserting its identification with Jesus. Masson dubs this process a “tectonic equivalence” or “tectonic shift.” In this paper I build on Masson‘s work by examining some of the shifts he describes as tectonic through the lens of the cognitive linguistics concepts of radial extension and polysemy. I propose that a lasting tectonic shift may be understood as a blend creating a radial extension that substantially alters the category structure of the original source frame so that the blended space comes to be understood as a central instance of that category. Such an approach allows a fruitful analysis of the similarities and differences among three example blends: god is a rock, jesus is the messiah, and jesus is god.

  18. Discriminating four tectonic settings: Five new geochemical ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data. Surendra P Verma Mirna Guevara Salil Agrawal. Volume 115 Issue 5 October 2006 ...

  19. The Phenomenology and Tectonics of Making

    DEFF Research Database (Denmark)

    Carter, Adrian


    “The material, detail and structure of a building is an absolute condition. Architecture’s potential is to deliver authentic meanings in what we see, touch and smell; the tectonic is ultimately central to what we feel” Steven Holl...

  20. Tectonic studies in the Lansjaerv region

    International Nuclear Information System (INIS)

    Henkel, H.


    This report contains the results and the analysis of ground geophysical measurements and the tectonic interpretation in the 150x200 km Lansjaerv study area. It describes the data and methods used. The significance of strike slip fault patterns in relation to the surface morphology is discussed. The obtained results are used to suggest a tentative model for the present tectonic deformation. The report is part of the bedrock stability programme of SKB. The major conclusions regarding the tectonic structure are: Three regional fault systems are identified, two steep NW and N trending and a third NNE trending with gentle ESE dips, the steep fault systems have strike slip generated deformation patterns both in the Precambrian structures and in the surface morphology, the post-glacial faults of the area are part of this fault pattern and represent movements mainly on reactivated, gently dipping zones, several suspected late or post-glacial, fault related features are found along the steep NW and N faults. Sites for drilling and geodetic networks for deformation measurements are suggested. Detailed background data are documented in additional 4 reports. The basic geophysical and geological datasets are documented in color plotted 1:250 000 maps. A tectonic interpretation map in the same scale has been produced by combined interpretation of magnetic, elevation, elevation relief and gravity data. (orig./HP) With 6 maps

  1. Geomorphological features of active tectonics and ongoing ...

    Indian Academy of Sciences (India)

    floods, cloud-bursts and earthquakes. Slopes in the region were formed by combining the effect of geomorphic, tectonic and climatic process and the landslides frequently occurring during the monsoon. The highly deformed, fractured and shattered rocks of Great Himalaya and the prox- imity of active thrusts and fault zones ...

  2. Structure and tectonics of convergent plate margins

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš (ed.); Čadek, O. (ed.); Engdahl, E. R. (ed.)


    Roč. 141, č. 4 (2004), s. 241 ISSN 0031-9201 R&D Projects: GA AV ČR KSK3012103 Keywords : tectonics * subduction * convergent margins Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.370, year: 2004

  3. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf


    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  4. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel


    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  5. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos


    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  6. Visualizing molecular unidirectional rotation (United States)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian


    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  7. Overview of geology and tectonic evolution of the Baikal-Tuva area. (United States)

    Gladkochub, Dmitry; Donskaya, Tatiana


    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.

  8. Tectonic setting of the Great Dyke, Chembadzi, Chewore and Atchiza layered complexes in Zimbabwe and Mozambique

    International Nuclear Information System (INIS)

    Master, S.


    The Great Dyke of Zimbabwe is one of the largest ultramafic-mafic layered igneous complexexs in the world. Because of the economic importance of large layered intrusions like the Great Dyke, their tectonic setting is of great interest. The Chembadzi complex is a 14 km long, dyke-like layered intrusion up to 800m wide. The Chewore complex, which was thought to have the structure of an irregular lopolith, outcrops over an area of about 200 km in horst blocks in the lower Zambezi Valley in northern Zimbabwe. The Atchiza complex is situated just north of the Cahora Bassa lake and the Zambezi River valley in Mozambique. In considering the tectonic setting of the Great Dyke and its correlatives, most attention has been focussed on events in the Limpopo Mobile Belt, which were responsible for producing the fractures in the Zimbabwe craton that is occupied by the intrusives. 39 refs

  9. Early development of the south Central American margin: mechanisms and tectonic implications (United States)

    Buchs, D. M.; Baumgartner, P. O.; Arculus, R.; Montes, C.; Bayona, G.; Cardona, A.


    regional unconformity in the forearc, migration of the Panamanian volcanic front and increased (apparent) rates of seamount accretion. This event may relate to large-scale plate reorganisation in the Pacific. New tectonostratigraphic, paleomagnetic, geochemical and geochronologic data from east Panama indicate that the easternmost margin was subsequently segmented and bended by a combination of strike-slip faulting, block rotation and orocline tightening. The segmentation suggests incipient collision of the south Central American arc with South America in the Late Eocene. This is much prior to Middle Miocene age indicated by an unconformity in the Chucunaque-Tuira basin at the eastern border of the margin, or Pliocene age associated to inter-American exchanges of terrestrial fauna and changes in the global ocean circulation.

  10. From transpressional to transtensional tectonics in Northern Central America controlled by Cocos - Caribbean subduction coupling change (United States)

    Alonso-Henar, Jorge; Alvarez-Gomez, José Antonio; Jesús Martinez-Diaz, José


    The Central American Volcanic Arc (CAVA) is located at the western margin of the Caribbean plate, over the Chortís Block, spanning from Guatemala to Costa Rica. The CAVA is associated to the subduction of the Cocos plate under the Caribbean plate at the Middle America Trench. Our study is focused in the Salvadorian CAVA segment, which is tectonically characterized by the presence of the El Salvador Fault Zone (ESFZ), part of the western boundary of a major block forming the Caribbean plate (the Chortis Block). The structural evolution of the western boundary of the Chortis Block, particularly in the CAVA crossing El Salvador remains unknown. We have done a kinematic analysis from seismic and fault slip data and combined our results with a review of regional previous studies. This approach allowed us to constrain the tectonic evolution and the forces that control the deformation in northern Central America. Along the active volcanic arc we identified active transtensional deformation. On the other hand, we have identified two deformation phases in the back arc region: A first one of transpressional wrenching close to simple shearing (Miocene); and a second one characterized by almost E-W extension. Our results reveal a change from transpressional to transtensional shearing coeval with a migration of the volcanism towards the trench in Late Miocene times. This strain change could be related with a coupled to decoupled transition on the Cocos - Caribbean subduction interface, which could be related to a slab roll-back of the Cocos Plate beneath the Chortis Block. The combination of different degrees of coupling on the subduction interface, together with a constant relative eastward drift of the Caribbean Plate, control the deformation style along the western boundary of the Chortis Block.

  11. Source-to-Sink constraints on tectonic and sedimentary evolution of the Central Range, Cenderawasih Bay (Indonesia) and Gulf of Papua (Papua New Guinea) (United States)

    Babault, J.; Viaplana-Muzas, M.; Legrand, X.; Van Den Driessche, J.; González-Quijano, M.; Mudd, S. M.; Kergaravat, C.; Ringenbach, J. C.; Callot, J. P.; Vetel, W.; Dhont, D.


    The island of Papua New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. The tectono-sedimentary evolution of the Cenderawasih Bay, in the northwestern part of the island of Papua New Guinea (Indonesia), which links the Kepala Burung block to the Central Range is still poorly understood. Previous studies have shown that this bay contains a thick (> 8 km) sequence of undated sediments. Hypothesis claim that the embayment resulted from a 3 Ma aperture created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate, or from the southwest drift of a slice of volcanics/oceanic crust between 8 and 6 Ma. Using a source-to-sink approach, based on i) a geomorphologic analysis of the drainage network dynamics, ii) a reassessment of available thermochronological data, and iii) seismic lines interpretation, we suggest that sediments started to accumulate in the Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the beginning of the Central Range building at 12 Ma, resulting in sediment accumulation of up to 12200 m. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. From the unroofing paths in the Central Range we deduce two rates of solid phase accumulation (SPAR) since 12 Ma, the first one at a mean SPAR ranging between 0.12-0.25 mm/a with a maximum SPAR of 0.23-0.58 mm/a, and the second during the last 3 Ma, at a mean SPAR ranging between 0.93-1.62 mm/a and with a maximum SPAR between 2.13-3.17 mm/a, i.e., 6700-10000 m of Plio-Pleistocene sediment accumulation. Local transtensional tectonics may explain these unusually high rates of sedimentation in an overall sinistral oblique convergence setting. We further extended this approach to the Gulf of Papua (Papua New Guinea), a foreland basin developed

  12. The alternative concept of global tectonics (United States)

    Anokhin, Vladimir; Kholmyansky, Mikhael


    The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set


    Stamenkovic, V.; Noack, L.; Breuer, D.


    The last years of astronomical observation have opened the doors to a universe filled with extrasolar planets. Detection techniques still only offer the possibility to detect mainly Super-Earths above five Earth masses. But detection techniques do steadily improve and are offering the possibility to detect even smaller planets. The observations show that planets seem to exist in many possible sizes just as the planets and moons of our own solar system do. It is only a natural question to ask if planetary mass has an influence on some key habitability factors such as on plate tectonics, allowing us to test which exoplanets might be more likely habitable than others, and allowing us to understand if plate tectonics on Earth is a stable or a critical, instable process that could easily be perturbed. Here we present results derived from 1D parameterized thermal evolution and 2D/3D computer models, showing how planetary mass influences the propensity of plate tectonics for planets with masses ranging from 0.1 to 10 Earth masses. Lately [2, 3] studied the effect of planetary mass on the ability to break plates and hence initiate plate tectonics - but both derived results contradictory to the other. We think that one of the reasons why both studies [2, 3] are not acceptable in their current form is partly due to an oversimplification. Both treated viscosity only temperature-dependent but neglected the effect pressure has on enlarging the viscosity in the deep mantle. More massive planets have therefore a stronger pressure-viscosity-coupling making convection at high pressures sluggish or even impossible. For planets larger than two Earth masses we observe that a conductive lid (termed low-lid) forms above the core-mantle boundary and thus reduces the effective convective part of the mantle when including a pressure-dependent term into the viscosity laws as shown in [1]. Moreover [2, 3] use time independent steady state models neglecting the fact that plate tectonics is a

  14. Passive RFID Rotation Dimension Reduction via Aggregation (United States)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  15. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird


    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  16. Blocked randomization with randomly selected block sizes. (United States)

    Efird, Jimmy


    When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  17. 31 CFR 595.301 - Blocked account; blocked property. (United States)


    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM SANCTIONS REGULATIONS General Definitions § 595.301 Blocked account; blocked property. The terms blocked account and blocked...

  18. Boninites: Characteristics and tectonic constraints, northeastern Appalachians (United States)

    Kim, J.; Jacobi, R.D.


    Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the

  19. From Plate Tectonic to Continental Dynamics (United States)

    Molnar, P. H.


    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  20. MACMA: a Virtual Lab for Plate Tectonics (United States)

    Grigne, C.; Combes, M.; Tisseau, C.


    MACMA (Multi-Agent Convective MAntle) is a tool developed to simulate evolutive plate tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). The model relies mainly on a force balance to compute the velocity of each plate, and on empirical rules to determine how plate boundaries move and evolve. It includes first-order features of plate tectonics: (a) all plates on Earth do not have the same size, (b) subduction zones are asymmetric, (c) plates driven by subducting slabs and upper plates do not exhibit the same velocities, and (d) plate boundaries are mobile, can collide, merge and disappear, and new plate boundaries can be created. The MACMA interface was designed to be user-friendly and a simple use of the simulator can be achieved without any prerequisite knowledge in fluid dynamics, mantle rheology, nor in numerical methods. As a preliminary study, the simulator was used by a few students from bachelor's degree to master's degree levels. An initial configuration for plate tectonics has to be created before starting a simulation: the number and types of plate boundaries (ridge, subduction, passive margins) has to be defined and seafloor ages must be given. A simple but interesting exercise consists in letting students build such an initial configuration: they must analyze a map of tectonic plates, choose a 2-D section and examine carefully a map of seafloor ages. Students mentioned that the exercise made them realize that the 3-D spherical structure of plate tectonics does not translate directly in a simple 2-D section, as opposed to what is usually shown in books. Physical parameters: e.g. mantle viscosity, number of layers to consider in the mantle (upper and lower mantle, possible asthenosphere), initial time and mantle temperature, have to be chosen, and students can use this virtual lab to see how different scenarios emerge when parameters are varied. Very importantly, the direct visualization of the mobility of plate

  1. A proterozoic tectonic model for northern Australia and its economic implications

    International Nuclear Information System (INIS)

    Rossiter, A.G.; Ferguson, J.


    It is argued that at the end of Archaean time the Australian continent was confined to the area now occupied by the Yilgarn, Pilbara, Gawler, and Musgrave Blocks, and the southern part of the Arunta Block. During the Early Proterozoic, sedimentary and volcanic rocks were laid down in an extensive depositional zone trending roughly east-west along the northern margin of the Archaean continent. Copper and gold mineralization, commonly showing stratigraphic control, is widespread in this belt. Following deformation and metamorphism of the Early Proterozoic rocks, felsic and mafic igneous activity, and accumulation of platform sediments on the newly stabilized crust, a predominantly north-south depositional zone developed along the eastern margin of the continent during the Middle Proterozoic. Lead and zinc assume much more importance in the mineral deposits of this belt. It is postulated that the present positions of rocks of the Pine Creek and Georgetown regions are due to horizontal displacements of several hundred kilometres along major fault zones. Apparent rifting of these blocks away from palaeo-continental margins may be related to the occurrence of uraniferous granitic rocks and uranium mineralization within them via a mantle plume mechanism. Although current data are limited, tectonic environments suggested for Proterozoic mafic igneous rocks of northern Australia by their geochemistry are compatible with the geological settings of these rocks and with the tectonic model put forward. (author)

  2. Rotational Rebound Attacks on Reduced Skein

    DEFF Research Database (Denmark)

    Khovratovich, Dmitry; Nikolić, Ivica; Rechberger, Christian


    In this paper we combine two powerful methods of symmetric cryptanalysis: rotational cryptanalysis and the rebound attack. Rotational cryptanalysis was designed for the analysis of bit-oriented designs like ARX (Addition-Rotation-XOR) schemes. It has been applied to several hash functions and block...... ciphers, including the new standard SHA-3 (Keccak). The rebound attack is a start-from-the-middle approach for finding differential paths and conforming pairs in byte-oriented designs like Substitution-Permutation networks and AES. We apply our new compositional attack to the reduced version of the hash...... function Skein, a finalist of the SHA-3 competition. Our attack penetrates more than two thirds of the Skein core—the cipher Threefish, and made the designers to change the submission in order to prevent it. The rebound part of our attack has been significantly enhanced to deliver results on the largest...

  3. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan (United States)

    Van der Voo, Rob; Levashova, Natalia M.; Skrinnik, Ludmila I.; Kara, Taras V.; Bazhenov, Mikhail L.


    Most of Kazakhstan belongs to the central part of the Eurasian Paleozoic mobile belts for which previously proposed tectonic scenarios have been rather disparate. Of particular interest is the origin of strongly curved Middle and Late Paleozoic volcanic belts of island-arc and Andean-arc affinities that dominate the structure of Kazakhstan. We undertook a paleomagnetic study of Carboniferous to Upper Permian volcanics and sediments from several localities in the Ili River basin between the Tien Shan and the Junggar-Alatau ranges in southeast Kazakhstan. Our main goal was to investigate the Permian kinematic evolution of these belts, particularly in terms of rotations about vertical axes, in the hope of deciphering the dynamics that played a role during the latest Paleozoic deformation in this area. This deformation, in turn, can then be related to the amalgamation of this area with Baltica, Siberia, and Tarim in the expanding Eurasian supercontinent. Thermal demagnetization revealed that most Permian rocks retained a pretilting and likely primary component, which is of reversed polarity at three localities and normal at the fourth. In contrast, most Carboniferous rocks are dominated by postfolding reversed overprints of probably "mid-Permian" age, whereas presumably primary components are isolated from a few sites at two localities. Mean inclinations of primary components generally agree with coeval reference values extrapolated from Baltica, whereas declinations from primary as well as secondary components are deflected counterclockwise (ccw) by up to ˜ 90°. Such ccw rotated directions have previously also been observed in other Tien Shan sampling areas and in the adjacent Tarim Block to the south. However, two other areas in Kazakhstan show clockwise (cw) rotations of Permian magnetization directions. One area is located in the Kendyktas block about 300 km to the west of the Ili River valley, and the other is found in the Chingiz Range, to the north of Lake

  4. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E


    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  5. Public regulations towards a tectonic architecture

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due


    Public regulations can support tectonic architecture by changes to the tendering system, supporting new organizational structures of the building industry in public building projects and suggesting a focus on innovation through increased research and development activity. The Danish state......'s activities has primarily been to support the optimization of the building process through ‘trimmed building’ and ‘partnering’ that only takes the immediate economic benefits of the changes to the building process into account and as such has no measures for architectural quality. The public initiatives so...... are happening very slowly which is understandable when there is no economic incitement for the industry to change. A change of these public regulations from sticks to carrots could create the economic incitement for the building industry to create tectonic architecture and thereby develop the building industry...

  6. John F. Dewey—Tectonics Editor (United States)

    Richman, Barbara T.

    ‘I want the journal to acquire a reputation for very rapid, fair, and accurate reviewing,’ asserted John F. Dewey, editor-in-chief of AGU's newest journal, Tectonics. Dewey said that he will rule the bimonthly, which will begin publication in February, ‘with a bit of a rod of iron’ to ensure that Tectonics is ‘where only original and important papers are published.’‘I'm going to be very strict with reviewers,’ Dewey explained in his quick British clip. ‘If the review does not come back to me within 10 days to 2 weeks, I'll review the paper myself. I'm also going to have a system whereby, if a paper needs major surgery after being refereed, it will be rejected. Papers will have to be in virtually publishable condition before they are first submitted,’ he said.

  7. Plate tectonics drive tropical reef biodiversity dynamics (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc


    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  8. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P


    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  9. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier


    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  10. Tectonic Thinking in Contemporary Industrialized Architecture

    Directory of Open Access Journals (Sweden)

    Anne Beim


    Full Text Available This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction and how this attention forms a creative force in building constructions, structural features and architectural design (construing – helps to identify and refine technology transfer in contemporary industrialized building construction’. (This definition of tectonic thinking forms part of a large, central research project: Towards a tectonic sustainable building practice, that is presently (2010- 2014 executed in collaboration between; The Royal Danish Academy of Fine Arts – School of Architecture, Aarhus School of Architecture, and The Danish Building Research Institute.Through various references from the construction industry, business theory and architectural practice the paper offers various analyses, comparisons and concrete design approaches. How architectural design processes and the tectonic design can benefit from Integrated Product Deliveries, mass-customization and Design for Disassembly is examined and discussed. The paper concludes by presenting a series of arguments that call for adaptable systems based on sufficient numbers of industrialized building products of high quality and a great variety of suppliers, and point at the need for optimizing our use of resources in order to reach sustainable solutions in architecture.

  11. Generalized Block Failure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe


    Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...... shows that no readily available tests with a well-defined substantial eccentricity have been performed. This paper presents theoretical and experimental work leading towards generalized block failure capacity methods. Simple combination of normal force, shear force and moment stress distributions along...

  12. Hot-spot tectonics on Io (United States)

    Mcewen, A. S.


    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  13. Andean tectonics: Implications for Satellite Geodesy (United States)

    Allenby, R. J.


    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  14. Tectonic evolution of Lavinia Planitia, Venus (United States)

    Squyres, Steven W.; Frank, Sharon L.; Mcgill, George E.; Solomon, Sean C.


    High resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. Lavinia is a broad lowland over 2000 km across, centered at about 45 deg S latitude, 345 deg E longitude. Herein, the tectonic evolution of Lavinia is discussed, and its possible relationship to processes operating in the planet's interior. The discussion is restricted to the region from 37.3 to 52.6 deg S latitude and from about 340 to 0 deg E longitude. One of the most interesting characteristics of Lavinia is that the entire region possesses a regional tectonic framework of striking regularity. Lavinia is also transected by a complex pattern of belts of intense tectonic deformation known as ridge belts. Despite the gross topographic similarity of all of the ridge belts in Lavinia, they exhibit two rather distinct styles of near surface deformation. One is composed of sets of broad, arch-like ridges rising above the surrounding plains. In the other type, obvious fold-like ridges are rare to absent in the radar images. Both type show evidence for small amounts of shear distributed across the belts.

  15. A palaeomagnetic perspective of Precambrian tectonic styles (United States)

    Schmidt, P. W.; Embleton, B. J. J.


