WorldWideScience

Sample records for technologythe irrigation technology

  1. Technology--The New Gender Gap.

    Science.gov (United States)

    Weinman, Janice; Cain, Lisa

    1999-01-01

    Focuses on the gender gap in computer science and discusses results from a new report, "Gender Gaps," by the American Association of University Women. Examines technology's impact on gender equity and the importance of teacher education. Notes the increased enrollment of girls in math and science and calls for new programs to increase…

  2. Strategic Management of Educational Technology--The Importance of Leadership and Management

    Science.gov (United States)

    Moser, Franziska Zellweger

    2007-01-01

    Through case study research critical leadership and management tasks are identified regarding the integration of educational technology in teaching at research universities. The institutions studied, regardless their different characteristics and approaches, face common difficulties in engaging "second-wave" faculty. Furthermore, the coordination…

  3. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  4. Delivery of integrated diabetes care using logistics and information technology--the Joint Asia Diabetes Evaluation (JADE) program.

    Science.gov (United States)

    Chan, Juliana C N; Ozaki, Risa; Luk, Andrea; Kong, Alice P S; Ma, Ronald C W; Chow, Francis C C; Wong, Patrick; Wong, Rebecca; Chung, Harriet; Chiu, Cherry; Wolthers, Troels; Tong, Peter C Y; Ko, Gary T C; So, Wing-Yee; Lyubomirsky, Greg

    2014-12-01

    Diabetes is a global epidemic, and many affected individuals are undiagnosed, untreated, or uncontrolled. The silent and multi-system nature of diabetes and its complications, with complex care protocols, are often associated with omission of periodic assessments, clinical inertia, poor treatment compliance, and care fragmentation. These barriers at the system, patient, and care-provider levels have resulted in poor control of risk factors and under-usage of potentially life-saving medications such as statins and renin-angiotensin system inhibitors. However, in the clinical trial setting, use of nurses and protocol with frequent contact and regular monitoring have resulted in marked differences in event rates compared to epidemiological data collected in the real-world setting. The phenotypic heterogeneity and cognitive-psychological-behavioral needs of people with diabetes call for regular risk stratification to personalize care. Quality improvement initiatives targeted at patient education, task delegation, case management, and self-care promotion had the largest effect size in improving cardio-metabolic risk factors. The Joint Asia Diabetes Evaluation (JADE) program is an innovative care prototype that advocates a change in clinic setting and workflow, coordinated by a doctor-nurse team and augmented by a web-based portal, which incorporates care protocols and a validated risk engine to provide decision support and regular feedback. By using logistics and information technology, supported by a network of health-care professionals to provide integrated, holistic, and evidence-based care, the JADE Program aims to establish a high-quality regional diabetes database to reflect the status of diabetes care in real-world practice, confirm efficacy data, and identify unmet needs. Through collaborative efforts, we shall evaluate the feasibility, acceptability, and cost-effectiveness of this "high tech, soft touch" model to make diabetes and chronic disease care more

  5. Reform in Indian canal irrigation: does technology matter?

    NARCIS (Netherlands)

    Narain, V.

    2008-01-01

    This paper examines the implications of technology - the design of canal irrigation for irrigation management reform. With reference to two different design systems in Indian irrigation - shejpali and warabandi - it shows that the potential for reform varies with the design of canal irrigation. Thre

  6. Reform in Indian canal irrigation: does technology matter?

    NARCIS (Netherlands)

    Narain, V.

    2008-01-01

    This paper examines the implications of technology - the design of canal irrigation for irrigation management reform. With reference to two different design systems in Indian irrigation - shejpali and warabandi - it shows that the potential for reform varies with the design of canal irrigation.

  7. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  8. 宁夏引黄灌区智能节水灌溉模式与技术研究%Research on Intelligent Saving Irrigation Mode and Technology for Yellow River Irrigation Area in Ningxia

    Institute of Scientific and Technical Information of China (English)

    赵伶俐; 王福平

    2015-01-01

    To solve the shortcoming of serious water resources waste because of using the long and heavy traditional irrigation mode in Yellow River irrigation area in Ningxia,this paper proposes and designs a scheme that uses networking,sensor and wireless data communication technology.The intelligent water saving irrigation system realizes sensing soil moisture with wireless sensor,real-time collecting water level parameters,monitoring flow velocity parameters and calculating the water quantity,transmitting the data through the wireless network to control irrigation system valve open or close.It can timely and moderately irrigate to realize the ac-curate saving irrigation mode of remote-controlled irrigation system.%针对宁夏引黄灌区传统大灌大排的灌溉模式,提出根据土壤湿度适时、适量合理的灌溉原则,设计利用传感器、无线通信技术、自动监控、物联网等技术的精准节水灌溉系统.通过传感器感应土壤水分,实时采集用水量、水位参数,无线通信网络传输数据,程序阈值设置土壤含水率、空气湿度等参数策略,控制灌溉系统的水泵自动开启与关闭,实现一种远程监控用水量的智能节水灌溉模型.

  9. Irrigation System through Intelligent Agents Implemented with Arduino Technology

    Directory of Open Access Journals (Sweden)

    Rodolfo SALAZAR

    2013-11-01

    Full Text Available The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.

  10. The Alienation of Technology---The Thought Come from One Dimensional Man%浅谈技术异化的新趋势--由《单向度的人》引发的思考

    Institute of Scientific and Technical Information of China (English)

    谢俊

    2013-01-01

    Marcuse mentioned in One Dimensional Man that with the development of technology ,the usage of Ideology will be highlighted and used as the tool of rulers .The paper absorbing something from the book and pursue the technology again .The writer hold that as the further of the alienation of technolo-gy ,human being will lose subjectivity ,the alienation of technology will be the tool of human being ruined themselves ,this is the newest performance of alienation .It has far -reaching meaning to research the Al-ienation of Technology for the development of China .%马尔库塞在《单向度的人》中提到,随着科学技术的发展,其意识形态的功能日益凸显,科学技术异化为统治者进行统治的工具。在这一文本的基础上,本文对技术异化的当代发展进行追问。随着技术异化程度的加深,人的主体性逐渐被消解,这成为当今技术异化的一种重要趋势。研究技术异化对中国的现代化建设具有重要作用。

  11. Technologies for Smallholder Irrigation Appropriate for Whom: Promoters or Beneficiaries?

    NARCIS (Netherlands)

    Malik, R.P.S.; Fraiture, de C.M.S.; Ray, D.

    2014-01-01

    Fifteen years after the successful introduction of treadle pumps for small farm irrigation in the North Bengal region of India, the socio-economic and technological landscape has changed dramatically. However, donors have continued to support treadle pump programs. Revisiting the factors that contri

  12. New technologies for modernization and management of irrigation piping

    Directory of Open Access Journals (Sweden)

    Alessandro Santini

    2006-07-01

    Full Text Available Improving the efficiency of irrigation piping-systems represents a fundamental prerequisite to achieve a sustainable irrigation under both the environmental the economic point of view. Such an issue is important not only in areas with limited water-budget, but even in those areas where the increasing reduction of the water availability has become a worrying perspective. In the last twenty years, the reduction in water-availability and the increasing costs of system-management have highly limited the cultivated areas which are irrigated by means of water-distribution nets. In the recent years, most of the Italian investments in the irrigation-field have been oriented toward upgrading the open-channels irrigation nets, which were built starting from 50’, by substituting these latter with pipes. The modernization of the piping-systems has been achieved via innovative design solutions, such as back and loading water tanks or towers, which have lead to an improvement into the flexibility of the net management. Nearby the employment of such technologies, nowadays it is also possible to use the knowledge of the physical processes involved in the management of an irrigation system, starting from energy as well as mass exchange in the continuum soil-plant-atmosphere till to a detailed hydraulic description of a water distribution net under different flow regimes. Such a type of knowledge may be used to improve as well as buildup mathematical models for a decisions-support toward the management of complex irrigation districts. The acquirement of the data needed to implement such models has been deeply improved thanks to Geographical Information Systems (GIS, and techniques to analyze satellite-data coming from the Earth observation, which enable to characterize and monitor vegetation at different spatial, spectral and radiometric resolutions.

  13. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to understand how irrigation and agricultural technologies have interacted with local society to transform production, paying particular attention to gender relations and changes for women farmers. The thesis seeks to

  14. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to understand how irrigation and agricultural technologies have interacted with local society to transform production, paying particular attention to gender relations and changes for women farmers. The thesis seeks to c

  15. Relating Knowledge and Perceptions of Sustainable Water Management to Preferences for Smart Irrigation Technology

    National Research Council Canada - National Science Library

    Dong Hee Suh; Hayk Khachatryan; Alicia Rihn; Michael Dukes

    2017-01-01

    .... However, relatively little attention has been given toward understanding how homeowners’ perceptions and knowledge of smart irrigation technologies affect their preferences or stated purchase likelihood of such irrigation equipment...

  16. Incentives and technologies for improving irrigation water use efficiency

    Science.gov (United States)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  17. Quantifying the Impacts of Irrigation Technology Adoption on Water Resources in the High Plains Aquifer, USA

    Science.gov (United States)

    Kendall, Anthony; Cotterman, Kayla; Hyndman, David

    2016-04-01

    Producers in key agricultural regions worldwide are contending with increasing demand while simultaneously managing declining water resources. The High Plains Aquifer (HPA) is the largest aquifer system in the United States, and supplied most of the water to irrigate 6 million hectares in 2012. Water levels in the central and southern sections of the aquifer have steadily declined, as groundwater recharge in this semi-arid region is insufficient to meet water demands. Individual irrigators have responded to these declines by moving from less efficient irrigation technologies to those that apply water more precisely. Yet, these newer technologies have also allowed for water to be pumped from lower-yielding wells, thus extending the life of any given well and allowing drawdown to continue. Here we use a dataset of the annual irrigation technology choices from every irrigator in the state of Kansas, located in the Central High Plains. This irrigation data, along with remotely-sensed Leaf Area Index, crop choice, and irrigated area, drives a coupled surface/groundwater simulation created using the Landscape Hydrology Model (LHM) to examine the impacts of changing irrigation technology on the regional water cycle, and water levels in the HPA. The model is applied to simulate cases in which no irrigation technology change had occurred, and complete adoption of newer technologies to better understand impacts of management choices on regional water resources.

  18. 太阳能自动灌溉技术在屋面绿化工程中的应用%Application of automatic solar energy irrigation technology in roof greening engineering

    Institute of Scientific and Technical Information of China (English)

    苏建华; 汤聪; 吴毅; 李慧莹

    2014-01-01

    On the basis of existing automatic solar energy irrigation technology and automatic spraying technology,the paper solves roof park cul-tivation enclosure problems by adding roof greening retaining board,improves some measures,and solves planting enclosure leakage and erosion problems owing to ponding,and sets automatic solar energy irrigation control instrument and automatic rotary water-saving sprinkler. As a result, it realizes automatic roof greening irrigation and achieves good economic and social benefits.%在已有的太阳能自动灌溉技术和自动喷淋技术的基础上,通过增设屋顶绿化种植挡板解决了屋顶花园栽培基质的围护问题,同时改进措施,解决了种植围护结构因积水造成的漏水和腐蚀问题,并通过设置太阳能全自动灌溉控制器和自动旋转节水喷头,实现了屋面绿化的自动灌溉,从而取得了良好的社会、经济效益。

  19. Technology transfer: Promoting irrigation progress and best management practices

    Science.gov (United States)

    Educational efforts promoting irrigation best management practices are designed to increase adoption of these practices and increase public understanding of the importance of irrigation. They increase visibility and the impact of the Ogallala Aquifer Program and promote affiliated research and exten...

  20. Solar technology applications: a survey of solar powered irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1978-04-17

    Published information on solar powered irrigation systems is presented. Thermal solar systems, thermoelectric solar systems, and photovoltaic solar systems are included. A bibliography and survey of on-going work is presented. (WHK)

  1. Integrating professional education, research and extensionin irrigated agriculture technology centers

    OpenAIRE

    2011-01-01

    With the objective to stimulate the use of irrigation and the electric energy fee reduction during night time program granted by the 2004 Federal law, the Government of the state of Paraná, Brazil launched the Night Irrigation Program - NPI. Beyond this discount, the farmer that adheres to NPI will get additional benefits, as completion of the electric grid without cost, subsidized financing of equipment, technical assistance, support with environmental farm compliance, and the possibility of...

  2. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    Science.gov (United States)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  3. Technological change in irrigated agriculture in a semiarid region of Spain

    Science.gov (United States)

    Philip, Jean-Marc; Sánchez-Chóliz, Julio; Sarasa, Cristina

    2014-12-01

    Technological change plays a decisive role in irrigated agriculture, which is particularly challenging in semiarid regions. The main objective of this paper is to assess four kinds of alternative technological improvements aimed at dealing with future water availability, especially in the case of extreme events like drought. We evaluate these technologies for a better understanding of what form should be applied in irrigated agriculture in a context of limits on natural resources. We develop a dynamic computable general equilibrium (CGE) model, whose production structure distinguishes between rainfed and irrigated crops, and between a variety of irrigated crops. Land use changes are also evaluated. As well as technological change, we consider the Water Framework Directive (EC 2000/60), which establishes water cost recovery as a key goal. Thus, we assess strategies that combine irrigation water pricing strategies and improved technology. Our results show that policy strategies that focus on fostering technical progress can mitigate the long-term economic effects of downward trends in water supplies, even in drought years. The study also confirms that the absence of price volatility achieved through a water pricing strategy could improve the sustainable use of water.

  4. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  5. Technologies for Efficient Use of Irrigation Water and Energy in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-tao; XIA Qing; Clark C K Liu; Shu Geng

    2013-01-01

    While the shortage of water and energy is a well-recognized worldwide natural resources issue, little attention has been given to irrigation energy efficiency. In this paper, we examine the potential energy savings that can be achieved by implementing improved irrigation technologies in China. The use of improved irrigation management measures such as a flow meter, irrigation scheduling, and/or regular maintenance and upgrades, typically reduces the amount of water pumped over the course of a growing season. The total energy saved by applying these improved measures could reach 20%, as compared with traditional irrigation methods. Two methods of irrigation water conveyance by traditional earth canal and low pressure pipeline irrigation (LPPI) were also evaluated. Our study indicated that LPPI could save 6.48×109 kWh yr-1 when applied to 11 Chinese provinces. Also, the CO2 emission was reduced by 6.72 metric tons per year. Among these 11 surveyed provinces, the energy saving potential for two provinces, Hebei and Shandong, could reach 1.45×109 kWh yr-1. Using LPPI, potential energy saved and CO2 emissions reduced in the other 20 Chinese provinces were estimated at about 2.97×109 kWh yr-1 and 2.69 metric tons per year, respectively. The energy saving potential for Heilongjiang, a major agriculture province, could reach 1.77×109 kWh yr-1, which is the largest in all provinces. If LPPI is applied to the entire country, average annual energy saving of more than 9 billion kWh and average annual CO2 emission reduction of more than 9.0 metric tons could be realized. Rice is one of the largest users of the world’s fresh water resources. Compared with continuous flooding irrigation, intermittent irrigation (ITI) can improve yield and water-use efficiency in paddy fields. The total increments of net output energy and yield by ITI in paddy fields across China could reach 2.5×1016 calories and 107 tons, respectively. So far only a small part of agricultural land in China

  6. Precesion Agriculture for Drip Irrigation Using Microcontroller and GSM Technology

    Directory of Open Access Journals (Sweden)

    Dr. Deepak Gupta* ,

    2014-06-01

    Full Text Available Drip irrigation is now a common phenomenon gaining popularity especially in the states like Rajasthan where water scarcity is a day to day affair. For drip irrigation a small over head water tank in used which supply water to the drip system. Usually the geographic systems as well as the cost do not permit a bigger tank. This tank generally gets vacated and a farmer needs to be always attentive to refill the over head tank from his well or cannel by an electric pump, mostly this need arises in the night as the availability of power is not whole day. This involved a lot of risk and cost on the part of farmer. The simple and low cost gadget that has been work upon, not only control the starting and stopping of motor by sending a simple SMS through a GSM mobile but also gets the return SMS showing level of water in overhead tank. The application of the gadget is not only limited to the use for a farmer & but can be beneficial for any process industry in which level of a chemical or any liquid need to be crucially controlled and monitored from far end, may be even from the home of a supervisor with no constraints of time or place for controlling the operations.

  7. Gaming between Humanistic Anxiety and Sport High Technology--The Development of Sport High Technology Based on Humanistic Evaluation%人文忧思与体育高技术的博弈--基于人文评价视角的体育高技术发展

    Institute of Scientific and Technical Information of China (English)

    孙欣荣

    2013-01-01

    By means of literature review, The author analyzes the trend that humanistic evaluation to high technology has become a important factor of influencing the future of high technology, And attempts to assess the development of Sport high technology in the future. The author concludes that, Without humanistic evaluation, sport will be out of control like a untamed horse and loses its inherent value. Meanwhile, Excessive humanistic anxiety which leads to pessimism toward sport technology and the loss of sport 's vigor, Is not acceptable as well. Positive humanistic anxiety can be transformed into positive humanistic care and power to promote human sport development. The author suggests that sport high-tech should adapt to the social environment, Conform to humanistic environment and create harmonious environment. Sport high technology and humanistic evaluation should combine“birth”with“cultivation”,“talent”with“virtue”, and“criticism”with“appraise”.%采用文献资料等方法,对高技术的人文评价成为影响高技术未来走向进行分析,意欲为我国未来体育高技术的发展进行定位。主要结论:对体育高技术全然没有人文反思是不可取的,那样就会使体育成为脱缰的野马,失去了体育本有的价值,同样,对体育高技术的过度的人文忧思也是不可取的,那样就会走向体育技术的悲观主义,失去了体育的活力。积极的人文忧思,可以转化为一种积极的人文关怀,转化为人类体育运动发展的动力。建议:体育高技术应当是:适应社会环境、符合人文环境、创造和谐环境。体育高技术与人文评价应当是:“生”与“养”的融合、“才”与“德”的融合、“批”与“赞”的融合。

  8. Controlling the Water. Matching Technology and Institutions in Irrigation Management in India and Nepal.

    NARCIS (Netherlands)

    Roth, D.; Vincent, L.F.

    2013-01-01

    Irrigation has a long history and important developmental role in India and Nepal. Even then it is faced with critical challenges as new scarcities and environmental stresses emerge, for which understanding technology and institutional choices is vital. Through case studies conducted in these two

  9. Energy and Water Conservation Curriculum Development in Irrigation Technology for the Pacific Northwest. Final Report.

    Science.gov (United States)

    Peterson, James R.

    This project was conducted to develop curriculum materials for classes in energy and water conservation for the Irrigation Technology Program at Walla Walla Community College. To develop the curriculum, the principal investigator read and analyzed materials on the subjects of water and energy conservation, participated in a short course on drip…

  10. The Impact of Treadle Pump Irrigation Technology Adoption on Poverty in Ghana

    Science.gov (United States)

    Adeoti, Adetola; Barry, Boubacar; Namara, Regassa; Kamara, Abdul

    2009-01-01

    Treadle pump (TP) technology has been promoted by Enterprise Works in West Africa as an alternative to the traditional rope and bucket irrigation. The aim is to improve output and incomes and reduce poverty among farm households. This paper reports a short term (two years) assessment of the dynamics of its adoption and impacts, with a special…

  11. 基于事实型数据的科技评价与预测方法研究:以DNA测序技术为例%Evidence-Based Assessment and Forecasting for Science and Technology:the Case of DNA Sequencing Technology

    Institute of Scientific and Technical Information of China (English)

    张旭; 佟贺丰; 傅俊英

    2011-01-01

    基于事实型数据的科技评价与预测研究方法,将定性和定量方法有机地结合,能够更加精确地分析科学技术的发展过程、现状及其未来趋势.本文以DNA测序技术为例进行实证研究,以展示基于事实型数据的科技评价与预测方法的研究思路及过程.%Evidence-based S & T policy research,which integrates qualitative and quantitative methods, could analyze S&T process, current status as well as trends in the future more accurately. This paper illuminates research methodology and process of S&T assessment and forecasting based on evidence by taking the case of DNA sequencing technology.

  12. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  13. Agro-Ecology and Irrigation Technology : Comparative Research on Farmer-Management Irrigation Systems in the Mid- Hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and examines thei

  14. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  15. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  16. Emerging technologies for sustainable irrigation – a tribute to the career of Terry Howell, Sr. Selected papers from the 2015 ASABE and IA irrigation symposium

    Science.gov (United States)

    This article is an introduction to the “Emerging Technologies in Sustainable Irrigation – A Tribute to the Career of Terry Howell, Sr.” Special Collection in this issue of Transactions ASABE and the next issue of Applied Engineering in Agriculture, consisting of 15 articles selected from 62 papers a...

  17. Remote sensing technologies applied to the irrigation water management on a golf course

    Science.gov (United States)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  18. Political Economy and Irrigation Technology Adoption Implications of Water Pricing under Asymmetric Information

    OpenAIRE

    Dridi, Chokri; Khanna, Madhu

    2005-01-01

    We analyze the design of water pricing rules emerging from farmers' lobbying and their implications for the size of the lobby, water use, profits and social welfare. The lobbying groups are the adopters of modern irrigation technology and the non-adopters. The pricing rules are designed to meet budget balance of water provision; we considered (i) a two-part tariff composed of a mandatory per-acre fee plus a volumetric charge and (ii) a nonlinear pricing schedule. Our results show that under e...

  19. The material of the social: the mutual shaping of institutions by irrigation technology and society in Seguia Khrichfa, Morocco

    Directory of Open Access Journals (Sweden)

    Saskia van der Kooij

    2015-03-01

    Full Text Available In this paper we draw attention to the important role technology plays in co-mediating institutions, opening up some courses of action and closing off others. Irrigation studies generally recognize the importance of institutions in making technologies work, but tend to take the precise functioning of institutions for granted. Studies that analyse institutions often do not pay enough attention to the mediating role of technology in allocating benefits, risks and burdens. We show in this paper that (irrigation institutions are moulded by and come about through the interactions between the technical and the social in dynamic and often contested processes of adaptation to changing environments. We argue that a critical understanding of what institutions do requires more explicit and detailed attention to technologies. We base this argument on a detailed historical analysis of the functioning of Seguia Khrichfa, a farmer managed irrigation scheme in Morocco. Through time, irrigation institutions in the Seguia Khrichfa have undergone transformations to match the changing demands of a heterogeneous and growing group of irrigators, an increased command area and changing cropping patterns, and the introduction of new technologies such as drip irrigation. These institutional transformations consisted of recursive cycles of modifications in technological infrastructure and the rules of allocation and distribution. Technical adaptations prompt alterations in the water rotation schedule and vice versa. We anchor our case in descriptions of a specific technology that played a crucial role in co-steering institutional change: the introduction of open/closed gates. Our analysis of the co-evolution of society and technology in shaping institutions in the Seguia Khrichfa shows how technologies become enrolled in (sometimes implicit processes of re-negotiating relations of authority and responsibility while obscuring institutional politics.

  20. The material of the social: the mutual shaping of institutions by irrigation technology and society in Sequia Krichfa, Morocco

    NARCIS (Netherlands)

    van der Kooij, S.; Zwarteveen, M.; Kuper, M.

    2015-01-01

    In this paper we draw attention to the important role technology plays in co-mediating institutions, opening up some courses of action and closing off others. Irrigation studies generally recognize the importance of institutions in making technologies work, but tend to take the precise functioning

  1. The material of the social: the mutual shaping of institutions by irrigation technology and society in Sequia Krichfa, Morocco

    NARCIS (Netherlands)

    van der Kooij, S.; Zwarteveen, M.; Kuper, M.

    2015-01-01

    In this paper we draw attention to the important role technology plays in co-mediating institutions, opening up some courses of action and closing off others. Irrigation studies generally recognize the importance of institutions in making technologies work, but tend to take the precise functioning o

  2. TECHNOLOGY FOR THE PREPARATION OF LIVESTOCK WASTEWATER FOR IRRIGATION OF AGRICULTURAL CROPS

    Directory of Open Access Journals (Sweden)

    Domashenko Y. E.

    2015-02-01

    Full Text Available In the article the authors propose various techniques for the preparation of livestock waste for agricultural use, particularly for irrigation. We have considered resource-saving environmentally safe technology for processing livestock waste pig farms based on the use of the reagent preparation phosphogypsum – residuals of phosphoric acid and fertilizers. The technology was tested and endorsed at the operating company LLC "Aksai field" of the Rostov region. Also based on this technology, we have offered the following technical solution: livestock wastewater is exposed to the vortex field with movable ferromagnetic particles, which contributes to more complete disinfecting effect. Further improvement of the technological scheme of training for livestock waste allowed to get more modern technical solution, including sewage treatment acidifying reagent is a suspension of phosphogypsum and slightly basic by oxychloride brand Aqua-Aurat. With the aim of reducing the cost and simplifying the technology of training we offered using a reagent, obtained from natural raw materials - silica-coagulant on the basis of nepheline instead of the low-base oxychloride brand Aqua-AuraTM. Aluminosilicate coagulant on the basis of nepheline may be used at high values of COD up to 2000 mg O/l and TBOD to 1500 mg O/l, which is a limitation for the use of such coagulants in the preparation of livestock wastewater pig farms. All the proposed technologies are based on the positions of resource and energy efficiency and environmental safety

  3. Sprinkler Irrigation System and Technology Selection Planning%喷灌技术及其系统选型规划

    Institute of Scientific and Technical Information of China (English)

    翟红霞

    2014-01-01

    介绍喷灌系统的主要组成、分类及相关技术要求,分析喷灌技术在农业生产方面发挥的主要优势,详细探讨喷灌系统的选型及规划设计的原则、要点,为喷灌技术的推广应用提供技术指导。%This paper introduces the main components, classification and related technology requirements of sprinkler irrigation system, makes analysis of the main advantages of sprinkler irrigation technique in the field of agricultural production, and discusses the selection and design principle and key points of sprinkler system in a bid to provide technical guidance for application of sprinkler irrigation tech-nology.

  4. A review of mechanical move sprinkler irrigation control and automation technologies

    Science.gov (United States)

    Electronic sensors, equipment controls, and communication protocols have been developed to meet the growing interest in site-specific irrigation using center pivot and lateral move irrigation systems. Onboard and field-distributed sensors can collect data necessary for real-time irrigation manageme...

  5. Precision Herbicide Application Technologies To Decrease Herbicide Losses in Furrow Irrigation Outflows in a Northeastern Australian Cropping System.

    Science.gov (United States)

    Davis, Aaron M; Pradolin, Jordan

    2016-05-25

    This study compared water quality benefits of using precision herbicide application technologies in relation to traditional spraying approaches across several pre- and postemergent herbicides in furrow-irrigated canefarming systems. The use of shielded sprayers (herbicide banding) provided herbicide load reductions extending substantially beyond simple proportionate decreases in amount of active herbicide ingredient applied to paddocks. These reductions were due largely to the extra management control available to irrigating growers in relation to where both herbicides and irrigation water can be applied to paddocks, coupled with knowledge of herbicide toxicological and physicochemical properties. Despite more complex herbicide mixtures being applied in banded practices, banding provided capacity for greatly reduced environmental toxicity in off-paddock losses. Similar toxicological and loss profiles of alternative herbicides relative to recently regulated pre-emergent herbicides highlight the need for a carefully considered approach to integrating alternative herbicides into improved pest management.

  6. Irrigation Technology, Agro-Ecology, and Water Rights in the Mid-Hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    2013-01-01

    Design of irrigation infrastructure in Farmer-managed Irrigation Systems (FMISs) is not only shaped by engineering and agronomic principles, but also strongly influenced by features of the local environment. Based on detailed case studies of four FMISs in Nepal, this chapter presents different typol

  7. New Technology of Subsurface Irrigation%新型地下灌溉技术的试验研究

    Institute of Scientific and Technical Information of China (English)

    席本强; 谢军波; 武洪岩

    2011-01-01

    针对地下灌溉中容易出现的埋在地下的灌水器的堵塞现象和土壤含水率的分布问题,提出一种新型地下灌溉技术。新型地下灌溉技术将水(或水肥的混合液)和空气充分混合为一体,由埋于作物下方的灌水器以一定的压力输出水气二相流,由气相流带动水分在土壤中浸润、扩散,从而将水(或水肥的混合液)送达作物根部,是一种高效节水灌溉技术。用气相流带动水分分布,可改变土壤主要含水层。%Aiming at the easy encountered clogging phenomenon of emitter which buried in the ground and distribution of soil water content in subsurface irrigation, a new technology of Subsurface Irrigation was put forward. The new technology of subsurface irrigation mixed water(or the mixture of water and fertilizer) and air into one body adequately, outputted water-air two phase flow from emitter buried in the ground through a certain pressure, drove water infiltration and dispersion in the soil by gas phase flow, thus delivered water(or the mixture of water and fertilizer) to crop roots, is a new kind of high-efficiency water saving irrigation. Irrigation mixed water and air can change the main aquifer in soil by using gas phase flow drove water distribution.

  8. Water-saving Irrigation Technology and Automation Prospects%节水灌溉自动化技术的发展及前景分析

    Institute of Scientific and Technical Information of China (English)

    姜训宇; 段生梅; 母利

    2011-01-01

    Automate the analysis of water-saving irrigation technology development status at home and abroad,the water-saving irrigation automation technology trends and a detailed analysis of the prospects.%阐述节水灌溉自动化技术的国内外发展现状,分析了节水灌溉自动化技术的发展趋势和发展前景。

  9. Agro-ecology and irrigation technology : comparative research on farmer-managed irrigation systems in the Mid-hills of Nepal

    NARCIS (Netherlands)

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and

  10. On the waterfront: water distribution, technology and agrarian change in a south India canal irrigation system.

    NARCIS (Netherlands)

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed harvests

  11. On the waterfront : water distribution, technology and agrarian change in a South Indian canal irrigation system

    NARCIS (Netherlands)

    Mollinga, P.P.

    1998-01-01

    This book discusses water distribution in the Tungabhadra Left Bank Canal irrigation system in Raichur district, Karnataka, India. The system is located in interior South India, where rainfall is limited (approximately 600 mm annually) and extremely variable. The region suffered from failed

  12. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Science.gov (United States)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  13. Irrigation Principles and Practices. Appropriate Technologies for Development. Reprint R-5.

    Science.gov (United States)

    Development and Resources Corp.

    This manual was prepared for use by Peace Corps trainees and volunteers as a resource in gaining understanding and knowledge of basic irrigation principles and practices. It is intended as a practical handbook that can be understood by a generalist, with subject areas limited to those observed as being of most frequent concern to volunteers in…

  14. The Quandaries of Technology Management-In Search of Danish Contexts

    DEFF Research Database (Denmark)

    Koch, Christian

    1996-01-01

    The contribution discusses Management of technology.The specific danish context is SME, labour market flexibility and a network of supporting institutions. Cases of technology management in manufacturing is discussed.......The contribution discusses Management of technology.The specific danish context is SME, labour market flexibility and a network of supporting institutions. Cases of technology management in manufacturing is discussed....

  15. Research of Storage Container Irrigation Technology mode%蓄流灌溉农业节水技术模式研究与应用

    Institute of Scientific and Technical Information of China (English)

    吴旭春; 周和平

    2016-01-01

    为有效解决节水灌溉中存在的灌水时间长、能耗过多、灌溉水温低等问题,提出了蓄流分离式灌溉技术理论,基于供水与灌溉不连续、不同步、相互独立的用水机制,将作物灌溉的需用水量通过供、输水方式输至田间蓄流灌水容器之中,作物灌溉用水在自重作用下自流灌溉,即一种供水“蓄”与作物自流灌溉的“流”之间彻底分离的灌溉方法。通过该技术在果树等稀植经济作物灌溉中的应用表明,该技术与常规灌溉(沟畦灌)相比,节水30%~50%,果树增产5%~20%;与高效节水灌溉技术相比,节能降耗75%以上,用水时间减少50%以上;与常规灌(沟畦灌)和高效节水灌溉技术相比,提升灌溉水温10%~35%。%There are some problems in efficient irrigation such as long irrigation duration, high energy consumption and low temperature of irrigation water. Hence the author put forward the theory of storage⁃flow departure irrigation to solve the problems mentioned above. Based on the principles of discontinuous, asynchronous and inter⁃independent between water supply and irrigation, the irrigation water was shipped to a container used for storing water. The water would flow into the field by gravity. The irrigation system separated the storage process from the water flowing process completely. The storage container irrigation technology had been used in fruits field. Compared with furrow irrigation, this irrigation system could save 30%⁃50% water, meanwhile got 50% increase of fruits yield;compared with efficient irrigation, 75% energy consumption could be saved and 50% irrigation duration decreased. Compared with both furrow and efficient irrigation system, the storage container irrigation system could increase the water temperature by 10%⁃35%. This new irrigation technology is effective for saving energy and water, increasing yields and water temperature and

  16. Integrating MODFLOW and GIS technologies for assessing impacts of irrigation management and groundwater use in the Hetao Irrigation District,Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district. Application of water-saving practices (WSPs) is required for the sustainable agricultural development. The human activities including WSPs and increase of groundwater abstraction can lower down the groundwater table, which is helpful to the salinity control. Meanwhile, an excessively large groundwater table depth may result in negative impact on crop growth and fragile ecological environment. In this paper, the Jiefangzha irrigation system in Hetao irrigation district was selected as a typical area, a groundwater flow model based on ArcInfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area. The preand post-processing of model data was performed efficiently by using the available GIS tools. The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA). The model was calibrated and validated with independent data sets. Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.

  17. Integrating MODFLOW and GIS technologies for assess-ing impacts of irrigation management and groundwater use in the Hetao Irrigation District, Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    XU Xu; HUANG GuanHua; QU ZhongYi

    2009-01-01

    Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district.Application of water-saving practices (WSPs) is required for the sustainable agricultural development.The human activities including WSPs and increase of groundwater abstrac-tion can lower down the groundwater table, which is helpful to the salinity control.Meanwhile, an ex-cessively large groundwater table depth may result in negative impact on crop growth and fragile eco-logical environment.In this paper, the Jiefangzha irrigation system in Hetao irrigation district was se-lected as a typical area, a groundwater flow model based on Arclnfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area.The pre-and post-processing of model data was performed efficiently by using the available GIS tools.The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA).The model was calibrated and validated with in-dependent data sets.Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.

  18. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  19. Seeing Like a Subaltern – Historical Ethnography of Pre-Modern and Modern Tank Irrigation Technology in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Esha Shah

    2012-06-01

    Full Text Available In various avatars the images of pre-modern knowledge and social organisations, also differently described as pre-colonial or traditional, are projected as alternative to the modern technologies and forms of governance not only in India but also elsewhere. I first review a few such representations of the idea of pre-modern invoked from politically diverse positions in order to demonstrate a unifying characteristic among them that form a 'view from the above'. I show how a situated position – seeing like a subaltern – can provide a way forward from the mutually opposing binary categorizations of the pre-modern and modern. Extensively referring to folk literature, I discuss here the historical ethnography of tank irrigation technology in Karnataka that covers both medieval and modern periods. I show how the technical designs of this thousand years old technology significantly transformed from the pre-modern to the modern times and how in each epoch the reproduction of the technology implied the reproduction of radically different social and cultural spaces and, most significantly, social and power relations.

  20. Biogeosystem technique as a method to overcome the Biological and Environmental Hazards of modern Agricultural, Irrigational and Technological Activities

    Science.gov (United States)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek

    2014-05-01

    Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and

  1. 滴灌技术与装备进一步发展的思考%Thinking about further development of drip irrigation technology and equipment

    Institute of Scientific and Technical Information of China (English)

    韩启彪; 冯绍元; 曹林来; 黄修桥; 范永申; 李浩

    2015-01-01

    For drip irrigation technology,product and equipment to develop better in China,the popu-larization and application of the technology in future are the problems that should be considered and summarized currently.The overall advance trend of drip irrigation technology is analyzed by combining with new situation of agricultural production,and it is shown that the future application scope of drip irrigation will be even broader,and the concept of technology integration and intelligent irrigation will be reflected more substantially,and the efficient use of energy resources will be paid significantly more attention.Further,the development in theory,technology,equipment and manufacturing of drip irri-gation has been thought and stressed to some degree.It is considered that the network optimization the-ory,massed water drip irrigation technology and low -energy irrigation technology need to be streng-thened in the drip irrigation theory and technology.In the product research and development,high flow filters,precision fertilization equipment,new type of emitters,intelligent hardware and software,drip tape recovery equipment and other innovative products should be paid significant attention.Meantime, the establishment of drip grassroots service team is called.This paper could provide a technical support for the further development of drip irrigation technology and equipment.%为了未来中国滴灌技术与滴灌产品、装备更好地发展、推广和应用是灌溉行业需要思考总结的问题。文中结合中国农业生产的新形势,分析了滴灌技术总体发展趋势,认为未来滴灌应用范围会更广阔,将更加体现技术集成和智能灌溉理念,更加强调能源资源的高效利用。在此基础上,对滴灌理论与技术以及滴灌装备与制造等方面的发展进行了若干思考和总结:认为在理论技术上,需加强管网优化、多水源滴灌系统、低能耗滴灌等方面研究;而在产品研发上

  2. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Directory of Open Access Journals (Sweden)

    Hussein M. Al-Ghobari

    2016-12-01

    Full Text Available Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  3. Vision of irrigation

    Directory of Open Access Journals (Sweden)

    Fernando Braz-Tangerino

    2014-08-01

    Full Text Available Irrigation not only has been a key factor for the development and maintenance of human societies but it still plays this role now and it is foreseen that in the future as well. Its evolution has been constrained to the advance in knowledge on matters regarding Agronomy and Water Engineering and in technology however, many challenges deserve further research. It is worth to note that Brazil has strongly promoted irrigation in the last decade. Within the limited extension of this article, some current topics in irrigation, some of them are innovative such us the research line studying water flow in soil-plant in Mediterranean plants and its consequences on water use,. and future challenges are presented with the purpose of stimulate publication of Irrigation papers in the journal “Ingeniería del Agua” among Portuguese and Spanish language communities.

