WorldWideScience

Sample records for technology-rich mathematical tasks

  1. Preparing Mathematics Teachers for Technology-Rich Environments

    Science.gov (United States)

    Sturdivant, Rodney X.; Dunham, Penelope; Jardine, Richard

    2009-01-01

    This article describes key elements for faculty development programs to prepare mathematics teachers for technology-rich environments. We offer practical examples from our experiences in teaching mathematics with technology and in teaching others to incorporate technology-based pedagogies. We address challenges faced by faculty using technology,…

  2. Mathematics for Gifted Students in an Arts- and Technology-Rich Setting

    Science.gov (United States)

    Gadanidis, George; Hughes, Janette; Cordy, Michelle

    2011-01-01

    In this paper we report on a study of a short-term mathematics program for grade 7-8 gifted students that integrated open-ended mathematics tasks with the arts (poetry and drama) and with technology. The program was offered partially online and partially in a classroom setting. The study sought to investigate (a) students' perceptions of their…

  3. Entering into dialogue about the mathematical value of contextual mathematising tasks

    Science.gov (United States)

    Yoon, Caroline; Chin, Sze Looi; Moala, John Griffith; Choy, Ban Heng

    2018-03-01

    Our project seeks to draw attention to the rich mathematical thinking that is generated when students work on contextual mathematising tasks. We use a design-based research approach to create ways of reporting that raise the visibility of this rich mathematical thinking while retaining and respecting its complexity. These reports will be aimed for three classroom stakeholders: (1) students, who wish to reflect on and enhance their mathematical learning; (2) teachers, who wish to integrate contextual mathematising tasks into their teaching practice and (3) researchers, who seek rich tasks for generating observable instances of mathematical thinking and learning. We anticipate that these reports and the underlying theoretical framework for creating them will contribute to greater awareness of and appreciation for the mathematical value of contextual mathematising tasks in learning, teaching and research.

  4. Entering into Dialogue about the Mathematical Value of Contextual Mathematising Tasks

    Science.gov (United States)

    Yoon, Caroline; Chin, Sze Looi; Moala, John Griffith; Choy, Ban Heng

    2018-01-01

    Our project seeks to draw attention to the rich mathematical thinking that is generated when students work on contextual mathematising tasks. We use a design-based research approach to create ways of reporting that raise the visibility of this rich mathematical thinking while retaining and respecting its complexity. These reports will be aimed for…

  5. Designing Prediction Tasks in a Mathematics Software Environment

    Science.gov (United States)

    Brunström, Mats; Fahlgren, Maria

    2015-01-01

    There is a recognised need in mathematics teaching for new kinds of tasks which exploit the affordances provided by new technology. This paper focuses on the design of prediction tasks to foster student reasoning about exponential functions in a mathematics software environment. It draws on the first iteration of a design based research study…

  6. Motivating Learning in Mathematics Through Collaborative Problem Solving: A Focus on Using Rich Tasks

    Directory of Open Access Journals (Sweden)

    Nasreen Hussain

    2014-06-01

    Full Text Available This paper is based on the concept that lively and interactive math classes are possible by incorporating rich tasks to meet the needs of students operating at different levels in the classrooms. A study was carried out to find out the impact on learning and motivation of using rich tasks at secondary level in the maths class by incorporating co-operative learning. Qualitative research paradigm was opted for the study using an action research approach and the data were collected through two semi-structured interviews conducted at the onset of the research and after the intervention. Few important findings indicate that rich tasks demand different levels of challenge and extend opportunities to those students who need them.

  7. A Preservice Mathematics Teacher's Beliefs about Teaching Mathematics with Technology

    Science.gov (United States)

    Belbase, Shashidhar

    2015-01-01

    This paper analyzed a preservice mathematics teacher's beliefs about teaching mathematics with technology. The researcher used five semi-structured task-based interviews in the problematic contexts of teaching fraction multiplications with JavaBars, functions and limits, and geometric transformations with Geometer's Sketchpad, and statistical data…

  8. AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK

    Directory of Open Access Journals (Sweden)

    Denis N. Butorin

    2014-01-01

    Full Text Available In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE. 