    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  16. The role of the Anaxagoras Mountain in the Miocene to Recent tectonic evolution of the eastern Mediterranean (United States)

    Colbourne, Mark; Hall, Jeremy; Aksu, Ali; Çifçi, Günay


    The Anaximander Mountains are one of the many enigmatic structures situated along the morphologically and structurally complicated junction between the Hellenic and Cyprus Arcs, in the eastern Mediterranean. Interpretation of ~750 km of marine multi-channel seismic reflection data show that the present day Anaximander Mountains underwent several distinct phases of tectonic activity since Miocene. During the mid-late Miocene, a protracted, contractional tectonic regime produced the east-west trending, south-verging fold-thrust belt observed in the area. The Messinian was a period of relatively low tectonic activity, and is marked by the deposition of an evaporite layer. This phase lasted until the latest Miocene - earliest Pliocene, when a major erosional event associated with the Messinian salinity crisis occurred. Beginning in the early-mid Pliocene-Quaternary a transpressional and rotational tectonic regime prevailed over the area. The Anaximander Mountain (sensu stricto) and Anaximenes Mountain developed in the Pliocene-Quaternary associated with the reactivation, uplift and rotation of a linked, thick skinned pre-Messinian imbricate thrust fan. Back thrusting in the region accentuated the morphology of these mountains. The Anaxagoras Mountain differs both lithologically and morphologically from the Anaximander Mountain (sensu stricto) and the Anaximenes Mountain. It is probably developed associated with the emplacement of the ophiolitic Antalya Nappe Complex. Faulting in the Anaxagoras region is characterized by southwest striking thrust and/or oblique thrust faults. Due to the similarities in morphology between the Isparta Angle of southwestern Turkey and the Anaximander Mountains (sensu lato), it is hypothesized that the tectonic evolution of the two regions are similar in nature. The Anaximander Mountains (sensu lato) can thus be considered the offshore replication of the Isparta Angle, produced by similar mechanisms, but being of a younger age.

  17. A block diagonalization theorem in the energy-momentum method


    Marsden, J. E.; Simo, J. C.; Lewis, D.; Posbergh, T. A.


    We prove a geometric generalization of a block diagonalization theorem first found by the authors for rotating elastic rods. The result here is given in the general context of simple mechanical systems with a symmetry group acting by isometries on a configuration manifold. The result provides a choice of variables for linearized dynamics at a relative equilibrium which block diagonalizes the second variation of an augmented energy these variables effectively separate the rotationa...

  18. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method


    Hoffmann , Alexandre; Grudinin , Sergei


    International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...

  19. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Homogeneous bilateral block shifts. ADAM KORÁNYI. Department of Mathematics, The Graduate Center, City University of New York,. New York, NY 10016, USA. E-mail: MS received 18 January 2013. Abstract. A new 3-parameter family of homogeneous 2-by-2 block shifts is described.

  20. Related Drupal Nodes Block

    NARCIS (Netherlands)

    Van der Vegt, Wim


    Related Drupal Nodes Block This module exposes a block that uses Latent Semantic Analysis (Lsa) internally to suggest three nodes that are relevant to the node a user is viewing. This module performs three tasks. 1) It periodically indexes a Drupal site and generates a Lsa Term Document Matrix.

  1. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard


    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  2. Units of rotational information (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping


    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  3. Deconstructing Mental Rotation

    DEFF Research Database (Denmark)

    Larsen, Axel


    A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...

  4. Control rod blocking monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.


    The number of times for setting up a control rod blocking monitor of a BWR type power plant is remarkably reduced to mitigate operator's burden. In the control rod blocking monitor, trip levels, as a judging standard upon outputting control rod blocking inhibition signals, are set up stepwise depending on the power level around control rods put to blocking control. The present invention comprises an allowance judging means capable of setting up trip levels for each of power levels corresponding to a plurality of control rods at once if the power levels are within the set up allowable range. With such a constitution, the set up allowable range is determined previously in the allowance judging means. Accordingly, when a gang blocking is conducted to control rods, if power levels around the control rods are increased at once into the set up allowable range, the trip levels for each of the control rods are set up at once. (I.S.)

  5. Miocene to recent tectonic and sedimentary evolution of the Anaximander Seamounts; eastern Mediterranean Sea (United States)

    Cranshaw, Jennifer

    extends from the southern portion of the Rhodes Basin across the greater Anaximander Mountains into the western segment of the Antalya Basin, defining a major present-day tectonic element in the eastern Mediterranean Sea. The abrupt termination of the crustal-scale south verging thrust that carries the Anaximander Mountain at the large west-verging thrust that defines the boundary between the Anaximander Mountain and the western Sirri Erinc Plateau is interpreted as a major transfer fault. This thrust displays notable contractional overlap and may have considerable strike-slip component. Morphological similarities between the Isparta Angle of southwestern Turkey and the greater Anaximander Mountains are used to suggest similarities in the tectonic evolution of these two areas. Therefore, it is speculated that the Anaximander Mountains may be the offshore replication of the Isparta Angle trends, caused by similar mechanisms, but of younger age. If correct, during the Pliocene-Quaternary, the Anaximander and Anaximenes Mountains must have experienced a progressive counterclockwise rotation, while the Anaxagoras Mountain and the Florence Rise must have experienced a clockwise rotation. Thus, the present day arrow-head shaped morphology of the Anaximander Mountains (sensu lato) may be viewed as the new phase of the Isparta Angle.

  6. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.


    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  7. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.


    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  8. Rotating stars in relativity. (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos


    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  9. Effects of a regional décollement level for gravity tectonics on late Neogene-Quaternary deep-sea clastic sedimentation in the Foz do Amazonas Basin, Brazil (United States)

    Cruz, A. M.; Gorini, C.


    Sets of 2D multi-channel seismic and chronostratigraphic data allowed us to undertake analyses of source to sink processes and triggering mechanisms of the gigantic megaslides previously documented off the NW and SE steep slope settings of the Foz do Amazonas basin. These megaslides comprise two sets of stacked allochthonous masses within the Upper Miocene-Quaternary sedimentary record, now described as Mass-Transport Complexes (MTCs): the Amapá Megaslide Complex (AMC) and the Pará-Maranhão Megaslide Complex (PMMC). Individual megaslides of both MTCs can mobilize to deep waters up to kilometer thick sedimentary series as allochthonous masses with different flow directions, degrees of sediment disruption and internal coherence. Megaslides spread downslope over areas as large as thousands of km2, attaining dimensions comparable to the world's largest mass-transport deposits. The basal and largest megaslide of the AMC (AM1 megaslide) is a quite unique example of mass-transport deposit, since it is interpreted as a dominant carbonate allochthonous mass sourced from a mixed carbonate-siliciclastic platform. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered between the late Miocene and the end of the Early Pliocene by gravitational collapse of the mixed platform under its own weight, after successive subaerial exposures which were able to generate karstification processes. Siliciclastic-type megaslides, on the other hand, are all sourced from large upslope slide and/or rotated blocks (up to 60 km large in the case of the PMMC).Stratigraphic correlations evidenced that horizon equally acts as the upper décollement level for the gravity tectonic system that operates in the regional scale of the Foz do Amazonas basin. In such a context, results of this work evidence complex links between variable modes of gravity deformation (gravity tectonics and mass wasting), all induced by instability created from

  10. The Mid-Hungarian line: a zone of repeated tectonic inversions (United States)

    Csontos, László; Nagymarosy, András


    The Mid-Hungarian line is a major tectonic feature of the Intra-Carpathian area separating two terranes of different origin and tectonic structure. Although this tectonic line was known from borehole records, it has not been described in seismic sections. The study presents interpreted seismic lines crossing the supposed trace of the Mid-Hungarian line. These seismic sections show north-dipping normal faults and thrust faults as well as cross-cutting young strike-slip faults. A complex tectonic history is deduced, including intra-Oligocene-Early Miocene thrusting, Middle Miocene extension, local Late Miocene inversion and Late Miocene-Pliocene normal faulting and left-lateral wrenching. In the light of our seismic study we think that the best candidate for the Mid-Hungarian line is a north-dipping detachment fault beneath large masses of Neogene volcanics. The auxiliary structures to the north seen on seismic sections suggest that it moved as a south-vergent thrust fault during the Palaeogene-Early Miocene which later was reactivated as a set of normal faults. The northern Alcapa unit overrode the southern Tisza-Dacia unit along this fault zone. The same relative positions are observed in the northern termination of the line. Other structures along the supposed trace of the line are north-dipping normal- or strike-slip faults which frequently were reactivated as smaller thrust faults during the late Neogene. Palaeogene-Early Miocene thrusting along the line might be the result of the opposite Tertiary rotations of the two major units, as suggested by palaeomagnetic measurements and earlier models.

  11. Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean (United States)

    Rollet, Nadège; Déverchère, Jacques; Beslier, Marie-Odile; Guennoc, Pol; Réhault, Jean-Pierre; Sosson, Marc; Truffert, Catherine


    The Ligurian basin, western Mediterranean Sea, has opened from late Oligocene to early Miocene times, behind the Apulian subduction zone and partly within the western Alpine belt. We analyze the deep structures of the basin and its conjugate margins in order to describe the tectonic styles of opening and to investigate the possible contributions of forces responsible for the basin formation, especially the pulling force induced by the retreating subduction hinge and the gravitational body force from the Alpine wedge. To undertake this analysis, we combine new multichannel seismic reflection data (Malis cruise, 1995) with other geophysical data (previous multichannel and monochannel seismic sections, magnetic anomalies) and constrain them by geological sampling from two recent cruises (dredges from Marco cruise, 1995, and submersible dives from Cylice cruise, 1997). From an analysis of basement morphology and seismic facies, we refine the extent of the different domains in the Ligurian Sea: (1) the continental thinned margins, with strong changes in width and structure along strike and on both sides of the ocean; (2) the transitional domain to the basin; and (3) a narrow, atypical oceanic domain. Margin structures are characterized by few tilted blocks along the narrow margins, where inherited structures seem to control synrift sedimentation and margin segmentation. On the NW Corsican margin, extension is distributed over more than 120 km, including offshore Alpine Corsica, and several oceanward faults sole on a relatively flat reflector. We interpret them as previous Alpine thrusts reactivated during rifting as normal faults soling on a normal ductile shear zone. Using correlations between magnetic data, seismic facies, and sampling, we propose a new map of the distribution of magmatism. The oceanic domain depicts narrow, isolated magnetic anomalies and is interpreted as tholeitic volcanics settled within an unroofed upper mantle, whereas calcalkaline volcanism

  12. Framework for Tectonic Thinking, a Conceptual Tool of the Architect

    DEFF Research Database (Denmark)

    Garritzmann, Udo


    , supposedly right, meaning of tectonics, but several different meanings; nor do we attach a value judgement to any of the tectonic positions beforehand. The FTT will be developed in parallel in writing and in hand-drawn mappings. Research goal: The Framework for Tectonic Thinking will suggest a broadened......This paper is a contribution to the understanding of the term tectonics in the field of architectural design theory. It considers tectonic thinking as a ‘tool of the architect’ to analyse and interpret buildings from the past, to be operative in design practices of the present, and to trigger......: To answer the research question, this paper will develop an overarching Framework for Tectonic Thinking (FTT) by combining three different categories loadbearing construction, type of construction and constructive expression with the following oppositional poles as distinguishing criteria: loadbearing...

  13. Predictability of blocking

    International Nuclear Information System (INIS)

    Tosi, E.; Ruti, P.; Tibaldi, S.; D'Andrea, F.


    Tibaldi and Molteni (1990, hereafter referred to as TM) had previously investigated operational blocking predictability by the ECMWF model and the possible relationships between model systematic error and blocking in the winter season of the Northern Hemisphere, using seven years of ECMWF operational archives of analyses and day 1 to 10 forecasts. They showed that fewer blocking episodes than in the real atmosphere were generally simulated by the model, and that this deficiency increased with increasing forecast time. As a consequence of this, a major contribution to the systematic error in the winter season was shown to derive from the inability of the model to properly forecast blocking. In this study, the analysis performed in TM for the first seven winter seasons of the ECMWF operational model is extended to the subsequent five winters, during which model development, reflecting both resolution increases and parametrisation modifications, continued unabated. In addition the objective blocking index developed by TM has been applied to the observed data to study the natural low frequency variability of blocking. The ability to simulate blocking of some climate models has also been tested

  14. Fission track dating evidence on tectonic activities of northern Himalaya block

    International Nuclear Information System (INIS)

    Yuan Wanming; Wang Shicheng; Wang Lanfen


    Fission track ages (FTA) of 4 apatite samples collected from Langkazi to Yarlung Zangbo thrust zone range between 13.6 and 17.2 Ma, reflecting the time of continent-continent collision and differing from previous data. The negative correlation between the FTA and sample elevations shows there was rapid uplifting during the continent-continent collision with uplifting rate of 176 m/Ma. Denudation degree, denudation rate and cooling rate were ∼2.9 km, 213 m/Ma and 7 degree C/Ma respectively since 13.6 Ma. FTA of 3 zircon samples are different significantly and have x 2 test value of < 0.1%, confirming the orogeny within continent went under low temperature

  15. Archaean wrench-fault tectonics in the Abitibi greenstone belt of Canada (United States)

    Hubert, C.


    A tectonic model is proposed in which the southern Abitibi belt formed in a series of rift basins which dissected an earlier formed volcanic arc. Comparisons can be made with Phanerozoic areas such as, the Hokuroko basin of Japan, the Taupo volcanic zone of new Zealand and the Sumatra and Nicaragua volcanic arcs. In addition the identification of the major E - W thrust shears make it possible to speculate that the southern Abitibi belt comprises a collage of blocks of terrane which have been accreted against a more stable continental margin or microcontinent. If this interpretation is correct analogies can be made with the SW margin of the U.S.A. in which recently formed blocks of volcanic terrane are being accreted against its western margin.

  16. Petrogenesis of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan: Provenance, tectonic, and climatic implications (United States)

    Amireh, Belal S.


    Detrital framework modes of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan are determined employing the routine polarized light microscope. The lower part of this sequence constitutes a segment of the vast lower Paleozoic siliciclastic sheet flanking the northern Gondwana margin that was deposited over a regional unconformity truncating the outskirts of the East African orogen in the aftermath of the Neoproterozoic amalgamation of Gondwana. The research aims to evaluate the factors governing the detrital light mineral composition of this sandstone. The provenance terranes of the Arabian craton controlled by plate tectonics appear to be the primary factor in most of the formations, which could be either directly inferred employing Dickinson's compositional triangles or implied utilizing the petrographic data achieved and the available tectonic and geological data. The Arabian-Nubian Shield constitutes invariably the craton interior or the transitional provenance terrane within the NE Gondwana continental block that consistently supplied sandy detritus through northward-flowing braided rivers to all the lower Paleozoic formations. On the other hand, the Lower Cretaceous Series received siliciclastic debris, through braided-meandering rivers having same northward dispersal direction, additionally from the lower Paleozoic and lower-middle Mesozoic platform strata in the Arabian Craton. The formations making about 50% of the siliciclastic sequence represent a success for Dickinson's plate tectonics-provenance approach in attributing the detrital framework components primarily to the plate tectonic setting of the provenance terranes. However, even under this success, the varying effects of the other secondary sedimentological and paleoclimatological factors are important and could be crucial. The inapplicability of this approach to infer the appropriate provenance terranes of the remaining formations could be ascribed either to the

  17. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China (United States)

    Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi


    The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.

  18. Rotatable seal assembly. [Patent application; rotating targets (United States)

    Logan, C.M.; Garibaldi, J.L.


    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  19. Tectonic analysis of the Oklo deposit

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Ruhland, M.; Weber, F.


    A large folded structure with a 40 0 incline and extending 500 m in the north-south direction has been uncovered at the Oklo mine. This structure has been analysed from the geometric and dynamic points of view in order to determine the possible role of tectonic activity in the creation of the uraniferous concentrations. Compression and extension zones which at certain points control the shape and arrangement of the lodes are associated with the structure. The natural reactors are situated in an extension zone where compartmentation and slippage, which explain the arrangement of the reactors, are observed

  20. Tectonic feedback and the earthquake cycle (United States)

    Lomnitz, Cinna


    The occurrence of cyclical instabilities along plate boundaries at regular intervals suggests that the process of earthquake causation differs in some respects from the model of elastic rebound in its simplest forms. The model of tectonic feedback modifies the concept of this original model in that it provides a physical interaction between the loading rate and the state of strain on the fault. Two examples are developed: (a) Central Chile, and (b) Mexico. The predictions of earthquake hazards for both types of models are compared.

  1. Seismology: tectonic strain in plate interiors? (United States)

    Calais, E; Mattioli, G; DeMets, C; Nocquet, J-M; Stein, S; Newman, A; Rydelek, P


    It is not fully understood how or why the inner areas of tectonic plates deform, leading to large, although infrequent, earthquakes. Smalley et al. offer a potential breakthrough by suggesting that surface deformation in the central United States accumulates at rates comparable to those across plate boundaries. However, we find no statistically significant deformation in three independent analyses of the data set used by Smalley et al., and conclude therefore that only the upper bounds of magnitude and repeat time for large earthquakes can be inferred at present.

  2. Tectonic movements monitored in the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Košťák, Blahoslav; Mrlina, Jan; Stemberk, Josef; Chán, Bohumil


    Roč. 52, č. 1 (2011), s. 34-44 ISSN 0264-3707 R&D Projects: GA ČR GA205/09/2024; GA AV ČR IBS3012353; GA AV ČR IAA300120905; GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30120515 Keywords : pressure pulse * tectonic displacement * earthquake micro swarm Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.007, year: 2011

  3. The Nature of Tectonic Spatial Structures

    DEFF Research Database (Denmark)

    Carter, Adrian; Kirkegaard, Poul Henning


    Since earliest times mankind has sought inspiration from nature for our built structures. However until the dawn of the modern era in architecture and design, the true structural character of a building was invariably full y or partially encased in an ornamented cladding, of often stylised motifs...... particularly of Kenneth Frampton, this paper will argue that the direct inspiration of nature and the increasing use of advanced parametric digital design tools that replicate virtually instantaneously evolutionary processes results in structures that are not only elegant tectonically and in terms of economy...

  4. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)


    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  5. Tectonics of the junction region between the East European craton and West Arctic platform (United States)

    Baluev, A. S.; Morozov, Y. A.; Terekhov, E. N.; Bayanova, T. B.; Tyupanov, S. N.


    The region of the junction and interaction between the East European Craton (EEC) and the West Arctic Craton (WAC) is regarded as a complexly built zone or assembly of both the volumetric and dividing linear tectonic elements: the Trollfjord-Rybachi-Kanin (TRK) Lineament, the pericratonic subsidence zone of the EEC, the Karpinskii Lineament, the Murmansk Block of the Fennoscandian (Baltic) Shield, and the Kolmozero-Voronya Zone, which are briefly characterized in this paper. Evidences of thrusting have been established not only in the TRK Suture Zone and on the Rybachi Peninsula, which represent a fragment of the Timanides fold-thrust belt, but also to the southwest, in the Upper Riphean and Vendian terrigenous sequences making up the Sredni Peninsula and related to the pericratonic trough of the VEC. Two phases of fold-thrust deformations with elements of left-lateral strike-slip offset pertaining to the activity and evolution of the lineament suture dividing the Sredni and Rybachi peninsulas have been recorded. The variously oriented fault-fold systems within this fault zone are evidence for multistage deformation and can be explained by an at least twostage change in the kinematics that control displacement along the fault. The disintegrated granitic massifs of the Archean crystalline basement tectonically squeezed out in the upper crust as protrusions are localized within TRK Fault Zone. Plagiogranitic bodies, which underwent superposed fault-fold deformations of both kinematic stages, are an evidence of the vigorous tectonic event that predated folding and two-stage strike-slip displacement along the TRK Fault—by thrusting of Riphean sequences from north to south toward the Archean craton. The nappe-thrust regional structure was formed at this stage; elements of it have been recognized in the Sredni, Rybachi, and Kanin peninsulas. The main stages of tectonic evolution in the junction zone between the EEC and the WAP have been revealed and substantiated.

  6. Applications of aeromagnetic data to detect the Basement Tectonics of Eastern Yemen region

    Directory of Open Access Journals (Sweden)

    Ahmed S. Abu El-Ata


    Full Text Available The present study aims to throw light on the tectonic implications concerned with the distribution of the sedimentary sequence belts and the related basement complex zones, as well as to differentiate between the causative sources (contacts, dykes and faults of Eastern Yemen region. The total intensity aeromagnetic map of the study area was first corrected by the application of the Reduction To the magnetic pole (for low latitude areas. The visual inspection of the RTP magnetic map defines a rapid change in the subsurface geologic conditions in the form of lithologic characters and tectonic inferences. On the other hand, this map showed different anomalies of varying frequencies and amplitudes that revealed various causative sources, as well as varying compositions and depths. At the interpretation stage, various techniques and software tools are available for extracting the geologic information from the data concerned. The magnetic fields of shallow sources can be separated from those of deeper causatives, using two processes known as power spectrum transformation and matched band pass filtering. Three methods for locating magnetic sources (Magnitude of Horizontal Gradients (HGM, the analytical signals (AS and the local wavenumbers (LW in three dimensions and identifying the properties of their sources indicated that, the area was affected by some intrusions at various depths in sill or dyke forms, almost oriented in the NW–SE, NE–SW, E–W and N–S trends. Tectonically, the area is highly affected by the tectonics related to the Arabian Sea, Gulf of Aden and Red Sea. It is affecting both the basement and sedimentary rocks, dividing the study area into several faulted blocks.

  7. Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean) (United States)

    Courgeon, S.; Jorry, S. J.; Jouet, G.; Camoin, G.; BouDagher-Fadel, M. K.; Bachèlery, P.; Caline, B.; Boichard, R.; Révillon, S.; Thomas, Y.; Thereau, E.; Guérin, C.