  4. 咸淡水混合灌溉技术应用与实践%Application and Practice of Salt-fresh Water Mixed Irrigation Technology

    Institute of Scientific and Technical Information of China (English)

    王春泽; 张新龙; 齐光建

    2013-01-01

    The irrigation technology of salt water mixed with fresh water, which use two different salinities of the irrigation water, is aimed to reduce the salt content or change its salt composition. The salt water mixed with fresh water for irrigation can not only increase water quality, but also increase the total amount of irrigation water, so that the high-salinity water can be used. According to an experimental study on salt water irrigation conditions in the Xingtai City plain and the technical analysis of salt-fresh water mixed irrigation, the salinity of mixture of salt water and fresh water can be control in the 3 g/L. In recent years, we carried out some practice of salt-fresh water mixed irrigation. The results show that salt-fresh water mixed irrigation can make full use salty water resources, reduce the amount of fresh water exploitation and improve the local ecological environment.%咸水与淡水混合灌溉技术,将两种矿化度不同的灌溉水混合使用,目的是降低灌溉水的含盐量或改变其盐分组成.咸淡水混合灌溉在提高灌溉水水质的同时,也增加了可灌水的总量,使以前不能使用的高盐渍度的咸水得以利用.通过对邢台市平原区咸水灌溉条件的实验研究、咸淡水混合灌溉技术分析,邢台市咸淡水混合后矿化度应控制在3g/L以下.结合近年来开展咸淡水混合灌溉实践,在咸水区开展咸淡水混合灌溉,充分利用咸水资源,既减少了淡水的开采量,又对改善当地的生态环境发挥了重要作用.

  5. Promote Sustainable Development for Irrigated Rice Through SSNM Technology in China

    Institute of Scientific and Technical Information of China (English)

    Cao Jianmin; Hu Ruifa; Zhu Lifen

    2007-01-01

    Today, the overuse of nitrogen (N) fertilizer and high N loss result in serious nitrate pollution of water and deter the sustainable development of agriculture and social economy. A recently developed site-specific nutrient management (SSNM) can reduce fertilizer-N use while preventing the yield from falling. In this paper, we raise the question of fertilizer N application in rice production through a survey of farmers' practice of fertilizer N in 18 villages of four provinces. The average rate of N application for rice production in the 18 villages was 190 kg/ha, and 76% to 100% of the total fertilizer N which was applied within 10 days after transplanting resulted in lots of nitrate leached into water.Furthermore, we tested the effect of SSNM through farmer participatory trial. The SSNM technology maintained rice yields with significantly less fertilizer N and there was no increase in labor input, as much as 31% fertilizer N were saved with the SSNM technology. Finally, the paper points that extension and further research of the SSNM technology should be an effective method to deal with the contradiction of population, food and nitrate non-point pollution of water resource and promote the sustainability of agriculture.

  6. Dynamic Variation of Land-use Types of the Constructed Wetland before and after Oil-field Water Irrigation Based on 3S Technology

    Institute of Scientific and Technical Information of China (English)

    CHEN; Ming-hui; ZHANG; Chen; HU; Yan; SU; Wei; DONG; De-ming

    2012-01-01

    [Objective] The study aimed at analyzing the dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation based on 3S technology. [Method] At semi-arid and arid areas in the west of Jilin Province, water resource balance between the amount of oil-field water supply and ecological water requirement in the constructed wetland irrigated by oil-field water during 2001-2010 was investigated firstly. Afterwards, based on 3S technology, the partition and dynamic variation of land-use types of the constructed wetland before and after oil-field water irrigation in 2001, 2006, 2008 and 2010 were analyzed. [Result] The annual ecological water requirement of the constructed wetland from 2003 to 2010 varied from 1.62×106 to 2.24×106 m3, and the annual amount of oil-field water supply in the region changed from 2.12×106 to 2.84×106 m3, which showed that the supply amount of oil-field water could meet the basic ecological water requirement of the constructed wetland. Meanwhile, compared with 2001, the areas of water region and paddy field in 2010 increased by 2.3 and 10.0 times, and the areas of forest and marsh rose by 40.15% and 29.5.0% respectively. [Conclusion] Water shortage and ecological environment problem of arid and semi-arid areas had been improved by oil-field water irrigation.

  7. Irrigation technology in South Africa and Kenya Tecnologia da irrigação na África do Sul e no Quênia

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2010-10-01

    Full Text Available This paper reviews various irrigation technologies in both South Africa and Kenya that enable improvements in their socio-economic conditions. The two countries are located in semi-arid areas that experience extreme fluctuations in the availability of rain water for plant growth. Population growth exceeds the ability to produce food in numerous countries around the world and the two countries are not an exception. This experiment examined the constraints that farmers face and the role of government and nongovernmental organization in the uptake of modern technologies for irrigation. Detailed mechanisms and options to secure sustainable irrigation which are economically viable are considered. Despite the higher production of cereals and grains, fruits, and flowers also thrive in the two countries. Total irrigated area, crops grown and irrigation systems used in the two countries are discussed.Este trabalho aborda as tecnologias de irrigação utilizadas na África do Sul e no Quênia que possibilitam melhorias nas suas condições sócio-econômicas. Localizados em regiões semiáridas, esses países estão susceptíveis à extrema flutuação na disponibilidade de precipitação pluviométrica para o desenvolvimento das plantas. O crescimento populacional, como em muitos países, excede à capacidade de produção alimentar. Neste trabalho foram levantados as dificuldades que enfrentam os produtores rurais e o papel do governo e das instituições de pesquisa não governamentais na captação de tecnologias modernas para a irrigação. Detalhados mecanismos de execução e opções para garantir a irrigação sustentável e economicamente viável foram considerados. Apesar da maior produção de cereais e grãos, a fruticultura e a floricultura também prosperam nesses países. A área irrigada total, as culturas beneficiadas e os sistemas de irrigação usados nesses países também foram discutidos.

  8. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    Science.gov (United States)

    Wang, C. H.

    2015-08-01

    In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  9. The Quandaries of Technology Management-In Search of Danish Contexts

    DEFF Research Database (Denmark)

    Koch, Christian

    1996-01-01

    The contribution discusses Management of technology.The specific danish context is SME, labour market flexibility and a network of supporting institutions. Cases of technology management in manufacturing is discussed....

  10. Composite purification technology and mechanism of recycled aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 安阁英; 叶荣茂

    2002-01-01

    Iron-rich inclusions in aluminum alloys can be effectively removed by composite purification of sedimentation and filtration technology.The results show that the purposed method has no negative effects on aluminum alloys and obviously improve their mechanical properties.

  11. Preliminary Study of Drip Irrigation Technology for Afforestation of Poplar in Tengger Desert Area%腾格里沙漠地区杨树滴灌造林技术初探

    Institute of Scientific and Technical Information of China (English)

    张发国; 丁玉明; 邹淑贞; 周维维

    2012-01-01

    The drip irrigation technology was used in afforestation in Tengger desert area. During past one year, the project aas been operating normally and the afforestation effect is remarkable. The drip irrigation technology for afforestation in lesert area is presented and a comparison is made between the drip irrigation afforestation technology and flood irrigation afforestation technology. The result shows that the drip irrigation afforestation technology has signifieant effects in improving survival rate of seedlings, promoting growth, improving land utilization, saving water and saving labors.%在腾格里沙漠地区实施杨树滴灌造林技术以来工程运行良好。详细介绍了沙漠地滴灌造林技术,并就滴灌造林与漫灌造林技术进行了比较,结果表明滴灌造林技术在苗木成活率、苗木生长量、土地利用量、节水、省工等方面效果显著。

  12. Irrigation System

    Science.gov (United States)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  13. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces

    Science.gov (United States)

    Gao, Xuan

    2017-04-01

    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally

  14. 经济林多点源根际滴灌装置的集成应用研究%Application of Integrated Multi-source Root-zone Drip Irrigation Technology in Economic Forestry

    Institute of Scientific and Technical Information of China (English)

    杨荣慧; 汪有科; 刘守阳; 赵霞

    2012-01-01

    经济林主根系垂直生长深,侧根水平阔展面积大,单点元地面滴灌水量很少能够入渗到根系的主要分布层,传统渗灌滴头易堵塞。为了解决滴灌水直接输送根际技术问题,开发研制了一种可将滴头单独埋于地下滴灌的多点源根际滴灌装置,文中对抗堵塞、易维修、多变量技术原理,传统滴头的连接方法改进,多点源根际滴灌技术组合集成,田间实施技术和不同灌溉效益等进行了论述。经山地红枣不同灌溉试验证明,滴灌和单点元、多点源根际滴灌产量比不灌溉分别增产10375、12445和12530kg/hm^2;滴灌WUE提高50%,单点元和多点源根际滴灌分别提高57.1%、58.8%,净收入与地表滴灌比分别增加10958和13550.0元/hm^2。滴灌、根际滴灌使用折旧期分别为8a、12a。%The economic forestry root grows deeply vertically and also distributes widely horizontally. However, the irrigation water of surface point-source drip irrigation could not infiltrate into the layer that the most effective roots distribute in. Also, the issue of emitter clogging impedes the traditional subsurface drip irrigation development. To transport the irrigation water to the root-zone precisely, the subsurface drip irrigation equipment is developed and its benefits are analyzed, including the characteristics of anti- clogging, easy maintenance and the theory of multi-variable technologies. The improvements in technologies and benefit of the sur face drip irrigation are compared with the subsurface single source drip irrigation. It is confirmed by different irrigation experiments that the three kinds of irrigation methods, including drip irrigation, single source and multi-source root-zone drip irrigation, could enhance the yield by 10 375, 12 445 and 12 530 kg/hm^2 more than that without irrigation. In addition, the water use efficiency (WUE) of drip irrigation, single or multiple source

  15. Disability,Driving Licence and Driving Technology:the Italian Experience%Disability, Driving Licence and Driving Technology: the Italian Experience

    Institute of Scientific and Technical Information of China (English)

    Antonino Ridolfi

    2011-01-01

    Through norms,concessions,assessment and training,the article shows the importance of the rehabilitation approach to identify the ways in which to help the disabled person achieve his driving licence and,therefore drive a vehicle.It shows the number of variants that exist for each system allowing the adaptation of various automobile functions to the needs of disabled people and in this way we can understand how even seriously disabled people with very complex situations can drive when the correct adaptations are identified.

  16. Sustainable Irrigation Development in the White Volta Sub-Basin

    NARCIS (Netherlands)

    Ofosu, E.A.

    2011-01-01

    This study on sustainable irrigation development identified growing markets for irrigated products as an important driving force behind the expansion of irrigation which has given rise to new technologies. The new technologies have spread because they gave farmers direct control over water sources.

  17. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems

  18. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMI

  19. Anti-clogging Emitter and Root-zone Drip Irrigation Technology%抗堵塞滴头研制与根际滴灌技术集成应用研究

    Institute of Scientific and Technical Information of China (English)

    杨荣慧; 汪有科; 刘守阳; 雷战随; 杨开宝

    2012-01-01

    Root system of the economic forests mainly distributes in deep soil.As a result of the water scarcity in the mountainous region,there is not sufficient drip irrigation water infiltrating into the root system layer.In addition,the emitter clogs up easily when irrigation water is carried to the root-zone by subirrigation.To tackle these problems,a kind of multivariable anti-clogging emitter was developed.Proved by different irrigation technologies applied into jujube in mountainous region,compared with jujube without irrigation,drip irrigation,subirrigation and root-zone drip irrigation could increase yields by 12 075,15 145 and 15 150 kg/hm2,respectively,while the increasing of water use efficiency was 66.94%,72.07% and 72.07%.And drip irrigation,subirrigation and root-zone irrigation got more net income,62 536.0,73 494.0,76 086.0 yuan/hm2,than without irrigation.The depreciation period of drip irrigation,subirrigation,root-zone was 8,6 and 12 years.%为了解决滴灌水直接输送根际和滴头堵塞的技术问题,开发研制了一种可埋于地下的多变量抗堵塞滴头。经山地红枣不同灌溉试验证明,滴灌、渗灌、根际滴灌产量比不灌溉分别增产12 075、15 145和15 150kg/hm2;WUE分别提高66.94%、72.07%、72.07%,净收入分别增加62 536.0、73 494.0、76 086.0元/hm2。滴灌、渗灌、根际滴灌年使用折旧期分别为8、6、12年。

  20. Applying Virtual Technology in Second Language Learning

    Institute of Scientific and Technical Information of China (English)

    柴能

    2015-01-01

    With the introduction of virtual technology,the traditional method of language teaching and learning has been revolutionized.This paper introduced the concrete examples of using virtual technology in second language learning.The author concludes that virtual technology contributes greatly to language learning.

  1. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation...

  2. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation...

  3. The Comparison of Different Fertilizer Technologies on Nitrogen Leaching Losses and Nitrogen Use Efficiency in Rice Production——Taking Ningxia Irrigation Region as an Example

    Directory of Open Access Journals (Sweden)

    ZHANG Ai-ping

    2015-04-01

    Full Text Available High N fertilizer and flooding irrigation applied to rice in anthropogenic-alluvial soil often result in N leaching and low use efficiency of applied fertilizer N from the rice field in Ningxia irrigation region in the upper reaches of the Yellow River. Sound N management practices need to be established to improve N use efficiency while sustain high grain yield levels and minimize fertilizer N loss to the environment. We investigated the effects of different fertilizer technologies on N leaching, N use efficiency and rice yield. The four fertilizer N treatments were CK (No nitrogen fertilizer application treatment; FP (Farmer's practice of application rate of urea at 300 kg N·hm-2, 60% used as base fertilizer, 20% as tillering fertilizer and 20% as booting fertilizer; SD (Controlled-release nitrogen fertilizer at 120 kg N·hm-2, all controlled-release fertilizer was applied as base fertilizer while transplant rice seedlings and NB (Controlled-release nitrogen fertilizer at 120 kg N·hm-2, all controlled-release fertilizer was applied as base fertilizer in the seeding soil. The results showed that the SD and NB treatments could reduce the amount of nitrogen applied by 60% compared to FP but still maintain crop yields while substantially reducing N losses to the environment. The SD could significantly decrease the N leaching losses from the paddy field. Under the FP treatment, the leaching losses of TN, NO3-N and NH4+-N were 39.89, 26.22 kg·hm-2 and 5.49 kg·hm-2, respectively. Compared with FP treatment, the SD treatment could decrease the leaching losses of TN, NO3-N and NH4+-N by 18.97, 11.18 kg·hm-2 and 2.27 kg·hm-2. The nitrogen use efficiency of SD treatment was 55.7% which increased by 21.4% compared with FP treatment. NB treatment also could decrease nitrogen leaching losses TN, NO3-N and NH4+-N by 14.36, 10.14 kg·hm-2 and 1.84 kg·hm-2 and increase the N use efficiency by 15.7% compared with FP, but it increased nitrogen leaching

  4. 基于物联网的智能节水灌溉系统的研究%Research of Intelligent Saving Irrigation System Based on the Internet of Things Technology

    Institute of Scientific and Technical Information of China (English)

    赵伶俐

    2015-01-01

    To solve the shortcoming of serious water resources waste of using the traditional manual switch valve mode to control irri-gation ,this thesis propose and design a scheme that using networking ,sensor and wireless data communication technology to realize sensing soil moisture with wireless sensor ,real-time collecting water level parameters ,monitoring flow velocity parameters ,calculat-ing the water quantity ,and transmitting data through wireless network to control the open or close of the irrigation system valve and realize intelligent saving irrigation system .The operator can see the real-time data from the remote mobile phone or PC to control the irrigation system valve ,so as to realize the intelligent agricultural irrigation system with remote-controlled irrigation water .%针对传统手动开关阀门的方式控制灌溉,造成水资源浪费严重。提出并设计了一种利用物联网、传感器、无线数据通信等技术,实现无线传感器感应土壤水分,实时采集水位参数,监测水流速参数,计算用水量,通过无线网络传输数据,控制灌溉系统的阀门自动开启或者关闭,以达到精细化用水的智能节水灌溉系统。操作人员可以从远距离的PC机或手机上实时查看数据、实施控制,从而实现了真正意义的远程监控用水量的智能农业灌溉系统。

  5. Technology,the Soul of KR Development%技术至上:KR发展的灵魂--韩国船级社高层专访

    Institute of Scientific and Technical Information of China (English)

    王孟霞

    2003-01-01

    @@ 2003年4月30日,韩国船级社(KR)董事会特别会议宣布任命Kap-sook Lee为KR新一任主席兼总裁.Kap-sook Lee接受了本刊记者的专访.同时接受采访的还有KR高级副总裁Tae-Woo Kim以及KR国际事务部总经理Young-Kee Chon.

  6. Institutions, technology and water control; water users associations and irrigation management reform in two large-scale systems in India

    NARCIS (Netherlands)

    Narain, V.

    2003-01-01

    Few studies of resource management have paid as much attention or intelligently surveyed the operational aspects of Water User Associations (WUAs) as Institutions, Technology and Water Control. The implementation of WUAs policies, argues this pioneering study, is shaped by the aspirations of its use

  7. 2008 Mississippi Curriculum Framework: Postsecondary Irrigation Management Technology. (Program CIP:01.0699 - Applied Horticulture/Horticultural Business Services, Other)

    Science.gov (United States)

    Oliver, Michael L.

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  8. Economic feasibility of converting center pivot irrigation to subsurface drip irrigation

    Science.gov (United States)

    Advancements in irrigation technology have increased water use efficiency. However, producers can be reluctant to convert to a more efficient irrigation system when the initial investment costs are high. This study examines the economic feasibility of replacing low energy precision application (LEPA...

  9. Application of drip irrigation technology for producing fruit of Salak ‘Gula Pasir’ (Salacca zalacca var. Gula Pasir off season on dry land

    Directory of Open Access Journals (Sweden)

    I N Rai

    2014-10-01

    Full Text Available Naturally, Salak Gula Pasir (Salacca zalacca var. Gula Pasir is flowering every three months or four times a year, but only one or two flowering seasons that the flowers can develop into fruit. The condition causes Salak Gula Pasir is available in the market in a short period (only 2-3 months i.e. at the time of harvest (on-season from December to February. This seasonal nature of Salak Gula Pasir occurs because Salak Gula Pasir is planted on dry land where irrigation depends only on rainfall, and drought occurs when water is shortage so that the plant internal water content is low that causes a high failure development rate of flower to become fruit (fruit-set failure. This study was aimed to overcome the fruit-set failure by providing drip irrigation. Two treatments (with drip irrigation and without drip irrigation/control with sixteen replicates were tested at Salak Gula Pasir production centre (at Sibetan village, Bebandem District, of Karangasem Regency, Bali at two harvest seasons, i.e. Gadu (July and Sela II (October. The results showed that the plant provided with drip irrigation significantly yielded fruit-set percentage higher that that without drip irrigation, both in Gadu and Sela II seasons. The percentages of fruit-set in Gadu and Sela II seasons provided with drip irrigation were 75.30% and 93.13%, respectively, while those without drip irrigation were only 59.94% and 61.67%, respectively. The increase of fruit-set observed for drip irrigation treatment associated with the increase of leaf chlorophyll content, relative water content (RWC of leaves, and leaf N, P, and K contents. The increase of fruit-set led to higher number of fruits and fruit weight per plant under drip irrigation than that without drip irrigation. Based on the results of this study, drip irrigation can be applied to produce Salak Gula Pasir planted out of season on dry land.

  10. Applications of Information and Communication Technology for Improvements of Water and Soil Monitoring and Assessments in Agricultural Areas—A Case Study in the Taoyuan Irrigation District

    Directory of Open Access Journals (Sweden)

    Yu-Pin Lin

    2017-01-01

    Full Text Available In order to guarantee high-quality agricultural products and food safety, efforts must be made to manage and maintain healthy agricultural environments under the myriad of risks that they face. Three central system components of sustainable agricultural management schemes are real-time monitoring, decision-making, and remote access. Information and Communications Technology (ICT systems are a convenient means of providing both these and other functions, such as wireless sensor networking, mobile phone applications, etc., to agricultural management schemes. ICT systems have significantly improved in recent years and have been widely used in many fields, including environmental monitoring and management. Moreover, ICT could benefit agricultural environment management by providing a platform for collaboration between researchers and stakeholders, thereby improving agricultural practices and environments. This article reviews and discusses the way in which ICT can efficiently improve monitoring systems and risk assessments of agricultural environment monitoring, as well as the technological and methodological improvements of ICT systems. Finally, we develop and apply an ICT system, referred to as the agricultural environment protection system—comprised of a cloud, six E-platforms, three mobile devices, automatic monitoring devices, indigenous wireless sensor nodes, and gateways in agricultural networks—to a case study in the Taoyuan irrigation district, which acts as a pilot area in Taiwan. Through the system, we use all available information from the interdisciplinary structured cloud database to classify the focal area into different agricultural environmental risk zones. We also conducted further analysis based on a hierarchical approach in order to classify the agricultural environments in the study area, to allocate additional sampling with resin packages and mobile devices, as well as to assist decision makers and stakeholders. The main

  11. 分根交替灌溉技术研究综述%The Research Summary of Controlled Root-divided Irrigation Technology

    Institute of Scientific and Technical Information of China (English)

    曾芳钰; 衣华鹏

    2012-01-01

      在我国水资源短缺的情况下,分根交替灌溉具有良好的发展前景。综述了分根交替灌溉的理论机制及其研究进展,展望了其发展前景。%  The controlled roots-divided alternative irrigation be expected as a advanced method of irrigation which have a bright future not only reduce the agriculture’s irrigating water but could have few effect on crop production. The passage describes the theory mechanism and research progress of Controlled roots-divided alternative irrigation, as well as looks forward to the developing prospect of this irrigation’s method.

  12. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  13. Experimental Investigation of Soil Evaporation and Evapotranspiration of Winter Wheat Under Sprinkler Irrigation

    Institute of Scientific and Technical Information of China (English)

    YU Li-peng; HUANG Guan-hua; LIU Hai-jun; WANG Xiang-ping; WANG Ming-qiang

    2009-01-01

    Sprinkler irrigation is one of the typical irrigation technologies used for the winter wheat-summer maize double cropping system in the North China Plain. To evaluate the evapotranspiration (ET) of winter wheat under sprinkler irrigation in Beijing area, field experiments were conducted in growing seasons through 2005-2008, in the experimental station located in Tongzhou County, Beijing, China, with different irrigation depths. Results indicated that a relatively large variation of soil water content occurred within 0-40 cm soil layer. The seasonal ET of winter wheat generally increased with increasing irrigation amount, while the seasonal usage of soil water had a negative relationship with irrigation amount. Soil evaporation (Es) was about 25% of winter wheat ET during the period from reviving to maturity. Es increased while Es/ET decreased with increasing irrigation amount. Sprinkler irrigation scheduling with relatively large irrigation quota and low irrigation frequency can reduce E, and promote the irrigation water use efficiency.

  14. Study on Water-saving Irrigation Technology for Maize in Southwest Mountain%西南山地玉米高效节水灌溉技术研究

    Institute of Scientific and Technical Information of China (English)

    余青; 张和喜

    2012-01-01

    [目的]探求适合西南山地地区的的玉米节水灌溉制度.[方法]在玉米各个生育期设计不同的土壤含水率上下限值,通过测坑试验测量玉米在不同水分处理下的灌溉定额及水分生产率.[结果]玉米的需水敏感期为抽雄期,在抽雄灌浆期保持较高的水分可以提高玉米的产量.玉米的产量和灌水量呈明显的二次抛物线关系,当耗水量小于某一临界值时,产量会随着水量的增加而增加,但当超过最大之后,产量反而会随着水量的增加而减少.[结论]该研究可为农田水资源的高效利用提供理论依据.%[Objective]The aim was to explore a suitable maize water - saving irrigation technology in Southwest Mountain. [Method]Different upper and lower, limit values of soil water content were designed at different growth period of maize, then its irrigation quota and water productivity were measured by leaching - pond test. [Result] Maizes water demand sensitive period was tasseling stage, high water content at tasseling and milking stage improved maizes yield. Maizes yield had a significant quadratic parabola relationship with irrigation amount, and when water consumption was less than certain critical value, its-yield increased with irrigation amount rising, while when more than the upper value, its yield decreased with irrigation amount rising. [Conclusion]The study provides a theoretical basis for high efficient utilization of farmland water resources.

  15. WATER REQUIREMENT OF IRRIGATED GARLIC

    Science.gov (United States)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  16. Water Requirements Of Irrigated Garlic

    Science.gov (United States)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  17. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  18. The Effect of Comprehensive Application Technology Drip Irrigation System on the Growth of Sugarcane%滴灌系统综合应用技术对甘蔗生长的影响

    Institute of Scientific and Technical Information of China (English)

    王秀林; 杨秀英; 黄景剑; 唐运飞

    2011-01-01

    [目的]增加甘蔗滴灌系统的利用途径,提高甘蔗产量和种蔗效益.[方法]通过与传统滴灌方法对比,了解滴灌系统综合应用技术的使用效果.[结果]应用滴灌系统综合技术的“灌水+灌肥+灌药”处理,能提早甘蔗出苗,提高出苗率,促进甘蔗生长,有较多的有效茎和较重的单茎重,进甘蔗成熟;促进宿根蔗甘蔗芽的萌发,增加宿根蔗的有效茎.使新植蔗的产量和糖分分别比对照高35.9%和0.32%;宿根蔗的产量和糖分分别比对照高36.0%和0.27%.[结论]滴灌系统综合应用技术可以大幅度提高旱地甘蔗的产量和蔗糖分.%[Objective] The aim was to increase the utilization of sugarcane drip irrigation system,improve the yield and sugarcane planted benefits. [ Method] Compared with the traditional drip method of testing,the use effect of comprehensive application drip irrigation system was explored. [Results] The results showed that the application of drip irrigation systems comprehensive technology,"irrigation + fertilizer + irri gation irrigation medicine" treatment increased emergence rate,and promoted the growth of sugar cane all,there were more effective stems and heavy single stem weight, and promoted the maturity of sugarcane; promoted sugar cane ratoon sugarcane bud germination, increased the effec tive ratoon sugarcane stalk. Thus,the new plant would enable the output of sugarcane and sugar, 35.9% and 0.32% higher than the control, respectively; the ratoon cane yield and sugar content 36.0% and 0.27% higher than the control,respectively. [Conclusion] The comprehensive application of technology drip irrigation system could significantly improve the yield of Sugarcane and sugar content.

  19. 基于3S技术的灌区水费收入最高的配水模型%A water distribution model based on 3S technology and the highest income from water charge for irrigation district

    Institute of Scientific and Technical Information of China (English)

    张智韬; 刘俊民; 陈俊英; 王斌; 杨正丽

    2011-01-01

    According to the prompt and precise data acquisition of 3S technology, a water distribution model is built to acquire the highest water income of the irrigation district and the smallest conveyance loss of the canal system, under the premise of satisfying the basic crop water requirements and different criteria of water prices. Taking the No. 11 branch of North Main Channel in Fengjiashan Irrigation Region for example, the different crop water requirements data in different irrigation regimes are collected with 3S technology. The distribution water amount of each lateral channel and the total income of the highest water price can be obtained by the model solution with incoming water. Therefore, this model can be widely used and popularized in other irrigation districts.%为使灌区水资源得到合理的优化配置,根据3S技术能够快速获取信息的特点,在满足灌区作物基本需水量和不同水价标准的前提下,建立了以灌区渠道水量损失最小和水费收入最高为目标的配水模型.以冯家山水库北于十一支灌区为例,用3S技术获取不同作物在不同灌溉制度下的需水量数据,并根据来水水量对模型进行求解,得到各斗渠的配水水量,以及灌区水价最高时的总收入.结果表明,本模型具有很强的实用性、操作性和推广性.

  20. Proceedings of the solar irrigation workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    The ERDA Solar Irrigation Workshop was structured to be a major vehicle for information dissemination and technology transfer. It covered a wide range of subject matter related to crop irrigation including current hardware, economics, experiments, and international requirements. Speakers represented manufacturers, ranchers, governmental entities, universities and research firms. The proceedings consist of one page abstracts for each presentation, a brief biographical sketch of each speaker and sources for further information on each subject.

  1. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  2. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  3. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    Science.gov (United States)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  4. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    Science.gov (United States)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  5. Adaptive water-saving agricultural irrigation systems based on the Internet of Things technology%基于物联网技术的农业节水自适应灌溉系统

    Institute of Scientific and Technical Information of China (English)

    赵小强; 于燕飞; 史文娟; 彭程

    2012-01-01

    In order to solve these problems of low level of modern agriculture intelligent irrigation, lack of irrigation water quality monitoring,etc, the adaptive water-saving agriculture irrigation systems based solar energy technology and the Internet of Things are designed; Water quality measurement information, the dam water level information, soil temperature and humidi- ty information is sent to the central computer through the wireless transmitter module for the operator deal with emergencies; The problem that farmland in the wild and can not get the power is solved through the solar power supply ; Practical results show the irrigation system has the function of adaptive, intelligent discharge, water quality monitoring and other functions.%为了解决现代农业智能化灌溉水平低、浇灌水质监测不到位等问题,设计了一种基于物联网及太阳能技术的节水农业自适应灌溉系统;该系统将水质测量信息、水坝水位信息、土壤的温湿度信息通过无线发送模块传输到中心计算机,以便操作人员进行及时处理;系统采用太阳能供电,解决了农田处于野外环境而无法获取电源的问题;现场实践结果表明:该系统具有自适应灌溉、智能泄水、水质监测等功能。

  6. Root canal irrigants.

    Science.gov (United States)

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-10-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were 'root canal irrigants' and 'endodontic irrigants.' The reference lists of each article were manually checked for additional articles of relevance.

  7. Water requirements and management of maize under drip and sprinkler irrigation. 2000 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Science.gov (United States)

    Research at Ismailia, Egypt, focused on irrigation management of maize, fava bean, wheat, and alfalfa. In 1998, the two weighing lysimeters at Ismailia were recalibrated successfully with precision of 0.01 mm; and a state-of-the-art time domain reflectometry (TDR) system for soil water balance measu...

  8. Water requirements and management of maize under drip and sprinkler irrigation. 1999 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Science.gov (United States)

    In the second year of this project, research continued at Ismailia, Egypt on irrigation management of maize, fava bean, wheat, and alfalfa. Research at Bushland, Texas, continued on alfalfa and grass reference evapotranspiration (ET), means of estimating those values from Bowen ratio meterological m...

  9. Small Scale Irrigation Systems for Peace Corps Volunteers. Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Reprint No. R-10.

    Science.gov (United States)

    Development Planning and Research Associates, Inc., Manhattan, KS.

    This manual is intended for use by Peace Corps trainees and volunteers as a resource in gaining understanding and knowledge of basic irrigation principles and practices. To be most useful, the manual should be used during training as a teaching guide and instructional tool. Although it provides useful charts, drawings, structural diagrams, and…

  10. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  11. Development of Strategies for Sustainable Irrigation Water Management in Russia

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    use of the appropriate irrigation technologies confined to a field scale and local environmental conditions. In presented contribution a case studies of large and small irrigation schemes based on sprinklers at Saratov Region will be discussed. Analyze is focused on the identification of main causes of groundwater logging, following soil salinization and impact to surrounding environment at irrigation areas. This analyze is based on plot and field scales experimentations as well as time series about 40 years long monitoring of ground water and soils. Main conclusion from this analyze accuses current irrigation practice at this region using high irrigation dozes & intensities as well as uniformity of water application within the irrigated perimeter promoting chain of processes starting by ponding of applied water at mezodepression of soil surface, preferential flow through out macropores-cracks, wormholes, or decayed root channels and groundwater rising. Special attention is done to simulate relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity. Technological alternative aimed at reducing these problems is analysed by the use of SWAP model application to uniform and nonuniform irrigation water applications. Model results indicate that use nonuniform water application technology is increasing an irrigation efficiency, increasing yield and stopping rising of groundwater. ACKNOWLEDGMENTS. This study was financially supported by FP6 DESIRE project 037046

  12. 基于PLC的微灌变频控制系统的设计与应用%Design and Application of Frequency Conversion Control System for Micro-irrigation Based on PLC Technology

    Institute of Scientific and Technical Information of China (English)

    李浩; 李金山; 段福义; 韩启彪; 孙秀路; 孙浩; 陈震

    2015-01-01

    Now in China ,the automation technology for water-saving irrigation in field is relatively backward .A PLC micro-irrigation frequency conversion control system is designed to save water and energy ,and give the flexible irrigation schemes ,as well as to give friendly man-machine interface for easy to operation .This control system ,by means of motor frequency conversion ,adjusts the wa‐ter pump to make sure that the micro-irrigation system runs steadily under set pressure .The touch screen's real-time display ,moni‐tor and control of the various working parameters make the choice of irrigation plans flexible .Field tests show that this system has favorable interface ,this system can face the needs of the micro-irrigation system under different pressures ,and this system has flexi‐ble irrigation plans ,so this system can save water .Compared with the traditional constant pressure irrigation ,this system saves en‐ergy for the frequency conversion control of the motor .%我国田间节水灌溉自动化技术相对落后,为增加节水节能效率,针对农业灌溉过程中,灌溉系统、灌溉方案的选择缺乏灵活性,缺乏友好的人机交互界面,操作复杂等情况,研究并设计了基于PLC技术的微灌变频控制系统。该控制系统通过电动机变频调速的方法,调节水泵运行工况,从而保证微灌系统在设定压力下稳定运行,并通过触摸屏实时显示、监测和控制系统运行的各工况参数,提高了作物灌溉方案选择的灵活性。田间试验表明,该系统人机界面良好,能够较好地满足微灌系统不同压力的需要,并可以灵活设定和选择灌溉方案,达到节水灌溉的目的。同时由于电机的变频控制具有较好的节能作用,与传统恒压灌溉的方式比,进一步降低了能源的浪费。

  13. A Review on the Current Situation and Countermeasures of Water-saving Irrigation Technology Extension in China%我国节水灌溉技术推广现状与对策研究综述

    Institute of Scientific and Technical Information of China (English)

    赵文杰; 丁凡琳

    2015-01-01

    目前我国节水灌溉技术的推广和使用取得了一定成果,但其发展潜力仍十分巨大,并且在技术推广过程中存在诸多问题,限制了节水灌溉技术的推广和采纳。管理制度不合理、水权制度不明确、水价机制不健全、农户节水意识不强以及农村传统社会的变迁等都给先进节水灌溉技术的推广带来困难;必须进一步完善制度,增加对节水灌溉技术推广的资金支持,将技术研究和推广与农民需求相结合,才能促使节水灌溉技术的有效推广。%Extension and acceptation of water-saving irrigation technology have got some results in China .While the development po‐tential of water-saving technology is very huge ,and many problems during the extension process have restricted the extension and ac‐ceptation of water-saving irrigation technology .Unreasonable management system ,undefined water rights system ,unsound water price system ,unconsciousness of saving water of farmers and the transformation of traditional rural places all make it difficult to ex‐tend water-saving technology .In order to make the extension of water-saving technology more sufficiently ,it needs to improve the institutional system ,increase financial support and combine the make research and extension of the technology with needs of farmers .

  14. Swing Set Irrigation System

    Directory of Open Access Journals (Sweden)

    Ambe Verma

    2015-05-01

    Full Text Available ABSTRACT India is a vast country based on agriculture and irrigation is the most important factor for agriculture. In India there are many sources provide for irrigation. Every day new technologies are emerged in the world which brings a revolutionary change in the nature of this world. day by day the energy resources used by the large population of this world are coming on the last stage This project give the idea that how the other different form of energy can be used and implemented efficiently to overcome from this problem The aim of this project is to achieve the objective of energy lasting problem which is likely to be faced over in coming decades. Energy lasting is a big problem in India. This is faced by every people who live in the country. Swing energy is the form of energy. In this paper we have represented the methodology of swing energy using for rural area of application. This paper is all about Swing Set Water Pump in which the water pump will execute with the help of a swing set of canopy type. As we need a motor to operate the water pump but in this project we use the swing in the place of motor and we use oscillatory motion of swing in the place of rotating motion of a motor. Everybody has needed the energy at an increasing rate ever since he came on the Earth. Because of this lot of energy has been exhausted and wasted. All the member are dedicated the amount of their important time to participate in multiple meetings read and research for making the content to the report. We would especially like to thanks for the efficient condition of the entire Advisory member and their experiences. This study was initial and performed within the BUDDHA INSTITUTE OF TECHNOLOGY GIDA Gorakhpur the final report represents the labour and interest of the entire member working for this project. Finally we would like to thanks to all the member of our college workshop who helped us in manufacturing of this project model.

  15. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  16. Irrigation Systems. Student's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  17. Irrigation Systems. Instructor's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  18. Irrigation Without Waste

    Science.gov (United States)

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  19. Small private irrigation: Enhancing benefits and managing trade-offs

    NARCIS (Netherlands)

    Giordano, M.; Fraiture, de C.M.S.

    2014-01-01

    Millions of smallholder farmers in sub-Saharan Africa and South Asia benefit from readily available and affordable irrigation technologies. The rapid uptake of small private irrigation in South Asia had a proven positive effect on poverty alleviation. In sub-Saharan Africa similar trends are emergin

  20. Review of root canal irrigant delivery techniques and devices

    Directory of Open Access Journals (Sweden)

    Yeon-Jee Yoo

    2011-05-01

    Full Text Available Introduction Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

  1. Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation.

    Science.gov (United States)

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  2. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  3. IRRIGATION OF ORNAMENTAL PLANT NURSERY

    Directory of Open Access Journals (Sweden)

    Eduardo de Aguiar do Couto

    2013-01-01

    Full Text Available Airports consume significant amounts of water which can be compared to the volume consumed by mid-size cities, thus practices aimed at reducing water consumption are important and necessar y. The objective of this study was to assess the reuse potential of sewage effluent produced at a mid-size international airport for nursery irri gation. The sewage treatment system consisted of a facultative pond followed by a constructed wetland, which were monitored during one hydrological year a nd the parameters COD, pH, solids, nitrogen, phosphorus and Escherichia coli we re analyzed. Removal efficiencies of 85% and 91% were achieved for C OD and solids, respectively. Removal efficiencies for ammonia nitrogen a nd total phosphorus were 77% and 59%, respectively. In terms of E. coli concen tration, the treated effluent met the recommendations by the World Health Organization for reuse in irrigation with the advantage of providing high levels of residual nutrient. The ornamental species Impatiens walleriana was irrigated with treated sewage effluent and plant growth characteristics were evalua ted. The experiment showed that reuse can enhance plant growth without signi ficantly affecting leaf tissue and soil characteristics. This study highlighted th e importance of simple technologies for sewage treatment especially in count ries which still do not present great investment in sanitation and proved that effluent reuse for landscape irrigation can provide great savings of water and financial resources for airport environments.