  9. AUTOMATION PROGRAM FOR RECOGNITION OF ALGORITHM SOLUTION OF MATHEMATIC TASK

    OpenAIRE

    Denis N. Butorin

    2014-01-01

    In the article are been describing technology for manage of testing task in computer program. It was found for recognition of algorithm solution of mathematic task. There are been justifi ed the using hierarchical structure for a special set of testing questions. Also, there has been presented the release of the described tasks in the computer program openSEE. 

  10. Developing Mathematical Fluency: Comparing Exercises and Rich Tasks

    Science.gov (United States)

    Foster, Colin

    2018-01-01

    Achieving fluency in important mathematical procedures is fundamental to students' mathematical development. The usual way to develop procedural fluency is to practise repetitive exercises, but is this the only effective way? This paper reports three quasi-experimental studies carried out in a total of 11 secondary schools involving altogether 528…

  11. Aligning Mathematical Tasks to the Common Core Standards for Mathematical Practice

    OpenAIRE

    Johnson, Raymond

    2016-01-01

    How do algebra teachers align mathematical tasks to the CCSSM Standards of Mathematical Practice? Using methods of design-based implementation research, we identified difficulties of alignment to practices and developed strategies identifying high-quality tasks.

  12. Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers.

    Directory of Open Access Journals (Sweden)

    Kyeong-Hwa Lee

    2016-11-01

    Full Text Available It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing of new tasks requires more knowledge and experience. This study aims to identify the patterns that Korean prospective mathematics teachers seem to follow when they modify the mathematical tasks in textbooks. Knowledge utilized by prospective teachers while they modify textbook tasks is identified and characterized in order to understand the possible factors that have an impact on Korean prospective mathematics teachers' modification of tasks.

  13. Research on Mathematics Teachers as Partners in Task Design

    Science.gov (United States)

    Jones, Keith; Pepin, Birgit

    2016-01-01

    Mathematical tasks and tools, including tasks in the form of digital tools, are key resources in mathematics teaching and in mathematics teacher education. Even so, the "design" of mathematical tasks is perceived in different ways: sometimes seen as something distinct from the teaching and learning process, and sometimes as integral to…

  14. Trajectories of Mathematics and Technology Education Pointing to Engineering Design

    Science.gov (United States)

    Daugherty, Jenny L.; Reese, George C.; Merrill, Chris

    2010-01-01

    A brief examination and comparison of mathematics and technology education provides the background for a discussion of integration. In particular, members of each field have responded to the increasing pressures to better prepare students for the technologically rich, globally competitive future. Approaches based within each discipline are varied…

  15. Stimulating Mathematical Reasoning with Simple Open-Ended Tasks

    Science.gov (United States)

    West, John

    2018-01-01

    The importance of mathematical reasoning is unquestioned and providing opportunities for students to become involved in mathematical reasoning is paramount. The open-ended tasks presented incorporate mathematical content explored through the contexts of problem solving and reasoning. This article presents a number of simple tasks that may be…

  16. TUTOR SUPPORT OF TEACHING MATHEMATICS WITH INFORMATION AND COMMUNICATION TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Kateryna P. Osadcha

    2017-10-01

    Full Text Available The paper describes the tutor activity in the process of mathematics teaching support on the basis of the use of information and communication technologies (ICT. The author has analysed the available Internet resources and mobile applications in mathematics, which are classified according to their functional purposes into groups: systems of mass open courses, platforms for adaptive learning, video channels, mathematical online simulators, online tasks, mathematical games, mathematical portals, online platforms, mathematical sites, mathematical online platforms, mathematical services, mobile applications in mathematics (simulators, games, generators of example, assistant programs, training complexes, calculators. In accordance with the student age categories mathematical information and communication technologies are divided into three groups: for elementary school students, secondary school students and high school students. The basic ICT tools for teaching mathematics are outlined. The algorithm for constructing tutorial classes with their application is presented.