    Understanding the impact of tectonic activity and volcanism on long-term (i.e. millions years) evolution of shallow-water carbonate platforms represents a major issue for both industrial and academic perspectives. The southern central Mozambique Channel is characterized by a 100 km-long volcanic ridge hosting two guyots (the Hall and Jaguar banks) and a modern atoll (Bassas da India) fringed by a large terrace. Dredge sampling, geophysical acquisitions and submarines videos carried out during recent oceanographic cruises revealed that submarine flat-top seamounts correspond to karstified and drowned shallow-water carbonate platforms largely covered by volcanic material and structured by a dense network of normal faults. Microfacies and well-constrained stratigraphic data indicate that these carbonate platforms developed in shallow-water tropical environments during Miocene times and were characterized by biological assemblages dominated by corals, larger benthic foraminifera, red and green algae. The drowning of these isolated carbonate platforms is revealed by the deposition of outer shelf sediments during the Early Pliocene and seems closely linked to (1) volcanic activity typified by the establishment of wide lava flow complexes, and (2) to extensional tectonic deformation associated with high-offset normal faults dividing the flat-top seamounts into distinctive structural blocks. Explosive volcanic activity also affected platform carbonates and was responsible for the formation of crater(s) and the deposition of tuff layers including carbonate fragments. Shallow-water carbonate sedimentation resumed during Late Neogene time with the colonization of topographic highs inherited from tectonic deformation and volcanic accretion. Latest carbonate developments ultimately led to the formation of the Bassas da India modern atoll. The geological history of isolated carbonate platforms from the southern Mozambique Channel represents a new case illustrating the major

  8. Post-Miocene Tectonics from Black Sea to Mediterrenean Sea along Central Anatolian Plateau (United States)

    Rojay, B.; Özsayın, E.; Çiner, A.


    The existences of the gross structures are crucial elements in the understanding of the Neogene evolution of the Anatolia. The structures, from north to south, are fairly documented extensional Black Sea coast structures, "N vergent tectonics" in Black Sea region, the cross cutting scar/shear zone -North Anatolian Fault- , S verging tectonics in central Anatolian overthrust belt (Cretaceous ophiolitic mélange belt), extensional Tuzgölü basin, basins like Cilicia, Mut situated to the back of the Cyprian arc and Cyprus locked subduction and accretionary tectonics (locked by approaching and colliding of the Eratosthenes and Hecatacus "seamount" obstacles). The closure of the northern Neotethys during post-Late Eocene- pre-Miocene end with the collision of the squeezed "Anatolian Block" from south with the Eurasian Continent. Consequently the linkage of the central Anatolian basins is lost with the Seas (Paratethys) in north by the evolution of Black Sea Mountains. However, the subduction in southern Neotethys continued with a complex array due to oblique subduction between "Anatolian Block" and downgoing African-Arabian plates. The growth of the accretionary wedge along southeast Anatolia resulted in retreat of the Miocene Seas towards Basra Bay (Iraq) and collision of the southeast Anatolian belt operated to the end of late Miocene where the marine realm in eastern Mediterrenean Sea continues. The rifting - sea-floor spreading in Red Sea, propagating of Dead Sea Transform to the north and oblique subduction in southern Tethys Ocean during different times in Miocene-Pliocene manifested a various different tectonic mechanism stories in the evolution of the Neogene basin in Anatolia. Consequently progressive closure of the Tethys Oceans resulted in the development Central Anatolian and Eastern Anatolian Plateaus. The growth of the Plateaus, in other words, the progressive shortening from north to south during Late Miocene, ended with the escape of the Anatolian Block

  9. 31 CFR 594.301 - Blocked account; blocked property. (United States)


    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.301 Blocked account; blocked property. The terms blocked account and...

  10. Bundle Branch Block (United States)

    ... 2015. Bundle branch block Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  11. Blocked Urethral Valves (United States)

    ... the penis. Rarely, small membranes form across the urethra in boys early in pregnancy, and they can block the flow of urine out of the bladder. These membranes are called posterior urethral valves and can have life-threatening consequences ...

  12. Optoelectronics using block copolymers.

    Energy Technology Data Exchange (ETDEWEB)

    Botiz, I.; Darling, S. B.; Center for Nanoscale Materials


    Block copolymers, either as semiconductors themselves or as structure directors, are emerging as a promising class of materials for understanding and controlling processes associated with both photovoltaic energy conversion and light emitting devices.

  13. Late Pliocene Quaternary tectonics in the frontal part of the SE Carpathians: Insights from tectonic geomorphology (United States)

    Necea, Diana; Fielitz, W.; Matenco, L.


    The Romanian East Carpathians display large-scale heterogeneities along the mountain belt, unusual foredeep geometries, significant post-collisional and neotectonic activity, and major variations in topography, mostly developed in the aftermath of late Miocene (Sarmatian; ˜11 Ma) subduction/underthrusting and continental collision between the East European/Scythian/Moesian foreland and the inner Carpathians Tisza-Dacia unit. In particular, the SE corner of the arcuate orogenic belt represents the place of still active large-scale differential vertical movements between the uplifting mountain chain and the subsiding Focşani foredeep basin. In this key area, we have analysed the configuration of the present day landforms and the drainage patterns in order to quantify the amplitude, timing and kinematics of these post-collisional late Pliocene-Quaternary vertical movements. A river network is incising in the upstream a high topography consisting of the external Carpathians nappes and the Pliocene-Lower Pleistocene sediments of the foreland. Further eastwards in the downstream, this network is cross-cutting a low topography consisting of the Middle Pleistocene-Holocene sediments of the foreland. Geological observations and well-preserved geomorphic features demonstrate a complex succession of geological structures. The late Pliocene-Holocene tectonic evolution is generally characterised by coeval uplift in the mountain chain and subsidence in the foreland. At a more detailed scale, these vertical movements took place in pulses of accelerated motion, with laterally variable amplitude both in space and in time. After a first late Pliocene uplifting period, subsidence took place during the Earliest Pleistocene resulting in a basal Quaternary unconformity. This was followed by two, quantifiable periods of increased uplift, which affected the studied area at the transition between the Carpathians orogen and the Focşani foreland basin in the late Early Pleistocene and the

  14. Turbulence Interface Simulation by Lagrangian Blocks (United States)

    Chu, V. H.


    Most computational fluid-dynamics codes are developed using the Eulerian description. To find the numerical solution, fluxes are estimated on the surface of the finite volume using a truncation series. Spurious numerical oscillations and artificial numerical diffusion are consequences, particularly in regions across flow discontinuities. Diffusion often is introduced synthetically in many schemes to gain computational stability. Occasional switching to a diffusive upwind scheme, for example, is one classic strategy to manage the numerical oscillations [see e.g., Ghannadi & Chu 2015]. Lagrangian-block simulation offers an alternative that could minimize the spurious oscillations and false diffusive error. The blocks move in the direction of the flow. The squares of the block widths expand in proportion to the diffusivities. The block simulation procedure consists of (i) Lagrangian advection and diffusion, (ii) division into portions, and (iii) reassembly of the portions into new blocks. The blocks are renewed in each time increment to prevent excessive distortion. Details of the Lagrangian-block simulations method have been given in a series of papers by Tan & Chu (2012), Chu & Altai (2012, 2015}. In this paper, the exchanges across turbulence interfaces are considered for two problems. The first series of the simulations are conducted to find the mass and momentum exchanges across a shallow flow of two different depth. In the simulations, the advection and diffusion of three separated systems of blocks that contain the mass, momentum and potential vorticity are carried out using the Lagrangian-block simulation method. The simulation results are compared with data obtained from a previous laboratory investigation and related to the shear instability problem in rotating shear flow previously considered by Chu (2014). The second problem involves the turbulence generation across the interface of an internal waves. The simulation shows the development of gravitational

  15. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... to a non-linear manifold and re-normalization or orthogonalization must be applied to obtain proper rotations. These latter steps have been viewed as ad hoc corrections for the errors introduced by assuming a vector space. The article shows that the two approximative methods can be derived from natural...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation....

  16. A blind video watermarking scheme resistant to rotation and collusion attacks

    Directory of Open Access Journals (Sweden)

    Amlan Karmakar


    Full Text Available In this paper, Discrete Cosine Transform (DCT based blind video watermarking algorithm is proposed, which is perceptually invisible and robust against rotation and collusion attacks. To make the scheme resistant against rotation, watermark is embedded within the square blocks, placed on the middle position of every luminance channel. Then Zernike moments of those square blocks are calculated. The rotation invariance property of the Complex Zernike moments is exploited to predict the rotation angle of the video at the time of extraction of watermark bits. To make the scheme robust against collusion, design of the scheme is done in such a way that the embedding blocks will vary for the successive frames of the video. A Pseudo Random Number (PRN generator and a permutation vector are used to achieve the goal. The experimental results show that the scheme is robust against conventional video attacks, rotation attack and collusion attacks.

  17. Aspects of collision tectonics and intraplate deformation

    Energy Technology Data Exchange (ETDEWEB)

    Coward, M.P.


    Alpine collisional tectonics occurred episodically over the past 100 m.y., closing various small Tethyan basins and causing ripples of basin contraction and tectonic inversion across western Europe. Both at the Tethyan margin and in the smaller basins, deformation styles were controlled by existing fault geometries, in particular, (1) the position, dip, and detachment levels of the important bounding normal faults, (2) the locations of northwest-southwest trending lateral ramps/tear faults, which compartmentalize and tram-line the deformation, and (3) the distribution and thickness of Mesozoic postrift sediments. Collision began in the middle Cretaceous, with the closure of Ligurian and Valais basins and the associated reactivation of northwest-southeast strike-slip faults and small basins as far away as the Atlantic margin. This movement was associated with the earliest orogenic flysch deposits, the subduction of Tethyan ophiolites, and local A-type subduction and high-pressure metamorphism close to the Tethyan continental margins. Major crustal shortening occurred in southern Europe (Spain and southern France) in the Late Cretaceous-Paleogene associated with closure of Pyrenean basins, but in the Alps, the major shortening continued throughout the Neogene. Section restorations based on regional studies, linked to commercial and deep seismic data, indicate well over 100 km of crustal shortening in the western and central Alps, with subduction of lower European crust and lithospheric mantle beneath the southern Alps and the Po plain.

  18. Tectonics and magmatism of ultraslow spreading ridges (United States)

    Dubinin, E. P.; Kokhan, A. V.; Sushchevskaya, N. M.


    The tectonics, structure-forming processes, and magmatism in rift zones of ultraslow spreading ridges are exemplified in the Reykjanes, Kolbeinsey, Mohns, Knipovich, Gakkel, and Southwest Indian ridges. The thermal state of the mantle, the thickness of the brittle lithospheric layer, and spreading obliquety are the most important factors that control the structural pattern of rift zones. For the Reykjanes and Kolbeinsey ridges, the following are crucial factors: variations in the crust thickness; relationships between the thicknesses of its brittle and ductile layers; width of the rift zone; increase in intensity of magma supply approaching the Iceland thermal anomaly; and spreading obliquety. For the Knipovich Ridge, these are its localization in the transitional zone between the Gakkel and Mohns ridges under conditions of shear and tensile stresses and multiple rearrangements of spreading; nonorthogonal spreading; and structural and compositional barrier of thick continental lithosphere at the Barents Sea shelf and Spitsbergen. The Mohns Ridge is characterized by oblique spreading under conditions of a thick cold lithosphere and narrow stable rift zone. The Gakkel and the Southwest Indian ridges are distinguished by the lowest spreading rate under the settings of the along-strike variations in heating of the mantle and of a variable spreading geometry. The intensity of endogenic structure-forming varies along the strike of the ridges. In addition to the prevalence of tectonic factors in the formation of the topography, magmatism and metamorphism locally play an important role.

  19. Active and recent strike-slip tectonics (United States)

    Nur, Amos; Boccaletti, Mario

    An international workshop cosponsored by the Department of Geology, University of Florence, Italy and the Department of Geophysics, Stanford University, Stanford, Calif., was held in Florence, Italy, April 18-20, 1989,on the topic of active and recent strike-slip tectonics in the continental crust. Workshop participants from Turkey, Ethiopia, Israel, Greece, and various universities in Italy, Spain, West Germany, France, the United Kingdom, Brazil, and the United States reported on a broad range of studies involving strike-slip faulting in continental crustal setting. As it turned out, much of the work reported on involved aspects of strike-slip faulting that are only poorly understood, especially crustal deformation, which is distributed over a multiplicity of faults, or even fault domains.One of the rewarding aspects of this workshop was the diversity of geographic areas and geological settings covered by the reporters. The north and east Anatolian faults, the Dead Sea transform zone, western Turkey, north and central Greece, Malta, Sicily, southern Italy, the bethic Cordillera in southern Spain, Tunisia, Tibet and southwest China, offshore Brazil, Alaska, Nevada, and California. A recurring observation reported for all those areas was mixed mode faulting, i.e., the coterminous or sequential occurrence of strike-slip and normal faulting, or strike-slip and thrust, and in many instances also strikeslip, normal and thrust faulting in a single tectonic setting.

  20. Vertical tectonics at an active continental margin (United States)

    Houlié, N.; Stern, T. A.


    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  1. Teaching Tectonics to Undergraduates with Web GIS (United States)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.


    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  2. Nonoverlapping Blocks Based Copy-Move Forgery Detection

    Directory of Open Access Journals (Sweden)

    Yu Sun


    Full Text Available In order to solve the problem of high computational complexity in block-based methods for copy-move forgery detection, we divide image into texture part and smooth part to deal with them separately. Keypoints are extracted and matched in texture regions. Instead of using all the overlapping blocks, we use nonoverlapping blocks as candidates in smooth regions. Clustering blocks with similar color into a group can be regarded as a preprocessing operation. To avoid mismatching due to misalignment, we update candidate blocks by registration before projecting them into hash space. In this way, we can reduce computational complexity and improve the accuracy of matching at the same time. Experimental results show that the proposed method achieves better performance via comparing with the state-of-the-art copy-move forgery detection algorithms and exhibits robustness against JPEG compression, rotation, and scaling.

  3. Robot Grasps Rotating Object (United States)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.


    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  4. Rotating universe models

    International Nuclear Information System (INIS)

    Tozini, A.V.


    A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

  5. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee


    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  6. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern


    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  7. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures (United States)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad


    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  8. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying


    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  9. Evolution and Structural Architecture of the Cenozoic Southern Sivas Fold-Thrust Belt: Implications for the Transition from Arabian Collision to Tectonic Escape in Anatolia (United States)

    Darin, M. H.; Gürer, D.; Umhoefer, P. J.; Van Hinsbergen, D. J. J.


    The Anatolian Plate formed as a result of a major yet poorly understood plate boundary reconfiguration in the eastern Mediterranean involving a transition from distributed contraction to strain localization and tectonic escape along large strike-slip faults. The Sivas Basin is a E-W-elongate retro-foreland basin that formed above the Inner Tauride suture zone following Paleocene collision of the Tauride micro-continent with Eurasia, but prior to Arabian collision. Basin exhumation began in the Eocene with development of the thin-skinned Southern Sivas Fold and Thrust Belt (SSFTB), a >300 km-long by 30 km-wide, convex-north arcuate belt of contractional structures in Late Cretaceous to Miocene strata. Because of its age and geographic position north of the Arabian indenter, the SSFTB provides an important record of pre-, syn- and post-collisional processes in the Anatolian Orogen, including the transition from collision to escape tectonics. We use geologic mapping, apatite fission track (AFT) thermochronology, paleomagnetism, and 40Ar/39Ar geochronology to characterize the architecture, deformation style, and structural evolution of the SSFTB. NE- to E-trending upright folds with slight northward asymmetry, south-dipping thrust faults, and overturned folds in Paleogene strata indicate an overall northward vergence in the SSFTB. However, several thrusts, including some that were previously unmapped, are south-vergent and typically displace younger (Miocene) units. Structural relationships and AFT data indicate that crustal shortening and rapid basin exhumation began in the late Eocene and ended by latest Miocene time. Pliocene and younger units are only locally deformed by either halokinesis or transpressional faulting along the sinistral Central Anatolian fault zone (CAFZ) and where the dextral Northern Anatolian fault zone (NAFZ) intersects the SSFTB. Paleomagnetic data from sedimentary units reveal moderate counter-clockwise and clockwise vertical-axis block

  10. Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand (United States)

    Rajabi, Mojtaba; Ziegler, Moritz; Tingay, Mark; Heidbach, Oliver; Reynolds, Scott


    The present-day stress state is a key parameter in numerous geoscientific research fields including geodynamics, seismic hazard assessment, and geomechanics of georeservoirs. The Taranaki Basin of New Zealand is located on the Australian Plate and forms the western boundary of tectonic deformation due to Pacific Plate subduction along the Hikurangi margin. This paper presents the first comprehensive wellbore-derived basin-scale in situ stress analysis in New Zealand. We analyze borehole image and oriented caliper data from 129 petroleum wells in the Taranaki Basin to interpret the shape of boreholes and determine the orientation of maximum horizontal stress (SHmax). We combine these data (151 SHmax data records) with 40 stress data records derived from individual earthquake focal mechanism solutions, 6 from stress inversions of focal mechanisms, and 1 data record using the average of several focal mechanism solutions. The resulting data set has 198 data records for the Taranaki Basin and suggests a regional SHmax orientation of N068°E (±22°), which is in agreement with NW-SE extension suggested by geological data. Furthermore, this ENE-WSW average SHmax orientation is subparallel to the subduction trench and strike of the subducting slab (N50°E) beneath the central western North Island. Hence, we suggest that the slab geometry and the associated forces due to slab rollback are the key control of crustal stress in the Taranaki Basin. In addition, we find stress perturbations with depth in the vicinity of faults in some of the studied wells, which highlight the impact of local stress sources on the present-day stress rotation.

  11. Exact treatment of interacting bosons in rotating systems and lattices

    DEFF Research Database (Denmark)

    Sørensen, Ole Søe

    these basic building blocks. In this dissertation we investigate few-particle behavior in rotating traps and optical lattices. These systems are both experimentally realizable and are used on a daily basis in quantum gas laboratories all over the world. At temperatures near absolute zero the quantum...

  12. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  13. Tectonic stress accumulation in Bohai–Zhangjiakou Seismotectonic ...

    Indian Academy of Sciences (India)

    Keywords. Bohai–Zhangjiakou Seismotectonic Zone; tectonic stress accumulation; visco-elastic modelling; Moho surface; modern tectonic stress field ... College of Resources, Shijiazhuang University of Economics, Shijiazhuang 050031, China. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing ...

  14. Characterisation of tectonic lineaments in the Central Equatorial ...

    African Journals Online (AJOL)

    Characterisation of tectonic lineaments in the Central Equatorial Atlantic region of Africa using Bouguer anomaly gravity data. ... Ife Journal of Science ... 3-D standard Euler deconvolution analysis was carried out on Bouguer anomaly gravity data for configuration definition and approximate depth estimate of tectonic ...

  15. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)


    Assemblage of strike-slip faults and tectonic. 1 extension and compression analysis: A case. 2 study of a Lower Permian commercial coal. 3 reservoir in China. 4. 5. Shuai Yina,*, Dawei Lvb, Zhonghu Wu c .... high-quality reservoirs, and tectonic action is a leading factor for oil and gas. 70 enrichment. Therefore, it is of great ...

  16. Provenance, tectonic setting and source-area weathering of the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Provenance, tectonic setting and ... The chondrite normalized REE pattern of the samples is equivalent to uppercontinental crust, which reflects enriched LREE and flat HREE with negative Eu anomaly. The tectonic setting discriminant diagram log[K ...

  17. Inversion tectonics of the benue trough | Mamah | Global Journal of ...

    African Journals Online (AJOL)

    The Benue Trough, an aulacogen at the entrant of the Gulf of Guinea in Nigeria, has been historically studied from the concepts of ortho-mio-eu-geosynclines at outcrops and in the subsurface. Its structural evolution reveals a tectonic scenario compatible with Plate tectonic evolution of the Atlantic Ocean. Spreading was ...

  18. Tectonic predictions with mantle convection models (United States)

    Coltice, Nicolas; Shephard, Grace E.


    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  19. Tectonics and the photosynthetic habitable zone (Invited) (United States)

    Sleep, N. H.


    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  20. Rotational Rebound Attacks on Reduced Skein

    DEFF Research Database (Denmark)

    Khovratovich, Dmitry; Nikolic, Ivica; Rechberger, Christian


    In this paper we combine a recent rotational cryptanalysis with the rebound attack, which results in the best cryptanalysis of Skein, a candidate for the SHA-3 competition. The rebound attack approach was so far only applied to AES-like constructions. For the first time, we show that this approac...... inside-out computations and neutral bits in the inbound phase of the rebound attack, and give well-defined rotational distinguishers as certificates of weaknesses for the compression functions and block ciphers.......In this paper we combine a recent rotational cryptanalysis with the rebound attack, which results in the best cryptanalysis of Skein, a candidate for the SHA-3 competition. The rebound attack approach was so far only applied to AES-like constructions. For the first time, we show that this approach...... and the Threefish cipher. The new techniques include an analytical search for optimal input values in the rotational cryptanalysis, which allows to extend the outbound phase of the attack with a precomputation phase, an approach never used in any rebound-style attack before. Further we show how to combine multiple...