  4. Irrigation in endodontics.

    Science.gov (United States)

    Haapasalo, M; Shen, Y; Wang, Z; Gao, Y

    2014-03-01

    Irrigation is a key part of successful root canal treatment. It has several important functions, which may vary according to the irrigant used: it reduces friction between the instrument and dentine, improves the cutting effectiveness of the files, dissolves tissue, cools the file and tooth, and furthermore, it has a washing effect and an antimicrobial/antibiofilm effect. Irrigation is also the only way to impact those areas of the root canal wall not touched by mechanical instrumentation. Sodium hypochlorite is the main irrigating solution used to dissolve organic matter and kill microbes effectively. High concentration sodium hypochlorite (NaOCl) has a better effect than 1 and 2% solutions. Ethylenediaminetetraacetic acid (EDTA) is needed as a final rinse to remove the smear layer. Sterile water or saline may be used between these two main irrigants, however, they must not be the only solutions used. The apical root canal imposes a special challenge to irrigation as the balance between safety and effectiveness is particularly important in this area. Different means of delivery are used for root canal irrigation, from traditional syringe-needle delivery to various machine-driven systems, including automatic pumps and sonic or ultrasonic energy.

  5. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  6. Integrating professional education, research and extensionin irrigated agriculture technology centers Integração ensino profissional-pesquisa-extensão rural através de centros de tecnologia em agricultura irrigada

    Directory of Open Access Journals (Sweden)

    Jadir A Rosa

    2011-12-01

    Full Text Available With the objective to stimulate the use of irrigation and the electric energy fee reduction during night time program granted by the 2004 Federal law, the Government of the state of Paraná, Brazil launched the Night Irrigation Program - NPI. Beyond this discount, the farmer that adheres to NPI will get additional benefits, as completion of the electric grid without cost, subsidized financing of equipment, technical assistance, support with environmental farm compliance, and the possibility of replacing the entire pump energy matrix. As part of the NPI strategy of action, installation of learning centers for irrigation technology was planned in agricultural schools, thus contributing both to improve technical professional training in agriculture, and for the dissemination of knowledge in irrigated agriculture, in order to increase agricultural productivity.Com o objetivo de estimular o uso da irrigação e utilizando-se de descontos na tarifa de energia elétrica concedidos por lei federal, em 2004, o Governo do Paraná lançou o Programa de Irrigação Noturna - NPI. Além de descontos, o agricultor que aderir ao NPI contará com outros benefícios, como complementação da rede elétrica sem custo, financiamento subsidiado de equipamentos, assistência técnica oficial, facilitação quanto à adequação ambiental da propriedade, possibilidade de substituição da matriz energética do conjunto moto bomba. Como parte da estratégia de ação do NPI, previu-se a instalação de centros irradiadores da tecnologia da irrigação em vários colégios agrícolas, contribuindo, desta forma, tanto para a melhoria na formação do profissional técnico em agropecuária quanto para a disseminação dos conhecimentos em agricultura irrigada, visando ao aumento da produtividade agrícola.

  7. effect of deficit irrigation on growth and yield of okro

    African Journals Online (AJOL)

    User

    the best application for okro. Keywords: Deficit irrigation, okro, water, yield, evapotranspiration ... Therefore, innovations are needed to increase ... 2010 Kwame Nkrumah University of Science and Technology (KNUST). Journal of Science and ...

  8. Advances in Irrigation

    Science.gov (United States)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  9. Introducing a Technological Change in a Public School Organization.

    Science.gov (United States)

    Wolfe, A. E.

    A segment of a longitudinal study of the changing management philosophy of a public school organization involves the introduction of a new technology--the use of an integrated information system--in an environment that was to have been prepared for change. The administrators and staff of the organization had participated in a feasibility study…

  10. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  11. More efficient irrigation may compensate for increases in irrigation water requirements due to climate change in the Mediterranean area

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2017-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.

  12. On the Essential Qualities for Translators of English for Science and Technology

    Institute of Scientific and Technical Information of China (English)

    张敏

    2014-01-01

    With the rapid development of science and technology,the need for the exchange in this field is becoming more and more frequent and urgent. We need to explore more in the field of English for Science and Technology (EST for short) translation and the training of translators.

  13. On the Essential Qualities for Translators of English for Science and Technology

    Institute of Scientific and Technical Information of China (English)

    张敏

    2014-01-01

    With the rapid development of science and technology,the need for the exchange in this field is becoming more and more frequent and urgent. We need to explore more in the field of English for Science and Technology(EST for short) translation and the training of translators.

  14. Development of a project on North Unit Irrigation District’s Main Canal at the Monroe Drop, using a novel low-head hydropower technology called the SLH100

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abraham [Natel Energy, Inc., Alameda, CA (United States); Schneider, Gia [Natel Energy, Inc., Alameda, CA (United States); McKinstry, Katherine [Natel Energy, Inc., Alameda, CA (United States); Harwood, Meghan [Natel Energy, Inc., Alameda, CA (United States)

    2017-03-14

    Natel Energy is a low­-head, distributed hydropower company based out of Alameda, CA. Natel manufactures and sells proprietary hydroelectric turbines called hydroEngines® that are suitable for low-­head, high-­flow settings, and range from 30kW to 1 MW of capacity per unit. Natel’s hydroEngine is a state­-of­the-­art two stage impulse turbine, using blades mounted symmetrically on two belts perpendicular to the axis of travel, and using linearly­-moving foils, rather than a rotor, to enable efficient conversion of kinetic energy of large volumes of water at low head with no risk of cavitation. In addition, the hydroEngine can be installed at or above tailwater level, reducing the excavation necessary to build the powerhouse and thus reducing total installed cost and project footprint. Thus, the hydroEngine technology enables a new generation of small hydro installations with low cost of project development, fish-­friendly operations, and small project footprint. In September of 2015, Natel Energy formally commissioned its first project installation in Madras, Oregon, installing 1 SLH100 turbine at an existing drop structure on the North Unit Irrigation District (NUID) Main Canal. The water falls between 13.5 feet to 16.5 feet at this structure, depending on flow. The plant has an installed capacity of 250 kW and an expected annual generation of approximately 873 MWh. The plant operates at an annual capacity factor of 40%, and a capacity factor over the irrigation season, or period of available flow, of 80%. Annual capacity factor is calculated as a percentage of plant operating hours relative to a total of 8,760 hours in a year; because the irrigation canal in which the Project is located only runs water from April to October, the available flow capacity factor is higher. Net greenhouse gas reductions from the Monroe Project are estimated to be 602 tCO2/year. The purpose of this report is to provide an overview of the specifications for Natel’s first

  15. SEDIMENT CONTROL FOR IRRIGATION INTAKES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The analysis of the sediment problems in irrigation engineeringwas carried out, and the layout, the method as well as the effect of sediment control for irrigation intake structures in China were briefly introduced.

  16. Router OS 技术在灌区信息化中的应用%Application of Router OS technology in Irrigated Area Informatizatio

    Institute of Scientific and Technical Information of China (English)

    纪义胜; 葛孚强

    2015-01-01

    Router OS is a router operating system based on Linux system. It can change a standard computer to a professional grade router, which has prominent functions in the authentication, policy routing and firewall filtering and so on. The article discusses its application in the information communication of irrigation area. Through setting policy routing of three NIC in Router OS Server, the information forwarding is achieved of different segment in irrigation area. It is simple to set up and convenient to management. It not only lets the information transmit among different segments more stably, but also solves the problem of Trojan virus attack of LAN ARP. And network security and stability are effectively guaranteed through running practice of more than two years.%RouterOS是基于Linux系统的一种路由操作系统,它可以将1台标准的电脑转变为1台专业级的路由器使用,在认证、策略路由和防火墙过滤等功能上都有着突出的功能。探讨将其应用于灌区的信息通讯中,通过设置Router OS服务器3块网卡的策略路由实现灌区不同网段之间的信息转发,具有架设简单、管理方便的特点,不但使得不同网段之间的信息转发更加稳定,同时也解决局域网内的ARP木马病毒的攻击问题,经过2年多的运行实践,没有出现大的问题,网络安全性、稳定性得到有效保障。

  17. Technology and uncertainty in the practice of irrigation in the province of Córdoba Tecnología e incertidumbre en la práctica del riego en la provincia de Córdoba

    Directory of Open Access Journals (Sweden)

    Constanza Riera

    2011-01-01

    Full Text Available In the present work, irrigators from Río Segundo, Córdoba will be characterized in comparative terms as well as their technological relation. It refers to small and medium farmers settled in Cordoba's Spinal area, that is, the limit with the Argentinean Pampas Region, who are devoted to cereal and oleaginous extensive agriculture using irrigation supplemented with subterranean water. The object of this study is approached by considering that logics of knowledge permeate their production and growth. In addition to this, the growth in uncertainty is generated by innovative practices and the search for efficiency. Production professionalized management that implies productive activity planning based on permanent reflection reveals that it is necessary to get to know what is unknown yet; which is closely related to uncertainty and a greater awareness of risk taking ,climatic or economic, whenever related to the production. In order to fulfill the objective a qualitative methodology based on fieldwork was used, together with deep interviews within a critical interpretative frame complemented with elements from the social theory of irrigation.En el presente trabajo se busca caracterizar a los regantes de Río Segundo, Córdoba, en términos comparativos y en vinculación con la tecnología. Se trata de pequeños y medianos productores localizados en el Espinal cordobés, límite de la región pampeana argentina, que se dedican a la agricultura extensiva de cereales y oleaginosas utilizando riego suplementario con agua subterránea. El objeto de estudio se aborda considerando que las lógicas de conocimiento atraviesan la producción y que el crecimiento de la incertidumbre es impulsado por la práctica de la innovación y la búsqueda de eficiencia. La gestión profesionalizada de la producción que lleva a la planificación de las actividades productivas en base a la reflexión permanente, revela la necesidad de conocer aquello que aún no se

  18. Planning for an Irrigation System.

    Science.gov (United States)

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  19. Planning for an Irrigation System.

    Science.gov (United States)

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  20. Review on Trickle Irrigation Application in Groundwater Irrigation Schemes

    Directory of Open Access Journals (Sweden)

    Prastowo

    2006-04-01

    Full Text Available The Government of Indonesia has developed groundwater irrigation schemes in some province e.g. East Java, Central Java, Yogyakarta, Wast Java, Bali, West Nusa Tenggara and East Nusa Tenggara. However, not all regions were able to optimally utilize it. The irrigation effeciency of groundwater irrigation scheme was about 59%, while the wells-pumping efficiencies were varied from 28 to 98 %. In thefuture, the irrigation effieciency should be increased to anticipate water deficit during dry season. The application of trickle irrigation in indonesia has not been widely developed. Although trickle system has been used, however, it is still limited for few commercial agribusinesses. Trickle irrigation systems have a prospect to be developed in some regions having limited water resources. For preliminary stage, the systems could be applied in groundwater irrigation schemes that have been developed either by farmers or government.

  1. Root canal irrigation

    NARCIS (Netherlands)

    L. van der Sluis; C. Boutsioukis; L.M. Jiang; R. Macedo; B. Verhaagen; M. Versluis

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  2. Introduction to communications technologies a guide for non-engineers

    CERN Document Server

    Jones, Stephan; Groom, Frank M

    2008-01-01

    Systems and Models of Communications Technologies:Shannon-Weaver, von Neumann, and the OSI ModelBasic Concepts of Electricity Current Modulation Schemes Signaling Formats, Multiplexing, and Digital Transmissions Multiplexing PSTN to CPE Circuit Switching Mobile Wireless Technologies Packet Switching and Local Area Network TechnologyThe Language of the Internet: TCP/IP Network Security and Management Voice-Over-IP Wireless Local Area Networks Video Basics Digital Media The Basics of MPLS Networking.

  3. Appropriate technology for sustainable family agriculture in the semi-arid: solar water pumping for located irrigation; Tecnologia apropriada para a agricultura familiar sustentavel do semi-arido brasileiro: bombeamento solar de agua para irrigacao localizada

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Heitor Scalambrini [Universidade Federal de Pernambuco (NAPER/UFPE), Recife, PE (Brazil). Nucleo de Apoio a Projetos de Energias Renovaveis], Email: naper@ufpe.br

    2006-07-01

    Water and energy are the physic factor, which are most influential on the life conditions in the semi-arid rural environment as a whole and in the agriculture production systems in particular. Water is a resource, which - even though not rare - is found in limited quantities and not always is available on the ground surface, meaning that it should be retrieved through either proper wells or deep holes excavated into ground. Therefore, its use should be optimized. In the rural environment to turn water into an available resource in a sufficient amount in order to improve the population life conditions is still a challenge. In the rural semi-arid regions the electric energy distribution is small compared to the other regions of the country. Nevertheless the geographic position of the Brazilian Northeast - close to the equator - adds to this region high levels of insolation - something close to 3,000 hours of sunshine per year - turning this energy resource into a very abundant one. It is known that the use of solar energy, among the use of other resources, has increased the most worldwide in the last decade. The use of photovoltaic cells has increased around 17% per year in the 90's. In the last years several applications, which had the sun as their electric energy resource, were implemented in the rural areas of many countries. The Brazilian Northeast region was the preferred target of programs and projects aiming at the dissemination of the photovoltaic solar technology. Water pumping is one among the most noble applications of the photovoltaic solar technology. There are many pumping systems configurations for either deep or shallow wells, which use either superficial, immerse or floating motor-pumps, which in turn can be driven by either continuum or alternate current. In this work the usage of water pumped with solar energy from Amazon wells (also called 'cacimboes') for small family-based areas of localized irrigation (less than 1 ha), whose main

  4. Subsurface drip irrigation in different planting spacing of sugarcane

    Science.gov (United States)

    Pires, R. C. M.; Barbosa, E. A. A.; Arruda, F. B.; Silva, T. J. A.; Sakai, E.; Landell, M. G. A.

    2012-04-01

    The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficits conditions. The SDI provides better water use efficiency, due to the water and nutrients application in root zone plants. However, it is important to investigate the long-term effect of irrigation in the yield and technological quality in different ecological condition cultivation. Thus, the aim of this work was to evaluate the effect of SDI in sugarcane cultivated in different planting spacings on technological quality, yield and theoretical recoverable sugar during four cycles of sugarcane cultivation. The experiment was carried out at Colorado Mill, Guaíra, São Paulo State in Brazil, in a clay soil. The experiment was installed in randomized blocks, with six replications. The treatments were three different planting spacings (S1 - 1.5 m between rows; S2 - 1.8 m between rows and S3 - planting in double line of 0.5 m x 1.3 m between planting rows) which were subdivided in irrigated and non-irrigated plots. In S1 and S2 treatments were installed one drip line in each plant row and in treatment S3 one drip line was installed between the rows with smaller spacing (0.5 m). The RB855536 genotype was used and the planting date occurred in May, 25th 2005. The analyzed parameters were: percentage of soluble solids (brix), percent apparent sucrose juice (Pol), total recoverable sugar (ATR), yield and theoretically recoverable sugar (RTR). Four years of yield (plant cane and first, second and third ratoon) were analyzed. Data were submitted to variance analysis and the averages compared by Duncan test at 5% probability. Two months before the first harvest a yield estimate was realized. According to the observed results the irrigated plants provided increase of about 20 % compared to non irrigated plants. However there was a great tipping of plants specially in irrigated plots. The

  5. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    Science.gov (United States)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  6. Spectrophotometric determination of irrigant extrusion using passive ultrasonic irrigation, EndoActivator, or syringe irrigation.

    Science.gov (United States)

    Rodríguez-Figueroa, Carolina; McClanahan, Scott B; Bowles, Walter R

    2014-10-01

    Sodium hypochlorite (NaOCl) irrigation is critical to endodontic success, and several new methods have been developed to improve irrigation efficacy (eg, passive ultrasonic irrigation [PUI] and EndoActivator [EA]). Using a novel spectrophotometric method, this study evaluated NaOCl irrigant extrusion during canal irrigation. One hundred fourteen single-rooted extracted teeth were decoronated to leave 15 mm of the root length for each tooth. Cleaning and shaping of the teeth were completed using standardized hand and rotary instrumentation to an apical file size #40/0.04 taper. Roots were sealed (not apex), and 54 straight roots (n = 18/group) and 60 curved roots (>20° curvature, n = 20/group) were included. Teeth were irrigated with 5.25% NaOCl by 1 of 3 methods: passive irrigation with needle, PUI, or EA irrigation. Extrusion of NaOCl was evaluated using a pH indicator and a spectrophotometer. Standard curves were prepared with known amounts of irrigant to quantify amounts in unknown samples. Irrigant extrusion was minimal with all methods, with most teeth showing no NaOCl extrusion in straight or curved roots. Minor NaOCl extrusion (1-3 μL) in straight roots or curved roots occurred in 10%-11% of teeth in all 3 irrigant methods. Two teeth in both the syringe irrigation and the EA group extruded 3-10 μL of NaOCl. The spectrophotometric method used in this study proved to be very sensitive while providing quantification of the irrigant levels extruded. Using the PUI or EA tip to within 1 mm of the working length appears to be fairly safe, but apical anatomy can vary in teeth to allow extrusion of irrigant. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Irrigation mitigates against heat extremes

    Science.gov (United States)

    Thiery, Wim; Fischer, Erich; Visser, Auke; Hirsch, Annette L.; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2017-04-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use gridded observations and ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on hot extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Finally we find that present-day irrigation is partly masking GHG-induced warming of extreme temperatures, with particularly strong effects in South Asia. Our results overall underline that irrigation substantially reduces our exposure to hot temperature extremes and highlight the need to account for irrigation in future climate projections.

  8. Asian irrigation, African rain: Remote impacts of irrigation

    Science.gov (United States)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  9. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Olutobi Adeyemi

    2017-02-01

    Full Text Available Globally, the irrigation of crops is the largest consumptive user of fresh water. Water scarcity is increasing worldwide, resulting in tighter regulation of its use for agriculture. This necessitates the development of irrigation practices that are more efficient in the use of water but do not compromise crop quality and yield. Precision irrigation already achieves this goal, in part. The goal of precision irrigation is to accurately supply the crop water need in a timely manner and as spatially uniformly as possible. However, to maximize the benefits of precision irrigation, additional technologies need to be enabled and incorporated into agriculture. This paper discusses how incorporating adaptive decision support systems into precision irrigation management will enable significant advances in increasing the efficiency of current irrigation approaches. From the literature review, it is found that precision irrigation can be applied in achieving the environmental goals related to sustainability. The demonstrated economic benefits of precision irrigation in field-scale crop production is however minimal. It is argued that a proper combination of soil, plant and weather sensors providing real-time data to an adaptive decision support system provides an innovative platform for improving sustainability in irrigated agriculture. The review also shows that adaptive decision support systems based on model predictive control are able to adequately account for the time-varying nature of the soil–plant–atmosphere system while considering operational limitations and agronomic objectives in arriving at optimal irrigation decisions. It is concluded that significant improvements in crop yield and water savings can be achieved by incorporating model predictive control into precision irrigation decision support tools. Further improvements in water savings can also be realized by including deficit irrigation as part of the overall irrigation management

  10. Effect of low‐cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    National Research Council Canada - National Science Library

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay; Abaidoo, Robert C

    2007-01-01

    Objective  To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water...

  11. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  12. Energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L.D.; Wensink, R.B.; Wolfe, J.W.; Shearer, M.N.

    1977-09-01

    Irrigation in the Pacific Northwest is an energy-intensive process which represents a major part of the total energy used in farm level food production. Since 1950, several major developments have precipitated pronounced increases in irrigation energy requirements. For example, the invention of efficient high-lift pumps, labor-saving equipment, new uses for irrigation sprinklers, and profitable cropping patterns have substantially escalated irrigation energy consumption in the Pacific Northwest in the past 25 years. Until recently, energy prices have remained relatively low and constant. The next 25 years will continue to experience advanced irrigation technologies. In addition to technological development, however, the cost of energy and water will certainly rise while their availabilities become increasingly constrained. The depletion of ground water in several parts of the United States could also potentially increase the irrigation burden of the Pacific Northwest. Lastly, parts of the Pacific Northwest water supply are directly convertible to energy via hydroelectric generation. This study proposes to make realistic projections relative to present and future interactions of the above components.

  13. Sediment transport in irrigation canals

    OpenAIRE

    Méndez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high crop production. Irrigation has been the largest recipient of public agricultural investment in the developing world. Hence, continued investment in irrigation along with reforms in institutional a...

  14. Multiplatform automated system for monitoring and sprinkler irrigation control

    Directory of Open Access Journals (Sweden)

    PINTO, M. L.

    2016-06-01

    Full Text Available The automation systems together with web and mobile control is a facilitator of the various processes in several areas, among them the agricultural sector. Specically in the irrigation management, the lowest cost technology is not able to satisfy the farmer's needs, which are the correct water supply to plants and remote monitoring of the irrigation. The objective of this paper is to present a system for controlling and monitoring irrigation with a multiplatform support for both desktop and web/mobile. The system is designed to realize automatic irrigation management in order to provide the exact amount of water needed for culture, avoiding water stress both the culture and the waste of resources such as water and electricity. Additionally, the system allows remote monitoring from anywhere by means of a computer and/or mobile device by internet. This work was developed during the undergraduate mentorship of the authors.

  15. Irrigation controllers driven by solid-set sprinkler and crop simulation models

    OpenAIRE

    Playán Jubillar, Enrique; Salvador Esteban, Raquel; López Marín, Cristina; Lecina Brau, Sergio; Dechmi, Farida; Zapata Ruiz, Nery

    2013-01-01

    Despite current technological developments and intense capacity building, farmers continue to show wide differences in irrigation water use, even for a given location and crop. Sprinkler irrigation performance is affected by a number of meteors, particularly wind speed. The short-time variability of wind speed requires tactical adjustments of the irrigation schedule. Additionally, energy costs often require consideration of the time evolution of the tariff along the day and among contiguous d...

  16. Potential conservation opportunities from the use of improved irrigation scheduling in the Pacific Northwest region

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B J; Lezberg, A J

    1985-03-01

    This report documents research to identify the potential energy savings and the costs per kWh saved from using systematic rather than traditional irrigation scheduling to reduce water usage in the irrigated agricultural sector of the Pacific Northwest. This research is part of an overall project aimed at developing a computer model and data base that will allow for estimation of the potential energy savings and cost effectiveness of a number of conservation technologies that are available for use in irrigated agriculture.

  17. Field Validation of Visual Cleaning Performance Indicator (VCPI) Technology

    Science.gov (United States)

    2007-08-31

    test panels. Panels sets included 2024-T3 aluminum alloy sheet (Air Force platform), and primer coated HY80 steel alloy (Navy platform). 1. Weight...Cleaning Petfmmance Indicator (VCPI) tedmology as a means to verify surface cleanliness on aluminum and painted steel alloys. The VCPI technology...the surface cleanliness of unpainted structures fabricated from aluminum and steel alloys. In concept, the VCPI technology represents an innovative

  18. The Predicament and Solution of the Agricultural Water-saving Irrigation Technology Diffusion in Minqin County, Gansu Province%甘肃省民勤县农业节水灌溉技术传播的困境与出路

    Institute of Scientific and Technical Information of China (English)

    梁植睿; 刘林; 李凡; 郭超男; 吴迪; 尹婷薇

    2012-01-01

    The water resource is deficient in Minqin County, the ecological environment is fragile, the development of agricultural production is severely limited, it' s difficult to raise farmers" income, so taking water-saving irrigation technology is necessary. Under the market economy background, the task about water-saving irrigation technology is arduous. The paper is mainly based on interview and case analysis, the purpose is to explore the spread condition and process of water-saving irrigation techniques in the rural communities, to find out the predicament and solutions of the diffusion of technology. The paper showed that the problems existed in single diffusion model, in low-status of the participation farmers and so on. The farmer field school was an effective way of dissemination and promotion of water-saving irrigation technology, people also needed to improve the water-saving irrigation technology dissemination mechanism, attracted women to participate and take children into the diffusion of technology in the education system.%民勤地区水资源匮乏,生态环境脆弱,农业生产发展受到严重限制,农民收入难以提高,采用节水灌溉技术尤为必要。在市场经济条件下,农业节水灌溉技术的推广传播任务十分艰巨。主要采用访谈法、案例研究法进行研究,旨在探究农村社区内节水灌溉技术的传播现状、传播过程,以期找出技术传播的困境,并有针对性地提出解决建议。研究表明,节水灌溉技术传播存在模式单一、农民参与地位低等问题,农民田间学校是节水灌溉技术传播和推广的有效途径,还需要完善节水灌溉技术传播机制,吸引女性农民参与技术传播,并将儿童纳入到技术传播教育体系中。

  19. Irrigation trends in Kansas, 1991–2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for...

  20. Soil Water Distribution and Irrigation Uniformity Under Alternative Furrow Irrigation

    Institute of Scientific and Technical Information of China (English)

    PAN Ying-hua; KANG Shao-zhong; DU Tai-sheng; YANG Xiu-ying

    2003-01-01

    Field experiments were conducted to investigate the spatial-temporal distribution and the uni-formity of soil water under alternative furrow irrigation in spring maize field in Gansu Province. Resultsshowed that during the crop growing season, alternative drying and wetting furrows could incur crops to en-dure a water stress, thus the adsorptive ability of root system could be enhanced. As there was no zero fluxplane between irrigated furrows and non-irrigated furrows under alternative furrow irrigation, lateral infiltra-tion of water was obviously increased, thus decreasing the deep percolation. Compared with the conventionalirrigation, although the water consumption in alternative furrow irrigation was reduced, the uniformity of soilwater was not obviously affected.

  1. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  2. CROP UNDER DEFICIT IRRIGATION SCHEDULING

    African Journals Online (AJOL)

    This study presents crop coefficient (Kc) values of TMV 1 -ST maize variety ... given time from planting to the time it is harvested. ... real time irrigation scheduling for high frequent and non-fiequent water .... 10 m, and the average soil bulk density was 1420 kg/m'. ...... Performance Evaluation of Fadama Irrigation Practice.

  3. More 'crop per drop': constraints and opportunities for precision irrigation in European agriculture.

    Science.gov (United States)

    Monaghan, James M; Daccache, Andre; Vickers, Laura H; Hess, Tim M; Weatherhead, E Keith; Grove, Ivan G; Knox, Jerry W

    2013-03-30

    Dwindling water supplies, increasing drought frequency and uncertainties associated with a changing climate mean Europe's irrigated agriculture sector needs to improve water efficiency and produce more 'crop per drop'. This paper summarizes the drivers for change, and the constraints and opportunities for improving agricultural water management through uptake of precision irrigation technologies. A multi-disciplinary and integrated approach involving irrigation engineers, soil scientists, agronomists and plant physiologists will be needed if the potential for precision irrigation within the field crop sector is to be realized.

  4. Evaluating effects of deficit irrigation strategies on grain sorghum attributes and biofuel production

    Science.gov (United States)

    With reduced water resources available for agriculture, scientists and engineers have developed innovative technologies and management strategies aimed at increasing the efficient use of irrigation water. The objective of this research was to study the impact of deficit irrigation strategies on sorg...

  5. Ecological Expression of High Technology-The Trend of Norman Foster Architecture Creation%技术之巅的生态表达--诺曼·福斯特建筑创作新趋势

    Institute of Scientific and Technical Information of China (English)

    尚晓茜; 霍博

    2006-01-01

    近年来,福斯特凭借技术优势,将生态概念引入建筑设计中,创作了许多成功作品,实现以技术服务大众的梦想.该文通过对福斯特生态策略的深入分析,结合实例,探讨了其建筑创作的新趋势.

  6. Optimization of Irrigation Spray Distribution in the Term of its Uniformity

    Directory of Open Access Journals (Sweden)

    L. Tomášik

    2013-06-01

    Full Text Available The production process of agricultural and livestock production is affected by climatic conditions, mostly including the amount and quality of rainfall. In High Tatras region is annual atmospheric rainfall between 500 and 2000 mm. During vegetation period the rainfall on the most agriculturally significant areas is even less and its value is between 300 and 250 mm. This amount is insufficient for the most of economic significant plants. From this point of view, the artificial irrigation represents one of the most important factors that improve the agricultural production.Considering stochastic effects like wind or technical parameters of irrigation machines, slope of terrain, the distribution of spray is not equal over the whole irrigated area. For economic benefits in the process of irrigation and supplying water to the irrigation machines, this spray non-uniformity must attain smallest possible value. This can be achieved by proper mathematical modeling of economic and technological processes, the irrigation process includes.

  7. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  8. A decision support tool for basin irrigation in northern Nigeria

    Directory of Open Access Journals (Sweden)

    Olumuyiwa S. Asaolu

    2009-07-01

    Full Text Available Inadequate rainfall, water resources scarcity and attendant food security-related problems have made irrigation technology a necessity. This work presents the development of a decision support system for solving surface irrigation design problems in northern Nigeria. The arid northern states affected by desert encroachment constitute a good candidate and their climatological data was obtained from the Nigerian Metrological Agency. The interactive system was defined in terms of inputs and outputs. The inputs were properties of soil, surface irrigation method and climate. The outputs were mainly the quantity of water application, scheduling pattern, possible design configuration, advance time, cut-off time, application rate, and water use efficiency. The FAO Penman-Monteith equation was used to estimate evapotranspiration values of major crops grown in Nigeria. Mathematical models outlined by Walker and Skogerboe were adapted, and heuristics applied in determining the best configuration that achieves optimum water application efficiency. We encoded the knowledge base using Matlab® software. The application was successfully used for the modification of a farm irrigation scheme in Kaduna state. This indicates that the adoption of new technologies for irrigation design issues could enhance agricultural productivity in northern Nigeria.

  9. Soil management and conservation: Irrigation: Methods

    Science.gov (United States)

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  10. 76 FR 20971 - Turlock Irrigation District and Modesto Irrigation District; Notice of Intent To File License...

    Science.gov (United States)

    2011-04-14

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of..., 2011. d. Submitted By: Turlock Irrigation District and Modesto Irrigation District. e. Name of Project... Regulatory Affairs, Turlock Irrigation District, P.O. Box 949, Turlock, California 95381, 209-883-8241...

  11. Difficulties and Countermeasures of Developing Irrigation and Water Conservancy in New Era

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper expounds the great significance of irrigation and water conservancy for the agricultural development. Vigorously developing irrigation and water conservancy can promote high yield and stable yield of grain, effectively increase farmers’ income, alleviate the impact of drought on agricultural production, be conducive to the adjustment of agricultural production structure, and promote county economic development. The difficulties of developing irrigation and water conservancy in new era are analyzed as follows: the subject of liabilities defaults seriously; it lacks effective input security system; the quality of project degenerates badly; the agricultural technological development is slow. Corresponding policy suggestions are put forward as follows: make the input subject of irrigation and water conservancy clear; form stable investment channels; strengthen the organizing and guiding functions of grass-roots government; reinforce the coordination and management of capital; strengthen the promotion of agricultural technology; quicken the pace of reform of irrigation and water conservancy.

  12. 77 FR 63850 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-10-17

    .... Operation and maintenance (O&M) assessment means the periodic charge you must pay us to reimburse costs of... operate our irrigation projects and equipment and is a cost factor included in calculating your O&M... using current technology and is a cost factor included in calculating your O&M assessment. Responsible...

  13. 76 FR 58293 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-09-20

    .... Operation and maintenance (O&M) assessment means the periodic charge you must pay us to reimburse costs of... operate our irrigation projects and equipment and is a cost factor included in calculating your O&M... using current technology and is a cost factor included in calculating your O&M assessment. Responsible...

  14. Irrigation Controllers Specification and Certification

    Science.gov (United States)

    WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.

  15. Irrigation Sprinklers Notice of Intent

    Science.gov (United States)

    High-efficiency irrigation sprinklers aim to deliver water more evenly to the landscape than traditional sprinklers and/or regulate outlet pressure to ensure a constant flow rate over a range of supply pressures.

  16. 78 FR 3892 - Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status

    Science.gov (United States)

    2013-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status On January 9, 2013, the Modesto Irrigation District (Modesto) filed a motion...

  17. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Guoyong; Leung, Lai-Yung; Huang, Maoyi

    2017-07-01

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth, with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.

  18. Transferability Of DEMETER. A Case Study Of The Irrigation Scheme Of Veiga De Chaves

    Science.gov (United States)

    Baptista, A.; Sousa, V.

    2006-08-01

    DEMETER is a research and demonstration project, designed to assess and demonstrate how the integration of Earth Observation techniques in routine Irrigation Advisory Services can improve efficiency in the use of irrigation water. The objectives of this paper are: (1) to analyze the interest in the feasibility of transferring the DEMETER technology to the irrigation scheme of Chaves: (2) to identify the factors that, in general, favour the usefulness of this technology. The irrigation infrastructure and methods, the size and number of irrigation parcels and the main crops grown at the irrigation scheme of Chaves have been recorded. Also a socio-economic description has been done. Field visits, interviews with the staff of water association, and an inquiry to a sample of 107 farmers were made. The main results are: each farmer pays an area based annual fee, independent of the amount of water used for irrigation; most of the irrigated parcels are of very small size, 0.3 ha in average, mostly irrigated by surface methods; the most representative crops grown are potato, forage maize, and several different horticultural crops; an important part of the production is for self-consumption. The farmers are aging and the new generations prefer other jobs than agriculture. A considerable number of farmers have another job in the nearby cities. The small size of the irrigated parcels limits the use of earth observation technologies to expensive high space resolution images. For the time being, farmers do not feel the need for an irrigation advisory service, manly because there is plenty of water which is not bought proportionally to its use. However, circumstances are changing rapidly and, relatively new for the region, environmental concerns related with irrigation, manly nitrate leaching by excess watering of crops prompts the need for an irrigation advisory service in order to maintain crop production with a more rational use of water. The DEMETER technology could be a

  19. Rethinking the sustainability of Israel's irrigation practices in the Drylands.

    Science.gov (United States)

    Tal, Alon

    2016-03-01

    Broad utilization of drip irrigation technologies in Israel has contributed to the 1600 percent increase in the value of produce grown by local farmers over the past sixty-five years. The recycling of 86% of Israeli sewage now provides 50% of the country's irrigation water and is the second, idiosyncratic component in Israel's strategy to overcome water scarcity and maintain agriculture in a dryland region. The sustainability of these two practices is evaluated in light of decades of experience and ongoing research by the local scientific community. The review confirms the dramatic advantages of drip irrigation over time, relative to flood, furrow and sprinkler irrigation and its significance as a central component in agricultural production, especially under arid conditions. In contrast, empirical findings increasingly report damage to soil and to crops from salinization caused by irrigation with effluents. To be environmentally and agriculturally sustainable over time, wastewater reuse programs must ensure extremely high quality treated effluents and ultimately seek the desalinization of recycled sewage.

  20. Sleeping with the enemy: Dichotomies and polarisation in Indian policy debates on the environmental and social effects of irrigation

    OpenAIRE

    Mollinga, Peter P.

    2005-01-01

    Large-scale, government-managed canal irrigation represents the technocratic approach to water development. Large-scale irrigation faces many problems but they have been relegated to the periphery in the water debate generally and about large dams in particular. It has given rise to dichotomous thinking and polarised politics. This paper explores these issues in case of large canal irrigation in India. The debates imply implication for institutions, science and technology and developmental pr...

  1. Teaching transanal irrigation for functional bowel disorders.

    Science.gov (United States)

    Coggrave, Maureen; Norton, Christine

    Transanal irrigation of the bowel in the management of functional bowel disorders is currently receiving increased attention following the recent introduction of the Peristeen irrigation kit (Coloplast Ltd) in April 2007. Irrigation provides a welcome additional choice in the limited range of available interventions for the management of these patients. However, evidence to support clinical practice around irrigation is limited and nursing knowledge and experience of irrigation is only just developing. This paper reports a series of master classes conducted to support and develop the use of irrigation in the UK, and demonstrates the value of the master class as an educational tool when introducing a novel therapy.

  2. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  3. Advances in water resources technology

    Science.gov (United States)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  4. Estimating actual irrigation application by remotely sensed evapotranspiration observations

    NARCIS (Netherlands)

    Droogers, P.; Immerzeel, W.W.; Lorite, I.J.; SWAP, PEST

    2010-01-01

    Water managers and policy makers need accurate estimates of real (actual) irrigation applications for effective monitoring of irrigation and efficient irrigation management. However, this information is not readily available at field level for larger irrigation areas. An innovative inverse modeling

  5. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    Science.gov (United States)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  6. RESEARCH AND APPLICATIONS OF REAL -TIME MONITORING TECHNOLOGY FOR WATER LEVEL AND DISCHARGE OF OPEN CHANNEL IN IRRIGATION DISTRICT%灌区明渠水位流量实时监测技术研究与应用

    Institute of Scientific and Technical Information of China (English)

    马腾远; 张庆; 宋玉娟; 王贵田; 马树升

    2011-01-01

    Real-time monitoring water level and discharge of open channel in irrigation district is critical to improve water saving and crop water productivity with quantitative irrigation. In this paper, the necessary components in the monitoring system: water level sensor, ultrasonic flowmeter, data acquisition and flow calculation software and data communication system are described in detail.%灌区明渠水位流量监测对于计量灌溉促进灌区节水和提高作物水分生产率意义重大.本文就监测系统中必备的水位传感器、明渠超声波流量计、数据采集及流量积算软件及数据通信系统等进行了详细阐述.

  7. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  8. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  9. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  10. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  11. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  12. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of...: May 24, 2010. d. Applicant: Turlock Irrigation District and Modesto Irrigation District. e. Name of.... g. Filed Pursuant to: Federal Power Act, 16 USC 791a-825r. h. Applicant Contact: Turlock...