  17. Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers

    Science.gov (United States)

    Lee, Kyeong-Hwa; Lee, Eun-Jung; Park, Min-Sun

    2016-01-01

    It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing…

  18. What Makes a Mathematical Task Interesting?

    Science.gov (United States)

    Nyman, Rimma

    2016-01-01

    The study addresses the question of what makes a mathematical task interesting to the 9th year students. Semi-structured interviews were carried out with 15 students of purposive selection of the 9th year. The students were asked to recall a task they found interesting and engaging during the past three years. An analysis of the tasks was made…

  19. Middle School Teachers' Views and Approaches to Implement Mathematical Tasks

    Science.gov (United States)

    Yesildere-Imre, Sibel; Basturk-Sahin, Burcu Nur

    2016-01-01

    This research examines middle school mathematics teachers' views regarding implementation of mathematical tasks and their enactments. We compare their views on tasks and their implementation, and determine the causes of difference between the two using qualitative research methods. We interview sixteen middle school mathematics teachers based on…

  20. When Mathematics and Statistics Collide in Assessment Tasks

    Science.gov (United States)

    Bargagliotti, Anna; Groth, Randall

    2016-01-01

    Because the disciplines of mathematics and statistics are naturally intertwined, designing assessment questions that disentangle mathematical and statistical reasoning can be challenging. We explore the writing statistics assessment tasks that take into consideration potential mathematical reasoning they may inadvertently activate.

  1. Factors Considered by Elementary Teachers When Developing and Modifying Mathematical Tasks to Support Children's Mathematical Thinking

    Science.gov (United States)

    Fredenberg, Michael Duane

    The idea that problems and tasks play a pivotal role in a mathematics lesson has a long standing in mathematics education research. Recent calls for teaching reform appeal for training teachers to better understand how students learn mathematics and to employ students' mathematical thinking as the basis for pedagogy (CCSSM, 2010; NCTM, 2000; NRC 1999). The teaching practices of (a) developing a task for a mathematics lesson and, (b) modifying the task for students while enacting the lesson fit within the scope of supporting students' mathematical thinking. Surprisingly, an extensive search of the literature did not yield any research aimed to identify and refine the constituent parts of the aforementioned teaching practices in the manner called for by Grossman and xiii colleagues (2009). Consequently, my research addresses the two questions: (a) what factors do exemplary elementary teachers consider when developing a task for a mathematics lesson? (b) what factors do they consider when they modify a task for a student when enacting a lesson? I conducted a multiple case study involving three elementary teachers, each with extensive training in the area of Cognitively Guided Instruction (CGI), as well as several years experience teaching mathematics following the principles of CGI (Carpenter et al., 1999). I recorded video of three mathematics lessons with each participant and after each lesson I conducted a semi-structured stimulated recall interview. A subsequent follow-up clinical interview was conducted soon thereafter to further explore the teacher's thoughts (Ginsberg, 1997). In addition, my methodology included interjecting myself at select times during a lesson to ask the teacher to explain her reasoning. Qualitative analysis led to a framework that identified four categories of influencing factors and seven categories of supporting objectives for the development of a task. Subsets of these factors and objectives emerged as particularly relevant when the

  2. Non-Mathematics Students' Reasoning in Calculus Tasks

    Science.gov (United States)

    Jukic Matic, Ljerka

    2015-01-01

    This paper investigates the reasoning of first year non-mathematics students in non-routine calculus tasks. The students in this study were accustomed to imitative reasoning from their primary and secondary education. In order to move from imitative reasoning toward more creative reasoning, non-routine tasks were implemented as an explicit part of…

  3. Adolescent-perceived parent and teacher overestimation of mathematics ability: Developmental implications for students' mathematics task values.

    Science.gov (United States)