  1. Remembering myth and ritual in the everyday tectonics of hospitals

    DEFF Research Database (Denmark)

    Tvedebrink, Tenna Doktor Olsen


    When discussing tectonics, the book Studies in tectonic culture by Kenneth Frampton (2001) is often mentioned for linking the ethics of architecture with a focus on structural genius. Another reference is the paper The tell-the-tale detail by Marco Frascari (1984), which in addition to Frampton put...... emphasis on both the physical construction and mental construing of architecture. With this dual perspective Frascari established a discourse in tectonic thinking which brings the tectonic expression beyond structural genius into socio-cultural realms of storytelling, myth and ritual. However, in everyday...... architecture like hospitals this perspective of construing is often neglected. In this paper, I explore if it is possible through a re-reading of Frascari’s words to inspire for a re-construction of everyday tectonics? Based on project MORE at Aalborg Hospital, I argue that the perspective of construing...

  2. Plate tectonics and planetary habitability: current status and future challenges. (United States)

    Korenaga, Jun


    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  3. Quilt Block Symmetries (United States)

    Roscoe, Matt B.; Zephyrs, Joe


    Geometric transformations have long been topics of middle school mathematics. Generations of middle school students have learned to reflect, rotate, and translate geometric objects. Historically, though, the mathematics of "movement" might have been considered a departure from other more central middle-grades geometric content areas,…

  4. Effects of Crop Rotation and N-P Fertilizer Rate on Grain Yield and ...

    African Journals Online (AJOL)

    A trial was conducted to determine the effects of crop rotation with N-P rates on grain yield of maize and soil fertility in Bako over a period of five years. The experiment was laid out in a randomized complete block design in factorial arrangement with rotation crops (Niger seed, haricot bean and tef) as main factor and two ...

  5. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse


    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...

  6. Three-Dimensional Seismic Structure of the Mid-Atlantic Ridge: An Investigation of Tectonic, Magmatic, and Hydrothermal Processes in the Rainbow Area (United States)

    Dunn, Robert A.; Arai, Ryuta; Eason, Deborah E.; Canales, J. Pablo; Sohn, Robert A.


    To test models of tectonic, magmatic, and hydrothermal processes along slow-spreading mid-ocean ridges, we analyzed seismic refraction data from the Mid-Atlantic Ridge INtegrated Experiments at Rainbow (MARINER) seismic and geophysical mapping experiment. Centered at the Rainbow area of the Mid-Atlantic Ridge (36°14'N), this study examines a section of ridge with volcanically active segments and a relatively amagmatic ridge offset that hosts the ultramafic Rainbow massif and its high-temperature hydrothermal vent field. Tomographic images of the crust and upper mantle show segment-scale variations in crustal structure, thickness, and the crust-mantle transition, which forms a vertical gradient rather than a sharp boundary. There is little definitive evidence for large regions of sustained high temperatures and melt in the lower crust or upper mantle along the ridge axes, suggesting that melts rising from the mantle intrude as small intermittent magma bodies at crustal and subcrustal levels. The images reveal large rotated crustal blocks, which extend to mantle depths in some places, corresponding to off-axis normal fault locations. Low velocities cap the Rainbow massif, suggesting an extensive near-surface alteration zone due to low-temperature fluid-rock reactions. Within the interior of the massif, seismic images suggest a mixture of peridotite and gabbroic intrusions, with little serpentinization. Here diffuse microearthquake activity indicates a brittle deformation regime supporting a broad network of cracks. Beneath the Rainbow hydrothermal vent field, fluid circulation is largely driven by the heat of small cooling melt bodies intruded into the base of the massif and channeled by the crack network and shallow faults.

  7. Thick-skinned tectonics in a Late Cretaceous-Neogene intracontinental belt (High Atlas Mountains, Morocco): The flat-ramp fault control on basement shortening and cover folding (United States)

    Fekkak, A.; Ouanaimi, H.; Michard, A.; Soulaimani, A.; Ettachfini, E. M.; Berrada, I.; El Arabi, H.; Lagnaoui, A.; Saddiqi, O.


    Most of the structural studies of the intracontinental High Atlas belt of Morocco have dealt with the central part of the belt, whose basement does not crop out. Here we study the Alpine deformation of the North Subatlas Zone, which is the part of the Western High Atlas (WHA) Paleozoic Massif that involves both Paleozoic basement units and remnants of their Mesozoic-Cenozoic cover formations. Our aim is to better constrain the geometry and kinematics of the basement faults during the Alpine shortening. Based on detail mapping, satellite imagery and field observations, we describe an array of sub-equatorial, transverse and oblique faults between the WHA Axial Zone and the Haouz Neogene basin. They define a mosaic of basement blocks pushed upon one another and upon the Haouz basement along the North Atlas Fault (NAF). The Axial Zone makes up the hanging-wall of the Adassil-Medinet Fault (AMF) south of this mosaic. The faults generally presents flat-ramp-flat geometry linked to the activation of multiple décollement levels, either within the basement where its foliation is subhorizontal or within favourable cover formations (Jurassic evaporites, Lower Cretaceous silty red beds, Upper Cretaceous evaporitic marls, Neogene basal argillites). The occurrence of the North Atlas detachment (NAD) allowed folded pop-up units to develop in front of the propagating NAF. Shortening began as early as the Campanian-Maastrichtian along the AMF. The direction of the maximum horizontal stress rotated from NNE-SSW to NNW-SSE from the Maastrichtian-Paleocene to the Neogene. The amount of shortening reaches 20% in the Azegour transect. This compares with the shortening amount published for the central-eastern High Atlas, suggesting that similar structures characterize the Paleozoic basement all along the belt. The WHA thick-skinned tectonics evokes that of the frontal Sevier belt and of the external Western Alps, although with a much minor pre-inversion burial.

  8. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.


    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  9. The Nature of Tectonic Spatial Structures

    DEFF Research Database (Denmark)

    Carter, Adrian; Kirkegaard, Poul Henning


    Since earliest times mankind has sought inspiration from nature for our built structures. However until the dawn of the modern era in architecture and design, the true structural character of a building was invariably full y or partially encased in an ornamented cladding, of often stylised motifs...... of nature. The modern emphasis on honest structural expression has resulted in more sincere and innovative interpretations of nature in spatial structures. With reference to the works of amongst others of Gaudi, Candela, Otto, Nervi, Utzon, Calatrava and Foreign Office Architects (FOA) and the writings...... particularly of Kenneth Frampton, this paper will argue that the direct inspiration of nature and the increasing use of advanced parametric digital design tools that replicate virtually instantaneously evolutionary processes results in structures that are not only elegant tectonically and in terms of economy...

  10. Tectonic thinking in contemporary industrialized architecture

    DEFF Research Database (Denmark)

    Beim, Anne


    and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction) and how this attention forms......This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect...... a creative force in building constructions, structural features and architectural design (construing) – helps to identify and refine technology transfer in contemporary industrialized building construction’. Through various references from the construction industry, business theory and architectural practice...

  11. Emplacement of sandstone intrusions during contractional tectonics (United States)

    Palladino, Giuseppe; Grippa, Antonio; Bureau, Denis; Alsop, G. Ian; Hurst, Andrew


    Sandstone injections are created by the forceful emplacement of remobilized sand in response to increases in overpressure. However, the contribution provided by horizontal compressive stress to the build-up in overpressure, and the resulting emplacement of sand injection complexes, is still to be substantiated by robust field observations. An opportunity to address this issue occurs in Central California where a large volume of sandstone intrusions record regionally-persistent supra-lithostatic pore-pressure. Detailed fieldwork allows sandstone-filled thrusts to be recognized and, for the first time, permits us to demonstrate that some sandstone intrusions are linked to contractional deformation affecting the western border of the Great Valley Basin. Fluidized sand was extensively injected along thrust surfaces, and also fills local dilatant cavities linked to thrusting. The main aims of this paper are to provide detailed descriptions of the newly recognized syn-tectonic injections, and describe detailed cross-cutting relationships with earlier sandstone injection complexes in the study area. Finally, an evolutionary model consisting of three phases of sand injection is provided. In this model, sand injection is linked to contractional tectonic episodes affecting the western side of the Great Valley Basin during the Early-Middle Cenozoic. This study demonstrates that sand injections, driven by fluid overpressure, may inject along thrusts and folds and thereby overcome stresses associated with regional contractional deformation. It is shown that different generations of sand injection can develop in the same area under the control of different stress regimes, linked to the evolving mountain chain.

  12. Tectonic thinking in contemporary industrialized architecture

    Directory of Open Access Journals (Sweden)



    Full Text Available Corresponding author: Professor Anne Beim, Ph.D., CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts – School of Architecture, Phillip Langes ALlé 10, DK-1435 Copenhagen, Denmark. Tel.: +45 4170 1623; E-mail: This paper argues for a new critical approach to the ways architectural design strategies are developing. Contemporary construction industry appears to evolve into highly specialized and optimized processes driven by industrialized manufacturing, therefore the role of the architect and the understanding of the architectural design process ought to be revised. The paper is based on the following underlying hypothesis: ‘Tectonic thinking – defined as a central attention towards the nature, the properties, and the application of building materials (construction and how this attention forms a creative force in building constructions, structural features and architectural design (construing – helps to identify and refine technology transfer in contemporary industrialized building construction’. Through various references from the construction industry, business theory and architectural practice the paper offers various analyses, comparisons and concrete design approaches. How architectural design processes and the tectonic design can benefit from Integrated Product Deliveries, mass-customization and Design for Disassembly is examined and discussed. The paper concludes by presenting a series of arguments that call for adaptable systems based on sufficient numbers of industrialized building products of high quality and a great variety of suppliers, and point at the need for optimizing our use of resources in order to reach sustainable solutions in architecture.

  13. Late Vendian-Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis.

    NARCIS (Netherlands)

    Poprawa, P.; Sliaupa, S.; Stephenson, R.A.; Lazauskiene, J.


    Subsidence analysis was performed on 43 boreholes penetrating the Upper Vendian-Lower Palaeozoic sedimentary succession of the Baltic Basin. The results were related to lithofacial and structural data to elucidate subsidence mechanisms and the regional tectonic setting of basin development. Tectonic

  14. A Bullet-Block Experiment that Explains the Chain Fountain (United States)

    Pantaleone, J.; Smith, R.


    It is common in science for two phenomena to appear to be very different, but in fact follow from the same basic principles. Here we consider such a case, the connection between the chain fountain and a bullet-block collision experiment. When an upward moving bullet strikes a wooden block resting on a horizontal table, the block will rise to a higher height when the bullet strikes near the end of the block. This is because the quickly rotating block experiences an additional upward "reaction" force from its contact with the table. Such a reaction force also explains the chain fountain. When a chain falls from a pile in a container to the floor below, the chain rises up above the container. This rise occurs because the quickly rotating links in the container push off of the surface beneath them. We derive a model that accurately describes our measurements in the bullet-block experiment, and then use this same model to calculate an approximate expression for the distance the chain rises above the container. More extensive discussions of the chain fountain are available elsewhere.

  15. E-Block: A Tangible Programming Tool with Graphical Blocks


    Danli Wang; Yang Zhang; Shengyong Chen


    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  16. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  17. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel


    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  18. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye


    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  19. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.


    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  20. Structural evolution and tectonic style of the Tunisian central Atlas; role of inherited faults in compressive tectonics (Ghoualguia anticline) (United States)

    Briki, Haithem; Ahmadi, Riadh; Smida, Rabiaa; Rekhiss, Farhat


    Geological mapping, field cross sections, structural analyses and new subsurface data were used to characterize the geometry and tectonic setting of the Ghoualguia structure, which is an E-W-trending anticline located between the Kalaa Khasba and Rouhia troughs of the central Tunisian Atlas. The results show an important NE-SW extensional phase during the Mesozoic, as demonstrated by synsedimentary normal faults (NW-SE and E-W) and thickness variations. In the Aouled Mdoua area, the absence of Paleocene-Eocene rocks indicates that the eastern and western parts of the Ghoualguia structure were separated by high topography. In addition, the angular unconformity observed between the Upper Cretaceous unit (Abiod Fm.) and the upper Eocene series (Souar Fm.) provide evidence of a tilted-block structure delineated by North-South faults. A major compressional phase during the middle to late Miocene created various detachment levels that originated mainly in the Triassic and Cretaceous deposits. Faults were reactivated as thrust and strike-slip faults, creating fault-related fold structures. In the core of the Ghoualguia fold, an original S-dipping normal fault underwent reverse movement as a back thrust. Fault-slip data indicate that the area records a major NE-SW extensional phase that took place during the late Miocene and Pliocene. A balanced cross section provides insight into the existence of two main detachment levels rooted in the Triassic (depth ± 6 km) and the lower Cretaceous (depth ± 2.5 km). The balanced cross section highlights a shortening of about 2.5 km along cross section and 1.5 km in the central part of the Ghoualguia anticline. This work underlines the predominant role of the inherited Mesozoic structures during the evolution of the Atlassic range and their influence on the geometry of the central Tunisian atlas.

  1. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.


    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  2. Making Block Grants Accountable. (United States)

    Chelimsky, Eleanor

    Methods of accountability are presented in considering the Reagan administration plan to consolidate 84 federal health, education and social service grants into six block grant areas and to cut overall funding. After matching aspects of public criticism with proposal objectives, a rationale is developed for building elements of accountability into…

  3. Linoleum Block Printing Revisited. (United States)

    Chetelat, Frank J.


    The author discusses practical considerations of teaching linoleum block printing in the elementary grades (tool use, materials, motivation) and outlines a sequence of design concepts in this area for the primary, intermediate and junior high grades. A short list of books and audiovisual aids is appended. (SJL)

  4. Effects of Block Scheduling

    Directory of Open Access Journals (Sweden)

    William R. Veal


    Full Text Available This study examined the effects of a tri-schedule on the academic achievement of students in a high school. The tri-schedule consists of traditional, 4x4 block, and hybrid schedules running at the same time in the same high school. Effectiveness of the schedules was determined from the state mandated test of basic skills in reading, language, and mathematics. Students who were in a particular schedule their freshman year were tested at the beginning of their sophomore year. A statistical ANCOVA test was performed using the schedule types as independent variables and cognitive skill index and GPA as covariates. For reading and language, there was no statistically significant difference in test results. There was a statistical difference mathematics-computation. Block mathematics is an ideal format for obtaining more credits in mathematics, but the block format does little for mathematics achievement and conceptual understanding. The results have content specific implications for schools, administrations, and school boards who are considering block scheduling adoption.

  5. Coding with Blockly

    CERN Document Server

    Lovett, Amber


    "Blockly is a fun, graphical programming language designed to get kids interested in creating their own computer programs. Through simple text written to foster creativity and problem solving, students will the art of innovation. Large, colorful images show students how to complete activities. Additional tools, including a glossary and an index, help students learn new vocabulary and locate information."-- Provided by publisher.

  6. One common structural peculiarity of the Solar system bodies including the star, planets, satellites and resulting from their globes rotation (United States)

    Kochemasov, , G. G.


    Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets, satellites and Sun compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles (this is felt particularly when one launches rockets into space -preferable more cheap launches are from the equatorial regions - Kourou is better than Baikonur). One of remarkable changes occurs at tropics. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At tropical zones (bulged also due to the rotation ellipsoid) the outer shell - crust as a consequence tends to be destroyed, sunk, subsided and shrunk; a density of crust material changes; the atmosphere reacts changing chemistry and structure; in terrestrial anthroposphere man looses its mass and stature. But according to the Le Chatelier rule mechanisms with an opposing tendency also begin to act. At Earth the wide planetary long tropical zone is marked by destruction of the crust. It is demonstrated by development of numerous islands of the Malay Archipelago (the Sunda Isls., Maluku Isls, Philippines) between the Southeastern Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develops where the Archean crust is subsided to depths of more than 2 km. In the Pacific along the equator numerous islands of Micronesia occur. Subsidence of the basaltic oceanic crust is followed by an intensive folding and faulting of basalt and sedimentary layers (Fig. 1) as a larger mass must be held by a smaller space (a planetary radius is diminished). The central Atlantic is very demonstrative in this sense suffering huge transform fault

  7. [Masquerading bundle branch block]. (United States)

    Kukla, Piotr; Baranchuk, Adrian; Jastrzębski, Marek; Bryniarski, Leszek


    We here describe a surface 12-lead electrocardiogram (ECG) of a 72-year-old female with a prior history of breast cancer and chemotherapy-induced cardiomyopathy. An echocardiogram revealed left ventricular dysfunction, ejection fraction of 23%, with mild enlarged left ventricle. The 12-lead ECG showed atrial fibrillation with a mean heart rate of about 100 bpm, QRS duration 160 ms, QT interval 400 ms, right bundle branch block (RBBB) and left anterior fascicular block (LAFB). The combination of RBBB features in the precordial leads and LAFB features in the limb leads is known as ''masquerading bundle branch block''. In most cases of RBBB and LAFB, the QRS axis deviation is located between - 80 to -120 degrees. Rarely, when predominant left ventricular forces are present, the QRS axis deviation is near about -90 degrees, turning the pattern into an atypical form. In a situation of RBBB associated with LAFB, the S wave can be absent or very small in lead I. Such a situation is the result of not only purely LAFB but also with left ventricular hypertrophy and/or focal block due to scar (extensive anterior myocardial infarction) or fibrosis (cardiomyopathy). Sometimes, this specific ECG pattern is mistaken for LBBB. RBBB with LAFB may imitate LBBB either in the limb leads (known as 'standard masquerading' - absence of S wave in lead I), or in the precordial leads (called 'precordial masquerading' - absence of S wave in leads V₅ and V₆). Our ECG showed both these types of masquerading bundle branch block - absence of S wave in lead I and in leads V₅ and V₆.

  8. Plate Tectonics and Planetary Evolution: Implications for Understanding Exoplanets (United States)

    Elkins-Tanton, L. T.


    A primary purpose in our study of exoplanets is the search for life. In hypothesizing how we might detect life, we start by examining life on Earth; it is our only example. How do we understand the meaning of habitability when there is only one example? All clues seem significant: the common need for the existence of water, the range of temperatures over which life on Earth is found, and the chemical cycles that maintain the surface and near-surface of the Earth within that range. A common assertion is that plate tectonics is necessary for the carbon cycle that keeps the Earth at habitable temperatures by sequestering carbon in limetone in oceans, and parceling it back into the atmosphere through volcanoes. This is an unproven hypothesis. There are other tectonic processes that cycle carbon into a planetary interior and back to the atmosphere; one possibility is small-scale convection that returns lithospheric material to the mantle and produces small-scale volcanism. Whether this process is sufficient to stabilize climate on one-plate planets or planets with sluggish convection remains to be demonstrated. Before we can discuss the criticality of plate tectonics on other planets we need to understand its criticality on Earth, and its apparent lack on Venus. And before we can predict whether plate tectonics should exist on a given exoplanet, we need to understand why it exists on Earth, and apparently not on Venus, and we need to know more about that exoplanet than can currently be detected. In this talk I will compare the predictions for exoplanetary conditions conducive to plate tectonics, walk through possible pathways in planetary evolution that lead to plate tectonics, and discuss whether any aspect of plate tectonics on an exoplanet is detectable from Earth. Predicting and hoping to detect plate tectonics on exoplanets is walking out a shaky limb; making cautious incremental advances in understanding terrestrial plate tectonics is critical before extending

  9. Quantative determination of geological and tectonic development under complex geological settings - Thrace Area, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, L.T. (Turkish Petroleum Corp., Ankara (Turkey)); Yuekler, M.A.


    Thrace area is composed of several subbasins, formed during the middle Eocene, overlying the metamorphic and granitic rocks of the Istranca Massif. Syndepositional fault patterns and variations in sedimentary thicknesses indicate that the subbasins evolved tectonically by northeast-southwest extension from the middle Eocene to early Paleocene. From the early Paleocene to early Miocene, the northern part of the area underwent northeast-southwest extension, whereas in the middle Miocene, northwest-southeast wrench-fault assemblage resulted in a clockwise rotation of the extension axes. Consequently, the right-lateral motion of the transform faults resulted in a north-south extension which prevailed until the late Pleistocene. During the last 1 m.y., the area was subjected to a major compression leading to rapid erosion in the central part of the area. A deterministic three-dimensional basin analysis model has been applied to quantify the geological and tectonic evolution of the subbasins. A total of 72 wells were simulated to determine compaction pressure, and temperature histories of the sedimentary sequences to set up the conceptual model. The validity of the conceptual model was then checked with the simulation of six seismic profiles before the full three-dimensional simulation of the area. The trends from the computed subsidence and uplift heat flow, and compaction maps as a function of time were checked against the observed stratigraphic and sedimentological data. The excellent match between the computed trends and observed isopachs, and erosions as determined from seismic data and depositional environments, aided in the quantification of the regional stratigraphy and tectonics. The combination of the computed heat flow and uncompacted isopach maps was used in determining stress-strain relationships in the subbasins as a function of time.

  10. Rotator Cuff Injuries. (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  11. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.


    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  12. Rotating turbine blade pyrometer (United States)

    Buchele, D. R.; Lesco, D. J.


    Non-contacting pyrometer system optically measures surface temperature distribution on rotating turbine blade, comprising line-by-line scan via fiber optic probe. Each scan line output is converted to digital signals, temporarily stored in buffer memory, and then processed in minicomputer for display as temperature.

  13. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.