  13. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas south plains.

    Science.gov (United States)

    Within the Ogallala Aquifer Region of Texas, the irrigation capacity (IC) for a given field often changes within a growing season due to seasonal depletion of the aquifer, in season changes in crop irrigation needs in dry years, or consequences of irrigation volume limits imposed by irrigation distr...

  14. 75 FR 35778 - Modesto Irrigation District and Turlock Irrigation District; Notice of Preliminary Permit...

    Science.gov (United States)

    2010-06-23

    ... Energy Regulatory Commission Modesto Irrigation District and Turlock Irrigation District; Notice of... Competing Applications June 16, 2010. On February 1, 2010, Modesto Irrigation District and Turlock Irrigation District filed an application for a preliminary permit, pursuant to section 4(f) of the...

  15. SURDEV: surface irrigation software; design, operation, and evaluation of basin, border, and furrow irrigation

    NARCIS (Netherlands)

    Jurriëns, M.; Zerihun, D.; Boonstra, J.; Feyen, J.

    2001-01-01

    SURDEV is a computer package for the design, operation, and evaluation of surface irrigation. SURDEV combines three sub-programs: BASDEV (for basin irrigation), FURDEV (for furrow irrigation), and BORDEV for (border irrigation). This combination enables the user to simulate many of the problems invo

  16. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  17. SURDEV: surface irrigation software; design, operation, and evaluation of basin, border, and furrow irrigation

    NARCIS (Netherlands)

    Jurriëns, M.; Zerihun, D.; Boonstra, J.; Feyen, J.

    2001-01-01

    SURDEV is a computer package for the design, operation, and evaluation of surface irrigation. SURDEV combines three sub-programs: BASDEV (for basin irrigation), FURDEV (for furrow irrigation), and BORDEV for (border irrigation). This combination enables the user to simulate many of the problems

  18. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  19. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  20. Sediment transport in irrigation canals.

    NARCIS (Netherlands)

    Mendez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high

  1. Sediment transport in irrigation canals

    NARCIS (Netherlands)

    Mendez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to

  2. Position paper : Whole bowel irrigation

    NARCIS (Netherlands)

    2004-01-01

    Whole bowel irrigation (WBI) should not be used routinely in the management of the poisoned patient. Although some volunteer studies have shown substantial decreases in the bioavailability of ingested drugs, no controlled clinical trials have been performed and there is no conclusive evidence that W

  3. Modern technologies in Endodontics

    National Research Council Canada - National Science Library

    Iandolo, Alfredo; Iandolo, Giuseppe; Malvano, Mariano; Pantaleo, Giuseppe; Simeone, Michele

    2016-01-01

    .... Materials and methods: Today, thanks to modern technologies as Operative Microscope, ultrasonic tips, M-Wire Files, devices to activate irrigation and tridimensional obturation performed with thermo plasticized gutta...

  4. A case study of field-scale maize irrigation patterns in western Nebraska: implications for water managers and recommendations for hyper-resolution land surface modeling

    Science.gov (United States)

    Gibson, Justin; Franz, Trenton E.; Wang, Tiejun; Gates, John; Grassini, Patricio; Yang, Haishun; Eisenhauer, Dean

    2017-02-01

    In many agricultural regions, the human use of water for irrigation is often ignored or poorly represented in land surface models (LSMs) and operational forecasts. Because irrigation increases soil moisture, feedback on the surface energy balance, rainfall recycling, and atmospheric dynamics is not represented and may lead to reduced model skill. In this work, we describe four plausible and relatively simple irrigation routines that can be coupled to the next generation of hyper-resolution LSMs operating at scales of 1 km or less. The irrigation output from the four routines (crop model, precipitation delayed, evapotranspiration replacement, and vadose zone model) is compared against a historical field-scale irrigation database (2008-2014) from a 35 km2 study area under maize production and center pivot irrigation in western Nebraska (USA). We find that the most yield-conservative irrigation routine (crop model) produces seasonal totals of irrigation that compare well against the observed irrigation amounts across a range of wet and dry years but with a low bias of 80 mm yr-1. The most aggressive irrigation saving routine (vadose zone model) indicates a potential irrigation savings of 120 mm yr-1 and yield losses of less than 3 % against the crop model benchmark and historical averages. The results of the various irrigation routines and associated yield penalties will be valuable for future consideration by local water managers to be informed about the potential value of irrigation saving technologies and irrigation practices. Moreover, the routines offer the hyper-resolution LSM community a range of irrigation routines to better constrain irrigation decision-making at critical temporal (daily) and spatial scales (< 1 km).

  5. Reduction of Fire Hazard in Materials for Irrigators and Water Collectors in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N. V.; Konstantinova, N. I., E-mail: konstantinova-n@inbox.ru [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation); Gordon, E. P. [Research and Production Center “Kaustik” (Russian Federation); Poedintsev, E. A. [FGBU VNIIPO of EMERCOM of Russia (All-Russian Scientific-research Institute of Fire Protection) (Russian Federation)

    2016-09-15

    A way of reducing the fire hazard of PVC film used to make cooling-tower irrigators and water collectors is examined. A new generation of fire retardant, nanostructured magnesium hydroxide, is used to impart fire retardant properties. The fabrication technology is optimized with a roller-calendering manufacturing technique, and the permissible ranges of fire hazard indicators for materials in irrigators and water collectors are determined.

  6. A Fuzzy Control Irrigation System For Cottonfield

    Science.gov (United States)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  7. Feasibility of Natore Rubber Dam on Mahanonda River in Bangladesh and its Performance on Irrigation

    Directory of Open Access Journals (Sweden)

    Md. Sazadul Hasan

    2016-07-01

    Full Text Available Low rainfall in winter causes a great problem on irrigation. Bangladesh Agricultural Research Council (BARC started research on this problem from 1974. In 1994-95, Rubber Dam projects have been taken by BIC (Beijing IWHR Corporation in Bangladesh as it is very convenience and effective in both irrigation and cultivation of crops in winter. After installing, it is very important and challenging task to study the suitability and effect of Rubber Dam on agriculture. In this research work, the analysis of Rubber Dam in Natore, Bangladesh and its suitability on Mahanonda River has been analyzed and also studied its performance on irrigation. Also Bakkhali and Idgaon Rubber Dam were analyzed for the performance evaluation of Rubber Dam projects in Bangladesh for irrigation development. Then, feasibility of Natore Rubber Dam was studied and briefly discussed about its probable effect and benefit on agriculture. Reservoir capacity was also determined on the basis of a theoretical concept known as flow mass curve. Results of performance evaluation in irrigation were expressed in three groups: hydraulic, agricultural and socio-economic. Results of the analyses of hydraulic indicators showed that water supply is available. Agricultural performance, evaluated in terms of irrigated area was satisfactory. Analyses of socio-economic indicators showed that the Rubber Dam projects were financially viable in terms of profitability of farmers. Finally results were found that, it has a great probable effect on national economic and thus an alteration method of irrigation instead of uses of ground water. Thus, a comparative capital and operation and management cost analyses of different irrigation technologies has been carried out to ascertain the viability of Rubber Dam technology in irrigation development.

  8. Scale transformation of utilization coefficient of irrigation water in riverine irrigation district%河网区灌溉水利用系数的尺度转换

    Institute of Scientific and Technical Information of China (English)

    俞双恩; 于智恒; 郭杰; 顾京; 李彧玮; 佘冬立

    2015-01-01

    大尺度灌区灌溉水利用系数的测定条件难以保障,而小尺度灌区的灌溉水利用系数可以通过试验测定,如何通过小尺度灌区的灌溉水利用系数来预测大尺度灌区的灌溉水利用系数,就有必要对灌溉水利用系数的尺度转换问题进行研究。河网灌区的特点是没有统一的水源引水口,通常是由若干个小灌区合并成一个大灌区,是一个典型的自相似系统。论文以地处里下河水网地区的盐城市水稻灌区作为研究对象,于2012-2013年对9个县区不同规模的样点灌区进行了灌溉水利用系数的试验观测,利用分形理论研究了河网灌区的分形特征,运用盒维数法计算了盐城市河网灌区和不同尺度灌区的盒维数,其盒维数介于1.703~1.996之间,并随着面积尺度的增加而增大。基于灌溉水利用系数与灌区面积、盒维数的相关性,建立了河网灌区灌溉水利用系数尺度转换模型,并通过验证,表明该尺度转换模型能够较好地预测河网灌区灌溉水利用系数,同时也能够很好地实现灌溉水利用系数的尺度转换,为分析河网灌区灌溉水利用系数及其尺度效应提供了新途径。%Utilization coefficient of irrigation water is a key indicator to measure agricultural water-saving efficiency, and it reflects comprehensively the level of water management and irrigation technology and so on. Obtaining reliable data of the utilization coefficient of irrigation water by direct in situ determination methods is difficult in large irrigation districts, but it can be determined by field experiments in the small-scale area. Hence, one of the challenges is to conduct researches on scale transformation in order to predict the utilization coefficient of irrigation water at large-scale irrigation district by the measured utilization coefficient of irrigation water at small irrigation district. The main characteristic of

  9. 旱地玉米少耕穴灌聚肥节水技术应用效果简析%Effect Analysis on Technology of Fertilizer Gathering and Water Saving by Conservative Tillage and Hole Irrigation in Dry Land Corn

    Institute of Scientific and Technical Information of China (English)

    刘宁莉; 石文廷; 张锐

    2011-01-01

    Comparison of water, fertilizer using ratio and effect to production and income improvement in various areas, terrain and under distinct cultivating modes was made. The result showed that, with the technology application, the yield improvement effect in northern hilly area was generally higher than that in the southern part; some better effect than those planting patterns of the conventional flood-irrigation film-mulching, conventional flood-irrigation open-field and dry land film-mulching; In addition, in fields sections of the technology implementation, soil moisture contents during crop growth were higher than those in conventional plastic film mulching sections, in conventional open fields, and the fertilizer utilization ratio improved than in conventional plastic film mulching fields. It was concluded that dry land corn conservative-tillage hole-irrigation technology has a broad application prospect in the arid and semi-arid land area.%不同地区、不同地形、不同种植模式下进行水肥利用率及增产增收效果的比较,结果表明,早地玉米运用少耕穴灌聚肥节水技术,北部盆地丘陵区的增产增收效果普遍高于南部丘陵区,比常规漫灌地膜覆盖种植、常规漫灌露地种植、旱地地膜覆盖等种植模式均有不同程度的增产增收效果;实施少耕穴灌聚肥节水技术的田块,作物生长期间的土壤含水量比常规地膜覆盖区、常规露地种植区高,肥料利用率比常规地膜覆盖种植区也有所提高.旱地玉米少耕穴灌技术在干旱半干旱地区具有广阔的推广应用前景.

  10. Present-day irrigation mitigates heat extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  11. Distribution of the root system of peach palm under drip irrigation

    Directory of Open Access Journals (Sweden)

    Adriano da Silva Lopes

    2014-07-01

    Full Text Available The incorporation of technologies has resulted in increased productivity and the more rational management of peach palm, with irrigation being an important tool for certain regions. Thus, studies leading to proper crop management are extremely important, such as the estimate of the effective depth of the root system, which is indispensable for proper irrigation management. The objective of this study was to evaluate the effects of different irrigation depths, as applied by drip irrigation, on the distribution of the root system of peach palm. This experiment was conducted in Ilha Solteira, São Paulo State, Brazil, with drip irrigation, with the two systems (flow of 0.0023 m3 h-1 consisting of four irrigation treatments corresponding to 0, 50, 100 and 150% of Class ‘A’ pan evaporation. After five years, an analysis of the Bactris gasipaes root system was performed at a distance of 0.0, 0.5 and 1.0 meters from the trunk, collecting sampling at two depths (0.0 to 0.3 m and 0.3 to 0.6 m via the auger method (volumetric analysis. We concluded that the effective depth of the root system used for irrigation management should be a maximum of 0.3 meters.

  12. 微灌果园灌溉制度实时制定%Real Time Determination of Irrigation Scheduling for Micro-Irrigated Orchards

    Institute of Scientific and Technical Information of China (English)

    黄兴法; 李光永; 曾德超; 王伟; 孙乃健

    2002-01-01

    我国微滴灌面积已达13.3万hm2,并且目前的发展势头非常迅猛,而对工程建设后的灌溉管理重视不够,灌溉系统运行管理研究相对滞后,尤其是灌溉制度的实时制定技术.该文研究了一种面向用户的果树微灌实时灌溉制度制定的技术体系,通过"看天、看地、看作物"三要素来实时制定灌溉制度,并详细论述了实施步骤.该技术可为果树灌溉管理提供切实可行的技术途径.%Up to now the acreage under micro-irrigation in China is about 133 000 hm2, and will be enlarged quickly in the near future. Upon the installation of a micro-irrigation system, people usually do not care much about its management. The present research on operational management is far from practical needs, especially in irrigation scheduling. In this paper, a technique system of real time determination of irrigation scheduling for micro-irrigated orchards, adaptable for the farmers is presented. The irrigation scheduling is based on measurements on the following key factors: weather, soil and crop. The detailed procedures of the technique system are given in this paper. This system provides a technically practical way of orchard irrigation management, and the foundation in extension of micro-irrigation technology in China.

  13. Effects of Irrigation in India on the Atmospheric Water Budget

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P.

    2014-01-01

    The effect of large-scale irrigation in India on the moisture budget of the atmosphere was investigated using three regional climate models and one global climate model, all of which performed an irrigated run and a natural run without irrigation. Using a common irrigation map, year-round irrigation

  14. Effects of irrigation water supply variations on limited resource farming in Conejos County, Colorado

    Science.gov (United States)

    Eckert, Jerry B.; Wang, Erda

    1993-02-01

    Farms in NE Conejos County, Colorado, are characterized by limited resources, uncertain surface flow irrigation systems, and mixed crop-livestock enterprise combinations which are dependent on public grazing resources. To model decision making on these farms, a linear program is developed stressing enterprise choices under conditions of multiple resource constraints. Differential access to grazing resources and irrigation water is emphasized in this research. Regarding the water resource, the model reflects farms situated alternatively on high-, medium-, and low-priority irrigation ditches within the Alamosa-La Jara river system, each with and without supplemental pumping. Differences are found in optimum enterprise mixes, net returns, choice of cropping technology, level of marketings, and other characteristics in response to variations in the availability of irrigation water. Implications are presented for alternative improvement strategies.

  15. Spatial variability of available water and micro-sprinkler irrigation in cambisol

    Directory of Open Access Journals (Sweden)

    Larissa Luana Nicodemos Ferreira

    Full Text Available ABSTRACT The technology of irrigation is vital for agricultural production. Thus, description of spatial patterns of both water application and available water capacity in the soil, as well as their interactions, is essential to maximize efficiency of water use in irrigated areas. The objective of this study was to analyze spatial variability of available water capacity in the soil and water application via irrigation using geostatistics. The experiment was conducted in a commercial mango orchard in Cambisol irrigated by micro sprinkler system, in the municipality of Alto do Rodrigues, RN. Analyses of descriptive statistics and geostatistics were performed using the programs GeoR and GS+. Geostatistics was found suitable for describing the structure of spatial dependence of available water capacity in the soil and the flow rate distributed in the area by sprinklers. Moreover, even with good results for Christiansen Uniformity Coefficient (CU and Distribution Uniformity Coefficient (DU, the area showed spatial variability of flow rate.

  16. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  17. Agricultural practices and irrigation water demand in Uttar Pradesh

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  18. Effect of Irrigation with Reclaimed Water on Fruit Characteristics and Photosynthesis of Olive Trees under Two Irrigation Systems

    Directory of Open Access Journals (Sweden)

    N. Ashrafi

    2016-02-01

    Full Text Available Introduction: Olive (Olea europaea L. trees are mainly cultivated in the Mediterranean area and are grown for their oil or processed as table olives. Despite the fact that olive is known to be resistant to drought conditions due to its anatomical, physiological, and biochemical adaptations to drought stress, reports indicate that the olive can be adversely affected by drought stress, which has a negative effect on the growth of olive trees. In the absence of adequate supplies of water, the demand for water can be met by using improved irrigation methods or by using reclaimed water (RW. Reports have shown that recycled water has been used successfully for irrigating olive orchards with no negative effects on plant growth.Attention has been paid to reclaimed water as one of the most significant available water resources used in agriculture around large cities in arid and semi-arid regions. On the other hand, irrigation efficiency is low and does not meet the demands of farmers.In order to investigate the possibility of irrigating olive orchards with subsurface leakage irrigation (SLI in application of reclaimed water, an experiment was carried out with the aim of investigating the effect of reclaimed water on photosynthetic indices and morphological properties of olive fruit. Materials and Methods: Research was conducted using a split-plot experimental design with two factors (irrigation system and water quality on the campus of Isfahan University of Technology in Isfahan, Iran, on a sandy-clay soil with a pH of 7.5 and electrical conductivity (EC of 2.48 dSm-1.PVC leaky tubes were used for the SLI system. The SLI system was installed 40 cm from the crown of each tree at a depth of 30 - 40 cm.At the end of the experiment fruit yield, weight per fruit, volume, length and firmness were calculated. A portable gas exchange system (Li-6400., LICOR, Lincoln, NE, USA was used to measure the net rate photosynthesis (A, the internal partial pressure CO2

  19. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  20. 78 FR 37538 - Idaho Irrigation District; New Sweden Irrigation District; Notice of Preliminary Permit...

    Science.gov (United States)

    2013-06-21

    ... Energy Regulatory Commission Idaho Irrigation District; New Sweden Irrigation District; Notice of... Competing Applications On April 19, 2013, the Idaho and New Sweden Irrigation Districts, filed a joint... Street, Idaho Falls, Idaho 83404; phone: (208) 522-2356. Mr. Louis Thiel, Chairman, New Sweden...

  1. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Ken

  2. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; Sluis, van der L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  3. The simulation of cropping pattern to improve the performance of irrigation network in Cau irrigation area

    Science.gov (United States)

    Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah

    2017-01-01

    Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.

  4. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  5. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  6. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Science.gov (United States)

    2012-03-22

    ... Energy Regulatory Commission Turlock Irrigation District, & Modesto Irrigation District; Notice of... and the Modesto Irrigation District (collectively, the Districts), are co-licensees for the Don Pedro... Steelhead Full Life-Cycle Population Models; and Request 9--Effects of the Project and Related Facilities on...

  7. Irrigation-based livelihood trends in river basins: theory and policy implications for irrigation development

    Science.gov (United States)

    Lankford, Bruce

    This paper examines irrigation development and policy in Tanzania utilising a livelihoods and river basin perspective. On the basis of observations, the author argues that river basins theoretically exhibit a sigmoid curve of irrigation development in three stages; proto-irrigation, irrigation-momentum and river basin management. This model arises from two governing factors. Firstly, irrigation is a complex livelihood activity that, although has benefits, also has costs, risks and alternatives that integrate across many systems; farmers implicitly understand this and enter into or keep out of irrigation accordingly. In the proto-irrigation stage, irrigators are less common, and irrigation is felt to be a relatively unattractive livelihood. In the irrigation-momentum stage, irrigators are drawn very much to irrigation in providing livelihood needs. Hence, given both of these circumstances, governments should be cautious about policies that call for the need to ‘provide irrigation’ (when farmers may not wish to irrigate) or to further increase it (when farmers already have the means and will to do so). Second, irrigation consumes water, generating externalities. Thus if irrigation momentum proceeds to the point when water consumption directly impacts on other sectors and livelihoods, (e.g. pastoralists, downstream irrigation, the environment) decision-makers should focus not necessarily on irrigation expansion, but on water management, allocation and conflict mediation. This three-stage theoretical model reminds us to take a balanced ‘livelihoods river-basin’ approach that addresses real problems in each given stage of river basin development and to develop policy accordingly. The paper contains a discussion on livelihood factors that affect entry into irrigation. It ends with a series of recommendations on policy; covering for example new large-scale systems; problems solving; and the use of an irrigation-river basin livelihoods approach. The recommendations

  8. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  9. Irrigation as an historical climate forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2015-03-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  10. Heavy metal input to agricultural soils from irrigation with treated wastewater: Insight from Pb isotopes

    Science.gov (United States)

    Kloppmann, Wolfram; Cary, Lise; Psarras, Georgios; Surdyk, Nicolas; Chartzoulakis, Kostas; Pettenati, Marie; Maton, Laure

    2010-05-01

    A major objective of the EU FP6 project SAFIR was to overcome certain drawbacks of wastewater reuse through the development of a new irrigation technology combining small-scale modular water treatment plants on farm level and improved irrigation hardware, in the aim to lower the risks related to low quality water and to increase water use efficiency. This innovative technology was tested in several hydro-climatic contexts (Crete, Italy, Serbia, China) on experimental irrigated tomato and potato fields. Here we present the heavy metal variations in soil after medium-term (3 irrigation seasons from 2006-2008) use of treated municipal wastewater with a special focus on lead and lead isotope signatures. The experimental site is located in Chania, Crete. A matrix of plots were irrigated, combining different water qualities (secondary, primary treated wastewater, tap water, partially spiked with heavy metals, going through newly developed tertiary treatment systems) with different irrigation strategies (surface and subsurface drip irrigation combined with full irrigation and partial root drying). In order to assess small scale heavy metal distribution around a drip emitter, Pb isotope tracing was used, combined with selective extraction. The sampling for Pb isotope fingerprinting was performed after the 3rd season of ww-irrigation on a lateral profile from a drip irrigator (half distance between drip lines, i.e. 50cm) and three depth intervals (0-10, 10-20, 20-40 cm). These samples were lixiviated through a 3 step selective extraction procedure giving rise to the bio-accessible, mobile and residual fraction: CaCl2/NaNO3 (bio-accessible fraction), DPTA (mobile fraction), total acid attack (residual fraction). Those samples were analysed for trace elements (including heavy metals) and major inorganic compounds by ICP-MS. The extracted fractions were then analysed by Thermal Ionisation Mass Spectrometry (TIMS) for their lead isotope fingerprints (204Pb, 206Pb, 207Pb, 208Pb

  11. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2015-07-01

    Full Text Available Consumptive water footprint (WF reduction in irrigated crop production is essential given the increasing competition for fresh water. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET and yield (Y and thus the consumptive WF of crops (ET/Y. The management practices are: four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD; four irrigation strategies (full (FI, deficit (DI, supplementary (SI and no irrigation; and three mulching practices (no mulching, organic (OML and synthetic (SML mulching. Various cases were considered: arid, semi-arid, sub-humid and humid environments; wet, normal and dry years; three soil types; and three crops. The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching. The average reduction in the consumptive WF is: 8–10 % if we change from the reference to drip or SSD; 13 % when changing to OML; 17–18 % when moving to drip or SSD in combination with OML; and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow is lower.

  12. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  13. Identifying the potential for irrigation development in Mozambique: Capitalizing on the drivers behind farmer-led irrigation expansion

    NARCIS (Netherlands)

    Beekman, P.W.; Veldwisch, G.J.A.; Bolding, J.A.

    2014-01-01

    Smallholder irrigation in Central Mozambique predominantly takes place in an informal setting. This renders these smallholders and their activities invisible for policy purposes. Identification efforts of smallholder irrigation as well as the potential for new irrigation development are often the

  14. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  15. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  16. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    C. Boutsioukis; L.W.M. van der Sluis

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  17. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  18. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  19. Soil Enzyme Activities with Greenhouse Subsurface Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Long; WANG Yao-Sheng

    2006-01-01

    Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion(MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast,the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.

  20. CROP DENSITY AND IRRIGATION WITH SALINE WATER

    OpenAIRE

    Feinerman, Eli

    1983-01-01

    The economic implications of plant density for irrigation water use under saline conditions are investigated, utilizing the involved physical and biological relationships. The analysis considers a single crop and is applied to cotton data. The results suggest that treating plant density as an endogenous control variable has substantial impact on profits and the optimal quantities and qualities of the applied irrigation water.

  1. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  2. Water Resources Impacts on Tribal Irrigation Projects

    Science.gov (United States)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  3. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    without caps from a height >1 m. CONCLUSION: Simple, cheap and easily adoptable irrigation methods have great potential to reduce crop contamination in low-income areas. When used in combination with other on-farm and post-harvest risk reduction measures, these will help to comprehensively reduce public......OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...

  4. Reclaimed Water for Turfgrass Irrigation

    Directory of Open Access Journals (Sweden)

    Xunzhong Zhang

    2010-09-01

    Full Text Available Sustainable irrigation of turfgrass grown on coarse-textured soils with reclaimed water must avoid detrimental effects of soluble salts on plant growth and soil quality and groundwater enrichment of nitrogen (N and phosphorus (P. The purpose of this study was (1 to investigate the effects of irrigating with municipal reclaimed water containing higher concentrations of soluble salts than potable water on turfgrass growth and quality and (2 to compare the effects of reclaimed and potable water on turfgrass assimilation and leaching of N and P. A sand-based medium plumbed to supply potable and reclaimed water and instrumented with lysimeters to collect leachate was planted with hybrid bermudagrass (Cynodon dactylon x Cynodon transvaalensis var. Tifsport and creeping bentgrass (Agrostis stolonifera var. L-93. Both species produced high quality turfgrass with the reclaimed water. Although both grasses are moderately or highly salt tolerant when fully established, the bermudagrass growth and quality were reduced by the reclaimed water upon breaking dormancy, and its N use during this period was reduced. Continuous use of reclaimed water of the quality used in the study poses a potential soil Na accumulation problem. Both turfgrasses assimilated high amounts of N and P with minimal potential losses to groundwater.

  5. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  6. Historical influence of irrigation on climate extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  7. PERFORMANCE OF MAIZE CROP FOR SILAGE PRODUCTION USING THREE DIFFERENT IRRIGATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Harby MOSTAFA

    2013-01-01

    Full Text Available In the humid and sub-humid areas, agricultural production is largely rain fed and this needs to be urgently supplemented by irrigation practice if the country is to meet its food demand. A two years study was carried out at the experimental site of the Institute of Agricultural Technology and Biosystems Engineering, Johan Heinrich von Thünen Institute (vTI, Braunschweig, Germany to compare performance of maize crop for silage production using three different irrigation systems; rain fed, drip and rain-gun sprinkler. Growth parameters such as plant height, stem diameter were measured. The total yields of silage were obtained for all treatments at the harvesting. The experimental results revealed that total yields obtained from different treatments were 25.76, 24.23 and 9.30 Mg.ha-1using drip, rain-gun and rain fed irrigated maize, respectively. The results also showed that the water use efficiency reached 11.01 Mg.m-3for drip irrigation, while it was 8.84 Mg.m-3for rain-gun system. In conclusion, supplementary irrigation in critical period of maize growth is an effective way to increase yield in the sub-humid regions. Therefore, it is suggested that optimum production of maize could be achieved by rain fed supplementary irrigation.

  8. Determination of Water Use Effectiveness in Hayrabolu Irrigation Scheme

    Directory of Open Access Journals (Sweden)

    A.N.Yuksel

    2005-05-01

    Full Text Available This study was conducted to determine the effectiveness of irrigation water use in HayraboluIrrigation Scheme, established in 1987 and transferred to irrigation cooperative. The study was completed intwo years in order to minimize the meteorological and environmental effects on evapotranspiration andirrigation water requirement. Irrigation application efficiency and sufficiency of farmer irrigation applicationwere investigated at 20 different farmers’ fields.Pressurized irrigation was prevailed (51 % and irrigation efficiency for sprinkler and surfaceirrigation methods were 61 and 62 %, respectively. Irrigation water losses on the scheme basis was 11,91 %.It was further determined that farmers irrigated their crops according to the phonological observation, did nottake the permissible consumption level of water content and applied insufficient water to satisfy the fieldcapacity. Among the predominantly grown crops, wheat and sunflower were not irrigated assuming that theprecipitation was sufficient to meet their demand while onion and corn were under-supplied. Generally, aneffective irrigation programme was not realised.

  9. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    Science.gov (United States)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  10. Simple Myths and Basic Maths about Greening Irrigation

    Science.gov (United States)

    Dionisio Pérez-Blanco, C.; Gómez, C. Mario

    2014-05-01

    Managing water is a very complex societal issue that needs to involve legal, environmental, technological, financial and political considerations that are difficult to co-ordinate in an effective manner. This complexity and the lack of an agreed assessment framework have often implied that political decisions, largely driven by transaction costs (especially the bargaining costs required to come to an acceptable agreement with all the parties involved), have overshadowed and prevailed over other considerations. As a result, (financially) expensive solutions such as irrigation modernization programmes have been preferred to their inexpensive alternatives to save water, such as quotas or pricing policies. However, greening the economy is mostly about improving water governance and not only about putting the existing resource saving technical alternatives into practice. Focusing on the second and forgetting the first risks finishing with a highly efficient use of water services at the level of each individual user but with an unsustainable amount of water use for the entire economy. This might be happening already in many places with the modernization of irrigated agriculture, the world's largest water user and the one offering the most promising water saving opportunities. In spite of high expectations, costly modern irrigation techniques seem not to be contributing to reduce water scarcity and increase drought resiliency. In fact, according to the little evidence available, in some areas they are resulting in higher water use. Building on basic economic principles this study aims to show the conditions under which this apparently paradoxical outcome, known as the Jevons' Paradox, might appear. This basic model is expected to serve as guidance for assessing the actual outcomes of increasing irrigation efficiency and to discuss the changes in water governance that would be required for this to make a real contribution to sustainable water management.

  11. Debris and irrigant extrusion potential of 2 rotary systems and irrigation needles.

    Science.gov (United States)

    Altundasar, Emre; Nagas, Emre; Uyanik, Ozgur; Serper, Ahmet

    2011-10-01

    The purpose of this study was to compare the amount of apically extruded irrigant using 2 Ni-Ti rotary systems. Forty mandibular premolars with single canals were randomly assigned into 4 groups. Flower arrangement foam cubes were weighed with a precision balance before being attached to the apical portions of all teeth. In group 1, preparation was completed with ProTaper files. In group 2 canals were prepared with RaCe files. In groups 1 and 2, the irrigant was delivered with a 30-gauge conventional dental needle. In groups 3 and 4, teeth were prepared as in groups 1 and 2 with the exception that the irrigant was delivered with a side-vented irrigation needle. The weight of the extruded material (irrigant and debris) for each group was calculated by comparing the pre- and postinstrumentation weights of the foams used for periapical modeling. Obtained data were analyzed by Kruskal-Wallis and Mann-Whitney U tests, with P equals .05 as the level for statistical significance. ProTaper files used with regular needle irrigation had the highest fluid extrusion. The lowest irrigant extrusion was observed with the RaCe system combined with a side-vented irrigation needle. Within the limitations of this study, it can be concluded that irrigation needle and rotary instruments have an effect on the amount of extruded root canal irrigant.

  12. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions.

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen; Forner, Leopoldo

    2012-05-01

    Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layers and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation.

  13. Methodology of Computer Science and Technology%计算机科学与技术方法论

    Institute of Scientific and Technical Information of China (English)

    董荣胜; 古天龙; 蔡国永; 谢春光

    2002-01-01

    In this paper,two documents of “Computing as a discpline”and “Computing Curricula 1991” are briefly introduccd,and their main contributions to the methodology of computer science and technology are porinted out.Then based on the general methodology of science and technology,the definition of computer science and technology is given,and its three paradigms (abstraction,theory,design),fundamental problem,core concept,mathematical methods and system approaches are presented.Finally,we conclude that the methodology of computer science and technology is a new theory in the computing cognition field.

  14. Prospects for Improving Gravity-Fed Surface Irrigation Systems in Mediterranean European Contexts

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-01-01

    Full Text Available Traditionally, most irrigation practices in Southern Europe have been based on gravity-fed surface irrigation systems. Currently, these systems remain a relevant typology in the European Union (EU member states of the Mediterranean areas, where it is often the only sustainable method for farmers due to the small size of agricultural holdings, their reduced capacity and readiness to invest and the low ratio between yield profits and irrigation costs. In the last several years, in response to European and national directives, surface irrigation has garnered increasing attention at the political and bureaucratic levels due to frequent criticisms of its postulated low efficiency and high water wastage. However, these systems commonly provide a number of ecosystem services and nature-based solutions that increase the positive externalities in different rural socio-ecological contexts and often have the potential to extend these services and provide solutions that are compatible with economical sustainability. This study aims to discuss the prospects for new practices and for the rehabilitation and modernization of the gravity-fed surface irrigation systems in EU Mediterranean areas to enhance water efficiency, thus gaining both economic advantages and environmental benefits. The difficulties, stimuli for improvements and peculiarities of the irrigation water management of four rural environments located in Italy, Spain and Portugal were analyzed and compared to the current state of the gravity-fed surface irrigation systems with hypothetical future improvements achievable by innovative technologies and practices. In these different case studies, the current gravity-fed surface irrigation systems have an obsolete regulatory structure; water-use efficiency is not a driving criterion for the management of the conveyance and distribution canal network, and farmers are not yet adequately encouraged to adopt more efficient gravity-fed irrigation practices

  15. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  16. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  17. Possibilities for conservation and efficiency of irrigation systems in hydropower; Possibilidades de conservacao e eficientizacao hidroenergetica em sistemas de irrigacao

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Augusto Nelson Carvalho; Ricardo, Mateus [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Grupo de Energia], emails: augusto@unifei.edu.br, mateus@unifei.edu.br

    2008-07-01

    This paper presents a literature review on efficiency and conservation of electricity and water in irrigation systems, focusing on the pumping systems used for that purpose. It's made an introduction to the theory about pumping systems and irrigation, which provides the conceptual basis for the understanding of the technologies and best practices on conservation and rational use of water and electricity presented in the paper development. (author)

  18. Classifying Residents who use Landscape Irrigation: Implications for Encouraging Water Conservation Behavior

    Science.gov (United States)

    Warner, Laura A.; Lamm, Alexa J.; Rumble, Joy N.; Martin, Emmett T.; Cantrell, Randall

    2016-08-01

    Large amounts of water applied as urban irrigation can often be reduced substantially without compromising esthetics. Thus, encouraging the adoption of water-saving technologies and practices is critical to preserving water resources, yet difficult to achieve. The research problem addressed in this study is the lack of characterization of residents who use urban irrigation, which hinders the design of effective behavior change programs. This study examined audience segmentation as an approach to encouraging change using current residential landscape practices. K-means cluster analysis identified three meaningful subgroups among residential landscape irrigation users ( N = 1,063): the water considerate majority ( n = 479, 45 %), water savvy conservationists ( n = 378, 36 %), and unconcerned water users ( n = 201, 19 %). An important finding was that normative beliefs, attitudes, and perceived behavioral control characteristics of the subgroups were significantly different with large and medium practical effect sizes. Future water conservation behaviors and perceived importance of water resources were also significantly different among subgroups. The water considerate majority demonstrated capacity to conserve, placed high value on water, and were likely to engage in behavior changes. This article contributes to the literature on individuals who use residential landscape irrigation, an important target audience with potential to conserve water through sustainable irrigation practices and technologies. Findings confirm applicability of the capacity to conserve water to audience segmentation and extend this concept by incorporating perceived value of water resources and likelihood of conservation. The results suggest practical application to promoting residential landscape water conservation behaviors based on important audience characteristics.

  19. Risk Assessment of Regional Irrigation Water Demand and Supply in an Arid Inland River Basin of Northwestern China

    Directory of Open Access Journals (Sweden)

    Bin Guo

    2015-09-01

    Full Text Available Irrigation water demand accounts for more than 95% of the total water use in the Kaidu-kongqi River Basin. Determination of the spatial and temporal trends in irrigation water demand is important for making sustainable and wise water management strategies in this highly water deficit region. In this study, the spatial and temporal trends in irrigation water demand as well as net crop irrigation water requirements for nine major crops during 1985–2009 were analyzed by combining the Penman-Monteith equation recommended by Food and Agriculture Organization (FAO and GIS technology. The regional water stress was also evaluated based on the total irrigation water demand and river discharge at the annual and monthly scales. The results indicated that the annual irrigation water demand in this arid region showed a significant increasing trend during the past 25 years. Total irrigation water demand increased from 14.68 × 108 m3 in 1985 to 34.15 × 108 m3 in 2009. The spatial pattern of total irrigation water demand was significantly affected by the changes in cotton growing area. Due to differences in crop planting structure, the monthly average irrigation water demands in Korla City and Yuli County amounted to the peak in July, while those in other regions reached the maximum in June. Although the annual river runoff was much larger than the irrigation water demand, there was serious water deficit during the critical water use period in May and June in some dry years. The presented study provides important information for managers and planners on sustainable use of water resources in this arid region.

  20. Espectral analysis of the vegetagion index in sugarcane irrigated area

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Cândido Bezerra

    2009-03-01

    Full Text Available The remote sensing technology has been widely utilized in environmental studies and also to manage larges cropped areas, in special with trading products. In this work were used two satellite images of TM-Landsat 5 sensor of 15th October 2005 and 30th July 2006 of Sao Francisco region and the sugar cane irrigated area was delimited. To evaluate the spectral characteristics of the crop in the images data it was utilized vegetation indexes as indicator parameter of the crop. By the visible and near infra-red bands combination, the NDVI instantaneous values calculated were nearest to 0.80 in the two studied images respectively.

  1. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.

    2007-01-01

    In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal waste-water was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent...... of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields...

  2. Irrigation water use in Kansas, 2013

    Science.gov (United States)

    Lanning-Rush, Jennifer L.

    2016-03-22

    This report, prepared by the U.S. Geological Survey in cooperation with the Kansas Department of Agriculture, Division of Water Resources, presents derivative statistics of 2013 irrigation water use in Kansas. The published regional and county-level statistics from the previous 4 years (2009–12) are shown with the 2013 statistics and are used to calculate a 5-year average. An overall Kansas average and regional averages also are calculated and presented. Total reported irrigation water use in 2013 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.