    Gniewosz, Burkhard; Watt, Helen M G

    2017-07-01

    This study examines whether and how student-perceived parents' and teachers' overestimation of students' own perceived mathematical ability can explain trajectories for adolescents' mathematical task values (intrinsic and utility) controlling for measured achievement, following expectancy-value and self-determination theories. Longitudinal data come from a 3-cohort (mean ages 13.25, 12.36, and 14.41 years; Grades 7-10), 4-wave data set of 1,271 Australian secondary school students. Longitudinal structural equation models revealed positive effects of student-perceived overestimation of math ability by parents and teachers on students' intrinsic and utility math task values development. Perceived parental overestimations predicted intrinsic task value changes between all measurement occasions, whereas utility task value changes only were predicted between Grades 9 and 10. Parental influences were stronger for intrinsic than utility task values. Teacher influences were similar for both forms of task values and commenced after the curricular school transition in Grade 8. Results support the assumptions that the perceived encouragement conveyed by student-perceived mathematical ability beliefs of parents and teachers, promote positive mathematics task values development. Moreover, results point to different mechanisms underlying parents' and teachers' support. Finally, the longitudinal changes indicate transition-related increases in the effects of student-perceived overestimations and stronger effects for intrinsic than utility values. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Tasks that May Occasion Mathematical Creativity: Teachers' Choices

    Science.gov (United States)

    Levenson, Esther

    2013-01-01

    Promoting mathematical creativity is one of the aims of mathematics education. This study investigates the tasks teachers chose when their aim was to occasion mathematical creativity in the classroom. Five cases are described in depth, and general trends found among these cases as well as in additional data are discussed. Findings indicated that…

  5. Mathematics Education for Engineering Technology Students – A Bridge Too Far?

    Directory of Open Access Journals (Sweden)

    Noraishiyah Abdullah

    2013-03-01

    Full Text Available Trying to decide what is best suited for someone or something is an ever enduring task let alone trying to prepare students with the right engineering mind. So ‘how do you build an engineer?’ if that is the right word. What is the right ingredient? Mathematics has been said as the most important foundation in engineers’ life. Curriculum has been developed and reviewed over the years to meet this target. This work explores how much or lack of it has the curriculum prepares the future technologist to face the world of engineering technology as far as mathematics is concerned. Analysis of mathematics lectures, interviews of engineering technologist students and engineering technology subject lecturer is undertaken. Understand what each contributes help in understanding the picture that the current education is painting. Based on the theory of learning, APOS theory helps in explaining how students bridge their knowledge of mathematics when it comes to solving engineering technology problems. The question is, is it a bridge too far? 

  6. DEVELOPING PISA-LIKE MATHEMATICS TASK WITH INDONESIA NATURAL AND CULTURAL HERITAGE AS CONTEXT TO ASSESS STUDENTS MATHEMATICAL LITERACY

    Directory of Open Access Journals (Sweden)

    Wuli Oktiningrum

    2016-01-01

    Full Text Available The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students’ mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10 experts were involved in this research to assess the feasibility of prototyping in terms of content, context and language. Walk through, documentation, questionnaire, test result, and interviews are way to collect the data. This research produced a PISA-like math task is as many 12 category of content, context, and process valid, practical and has potential effect. The validity came empirical evaluation of validation and reliability testing during small group. From the field test, we conclude that the tasks also potentially effect to the students’ mathematical literacy in activating the indicators of each Fundamental Mathematical Capabilities.Keywords: development research, PISA task, mathematics literacy, fundamental mathematical capabilities DOI: http://dx.doi.org/10.22342/jme.7.1.2812.1-8

  7. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... guidelines and conclusions regarding the use of computer technology in mathematics education....... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non...

  8. Children's mathematical performance: five cognitive tasks across five grades.

    Science.gov (United States)

    Moore, Alex M; Ashcraft, Mark H

    2015-07-01

    Children in elementary school, along with college adults, were tested on a battery of basic mathematical tasks, including digit naming, number comparison, dot enumeration, and simple addition or subtraction. Beyond cataloguing performance to these standard tasks in Grades 1 to 5, we also examined relationships among the tasks, including previously reported results on a number line estimation task. Accuracy and latency improved across grades for all tasks, and classic interaction patterns were found, for example, a speed-up of subitizing and counting, increasingly shallow slopes in number comparison, and progressive speeding of responses especially to larger addition and subtraction problems. Surprisingly, digit naming was faster than subitizing at all ages, arguing against a pre-attentive processing explanation for subitizing. Estimation accuracy and speed were strong predictors of children's addition and subtraction performance. Children who gave exponential responses on the number line estimation task were slower at counting in the dot enumeration task and had longer latencies on addition and subtraction problems. The results provided further support for the importance of estimation as an indicator of children's current and future mathematical expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Choosing High-Yield Tasks for the Mathematical Development of Practicing Secondary Teachers