    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  14. Rotational Dynamics with Tracker (United States)

    Eadkhong, T.; Rajsadorn, R.; Jannual, P.; Danworaphong, S.


    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia ("I") of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction ("b") for our system. By omitting the effect of such friction, we derive…

  15. Suprascapular nerve block for the treatment of frozen shoulder

    Directory of Open Access Journals (Sweden)

    Korhan Ozkan


    Full Text Available Aims: The aim of our study was to compare the effects of suprascapular nerve block in patients with frozen shoulder and diabetes mellitus unresponsive to intraarticular steroid injections. Settings and Design: Ten patients without improvement of sign and symptoms after intraarticular injections were made a suprascapular nerve block. Methods: Pain levels and active range of movement of patients were recorded at initial attendance and after 1, 4, and 12 weeks. All patients′ simple pain scores, total pain scores, and range of motion of their shoulders were improved significantly after suprascapular nerve block. Statistical Analysis: In this study, the statistical analyses were performed by using the SPSS 8.0 program (SPSS Software, SPSS Inc., USA. To compare pre- and post-injection results of simple pain score, total pain score, shoulder abduction and external rotation, Wilcoxon test was used. Results: Patient′s simple pain scores, total pain scores also abduction, external rotation and internal rotation angles were improved significantly after suprascapular nerve block. Conclusion: Effective results after suprascapular nerve blockage was obtained for the treatment of refractory frozen shoulder cases.

  16. Integrated geographic information systems (IGIS) analysis and definition of the tectonic framework of northern Mexico (United States)

    Martinez Pina, Carlos Manuel

    Crustal rupture structures reactivated in the course of the tectonic history of northern Mexico are the surface expressions of planes of weakness, in the form of simple or composite rectilinear features or slightly curved, defined as lineaments. Unless otherwise defined as strike-slip faults, lineaments are part of parallel and sub-parallel oblique convergent or oblique divergent tectonic zones cross cutting the Sierra Madre Occidental and northern Mexico, in a NW trend. These shear zones are the response to the oblique subduction of the Farallon plate beneath North America. Kinematic analysis of five selected sites in northern Mexico, three basins and two compressional shear zones, proved possible a combination of shear mechanism diagram and models from analogue materials, with satellite imagery and geographic information systems, as an aid to define strike-slip fault motion. This was done using a reverse engineering process by comparing geometries. One of the sites assessed, involving the Parras Basin, Coahuila Block (CB), San Marcos fault, a postulated PBF-1 fault, allowed for palinpastic reconstruction of the CB that corroborated the results of the vector motion defined, in addition to an extension of ˜25% in a northwest southeast direction. A GIS-based compilation and georeferenced regional structural studies by several researchers were used as ground control areas (GCA); their interpolation and interpretation, resulted in a tectonic framework map of northern Mexico. In addition, shaded relief models overlaid by the lineaments / fault layer allowed structural analyses of basins related to these major structures. Two important results were obtained from this study: the Tepehuanes-San Luis-fault (TSL) and the Guadalupe fault, named herein, displaces the Villa de Reyes graben, and the Aguascalientes graben, respectively, to the SE, confirming their left lateral vector motion; afterwards TSL was displaced south by the right lateral strike slip Taxco-San Miguel de

  17. Oil prospection using the tectonic plate model (United States)

    Pointu, Agnès


    Tectonic plate models are an intellectual setting to understand why oil deposits are so uncommon and unequally distributed and how models can be used in actual oil and gas prospection. In this case, we use the example of the Ghawar deposit (Saudi Arabia), one of the largest producing well in the world. In the first step, physical properties of rocks composing the oil accumulation are studied by laboratory experiments. Students estimate the porosity of limestone and clay by comparing their mass before and after water impregnation. Results are compared to microscopic observations. Thus, students come to the conclusion that oil accumulations are characterized by superposition of rocks with very different properties: a rich organic source rock (clays of the Hanifa formation), a porous reservoir rock to store the petroleum in (limestones of the Arab formation) and above an impermeable rock with very low porosity (evaporites of the Tithonien). In previous lessons, students have seen that organic matter is usually mineralized by bacteria and that this preservation requires particular conditions. The aim is to explain why biomass production has been so important during the deposit of the clays of the Hanifa formation. Tectonic plate models make it possible to estimate the location of the Arabian Peninsula during Jurassic times (age of Hanifa formation). In order to understand why the paleo-location of the Arabian Peninsula is important to preserve organic matter, students have different documents showing: - That primary production of biomass by phytoplankton is favored by climatic conditions, - That the position of continents determinate the ocean currents and the positions of upwelling zones and zones where organic matter will be able to be preserved, - That north of the peninsula there was a passive margin during Jurassic times. An actual seismic line is studied in order to highlight that this extensive area allowed thick sedimentary deposits to accumulate and that fast

  18. Coal output dependence on parameters of tectonic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, K.K. (L' vovsko-Volynskaya GREh (USSR))


    Analyzes effects of tectonic dislocations of coal seams on output of longwall faces in 5 mines of the Chervonograd area with 4 coal seams. The seams are mined by KM97 face systems with the 1K101 shearer loader and the KM87 system with the GSh68 shearer loader. Fault length and throw in relation to coal panel dimensions and coal seam thickness are analyzed. Effects of tectonic dislocations on face advance rates and coal output per face are calculated. Correlations of tectonic dislocation parameters (fault throw and range) and coal output per face are determined. 4 refs.

  19. Remembering myth and ritual in the everyday tectonics of hospitals

    DEFF Research Database (Denmark)

    Tvedebrink, Tenna Doktor Olsen


    architecture like hospitals this perspective of construing is often neglected. In this paper, I explore if it is possible through a re-reading of Frascari’s words to inspire for a re-construction of everyday tectonics? Based on project MORE at Aalborg Hospital, I argue that the perspective of construing......When discussing tectonics, the book Studies in tectonic culture by Kenneth Frampton (2001) is often mentioned for linking the ethics of architecture with a focus on structural genius. Another reference is the paper The tell-the-tale detail by Marco Frascari (1984), which in addition to Frampton put...

  20. A passive technique for detecting copy-move forgery with rotation based on polar complex exponential transform (United States)

    Emam, Mahmoud; Han, Qi; Yu, Liyang; Zhang, Ye; Niu, Xiamu


    Copy-move is one of the most common methods for image manipulation. Several methods have been proposed to detect and locate the tampered regions, while many methods failed when the copied regions are rotated before being pasted. A rotational invariant detecting method using Polar Complex Exponential Transform (PCET) is proposed in this paper. Firstly, the original image is divided into overlapping circular blocks, and PCET is employed to each block to extract the rotation-invariant robust features. Secondly, the Approximate Nearest Neighbors (ANN) of each feature vector are collected by Locality Sensitive Hashing (LSH). Experimental results show that the proposed technique is robust to rotation.

  1. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge (United States)

    Park, Heon-Joon; Lee, Changyeol


    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  2. Pre-Miocene palaeogeography of the Los Cabos Block, Baja California Sur: geochronological and palaeomagnetic constraints (United States)

    Schaaf, P.; Böhnel, H.; Pérez-Venzor, J. A.


    The Los Cabos Block (LCB) is located at the southern end of the Baja California peninsula and is composed mainly of intrusive rocks that were emplaced into pre-Cretaceous heterogeneous metasediments and are partly covered by Miocene volcanic and volcaniclastic rocks. Field observations provide evidence that the undeformed, homogeneous gabbronorite of the Sierra El Novillo in the NE part of the LCB is the oldest crystalline unit, which is intruded by undeformed to slightly deformed tonalitic-quartz-dioritic granitoids. For these rocks an Rb-Sr intrusion age of 129±15 Ma and a biotite whole-rock cooling age of 116±2 Ma were obtained. Low initial 87Sr/ 86Sr and high ɛ-Nd values of about 0.7036 and +5 to +6 respectively characterise the intrusives as primitive, mantle-derived granites. Further to the southeast and south, granitoids are more silicic, with abundant deformed sequences — orthogneisses, diatexites and migmatites, among others. From the southern part of the LCB an Rb-Sr intrusion age for the undeformed granites of 115±4 Ma and a biotite cooling age of 90±2 Ma were determined. Initial 87Sr/ 86Sr was determined to be 0.7054 and ɛ-Nd values fall between -2 and 0. The isotopic data do not clearly allow us to characterise the deformed granitoids of the LCB as being intruded by the undeformed unit. Deformation could have been partly due to syn-intrusive tectonics. Palaeomagnetic data suggest minor, if any, northward displacement of the LCB with respect to continental Mexico, corresponding to the rifting in the Gulf of California since the late Miocene, and significant 35-45° clockwise rotations. Possible tilting effects, which may have occurred given the dip of Tertiary volcanics on top of the intrusives, would modify these values for rotation and to a lesser degree of northward displacement. Geochemical, isotopic and palaeomagnetic results and the cooling history of the LCB are similar to those from the Puerto Vallarta Batholith, whereas other Mexican


    Directory of Open Access Journals (Sweden)

    Komang Mega Puspadisari


    Full Text Available Superficial cervical plexus block is one of the regional anesthesia in  neck were limited to thesuperficial fascia. Anesthesia is used to relieve pain caused either during or after the surgery iscompleted. This technique can be done by landmark or with ultrasound guiding. The midpointof posterior border of the Sternocleidomastoid was identified and the prosedure done on thatplace or on the level of cartilage cricoid.

  4. Change Around the Block? (United States)

    Berlin, Joey


    Proponents of a block grant or per-capita cap trumpet them as vehicles for the federal government to give the states a capped amount of funding for Medicaid that legislatures would effectively distribute how they see fit. Questions abound as to what capped Medicaid funding would look like, and what effect it would have on the current Medicaid-eligible population, covered services, and physician payments.

  5. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch


    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  6. Extensional tectonics in Mt Parnon (Peloponnesus, Greece) (United States)

    Skourtsos, Emmanuel; Lekkas, Spyridon


    Peloponnesus in the south-western part of the Aegean is formed by a heterogeneous pile of alpine thrust sheets that was reworked by normal faulting from Upper Miocene to recent times. Upper Miocene-Lower Pliocene extension in Mt Parnon was accommodated by several mappable brittle detachment faults that exhibit a top-to-the-NE-ENE sense of shear. The hanging wall of the detachments comprises a number of highly tilted fault blocks containing abundant evidence of intense internal deformation by normal faulting and layer-parallel shearing contemporaneous with faulting. These fault blocks are remnants of a cohesive extensional block that slipped to the NE-ENE and broke up along high-angle normal faults that sole into or are cut by the detachments. The largest part of this block is located at the eastern edge of the metamorphic core forming the hanging wall of East Parnon high-angle normal fault that excised part of the aforementioned detachments. The lowermost metamorphic Unit of the nappe-pile does not seem to be affected by the previous extensional episode. Upper plate reconstruction shows that various units of the nappe-pile were affected by high-angle normal faults that linked to detachment faults in the weaker layers. Since the Middle-Upper Pliocene further exhumation of the metamorphic rocks has resulted in the formation of high-angle normal faults overprinting Neogene extensional structures and cut the entire nappe-pile. This new fault system tilted the earlier extensional structures and produced a NE-SW coaxial deformation of Mt Parnon.

  7. Basic research on tectonic reconstruction on the basis of paleomagnetic methods

    International Nuclear Information System (INIS)

    Itoh, Yasuto


    It is of great importance to clarify deformation mode in an extensive tectonic event in order to evaluate stability of rock masses. Although such evaluation is based on structural geology in general, conventional methods are of little use for understanding of the temporal and spatial changes in deformation mode accompanying rotational motions, which are brought about by relatively large fault movements. Therefore, deformation mode of rock masses are quantitatively evaluated in this report on the basis of paleomagnetic data. Arrangements of geologic units in the central Japan form a large northward cusp around the Izu Peninsula, which is interpreted as a result of intense deformation of rock mass by repeated collisions of the Izu-Bonin Arc against the Honshu Arc since the Miocene Period. As the Izu Peninsula is considered to be actively transported northward with slips on the Kannawa Fault, understanding for development process of collisional deformation zone is quite important to evaluate geological stability of rock masses. This report presents the paleomagnetic data of Miocene rocks obtained from a borehole in the Mizunami Underground Research Laboratory, in Mizunami City, Gifu Prefecture. Progressive demagnetization tests separated stable primary remanent magnetizations for the Toki Lignite-Bearing Formation and the Akeyo Formation in the early Miocene. Their declinations are characterized by a significant easterly deflection reflecting a tectonic event probably linked to the Japan Sea opening. Comparison of the contemporaneous paleo-magnetic data reported from the central Japan implies that a boundary of relative rotational motions under the influence of collision of the Izu-Bonin Arc exists between the Mizunami area and eastern areas, for example, Kakegawa area. (author)

  8. Managing access block. (United States)

    Cameron, Peter; Scown, Paul; Campbell, Donald


    There is pessimism regarding the ability of the Acute Health Sector to manage access block for emergency and elective patients. Melbourne Health suffered an acute bed crisis in 2001 resulting in record ambulance diversions and emergency department (ED) delays. We conducted an observational study to reduce access block for emergency patients whilst maintaining elective throughput at Melbourne Health. This involved a clinician-led taskforce using previously proven principles for organisational change to implement 51 actions to improve patient access over a three-month period. The primary outcome measures were ambulance diversion, emergency patients waiting more than 12 hours for an inpatient bed, elective throughput and theatre cancellations. Despite a reduction in multi-day bed numbers all primary objectives were met, ambulance diversion decreased to minimal levels, 12-hour waits decreased by 40% and elective throughput was maintained. Theatre cancellations were also minimised. We conclude that access block can be improved by clinician-led implementation of proven process improvements over a short time frame. The ability to sustain change over the longer term requires further study.

  9. Parametric Design in Timber Gridshell Tectonics

    Directory of Open Access Journals (Sweden)

    Ismailiyah Al Athas Syarifah


    Full Text Available This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found throughunderstanding the nature of materials themselves. The material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productivecapacity of material resistance a given material’s capacity and tendencies to take shape, rather than cutting shape out of material. Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form finding experiments of frei Otto and the institute for lightweight structures, but also the very nurbs based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The the larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. Through an applied case study of gridshells, the play between form and material is tested out through the author’s own experimentation with gridshells and the pedagogical results of two gridshell studios.The goal of this research is to establish a give and take relationship between top down formal emphasis and a bottom-up material influence.

  10. Tectonic evolution of mercury; comparison with the moon

    International Nuclear Information System (INIS)

    Thomas, P.G.; Masson, P.


    With regard to the Earth or to Mars, the Moon and Mercury look like tectonicless planetary bodies, and the prominent morphologies of these two planets are due to impact and volcanic processes. Despite these morphologies, several types of tectonic activities may be shown. Statistical studies of lineaments direction indicate that Mercury, as well as the Moon, have a planet wide lineament pattern, known as a ''grid''. Statistical studies of Mercury scarps and the Moon grabens indicate an interaction between planetary lithospheric evolution and large impact basins. Detailed studies of the largest basins indicate specific tectonic motions directly or indirectly related to impacts. These three tectonic types have been compared on each planet. The first tectonic type seems to be identical for Mercury and the Moon. But the two other types seem to be different, and are consistent with the planets' thermal evolution

  11. The tectonic stress field evolution of India since the Oligocene

    Digital Repository Service at National Institute of Oceanography (India)

    Müller, R.D.; Yatheesh, V.; Shuhail, M.

    strengths, enabling the modelling of stress field deflections along interfaces between relatively strong and weak tectonic elements through time. At 33 Ma a roughly NNW–SSE oriented band of relatively high maximum horizontal compressive stress (S...

  12. Tectonic stress accumulation in Bohai–Zhangjiakou Seismotectonic

    Indian Academy of Sciences (India)

    BZSZ) in North Chinadeserves close attention. Tectonic stress accumulation state is an important indicator for earthquakes;therefore, this study aims to analyse the stress accumulation state in the BZSZ via three-dimensionalvisco-elastic numerical ...

  13. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.


    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  14. Cenozoic Plate tectonic history of the northern Venezuela-Trinidad Area (United States)

    Erlich, Robert N.; Barrett, S. F.


    Geological and geophysical data, coupled with recent plate tectonic reconstructions, suggest that the Cenozoic geologic history of the northern Venezuela-Trinidad area has been dominated by strike-slip displacement of discrete crustal blocks. Allochthonous terranes within the area include metavolcanic rocks of the Cretaceous Villa de Cura Group and metamorphic rocks of the Precambrian to Cretaceous Cordillera de la Costa. A relatively competent crustal block (Margarita Block) is defined by an outline around the metamorphic basement of Margarita Island, the Araya/Paria peninsula, the Northern Range of Trinidad, and Tobago Island. Reconstruction of the Margarita Block to its original position requires at least partial closure of the Falcon Basin, closure of the Bonaire and Cariaco basins, and restoration of about 50 km of motion on both the Oca and Bocono faults. Post middle Eocene eastward translation of the Caribbean plate caused eastward motion of the Margarita Block. A minor change in relative plate motion during the late Oligocene or early Miocene produced a right step in the Moron fault, forming the Cariaco pull-apart basin and El Pilar fault zone. Maximum offset on El Pilar fault is estimated to be no more than 125 km, though displacement along the entire fault zone may have been greater. Transpressional stresses between the Caribbean plate and northern South America caused folding of the Serrania del Interior of Venezuela and the Central Range of Trinidad. Eastward migration of transpressional stresses at the southeastern corner of the Caribbean-South American plate boundary is being accommodated by formation of oblique thrusts, transpressive anticlines, and downwarping of the crust. Bouguer gravity data suggest that Jurassic-aged Atlantic oceanic crust is being depressed as the Caribbean plate expands into the Demerara Plateau area. This study suggests that the faults and transtensional/transpressional/compressional structures identified in this study are

  15. Tectonic perspectives for urban ambiance? Towards a tectonic approach to urban design

    DEFF Research Database (Denmark)

    Christiansen, Elias Melvin; Laursen, Lea Louise Holst; Hvejsel, Marie Frier


    question of ambiance that seemingly signifies our sense of liveability is often suppressed. This requires us, as architects and urban designers, to refine our descriptions of ambiance as an integral part of the technical construction principles applied in the built environment, hereby considering...... domains. As a result, the potential is opened up to develop further the theory of landscape urbanism by juxtaposing it with tectonic architectural theory. The paper investigates this potential through a combined conceptual and analytical case, studying whether it is possible to define and describe urban...

  16. Tectono-Thermal History Modeling and Reservoir Simulation Study of the Nenana Basin, Central Alaska: Implications for Regional Tectonics and Geologic Carbon Sequestration (United States)

    Dixit, Nilesh C.

    Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana

  17. Active tectonics and earthquake potential of the Myanmar region


    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than


    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subd...

  18. Three-phase tectonic evolution of the Andaman backarc basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.

    to explore possible hydrothermal activity in the region, provided new i n- sights into the tectonic evoluti on of the backarc basin. Rao et al. 3 documented the absence of recognizable magnetic anomalies and presence of a thick pile of sediments, over..., very smooth t o- po graphic plane on either side characterizes segment C. Si n- gle - channel seismic reflection data over this segment depict a thick pile of sediments, with expressions of e x- tensional tectonics. Seismic eviden ce indicates...

  19. Rotational Baroclinic Adjustment

    DEFF Research Database (Denmark)

    Holtegård Nielsen, Steen Morten

    the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...... with the horizontal extent of many other parts of the Danish inland waters implies that the dynamics of these should also be discussed in terms of rotational effects....

  20. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.


    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  1. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail:; Cabezas, Carlos, E-mail:; Mata, Santiago, E-mail:; Alonso, Josè L., E-mail: [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)


    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  2. Muon spin rotation studies (United States)


    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  3. Correcting ionospheric Faraday rotation for ASKAP (United States)

    O'Sullivan, Shane; Gaensler, Bryan; Landecker, Tom L.; Willis, Tony


    Next-generation polarisation surveys, such as the POSSUM survey on ASKAP, aim to measure weak, statistical, cosmological effects associated with weak magnetic fields, and so will require unprecedented accuracy and stability for measuring polarisation vectors and their Faraday rotation measures (RMs). Ionospheric Faraday rotation (IFR) corrupts polarization observations and cannot be ignored at mid to low frequencies. In aperture-synthesis polarimetry IFR rotates individual visibilities and leads to a loss of coherence and accuracy of polarization angle determination. Through the POSSUM survey science team we have been involved in developing detailed ionospheric prediction software (POSSUM memos #10a,b) that will be used to correct the observed visibilities on ASKAP before imaging to obtain sufficiently accurate polarization and RM data. To provide a stringent test of this software, we propose a continuous 24 hr observing block using the 1.1-3.1 GHz band to monitor the variations caused by the time-variable ionosphere in the polarization angle and RM of a strongly polarized calibrator source, PKS B1903-802. We request a total of 96 hrs (4 x 24 hrs) to monitor the changes in the ionosphere every 3 to 6 months until BETA/ASKAP-12 is taking reliable polarization data.

  4. The tectonic evolution of western India and its impact on hydrocarbon occurrences: an overview (United States)

    Gombos, Andrew M.; Powell, William G.; Norton, Ian O.