  3. 蔬菜园区滴灌系统规划与设计%Planning and Design of Ddrip Irrigation System about Vegetable Area

    Institute of Scientific and Technical Information of China (English)

    周欣

    2011-01-01

    The drip irrigation technology is one of primary water - saving irrigation greenhouse vegetable drip irrigation technology more widely applied. How should the drip irrigation system planning and design in order to achieve the purpose of water saving irrigation. The papers research and discuss on this issue.%滴灌技术是主要的节水灌溉技术之一,大棚蔬菜应用滴灌技术越来越广泛,滴灌系统应该如何进行规划设计,才能达到节水灌溉的目的,就此问题进行研究探讨。

  4. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    OpenAIRE

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Kennedy published his channel-forming discharge theory in 1895. Subsequently different theories have been developed and are used around the world. All of them assume uniform and steady flow conditions ...

  5. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development. In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment. Field dye staining experiments were conducted at different soils with various irrigation amount. Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency. Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage efficiency, and uniformity. Under the same irrigation condition, soil chemical distributions were more heterogeneous than soil water distributions. The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount. Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount. Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uniformity, which resulted in high environmental risks of groundwater pollution.

  6. Grey water treatment in a series anaerobic – Aerobic system for irrigation

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant e

  7. Organisational Modalities of Farmer-led Irrigation Development in Tsangano District, Mozambique

    NARCIS (Netherlands)

    Nkoka, F.; Veldwisch, G.J.A.; Bolding, J.A.

    2014-01-01

    This paper examines the organisational modalities of farmer-led irrigation systems in Tsangano, Mozambique, which has expanded over large areas with minimal external support. By looking at their historic development trajectories and the integrated nature of land and water resources, technological ob

  8. D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.

    2001-09-11

    The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies.

  9. Organisational Modalities of Farmer-led Irrigation Development in Tsangano District, Mozambique

    NARCIS (Netherlands)

    Nkoka, F.; Veldwisch, G.J.A.; Bolding, J.A.

    2014-01-01

    This paper examines the organisational modalities of farmer-led irrigation systems in Tsangano, Mozambique, which has expanded over large areas with minimal external support. By looking at their historic development trajectories and the integrated nature of land and water resources, technological

  10. Influence of sub-surface irrigation on soil conditions and water irrigation efficiency in a cherry orchard in a hilly semi-arid area of northern China.

    Directory of Open Access Journals (Sweden)

    Gao Peng

    Full Text Available Sub-surface irrigation (SUI is a new water-saving irrigation technology. To explore the influence of SUI on soil conditions in a cherry orchard and its water-saving efficiency, experiments were conducted from 2009 to 2010 using both SUI and flood irrigation (FLI and different SUI quotas in hilly semi-arid area of northern China. The results demonstrated the following: 1 The bulk density of the soil under SUI was 6.8% lower than that of soil under FLI (P<0.01. The total soil porosity, capillary porosity and non-capillary porosity of soils using SUI were 11.7% (P<0.01, 8.7% (P<0.01 and 43.8% (P<0.01 higher than for soils using FLI. 2 The average soil temperatures at 0, 5, 10, 15 and 20 cm of soil depth using SUI were 1.7, 1.1, 0.7, 0.4 and 0.3°C higher than those for FLI, specifically, the differences between the surface soil layers were more significant. 3 Compared with FLI, the average water-saving efficiency of SUI was 55.6%, and SUI increased the irrigation productivity by 7.9-12.3 kg m(-3 ha(-1. 4 The soil moisture of different soil layers using SUI increased with increases in the irrigation quotas, and the soil moisture contents under SUI were significantly higher in the 0-20 cm layer and in the 21-50 cm layer than those under FLI (P<0.01. 5 The average yields of cherries under SUI with irrigation quotas of 80-320 m(3 ha(-1 were 8.7%-34.9% higher than those in soil with no irrigation (CK2. The average yields of cherries from soils using SUI were 4.5%-12.2% higher than using FLI. It is appropriate to irrigate 2-3 times with 230 m(3 ha(-1 per application using SUI in a year with normal rainfall. Our findings indicated that SUI could maintain the physical properties, greatly improve irrigation water use efficiency, and significantly increase fruit yields in hilly semi-arid areas of northern China.

  11. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  12. 农田灌溉过程中的水力学问题%Hydraulics problems in farmland irrigation

    Institute of Scientific and Technical Information of China (English)

    吴普特; 朱德兰; 吕宏兴; 张林

    2012-01-01

    基于多年节水灌溉工程技术与产品的研发实践,提出发展灌溉水力学的初步设想.在分析农田灌溉实施过程的基础上,将其划分为输水、灌水、土壤入渗与植物吸水4个阶段;输水与灌水过程属灌溉水力学范畴,土壤入渗属土壤物理学范畴,植物吸水则与植物水分生理密切相关;灌溉水力学、土壤物理学与植物水分生理学共同构成农田灌溉的基本科学理论.据此给出了灌溉水力学的基本概念、研究对象与研究方法.灌溉水力学将着重研究输水与灌水过程中的水流运动规律,其科学目标是如何经济、高效、均匀地将灌溉水流输送到田间土壤;灌溉水力学的内涵主要包括灌溉水流运动规律、灌溉系统水力计算和灌溉均匀度评价3个方面.灌溉水力学的发展,可作为农田灌溉基本科学理论,指导灌溉技术和产品的研究与开发,为灌溉工程设计提供新方法和新手段.%Based on the practice in research and development of technology and product design in water-saving irrigation engineering for years, a primary idea for developing irrigation hydraulics was proposed. The agriculture irrigation process can be divided into four stages, namely, water conveyance, irrigation, soil water infiltration and water absorption of plant. Water conveyance and irrigation are included in irrigation hydraulics. Soil water infiltration belongs to soil physics, but water absorption of plant is closely related to water physiology of plant. Therefore, the basic theory of agriculture irrigation consists of irrigation hydraulics, soil physics and water physiology of plant. Accordingly, the basic concepts, objects and methods in irrigation hydraulics were proposed. Irrigation hydraulics should focus on investigation into the laws of water stream motion in water conveyance and irrigation with an objective that water can be delivered into soil economically and efficiently as well as

  13. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  14. Farmers’ Willingness to Pay for Irrigation Water: A Case of Tank Irrigation Systems in South India

    Directory of Open Access Journals (Sweden)

    Karthikeyan Chandrasekaran

    2009-08-01

    Full Text Available The economic value of tank irrigation water was determined through Contingency Valuation Method by analyzing farmers’ willingness to pay for irrigation water under improved water supply conditions during wet and dry seasons of paddy cultivation. Quadratic production function was also used to determine the value of irrigation water. The comparison of the economic value of water estimated using different methods strongly suggests that the present water use pattern will not lead to sustainable use of the resource in the tank command areas. Policy options for sustainable use of irrigation water and management of tanks in India were suggested.

  15. Strategic irrigation against apple scab (Venturia inaequalis)

    DEFF Research Database (Denmark)

    Korsgaard, Maren

    2012-01-01

    In Denmark there are several organic orchards, that do not spray at all, and they seek non-spraying methods to prevent apple scab. In this pilot trial, irrigation with water at strategic moments was tested to prevent scab-infection. In April-June 2011 in five organic orchards we irrigated...... the orchard floor, to force the ascospores to be released. We irrigated with at least 0.2 mm of water in dry periods, at least 12 hours before rain forecast. The idea was to empty the stock of ascospores during dry spells, so they would dry out without infecting the leaves. To find the best strategic times...... for irrigation, we used the local weather forecast and the scab-warning programme Rimpro based on data from climate stations located in the orchards. In this first year of trial we experienced difficulties in spreading the water evenly. A water wagon turned out to work better than sprinklers. We found...

  16. Estimated Irrigated Agricultural Water Use In 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a 100-meter cell resolution raster dataset of estimated use of irrigated agricultural water use data for the southwestern U.S. The dataset was...

  17. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    Science.gov (United States)

    Batukaev, Abdulmalik

    2016-04-01

    the stomatal apparatus of leaf regulate the water flow through plant, transpiration rate is reduced, soil solution concentration increases, plant nutrition supply rate becomes higher than at a stage of water field capacity. The rate of plant biomass growth is highest at water thermodynamic potential of -0.2-0.4 MPa. No excessive irrigation intra-soil mass transfer, nor excessive transpiration, evaporation and seepage. New intra-soil pulse discrete paradigm of irrigation optimizes the plant organogenesis, reduces consumption of water per unit of biological product. The biological productivity increases. Fresh water saving is up to 20 times. The new sustainable world strategy of Ecosystem Maintaining Productivity is to be based on the Biogeosystem Technique, it suits well the robotic nowadays noosphere technological platform and implements the principals of Geoethics in technologies of Biosphere. Key words: Paradigm, Biogeosystem technique, intra-soil pulse discrete watering. SSS8.1 Restoration and rehabilitation of degraded lands in arid, semi-arid and Mediterranean environments Batukaev Abdulmalik A. Chechen State University, Agrotechnological Institute, Dr Sc (Agric), Professor, Director, 364907, Sheripova st., 32, Grozny, Russia, batukaevmalik@mail.ru Kalinichenko Valery P. Institute of Fertility of Soils of South Russia, Dr Sc (Biol), Professor, Director, 346493, Krivoshlikova st., 2, Persianovka, Rostov region. Russia, kalinitch@mail.ru Minkina Tatiana M., Southern Federal University, Dr Sc (Biol), Head of the Soil Science Chair, 344006, Bolshaja Sadovaja st., 105/42, Rostov-on-Don, Russia, tminkina@mail.ru Zarmaev Ali A. Agrotechnological Institute of Chechen State University, Head of the Agrotechnology Chair, Dr Sc (Agric), Professor, 364907, Sheripova st., 32, Grozny, Russia, ali5073@mail.ru Skovpen Andrey N. Don State Agrarian University, PhD, Ass. Professor of Ecology Chair, 346493, Krivoshlikova st., 2, Persianovka, Rostov region, Russia, instit03@mail

  18. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    by the Energy Independence and Security Act (EISA). Reducing potable water demand for landscape irrigation correlates to lower energy costs necessary...irrigation is necessary. Typically, timer-based systems are adjusted higher than needed to account for consecutive hot days that stress turf beyond the...implementation at sports field, parade grounds, and/or landscape near buildings. Appendix C details the life cycle cost for the smart water

  19. Irrigation enhances precipitation at the mountains downwind

    Directory of Open Access Journals (Sweden)

    J. Jódar

    2010-05-01

    Full Text Available Atmospheric circulation models predict an irrigation-rainfall feedback. However, actual field evidences are very weak. We present strong field evidence about an increase in rainfall at the mountains located downwind of irrigated zones. We chose two regions, located in semiarid southern Spain, where irrigation started at a well defined date, and we analyzed rainfall statistics before and after the beginning of irrigation. Analyzed statistics include the variation of (1 mean rainfall Δ P, (2 ratio of monthly precipitation to annual precipitation Δ r, and (3 number of months with minimum rainfall episodes Δ Pmin after a transition period from unirrigated to irrigated conditions. All of them show statistically significant increases. Δ P and Δ r show larger and more statistically significant variations in June and July. Their variation is proportional to the mean annual water volume applied in the neighboring upwind irrigation lands. Variations in Δ Pmin are statistically significant in the whole summer. That is, the number of months with some rain displays a relevant increase after irrigation. However, increase in rainfall while statistically significant is distributed over a broad region, so that it is of little relevance from a water resources perspective. The joint increment in Δ P and Δ Pmin after the irrigation transition period denotes a net increase in the number of months having a minimum cumulated precipitation in summer.

  20. Irrigation et paludisme : un couple infernal?

    OpenAIRE

    Mergeai, G.

    2016-01-01

    Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural producti...

  1. Alternate furrow irrigation of four fresh-market tomato cultivars under semi-arid condition of Ethiopia – Part II: Physiological response

    Directory of Open Access Journals (Sweden)

    Ashinie Bogale

    2016-11-01

    Full Text Available Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2 to moderate water deficit induced by alternate furrow irrigation (AFI and deficit irrigation (DI under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’, relative water content (RWC and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE, g_s, chlorophyll content (Chl_SPAD, normal difference vegetation index (NDVI, leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.

  2. Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin

    Directory of Open Access Journals (Sweden)

    S. Multsch

    2017-08-01

    We found that water savings from improved irrigation technology will not be able to meet the additional needs of planned areas. Under a theoretical scenario of maximum possible efficiency, the deficit would still be 5  km3yr−1. For more likely efficiency improvement scenarios, the deficit ranges between 23 and 29 km3yr−1. Our results suggest that improving irrigation efficiency may substantially contribute to decreasing water stress on the Nile system but would not completely meet the demand.

  3. Effect of Subsurface Irrigation with Porous Clay Capsules on Quantitative and Quality of Grape Plant

    Directory of Open Access Journals (Sweden)

    H. Ghorbani Vaghei

    2016-02-01

    characteristics showed that cluster weight, cluster length, solid solution and pH content has not significant different at 5% level in two system irrigation. Also, the foliar analysis showed that chlorophyll content and relative humidity of leaf has not been affected in two irrigation systems. Meanwhile, irrigation types were significantly effect on water consumption and water use efficiency. The average water consumption and yield production with buried clay capsules and drip irrigation methods on grapevine plant were 4050 and 6668 M3.ha-1 and 14.2 and 14.8 Ton.ha-1 respectively. The reducing water consumption with buried clay capsules irrigation method in related to drip irrigation was 39% on grapevine plants. Meanwhile, the average yield production with buried clay capsules and drip irrigation methods on grapevine plant was 14.2 and 14.8 Ton.ha-1 respectively. Also, the statistics analysis show that the yield and component yield have not significant different at 5% level in the surface and subsurface irrigation. According to the water consumption and yield production, using buried porous clay capsules created a better water use efficiency than drip irrigation method. In other words, Iran has been localized at arid and semi arid and have huge water consumption in agriculture, and therefore it is necessary to optimize water consumption especially in agriculture using new technology. According to the results of this research, using buried porous clay capsules is recommended in order to optimize water consumption for grape plants in different place in arid and semi-arid regions of Iran. Conclusion: The purpose of an efficient irrigation system is to apply the water in such a way that the largest fraction thereof is available for beneficial use by the plant. According to the experimental results reported here, it could be concluded that the reducing water consumption with buried clay capsules irrigation method in related to drip irrigation was 39% on grapevine plants. Meanwhile

  4. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    Science.gov (United States)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting

  5. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  6. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  7. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay;

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...

  8. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  9. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  10. APPROACH TO CONSTRUCTING 3D VIRTUAL SCENE OF IRRIGATION AREA USING MULTI-SOURCE DATA

    Directory of Open Access Journals (Sweden)

    S. Cheng

    2015-10-01

    Full Text Available For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS, remote sensing (RS technology. Based on multi-source data such as Google Earth (GE high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  11. Protective effects of cisternal irrigation on leptomeningeal and cortical structures in meningitis: An experimental study

    Directory of Open Access Journals (Sweden)

    Aydin Mehmet

    2005-01-01

    Full Text Available BACKGROUND: Meningitis, termed as foreign material collection in the subarachnoid space, leads to various meningeal, cerebral and spinal cord pathologies. Meningitis still remains a problematic disease with severe complications in spite of advanced medical technology. AIMS: In this study, we aimed to investigate the role of cisternal irrigation in the prevention of meningitis complications. SETTING AND STUDY DESIGN: Experimental study was done in the Social Security Hospital of Erzurum. Histopathological specimens were evaluated in the Pathology Department in the Ataturk University Research Hospital, Erzurum, Turkey. MATERIALS AND METHODS: This study was conducted on twelve lambs. Experimental meningitis was achieved with streptococcus pneumonia. Two animals were not treated. Ten animals were given CefotaximeR (4x1 g/day for 20 days, and additionally half of these animals underwent cisternal irrigation. Then, all animals were sacrificed and brains were observed histopathologically. RESULTS: Massive purulent CSF formation, hemorrhagic cortical lesions, vascular congestion, leptomeningeal and cortical adhesions and brain edema were observed in the non-irrigated group, but these findings were observed slightly or absent in the irrigated group. CONCLUSION: Meningitis can affect all central neural tissues, consequently serious central nervous system lesions may develop. The irrigation procedure may decrease the percentage and severity of meningitis complications by way of the excretion of inflammed purulent collection from the subarachnoid spaces.

  12. Study on Intermittent Irrigation for Paddy Rice:I.Water Use Efficiency

    Institute of Scientific and Technical Information of China (English)

    LUJUN; T.HIRASAWA

    2001-01-01

    A field experiment was conducted in a well-puddled paddy field developed on the Tama River alluvial soil in the Farm of Tokyo University of Agriculture and Technology,Japan,to study the effect of intermittent irrigation on water use efficiency of paddy rice,Four treatments were arranged with 2 replicates:continuous flooding irrigation treatments(CFI),and three intermittent irrigation treatments Ⅱ-0,Ⅱ-1 and Ⅱ-2,in which plants were re-irrigated when the soil water potential.fell below 0,-10,and -20 kPa,respectively,at soil depth of about 5 cm,Water consumption wa lower in treatment Ⅱ-0 than in treatment CFI because the percolation rate was reduced by the reduction in the hydraulic head of ponded water .Intermittent irrigation led to soil repeated shrinking and swelling in Ⅱ-1 and Ⅱ-2 plots and ,therefore,soil cracks developed rapidly.Since they became the major routes of water percolation,the soil cracks increased waer consumption in treatments Ⅱ-1 and Ⅱ-2.there were no significant differenes in dry matter production and grain yields between treatment Ⅱ-0 and treatment CFI,but the dry matter production and grain yields in treatments Ⅱ-0 and CFI were significantly higher than those in treatments Ⅱ-1 and Ⅱ-2,Therefore,the eater use efficiency in the treatments was in the order of Ⅱ-0>CFI>Ⅱ-2>Ⅱ-1.

  13. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management, EU Project

    DEFF Research Database (Denmark)

    Plauborg, Finn; Jensen, Christian Richardt; Dalsgaard, Anders

    2009-01-01

    while at the same time reducing the use of natural resources and the impact on aquatic ecosystems that are frequently already polluted. These problems are linked, since most of our vegetables are produced using irrigation water from the same ecosystems. To ensure food safety and quality, the innovative......: the safety and quality of food products, and the increasing competition for clean freshwater. SAFIR is funded for the period 2005-2009 under the Food Quality and Safety thematic area of the EU 6th Framework Research Programme. The challenge for the next years will be to produce safe and high quality foods...... SAFIR irrigation systems combine state-of-the-art water-cleaning technology with high-efficiency irrigation systems. The water treatments consist of both high tech and low tech solutions supplying sub-surface and surface drip irrigation system with roughly treated waste water. SAFIR has assembled...

  14. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  15. Insect pest management in tropical Asian irrigated rice.

    Science.gov (United States)

    Matteson, P C

    2000-01-01

    Abundant natural enemies in tropical Asian irrigated rice usually prevent significant insect pest problems. Integrated pest management (IPM) extension education of depth and quality is required to discourage unnecessary insecticide use that upsets this natural balance, and to empower farmers as expert managers of a healthy paddy ecosystem. Farmers' skill and collaboration will be particularly important for sustainable exploitation of the potential of new, higher-yielding and pest-resistant rice. IPM "technology transfer" through training and visit (T&V) extension systems failed, although mass media campaigns encouraging farmer participatory research can reduce insecticide use. The "farmer first" approach of participatory nonformal education in farmer field schools, followed by community IPM activities emphasizing farmer-training-farmer and research by farmers, has had greater success in achieving IPM implementation. Extension challenges are a key topic for rice IPM research, and new pest management technology must promote, rather than endanger, ecological balance in rice paddies.

  16. Effects of irrigation fluid in shoulder arthroscopy

    Science.gov (United States)

    Gupta, Surbhi; Manjuladevi, M; Vasudeva Upadhyaya, KS; Kutappa, AM; Amaravathi, Rajkumar; Arpana, J

    2016-01-01

    Background and Aims: Extravasation of irrigation fluid used in shoulder arthroscopy can lead to life-threatening airway and systemic complications. This study was conducted to assess the effect of irrigation fluid absorption on measurable anthropometric parameters and to identify whether these parameters predict airway/respiratory compromise. Methods: Thirty six American Society of Anaesthesiologists physical status one or two patients aged 15–60 years undergoing shoulder arthroscopy under general anaesthesia were recruited. Measured variables preoperatively (baseline) and at the end of surgery were neck, chest, midarm and midthigh circumferences, weight, haemoglobin and serum sodium. Temperature, endotracheal tube cuff pressure, airway pressure, duration of surgery, amount of irrigation fluid and intravenous fluid used were also noted. Measured parameters were correlated with the duration of surgery and the amount of irrigation fluid used. Results: Postoperatively, the changes in variables showed a significant increase in the mean values (cm) for neck, chest, midarm and midthigh circumference (mean ± standard deviation: 2.35 ± 1.9, P cm, P compared to the baseline. No significant change was found in the serum sodium levels (P = 0.92). No patient experienced airway/respiratory compromise. Conclusion: Regional and systemic absorption of irrigation fluid in arthroscopic shoulder surgery is reflected in the degree of change in the measured anthropometric variables. However, this change was not significant enough to cause airway/respiratory compromise. PMID:27053783

  17. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  18. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  19. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  20. Solar-powered drip irrigation enhances food security in the Sudano–Sahel

    Science.gov (United States)

    Burney, Jennifer; Woltering, Lennart; Burke, Marshall; Naylor, Rosamond; Pasternak, Dov

    2010-01-01

    Meeting the food needs of Africa’s growing population over the next half-century will require technologies that significantly improve rural livelihoods at minimal environmental cost. These technologies will likely be distinct from those of the Green Revolution, which had relatively little impact in sub-Saharan Africa; consequently, few such interventions have been rigorously evaluated. This paper analyzes solar-powered drip irrigation as a strategy for enhancing food security in the rural Sudano–Sahel region of West Africa. Using a matched-pair comparison of villages in northern Benin (two treatment villages, two comparison villages), and household survey and field-level data through the first year of harvest in those villages, we find that solar-powered drip irrigation significantly augments both household income and nutritional intake, particularly during the dry season, and is cost effective compared to alternative technologies. PMID:20080616

  1. The impact of irrigation on the quality of drainage water in a new irrigation district

    Directory of Open Access Journals (Sweden)

    J.M. Villar Mir

    2015-10-01

    Full Text Available The water quality of two agricultural drainage systems was monitored over two irrigation seasons in order to determine the sustainability of a new area of irrigated land (the Algerri-Balager irrigation district located in the northeast of Spain. The average electrical conductivity of the drainage water was around 4 dS·m-1, and the waters were enriched with boron, phosphorous and nitrate. Drainage represented 17% of total applied irrigation water (measured leached fraction and is considered necessary to minimize the risk of soil salinization in semiarid environments. The most common ions in the drainage waters were magnesium, sulphate, and calcium and others related with dissolved soil minerals present in the area. The presence of Fe, Cu, Mn, Zn and pesticides was negligible. The information provided by this research was very useful for the irrigation district, and it’s transferable to other irrigation districts, as it could help to improve agricultural practices and be used to control the quality and quantity of irrigation drainage.

  2. New Concept of Cultivation Using Limited Strip-Tillage with Strip Shallow Irrigation

    Directory of Open Access Journals (Sweden)

    Yazid Ismi Intara

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE Dry land is one of land resources which potentially used for food crop cultivation, especially in the areas which have light to medium technical obstacles. The development of technology to improve soil quality in marginal lands to be productive lands is still widely open for agricultural development in Indonesia. Rooting medium quality can be improved by changing soil tillage method and observing the proper crop irrigation technology. It can be the solution for crop cultivation in clay loam soil. This study aimed to obtain water movement model in a minimally-tilled clay soil with strip shallow irrigation. The concept is limited soil-tillage with strip shallow irrigation method, water supply technique, and crop water requirement. Method used in this study includes developing water movement model (software development in a minimally-tilled clay soil with subsurface irrigation. In the final stages, research also conducted water movement analysis testing apparatus in the laboratory, field validation of the subsurface irrigation performance, and cultivation technique testing to chili pepper growth (Capsicum annuumL.. The development of water movement simulation on a limited strip-tillage with subsurface irrigation uses the concept to quantify the amount of water in the soil. The analysis of movement pattern was demonstrated on contour patterns. It showed that the wetting process can reach depth zone – 5 cm to the rooting zone. It was an important discovery on the development of minimum stripe tillage soil with subsurface irrigation. Specifically, it can be concluded that: the result of fitting by eyes to diffusivity graphic and water content obtained the required parameter values for soil physical properties. It was then simulated on horizontal water movement model on a minimum strip-tillage with strip shallow irrigation /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso

  3. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  4. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    Irrigation methods for efficient water application: 40 years of South African ... to a specific situation rather than by calculating various performance indicators. ... of Irrigation Water Use covers 4 levels of water-management infrastructure: the ...

  5. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    Effects of ten years treated wastewater drip irrigation on soil microbiological properties under ... Water shortage in most countries of the southern Mediterranean basin has led to the reuse of municipal wastewater for irrigation. ... Article Metrics.

  6. Impact of Methods of Administering Growth-Stage Deficit Irrigation ...

    African Journals Online (AJOL)

    Impact of Methods of Administering Growth-Stage Deficit Irrigation on Yield and Soil Water ... study reveal that at vegetative growth stage of the maize crop, it is better to skip weekly irrigation (to ..... Treatment Class. ..... middle Egypt conditions.

  7. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... root per cm3 soil) compared with root development in fully irrigated (FI) potatoes. Highest RLD existed in the top 30–40cm of the ridge below which it decreased sharply. The RLD was distributed homogenously along the ridge and furrow but heterogeneously across the ridge and furrow with highest root...

  8. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  9. Genotoxicity of vegetables irrigated by industrial wastewater

    Institute of Scientific and Technical Information of China (English)

    Nupur Mathur; Pradeep Bhatnagar; Hemraj Verma

    2006-01-01

    Wastewater effluents from textile dyeing and printing industries of Sanganer are discharged directly, without any treatment,into Amani Shah Nallah drainage. The drainage water takes the dissolved toxicants to flora and fauna, including crops and seasonal vegetables, being grown in the land adjoining the Nallah drainage. Thus mutagenic potential of vegetables irrigated by the water of Amani Shah Nallah drainage was investigated in the present study. The vegetables irrigated by ground water from Sanganer have also been analyzed to determine possible adverse effects of these wastewater effluents on aqua duct.

  10. An Assessment of Global Net Irrigation Water Requirements from Various Water Supply Sources to Sustain Irrigation

    Science.gov (United States)

    Yoshikawa, Sayaka; Cho, Jail; Yamada, Hannah; Khajuria, Anupam; Hanasaki, Naota; Kanae, Shinjiro

    2014-05-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during the period 1960-2050 using the global water resources model, H08. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0° . The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 km3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 km3 to 3.0 M m3, and non-local non-renewable blue water (NNBW). We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as the difference between NNBW in the 1990s and NNBW in the 2040s, because it was difficult to distinguish the types of future water supply sources except for RIV. The simulated results showed that RIV, MSR, and NNBW increased significantly through the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, RIV approached a critical limit due to the continued expansion of the irrigation area. Furthermore, MSR and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. After the 2020s, MSR could be expected to approach the critical limit without the construction of medium-size reservoirs. ADD would account for 11-23% of the total requirements in the 2040s. We found that an expansion of

  11. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  12. The management perspective on the performance of the irrigation subsector

    OpenAIRE

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  13. A management perspective on the performance of the irrigation subsector.

    OpenAIRE

    Nijman, Ch.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  14. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, A.D.; Krol, M.S; Hoekstra, A.Y.

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thu

  15. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  16. Identification of Decisive Factors Determining the Continued Use of Rainwater Harvesting Systems for Agriculture Irrigation in Beijing

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2015-12-01

    Full Text Available The success or failure of operating a rainwater harvesting system (RWH depends on both technological and non-technological factors. The importance of non-technological factors in attaining sustainable RWH operation is rarely emphasized. This study aims to assess the contribution of non-technological factors through determining decisive factors involved in the use of RWHs for agriculture irrigation in Beijing. The RWHs for agriculture irrigation in Beijing are not operating as well as expected. If the decisive factors are identified to be non-technological, the significance of non-technological factors will be highlighted. Firstly, 10 impact factors comprising non-technological and technological factors are selected according to both a literature review and interviews with RWH managers. Following this, through an artificial data mining method, rough set analysis, the decisive factors are identified. Results show that two non-technological factors, “doubts about rainwater quality” and “the availability of groundwater” determine whether these systems will continue or cease RWH operation in Beijing. It is, thus, considered necessary to improve public confidence in and motivation on using rainwater for agriculture irrigation, as this is the main obstacle in the sustainable and successful operation of RWHs. Through a case study of RWHs in Beijing, the study verifies the importance of acknowledging non-technological factors to achieve sustainable water management and considers that such factors should receive more attention by decision makers and researchers.

  17. The Construction of Digital City Based on GIS Technology%基于 GIS 技术下的数字城市建设

    Institute of Scientific and Technical Information of China (English)

    李斌

    2015-01-01

    Digital city is the inevitable outcome from the certain stage development of Economy, society and technology.The GIS tech-nology played a supporting role in the construction of digital city and the digital city was the concrete embodiment of GIS technology function.%数字城市是经济、社会与科技发展到一定阶段的必然产物。而GIS技术对数字城市建设起到了重要的支撑作用,数字城市是GIS技术功能的具体体现。

  18. Smart Irrigation From Soil Moisture Forecast Using Satellite And Hydro -Meteorological Modelling

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni; Ceppi, Alessandro; Salerno, Raffaele; Sobrino, Josè

    2017-04-01

    Increased water demand and climate change impacts have recently enhanced the need to improve water resources management, even in those areas which traditionally have an abundant supply of water. The highest consumption of water is devoted to irrigation for agricultural production, and so it is in this area that efforts have to be focused to study possible interventions. The SIM project funded by EU in the framework of the WaterWorks2014 - Water Joint Programming Initiative aims at developing an operational tool for real-time forecast of crops irrigation water requirements to support parsimonious water management and to optimize irrigation scheduling providing real-time and forecasted soil moisture behavior at high spatial and temporal resolutions with forecast horizons from few up to thirty days. This study discusses advances in coupling satellite driven soil water balance model and meteorological forecast as support for precision irrigation use comparing different case studies in Italy, in the Netherlands, in China and Spain, characterized by different climatic conditions, water availability, crop types and irrigation techniques and water distribution rules. Herein, the applications in two operative farms in vegetables production in the South of Italy where semi-arid climatic conditions holds, two maize fields in Northern Italy in a more water reach environment with flood irrigation will be presented. This system combines state of the art mathematical models and new technologies for environmental monitoring, merging ground observed data with Earth observations. Discussion on the methodology approach is presented, comparing for a reanalysis periods the forecast system outputs with observed soil moisture and crop water needs proving the reliability of the forecasting system and its benefits. The real-time visualization of the implemented system is also presented through web-dashboards.

  19. More crop per drop - Increasing input efficiency in sprinkler irrigated potatoes.

    Science.gov (United States)

    Kostka, Stan; Fang, Lisa; Ren, Haiqin; Glucksman, Robert; Gadd, Nick

    2014-05-01

    Water scarcity, climate change, and population growth are significant global challenges for producing sufficient food, fiber, and fuel in the 21st century. Feeding an increasingly hungry world necessitates innovative strategies and technologies to maximize crop production outputs while simultaneously increasing crop water productivity. In the 20th century, major advances in precision irrigation enabled producers to increase productivity while more efficiently applying water to crops. While pressurized irrigation systems can deliver water effectively to the soil surface, the efficiency of rootzone delivery may be compromised by intrinsic heterogeneities in soil wetting characteristics related to organic matter, biofilms, and hydrophobic coatings on soil particles and aggregates. Efficiently delivering applied irrigation water throughout the soil matrix is critical to increasing crop productivity. We propose that management of soil water access by surfactants is a viable management option to maintain or increase yields under deficit irrigation. Potato yield and tuber quality under sprinkler irrigation were evaluated under standard production practices or with the inclusion of an aqueous nonionic surfactant formulation (10 wt% alkoxylated polyols and 7% glucoethers) applied at 10L ha-1 between emergence and tuberization. Crop responses from multi-year evaluations conducted on irrigated potatoes in Idaho (USA) were compared to multi-year on farm grower evaluations in Australia and China. Surfactant treatment resulted in statistically significant increases in yield (+5%) and US No. 1 grades (+8%) while reducing culls (-10%) in trials conducted in Idaho, USA. Similar responses were observed in commercial grower evaluations conducted in Australia (+8% total yield, +18% mean tuber weight) and in China in 2011 (+8% total yield and +18% premium, -12% culls). Under diverse production conditions, a single application of the surfactant formulation improved crop water

  20. Optimizing wind pumps system for crop irrigation based on wind data processing

    Science.gov (United States)

    Ruiz, Fernando; Tarquis, Ana M.; Sanchez, Raúl; Garcia, Jose Luis

    2015-04-01

    Crop irrigation is a major consumer of energy that can be resolved with renewable ones, such as wind, which has experienced recent developments in the area of power generation. Therefore, wind power can play an interesting role in irrigation projects in different areas [1]. A simple methodology has been developed in previous papers for technical evaluation of windmills for irrigation water pumping [2]. This methodology can determine the feasibility of the technology and the levels of daily irrigation demand satisfied by windmills. The present work compared the possibilities of this methodology adjusting the three-hourly wind velocity to the Weibull II distribution function, without considering the time sequence [2], or processing wind data using time series analysis. The study was applied to practical cases of wind pumps for irrigation of crops, both in the outside (corn) and inside greenhouses (tomato). The analysis showed that the use of three hourly time series analysis supplied a more realistic modelling of the situation with a better optimization of the water storage tank of the wind pump facility taking into account the risk of calm periods in which the pumping is null. A factor to consider in this study is available precision of the wind sampling rate. References [1] Díaz-Méndez, R., Adnan Rasheed, M. Peillón, A. Perdigones, R. Sánchez, A.M. Tarquis, José L. García-Fernández. Wind pumps for irrigating greenhouse crops: comparison in different socio-economical frameworks. Biosystems Engineering, 128, 21-28, 2014. [2] Peillón, M., Sánchez, R., Tarquis, A.M., García, J.L. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, 120, 107-114, 2013.

  1. Irrigation dynamics associated with positive pressure, apical negative pressure and passive ultrasonic irrigations: a computational fluid dynamics analysis.

    Science.gov (United States)

    Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil

    2014-08-01

    Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity.

  2. NDCEE Annual Technologies Publication

    Science.gov (United States)

    2003-04-01

    irrigation system. Technology Description Phytoaccumulation, also called phytoextraction or hyperaccumulation , refers to the use of metal - or salt...contaminates, including metals and VOCs • Detects organochlorine and aromatic contaminants at the parts per billion level • Contains samples of high...Automatic Corrosion Inhibitor Application System for Army Tactical Vehicles automatically cleans vehicles and then applies a corrosion inhibitor for metal

  3. Nitrogen Effects on Onion Yield Under Drip and Furrow Irrigation

    Science.gov (United States)

    Onion (Allium cepa L.) is a high cash value crop with a very shallow root system that is frequently irrigated and fertilized with high N rates to maximize yield. Converting from furrow-irrigated to drip-irrigated onion production may reduce N fertilizer needs, water inputs, and NO3-N leaching poten...

  4. Irrigation system management assisted by thermal imagery and spatial statistics

    Science.gov (United States)

    Thermal imaging has the potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of therm...

  5. A land suitability system for spate irrigation schemes in Eritrea

    NARCIS (Netherlands)

    Tesfai, M.H.

    2002-01-01

    Spate irrigation is a system used for wetting land prior to planting. Use is made of seasonal rivers (wadis) producing flash floods in the uplands, which are directed by structures to irrigate fields in the lowlands. A land suitability system for spate irrigation schemes in Eritrea was studied in th

  6. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  7. 21 CFR 876.5220 - Colonic irrigation system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colonic irrigation system. 876.5220 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system. (a) Identification. A colonic irrigation system is a device intended to instill water into the...

  8. 21 CFR 872.6510 - Oral irrigation unit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral irrigation unit. 872.6510 Section 872.6510...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6510 Oral irrigation unit. (a) Identification. An oral irrigation unit is an AC-powered device intended to provide a pressurized stream of water...

  9. Fertigation - Injecting soluble fertilizers into the irrigation system

    Science.gov (United States)

    Thomas D. Landis; Jeremy R. Pinto; Anthony S. Davis

    2009-01-01

    Fertigation (fertilization + irrigation) is the newest way for nursery managers to apply fertilizer, and has become a standard practice in container nurseries. Because of the inherent inefficient water distribution patterns in field irrigation systems, fertigation has not been widely used in bareroot nurseries. However, a bareroot nursery with a center-pivot irrigation...

  10. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  11. Declining Groundwater Levels in North India: Understanding Sources of Irrigation Inefficiency

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Mijic, A.; Brozovic, N.

    2014-12-01

    Over the last half century, the green revolution has transformed India from a famine-prone, drought-susceptible country, into the world's third largest grain producer and one of the most intensely irrigated regions on the planet. This is in no small part due to the country's vast water resources along with an increase in tubewells and more advanced abstraction methods. While agricultural intensification has had undeniable benefits, it has, and continues to have a significant impact on water resources. Unless solutions which take into consideration the ever evolving socio-economic, hydrological and climatic conditions are found, India's agricultural future looks bleak.This research examines the irrigation behaviour of farmers, using data collected during field work in the State of Uttar Pradesh within the Ganges Basin of North India. Significant differences in farmer behaviour and irrigation practices are highlighted, not only between State districts but between individual farmers. This includes the volume of irrigation water applied and the price paid, as well as differences in the yields of crops produced. Analyses of results suggest that this is due to a number of factors, particularly the source of irrigation water. Study areas which had access to cheaper, but crucially less reliable, canal water were found to invest in more efficient water saving technologies in order to reduce the overall cost of irrigation during periods where less expensive canal water is not available. As a result, overall water use and irrigation cost is lower and yields are higher despite very similar climatic conditions. While cheap canal water is not an option for all farmers, the results show that the introduction of more efficient water saving technologies, despite the significant capital expenditure is a viable option for many farmers and costs can be recovered in a relatively short space of time. In addition, the reduction of declining water levels mean that water is abstracted from

  12. Identifying and locating land irrigated by center-pivot irrigation systems using satellite imagery

    Science.gov (United States)

    Hoffman, R. O.