    Science.gov (United States)

    Epperson, James A. Mendoza; Rhoads, Kathryn

    2015-01-01

    Many mathematics teacher educators encounter the challenge of creating or choosing mathematical tasks that evoke important mathematical insights and connections yet remain firmly grounded in school mathematics. This challenge increases substantially when trying to meet the needs of practicing secondary mathematics teachers pursuing graduate work…

  10. USING TASK LIKE PISA’S PROBLEM TO SUPPORT STUDENT’S CREATIVITY IN MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Rita Novita

    2016-01-01

    Full Text Available Creativity is one of keys to success in the evolving global economy and also be a fundamental skill that is absolutely necessary in the 21st century. Also In mathematics, creativity or thinking creatively is important to be developed because creativity is an integral part of mathematics. However, limiting the use of creativity in the classroom reduces mathematics to a set of skills to master and rules to memorize. Doing so causes many children’s natural curiosity and enthusiasm for mathematics to disappear as they get older, creating a tremendous problem for mathematics educators who are trying to instil these very qualities. In order to investigate the increase in awareness of elementary school students’ creativity in solving mathematics’ problems by using task like PISA’s Question, a qualitative research emphasizing on holistic description was conducted. We used a formative evaluation type of development research as a mean to develop mathematical tasks like PISA’s question that have potential effect to support students’ creativity in mathematics. Ten elementary school students of grade 6 in Palembang were involved in this research. They judged the task given for them is very challenging and provokes their curiosity. The result showed that task like PISA’s question can encourage students to more creatively in mathematics.

  11. Cognitive Activities in Solving Mathematical Tasks: The Role of a Cognitive Obstacle

    Science.gov (United States)

    Antonijevic, Radovan

    2016-01-01

    In the process of learning mathematics, students practice various forms of thinking activities aimed to substantially contribute to the development of their different cognitive structures. In this paper, the subject matter is a "cognitive obstacle", a phenomenon that occurs in the procedures of solving mathematical tasks. Each task in…

  12. Sustaining Integrated Technology in Undergraduate Mathematics

    Science.gov (United States)

    Oates, Greg

    2011-01-01

    The effective integration of technology into the teaching and learning of mathematics remains one of the critical challenges facing contemporary tertiary mathematics. This article reports on some significant findings of a wider study investigating the use of technology in undergraduate mathematics. It first discusses a taxonomy developed to…

  13. Changes in Elementary Mathematics Teachers' Understanding of Cognitive Demand: When Adapting, Creating, and Using Mathematical Performance Tasks

    Science.gov (United States)

    Jamieson, Thad Spencer

    2015-01-01

    The use of mathematics performance tasks can provide a window into how a student is applying mathematics to various situations, how they are reasoning mathematically and how they are applying conceptual knowledge through problem solving and critical thinking. The purpose of this study was to investigate, according to the elementary mathematics…

  14. Mathematical Basis of Knowledge Discovery and Autonomous Intelligent Architectures - Technology for the Creation of Virtual objects in the Real World

    National Research Council Canada - National Science Library

    Sokolov, B. V; Kulakov, F. M

    2005-01-01

    .... This project specifically aims at developing the mathematical basis architecture and software techniques implementing particular new technologies to support Global Awareness and comprises six main tasks. Task 6 was: 6...

  15. Mathematical Tasks without Words and Word Problems: Perceptions of Reluctant Problem Solvers

    Science.gov (United States)

    Holbert, Sydney Margaret

    2013-01-01

    This qualitative research study used a multiple, holistic case study approach (Yin, 2009) to explore the perceptions of reluctant problem solvers related to mathematical tasks without words and word problems. Participants were given a choice of working a mathematical task without words or a word problem during four problem-solving sessions. Data…

  16. DEVELOPING PISA-LIKE MATHEMATICS TASK WITH INDONESIA NATURAL AND CULTURAL HERITAGE AS CONTEXT TO ASSESS STUDENTS MATHEMATICAL LITERACY

    Directory of Open Access Journals (Sweden)