    The largest hydrocarbon accumulations of India were localized in western India by a unique convergence of tectonic events. Mesozoic rifting along the structural trends of Proterozoic mobile belts formed the passive margin basins of the Indian coast. During the Campanian rifting of Madagascar from India, north-south-striking normal faults propagated into the area of the Cambay Graben. Late Maastrichtian doming over the incipient Deccan/Réunion hotspot imparted extensional stresses to the northwestern Indian coast and formed the fault block that became the Bombay High. After eruption of the Deccan flood basalts in Early Paleocene, extension continued in the weakened crust. This resulted in enhanced subsidence of the Cambay Graben and Surat (Danahu) Depression, rifting of the Seychelles microcontinent from India, and reactivation of normal faults on the emergent Bombay High. The Cambay Graben and the Surat (Danahu) Depression filled with organic-rich source shales as they underwent thermal subsidence. Shallow-water Eocene to Miocene carbonates developed on the slowly subsiding Bombay Platform, and sea-level oscillations fostered secondary porosity development. Late Tertiary maturation of the Surat (Danahu) Depression shales generated hydrocarbons that migrated into the carbonate reservoirs on the Bombay High. Konkan-Kerala, and the older basins of the east coast of India, were unaffected by the post-Campanian tectonic events, and lack the favorable play elements that characterize the giant fields.

  5. Neoproterozoic collision tectonics in the Mozambique Belt of East Africa: evidence from the Uluguru mountains, Tanzania (United States)

    Muhongo, Sospeter


    The fault-bounded Proterozoic metamorphic terranes lying to the E of the Tanzanian craton make up the Usagara tectonic domain and are a part of the transcontinental Mozambique Orogenic Belt (MB). The lithotectonic units in the MB of the East Africa consist of comparable rock assembles which underwent the same complex deformational history and are thought to represent large thrust sheets or nappes. Their shelf- and fore-deep terranes border the Tanzanian craton and make up the foreland terranes of the Pan-African Mozambique Belt. Granulite-gneiss nappes are ubiquitous in the orogen. Granulite-facies metamorphism, associated with recumbent folds, was due to crustal thickening, which took place during the collision between Gondwana fragments. Isotope data suggest a collision (and concomitant granulite-facies metamorphism) age of between 700 and 550 Ma. The orientations of planar and linear fabrics in the granulite-facies rocks of the Uluguru mountains are used to infer the relative crustal block motions during this collisional event. This Pan-African collisional event was characterized by NW-directed movements, oblique to the N-S trend of the orogen, and involved SE-directed backthrusting. The Ubendian Belt of Tanzania and the Aswa Shear Zone in Uganda and Kenya, which both bifurcate around the Tanzania craton, accommodated the tectonically thickened crust, created by the collisional event, through NW-SE sinistral strike-slip movements.

  6. Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers

    International Nuclear Information System (INIS)

    Frka-Petesic, Bruno; Fresnais, Jerome; Berret, Jean-Francois; Dupuis, Vincent; Perzynski, Regine; Sandre, Olivier


    Mixing in aqueous solutions polyelectrolyte-neutral block copolymers with oppositely charged species, spontaneously forms stable core-shell complexes, which are electrostatically driven. We report here on the structural and orientational properties of such mixed magnetic nanoclusters made of magnetic iron oxide nanoparticles (MNPs) and polyelectrolyte-neutral block copolymers. Small angle neutron scattering and transmission electron microscopy experiments allows to probe the inner-core nanoparticle organization, leading to an average interparticle distance and confirming the hierarchical internal structure of the clusters. Thanks to the MNP optical anisotropy, we also probe the under-magnetic field orientational properties of the core-shell clusters and their dynamical rotational relaxation

  7. Rotations in Stability Operations (United States)


    forces to the protected population .” An “ overwhelming presence” was essential to the initial success in Haiti and an “inadequate” number of troops was...stability operations until they achieve the endstate rather than rotating them allows the military to use overwhelming presence, successfully handle...must deploy a force that provides an overwhelming presence in the area of operations with the mission to achieve the endstate. 14. SUBJECT


    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz


    Full Text Available Purpose. To determine the efficiency of rope blocks, it is necessary to determine the stiffness coefficient of the ropes of blocks, taking into account the classification group of the mechanism and the wrapping angle of a block by a rope. At this one should use well-tested values of the efficiency coefficients of the rope blocks, taking into account the wrapping angle of a block by a rope and the analytically found friction coefficients of the rolling bearings given to the trunnion. Methodology. The work presents the analytical method of determining the coefficient of bearing resistance of the block when it is rotated by both the inner and outer cages, as well as the design scheme of the bearing of the block. Findings. The analysis of the lubrication method effect, the operating mode of the mechanism and the wrapping angle of a block by a rope on losses in bearings was carried out for rope blocks. The corresponding comparative tables of losses are given. Analysis of the obtained calculation results allows us to establish: 1 the main resistance affecting the cable blocks efficiency is the resistance in bearings; 2 the second largest component is the stiffness losses, depending on the operating mode, the wrapping angle of a block by a rope, the type of bearing lubrication; 3 the block efficiency when rotating the inner cage is higher than rotating the outer one by about 3% with thick lubrication and 1M mode; 4 in the sequential location of assemblies with a rolling bearing, it is necessary to strive for the design of the assembly in which the inner cage rotates; 5 with the number of blocks up to 5, one can use the recommended definitions of block bearings in the literature with an error in the efficiency value of up to 10%. Originality. The authors obtained values of resistances in the rolling bearings of the rope blocks and stiffness losses due to the girth of the block by the rope. In this case, dependences were used to determine the coefficient

  9. Rotating clusters in nuclei

    International Nuclear Information System (INIS)

    Pauling, L.; Robinson, A.B.


    Values of R, the radius of rotation of the rotating cluster, are calculated from the energy of the lowest 2 + level of even-even nuclei with the assumption that the cluster consists of p 2 or n 2 respectively, for N or P magic, and of a helion (α) for N or P differing from a magic number by +-2. The values as a function of A show a zigzag course, which is correlated with the polyspheron structure of the nuclei. If the mantle is not overcrowded the cluster glides over the surface of the mantle and the value of R increases by one spheron diameter, about 3.2 fm. At certain values of N a change in structure of the nucleus occurs, with increase in radius of the core by half a spheron diameter, permitting the cluster to drop back into the mantle, with decrease in R by half a spheron diameter. In the lanthanon region of permanent prolate deformation the rotating cluster is a polyhelion, containing the number of helions permitted by the difference between Z or N and the nearest magic number, and in the actinon region it contains all the nucleons beyond 208 Pb, with maximum p 10 n 16 . An explanation is given of the difference between these regions. (author)

  10. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.


    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  11. Looking for Plate Tectonics in all the wrong fluids (United States)

    Davaille, Anne


    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  12. Three-dimensional Reconstruction of Block Shape Irregularity and its Effects on Block Impacts Using an Energy-Based Approach (United States)

    Zhang, Yulong; Liu, Zaobao; Shi, Chong; Shao, Jianfu


    This study is devoted to three-dimensional modeling of small falling rocks in block impact analysis in energy view using the particle flow method. The restitution coefficient of rockfall collision is introduced from the energy consumption mechanism to describe rockfall-impacting properties. Three-dimensional reconstruction of falling block is conducted with the help of spherical harmonic functions that have satisfactory mathematical properties such as orthogonality and rotation invariance. Numerical modeling of the block impact to the bedrock is analyzed with both the sphere-simplified model and the 3D reconstructed model. Comparisons of the obtained results suggest that the 3D reconstructed model is advantageous in considering the combination effects of rockfall velocity and rotations during colliding process. Verification of the modeling is carried out with the results obtained from other experiments. In addition, the effects of rockfall morphology, surface characteristics, velocity, and volume, colliding damping and relative angle are investigated. A three-dimensional reconstruction modulus of falling blocks is to be developed and incorporated into the rockfall simulation tools in order to extend the modeling results at block scale to slope scale.

  13. Coordinate-Free Rotation Operator. (United States)

    Leubner, C.


    Suggests the use of a coordinate-free rotation operator for the teaching of rotations in Euclidean three space because of its twofold didactic advantage. Illustrates the potentialities of the coordinate-free rotation operator approach by a number of examples. (Author/GA)

  14. Rotating plug bearing and seal

    International Nuclear Information System (INIS)

    Wade, E.E.


    Disclosed is a bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing. 19 claims, 3 figures

  15. Paving block study : final report. (United States)


    The Louisiana Department of Highways has conducted field tests with an experimental revetment consisting of cellular concrete revetment blocks used in conjunction with plastic filter cloth and/or vegetation such as grass or vines. The precast blocks ...

  16. Habitat Blocks and Wildlife Corridors (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  17. Demographic Data - MDC_Block (United States)

    NSGIC Local Govt | GIS Inventory — A polygon feature class of Miami-Dade Census 2000 Blocks. Census blocks are areas bounded on all sides by visible and/or invisible features shown on a map prepared...

  18. Albian salt-tectonics in Central Tunisia: Evidences for an Atlantic-type passive margin (United States)

    Jaillard, Etienne; Bouillin, Jean-Pierre; Ouali, Jamel; Dumont, Thierry; Latil, Jean-Louis; Chihaoui, Abir


    Tunisia is part of the south-Tethyan margin, which comprises Triassic evaporites and a thick series of Jurassic and Cretaceous, mainly marine deposits, related to the Tethyan rifting evolution. A survey of various Cretaceous outcrops of central Tunisia (Kasserine-El Kef area), combined with literature descriptions, shows that the style of Albian deformation changes from the proximal (South) to the distal part (North) of the margin. The southern part is dominated by tilted blocks and growth faults, which evolve to the north to turtle-back and roll-over structures. Farther North, deformation is dominated by the extrusion of diapirs and salt walls. Such a distribution of deformation strongly suggests that the whole sedimentary cover glided northward on the Triassic evaporites during Albian times, as described for the Atlantic passive margin or for the Gulf of Mexico. Subsequently, these halokinetic structures have been folded during Alpine compressional tectonics.

  19. Assessing the influence of small-scale tectonic faults on mining coal deposits with minimum losses

    Energy Technology Data Exchange (ETDEWEB)

    Verescagin, G.V.; Grigor' ev, V.E.


    The paper proposes a calculation value, K/SUB/g, for quantitatively assessing the degree of disturbances in a coal working field. The value indicates the relation of the combined extent of faults in individual mine sections to the total surface of this section. The value allows the degree of disturbances between mining blocks to be compared; it is also proportional to reserve losses after mining these sections. The formulae can also be used to calculate coal reserve losses in safety pillars. The economic limit for mining coal field sections is K/SUB/g values higher than 200 to 300 m/ha. These coal sections should not be mined as coal production costs exceed the economic value of the coal. An objective prognosis for expected coal reserve losses due to small-scale tectonic faults can be made with the described method.

  20. Polygon formation and surface flow on a rotating fluid surface

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.


    We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

  1. Africa's Megafans and Their Tectonic Setting (United States)

    Wilkinson, M. J.; Burke, K.


    Megafans are a really extensive continental sediment bodies, fluvially derived, and fan-shaped in planform. Only those >80 km long were included in this study. Africa's megafans were mapped for purposes of both comprehensive geomorphic description and as a method of mapping by remote sensing large probable fluvial sediment bodies (we exclude sediment bodies deposited in well defined, modern floodplains and coastal deltas). Our criteria included a length dimension of >80 km and maximum width >40 km, partial cone morphology, and a radial drainage pattern. Visible and especially IR imagery were used to identify the features, combined with topographic SRTM data. We identified 99 megafans most of which are unstudied thus far. Their feeder rivers responsible for depositing megafan sediments rise on, and are consequent drainages oriented down the slopes of the swells that have dominated African landscapes since approximately 34 Ma (the high points in Africa's so-called basin-and-swell topography [1]). Most megafans (66%) have developed along these consequent rivers relatively near the swell cores, oriented radially away from the swells. The vast basins between the swells provide accommodation for megafan sediment wedges. Although clearly visible remotely, most megafans are inactive as a result of incision by the feeder river (which then no longer operates on the fan surface). Two tectonic settings control the location of Africa's megafans, 66% on swell flanks, and 33% related to rifts. (i) Swell flanks Most megafans are apexed relatively near the core of the parent swell, and are often clustered in groups: e.g., six on the west and north flanks of the Hoggar Swell (Algeria), seven on the north and south flanks of the Tibesti Swell (Libya-Chad borderlands), twelve on the west flank of the Ethiopian Swell, four on the east flank of the East African Swell (Kenya), Africa's largest, and eight around Angola's Bié Swell (western Zambia, northern Namibia). A cluster of possible

  2. Blocking the Hawking radiation

    DEFF Research Database (Denmark)

    Autzen, M.; Kouvaris, C.


    grows after its formation (and eventually destroys the star) instead of evaporating. The fate of the black hole is dictated by the two opposite mechanics, i.e., accretion of nuclear matter from the center of the star and Hawking radiation that tends to decrease the mass of the black hole. We study how...... the assumptions for the accretion rate can in fact affect the critical mass beyond which a black hole always grows. We also study to what extent degenerate nuclear matter can impede Hawking radiation due to the fact that emitted particles can be Pauli blocked at the core of the star....

  3. HVDC Ground Electrodes and Tectonic Setting (United States)

    Freire, P. F.; Pereira, S. Y.


    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  4. How Artists Overcome Creative Blocks. (United States)

    Hirst, Barbara


    Six practicing artists were interviewed about how they overcome creative blocks. Their responses indicated that feelings of self-doubt, fear, and depression accompany blocks but that relaxing and working on new directions and playing ideas off a supportive person helped to overcome such blocks. (DB)

  5. Block Scheduling in High Schools. (United States)

    Irmsher, Karen


    Block Scheduling has been considered a cure for a lengthy list of educational problems. This report reviews the literature on block schedules and describes some Oregon high schools that have integrated block scheduling. Major disadvantages included resistance to change and requirements that teachers change their teaching strategies. There is…

  6. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Neimann, Jens Dupont Børglum; Gögenür, Ismail; Bendtsen, Thomas F.


    Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.  Rec...

  7. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.


    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  8. Tectonics of the northern Venezuelan Andes from satellite images analysis (United States)

    Dhont, D.; Backé, G.; Hervouët, Y.


    The northern part of the Venezuelan (or Merida) Andes is a complex area comprising a Cretaceous to Quaternary sedimentary sequence that recorded two main stages of deformation: (1) the uplifting of the Carribean belt in the Cretaceous-Eocene (Carribean stage), which is superimposed by (2) the building of the Venezuelan Andes since the Miocene (Andean stage). The study area is located at the junction between the Merida Andes and the Caribbean belt, and constitutes a key zone to understand the transition between these two orogens. Our aim is to implement the structural mapping in order to propose a new model of deformation at regional scale. The methodology is based on analysis of Landsat TM, SPOT, radarsat and DEM images, and is complemented by geological studies in the field. Integration of this complementary data set into a GIS enables a new understanding of the tectonics of the northern Venezuelan Andes during the Neogene-Quaternary. We focused on three main areas where the structures are clearly exposed. In the Mene Grande area, our structural analysis allows to precise the geometry and timing of deformations. The Cerro la Galera anticline is a fault bend fold propagating to the SW that developped along the Burro Negro fault during the Eocene-Oligocene and then eroded. The Cerro La Luna (or Cerro Misoa) is a pop-up structure that developped later during the Andean stage. In the Jirajara area, we have evidenced a releasing-bend basin at left-stepping offset of the Valera fault. To the east, this basin is surrounded by the relief of the Serrania de Jirajara which gravitationally collapses towards the lowland of the basin. In the Sierra de Barragua area, we mapped the left-lateral strike-slip Rio Diquiva fault 25 km east of the Valera fault. This fault is a major structure bounding two distincts areas of sedimentation during the Eocene. The synthesis of these observations shows that the northern Venezuelan Andes consist in a mosaic of independent crustal blocks


    International Nuclear Information System (INIS)



    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  10. CISM Course on Rotating Fluids

    CERN Document Server


    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  11. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)


    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  12. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean (United States)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.


    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The

  13. Basement inheritance and salt tectonics in the SE Barents Sea: Insights from new potential field data (United States)

    Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.


    Basin at the edge of this magnetic domain suggests the presence of an old and thick Precambrian continental block. This magnetic and tectonic buffer controlled the Late Palaeozoic-Mesozoic rifting and the salt tectonic development of the southeastern Barents Sea.

  14. Tectonic resemblance of the Indian Platform, Pakistan with the Moesian Platform, Romania and strategy for exploration of hydrocarbons

    International Nuclear Information System (INIS)

    Memon, A.D.


    There is a remarkable tectonic resemblance between the indian Platform (Pakistan) and the Moesian Platform (Romania). As viewed in global tectonic perspective Moeslan and Indian Plates have played important role in Alpine Himalayan Orogeny; Moesian and Indian Platforms are extension of these respective plates. Characteristics features of both the platforms are block faulting which has effected not only the general tectonic framework but has also played important role in oil accumulation. Main producing rocks in the Moesian platform are Jurassic sandstones and cretaceous limestones while in the indian platform cretaceous sandstones are important reservoirs. The average geothermal gradient in the indian platform is 2.45 C/100m with the higher gradients in the central gas producing region. Geothermal gradients in the Moesian platform have an average value of 3 C/100m with higher gradients in the northern in the northern part. Some of the producing structures in both the platforms are remarkably similar, traps associated with normal faults are very important. Extensive exploration carried in the Moesian Platform makes it very important oil producing region of Romania. After the discovery of oil lower Sindh, serious exploration is being carried in the Indian platform. The paper deals with the similarities between these two important platforms. In the light of the studies of the Moesian platform, strategies or exploration of oil and gas in the Indian Platform are suggested. (author)

  15. Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism (United States)

    Fyhn, Michael B. W.; Boldreel, Lars O.; Nielsen, Lars H.


    The Vietnamese margin forms a key region to the understanding of escape tectonics and the development of the South China Sea (SCS). The existing geological reconstructions of the region are restricted to studies of single basins, are based on limited amounts of geophysical data or analysis of onshore geological features. These models are critically assessed on the basis of interpretation of the most comprehensive 2-D digital seismic database published to date within the area combined with a thorough analysis of existing literature, and a new model is presented. The Vietnamese margin is underlain by a series of Paleogene rift basins established through southeastward extrusion of Indochina. The East Vietnam Boundary Fault (EVBF) forms the almost 1000 km long seaward continuation of the left-lateral Ailao Shan-Red River Shear Zone (ASRRSZ). Toward the southern half of the Phu Khanh Basin the EVBF breaks up into discrete segments and splays into the SE-directed Tua Hoa Fault Zone. Paleogene faults splayed from the EVBF and the Mae Ping Shear Zone and accommodated the coeval motion of these two major left-lateral structural lineaments. During the late Oligocene, basin inversions offshore occurred contemporaneously with initial right-lateral inversion along the Mae Ping Shear Zone and the onset of major uplift of the metamorphic core complexes along the ASRRSZ. It is suggested that a dramatic change of the regional stress pattern occurred in response to the northward movement of India and the effective coupling of the West Burma Block and India, the later resulting in broadening of the indenting continental mass. After the mid-Oligocene, left-lateral movements across the offshore EVBF decreased and eventually ceased. Later, onshore sinistral movements were accommodated by internal shortening and local clockwise block rotations within the Shan-Thai Terrain. Renewed rifting offshore south Vietnam resulted from the jump of the SCS spreading axis and subsequent Neogene

  16. Program structure-based blocking (United States)

    Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.; Sura, Zehra N.


    Embodiments relate to program structure-based blocking. An aspect includes receiving source code corresponding to a computer program by a compiler of a computer system. Another aspect includes determining a prefetching section in the source code by a marking module of the compiler. Yet another aspect includes performing, by a blocking module of the compiler, blocking of instructions located in the prefetching section into instruction blocks, such that the instruction blocks of the prefetching section only contain instructions that are located in the prefetching section.

  17. Complete-block scheduling for advanced pharmacy practice experiences. (United States)

    Hatton, Randy C; Weitzel, Kristin W


    An innovative approach to meeting increased student demand for advanced pharmacy practice experiences (APPEs) is described, including lessons learned during a two-year pilot project. To achieve more efficient allocation of preceptor resources, the University of Florida College of Pharmacy (UFCOP) adopted a new APPE rotation model in which 20 pharmacy students per year complete all required and elective APPEs at one practice site, an affiliated academic medical center. Relative to the prevailing model of experiential training for Pharm.D. students, the "complete-block scheduling" model offers a number of potential benefits to students, preceptors, and the pharmacy school. In addition to potentially reduced student housing expenses and associated conveniences, complete-block scheduling may enable (1) more efficient use of teaching resources, (2) increased collaboration among preceptors, (3) greater continuity and standardization of educational experiences, and (4) enhanced opportunities for students to engage in longer and more complex research projects. The single-site APPE rotation model also can provide value to the training site by enabling the extension of clinical pharmacy services; for example, UFCOP students perform anticoagulation monitoring and discharge medication counseling at the host institution. Despite logistical and other challenges encountered during pilot testing of the new scheduling model, the program has been well received by students and preceptors alike. Complete-block APPE scheduling is a viable model for some health systems to consider as a means of streamlining experiential education practices and helping to ensure high-quality clinical rotations for Pharm.D. students.

  18. Planetary Interior Modeling and Tectonic Implications (United States)

    Phillips, R. J.