    1980-01-01

    A methodology for using Landsat imagery for the identification and location of land irrigated by center-pivot irrigation systems is presented. The procedure involves the use of sets of Landsat band 5 imagery taken separated in time by about three weeks during the irrigation season, a zoom transfer scope and mylar base maps to record the locations of center pivots. Further computer processing of the data has been used to obtain plots of center-pivot irrigation systems and tables indicating the distribution and growth of systems by county for the state of Nebraska, and has been found to be in 95% agreement with current high-altitude IR photography. The information obtainable can be used for models of ground-water aquifers or resource planning.

  13. Fruit yield and quality of drip-irrigated tomato under deficit irrigation ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... The competition for limited amount of world fresh water is increasing at a fast rate. ... The two tomato cultivars were exposed to four irrigation water deficit levels expressed as ...

  14. Irrigation frequency and timing influence pepper yields

    Science.gov (United States)

    Information on how fertilizer and irrigation affect production of vegetables can help growers improve resource use efficiency and profitability. Fertilizer was applied at the recommended rate and twice the recommended rate to bell and non-pungent jalapeno peppers, both Capsicum annuum L., in 2009 a...

  15. Using a System Model for Irrigation Management

    Science.gov (United States)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  16. Irrigation performance assessment in Crimea, Ukraine

    NARCIS (Netherlands)

    Pavlov, S.S.; Roerink, G.J.; Hellegers, P.J.G.J.; Popovych, V.F.

    2006-01-01

    After the collapse of the Soviet Union the performance of irrigated agriculture decreased drastically in Ukraine, due to problems related to the transition from a centrally planned economy to a market economy. Before formulating recommendations on required actions to modify this problematic situatio

  17. SANITARY SEWAGE REUSE IN AGRICULTURAL CROP IRRIGATION

    Directory of Open Access Journals (Sweden)

    Lidiane Bittencourt Barroso

    2011-10-01

    Full Text Available The water availability was exceeded by demand, becoming a limiting factor in irrigated agriculture. This study aimed to provide a general theoretical framework on the issue of water reuse for agricultural purposes. This is due to the fact that we need a prior knowledge of the state of the art concerning the matter. To that end, we performed a review of irrigated agriculture, the effects on cultivated land and the development of agricultural crops as well as aspects of security to protect groups at risk. The amount of macro and micronutrients in the effluent may reduce or eliminate the use of commercial fertilizers. And this addition of organic matter acts as a soil conditioner, increasing its capacity to retain water. Depending on the characteristics of sewage, the practice of irrigation for long periods may lead to accumulation of toxic compounds and the significant increase of salinity. The inhibition of plant growth by salinity may be due to osmotic effect, causing drought and / or specific effects of ions, which can cause toxicity or nutritional imbalance. The minimization of human exposure to the practice of agricultural reuse is based on a set of mitigation measures that must be implemented by the authorities responsible for operating and monitoring systems for water recycling. It is concluded that the use of sewage depends on management of irrigation, monitoring of soil characteristics and culture.

  18. COMMUNITY IRRIGATION DAMS IN THE UPPER EAST

    African Journals Online (AJOL)

    such as Unit Committee members, Assembly members or higher government authori- .... entails some system of rotation of irrigable land ownership between the ... work and the management procedures institutionalized and the outcomes. .... WUA has also been able to generate revenue through its membership registration.

  19. Irrigation performance assessment in Crimea, Ukraine

    NARCIS (Netherlands)

    Pavlov, S.S.; Roerink, G.J.; Hellegers, P.J.G.J.; Popovych, V.F.

    2006-01-01

    After the collapse of the Soviet Union the performance of irrigated agriculture decreased drastically in Ukraine, due to problems related to the transition from a centrally planned economy to a market economy. Before formulating recommendations on required actions to modify this problematic

  20. Cytotoxic effect of endodontic irrigants in vitro.

    Science.gov (United States)

    Bajrami, Donika; Hoxha, Veton; Gorduysus, Omer; Muftuoglu, Sevda; Zeybek, Nacije Dilara; Küçükkaya, Selen

    2014-03-10

    Cytotoxicity of root canal irrigants is important due to their close contact with host tissues. The aim of this study was to assess the cytotoxic effect of NaOCl 3%, Chx 2%, and MTAD on rat periodontal ligament fibroblasts, at 0.1 and 100 µl/mL, using WST-1 colorimetric method. Rat ligamental fibroblasts were exposed to the irrigants and their viability was assessed after 1, 24, 48, and 72 h. The measurements were determined using WST-1 assay, using a micro ELISA reader. At 100 ml/L all 3 irrigants were strongly cytotoxic, although CHX was less so than NaOCl and MTAD. At the 0.1 ml/L concentration, NaOCl and MTAD were only moderately cytotoxic, whereas Chx was highly deleterious to cell viability at all time points. There was a significant influence of the dilution rate of the substance, because the odds ratio for cell viability being over 50% was increased 51 times between the 100 ml/L and 0.1 ml/L dilutions. It seems that irrigating solutions should be used at lower concentrations to enhance cell viability.

  1. Precision agriculture approach for improving cotton irrigation

    Science.gov (United States)

    Cotton is a vital part of the southeast Missouri economy and while we’re not currently facing problems with groundwater decline, it’s still important to apply the right amount of irrigation at the proper time. We currently have several projects at the Fisher Delta Research Center with that aim. For ...

  2. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  3. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  4. Decision support for optimised irrigation scheduling

    NARCIS (Netherlands)

    Anastasiou, A.; Sawas, D.; Pasgianos, G.; Sigrimis, N.; Stanghellini, C.; Kempkes, F.L.K.

    2009-01-01

    The system, developed under the FLOW-AID (an FP6 project), is a farm level water management system of special value in situations where the water availability and quality is limited. This market-ready precision irrigation management system features new models, hardware and software. The hardware pla

  5. Irrigation timing and fertilizer rate in peppers

    Science.gov (United States)

    Excessive rain fall might leach nutrients from the soil or cause producers to not supply irrigation to pepper (Capsicum sp.). Fertilizer at 150 or 300 lb/acre of triple 17 NPK, the lower rate is the recommended rate, was supplied to either bell, cv. Jupiter, or non-pungent jalapeno, cv. Pace 105, pe...

  6. Philippines : PPP Options in Irrigation Sector

    OpenAIRE

    World Bank

    2013-01-01

    This study proposes an analytical framework to determine the extent to which Public-Private Partnership (PPP) is a viable and effective business option for developing and modernizing the irrigation sector in the Philippines. It focuses on: (a) assessing and providing recommendations to address the policy, regulatory and institutional constraints that limit the recourse to PPP as a tool to ...

  7. Comparative inflammatory effect of antiseptic irrigating solutions against conventional irrigation with sodium chloride in rats.

    OpenAIRE

    Rodríguez Alfaro, Miguel; Profesor Asociado del Departamento Académico de Ciencias Básicas de la Facultad de Odontología de la UNMSM.; Chumpitaz Cerrate, Víctor; Profesor Auxiliar del Departamento Académico de Ciencias Básicas de la Facultad de Odontología de la UNMSM.; Burga Sánchez, Jonny; Profesor Auxiliar del Departamento Académico de Ciencias Básicas de la Facultad de Medicina de la UCSUR.; Arroyo Acevedo, Jorge; Profesor Principal del Departamento Académico de Ciencias Básicas de la Facultad de Medicina de la UNMSM.; Ramón Rosales, Jorge; Profesor Auxiliar del departamento Académico de Ciencias Básicas de la Facultad de Estomatología de la UCSUR.; Aguirre Siancas, Elías; Profesor Auxiliar del Departamento Académico de Ciencias Básicas de la Facultad de Odontología de la UNMSM.; Cabrejos Álvarez, José; Profesor de la Catedra de Cirugia Bucal y Máxilofacial de la Facultad de Estomatología de la UIGV.; Zegarra Cuya, Juan; Ex-Profesor del Departamento Académico de Ciencias Básicas de la Facultad de Odontología de la UNMSM.

    2014-01-01

    The aim of this study was to demonstrate that the use of irrigating solutions in surgical procedures does not alter both inflammation processes and tissue repair. Four (04) groups were formed containing 15 rats each. After being dosed with general anaesthesia, they underwent osteotomy in the tibia with tungsten carbide burs and irrigation for 15 seconds, using the following solutions in each group: A) 0,12 % chlorhexidine with cetylpyridinium 0,05 %, B) 0,12 % chlorhexidine with aspartame; C)...

  8. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  9. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system, wh

  10. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  11. The role of energy audits in irrigated areas. The case of Fuente Palmera irrigation district (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Cobo, M. T.; Rodriguez-Diaz, J. A.; Camacho-Poyato, E.

    2010-07-01

    In recent years, energy consumption for irrigation has grown rapidly. Actually, nowadays energy represents a significant percentage on the total water costs in irrigation districts using energy to pressurize water. With the aim of improving energy efficiency in the Fuente Palmera irrigation district, was applied the protocol for conducting energy audits in irrigation districts developed by Spanish Institute for Diversification and Energy Savings (IDAE). The irrigated area organized in two independent sectors according to a homogeneous elevation criterion is analyzed and simulated. The potential energy savings derived from this measure was evaluated. For this purpose, a model based on the hydraulic simulator EPANET has been carried out. Its energy demand was estimated in 1,360 kWh ha-1 and its overall energy efficiency in 56%. The district was globally classified in group C (normal). Results show potential energy savings of up to 12% were obtained when the network was divided in sectors and farmers organized in two irrigation shifts. Further energy savings could be achieved by improving the hydraulic structures, such as the pumping station or the network layout and dimensions. (Author) 26 refs.

  12. Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions--Barcelona, Spain.

    Science.gov (United States)

    Candela, Lucila; Caballero, Juan; Ronen, Daniel

    2010-05-15

    The transport of Glyphosate ([N-phosphonomethyl] glycine), AMPA (aminomethylphosphonic acid, CH(6)NO(3)P), and Bromide (Br(-)) has been studied, in the Mediterranean Maresme area of Spain, north of Barcelona, where groundwater is located at a depth of 5.5m. The unsaturated zone of weathered - granite soils was characterized in adjacent irrigated and non-irrigated experimental plots where 11 and 10 boreholes were drilled, respectively. At the non irrigated plot, the first half of the period was affected by a persistent and intense rainfall. After 69 days of application residues of Glyphosate up to 73.6 microgg(-1) were detected till a depth of 0.5m under irrigated conditions, AMPA, analyzed only in the irrigated plot was detected till a depth of 0.5m. According to the retardation coefficient of Glyphosate as compared to that of Br(-) for the topsoil and subsoil (80 and 83, respectively) and the maximum observed migration depth of Br(-) (2.9 m) Glyphosate and AMPA should have been detected till a depth of 0.05 m only. Such migration could be related to the low content of organic matter and clays in the soils; recharge generated by irrigation and heavy rain, and possible preferential solute transport and/or colloidal mediated transport. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    Science.gov (United States)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    to productive smallholder irrigation: soil nutrient depletion, salinization, disease and pest resulting from inefficient irrigation practices, infrastructure problems leading to a reduction of the size of the command area and decrease in reservoir volume. The major causes have been poor irrigation infrastructure, poor on-farm soil and water management, prevalence of various crop pests and diseases, lack of inputs and reservoir siltation. On-farm participatory research focusing on soil, crop and water management issues, including technical, institutional and managerial aspects, to identify best performing innovations while taking care of the environment was recommended. Currently, a range of interlinked activities are implemented a multiple scales, combining participatory and scientific approaches towards innovation development and up-scaling of promising technologies and institutional and managerial approaches from local to regional scales. ____________________________ Key words: Irrigation scheme, productivity, innovation, participatory method, Gumselassa, Ethiopia

  14. Multivariate time series modeling of short-term system scale irrigation demand

    Science.gov (United States)

    Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara

    2015-12-01

    Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as

  15. Development and Application of Residue Hydrotreating Packaged Technology

    Institute of Scientific and Technical Information of China (English)

    HanChongren; ZhuHuaxing; FangWeiping

    2004-01-01

    In order to develop China’s heay oil deep processing technology.Fushun Research lnstitute of Petroleum and Petrochemicals (FRIPP),SINOPEC has developed two series of residus hvdrotreating catalysts for vacuum residue and atmospheric residus.which hafe been commercialized in Qilu Petrochemical Co.and Dalian West Pacifie Petrochemical co.(WEPEC)respectively.On the hasis of FRIPP’sresearch,and under the leadership and coordination of SINOPEC headquarters.FRIPP,Luoyang Petrochcmical Enginering Com-pany(LPEC),Maoming Petrochemical Co.and Qilu Petrochemical Co.have cooperate and developed the proprietary S-RHT packaged technology for for sour residus hydrotreating.Using R-SHT technology,the 2Mt/a S-RHT unit has been constructed in maoming pemtochemical Co.and successfully put into two-year stable operation with considerable cconomic,socil and snvironmntal benefits,which built a record among the opertions of the world’s simiklar units.

  16. Design of Intelligent Irrigation Monitoring System Based on GPRS and Zigbee

    Institute of Scientific and Technical Information of China (English)

    Fuping; WANG; Panpan; FENG

    2015-01-01

    In order to solve the present dual contradiction of the low utilization of water resources in China’s agricultural sector and the low land management efficiency,using Zigbee wireless sensor network and GPRS technology,this paper designs an intelligent monitoring system based on the GPRS and Zigbee wireless network technology. The Zigbee wireless sensor network is established based on the IEEE 802. 15. 4 / Zigbee protocol,consisting of terminal node for capturing and transmitting soil and environmental information to the coordinator node( gateway node)or acting the control command from the GPRS network. The irrigation remote monitoring network layer consists of coordinator node connected by the TCP / IP protocol,which can implement the precision irrigation of crops and the information management of arable land to the monitor center or user. And the monitor center using Java to write the system is safe and effective.

  17. Simulated errors in deep drainage beneath irrigated settings: Partitioning vegetation, texture and irrigation effects using Monte Carlo

    Science.gov (United States)

    Gibson, J. P.; Gates, J. B.; Nasta, P.

    2014-12-01

    Groundwater in irrigated regions is impacted by timing and rates of deep drainage. Because field monitoring of deep drainage is often cost prohibitive, numerical soil water models are frequently the main method of estimation. Unfortunately, few studies have quantified the relative importance of likely error sources. In this study, three potential error sources are considered within a Monte Carlo framework: water retention parameters, rooting depth, and irrigation practice. Error distributions for water retention parameters were determined by 1) laboratory hydraulic measurements and 2) pedotransfer functions. Error distributions for rooting depth were developed from literature values. Three irrigation scheduling regimes were considered: one representing pre-scheduled irrigation ignoring preceding rainfall, one representing pre-scheduled irrigation that was altered based on preceding rainfall, and one representing algorithmic irrigation scheduling informed by profile matric potential sensors. This approach was applied to an experimental site in Nebraska with silt loam soils and irrigated corn for 2002-2012. Results are based on Six Monte-Carlo simulations, each consisting of 1000 Hydrus 1D simulations at daily timesteps, facilitated by parallelization on a 12-node computing cluster. Results indicate greater sensitivity to irrigation regime than to hydraulic or vegetation parameters (median values for prescheduled irrigation, prescheduled irrigation altered by rainfall, and algorithmic irrigation were 310 ,100, and 110 mm/yr, respectively). Error ranges were up to 700% higher for pedotransfer functions than for laboratory-measured hydraulic functions. Deep drainage was negatively correlated with alpha and maximum root zone depth and, for some scenarios, positively correlated with n. The relative importance of error sources differed amongst the irrigation scenarios because of nonlinearities amongst parameter values, profile wetness, and deep drainage. Compared to pre

  18. Water rights of the head reach farmers in view of a water supply scenario at the extension area of the Babai Irrigation Project, Nepal

    Science.gov (United States)

    Adhikari, B.; Verhoeven, R.; Troch, P.

    The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.

  19. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  20. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  1. Sediment and nutrient losses from an irrigated watershed.

    Science.gov (United States)

    Bjorneberg, D.; Ippolito, J.

    2011-12-01

    Irrigated agriculture is an essential part of stable food and fiber production. However, water returning from irrigated watersheds can contain excess sediment, nutrients and salts. Applying polyacrylamide to furrow irrigated fields reduces erosion 60 to 90%. Converting from furrow irrigation to sprinkler irrigation eliminates planned irrigation runoff necessary for uniform water application. Installing sediment ponds removes 50 to 80% of the suspended sediment from water before it flows back to major water bodies. In southern Idaho, irrigation watershed monitoring showed that implementing these conservation practices has reduced average suspended sediment loss from 460 kg/ha in 1970 to less than 100 kg/ha in 2005. These practices, however, have had less effect on soluble nutrients. Median nitrate concentrations have almost doubled from 1970 to 2005. Current research is focusing on identifying practices to reduce soluble nutrient losses.

  2. ASSESSMENT OF IRRIGATION EFFICIENCIES UNDER CENTRAL ANATOLIA CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yusuf Ersoy Yildirim

    2016-12-01

    Full Text Available Turkey is located within semi-arid climate zone and large portion of the country experience water deficits. Thus, efficient water use has become a significand issue in agricultural practices. Current global warming and climate change have aggravated such deficiencies. Konya province is located right at the center of Central Anatolia region and mostly groundwater is used in irrigations. Excessive groundwater withdrawals drop groundwaters levels and also increase energy costs. Although farmers pay quite high sums for energy, they were not using water efficiently and thus were not able to get desired benefits from the irrigations. In this study, irrigation practices of an irrigation cooperative were assessed and compared with optimum irrigation programs created through IRSIS irrigation scheduling software. It was concluded that all irrigation practices of the region were wrong and way behind the optimum ones.

  3. Seismic Risk Management of Irrigation System in an Earthquake

    Science.gov (United States)

    Kobayashi, Akira; Hayashi, Takuma; Yamamoto, Kiyohito; Kiyama, Shoichi

    A risk analysis method of an irrigation system in an earthquake is proposed. The irrigation system consists of irrigation tanks and canals. The damage probability of the irrigation tanks and canals was obtained from both numerical simulation and actual disaster data from the Mid Niigata prefecture earthquake. The losses due to reduced crop yield, restoration and secondary disaster were considered in the risk assessment. The probability of annual peak ground acceleration was introduced from the earthquake records in Niigata prefecture. To reduce the damage probability, an enhanced foundation of canals on flat land and widening of the embankment were applied. It was found that the countermeasures for the irrigation tanks were more effective than those for the canals. In the case of a large secondary disaster of the irrigation system on flat land, the countermeasures for the irrigation system were very effective.

  4. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    Science.gov (United States)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  5. Two challenges for U.S. irrigation due to climate change: increasing irrigated area in wet states and increasing irrigation rates in dry states.

    Directory of Open Access Journals (Sweden)

    Robert I McDonald

    Full Text Available Agricultural irrigation practices will likely be affected by climate change. In this paper, we use a statistical model relating observed water use by U.S. producers to the moisture deficit, and then use this statistical model to project climate changes impact on both the fraction of agricultural land irrigated and the irrigation rate (m³ ha⁻¹. Data on water withdrawals for US states (1985-2005 show that both quantities are highly positively correlated with moisture deficit (precipitation--PET. If current trends hold, climate change would increase agricultural demand for irrigation in 2090 by 4.5-21.9 million ha (B1 scenario demand: 4.5-8.7 million ha, A2 scenario demand: 9.1-21.9 million ha. Much of this new irrigated area would occur in states that currently have a wet climate and a small fraction of their agricultural land currently irrigated, posing a challenge to policymakers in states with less experience with strict regulation of agriculture water use. Moreover, most of this expansion will occur in states where current agricultural production has relatively low market value per hectare, which may make installation of irrigation uneconomical without significant changes in crops or practices by producers. Without significant increases in irrigation efficiency, climate change would also increase the average irrigation rate from 7,963 to 8,400-10,415 m³ ha⁻¹ (B1 rate: 8,400-9,145 m³ ha⁻¹, A2 rate: 9,380-10,415 m³ ha⁻¹. The irrigation rate will increase the most in states that already have dry climates and large irrigation rates, posing a challenge for water supply systems in these states. Accounting for both the increase in irrigated area and irrigation rate, total withdrawals might increase by 47.7-283.4 billion m³ (B1 withdrawal: 47.7-106.0 billion m³, A2 withdrawal: 117.4-283.4 billion m³. Increases in irrigation water-use efficiency, particularly by reducing the prevalence of surface irrigation, could eliminate the

  6. Irrigação Magnética = Magnetic Irrigation

    OpenAIRE

    2007-01-01

    O artigo apresenta os primeiros resultados da aplicação da tecnologia da irrigação magnética, em cultivo comparativo de pinhão manso Jatropha curcas L.) e mamona (Ricinus communis L.) em cerrado de Roraima.This paper contributes with the first results of the magnetic irrigation technology application, in comparative cultivation of pinhão manso (Jatropha curcas L.) and mamona (Ricinus communis L.) in Roraima´s savanna.

  7. Unintended consequence of managing the coupled humans and water: the irrigation efficiency paradox

    Science.gov (United States)

    Liu, Y.

    2015-12-01

    Water shortage most severely restricts the socio-economic development of many arid and semi-arid regions in the world, for which water-saving technology is believed to be an effective solution. However, as a realworld case, the total water consumption of Xinjiang Uygur Autonomous Region of China continued to increase as irrigation efficiency dramatically improved through the application of water-saving technology in the study period 1998-2010. This phenomenon, known as the irrigation efficiency paradox or Jevons paradox, is interpreted as an economic rebound effect. In this study, we explore the dynamic feedbacks between humans and water in this paradox through a socio-hydrological perspective. We analyze the co-evolutionary trajectory of coupled human-water dynamics from 1950 to 2010 to provide it a general context. A conceptual socio-hydrological model based on five key elements, namely, irrigation land, water-saving technology, water consumption, societal sensitivity to water scarcity, and the policy mix, is constructed. The policy mix to be adopted is determined by a social decision-making process mainly based on the societal sensitivity, which reflects the societal preference on two sorts of policies: (i) irrigation land control and (ii) water-saving technology promotion. Modeling results verify the hypothesized mechanism by successfully reproducing the observed dynamics including the emergence of the efficiency paradox. Our analysis indicates that the implementation of more adaptive rules may even eliminate the paradox. The effects of different initial policy mixes are also explored, and the results show that land control policies should be given equal priority when dealing with water scarcity. These findings point to a double-helix-type co-evolution of humans and water.

  8. Groundwater use for irrigation – a global inventory

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2010-10-01

    Full Text Available Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha, China (19 million ha and the USA (17 million ha. Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  9. Groundwater use for irrigation – a global inventory

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2010-06-01

    Full Text Available Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1 277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha, China (19 million ha and the United States of America (17 million ha. Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  10. Hydrologic Impacts of Municipal Wastewater Irrigation to a Temperate Forest Watershed.

    Science.gov (United States)

    Birch, Andrew L; Emanuel, Ryan E; James, April L; Nichols, Elizabeth Guthrie

    2016-07-01

    Land application of municipal wastewater to managed forests is an important treatment and water reuse technology used globally, but the hydrological processes of these systems are not well characterized for temperate areas with annual rainfall of 1200 mm or greater. This study evaluated the impact of municipal wastewater irrigation to the local water balance at a 3000-ha land application facility where secondary-treated wastewater is land applied to a mixed hardwood-pine forest over 900 ha. Stable isotopes of hydrogen (H) and oxygen (O), chloride concentrations, and specific conductance were used in combination with hydrometric measurements to estimate the wastewater composition in groundwater, surface water, and at the watershed outlet during dry and wet seasonal periods and during one large rainfall event. Wastewater and water bodies receiving irrigation were found to have significantly higher δH, δO, specific conductance, and chloride concentrations. Using these tracers, a two-component, three-end member geochemical mixing model estimated mean wastewater compositions in the surficial aquifer receiving irrigation from 47 to 73%. Surface water onsite was found to reflect the high wastewater composition in groundwater. Land-applied wastewater contributed an estimated 24% of total streamflow, with the highest wastewater compositions in surface water observed during major storm events and at low-flow conditions. Groundwater and surface water within the watershed were found to have proportionally higher wastewater compositions than expected based on the proportion of irrigation to rainfall received by these areas.

  11. Water dephts and macronutrients accumulation in 'pérola' pineapple irrigated by drip

    Directory of Open Access Journals (Sweden)

    Uirá do Amaral

    2014-09-01

    Full Text Available Brazil is one of the largest pineapple producers worldwide, and those fruits are for the juice industry and the in natura market. Its cultivation requires high technology investment by using irrigation and balanced fertilization. However, little is known about the influence of drip irrigation on nutrient uptake by pineapple plants. This study aimed to evaluate the influence of different irrigation depths on nutrients accumulation by 'Pérola' pineapples grown in northern region of Minas Gerais State, Brazil. The experimental design was in randomized blocks with five treatments referring to: 30% of Class A Evaporation Pan (ECA; 50% of ECA; 70% of ECA; 100% of ECA; and 150% of ECA. To determine the levels of macronutrients and dry matter, the plants were separated in root, stem, leaves, 'D' leaf, crown, fruit and whole plant. The sequence of macronutrients accumulated in the whole plant was K>N>Ca>P>Mg. The fruits exported from the cultivated area the following amounts of macronutrients: 17.52 kg ha-1 of K (12.8%; 16.91 kg ha-1 of N (20.7%; 10.77 kg ha-1 of Ca (15.9%, 1.29 kg ha-1 of P (12.4% and 1.04 kg ha-1 of Mg (20.5%. The irrigation depths that provided the maximum N, P, K and Ca accumulation in the whole plant are 53.6, 61.6, 54.5 and 60.2% of ECA, respectively.

  12. Ethnic Forces in Collective Action: Diversity, Dominance, and Irrigation in Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Timothy M. Waring

    2011-12-01

    Full Text Available Mounting evidence suggests that ethnic interactions damage cooperation in the provision of public goods, yet very few studies of collective action in common pool resource management have found strong evidence for the effects of ethnic diversity. Research on both public goods and common pool resource management that does find negative ethnic effects on cooperation tend to ignore the importance of interethnic relationships, particularly ethnic inequality, stratification, or dominance. This study presents data from agricultural villages in Tamil Nadu's Palani Hills to test the importance of a range of ethnic effects using caste interactions in a traditional irrigation system. I provide corroborating evidence of a negative cooperative effect of ethnic diversity, but also demonstrate that factors of ethnic dominance such as hierarchical stratification and demographic dominance strongly determine outcomes in collective irrigation management. I argue that the most important measure of equity, irrigation access, is socially, technologically, and institutionally embedded, and demonstrate that the distribution of irrigation channels is explained by measures of inequality, such as wealth inequality, Dalit status, and demographic dominance.

  13. Towards a smart automated surface irrigation management in rice-growing areas in Italy

    Directory of Open Access Journals (Sweden)

    Daniele Masseroni

    2017-02-01

    Full Text Available Italy is the leading rice producer in Europe, accounting for more than half of the total high-quality production of this crop. Rice is traditionally grown in fields that remain flooded starting with crop establishment until close to harvest, and this traditional irrigation technique (i.e., continuous submergence is recognised as an important water resource sink (almost 40% of the irrigation water available worldwide is used for paddy areas. Meanwhile, the water management in rice areas requires a high level of labour because it is based on maintaining a predetermined water height in paddy fields and because the regulation of input and output flow is typically operated manually by the farmer. This study reveals the hardware and software characteristics of an automated and remote controlled technology tested for the first time in a rice farm near Pavia (Italy, during the 2016 growing season, aiming at a more efficient and less burdensome irrigation management system for rice fields. A water level sensor in the field provides the data required to govern the inflow regulation gate in real-time, according to the precise time to cut off the flow rate. Using a dedicated web page, the farmer can control flows, volumes and water levels in the fields by operating directly on the gate if necessary or setting the irrigation program according to his agronomic practices.

  14. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  15. Annual Report 2007 Multi-state research project on "Irrigation Management for Humid and Sub-Humid Areas" S1018.

    Science.gov (United States)

    This report summarizes the annual results from scientists at the Application and Production Technology Research Unit in Stoneville, as members of the multi-state research project on irrigation and water management S1018. The multi-state research project has four key objectives, three of which the St...

  16. 应用于水稻生产的增效减负环保型施肥技术比对--以宁夏引黄灌区为例%The Comparison of Different Fertilizer Technologies on Nitrogen Leaching Losses and Nitrogen Use Efficiency in Rice Production-- Taking Ningxia Irrigation Region as an Example

    Institute of Scientific and Technical Information of China (English)

    张爱平; 高霁; 刘汝亮; 陈哲; 杨世琦; 杨正礼; 张晴雯

    2015-01-01

    过量施肥及盲目灌溉导致宁夏引黄灌区水稻种植中氮素淋失严重,氮肥利用率低下。探索能够在保障水稻产量前提下减少氮素淋失、提高氮素利用率的环保型施肥技术是该区域实现农业可持续发展的现实需求。本研究在前期研究的基础上,就不同施肥技术对灌区水稻生育期内氮素淋失、氮素利用率及水稻产量的影响效果进行比对,旨在为后续工作中技术筛选及推广提供依据。试验共设置4个处理,分别是(1)无肥对照(CK):不施氮肥;(2)常规施肥(FP):施用氮肥300 kg N·hm-2,60%作为基肥,分蘖和孕穗期各追肥20%;(3)侧条施肥(SD):施用水稻专用控释肥120 kg N·hm-2,水稻插秧时将肥料一次性施入;(4)育苗箱全量施肥(NB):施用水稻专用控释肥,用量为120 kg N·hm-2,育秧时一次性全量施入育秧盘。结果表明,采用SD和NB在氮素用量较FP降低60%的情况下,水稻产量都不会下降。SD可以显著降低稻田氮素淋溶损失,FP水稻生育期内可溶性总氮(TN)、硝态氮(NO3--N)和铵态氮(NH4+-N)淋失量分别为39.89、26.22 kg·hm-2和5.49 kg·hm-2,SD和FP相比,TN、NO3--N和NH4+-N的淋失量分别减少18.97、11.18 kg·hm-2和2.27 kg·hm-2;同时SD可以显著提高宁夏灌区水稻氮素利用率,较FP提高21.4%。NB和FP相比,TN、NO3--N和NH4+-N淋失量分别减少14.36、10.14 kg·hm-2和1.84 kg·hm-2,氮素利用率亦提高15.7%,但是TN、NO3--N和NH4+-N淋失量较SD处理分别增加4.61、1.04 kg·hm-2和0.43 kg·hm-2,同时氮素利用率亦减少5.7%。综合考虑水稻产量和环境效益,SD更适合在宁夏灌区水稻种植中推广应用。%High N fertilizer and flooding irrigation applied to rice in anthropogenic-alluvial soil often result in N leaching and low use efficien-cy of applied fertilizer N from the rice field in Ningxia irrigation region

  17. Comparison of a continuous ultrasonic irrigation device and conventional needle irrigation in the removal of root canal debris.

    Science.gov (United States)

    Curtis, Tyson O; Sedgley, Christine M

    2012-09-01

    The purpose of this in vitro study was to compare a continuous ultrasonic irrigation device (VPro StreamClean System [VSS], Vista Dental Products, Racine, WI) with conventional needle irrigation when used as a final irrigation procedure to debride the apical region of the root canal. The null hypothesis that there is no difference was tested. Root canals of matched pairs (N = 20) of extracted human teeth were prepared to an apical size of 36/.04 using Profile series 29/.04 rotary files (Dentsply Tulsa Dental, Tulsa, OK) with 6% sodium hypochlorite (NaOCl) irrigation. One tooth of each pair was randomly assigned to receive final irrigation with either VSS or conventional needle irrigation. The gauge of the needle (#30), the irrigation cycles (ie, 5 mL NaOCl, 5 mL 15% EDTA, and 5 mL NaOCl), the irrigant flow rate (5 mL/min), and needle depth placement (1 mm from the working length [WL]) were experimental constants. Serial sections were obtained at 1 and 3 mm from the WL, stained with hematoxylin-eosin, and viewed at 100× magnification for the presence of debris. The percentage of debris in the canal lumen after VSS or conventional needle irrigation was compared by using the Wilcoxon matched pairs test. There was significantly less debris in the VSS group compared with the conventional needle irrigation group at the 1-mm level (1.50% [VSS] vs 9.90% [conventional needle irrigation], P = .0001) and the 3-mm level (0.45% [VSS] vs 5.16% [conventional needle irrigation], P = .0014). The null hypothesis was rejected. Final irrigation with the VSS compared with conventional needle irrigation delivery resulted in significantly less debris present in root canals at 1 and 3 mm from the WL. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Co-benefits and trade-offs in the water-energy nexus of irrigation modernization in China

    Science.gov (United States)

    Cremades, Roger; Rothausen, Sabrina G. S. A.; Conway, Declan; Zou, Xiaoxia; Wang, Jinxia; Li, Yu'e.

    2016-05-01

    There are strong interdependencies between water use in agriculture and energy consumption as water saving technologies can require increased pumping and pressurizing. The Chinese Government includes water efficiency improvement and carbon intensity reduction targets in the 12th Five-Year Plan (5YP. 2011-2015), yet the links between energy use and irrigation modernization are not always addressed in policy targets. Here we build an original model of the energy embedded in water pumping for irrigated agriculture and its related processes. The model is based on the physical processes of irrigation schemes and the implication of technological developments, comprising all processes from extraction and conveyance of water to its application in the field. The model uses data from government sources to assess policy targets for deployment of irrigation technologies, which aim to reduce water application and contribute to adaptation of Chinese agriculture to climate change. The consequences of policy targets involve co-beneficial outcomes that achieve water and energy savings, or trade-offs in which reduced water application leads to increasing greenhouse gas (GHG) emissions. We analyze irrigation efficiency and energy use in four significant provinces and nationally, using scenarios based on the targets of the 12th 5YP. At the national scale, we find that expansion of sprinklers and micro-irrigation as outlined in the 5YP would increase GHG emissions from agricultural water use, however, emissions decrease in those provinces with predominant groundwater use and planned expansion of low-pressure pipes. We show that the most costly technologies relate to trade-offs, while co-benefits are generally achieved with less expensive technologies. The investment cost per area of irrigation technology expansion does not greatly affect the outcome in terms of water, but in terms of energy the most expensive technologies are more energy-intensive and produce more emissions. The

  19. 网络电子证据取证技术与反取证技术研究%Research on Forensic Technology and Anti-Forensic Technology of Network Electronic Evidence

    Institute of Scientific and Technical Information of China (English)

    杜威; 彭建新; 杨奕琦

    2011-01-01

    随着网络技术的发展,计算机网络犯罪现象日趋严重。为了有效地打击网络犯罪行为,完善网络电子证据立法基础,取证技术专家不仅要研究网络取证相关技术,同时还必须对网络反取证技术充分进行研究。通过研究反取证技术来促进取证技术的提高,这样才能在网络取证过程中拓宽思路,提高获取有效证据的效率。%With the development of network technology,the crimes involved in computer network become increasingly serious.In order to fight against network crime and to strengthen the legislative basis for the electronic evidence,forensic experts shall study the network forensic technology and the network anti-forensic technology.The study of the anti-forensic technology can promote the improvement of the forensic technology,so it can broaden our thinking and improve the efficiency in the network forensics.

  20. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  1. Genetic base of Brazilian irrigated rice cultivars

    Directory of Open Access Journals (Sweden)

    Hudson de Oliveira Rabelo

    2015-08-01

    Full Text Available The aim of this study was to estimate the genetic base of Brazilian irrigated rice cultivars released in the period from 1965 to 2012. The genealogies of the cultivars were obtained based on information from marketing folders, websites, crossings records, and scientific articles. The following factors were calculated: relative genetic contribution (RGC, accumulated genetic contribution (AGC, frequency (in percentage of each ancestor in the genealogy (FAG, number of ancestors that constitute each cultivar (NAC,number of ancestors responsible for 60%, 70%, 80% and 90% of the genetic base (NAGB, and average number of ancestor per cultivar (ANAC. The cultivars were also grouped based on the period of release (1965-1980, 1981-1990, 1991-2000 and 2001-2012. For each grouping, the previously described factors were also estimated. A total of 110 cultivars were studied and it was concluded that the genetic base of Brazilian irrigated rice cultivars is narrow.

  2. Irrigants in non-surgical endodontic treatment.

    Science.gov (United States)

    Regan, John D; Fleury, Alex A P

    2006-01-01

    This paper highlights that one of the main goals of root canal treatment is the elimination of microorganisms from the contaminated root canal system. Instrumentation alone will not allow for adequate debridement and disinfection of the complex and diverse root canal system. Chemomechanical debridement is required. The importance of the use of irrigants during non-surgical root canal treatment has frequently been neglected both during instruction of dental students and later in the clinical practice of endodontics. The article highlights 'shape, clean and fill' vs. 'clean, shape and fill' to enable chemomechanical debridement. Our protocol advises mechanical debridement and copious irrigation for a minimum of twenty minutes with 2.5% to 6% solutions of sodium hypochlorite, followed by a rinse with a 17% solution of ethylenediaminetetraacetic acid and a final rinse with 2% chlorhexidine. The canals are dried with high volume aspirators and sterile paper points.

  3. DEVELOPMENT OF WATER CIRCULATION MODEL INCLUDING IRRIGATION

    Science.gov (United States)

    Kotsuki, Shunji; Tanaka, Kenji; Kojiri, Toshiharu; Hamaguchi, Toshio

    It is well known that since agricultural water withdrawal has much affect on water circulation system, accurate analysis of river discharge or water balance are difficult with less regard for it. In this study, water circulation model composed of land surface model and distributed runoff model is proposed at 10km 10km resolution. In this model, irrigation water, which is estimated with land surface model, is introduced to river discharge analysis. The model is applied to the Chao Phraya River in Thailand, and reproduced seasonal water balance. Additionally, the discharge on dry season simulated with the model is improved as a result of including irrigation. Since the model, which is basically developed from global data sets, simulated seasonal change of river discharge, it can be suggested that our model has university to other river basins.