    Wuli Oktiningrum

    2016-01-01

    Full Text Available The aim of this research is produce a set of PISA-like mathematics task with Indonesia natural and cultural heritage as context which are valid, practical, to assess students’ mathematics literacy. This is design research using type of development research with formative evaluation. A total of 20 students of SMP Negeri 1 Palembang. Beside, 10 experts were involved in this research to assess the feasibility of prototyping in terms of content, context and language. Walk through, documentation, questionnaire, test result, and interviews are way to collect the data. This research produced a PISA-like math task is as many 12 category of content, context, and process valid, practical and has potential effect. The validity came empirical evaluation of validation and reliability testing during small group. From the field test, we conclude that the tasks also potentially effect to the students’ mathematical literacy in activating the indicators of each Fundamental Mathematical Capabilities.

  17. The SAMPLE experience: The development of a rich media online mathematics learning environment

    OpenAIRE

    Chang, Jen

    2006-01-01

    This report documents the development of Sample Architecture for Mathematically Productive Learning Experiences (SAMPLE), a rich media, online, mathematics learning environment created to meet the needs of middle school educators. It explores some of the current pedagogical challenges in mathematics education, and their amplified impacts when coupled with under-prepared teachers, a decidedly wide-spread phenomenon. The SAMPLE publishing experience is discussed in terms of its instructional de...

  18. Technology-enhanced learning on campus: insights from EUNIS e-Learning Task Force

    OpenAIRE

    Ferrell, Gill; Alves, Paulo; Bubas, Goran; Engert, Steffi; Epelboin, Yves; Madey, Jan; Palma, José; Piteira, Martinha; Restivo, T.M.; Ribeiro, Ligia; Sidelmann Rossen, Dorte; Soares, Filomena; Uhomoibhi, James

    2011-01-01

    In 2010 the EUNIS e-Learning Task Force (ELTF) members collaborated on a review of tools and technologies in use across our member institutions. One of the key features of that paper was the use of technology to give off-campus learners, such as distance learners, those undertaking field studies and learners in the workplace a richly supported learning experience. Building on the success of that collaboration, the ELTF members have turned their attention this year to the use of technology on ...

  19. USING TASK LIKE PISA’S PROBLEM TO SUPPORT STUDENT’S CREATIVITY IN MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Rita Novita

    2016-01-01

    Full Text Available Creativity is one of keys to success in the evolving global economy and also be a fundamental skill that is absolutely necessary in the 21st century. Also In mathematics, creativity or thinking creatively is important to be developed because creativity is an integral part of mathematics. However, limiting the use of creativity in the classroom reduces mathematics to a set of skills to master and rules to memorize. Doing so causes many children’s natural curiosity and enthusiasm for mathematics to disappear as they get older, creating a tremendous problem for mathematics educators who are trying to instil these very qualities. In order to investigate the increase in awareness of elementary school students’ creativity in solving mathematics’ problems by using task like PISA’s Question, a qualitative research emphasizing on holistic description was conducted. We used a formative evaluation type of development research as a mean to develop mathematical tasks like PISA’s question that have potential effect to support students’ creativity in mathematics. Ten elementary school students of grade 6 in Palembang were involved in this research. They judged the task given for them is very challenging and provokes their curiosity. The result showed that task like PISA’s question can encourage students to more creatively in mathematics.Key Words: PISA, Problem Solving, Creativity in Mathematics DOI: http://dx.doi.org/10.22342/jme.7.1.2815.31-42

  20. Integrating the Use of Interdisciplinary Learning Activity Task in Creating Students' Mathematical Knowledge

    Science.gov (United States)

    Mahanin, Hajah Umisuzimah Haji; Shahrill, Masitah; Tan, Abby; Mahadi, Mar Aswandi

    2017-01-01

    This study investigated the use of interdisciplinary learning activity task to construct students' knowledge in Mathematics, specifically on the topic of scale drawing application. The learning activity task involved more than one academic discipline, which is Mathematics, English Language, Art, Geography and integrating the Brunei Darussalam…

  1. New Technologies in Mathematics.

    Science.gov (United States)

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  2. Technology-integrated Mathematics Education at the Secondary School Level

    Directory of Open Access Journals (Sweden)