    A technique is described for estimating spectral admittance functions using Pioneer Venus gravity and topography data. These admittance functions provide a convenient means to carry out systematic geophysical studies over much of the surface of Venus with a variety of interior density models. The admittance functions are calculated in the observation space of line-of-sight (LOS) gravity. Both closed and open system petrological models are considered for the Tharsis region of Mars. An analytic theory for isostatic compensation on one-plate planet is applied, including membrane stresses in the lithosphere, self gravitation, and rotational ellipticity. Crucial to this stress modeling and also to the petrological modeling is the observation that the earliest fracturing seen in the Tharsis region is associated with isostatic stresses. The radial fractures that extend far from Tharsis are associated with an additional and/or a completely different mechanism.

  19. Tectonic patterns on a reoriented planet - Mars

    International Nuclear Information System (INIS)

    Melosh, H.J.


    Both geological and free-air-gravity data suggest that the positive mass anomaly associated with the Tharsis volcanoes may have reoriented Mars' lithosphere by as much as 25 deg. Since Mars is oblate, rotation of the lithosphere over the equatorial bulge by 25 deg produces membrane stresses of several kilobars, large enough to initiate faulting. Plots of the magnitude and direction of stresses in a reoriented planet show that near Tharsis the dominant fault type should be north-south-trending normal faults. This normal fault province is centered at 30 deg N latitude and extends about 45 deg east and west in longitude. Similar faults should occur at the antipodes, north of Hellas Planitia

  20. Lower precambrian of the Keivy Terrane, Northeastern Baltic Shield: A stratigraphic succession or a collage of tectonic sheets? (United States)

    Balagansky, V. V.; Raevsky, A. B.; Mudruk, S. V.


    The Keivy Terrane in the northeastern Baltic Shield appreciably differs from the adjacent tectonic blocks. In the northwestern part of this terrane (the Serpovidny Range), an outlier of Paleoproterozoic supracrustal rocks called the Serpovidny structure is surrounded by Archean (?) Keivy high-alumina paraschists. As follows from structural and magnetic data, the Paleoproterozoic rocks are deformed into a tight sheath fold 8 × 2 km in size at the surface and 5 km in length along the sheath axis. Faults parallel to the boundaries of the layers and locally cutting them off at an acute angle are involved in folding as well. The outer boundaries of the Serpovidny structure are tectonic. This structure is complementary to a larger tectonic lens composed of the Keivy mica schists. It is concluded that all of the supracrustal rocks of the Serpovidny Range are in fact tectonic sheets and lenses deformed into sheath folds. The literature data show that kilometer-scale sheath folds occur throughout the Keivy paraschist belt and most likely were formed owing to thrusting of the Murmansk Craton onto the Keivy Terrane in the south-southwestern direction. Foliation and lineation related to thrusting have been established in the Archean silicic metavolcanics and peralkaline granites occupying the most part of the terrane. In contrast, the granitoids and gabbroanorthosites of the Archean basement, which form a block 90 × 20 km in the southwestern Keivy Terrane, were not affected by Paleoproterozoic deformation. In other words, a detached assembly of tectonic sheets composed of the upper and middle crustal rocks that underwent deformation at the initial stage of the Paleoproterozoic Lapland-Kola Orogeny and the Archean basement, which is free of this deformation, are distinguished. The depth of detachment is estimated at 20-25 km. The detachment of the upper and middle crust in the Keivy Terrane and its position in the structure of the Baltic Shield are consistent with a

  1. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René


    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  2. Rotating specimen rack repair

    International Nuclear Information System (INIS)

    Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.


    In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

  3. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul


    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  4. Analogue modelling of microcontinent formation: a case study from the Danakil Block, southern Red Sea (United States)

    Molnar, Nicolas; Cruden, Alexander; Betts, Peter


    The kinematic evolution of the Danakil Block is well constrained but the processes responsible for the formation of an isolated continental segment around 13 Ma ago with an independent pole of rotation are still matter of debate. We performed three-dimensional analogue experiments of rotational continental extension containing a pre-existing linear weakness zones in the lithospheric mantle to investigate the formation of the Red Sea, including the Danakil Block. We imposed a rotational extensional boundary condition that simulates the progressive anticlockwise rotation of the Arabian Plate with respect to the Nubia Plate over the last 13-15 Ma and we simulated the presence of a narrow thermal anomaly related to the northward channelling of Afar plume by varying the viscosity of the model lithospheric mantle. The results from experiments containing a linear zone of weakness oriented at low angles with respect to the rift axis show that early stages of deformation are characterised by the development of two rift sub-parallel compartments that delimit an intra-rift block in the vicinity of the weak lithosphere boundary zone, which are analogous to the two rift branches that confine the Danakil Block in the southern Red Sea. The imposed rotational boundary condition creates a displacement gradient along the intra-rift block and prevents the nucleation of the early rift compartments to the north of the block, enhancing the formation of an independently rotating intra-rift segment. Comparison with geodetic data supports our modelling results, which are also in agreement with the "crank-arm" model of Sichler (1980. La biellette Danakile: un modèle pour l'évolution géodynamique de l'Afar. Bull. la Société Géologique Fr. 22, 925-933). Additional analogue models of i) orthogonal extension with an identical lithospheric mantle weakness and, ii) rotational extension with a homogeneous lithosphere (i.e., no lithospheric mantle weakness) show no evidence of developing

  5. Analysis of the stress regime and tectonic evolution of the Azerbaijan Plateau, Northwestern Iran (United States)

    Alizadeh, A.; Hoseynalizadeh, Z.


    The increasing number of earthquakes in recent decades in Northwestern Iran and the determination of the epicenters of these events makes possible to estimate accurately the changing tectonic regime using the Win-Tensor inversion focal mechanism program. For this purpose focal mechanism data were collected from various sources, including the Centroid Moment Tensor catalog (CMT). The focal mechanism and fault slip data were analyzed to determine change in the stress field up to the present day. The results showed that two stages of brittle deformation occurred in the region. The first stage was related to Eocene compression in NE-SW direction, which created compressional structures with NW-SE strike, including the North and South Bozgush, south Ahar and Gushedagh thrust belts. The second brittle stage began in the Miocene with NW-SE compression and caused developing thrusts with N-S trends that were active presently. These stress regimes were created by the counter-clockwise rotation of the Azerbaijan plateau caused by movement on strike slip faults and continuous compression between the Arabian plate, the south Caspian basin and the Caucasus region. Pliocene-Quaternary activity of the Sabalan and Sahand volcanoes as well as recent earthquakes occurred as a result of this displacement and rotational movement. The abundance of hot springs in the Ardebil, Hero Abad and Bostanabad areas also bore witness to this activity.

  6. Block copolymer investigations (United States)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  7. Large plates and small blocks: The Variscan orogeny in the Bohemian Massif (United States)

    Kroner, Uwe; Romer, Rolf L.


    The Bohemian Massif of the Central European Variscides consists of several late Proterozoic / early Paleozoic low-strain crustal units, namely the Bruno-Vistulian continental block of the Laurussian plate that is juxtaposed with the Tepla-Barrandian Unit and the Lausitz block of the Gondwana plate. These pre-Variscan low-strain units are separated by high-strain zones that contain the mid- and lower crustal record of the Variscan orogeny (400-300 Ma), with nappes reflecting successive subduction exhumation events, voluminous migmatites and a wide range of geochemically contrasting granites. Although the principal constraints are undisputed, there is no consensus regarding the general tectonics of this area. Here we present a plate tectonic model explaining the Bohemian Massif as an orogenic wedge with a Gondwana pro-wedge and a Laurussia retro-wedge area. The principal formation steps are as follows. Subduction of the oceanic crust of the Gondwana plate, i.e. the southern part of the Rheic Ocean eventually followed by continental subduction of the distal Peri-Gondwana shelf produced the early Devonian (U)HP complexes now exposed in the uppermost allochthonous units. The arrival of the Tepla-Barrandian Cadomian block initiates a flip of subduction polarity, leading to the complete closure of the Rheic Ocean in the late Devonian coeval with the exhumation of the early Variscan (U)HP units. Caused by the Lausitz block entering the plate boundary zone in the early Carboniferous, this early subduction accretion stage was followed by continent continent collision. The resulting orogenic wedge is characterized by an intra-continental subduction zone in the pro-wedge area superimposed by the crustal stack of early and mid-Variscan accreted units. Due to heating of the subducted slab in the mantle, the isothermal exhumation of this deeply buried continental crust caused HT-LP metamorphism during the final transpressional stage. Lateral extrusion tectonics coeval with the

  8. Rotational Spectrum of Saccharine (United States)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.


    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).


    Directory of Open Access Journals (Sweden)

    Wang Kaiying


    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  10. Celiac ganglia block

    Energy Technology Data Exchange (ETDEWEB)

    Akinci, Devrim [Department of Radiology, Hacettepe University School of Medicine, Sihhiye, 06100 Ankara (Turkey); Akhan, Okan [Department of Radiology, Hacettepe University School of Medicine, Sihhiye, 06100 Ankara (Turkey)]. E-mail:


    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation.

  11. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael


    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film......Photovoltaics (PV), better known as solar cells, are now a common day sight on many rooftops in Denmark.The installed capacity of PV systems worldwide is growing exponentially1 and is the third most importantrenewable energy source today. The cost of PV is decreasing fast with ~10%/year but to make...... it directcompetitive with fossil energy sources a further reduction is needed. By increasing the efficiency of the solar cells one gain an advantage through the whole chain of cost. So that per produced Watt of power less material is spent, installation costs are lower, less area is used etc. With an average...

  12. Atomic Basic Blocks (United States)

    Scheler, Fabian; Mitzlaff, Martin; Schröder-Preikschat, Wolfgang

    Die Entscheidung, einen zeit- bzw. ereignisgesteuerten Ansatz für ein Echtzeitsystem zu verwenden, ist schwierig und sehr weitreichend. Weitreichend vor allem deshalb, weil diese beiden Ansätze mit äußerst unterschiedlichen Kontrollflussabstraktionen verknüpft sind, die eine spätere Migration zum anderen Paradigma sehr schwer oder gar unmöglich machen. Wir schlagen daher die Verwendung einer Zwischendarstellung vor, die unabhängig von der jeweils verwendeten Kontrollflussabstraktion ist. Für diesen Zweck verwenden wir auf Basisblöcken basierende Atomic Basic Blocks (ABB) und bauen darauf ein Werkzeug, den Real-Time Systems Compiler (RTSC) auf, der die Migration zwischen zeit- und ereignisgesteuerten Systemen unterstützt.

  13. Celiac ganglia block

    International Nuclear Information System (INIS)

    Akinci, Devrim; Akhan, Okan


    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation

  14. The rapid cooling of the Nansha Block, southern South China Sea (United States)

    Dong, M.; Zhang, J.


    Since the Late Cretaceous and Cenozoic, the Nansha Block has experienced a series of tectonic process and separated from South China continent to the south. As an exotic micro-continental, Nansha Block has an obvious different lithospheric rheology property from surrounding region. The lithosphere and mantle dynamic and rheology are mainly controlled by temperature. Therefore, we calculated the 3D temperature field and geothermal gradient of Nansha Block's upper mantle by using the S-wave velocity structure from surface wave tomography. The results show that the depth where temperature of 1300° as the lithospheric thickness is in close correspondence with the top of the seismic low velocity zone. The temperature of the upper mantle in Nansha Block is significantly lower than that of surrounding. It implies that Nansha Block experienced a rapid cooling event. We propose that the rapid cooling can be partly attributed to three reasons: 1) Nansha Block is a relatively stable block with no interior geothermal activity. 2) No external heat source to provide energy. 3) Abnormal mantle convection under Nansha Block accelerated the cooling.

  15. Tectonic evolution of the Sicilian Maghrebian Chain inferred from stratigraphic and petrographic evidences of Lower Cretaceous and Oligocene flysch

    Directory of Open Access Journals (Sweden)

    Puglisi Diego


    Full Text Available The occurrence of a Lower Cretaceous flysch group, cropping out from the Gibraltar Arc to the Balkans with a very similar structural setting and sedimentary provenance always linked to the dismantling of internal areas, suggests the existence of only one sedimentary basin (Alpine Tethys s.s., subdivided into many other minor oceanic areas. The Maghrebian Basin, mainly developed on thinned continental crust, was probably located in the westernmost sector of the Alpine Tethys. Cretaceous re-organization of the plates triggered one (or more tectonic phases, well recorded in almost all the sectors of the Alpine Tethys. However, the Maghrebian Basin seems to have been deformed by Late- or post-Cretaceous tectonics, connected with a “meso-Alpine” phase (pre-Oligocene, already hypothesized since the beginning of the nineties. Field geological evidence and recent biostratigraphic data also support this important meso- Alpine tectonic phase in the Sicilian segment of the Maghrebian Chain, indicated by the deformations of a Lower Cretaceous flysch sealed by Lower Oligocene turbidite deposits. This tectonic development is emphasized here because it was probably connected with the onset of rifting in the southern paleomargin of the European plate, the detaching of the so-called AlKaPeCa block (Auct.; i.e. Alboran + Kabylian + Calabria and Peloritani terranes and its fragmentation into several microplates. The subsequent early Oligocene drifting of these microplates led to the progressive closure of the Maghrebian Basin and the opening of new back-arc oceanic basins, strongly controlled by extensional processes, in the western Mediterranean (i.e. Gulf of Lion, Valencia Trough, Provençal Basin and Alboran Sea.

  16. Assessment of relative active tectonics, south central Alborz (north Iran) (United States)

    Khavari, R.; Ghorashi, M.; Arian, M.


    The paper present a method for evaluating relative active tectonics based on geomorphic indices useful in evaluating morphology and topography. Indices used include: stream length-gradient index (SL), drainage basin asymmetry (Af), hypsometric integral (Hi), ratio of valley-floor width to valley height (Vf), index of drainage basin shape (Bs), and index of mountain front sinuosity (Smf). Results from the analysis are accumulated and expressed as an index of relative active tectonics (Iat), which we divide into four classes from relatively low to highest tectonic activity. The study area along the south flank of the central Alborz mountain range in north Iran is an ideal location to test the concept of an index to predict relative tectonic activity on a basis of area rather than a single valley or mountain front. The recent investigations show that neotectonism has played a key role in the geomorphic evolution of this part of the Alborz mountain range. Geomorphic indices indicate the presence of differential uplifting in the geological past. The area surrounding the Amirkabir lake shows very high relative tectonic activity.

  17. Possible salt tectonics in Ariadnes Colles ? (United States)

    Wendt, L.; Gasselt, S. V.; Neukum, G.


    the foot of the hill. On other knobs, the basaltic material can be found on higher elevations or even at the top. Directly beneath it, the hill exhibits a bright layer that follows the topography with a constant thickness. This layer appears to be harder than the remainder of the light-toned material. Below it, the hills consist of bulk, massive, indurated material. Both the outer layer and the bulk light-toned material are heavily dissected by joints. These joints are partly oriented in a rectangular pattern, but in many cases the exposed outer side of the crust shows a polygonal pattern. Discussion The formation process of the material forming the knobs is poorly constrained. The location of the features below the high stand of a lake proposed by [1] and their light colour are consistent with a formation as an evaporite in a standing body of water, as proposed by [3], who suggested halite as a possible material. The possible detection of sulphate absorbtion features by [5] supports the interpretation of an evaporitic origin.. The development of the individual knobs appears to follow a regional tectonic framework, as suggested by the angular outer boundaries of the individual hills [3]. The observation of a highly jointed, light toned layer superimposed on the bright material in the centre of the knobs that rises from below the basaltic cover between the hills suggests that the hills were not formed by differential displacement along faults and subsequent erosion along these zones of weakness, but by local uplift caused by internal deformation of the light-toned material. Combining these observations, our leading hypothesis is the formation of the lighttoned material by evaporation, followed by uplift of the hills by salt-tectonic movement. Future work We will test this hypothesis and investigate possible alternative processes using spectral data from OMEGA and CRISM flanked by geologic mapping and age determinations based on HRSC and HiRISE imagery. Acknowledgement

  18. Spatial distribution of ice blocks on Enceladus and implications for their origin and emplacement (United States)

    Martens, Hilary R.; Ingersoll, Andrew P.; Ewald, Shawn P.; Helfenstein, Paul; Giese, Bernd


    We have mapped the locations of over 100,000 ice blocks across the south polar region of Saturn's moon Enceladus, thus generating the first quantitative estimates of ice-block number density distribution in relation to major geological features. Ice blocks were manually identified and mapped from twenty of the highest resolution (4-25 m per pixel) Cassini Imaging Science Subsystem (ISS) narrow-angle images using ArcGIS software. The 10-100 m-diameter positive-relief features are marginally visible at the resolution of the images, making ice-block identifications difficult but not impossible. Our preliminary results reveal that ice blocks in the southern hemisphere are systematically most concentrated within the geologically active South Polar Terrain (SPT) and exhibit peak concentrations within 20 km of the tiger-stripe fractures as well as close to the south pole. We find that ice blocks are concentrated just as heavily between tiger-stripe fractures as on the directly adjacent margins; although significant local fluctuations in ice-block number density do occur, we observe no clear pattern with respect to the tiger stripes or jet sources. We examine possible roles of several mechanisms for ice-block origin, emplacement, and evolution: impact cratering, ejection from fissures during cryovolcanic eruptions, tectonic disruption of lithospheric ice, mass wasting, seismic disturbance, and vapor condensation around icy fumeroles. We conclude that impact cratering as well as mass wasting, perhaps triggered by seismic events, cannot account for a majority of ice-block features within the inner SPT. The pervasiveness of fracturing at many size scales, the ubiquity of ice blocks in the inner SPT, as well as the occurrence of linear block arrangements that parallel through-cutting crack networks along the flanks of tiger stripes indicate that tectonic deformation is an important source of blocky-ice features in the SPT. Ejection during catastrophic cryovolcanic eruptions

  19. Chronological constraints on tectonic evolution of the Chinese Tianshan Orogen through detrital zircons from modern and paleo-river sands (United States)

    Ren, Rong; Guan, Shuwei; Han, Baofu


    The Chinese Tianshan Orogen marked the prolonged, complicated interactions between the southwestern Paleo-Asian Ocean and surrounding blocks. Massive new and previous detrital zircon U-Pb chronological data from modern and paleo-river sands (more than 7000 ages from 102 samples) were compiled to constrain its tectonic evolution. The Chinese Tianshan Orogen is characterized by predominant Paleozoic and minor Mesozoic and Precambrian detrital zircon ages that show multimodal characteristic. The oldest Phanerozoic zircon population (peak at 475 Ma) results from subduction and closure of the Early Paleozoic Terskey Ocean. But the absence of this peak in Chinese North and southern South Tianshan suggests that the subductions of the North and South Tianshan oceans may not initiate until Late Ordovician, with subsequent 460-390 Ma and 360-320 Ma arc magmatism. Similar to magmatic suite in classic collisional orogens, the youngest massive 320-270 Ma magmatism is supposed to be post-collisional. The North and South Tianshan oceans therefore probably had their closure to form the Chinese Tianshan Orogen during Late Carboniferous. The weak Mesozoic intra-plate magmatism further argues against a Late Permian-Triassic Tianshan Orogen for the lack of extensive syn- and post-collisional magmatism. Moreover, the diverse Precambrian detrital zircon age patterns indicate that the surrounding blocks have distinct tectonic evolution and short-term amalgamation during the Neoproterozoic.

  20. A discrete element modelling approach for block impacts on trees (United States)

    Toe, David; Bourrier, Franck; Olmedo, Ignatio; Berger, Frederic


    These past few year rockfall models explicitly accounting for block shape, especially those using the Discrete Element Method (DEM), have shown a good ability to predict rockfall trajectories. Integrating forest effects into those models still remain challenging. This study aims at using a DEM approach to model impacts of blocks on trees and identify the key parameters controlling the block kinematics after the impact on a tree. A DEM impact model of a block on a tree was developed and validated using laboratory experiments. Then, key parameters were assessed using a global sensitivity analyse. Modelling the impact of a block on a tree using DEM allows taking into account large displacements, material non-linearities and contacts between the block and the tree. Tree stems are represented by flexible cylinders model as plastic beams sustaining normal, shearing, bending, and twisting loading. Root soil interactions are modelled using a rotation stiffness acting on the bending moment at the bottom of the tree and a limit bending moment to account for tree overturning. The crown is taken into account using an additional mass distribute uniformly on the upper part of the tree. The block is represented by a sphere. The contact model between the block and the stem consists of an elastic frictional model. The DEM model was validated using laboratory impact tests carried out on 41 fresh beech (Fagus Sylvatica) stems. Each stem was 1,3 m long with a diameter between 3 to 7 cm. Wood stems were clamped on a rigid structure and impacted by a 149 kg charpy pendulum. Finally an intensive simulation campaign of blocks impacting trees was done to identify the input parameters controlling the block kinematics after the impact on a tree. 20 input parameters were considered in the DEM simulation model : 12 parameters were related to the tree and 8 parameters to the block. The results highlight that the impact velocity, the stem diameter, and the block volume are the three input

  1. Lunar Rotation, Orientation and Science (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.


    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  2. Scaling of plate tectonic convection with pseudoplastic rheology (United States)

    Korenaga, Jun


    The scaling of plate tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate tectonic and stagnant lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tectonics is suggested to be plausible throughout the Earth history.