  4. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P ... and height and caused delay and reduction in seed emergence, quinoa was shown to be more resistant than chickpea. Dry biomass, seed yield, harvest index and crop water productivity were affected significantly (P ... and seed yield for both quinoa and chickpea while increasing salinity resulted in increase - in the case of quinoa - and decrease - in the case of chickpea - in harvest index and crop water productivity. Na+ and Na+/K+ ratio increased with increasing irrigation water salinity, while K+ content decreased...

  5. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    WANG Kang; ZHANG RenDuo; SHENG Feng

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development.In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment.Field dye staining experiments were conducted at different soils with various irrigation amount.Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency.Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage effi-ciency, and uniformity.Under the same irrigation condition, soil chemical distributions were more het-erogeneous than soil water distributions.The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount.Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount.Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uni-formity, which resulted in high environmental risks of groundwater pollution.

  6. Climate Change Impacts of Irrigation on the Central High Plains

    Science.gov (United States)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  7. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  8. Effect of three different irrigation solutions applied by passive ultrasonic irrigation

    Directory of Open Access Journals (Sweden)

    Carmen Llena

    2015-05-01

    Full Text Available Objectives This study evaluated the maximum depth and percentage of irrigant penetration into dentinal tubules by passive ultrasonic irrigation (PUI. Materials and Methods Thirty extracted human teeth were instrumented and divided into three groups. According to final irrigation regimen, 5.25% sodium hypochlorite (Group A, NaOCl, 2% chlorhexidine (Group B, CHX and saline solution (Group C, control group were applied with Irrisafe 20 tips (Acteon and PUI. Irrigant was mixed with 0.1% rhodamine B. Sections at 2 mm, 5 mm, and 8 mm from the apex were examined with confocal laser scanning microscopy (CLSM. The percentage and maximum depth of irrigant penetration were measured. Kruskal-Wallis test and Mann-Whitney test were performed for overall comparison between groups at each level and for pairwise comparison, respectively. Within a group, Wilcoxon test was performed among different levels. p values less than 0.05 were considered significant. Results In all groups, highest penetration depth and percentage of penetration were observed at the 8 mm level. At 2 mm level, Groups A and B had significantly greater depths and percentages in penetration than Group C (p < 0.05, but there were no significant differences between Groups A and B. At 5 mm level, penetration depths and percentage of penetration was not significantly different among the groups. Conclusions NaOCl and CHX applied by PUI showed similar depth and percentage of penetration at all evaluated levels.

  9. Comparative anti-microbial efficacy of Azadirachta indica irrigant with standard endodontic irrigants: A preliminary study

    Directory of Open Access Journals (Sweden)

    Arindam Dutta

    2014-01-01

    Full Text Available Objective: The anti-microbial efficacy of 2.5% sodium hypochlorite (SHC and 0.2% chlorhexidine gluconate were compared with an experimental irrigant formulated from the Neem tree, Azadirachta indica A. Juss. Materials and Methods: A sample of 36 single rooted anterior teeth with periapical radiolucency and absence of response to vitality tests that required root canal treatment were selected for this study. The test irrigants and their combinations were assigned to five different groups and saline served as the control. Access cavities were prepared using an aseptic technique and samples collected for both anaerobic culture and Gram stained smears, followed by irrigation and sample collection again. The number of organisms were expressed in colony forming units/ml after 72 h of incubation; the smears were analyzed for their microbial loads and tissue clearance and assessed as per defined criteria. Results: Our results found the maximum reduction in microbial loads, when analyzed by culture method, with a combination of SHC and the experimental neem irrigant. Maximum tissue clearance on the Gram Stained smears was also found with the same combination. Conclusion: Neem irrigant has anti-microbial efficacy and can be considered for endodontic use.

  10. EFFECT OF GROUNDWATER TABLE CONTROL ON WATER SAVING IRRIGATION STRATEGIES IN THE QINGTONGXIA IRRIGATION DISTRICT

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-gui; HOLLANDERS P. H. J.

    2004-01-01

    This paper focuses on the analysis of the effects of groundwater table control under different irrigation water amounts on the water and salinity balance and on crop yield. Two experimental areas, the Pingluo and Huinong experimental sites, were selected to collect the required data.The agro-hydrological model Soil-Water Atmosphere-Plant(SWAP) was used to analyse the water flows and salt transport processes for different groundwater levels and irrigation scenarios. Six scenarios, which resulted from different groundwater table regimes combined with different irrigation amounts, were simulated. The results show that high groundwater tables due to the excessive irrigation are the main cause of the large amount of drainage water and low crop yield;reducing irrigation water without a lower groundwater table will not lead to a large reduction of the drainage water, and will reduce the crop yield even more; to lower the groundwater table is a good measure to control the drainage water and increase crop yield.

  11. Solar Energy Based Automated Irrigation System

    Directory of Open Access Journals (Sweden)

    Prof. Lodhi A. K.

    2013-09-01

    Full Text Available In the field of agriculture, use of proper method of irrigation is important because the main reason is the lack of rains {&} scarcity of land reservoir water. The continuous extraction of water from earth is reducing the water level due to which lot of land is coming slowly in the zones of un-irrigated land. Another very important reason of this is due to unplanned use of water due to which a significant amount of water goes waste. For this purpose; we use this automatic plant irrigation system. In this project we use solar energy which is used to operate the irrigation pump. The circuit comprises of sensor parts built using op-amp IC LM358. Op-amp are configured here as a comparator. Two stiff copper wires are inserted in the soil to sense whether the soil is wet or dry. The Microcontroller is used to control the whole system by monitoring the sensors and when sensors sense the dry condition then the microcontroller will send command to relay driver IC the contacts of which are used to switch on the motor and it will switch off the motor when all the sensors are in wet condition. The microcontroller does the above job as it receives the signal from the sensors through the output of the comparator, and these signals operate under the control of software which is stored in ROM of the Microcontroller. The condition of the pump i.e., ON/OFF is displayed on a 16X2 LCD

  12. Phosphorus losses in furrow irrigation runoff.

    Science.gov (United States)

    Westermann, D T; Bjorneberg, D L; Aase, J K; Robbins, C W

    2001-01-01

    Phosphorus (P) often limits the eutrophication of streams, rivers, and lakes receiving surface runoff. We evaluated the relationships among selected soil P availability indices and runoff P fractions where manure, whey, or commercial fertilizer applications had previously established a range of soil P availabilities on a Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid) surface-irrigated with Snake River water. Water-soluble P, Olsen P (inorganic and organic P), and iron-oxide impregnated paper-extractable P (FeO-Ps) were determined on a 0.03-m soil sample taken from the bottom of each furrow before each irrigation in fall 1998 and spring 1999. Dissolved reactive phosphorus (DRP) in a 0.45-microm filtered runoff sample, and iron-oxide impregnated paper-extractable P (FeO-Pw), total P, and sediment in an unfiltered runoff sample were determined at selected intervals during a 4-h irrigation on 18.3-m field plots. The 1998 and 1999 data sets were combined because there were no significant differences. Flow-weighted average runoff DRP and FeO-Pw concentrations increased linearly as all three soil P test concentrations increased. The average runoff total P concentration was not related to any soil P test but was linearly related to sediment concentration. Stepwise regression selected the independent variables of sediment, soil lime concentration, and soil organic P extracted by the Olsen method as related to average runoff total P concentration. The average runoff total P concentration was 1.08 mg L(-1) at a soil Olsen P concentration of 10 mg kg(-1). Soil erosion control will be necessary to reduce P losses in surface irrigation runoff.

  13. MODEL PENGENDALIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI (Model of Controlling Intangible Assets in Irrigation System Management

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2013-03-01

    Full Text Available The research aimed at developing model of controlling intangible assets in irrigation system management. The research method consisted of two stages. The first stage was building the model of controlling intangible assets in irrigation system management using neuro-fuzzy. The model had three submodels: (i knowledge management, (ii intangible assets, and (iii performance of irrigation system. The second stage was evaluating the model in Sapon irrigation system in Kulon Progo, Yogyakarta. Data collecting was done by questionnaire and interview on nine Water Use Associations. Data analysis was done by Adaptive Neuro Fuzzy Inference System. The model had been evaluated by correlation coefficient, Mean Absolute Percentage Error and Root Mean Square Error. The research result indicated that the model of controlling intangible assets in irrigation system management could predict intangible assets and performance of irrigation system well. The model linked knowledge management, intangible assets and performance of irrigation system.  Knowledge management felt into four main components: (i learning organization, (ii principle of organization, (iii policy and strategy of organization, and (iv information and communication technology which controlling intangible assets in irrigation system. Intangible assets consisted of moral intelligence, emotional intelligence, creativity attitude, institutional culture, and farmer participation which  controlling effectiveness of irrigation system. Keywords: model, intangible assets, controlling, irrigation system, knowledge management   Tujuan penelitian adalah mengembangkan model pengendalian aset nirwujud dalam manajemen sistem irigasi. Metode penelitian terdiri dari dua tahap. Tahap pertama adalah pembangunan model pengendalian aset nirwujud dalam manajemen sistem irigasi dengan prinsip neuro-fuzzy. Model mempunyai tiga sub model yaitu manajemen pengetahuan, aset nirwujud dan kinerja sistem irigasi. Tahap kedua

  14. Cultivation of Modern and New Farmers from the Perspective of Black Box of Science and Technology

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On the basis of analyzing the connotation and function of black box of science and technology,this article expounds the necessity of cultivating modern and new farmers in China at present,and points out that with incessant progress of science and technology,the modern agriculture based on black box of science and technology will continue to grow,which requires a large number of new farmers who can learn and improve black box of agricultural science and technology.Finally,the recommendations are put forward for cultivation of new farmers:improving farmers’ training system;enhancing rural financial support,so that the farmers benefit from black box of science and technology;strengthening the cultivation of the practical ability,and promoting farmers’ management capacity;strengthening the cultivation of innovative ability,and nurturing innovative farmers.

  15. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  16. CASTOR BEAN PRODUCTION AND CHEMICAL ATTRIBUTES OF SOIL IRRIGATED WITH WATER WITH VARIOUS CATIONIC COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    GEOVANI SOARES DE LIMA

    2016-01-01

    Full Text Available This study aimed to evaluate the production of castor beans, cv. „BRS Energia‟, in terms of soil chemical composition as a function of the cationic nature, and salinity levels, of the irrigation water. The experiment was carried out using lysimeters in a controlled environment at the Center of Technology and Natural Resources of the Federal University of Campina Grande, from November 2013 to February 2014. The treatments consisted of six types of salinity (S 1 - Control; S 2 - Na + ; S 3 - Ca 2+ ; S 4 - Na + + Ca 2+ ; S 5 - K + , and S 6 - Na + + Ca 2+ + Mg 2+ , distributed in randomized blocks with four replicates; each plot consisted of five plants for evaluation, totaling 120 experimental plots. Plants in the control treatment (S 1 were irrigated with water with an electrical conductivity (ECw of 0.6 dS m - 1 , and the other treatments (S 2 ; S 3 ; S 4 ; S 5 and S 6 with ECw of 4.5 dS m - 1 , but with (a different cation(s. Water salinity of 4.5 dS m - 1 hampers castor bean production, regardless of the cationic nature of the water; castor bean „BRS Energia‟ was more sensitive to salinity caused by the presence of potassium salts in the irrigation water; the mass of seeds in the primary raceme is the most sensitive variable to salinity and the cationic nature of the irrigation water; the adopted leaching fraction (0.10 was not sufficient to avoid salt accumulation in the soil; irrigation with low ECw promoted the lowest value of exchangeable sodium percentage.

  17. Proposal for an index to classify irrigation water quality: a case study in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Celsemy Eleutério Maia

    2012-06-01

    Full Text Available One way of classifying water quality is by means of indices, in which a series of parameters analyzed are joined a single value, facilitating the interpretation of extensive lists of variables or indicators, underlying the classification of water quality. The objective of this study was to develop a statistically based index to classify water according to the Irrigation Water Quality Index (IWQI, to evaluate the ionic composition of water for use in irrigation and classify it by its source. For this purpose, the database generated during the Technology Generation and Adaptation (GAT program was used, in which, as of 1988, water samples were collected monthly from water sources in the states of Paraíba, Rio Grande do Norte and Ceará. To evaluate water quality, the electrical conductivity (EC of irrigation water was taken as a reference, with values corresponding to 0.7 dS m-1. The chemical variables used in this study were: pH, EC, Ca, Mg, Na, K, Cl, HCO3, CO3, and SO4. The data of all characteristics evaluated were standardized and data normality was confirmed by Lilliefors test. Then the irrigation water quality index was determined by an equation that relates the standardized value of the variable with the number of characteristics evaluated. Thus, the IWQI was classified based on indices, considering normal distribution. Finally, these indices were subjected to regression analysis. The method proposed for the IWQI allowed a satisfactory classification of the irrigation water quality, being able to estimate it as a function of EC for the three water sources. Variation in the ionic composition was observed among the three sources and within a single source. Although the water quality differed, it was good in most cases, with the classification IWQI II.

  18. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs.

  19. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  20. Apical Extrusion of Irrigants in Immature Permanent Teeth by Using EndoVac and Needle Irrigation: An In Vitro Study.

    Directory of Open Access Journals (Sweden)

    N Velmurugan

    2014-08-01

    Full Text Available Immature teeth have a large apical opening and thin divergent or parallel dentinal walls; hence, with conventional needle irrigation there is a very high possibility of extrusion. This study was done to compare the apical extrusion of NaOCl in an immature root delivered using EndoVac and needle irrigation.Eighty freshly extracted maxillary central incisors were decoronated followed by access cavity preparation. Modified organotypic protocol was performed to create an open apex; then, the samples were divided into four groups (n=20: EndoVac Microcannula (group I, EndoVac Macrocannula (group II, NaviTip irrigation needle (group III and Max-i-Probe Irrigating needle (group IV; 9.0 ml of 3% sodium hypochlorite was delivered slowly over a period of 60 seconds. Extruded irrigants were collected in a vial and analysed statistically.Group I, group III and group IV showed 100% extrusion (20/20 but group II showed only 40% extrusion (8/20. The difference in this respect between group II and other groups was statistically significant (P<0.001. With regards to the volume of extrusion, group II had only 0.23 ml of extruded irrigant. Group I extruded 7.53ml of the irrigant. Group III and group IV extruded the entire volume of irrigant delivered.EndoVac Macrocannula resulted in the least extrusion of irrigant in immature teeth when compared to EndoVac Microcannula and conventional needle irrigation.

  1. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  2. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  3. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  4. Reservoir storage and irrigation in Arequipa, Peru

    Science.gov (United States)

    Ertsen, Maurits; Swiech, Theoclea; Machicao Pererya, Carlos

    2010-05-01

    In countries such as Peru, irrigated agriculture is not only vital for the subsistence of many but can also be a factor of economic development and by extent social improvement. To answer the local demand and respond to the water scarcity in the sub-basin of Yarabamba, near city of Arequipa, the government decided the construction of a dam for irrigation. The irrigation systems are affected by the lack of water during the dry season for lack of storage and of water distribution between downstream and upstream sectors, among other issues. Water scarcity is the main issue in the basin, leading to poor yields and the inability of growing crops with a high commercial value. Rainfall is available only from November to April, the rest of the year being very dry. Furthermore, the lowest areas of Yarabamba, Sogay and Quequeña are disadvantaged compared to the highest area of Polobaya. By creating a large storage area to regulate the variations of water availability through the year, the dam would allow to at least palliate the lack of water in existing lands, and at best to extend agricultural lands. Farmers would then be able to shift toward higher value crops more easily than without this extra storage. The main focus of the research was the dam which was supposed to improve the water distribution and availability in the sub-basin. From the results of the study, it can be concluded that other factors, related to the irrigation system itself, are involved in the efficiency of the new structure. The farmers, the main stakeholders, believe that more could be done to improve the system and their standard of living. Most of all, the main issue that should be resolved is the fair distribution of water. However, this is not possible without a strong cooperation between sectors, and a potential change in diversion structures. The competition between the districts should be reduced, otherwise the benefits of the dam would not give the expected results. This example shows that

  5. WATER MANAGEMENT STRATEGIES UNDER DEFICIT IRRIGATION

    Directory of Open Access Journals (Sweden)

    Antonino Capra

    2008-12-01

    Full Text Available Deficit irrigation (DI is an optimization strategy whereby net returns are maximized by reducing the amount of irrigation water; crops are deliberated allowed to sustain some degree of water deficit and yield reduction. Although the DI strategy dates back to the 1970s, this technique is not usually adopted as a practical alternative to full irrigation by either academics or practitioners. Furthermore, there is a certain amount of confusion regarding its concept. In fact, a review of recent literature dealing with DI has shown that only a few papers use the concept of DI in its complete sense (e.g. both the agronomic and economic aspects. A number of papers only deal with the physiological and agronomical aspects of DI or concern techniques such as Regulated Deficit Irrigation (RDI and Partial Root Drying (PRD. The paper includes two main parts: i a review of the principal water management strategies under deficit conditions (e.g. conventional DI, RDI and PRD; and ii a description of a recent experimental research conducted by the authors in Sicily (Italy that integrates agronomic, engineering and economic aspects of DI at farm level. Most of the literature reviewed here showed, in general, quite positive effects from DI application, mostly evidenced when the economics of DI is included in the research approach. With regard to the agronomic effects, total fresh mass and total production is generally reduced under DI, whereas the effects on dry matter and product quality are positive, mainly in crops for which excessive soil water availability can cause significant reductions in fruit size, colour or composition (grapes, tomatoes, mangos, etc.. The experimental trial on a lettuce crop in Sicily, during 2005 and 2006, shows that the highest mean marketable yield of lettuce (55.3 t ha-1 in 2005 and 51.9 t ha-1 in 2006 was recorded in plots which received 100% of ET0-PM (reference evapotranspiration by the Penman- Monteith method applied water. In

  6. Irrigation and avifaunal change in coastal Northwest Mexico: has irrigated habit attracted threatened migratory species?

    Directory of Open Access Journals (Sweden)

    Sievert Rohwer

    2015-08-01

    Full Text Available Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo.

  7. Improvement of sustainability of irrigation in olive by the accurate management of regulated deficit irrigation

    Science.gov (United States)

    Memmi, Houssem; Moreno, Marta M.; Gijón, M. Carmen; Pérez-López, David

    2015-04-01

    Regulated Deficit Irrigation (RDI) is a useful tool to balance the improvement of productivity and water saving. This methodology is based in keeping the maximum yield with deficit irrigation. The key consists in setting water deficit during a non-sensitive phenological period. In olive, this phenological period is pit hardening, although, the accurate delimitation of the end of this period is nowadays under researching. Another interesting point in this methodology is how deep can be the water stress during the non-sensitive period. In this assay, three treatments were used in 2012 and 2013. A control treatment (T0), irrigated following FAO methodology, without water stress during the whole season and two RDI treatments in which water stress was avoided only during stage I and III of fruit growth. During stage II, widely considered as pit hardening, irrigation was ceased until trees reach the stated water stress threshold. Water status was monitored by means of stem water potential (ψs) measurements. When ψs value reached -2 MPa in T1 treatment, trees were irrigated but with a low amount of water with the aim of keeping this water status for the whole stage II. The same methodology was used for T2 treatment, but with a threshold of -3 MPa. Water status was also controlled by leaf conductance measurements. Fruit size and yield were determined at the end of each season. The statistically design was a randomized complete blocks with four repetitions. The irrigation amount in T1 and T2 was 50% and 65% less than T0 at the end of the study. There were no significant differences among treatments in terms of yield in 2012 (year off) and 2013 (year on).

  8. Optimizing preplant irrigation for maize under limited water in the high plains

    Science.gov (United States)

    Due to inadequate irrigation capacity, some farmers in the United States High Plains apply preplant irrigation to buffer the crop between irrigation events during the cropping season. The purpose of the study was to determine preplant irrigation amount and irrigation capacity combinations that optim...

  9. 25 CFR 171.415 - Can I place an obstruction on a BIA irrigation project?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can I place an obstruction on a BIA irrigation project... IRRIGATION OPERATION AND MAINTENANCE Irrigation Facilities § 171.415 Can I place an obstruction on a BIA irrigation project? No. You may not place obstructions on BIA irrigation projects. (a) If you do so, we will...

  10. CPLD Technology Applications in Traffic Lights%CPLD技术在交通信号灯中的应用

    Institute of Scientific and Technical Information of China (English)

    张丽丽

    2011-01-01

    This article has mainly introduced the use and design process of CPLD device,and discusses CPLD device's application among the traffic light signal controllers.Utilizing CPLD technology,the traffic light signal controller have realized intelligent finally.%文章主要介绍了CPLD器件的使用及其设计过程,并讨论了CPLD器件在交通灯信号控制器中的应用。利用CPLD技术,最终实现了交通灯信号控制器的智能化。

  11. In vitro disinfection of dentinal tubules by various endodontics irrigants.

    Science.gov (United States)

    Buck, R; Eleazer, P D; Staat, R H

    1999-12-01

    Effectiveness of endodontic irrigants within dentinal tubules of human teeth was evaluated. Mid-sections of single-rooted teeth were prepared into dentin wedges. The pulpal sides of the sections were exposed to Micrococcus luteus or Bacillus megaterium that grew into the tubules. Irrigants used in the study included: 0.525% NaOCl, 0.12% chlorhexidine, RC Prep, 0.5% betadine iodine, and sterile H2O (as a control). Pulpal surfaces were exposed to an irrigant and then rinsed in sterile water. The samples were then cracked, exposing a fresh surface. Culture of the exposed dentin surfaces showed that selected irrigants reached to the far ends of the dentinal tubules in a concentration sufficient to kill 100% of the M. luteus. However B. megaterium was neither killed nor apparently inhibited by any irrigant. We conclude that endodontic irrigants permeate throughout dentinal tubules, but their effectiveness is dependent on the type of bacteria found within the tubules.

  12. Comparison of Manual and Automatic Irrigation of Pot Experiments

    DEFF Research Database (Denmark)

    Haahr, Vagner

    1975-01-01

    An air-lift principle for transport of water was adapted for automatic irrigation of experimental pots originally constructed for manual irrigation by the weighing method. The two irrigation techniques were compared in an experiment with increasing amounts of nitrogen fertilizer to spring barley....... Productions of grain and straw and chemical composition were almost the same after the two irrigation methods, and it was concluded that the laborious manual watering could be replaced by automatic irrigation. Comparison of the yield from individual plants in the pots showed a large difference between centre...... plants and border plants independent of irrigation principle. The increase in yield per pot with increasing N fertilization was at the highest N level caused only by an increase in yield of the border plants....

  13. Reform of irrigation management and investment policy in African development

    Directory of Open Access Journals (Sweden)

    KW Easter

    2015-01-01

    Full Text Available This paper examines the reform of water and irrigation management in Africa and compares it with similar reforms in Asia.  Several things are evident from the review.  First, Sub-Saharan Africa (SSA is at an earlier stage of irrigation development and reform than Asia.  Second, the articulated need for reform is much stronger in Asia than it is in SSA.  Third, the productivity of small-scale irrigated farms is significantly lower in SSA compared to Asia.  Thus any irrigation investment strategy in SSA should be different from Asia and focus on increasing small-farm productivity as well as small-scale irrigation projects.  Finally, all direct government irrigation investments should be done jointly with decisions regarding the type of project management.

  14. 科技强国,永垂青史--"两弹一星"座谈会纪要%China's Growth in Strength from Science and Technology-The Achievements in Atomic Bomb,Missile and Man-made Satellite Will Go Down in the Annals of History

    Institute of Scientific and Technical Information of China (English)

    沈传宝

    2001-01-01

    @@ [编者按]2000年10月20日,中共中央党史研究室第二研究部召开"两弹一星"研制工作的历史回顾座谈会.座谈会由中央党史研究室副主任石仲泉主持.获得"两弹一星"功勋奖章和参加过这一伟大工程设计和建设的有关领导、专家李觉、陈能宽、程开甲、梁守槃、刘敏、刘嘉树等同志应邀出席了座谈会.有关单位的学者樊洪业、王德禄、刘志光及中央党史研究室的部分研究人员也参加了座谈会.在座谈中,各位专家、学者围绕着党中央对"两弹一星"的决策和领导、研制过程中的曲折与甘苦、自力更生与依靠外援的关系、50年代形成的大科学体制的特点及影响、"两弹一星"精神的重要意义等问题各抒己见.他们回顾历史,抚今追昔,讲述了许多鲜为人知的事情.现将座谈会的发言摘要如下.

  15. Irrigation Optimization by Modeling of Plant-Soil Interaction

    OpenAIRE

    2011-01-01

    Irrigation scheduling is an important issue for crop management, in a general context of limited water resources and increasing concern about agricultural productivity. Methods to optimize crop irrigation should take into account the impact of water stress on plant growth and the water balance in the plant-soil-atmosphere system. In this article, we propose a methodology to solve the irrigation scheduling problem. For this purpose, a plant-soil interaction model is used to simulate the struct...

  16. Water Supply Planning for Landscape Irrigation in Virginia

    OpenAIRE

    Tucker, Adrienne Janel LaBranche

    2009-01-01

    A water supply plan approach was used to investigate irrigation application on landscaped areas in Virginia with a focus on turfgrass. The economically-important turfgrass industry in Virginia should be proactive in conserving drinking water supplies to meet human consumption needs, especially in drought times. This thesis investigates current irrigation water supplies, water supply sustainability, and alternative water sources to meet irrigation demands and offers an insight on how potable w...

  17. 75 FR 29577 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2010-05-26

    ... acre 68.00 70.00 Wapato Irrigation Project--Additional Works Minimum Charge per tract...... 63.00 65.00... Others Basic-per acre 20.50 22.50 (includes Bighorn, Soap Creek, and Pryor Units) *. Crow Irrigation Two... 86.00 feet (Ranch 5). San Carlos Irrigation Project (Joint Works) Basic per acre 21.00 21.00 (See...

  18. MANAGEMENT OF IRRIGATION AND NITROGEN FERTILIZERS TO REDUCE AMMONIA VOLATILIZATION

    Directory of Open Access Journals (Sweden)

    Fernando Viero

    2015-12-01

    Full Text Available ABSTRACT Nitrogen losses by ammonia (NH3 volatilization can be reduced by appropriate irrigation management or by alternative N sources, replacing urea. The objective of this study was to evaluate the efficiency of irrigation management and N source combinations in decreasing NH3 volatilization from an Argissolo Vermelho Distrófico típico cultivated for 28 years with black oat (Avena strigosa and maize (Zea mays, under no-tillage in the region of Depressão Central, Rio Grande do Sul, Brazil. The experiment was arranged in a randomized block design with split plots with three replications, where the main plots consisted of irrigation systems: no irrigation; irrigation immediately before and irrigation immediately after fertilization. The subplots were treated with different N sources: urea, urea with urease inhibitor and slow-release fertilizer, at an N rate of 180 kg ha-1, broadcast over maize, plus a control treatment without N fertilization. Ammonia volatilization was assessed using semi-open static collectors for 1, 2, 4, 6, and 10 days after N fertilization. In general, more than 90 % of total NH3-N losses occurred until three days after N fertilization, with peaks up to 15.4 kg ha-1 d-1. The irrigation was efficient to reduce NH3 losses only when applied after N fertilization. However, reductions varied according to the N fertilizer, and were higher for urea (67 % and slightly lower for urea with urease inhibitor (50 % and slow-release fertilizer (40 %, compared with the mean of the treatments without irrigation and irrigation before fertilization. The use of urea with urease inhibitor instead of urea was only promising under volatilization-favorable conditions (no irrigation or irrigation before N fertilization. Compared to urea, slow-release fertilizer did not reduce ammonia volatilization in any of the rainfed or irrigated treatments.

  19. Evaluation of Wetland Hydrology in Formerly Irrigated Areas

    Science.gov (United States)

    2017-07-01

    ER D C/ EL T R- 17 -1 3 Wetlands Regulatory Assistance Program Evaluation of Wetland Hydrology in Formerly Irrigated Areas En vi ro nm...EL TR-17-13 July 2017 Evaluation of Wetland Hydrology in Formerly Irrigated Areas Jacob F. Berkowitz, Jason P. Pietroski, and Steven J. Currie...of hydrology , and the distribution of plant communities. As a result, the identification of wetlands in irrigated areas remains challenging. The

  20. Institutional and structural barriers for implementing on-farm water saving irrigation systems

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Boesen, Mads Vejlby; Ørum, Jens Erik

    2013-01-01

    Population growth and increased global water demand has intensified the need to apply water more efficiently. As the main global water user the agricultural sector needs special attention. In this study, the water saving potential of new drip irrigation systems has been investigated in five...... to new water saving technologies are low in many of these regions due to low profitability of water savings and various institutional and structural barriers. On Crete, however, attempts have been made with regulation and volumetric water levies, resulting in the adoption of water saving technology...... are suggested to improve incentives to save water among farmers....

  1. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    Science.gov (United States)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  2. Influence of Irrigation Scheduling Using Thermometry on Peach Tree Water Status and Yield under Different Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Huihui Zhang

    2017-02-01

    Full Text Available Remotely-sensed canopy temperature from infrared thermometer (IRT sensors has long been shown to be effective for detecting plant water stress. A field study was conducted to investigate peach tree responses to deficit irrigation which was controlled using canopy to air temperature difference (ΔT during the postharvest period at the USDA-ARS (U.S. Department of Agriculture, Agricultural Research Service San Joaquin Valley Agricultural Sciences Center in Parlier, California, USA. The experimental site consisted of a 1.6 ha early maturing peach tree orchard. A total of 18 IRT sensors were used to control six irrigation treatments including furrow, micro-spray, and surface drip irrigation systems with and without postharvest deficit irrigation. During the postharvest period in the 2012–2013 and 2013–2014 growing seasons, ΔT threshold values at mid-day was tested to trigger irrigation in three irrigation systems. The results showed that mid-day stem water potentials (ψ for well irrigated trees were maintained at a range of −0.5 to −1.2 MPa while ψ of deficit irrigated trees dropped to lower values. Soil water content in deficit surface drip irrigation treatment was higher compared to deficit furrow and micro-spray irrigation treatments in 2012. The number of fruits and fruit weight from peach trees under postharvest deficit irrigation treatment were less than those well-watered trees; however, no statistically significant (at the p < 0.05 level reduction in fruit size or quality was found for trees irrigated by surface drip and micro-spray irrigation systems by deficit irrigation. Beside doubles, we found an increased number of fruits with deep sutures and dimples which may be a long-term (seven-year postharvest regulated deficit irrigation impact of deficit irrigation on this peach tree variety. Overall, deployment of IRT sensors provided real-time measurement of canopy water status and the information is valuable for making irrigation

  3. Wind pumps for irrigating greenhouse crops: comparison in different socio-economical frameworks

    Science.gov (United States)

    Díaz, Rodrigo; Rasheed, Adnan; Peillon, Manuel; Perdigones, Alicia; Sanchez, Raúl; María Tarquis, Ana; García, Jose Luis

    2013-04-01

    Wind power can play an interesting role in irrigation projects in different areas. A simple methodology has been developed in previous papers for technical evaluation of windmills for irrigation water pumping [1]. This methodology can determine the feasibility of the technology and the levels of daily irrigation demand satisfied by windmills at different levels of risk, using tomato (Lycopersicon esculentum Mill) as greenhouse crop. The present work compared the feasibility of the technology and the critical factors involved in three different countries: Cuba, Spain and Pakistan. The study considered as factors the wind speed level, the energy cost, the tomato prices, the reliability and distance to the electrical grid, and the crop development dates, determining the economic feasibility for each combination of factors in each country. Countries have been selected because of their different socio-economical frameworks, leading to different critical factors. References [1] Peillón, M., Sánchez, R., Tarquis, A.M., García, J.L. The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba. Agricultural Water Management, DOI 10.1016/j.agwat.2012.10.024

  4. Design and Implementation of Management Information System in Irrigation Area%研究灌区管理信息系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    何林

    2014-01-01

    随着网络技术的发展,信息化管理技术的提高,计算机技术被应用在各个领域,水利方面也不断采用现代化技术,研究灌区管理信息系统,实现灌区管理的信息化、自动化,是规范我国灌区管理工作的重要举措。本文将对灌区管理信息系统的设计与实现作简要分析。%With the development of network technology and improvement of information management technology, computer technology has been applied in various fields. Water conservancy also continues to use modern technology, study irrigation management information system in irrigation area, achieve the information and automation of irrigation area management, which is the important measure of standardizing management of irrigation districts. This paper analyzes the design and implementation of management information system in irrigation area.

  5. Filtration, Treatment, and Maintenance Considerations for Micro-Irrigation Systems

    OpenAIRE

    Benham, Brian Leslie, 1960-; Ross, B. Blake

    2009-01-01

    Causes and Prevention of Emitter Plugging, Water Quality Analysis, Physical plugging hazards, Biological plugging hazards, Chemical plugging hazards, Flushing, Injecting chemicals into Micro-irrigation system

  6. The relationship between irrigation water demand and drought in the Yellow River basin

    Science.gov (United States)

    Wang, Yu; Wang, Weihao; Peng, Shaoming; Jiang, Guiqin; Wu, Jian

    2016-10-01

    In order to organize water for drought resistance reasonably, we need to study the relationship between irrigation water demand and meteorological drought in quantitative way. We chose five typical irrigation districts including the Qingtongxia irrigation district, Yellow River irrigation districts of Inner Mongolia in the upper reaches of the Yellow River, the Fen river irrigation district and the Wei river irrigation district in the middle reaches of the Yellow River and the irrigation districts in the lower reaches of the Yellow River as research area. Based on the hydrology, meteorology, groundwater and crop parameters materials from 1956 to 2010 in the Yellow River basin, we selected reconnaissance drought index (RDI) to analyze occurrence and evolution regularity of drought in the five typical irrigation districts, and calculated the corresponding irrigation water demand by using crop water balance equation. The relationship of drought and irrigation water demand in each typical irrigation district was studied by using grey correlation analysis and relevant analysis method, and the quantitative relationship between irrigation water demand and RDI was established in each typical irrigation district. The results showed that the RDI can be applied to evaluate the meteorological drought in the typical irrigation districts of the Yellow River basin. There is significant correlation between the irrigation water demand and RDI, and the grey correlation degree and correlation coefficient increased with increasing crops available effective rainfall. The irrigation water demand of irrigation districts in the upstream, middle and downstream of the Yellow River basin presented different response degrees to drought. The irrigation water demand increased 105 million m3 with the drought increasing one grade (RDI decreasing 0.5) in the Qingtongxia irrigation district and Yellow River irrigation districts of Inner Mongolia. The irrigation water demand increased 219 million m3

  7. New Trends in the Fertigation Management of Irrigated Vegetable Crops

    Directory of Open Access Journals (Sweden)

    Luca Incrocci

    2017-06-01

    Full Text Available The use of fertigation, coupled with micro-irrigation, has continued to increase since it was first introduced in horticultural cropping systems. This combination provides a technical solution whereby nutrients and water can be supplied to the crop with high precision in terms of time and space, thereby allowing high nutrient use efficiency. However, the correct estimation of crop nutrient and water needs is fundamental to obtaining precise plant nutrition and high nutrient use efficiency in fertigated cropping systems. This paper illustrates the state-of-the-art and new perspectives for optimal nutrient management of vegetable crops cultivated under fertigation regimes. An overall description is reported for the most valuable technologies and techniques based on simulation models, soil testing, plant testing, and related decision support systems that can be adopted for efficient fertigation. However, it should be highlighted that only a few of the above technologies and techniques are practically available and/or easy to use by growers. Therefore, much more attention should be paid in the future to the transfer of research knowledge to farmers and technical advisors.

  8. Agricultural Irrigation Water Use in a Closed Basin  and the Impacts on Water Productivity: The Case of  the Guadalquivir River Basin (Southern Spain

    Directory of Open Access Journals (Sweden)

    Alfonso Expósito

    2017-02-01

    Full Text Available This paper analyses the agricultural irrigation water use in a closed basin and the impacts on water productivity, and examines how they have affected the ‘closure’ process of the Guadalquivir river basin observed in recent decades. Following a period of expansion in irrigation, an administrative moratorium was declared on new irrigated areas in 2005. Since then, the main policy measure has been aimed at the modernisation of irrigated agriculture and the implementation of water conservation technologies. The analysis carried out in this paper shows a significant increase in mean irrigation water productivity in the pre‐moratorium period (1989–2005, driven by the creation of new irrigated areas devoted to high value crops and with a dominant use of deficit irrigation strategies, while a second phase (2005–2012 is characterised by slower growth in terms of the mean productivity of irrigation water, primarily as a result of a significant reduction in water use per area. Findings show that productivity gains seem to have reached a ceiling in this river basin, since technological innovations (such as new crops, deficit irrigation, and water‐saving and conservation technologies have reached the limits of their capacity to create new value.

  9. Apical Extrusion of Irrigants in Immature Permanent Teeth by Using EndoVac and Needle Irrigation: An In Vitro Study

    Science.gov (United States)

    Velmurugan, N; Sooriaprakas, C; Jain, Preetham

    2014-01-01

    Objective: Immature teeth have a large apical opening and thin divergent or parallel dentinal walls; hence, with conventional needle irrigation there is a very high possibility of extrusion. This study was done to compare the apical extrusion of NaOCl in an immature root delivered using EndoVac and needle irrigation. Materials and Methods: Eighty freshly extracted maxillary central incisors were decoronated followed by access cavity preparation. Modified organotypic protocol was performed to create an open apex; then, the samples were divided into four groups (n=20): EndoVac Microcannula (group I), EndoVac Macrocannula (group II), NaviTip irrigation needle (group III) and Max-i-Probe Irrigating needle (group IV); 9.0 ml of 3% sodium hypochlorite was delivered slowly over a period of 60 seconds. Extruded irrigants were collected in a vial and analysed statistically. Results: Group I, group III and group IV showed 100% extrusion (20/20) but group II showed only 40% extrusion (8/20). The difference in this respect between group II and other groups was statistically significant (Pirrigant. Group I extruded 7.53ml of the irrigant. Group III and group IV extruded the entire volume of irrigant delivered. Conclusion: EndoVac Macrocannula resulted in the least extrusion of irrigant in immature teeth when compared to EndoVac Microcannula and conventional needle irrigation. PMID:25584055

  10. Comparison of irrigant penetration up to working length and into simulated lateral canals using various irrigating techniques.