    Hamdi Serin

    2017-06-01

    Full Text Available The potential of technological devices to enrich learning and teaching of Mathematics has been widely recognized recently. This study is founded on a case study that investigates how technology-related Mathematics teaching can enhance learning of Mathematical topics. The findings indicate that when teachers integrate technology into their teaching practices, students’ learning of Mathematics is significantly promoted. It was seen that the use of effective presentations through technological devices highly motivated the students and improved their mathematics achievement. This highlights that the availability of technological devices, teacher beliefs, easy access to resources and most importantly teacher skills of using technological devices effectively are decisive factors that can provide learners better understanding of mathematical concepts.

  3. A Rich Assessment Task as a Window into Students' Multiplicative Reasoning

    Science.gov (United States)

    Downton, Ann; Wright, Vince

    2016-01-01

    This study explored the potential of a rich assessment task to reveal students' multiplicative thinking in respect to a hypothetical learning trajectory. Thirty pairs of students in grades 5 and 6 attempted the task. Twenty-two pairs applied multiplicative structure to find the number of items in arrays. However counting and computational errors…

  4. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    Directory of Open Access Journals (Sweden)

    Belinda ePletzer

    2015-04-01

    Full Text Available Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret.Here we compared the BOLD-response of 18 participants with high (HMAs and 18 participants with low mathematics anxiety (LMAs matched for their mathematical performance to two numerical tasks (number comparison, number bisection. During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  5. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    Science.gov (United States)

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  6. Intra-mathematical connections made by high school students in performing Calculus tasks

    Science.gov (United States)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-02-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas, concepts, definitions, theorems, procedures, representations and meanings among themselves, with other disciplines or with real life. Task-based interviews were used to collect data and thematic analysis was used to analyze them. Through the analysis of the productions of the 25 participants, we identified 223 intra-mathematical connections. The data allowed us to establish a mathematical connections system which contributes to the understanding of higher concepts, in our case, the Fundamental Theorem of Calculus. We found mathematical connections of the types: different representations, procedural, features, reversibility and meaning as a connection.

  7. Context-based mathematics tasks in Indonesia : Toward better practice and achievement

    OpenAIRE

    Wijaya, A.

    2015-01-01

    The Indonesian national curriculum mandates that mathematics education must be relevant to the needs of life and should offer students opportunities to develop the ability to apply their knowledge in society. Furthermore, there are educational movements in Indonesia that promote the application of mathematics and place a premium on using context-based tasks; see the projects Pendidikan MatematikaRealistik Indonesia (Indonesian Realistic Mathematics Education) and Pembelajaran Kontekstual (Con...

  8. Technology-Rich Schools Up Close

    Science.gov (United States)

    Levin, Barbara B.; Schrum, Lynne

    2013-01-01

    This article observes that schools that use technology well have key commonalities, including a project-based curriculum and supportive, distributed leadership. The authors' research into tech-rich schools revealed that schools used three strategies to integrate technology successfully. They did so by establishing the vision and culture,…

  9. Development of a Framework to Characterise the Openness of Mathematical Tasks

    Science.gov (United States)

    Yeo, Joseph B. W.

    2017-01-01

    Educators usually mean different constructs when they speak of open tasks: some may refer to pure-mathematics investigative tasks while others may have authentic real-life tasks in mind; some may think of the answer being open while others may refer to an open method. On the other hand, some educators use different terms, e.g. open and open-ended,…

  10. Experiences of Student Mathematics-Teachers in Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Karatas, Ilhan

    2011-01-01

    Computer technology in mathematics education enabled the students find many opportunities for investigating mathematical relationships, hypothesizing, and making generalizations. These opportunities were provided to pre-service teachers through a faculty course. At the end of the course, the teachers were assigned project tasks involving…

  11. The mathematical model of the task of compiling the time-table

    Directory of Open Access Journals (Sweden)

    О.Є. Литвиненко

    2004-01-01

    Full Text Available  The mathematical model of the task of compiling the time-table in High-school has been carried out.  It has been showed, that the task may be reduced to canonical form of extrimal combinatorial tasks with unlinear structure after identical transformations. The algorithm of the task’s decision for realizing the scheme of the directed sorting of variants is indicated.