  3. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi


    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  4. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann


    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  5. Wormholes immersed in rotating matter (United States)

    Hoffmann, Christian; Ioannidou, Theodora; Kahlen, Sarah; Kleihaus, Burkhard; Kunz, Jutta


    We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  6. Wormholes immersed in rotating matter


    Hoffmann, Christian; Ioannidou, Theodora; Kahlen, Sarah; Kleihaus, Burkhard; Kunz, Jutta


    We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  7. Earth's variable rotation (United States)

    Hide, Raymond; Dickey, Jean O.


    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  8. The Rapidly Rotating Sun (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.


    Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.

  9. Dimensional reduction for conformal blocks (United States)

    Hogervorst, Matthijs


    We consider the dimensional reduction of a CFT, breaking multiplets of the d-dimensional conformal group SO( d + 1 , 1) up into multiplets of SO( d, 1). This leads to an expansion of d-dimensional conformal blocks in terms of blocks in d - 1 dimensions. In particular, we obtain a formula for 3 d conformal blocks as an infinite sum over 2 F 1 hypergeometric functions with closed-form coefficients.

  10. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L


    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  11. A High-Rate Space-Time Block Code with Full Diversity (United States)

    Gao, Zhenzhen; Zhu, Shihua; Zhong, Zhimeng

    A new high-rate space-time block code (STBC) with full transmit diversity gain for four transmit antennas based on a generalized Alamouti code structure is proposed. The proposed code has lower Maximum Likelihood (ML) decoding complexity than the Double ABBA scheme does. Constellation rotation is used to maximize the diversity product. With the optimal rotated constellations, the proposed code significantly outperforms some known high-rate STBCs in the literature with similar complexity and the same spectral efficiency.

  12. Learning Potentials in Number Blocks

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob


    . The tool is called Number Blocks and it combines physical interaction, learning, and immediate feedback. Number Blocks supports the children's understanding of place value in the sense that it allows them to experiment with creating large numbers. We found the blocks contributed to the learning process...... in several ways. The blocks combined mathematics and play, and they included and supported children at different academic levels. The auditory representation, especially the enhanced rhythmic effects due to using speech synthesis, and the rhythm helped the children to pronounce large numbers. This creates...

  13. Common blocks for ASQS(12

    Directory of Open Access Journals (Sweden)

    Lorenzo Milazzo


    Full Text Available An ASQS(v is a particular Steiner system featuring a set of v vertices and two separate families of blocks, B and G, whose elements have a respective cardinality of 4 and 6. It has the property that any three vertices of X belong either to a B-block or to a G-block. The parameter cb is the number of common blocks in two separate ASQSs, both defined on the same set of vertices X . In this paper it is shown that cb ≤ 29 for any pair of ASQSs(12.

  14. Petrogenesis and tectonic implications of an Early Jurassic magmatic arc from South to East China Seas (United States)

    Zhang, L.; Xu, C.


    Granite and diorite samples by drilling in northeastern South China Sea (SCS) and southwestern East China Sea (ECS) contribute key information to understanding tectonic regime of South China Block in Jurassic time. SIMS and LA-ICPMS U-Pb zircon analyses yield ages ranging from 195±2 Ma to 198±1 Ma for samples from well LF3511 in SCS, and an age of 187±1 Ma for the sample from well ESC635 in ECS. They are low temperature I-type granitoids with strongly enriched fluid-mobile elements and depleted Nb-Ta features, indicating subduction arc-related magmatism in their origin. Sr-Nd isotopic compositions for samples from SCS ((87Sr/86Sr)i=0.705494-0.706623, ɛNdt=-0.9 to +2.2) and sample from ECS ((87Sr/86Sr)i=0.705200, ɛNdt=1.1) suggest an affinity with evolved mantle-derived melts. The granitoids found from NE SCS, SE Taiwan to the SW ECS could spatially define an Early Jurassic NE-SW-trending Dongsha-Talun-Yandang low-temperature magmatic arc zone along the East Asian continental margin, paired with Jurassic accretionary complexes exposed in SW Japan, E Taiwan to the W Philippines. Its geodynamic context is associated with oblique subduction of the paleo-Pacific slab beneath Eurasia, as a mechanism responsible for early Jurassic lithospheric extension with magmatism in the South China Block.

  15. 31 CFR 545.301 - Blocked account; blocked property. (United States)


    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TALIBAN (AFGHANISTAN) SANCTIONS... name of the Taliban or persons whose property or interests in property are blocked pursuant to § 545.201, or in which the Taliban or persons whose property or interests in property are blocked pursuant...

  16. Surface dimpling on rotating work piece using rotation cutting tool (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard


    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  17. Archean crustal evolution in the central Minto block, northern Quebec

    International Nuclear Information System (INIS)

    Skulski, T.; Percival, J.A.; Stern, R.A.


    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ( 2.83 Ga ε Nd +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by 2.76 Ga ε Nd +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ( 2.76 Ga ε Nd +1.6 to -0.1) including 2.78Ga ε Nd Nd 2.725Ga ε Nd - 1. 6). (author). 19 refs., 4 tabs., 5 figs

  18. 3D fold growth rates in transpressional tectonic settings (United States)

    Frehner, Marcel


    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end

  19. Regional tectonic framework of the Pranhita Godavari basin, India (United States)

    Biswas, S. K.


    -rift sedimentation. The southeastern boundary fault developed as a strike-slip fault in response to plate rotation and the rift expansion was constrained by it.The basin fill sediments were deposited during two rifting events—Early Permian to (?) Early Jurassic Lower Gondwana rifting, and Early Cretaceous Upper Gondwana rifting. The Lower Gondwana sedimentation started with a pre-rift crustal sagging over the rift site and was filled by glaciogenic Talchir sediments. This was followed by syn-rift-fluvial sedimentation in repeating cycles during the early to late rift stages. Early Cretaceous Chikiala and Gangapur sediments were deposited during the Upper Gondwana rifting. The fluvial cycles were tectonically controlled during each rift stage. The absence of igneous intrusions indicates that the PGR is a passive rift in contrast to the rifts developed in the NSG zone.

  20. Reliabilities of Mental Rotation Tasks: Limits to the Assessment of Individual Differences

    Directory of Open Access Journals (Sweden)

    Gerrit Hirschfeld


    Full Text Available Mental rotation tasks with objects and body parts as targets are widely used in cognitive neuropsychology. Even though these tasks are well established to study between-groups differences, the reliability on an individual level is largely unknown. We present a systematic study on the internal consistency and test-retest reliability of individual differences in mental rotation tasks comparing different target types and orders of presentations. In total n=99 participants (n=63 for the retest completed the mental rotation tasks with hands, feet, faces, and cars as targets. Different target types were presented in either randomly mixed blocks or blocks of homogeneous targets. Across all target types, the consistency (split-half reliability and stability (test-retest reliabilities were good or acceptable both for intercepts and slopes. At the level of individual targets, only intercepts showed acceptable reliabilities. Blocked presentations resulted in significantly faster and numerically more consistent and stable responses. Mental rotation tasks—especially in blocked variants—can be used to reliably assess individual differences in global processing speed. However, the assessment of the theoretically important slope parameter for individual targets requires further adaptations to mental rotation tests.


    Directory of Open Access Journals (Sweden)



    the basinal depocentres and the evolution from the Adriatic-margin supply of the Cenomanian turbidites to the European-margin supply of the Maastrichtian turbidites. During the middle Eocene tectonic phase, before the counterclockwise apenninic rotation, the ophiolite-free Cretaceous Ligurian Units (i.e. Gottero, Media Val Taro, Cassio overthrusted the Ligurian Units characterized by late Cretaceous ophiolitic detritus, known as Ottone and Caio Units, along a significant lithospheric discontinuity which acted as a transpressive fracture zone. 

  2. Rotation of the planet mercury. (United States)

    Jefferys, W H


    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  3. Optical isolation by Faraday rotator

    International Nuclear Information System (INIS)

    Kasai, Takeshi; Matsushima, Isao; Nemoto, Fusashi; Yano, Masaaki


    Three Faraday rotators designed as optical isolators in a high power glass laser system are described. The spatial fluctuation of applied magnetic field is less than 1% throughout the Faraday glass rod. The Faraday rotators transmit more than 80% of the forward-going laser light and reject more than 96% of the backward-going light. (author)

  4. Classical Virasoro irregular conformal block (United States)

    Rim, Chaiho; Zhang, Hong


    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  5. Classical Virasoro irregular conformal block

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chaiho; Zhang, Hong [Department of Physics and Center for Quantum Spacetime (CQUeST), Sogang University,Seoul 121-742 (Korea, Republic of)


    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  6. Four-block beam collimator

    CERN Document Server

    CERN PhotoLab


    The photo shows a four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with the secondary beams, the collimators operated in vacuum conditions. The blocks were made of steel and had a standard length of 1 m. The maximum aperture had a square coss-section of 144 cm2. (See Annual Report 1976.)

  7. OPAL Various Lead Glass Blocks

    CERN Document Server

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  8. Writing Blocks and Tacit Knowledge. (United States)

    Boice, Robert


    A review of the literature on writing block looks at two kinds: inability to write in a timely, fluent fashion, and reluctance by academicians to assist others in writing. Obstacles to fluent writing are outlined, four historical trends in treating blocks are discussed, and implications are examined. (MSE)

  9. Block storage subsystem performance analysis

    CERN Multimedia

    CERN. Geneva


    You feel that your service is slow because of the storage subsystem? But there are too many abstraction layers between your software and the raw block device for you to debug all this pile... Let's dive on the platters and check out how the block storage sees your I/Os! We can even figure out what those patterns are meaning.

  10. Simulink library project for modeling and simulation of dynamic phenomena in rotating power transmission systems

    Directory of Open Access Journals (Sweden)

    Tomasz MATYJA


    Full Text Available This paper presents the concept and an example of usage of Simulink blocks library with which dynamic simulation of complex systems with rotating shafts, rigid rotors, bearings and couplings, general rotating power transmission systems of any configuration can be performed. The assumption is that library is modular and expandable. The main part of the library currently being developed is rigid rotor model with 6 degrees of freedom of the static and dynamic imbalance. Other components are: block modeling the bearing with mounting stiffness, damping and inertia; linear elastic-damping element and rigid beam finite element (RFEM. Also in preparation are: block modeling shaft with Timoshenko beam elements and Rayleigh damping, block modeling clutch.

  11. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai


    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  12. Assessment of tectonic hazards to waste storage in interior-basin salt domes

    International Nuclear Information System (INIS)

    Kehle, R.


    Salt domes in the northern Gulf of Mexico may make ideal sites for storage of radioactive waste because the area is tectonically quiet. The stability of such salt domes and the tectonic activity are discussed

  13. Bidirectional optical rotation of cells (United States)

    Wu, Jiyi; Zhang, Weina; Li, Juan


    Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  14. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu


    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  15. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  16. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke


    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  17. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics (United States)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.


    , generally collocated with and delimited by extensional tectonic structures (grabens and major faults) of analogous orientation. These are interpreted to comprise calc-alkaline plutons whose placement has been controlled by the regional tectonic activity (syn-rift magmatism); their nature and origin is demonstrated with convergent evidence from deep magnetotelluric, seismological, seismic tomography and other investigations. A large number of shallow and superficial (less than 2 km) magnetic sources have also been identified; these are generated by a complex of distributed near-surface formations consisting of subvertically developing buried or extrusive volcanics and outcropping or shallow-buried ophiolitic formations (thin nappes of tectonic mélange and dismembered ophiolitic complexes). The joint analysis of the data facilitates the formulation of a tentative geotectonic model for Argolis peninsula, according to which the strain differential caused by the disparate extensional trends of the Argolic and Saronic gulfs is accommodated by right-lateral block motion associated with igneous intrusive activity at major block boundaries.

  18. Stratigraphic and tectonic control of deep-water scarp accumulation in Paleogene synorogenic basins: a case study of the Súľov Conglomerates (Middle Váh Valley, Western Carpathians

    Directory of Open Access Journals (Sweden)

    Soták Ján


    Full Text Available The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4, early Ypresian (Zones P5 - E2 and late Ypresian to early Lutetian (Zones E5 - E9 age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites. The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE, which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW. Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.

  19. An fMRI Study of the Impact of Block Building and Board Games on Spatial Ability. (United States)

    Newman, Sharlene D; Hansen, Mitchell T; Gutierrez, Arianna


    Previous studies have found that block play, board games, and puzzles result in better spatial ability. This study focused on examining the differential impact of structured block play and board games on spatial processing. Two groups of 8-year-old children were studied. One group participated in a five session block play training paradigm and the second group had a similar training protocol but played a word/spelling board game. A mental rotation task was assessed before and after training. The mental rotation task was performed during fMRI to observe the neural changes associated with the two play protocols. Only the block play group showed effects of training for both behavioral measures and fMRI measured brain activation. Behaviorally, the block play group showed improvements in both reaction time and accuracy. Additionally, the block play group showed increased involvement of regions that have been linked to spatial working memory and spatial processing after training. The board game group showed non-significant improvements in mental rotation performance, likely related to practice effects, and no training related brain activation differences. While the current study is preliminary, it does suggest that different "spatial" play activities have differential impacts on spatial processing with structured block play but not board games showing a significant impact on mental rotation performance.

  20. Alfred Wegener-From Continental Drift to Plate Tectonics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Alfred Wegener – From Continental Drift to Plate Tectonics. A J Saigeetha Ravinder Kumar Banyal. General Article Volume 10 Issue 6 June 2005 pp 43-59. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Tectonic environments and rare metal mineralization in pegmatites ...

    African Journals Online (AJOL)

    The discrimination diagrams show that the pegmatites were mainly emplaced in tectonic environments similar to those of syn-collisional granites (Syn COG) and within plate granites (WPG). Volcanic arc environment was not pronounced. The emplacement of the pegmatites was structurally controlled by the predominantly ...

  2. Evolution process of the Late Silurian–Late Devonian tectonic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 1. Evolution process of the Late Silurian–Late Devonian tectonic environment in Qimantagh in the western portion of east Kunlun, China: Evidence from the geochronology and geochemistry of granitoids. Nana Hao Wanming Yuan Aikui Zhang Yunlei ...

  3. tectonic environments and rare metal mineralization in pegmatites of ...

    African Journals Online (AJOL)


    The discrimination diagrams: Rb versus Nb +Y and Nb versus Y, and Th/Ta ratio combined with field observations and empirical information from the literature were used to infer the tectonic environments and sources of the rare metal mineralization in the pegmatites of Komu area, southwestern Nigeria. The discrimination ...

  4. Tectonic and sedimentary evolution of the coastal basin of Tanzania ...

    African Journals Online (AJOL)

    Tectonic events largely controlled the evolution of the coastal basin of Tanzania and the Indian Ocean. These included the Karoo rifting during Permo-Triassic, the break up of the Gondwana Supercontinent, which started with rifting in the Triassic period, the opening of the Somali basin in the Middle Jurassic, and the ...

  5. Fission-track evidence of tectonic evolution in the northwestern ...

    Indian Academy of Sciences (India)

    Guo-Qiang Sun


    Feb 14, 2018 ... Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: Fission-track constraints; Tectono- phys. S1–2 111–134. Kang T S and Wang S C 1991 Fission track – a method in geothermal history research; Science Press, Beijing. Lai S C, Deng J F and Zhao H L 1996 Volcanism and tec-.

  6. Contemporary tectonic stress: Advances in research and industry (United States)

    Müller, Birgit; Sperner, Blanka

    The need for knowledge about the in situ tectonic stress field in research and economic applications was the topic of a series of two World Stress Map (WSM) Euroconferences. WSM is a global database containing information on contemporary tectonic stress in the Earth's crust, which is derived from six types of stress indicators: earthquake focal mechanisms, well bore breakouts, hydraulic fracturing, overcoring measurements, and young (Quaternary) geological indicators such as faultslip data and volcanic alignments.The database as well as stress maps from different regions of the world are available via the Internet ( The first WSM Euroconference addressed the commercial application of in situ stress measurements. Improved knowledge of tectonic stress and effective rock strength is important in the design and construction of underground openings. For oil companies in charge of exploration and production, in situ stresses are basic input data for the calculation of actual production rates, petrophysical properties, borehole stability, compaction, subsidence, seismicity, solid control, sand production, geomechanical parameters, hydrocarbon migration, and hydraulic fracturing.The loss of drilling mud or hydrocarbons due to incomplete sealing of the drill holes or unexpected fracturing caused by tectonic stress leads to severe environmental problems and economic losses. In civil engineering and mining, the stability aspect is of equal economic importance, but in addition, the stability of road tunnels and mines is essential to save human life.

  7. Petrology, geochemistry and tectonic settings of the mafic dikes and ...

    Indian Academy of Sciences (India)

    In this article we summarize the petrological, geochemical and tectonic processes involved in the evolution of the Proterozoic intracratonic Cuddapah basin. We use new and available ages of Cuddapah igneous rocks, together with field, stratigraphic, geophysical and other criteria, to arrive at a plausible model for the ...

  8. A Tectonic Implication Of The Eruption Of Pyroclastics In Uturu ...

    African Journals Online (AJOL)

    Exposures of pyroclastics within flatland in Uturu, east of Okigwe, were studied with a view to determining the implication of the eruption that emplaced the pyroclastics on the tectonic evolution of the Lower Benue Trough. Field expressions show that the pyroclastics erupted parallel to the axial plane of the Abakiliki ...

  9. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)


    and its effect on the productivity of the tight reservoirs. The study will not only guide. 95 the oil-gas ..... 5 Effect of tectonic extension and compression on coal reservoir productivity. 288. 5.1 Strike-slip compression and ..... staff of all the authors that cooperated in performing the analyses. We are also. 425 grateful to the ...

  10. Neoproterozoic tectonics of the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.


    The Neoproterozoic tectonic development of the Arabian-Nubian Shield (ANS) can be divided in three parts: 1) the oceanic stage; 2) the arc-accretion stage; 3) the extensional stage. Three key-areas in the Arabian-Nubian Shield, namely the Bi'r Umq Complex, The Tabalah and Tarj Complex and the Wadi

  11. Tectonics and subsidence evolution of the Sirt Basin, Libya

    NARCIS (Netherlands)

    Abadi, A.M.; Wees, J.D. van; Dijk, P.M. van; Cloetingh, S.A.P.L.


    Backstripping analysis of 225 wells located within the Sirt Basin (Fig. 1) provide new constraints on the Sirt Basin development. Four coherent tectonic phases from Late Jurassic to present. The presentation of contour maps of subsidence and crustal stretching allows to visualize spatial and

  12. Evolution process of the Late Silurian–Late Devonian tectonic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 1. Evolution process of ... Keywords. Tectonic evolution; zircon U–Pb dating; geochemistry; granitoid; Late Silurian–Late Devonian; Qimantagh. ... We obtained 5 zircon U–Pb ages from the Late Silurian–Late Devonian granitoids in the Qimantagh area.

  13. Response of a dryland fluvial system to climate–tectonic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 6. Response of a dryland fluvial system to climate–tectonic perturbations during the Late Quaternary: Evidence from Rukmawati River basin, Kachchh, western India. Archana Das Falguni Bhattacharya B K Rastogi Gaurav Chauhan Mamata Ngangom ...

  14. Tectonic Geomorphology of the northern Upper Rhine Graben, Germany.

    NARCIS (Netherlands)

    Peters, G; van Balen, R.T.


    This paper focuses on the northern Upper Rhine Graben (URG), which experienced low tectonic deformation and multiple climate changes during Quaternary times. Recently, human modifications have been high. The paper presents the results of a study into the effects of fault activity on the landscape

  15. Fission-track evidence of tectonic evolution in the northwestern ...

    Indian Academy of Sciences (India)

    track evidence of tectonic evolution in the ... The later (1.2–32.0 Ma) tectonothermal event resulted from further collision of the Indian and Eurasian plates along the Yarlung Tsangpo suture zone. Strata in the Qaidam Basin were further ...

  16. Tectonic shortening and coeval volcanism during the Quaternary ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Tectonic shortening ... Abstract. The Northeast Japan arc, a mature volcanic arc with a back-arc marginal basin (Japan Sea), is located on a convergent plate boundary along the subducting Pacific plate and the overriding North American plate. From a ...

  17. Gravity anomalies, crustal structure and rift tectonics at the Konkan ...

    Indian Academy of Sciences (India)

    trolled by the mode of extension and thinning of continental lithosphere during its formation. Stud- ies on the evolution of passive margins therefore facilitate to understand the genetic link between tectonics, geomorphology and sedimentation. The. Western Continental Margin of India (WCMI) has evolved through rifting and ...

  18. Palaeoseismicity in relation to basin tectonics as revealed from soft ...

    Indian Academy of Sciences (India)

    an extensional tectonic setting (Gibbs 1984), which led to a half-graben geometry with accumulation of greater thickness of sediment towards the south. (Ghosh 2002). Transverse normal faults, regarded as transfer faults (Gibbs 1984), are distributed along the basin margin and have affected the con- tact of the Gondwana ...

  19. Response of a dryland fluvial system to climate–tectonic ...

    Indian Academy of Sciences (India)

    Dryland rivers, dominated by short-lived, localised and highly variable flow due to discrete precipitation events, have characteristic preservation potential, which serves as suitable archives towards understanding the climate–tectonic coupling. In the present study, we have investigated the fluvial records of a major,.

  20. Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics (United States)

    Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir


    The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.