    Science.gov (United States)

    Spoorthy, E; Velmurugan, N; Ballal, S; Nandini, S

    2013-09-01

    To evaluate the effect of an apical negative pressure system, a passive ultrasonic irrigation system and a combination of both apical negative pressure and passive ultrasonic irrigation on the penetration of the irrigating contrast solution (ICS) up to working length and into simulated lateral canals. The root canals of 64 single-rooted teeth were instrumented using the ProTaper rotary system. In each sample, three simulated lateral canals were created at 2, 4 and 6 mm levels from the root apex using a 06-size C+ file (Dentsply Maillefer, Ballaigues, Switzerland). Samples were randomly assigned into 4 experimental groups (n = 16): group I - conventional needle irrigation, group II - passive ultrasonic irrigation, group III - apical negative irrigation system and group IV - combination of passive ultrasonic irrigation and apical negative pressure irrigation system. To examine irrigating solution penetration, Indian ink was mixed with 5.25% NaOCl and delivered into the root canals. Samples were then assessed by direct observation of the images taken using Canon EOS rebel T3. The depth of penetration of ICS up to the working length and into the simulated lateral canals was analysed using chi-squared tests. The combination (ANP and PUI) and ANP group had significantly deeper ICS penetration up to the working length (P Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Comparison of sealer penetration using the EndoVac irrigation system and conventional needle root canal irrigation.

    Science.gov (United States)

    Kara Tuncer, Aysun; Unal, Bayram

    2014-05-01

    The aim of this study was to compare the effect of the EndoVac irrigation system (SybronEndo, Orange, CA) and conventional endodontic needle irrigation on sealer penetration into dentinal tubules. Forty single-rooted, recently extracted human maxillary central incisors were randomly divided into 2 groups according to the irrigation technique used: conventional endodontic needle irrigation and EndoVac irrigation. All teeth were instrumented using the ProFile rotary system (Dentsply Maillefer, Ballaigues, Switzerland) and obturated with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) labeled with fluorescent dye. Transverse sections at 1, 3, and 5 mm from the root apex were examined using confocal laser scanning microscopy. The total percentage and maximum depth of sealer penetration were then measured. Mann-Whitney test results showed that EndoVac irrigation resulted in a significantly higher percentage of sealer penetration than conventional irrigation at both the 1- and 3-mm levels (P irrigation system significantly improved the sealer penetration at the 1- to 3-mm level over that of conventional endodontic needle irrigation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Appropriate designs and appropriating irrigation systems : irrigation infrastructure development and users' management capability in Bolivia

    NARCIS (Netherlands)

    Gutierrez Pérez, Z.

    2005-01-01

    The objectives of this book are to explore and demonstrate the 'divorce' that is taking place in how critical actors think about irrigation infrastructure design and management, and in how designers often impose their own narrow preferences in infrastructure composition and performance without refle

  13. Irrigation and fertigation with drip and alternative micro irrigation systems in northern highbush blueberry

    Science.gov (United States)

    The effects of nitrogen (N) fertigation using conventional drip and alternative micro irrigation systems were evaluated in six cultivars of northern highbush blueberry. The drip system consisted of two laterals of drip tubing, with 2 L/h in-line emitters (point source) spaced every 0.45 m, on each s...

  14. Laser assisted irrigation and hand irrigation for root canal decontamination: a comparison

    Science.gov (United States)

    Olivi, M.; Stefanucci, M.; Todea, C.

    2014-01-01

    Aim: to compare the bactericidal efficiency of conventional method and LAI for root canal decontamination. Material and method: 22 human single root teeth, extracted for periodontal problems, mechanically prepared up to ISO 25 at the working lenght were divided in 2 groups: after sterilization, the teeth were infected with enterococcus faecalis and incubated for 4 weeks. Group A: 10 teeth were irrigated with conventional hand technique (CI): 3ml of 5% NaClO were used for two times of 30s each and after washing with sterile bi-distilled water for 20s, a final irrigation was performed with 3ml of 17% EDTA. Group B: 10 teeth were irrigated with 3ml of NaClO and activated by erbium laser, two cycles of 30s; also the final irrigation with 3ml of 17% EDTA was activated by erbium laser. In both the groups a resting time of 30s was used between the two sessions to allow the reaction rate of NaClO. The Erbium laser 2940 nm (LightWalker AT, Fotona; Lublijana, Slovenia) was used with 50microsecond pulse duration, at 15Hz, 20mJ, with a 600micron PIPS tip. Two samples were used as positive and negative control.

  15. Irrigating lives : Development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with changes in

  16. Irrigating lives : development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with ch

  17. Effects of Irrigation Practices on Some Soil Chemical Properties on OMI Irrigation Scheme

    Directory of Open Access Journals (Sweden)

    M.A. Adejumobi

    2014-10-01

    Full Text Available Irrigation practices have been observed to impact scheme soil properties and other parameters negatively. These could be as a result of irrigation water quality, method of application and nature of scheme soil. This study was therefore conducted to study the effects of irrigation practices on the soils of Omi irrigation scheme Kogi state, Nigeria after 13years of operation. Soil samples were taken at depths 0 – 20 cm (A1, 20 – 80 cm (A2 and 80 – 120 cm (A3 from two operating lands (OL; OL 5 and OL 18 of the study area. The samples were analysed for chemical parameters (pH, CEC, ESP, Mg2+, Ca2+, OM, and OC. The soil pH which was in the neutral range (pH=6.65 to 7.00 at inception of scheme, has become slightly acidic (pH=6.53 to 6.60. Cation exchange capacity (CEC levels have also increased from 10cmol+kg-1 to 35cmol+kg-1. While Organic matter (OM and Organic carbon (OC also have marked increase in their levels (baseline as 0.93 to 1.08; for year 2013 as 9.52 to 9.79. Generally, the analysis indicated a need for proper monitoring of the scheme soil to prevent further deterioration.

  18. Intervention Processes and Irrigation Institutions: Sustainability of Farmer Managed Irrigation Systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management

  19. 77 FR 21556 - Don Pedro Hydroelectric Project: Turlock Irrigation District; Modesto Irrigation District...

    Science.gov (United States)

    2012-04-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Don Pedro Hydroelectric Project: Turlock Irrigation District; Modesto... Tuolumne Habitats for Anadromous Fish; Request 8--Salmon and Steelhead Full Life-Cycle Population Models...

  20. 76 FR 58249 - Notice of Availability of Proposed Low Effect Habitat Conservation Plan for Tumalo Irrigation...

    Science.gov (United States)

    2011-09-20

    ... Effect Habitat Conservation Plan for Tumalo Irrigation District's Tumalo Conservation Project AGENCY... Tumalo Irrigation District's (TID) application for an incidental take permit, pursuant to the Endangered... Columbia River Steelhead in the Deschutes River basin that may occur from irrigation activities...

  1. New Technology for High Efficient Recovery of Precious Metals Six-component Alloy Wastes

    Institute of Scientific and Technical Information of China (English)

    DONG Wei; WU Xian; ZHANG Ji; CAI Xingshun

    2012-01-01

    Aimed at high content of valuable metals,complicated composition,difficult to separation of precious metals six-component alloy wastes,the present paper proposed a new technology of high efficient separation and purification.Using fragmentation technology realizes fast dissolution of palladium,silver,copper and zinc in the wastes,and high efficient and complete separation of them from gold and platinum; using evaporation thermal-decomposition technology of mixed solution produced by nitric acid dissolving palladium,silver,copper and zinc,complete and high efficient separation of silver from palladium was realized; by control of solution acidity,using hydrazine reduction method,high efficient and complete separation of gold from platinum was realized.Using this new technology,the recovery rates of palladium and silver are above 99%,and gold and platinum above 98%,the grade of pure metals are above 99.95%.

  2. The Review of Wafer Drying Technology%晶片干燥技术综述

    Institute of Scientific and Technical Information of China (English)

    张伟才; 宋晶

    2012-01-01

    在各类晶片中,尤以衬底抛光片的干燥最为困难,容易出现颗粒和水痕等缺陷。以设备为依托的干燥技术发展迅速,离心甩干技术,IPA Vapor干燥,Marangoni干燥和HF/O3干燥是其中较为成功的。%Along with the increasing demand of semiconductor device technology on the chip quality,the focus of cleaning process had changed to be drying technology.The drying of bare plolished wafer was the most difficult,with the higher proportion of particle and watermark.Drying technology is dependent on the device.The Spin-Rinse-Dryer,IPA Vapor Dry,Marangoni dry and 和 HF/O3 dry were successful technology.

  3. Formalin irrigation for hemorrhagic chronic radiation proctitis.

    Science.gov (United States)

    Ma, Teng-Hui; Yuan, Zi-Xu; Zhong, Qing-Hua; Wang, Huai-Ming; Qin, Qi-Yuan; Chen, Xiao-Xia; Wang, Jian-Ping; Wang, Lei

    2015-03-28

    To assess the efficacy and safety of a modified topical formalin irrigation method in refractory hemorrhagic chronic radiation proctitis (CRP). Patients with CRP who did not respond to previous medical treatments and presented with grade II-III rectal bleeding according to the Common Terminology Criteria for Adverse Events were enrolled. Patients with anorectal strictures, deep ulcerations, and fistulas were excluded. All patients underwent flexible endoscopic evaluation before treatment. Patient demographics and clinical data, including primary tumor, radiotherapy and previous treatment options, were collected. Patients received topical 4% formalin irrigation in a clasp-knife position under spinal epidural anesthesia in the operating room. Remission of rectal bleeding and related complications were recorded. Defecation, remission of bleeding, and other symptoms were investigated at follow-up. Endoscopic findings in patients with rectovaginal fistulas were analyzed. Twenty-four patients (19 female, 5 male) with a mean age of 61.5 ± 9.5 years were enrolled. The mean time from the end of radiotherapy to the onset of bleeding was 11.1 ± 9.0 mo (range: 2-24 mo). Six patients (25.0%) were blood transfusion dependent. The median preoperative Vienna Rectoscopy Score (VRS) was 3 points. Nineteen patients (79.2%) received only one course of topical formalin irrigation, and five (20.8%) required a second course. No side effects were observed. One month after treatment, bleeding cessation was complete in five patients and obvious in 14; the effectiveness rate was 79.1% (19/24). For long-term efficacy, 5/16, 1/9 and 0/6 patients complained of persistent bleeding at 1, 2 and 5 years after treatment, respectively. Three rectovaginal fistulas were found at 1 mo, 3 mo and 2 years after treatment. Univariate analysis showed associations of higher endoscopic VRS and ulceration score with risk of developing rectovaginal fistula. Modified formalin irrigation is an effective and safe

  4. Irrigation and fertigation frequencies with nitrogen in the watermelon culture

    Directory of Open Access Journals (Sweden)

    Carlos Newdmar Vieira Fernandes

    2014-06-01

    Full Text Available This study evaluates the influence of different irrigation frequencies and different nitrogen fertigation frequencies on the growth performance of the watermelon (Citrullus lanatus culture. Two experiments were conducted at the Paraguay farm in the Cruz municipality, Ceará, Brazil. They was randomized blocks design with six treatments and four replications. The irrigation frequency experiment consisted of the application of different irrigation frequencies. The treatments were: DM - daily irrigation in the morning with 100% daily dosage; DT - daily irrigation in the afternoon, with 100% daily dosage; DMT - twice daily irrigation, with 50% daily dosage in the morning and 50% daily dosage in the afternoon; 2D - irrigation every two days; 3D - irrigation every three days and 4D - irrigation every four days. To the experiment with different nitrogen fertigation frequencies, the treatments used were: 2F - 2 fertigations in a cycle; 4F - 4 fertigations in a cycle; 8F - 8 fertigations in a cycle; 16F - 16 fertigations in a cycle; 32F - 32 fertigations in a cycle and 64F - 64 fertigations in a cycle. We evaluated the marketable yield (PC, fruit weight (M, polar diameter (DP, equatorial diameter (DE, shell thickness (EC and soluble solids (SS. The irrigation frequency treatments influenced all variables significantly, with twice daily irrigation (DMT, 50% in the morning and the 50% in the afternoon promoting the highest productivity (69.79 t ha-1. The different frequencies of fertigation also significantly influenced all variables, except for the shell thickness, the highest yield (80.69 t ha-1 being obtained with treatment 64 fertigations in a cycle.

  5. Derivation of irrigation requirements for radiological impact assessments.

    Science.gov (United States)

    Almahayni, Talal; Crout, Neil M J

    2016-11-01

    When assessing the radiological impacts of radioactive waste disposal, irrigation using groundwater contaminated with releases from the disposal system is a principal means of crop and soil contamination. In spite of their importance for radiological impact assessments, irrigation data are scarce and often associated with considerable uncertainty for several reasons including limited obligation to measure groundwater abstraction and differences in measuring methodologies. Further uncertainty arises from environmental (e.g. climate and landscape) change likely to occur during the assessment long time frame. In this paper, we derive irrigation data using the crop growth AquaCrop model relevant to a range of climates, soils and crops for use in radiological impact assessments. The AquaCrop estimates were compared with actual irrigation data reported in the literature and with estimates obtained from simple empirical methods proposed for use in radiological impact assessments. Further, the AquaCrop irrigation data were analysed using mixed effects modelling to investigate the effects of climate, soil and crop type on the irrigation requirement. Irrigation estimates from all models were within a reasonable range of the measured values. The AquaCrop estimates, however, were at the higher end of the range and higher than those from the empirical methods. Nevertheless, they may be more appropriate for conservative radiological assessments. The use of mixed effects modelling allowed for the characterisation of crop-specific variability in the irrigation data, and in contrast to the empirical methods, the AquaCrop and the mixed effects models accounted for the soil effect on the irrigation requirement. The approach presented in this paper is relevant for obtaining irrigation data for a specific site under different climatic conditions as well as for generic dose assessments. To the best of our knowledge, this is one of the most comprehensive analyses of irrigation data in

  6. Water savings potentials of irrigation systems: dynamic global simulation

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing

  7. Effects of global irrigation on the near-surface climate

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, William J. [University of Wisconsin-Madison, Center for Sustainability and the Global Environment, Madison, WI (United States); Cook, Benjamin I. [Lamont-Doherty Earth Observatory, Ocean and Climate Physics, Palisades, NY (United States); NASA Goddard Institute for Space Studies, New York, NY (United States); Buenning, Nikolaus [University of Colorado-Boulder, Department of Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); Levis, Samuel [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States); Helkowski, Joseph H. [Earth Tech, Miami, FL (United States)

    2009-08-15

    Irrigation delivers about 2,600 km{sup 3} of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by {proportional_to}0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by {proportional_to}1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery. (orig.)

  8. Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Sofo, Adriano; Nuzzo, Vitale; Tataranni, Giuseppe; Manfra, Michele; De Nisco, Mauro; Scopa, Antonio

    2012-07-15

    The present study was carried out in a 5-year-old vineyard (Vitis vinifera L., cv. Aglianico) located in Southern Italy. Half of the plants (IRR) were fully irrigated, whereas the other half were not irrigated (NIRR). In both of the treatments, plant water status, gas exchange, photosynthetic efficiency and productive performance were determined. The arid conditions resulted in significant decreases in stem water potential in NIRR (minimum values of -1.34 and -1.52 MPa in IRR and NIRR, respectively). The values of yield per plant, cluster weight and total berry weight were significantly higher in IRR. Grape berries were separated into four weight classes, and morphometric and microscopic analyses were carried out to measure and calculate berry skin characteristics. Irrigation determined a marked shift toward heavier (+23% in the class ≥ 1.25 g) and bigger (336.35 mm³ vs 299.15 mm³) berries, and induced significant changes in other morphometric berry parameters. No differences among berry weight classes and irrigation treatments were observed for berry skin thickness. In all of the berry weight classes, total anthocyanins extracted from berry skins were significantly higher in NIRR than in IRR (12301.53 and 9585.52 mg kg⁻¹ fresh berry skin, respectively), and appeared to be positively related to berry weight, whereas total flavonols were not significantly different between the two treatments. Qualitative changes in the levels of single anthocyanin and flavonol compounds were detected between IRR and NIRR. In addition, iron, copper and zinc, whose high concentration can negatively affect wine quality, were significantly higher in the IRR treatment. The results highlighted that the absence of irrigation did not determine decreases in grape quality. Such data can be of primary importance in environments where water availability is by far the most important limiting factor for plant growth.

  9. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  10. Quality of terrestrial data derived from UAV photogrammetry: a case study of the Hetao irrigation district in northern China

    Science.gov (United States)

    Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Violette

    2017-04-01

    Most crops in northern China are irrigated, but the topography affects water use, soil erosion, runoff and yields,. Technologies for collecting high-resolution topographic data are essential for adequately assessing these effects. Ground surveys and techniques of light detection and ranging have good accuracy, but data acquisition can be time-consuming and expensive for large catchments. Recent rapid technological development has provided new, flexible, high-resolution methods for collecting topographic data, such as photogrammetry using unmanned aerial vehicles (UAVs). The accuracy of UAV photogrammetry for generating high-resolution digital elevation models (DEMs) and for determining the width of irrigation channels, however, has not been assessed. We used a fixed-wing UAV for collecting high-resolution (0.15 m) topographic data for the Hetao irrigation district, the third largest irrigation district in China. We surveyed 112 ground checkpoints (GCPs) using a real-time kinematic global positioning system to evaluate the accuracy of the DEMs and channel widths. A comparison of manually measured channel widths with the widths derived from the DEMs indicated that the DEM-derived widths had vertical and horizontal root mean square errors of 13.0 and 7.9 cm, respectively. UAV photogrammetric data can thus be used for land surveying, digital mapping, calculating channel capacity, monitoring crops, and predicting yields, with the advantages of economy, speed, and ease.

  11. Winter Irrigation Effects in Cotton Fields in Arid Inland Irrigated Areas in the North of the Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Pengnian Yang

    2016-02-01

    Full Text Available Winter irrigation is one of the water and salt management practices widely adopted in arid irrigated areas in the Tarim Basin located in the Xinjiang Uygur Autonomous Region in the People’s Republic of China. A winter irrigation study was carried out from November 2013 to March 2014 in Korla City. A cotton field was divided into 18 plots with a size of 3 m × 3 m and five winter irrigation treatments (1200 m3/ha, 1800 m3/ha, 2400 m3/ha, 3000 m3/ha, and 3600 m3/ha and one non-irrigation as a control were designed. The results showed that the higher winter irrigation volumes allowed the significant short-term difference after the irrigation in the fields with the higher soil moisture content. Therefore, the soil moisture in the next sowing season could be maintained at the level which was slightly lower than field capacity and four times that in the non-irrigation treatment. The desalination effect of winter irrigation increased with the increase of water irrigation volume, but its efficiency decreased with the increase of water irrigation volume. The desalination effect was characterized by short-term desalination, long-term salt accumulation, and the time-dependent gradually decreasing trend. During the winter irrigation period, air temperature was the most important external influencing factor of the soil temperature. During the period of the decrease in winter temperatures from December to January, soil temperature in the 5-cm depth showed no significant difference in all the treatments and the control. However, during the period of rising temperatures from January to March, soil temperature in the control increased significantly, faster than that in all treatments. Under the same irrigation volume, the temperature difference between the upper soil layer and the lower soil layer increased during the temperature drop period and decreased during the temperature rise period. In this paper, we proposed the proper winter irrigation volume of 1800

  12. The effects of deifcit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon

    Institute of Scientific and Technical Information of China (English)

    Seluk zmen; Rza Kanber; Nebahat Sar; Mustafa nl

    2015-01-01

    The aim of this study is to determine the effects of deifcit irrigation on nitrogen consumption, yield, and quality in grafted and ungrafted watermelon. The study was conducted in Çukurova region, Eastern Mediterranean, Turkey, between 2006 and 2008, and employed 3 irrigation rates (ful irrigation (I100) with no stress, moderate irrigation (DI70), and low irrigation (DI50);DI70 and DI50 were considered deifcit irrigation) on grafted (CTJ, Crimson Tide+Jumbo) and the ungrafted (CT, Crim-son Tide) watermelon. The amount of irrigation water (IR) applied to the study plots were calculated based on cumulative pan evaporation that occurred during the irrigation intervals. Nitrogen consumption was 16%lower in CTJ plants than in CT plants. On the other hand, consumption of nitrogen was 28%higher in DI50 plants than in DI70 plants while it was 23%higher in DI50 plants than in I100 plants. By grafting, the average amount of nitrogen content in seeds, pulps and peels for CTJ was 30, 43 and 56%more than those of CT, respectively. The yield and the quality were not signiifcantly affected by the deifcit irrigation. In this respect, grafting of watermelon gave higher yield, but, it had a slight effect on fruit quality. The highest yield values of 16.90 and 19.32 kg plant–1 in 2008 were obtained with I100 and in CTJ plants, respectively. However, DI50 treatment could be taken into account for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited. Additional y, the yield increased by applying CTJ treatment to the watermelon production.

  13. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of effici

  14. Impact of drought genetics on irrigated corn production

    Science.gov (United States)

    Corn is the major irrigated crop in the High Plains of Colorado, Nebraska, and Kansas. Declining water levels in the High Plains Aquifer have reduced well capacity such that limited irrigation strategies must be employed. Crop breeding advances have led to the introduction of drought resistant hybri...

  15. A management perspective on the performance of the irrigation subsector.

    NARCIS (Netherlands)

    Nijman, Ch.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the perfo

  16. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  17. Irrigation Alternatives to Meet Army Net Zero Water Goals

    Science.gov (United States)

    2012-05-01

    Up to 100 Rain Barrel Catchment Up to...US Army Corps of Engineers BUILDING STRONG® Irrigation Alternatives to Meet Army Net Zero Water Goals Richard J. Scholze Dick L. Gebhart H...TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Irrigation Alternatives to Meet Army Net Zero Water Goals 5a. CONTRACT

  18. Comparison of the Cleaning Efficacy of Different Final Irrigation Techniques

    NARCIS (Netherlands)

    Jiang, Lei-Meng; Lak, Bram; Eijsvogels, Leonardus M.; Wesselink, Paul; van der Sluis, Lucas W. M.

    Introduction: The aim of this study was to evaluate the removal of dentin debris from artificially made grooves in standardized root canals by 6 different final irrigation techniques. Methods: Conventional syringe irrigation, manual dynamic activation (MDA) with tapered or nontapered gutta-percha

  19. Diagnosing Trouble Spots Caused by an Irrigation System

    Science.gov (United States)

    John R. Scholtes

    2002-01-01

    I discuss a testing procedure to determine the water distribution pattern of a sprinkler irrigation system and steps that may be taken to improve uniformity of application. All irrigation systems require testing and maintenance to assure that water application is as uniform as possible. Even new systems installed to a manufacturer's specifications should be "...

  20. SPRINKLER IRRIGATION AS A VOC SEPARATION AND DISPOSAL METHOD

    Science.gov (United States)

    Sprinkler irrigation is a common farming practice in those states where the semi-arid climate and lack of sufficient rainfall during critical growing periods necessitate the use of supplemental water. The source of most irrigation water is groundwater which can be contaminated wi...

  1. Phosphorus as a limiting factor on sustainable greywater irrigation.

    Science.gov (United States)

    Turner, Ryan D R; Will, Geoffrey D; Dawes, Les A; Gardner, Edward A; Lyons, David J

    2013-07-01

    Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

  2. The SRFR 5 modeling system for surface irrigation

    Science.gov (United States)

    The SRFR program is a modeling system for surface irrigation. It is a central component of WinSRFR, a software package for the hydraulic analysis of surface irrigation systems. SRFR solves simplified versions of the equations of unsteady open channel flow coupled to a user selected infiltration mod...

  3. Effects of different irrigation programs on yield and quality ...

    African Journals Online (AJOL)

    Jane

    2011-07-11

    Jul 11, 2011 ... This indicated that when irrigation water and ET increased, yield also increased to a certain point. However ... need irrigation water during the all growing period and get adequate benefit ... season is cold and snowy. In Isparta ...

  4. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process

  5. Remote sensing, GIS and hydrological modelling for irrigation management

    NARCIS (Netherlands)

    Menenti, M.; Azzali, S.; Urso, d' G.

    1996-01-01

    This paper gives an overview of literature and of work done by the authors between 1988 and 1993. It was presented at a NATO expert meeting on sustainability of irrigated agriculture in 1994. The paper deals with crop water requirements and crop waterstress, assessing irrigation performance with

  6. The implication of irrigation in climate change impact assessment

    NARCIS (Netherlands)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-01-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on

  7. Wedlock or deadlock? Feminists' attempts to engage irrigation engineers

    NARCIS (Netherlands)

    Zwarteveen, M.Z.

    2006-01-01

    In this thesis I describe my search for ways of thinking about, and conceptualizing, irrigation realities that allow recognition of gender as constitutive of such realities. This effort logically follows from the realization that in mainstream conceptualizations of irrigation it is difficult to accu

  8. Treadle pump irrigation in Malawi: adoption, gender and benefits

    NARCIS (Netherlands)

    Kamwamba-Mtethiwa, J.; Namara, R.; Fraiture, de C.M.S.; Mangisoni, J.; Owusu, E.

    2012-01-01

    As part of their irrigation strategy, the government and non-governmental organizations (NGOs) in Malawi are actively promoting the use of treadle pumps in smallholder irrigation. The positive impact of treadle pumps on food security and poverty reduction in Malawi and elsewhere in sub-Saharan Afric

  9. Infrared thermometry for deficit irrigation of peach trees

    Science.gov (United States)

    Water shortage has been a major concern for crop production in the western states of the USA and other arid regions in the world. Deficit irrigation can be used in some cropping systems as a potential water saving strategy to alleviate water shortage, however, the margin of error in irrigation manag...

  10. Yield Response and Economics of Shallow Subsurface Drip Irrigation Systems

    Science.gov (United States)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  11. Wedlock or deadlock? Feminists' attempts to engage irrigation engineers

    NARCIS (Netherlands)

    Zwarteveen, M.Z.

    2006-01-01

    In this thesis I describe my search for ways of thinking about, and conceptualizing, irrigation realities that allow recognition of gender as constitutive of such realities. This effort logically follows from the realization that in mainstream conceptualizations of irrigation it is difficult to accu

  12. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  13. Irrigation Management in the Pamirs in Tajikistan: A Man's Domain?

    NARCIS (Netherlands)

    Bossenbroek, L.; Zwarteveen, M.Z.

    2014-01-01

    Families living in Gorno-Badakhshan—situated in the Pamir Mountains in Tajikistan—depend on irrigated agriculture to meet their subsistence needs. Because men predominate, and are most visible in, the operation and management of irrigation systems in this region, water-related activities are often l

  14. Peanut canopy temperature and NDVI response to varying irrigation rates

    Science.gov (United States)

    Variable rate irrigation (VRI) systems have the potential to conserve water by spatially allocating limited water resources. In this study, peanut was grown under a VRI system to evaluate the impact of differential irrigation rates on peanut yield. Additionally, we evaluated the impact of differenti...

  15. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  16. The politics of policy : participatory irrigation management in Andhra Pradesh

    NARCIS (Netherlands)

    Nikku, B.R.

    2006-01-01

    This thesis studies the emergence, process and politics of the Andhra Pradesh reform policy of Participatory Irrigation Management (PIM). The reform has been labeled as the 'A? model' of irrigation reforms and supported by external aid agencies like World Bank. Within a short span of time Andhra

  17. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food.  As a consequence, agricultural activity has expanded and become more intense. A  part of this intensification is the use of irrigation systems to water crops. Due to this  irrigation, dams and channeling

  18. Performance evaluation of a center pivot variable rate irrigation system

    Science.gov (United States)

    Variable Rate Irrigation (VRI) for center pivots offers potential to match specific application rates to non-uniform soil conditions along the length of the lateral. The benefit of such systems is influenced by the areal extent of these variations and the smallest scale to which the irrigation syste...

  19. Comparison of the Cleaning Efficacy of Different Final Irrigation Techniques

    NARCIS (Netherlands)

    Jiang, Lei-Meng; Lak, Bram; Eijsvogels, Leonardus M.; Wesselink, Paul; van der Sluis, Lucas W. M.

    2012-01-01

    Introduction: The aim of this study was to evaluate the removal of dentin debris from artificially made grooves in standardized root canals by 6 different final irrigation techniques. Methods: Conventional syringe irrigation, manual dynamic activation (MDA) with tapered or nontapered gutta-percha (G

  20. land evaluation for improved rice production in watari irrigation ...

    African Journals Online (AJOL)

    DR. AMINU

    directly related to quality and suitability of soil, and as ... mapping and monitoring land use changes. ... the consequences of land use/land cover changes is ... The ecology of the Watari Irrigation project is Sudan ... mapping units identified as suitable for irrigation by .... adequate rice production, sufficient quantity of water.

  1. Groundwater Suitability for Irrigation: a Case Study from Debre ...

    African Journals Online (AJOL)

    Bheema

    irrigation water quality, the groundwater is suitable for irrigation with some minor ... specific toxicity effect on vegetables and field crops, however, there are ... alone cannot sustain the practice, the issues like ecological and social are to be taken in to ... particularly for crops that are sensitive to changes in quality (Bohn et al., ...

  2. Development of guidance for sustainable irrigation use of greywater ...

    African Journals Online (AJOL)

    as ecological sanitation (EcoSan) have arisen to address this .... be long-term effects, while effects on plant growth and yield .... in food crops irrigated with mixed domestic greywater (Rodda ..... of E0 in place of point estimates, or using the SAPWAT model ..... STANDEN R and McGUCKIAN R (2000) Developing irrigation.

  3. The management perspective on the performance of the irrigation subsector

    NARCIS (Netherlands)

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the perfo

  4. Irrigation analysis based on long-term weather data

    Science.gov (United States)

    Irrigation-management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994 an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. ...

  5. Efficient irrigation management with conventional and VRI sprinkler systems

    Science.gov (United States)

    In Alabama, there is a ploitical push towards irrigated agriculture, as reduction in water resources for agriculture in the West becomes more limited. Some farmers have invested in center pivot systems but have little experience with irrigation scheduling methods. ARS scientists at Bushland have e...

  6. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process o

  7. Next generation sequencing of oomycete communities in nursery irrigation water

    Science.gov (United States)

    Joyce Eberhart; Fumiaki Funahashi; Zachary S.L. Foster; Jennifer Parke

    2017-01-01

    Horticultural nurseries are under increasing pressure to reduce, remediate, and recycle irrigation water. A major constraint for reusing irrigation water is contamination by waterborne plant pathogenic Phytophthora and Pythium species. Current research is focused on helping plant nurseries monitor oomycete pathogens in...

  8. Irrigation and the demand for electricity. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Maddigan, R. J.; Chern, W. S.; Gallagher, C. A.

    1980-03-01

    In order to anticipate the need for generating capacity, utility planners must estimate the future growth in electricity demand. The need for demand forecasts is no less important for the nation's Rural Electric Cooperatives (RECs) than it is for the investor-owned utilities. The RECs serve an historically agrarian region; therefore, the irrigation sector accounts for a significant portion of the western RECs' total demand. A model is developed of the RECs' demand for electricity used in irrigation. The model is a simultaneous equation system which focuses on both the short-run utilization of electricity in irrigation and the long-run determination of the number of irrigators using electricity. Irrigation demand is described by a set of equations in which the quantity of electricity demanded, the average electricity price, the number of irrigation customers, and the ratio of electricity to total energy used for irrigation are endogenous. The structural equations are estimated using pooled state-level data for the period 1961-1977. In light of the model's results, the impact of changes in relative energy prices on irrigation can be examined.

  9. Wedlock or deadlock? Feminists' attempts to engage irrigation engineers

    NARCIS (Netherlands)

    Zwarteveen, M.Z.

    2006-01-01

    In this thesis I describe my search for ways of thinking about, and conceptualizing, irrigation realities that allow recognition of gender as constitutive of such realities. This effort logically follows from the realization that in mainstream conceptualizations of irrigation it is difficult to

  10. The management perspective on the performance of the irrigation subsector

    NARCIS (Netherlands)

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the

  11. The politics of policy : participatory irrigation management in Andhra Pradesh

    NARCIS (Netherlands)

    Nikku, B.R.

    2006-01-01

    This thesis studies the emergence, process and politics of the Andhra Pradesh reform policy of Participatory Irrigation Management (PIM). The reform has been labeled as the 'A? model' of irrigation reforms and supported by external aid agencies like World Bank. Within a short span of time Andhra Pra

  12. Consumptive Water Use and Crop Coefficients of Irrigated Sunflower

    Science.gov (United States)

    In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing...

  13. Micro-irrigation systems, automation and fertigation in citrus

    Directory of Open Access Journals (Sweden)

    Parameshwar Sidramappa Shirgure

    2012-11-01

    Full Text Available Citrus is number one group of fruits grown in more than 140 countries in the world. Micro-irrigation systems and fertigation management is one of the main concerns of the modem citrus fruit production irrespective of availability of soil, water and fertilizer resources. A variety of recommendations have emerged world over on irrigation systems and fertigation based on soil and leaf analysis of the nutrients, evapo-transpiration and water use pattern. The research review of literature has revealed best promising results on irrigation scheduling based on depletion pattern of soil available water content, irrigation systems and fertigation. Various micro-irrigation systems have established their superiority over traditionally used flood irrigation with micro-jets having little edge over rest of the others. Similarly, fertigation has shown good responses on growth, yield, quality and uniform distribution pattern of applied nutrients within the plant rootzone compared to band placement involving comparatively localized fertilization. Automated fertigation in citrus orchards is a new concept, which would be the only solitary choice amongst many irrigation monitoring methods in near future. The present status of the review on micro-irrigation and fertigation in citrus cultivars is clearly indicated in this article.

  14. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-01-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty. PMID:28266656

  15. Remote Sensing Technologies Mitigate Drought

    Science.gov (United States)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  16. SMART IRRIGATION TECHNIQUE USING VOCAL COMMANDS

    Directory of Open Access Journals (Sweden)

    V.Divya

    2013-02-01

    Full Text Available In this wireless communication era, mobile phones have become a necessity in the common man’s life. Besides being capable of making calls and sending messages, the latest advancements in mobile phones facilitate them to connect to the internet also. With these capabilities, there has been an unprecedented use of mobile phones in many areas of automation. One such area where mobile phone can help with the automation is irrigation process. The main aim of the work is to simplify the method of irrigation using vocal commands through the mobile phone. The Farmer just needs to call a fixed number and utter the control commands through his phone. The control system at the field involves a PIC microcontroller interfaced with GSM modem to receive the command from the farmer and a voice recognition unit which decodes it. The motor is turned on/off according to the decoded commands by the controller. In addition, the system also sends back a message to the farmer’s mobile about the action that has taken place. The power detection and battery backup unit helps in detecting the power availability in the field and inform the farmer about the same, even if the there is no supply at the field. The moisture sensor attached to the system helps in collecting the moisture content of the soil and switch off the motor after it reaches the required value.

  17. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  18. Estimates of Savings Achievable from Irrigation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  19. Experience with irrigation analgesia after abdominal hysterectomy

    Directory of Open Access Journals (Sweden)

    R. V. Garyaev

    2012-01-01

    Full Text Available A prospective randomized clinical trial was performed in 100 patients who underwent abdominal hysterectomy under endotracheal anesthesia based on sevoflurane and fentanyl. Intraoperatively, ketorolac 30 mg was administered intramuscularly after induction of anesthesia and paracetamol 1 g was injected intravenously 30–40 minutes prior to surgical termination in a control group (n = 25. For postoperative anal- gesia, promedol, tramadol, and ketorolac were used intramuscularly and paracetamol was given intravenously. Three study groups (n = 2 in each differed from the control group in that during wound suturing a multiperforated catheter was placed above the peritoneum over a length of 15 cm, through which a 10-ml bolus of 0.75 % ropivacaine was first administered, followed by continuous infusion of 0.2 % ropivacaine at a rate of 8 ml/hour for 36 hours. In one irrigation group, ketorolac 30 mg was injected intramuscularly t.i.d. for 2 days; in another group, the agent was added to a ropivacaine solution calculated with reference to 180 mg for 2 days; in the third group, ketoprofen 100 mg instead of ketorolac was used b.i.d. for 2 days. Pain level (by digital rating scale, 0–10 and the need for analgesics were measured. There was no sta- tistical significant difference in the level of pain and the need for analgesics between the wound irrigation and control groups.

  20. Non-sustainable groundwater sustaining irrigation - a global assessment

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2012-04-01

    Irrigated crops play a vital role in securing global food production. It is estimated that 17% of agricultural lands are irrigated, yet they account for 40% of the global food production, sustaining the livelihood of billions of people (Abdullah, 2006). At the same time, water used by irrigated crops (i.e., crop water demand) and irrigation water demand are responsible for about 70% of the global water withdrawal and account for about 90% of the global water consumption, i.e. water withdrawal minus return flow respectively. Water demand for irrigated crops can be met by three different sources: 1) green water, being water from local precipitation that is temporarily stored in the soil, 2) blue water, being surface freshwater available in rivers, lakes, reservoirs and wetlands, and renewable groundwater, and 3) non-renewable or non-sustainable groundwater and non-local water resources. Here, we quantify globally the amount of non-renewable groundwater abstraction to sustain current irrigation practice. We use the global hydrological model PCR-GLOBWB to simulate gross crop water demand for irrigated crops and available blue and green water to meet this demand. We downscale country statistics of groundwater abstraction by considering the part of net total water demand that cannot be met by surface freshwater. We subsequently confront these with simulated groundwater recharge including return flow from irrigation to estimate non-renewable groundwater abstraction. Results show that non-renewable groundwater abstraction contributes approximately 20% to the global gross irrigation water demand for the year 2000. The contribution of non-renewable groundwater abstraction to irrigation is largest in India (68 km3 yr-1) followed by Pakistan (35 km3/yr), USA (30 km3/yr), Iran (20 km3/yr), China (20 km3/yr), Mexico (10 km3/yr) and Saudi Arabia (10 km3/yr). Results also show that globally this contribution more than tripled from 75 to 234 km3/yr over the period 1960-2000. These