  12. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  13. Long-term development of how students interpret a model; Complementarity of contexts and mathematics

    NARCIS (Netherlands)

    Vos, Pauline; Roorda, Gerrit; Stillman, Gloria Ann; Blum, Werner; Kaiser, Gabriele

    2017-01-01

    When students engage in rich mathematical modelling tasks, they have to handle real-world contexts and mathematics in chorus. This is not easy. In this chapter, contexts and mathematics are perceived as complementary, which means they can be integrated. Based on four types of approaches to modelling

  14. Technology-Enhanced Mathematics Education for Creative Engineering Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This project explores the opportunities and challenges of integrating digital technologies in mathematics education in creative engineering studies. Students in such studies lack motivation and do not perceive the mathematics the same way as mathematics students do. Digital technologies offer new...... are conceptualized. Then, we are going to apply this field data in designing learning technologies, which will be introduced in university classrooms. The effect of this introduction will be evaluated through educational design experiments....

  15. Examining mathematical discourse to understand in-service teachers’ mathematical activities

    Directory of Open Access Journals (Sweden)

    Margot Berger

    2013-04-01

    Full Text Available In this article I use Sfard’s theory of commognition to examine the surprising activities of a pair of in-service mathematics teachers in South Africa as they engaged in a particular mathematical task which allowed for, but did not prescribe, the use of GeoGebra. The (pre-calculus task required students to examine a function at an undefined point and to decide whether a vertical asymptote is associated with this point or not. Using the different characteristics of mathematical discourse, I argue that the words that students use really matter and show how a change in one participant’s use of the term ‘vertical asymptote’ constituted and reflected her learning. I also show how the other participant used imitation in a ritualised routine to get through the task. Furthermore I demonstrate how digital immigrants may resist the use of technology as the generator of legitimate mathematical objects.

  16. From geometry to algebra and vice versa: Realistic mathematics education principles for analyzing geometry tasks

    Science.gov (United States)

    Jupri, Al

    2017-04-01

    In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.

  17. Using Technology to Promote Mathematical Discourse Concerning Women in Mathematics

    Science.gov (United States)

    Phy, Lyn

    2008-01-01

    This paper discusses uses of technology to facilitate mathematical discourse concerning women in mathematics. Such a topic can be introduced in various traditional courses such as algebra, geometry, trigonometry, probability and statistics, or calculus, but it is not included in traditional textbooks. Through the ideas presented here, you can…

  18. Snapshots of mathematics teacher noticing during task design

    Science.gov (United States)

    Choy, Ban Heng

    2016-09-01

    Designing a mathematically worthwhile task is critical for promoting students' reasoning. To improve task design skills, teachers often engage in collaborative lesson planning activities such as lesson study. However, to learn from the process of lesson study, it is important for teachers to notice productively the concepts, students' confusion and the design of the task. But what researchers mean by productive noticing varies. In this article, I present the FOCUS Framework which highlights two characteristics of productive noticing: having an explicit focus for noticing and focusing noticing through pedagogical reasoning. Using these two characteristics, I develop snapshots of noticing as a representation of practice to present a fine-grained analysis of teacher noticing. Through vignettes of teachers discussing the design of a task to teach fractions, I illustrate how two teachers' noticing can be analysed and represented using snapshots of noticing. To conclude, I highlight what snapshots of noticing tell us about a teacher's noticing and suggest ways to use these snapshots in future studies of noticing.

  19. Mathematics for electronic technology

    CERN Document Server

    Howson, D P

    1975-01-01

    Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma

  20. Intra-Mathematical Connections Made by High School Students in Performing Calculus Tasks

    Science.gov (United States)

    García-García, Javier; Dolores-Flores, Crisólogo

    2018-01-01

    In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas,…

  1. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  2. Developmental dynamics between mathematical performance, task motivation, and teachers' goals during the transition to primary school.

    Science.gov (United States)

    Aunola, Kaisa; Leskinen, Esko; Nurmi, Jari-Erik

    2006-03-01

    It has been suggested that children's learning motivation and interest in a particular subject play an important role in their school performance, particularly in mathematics. However, few cross-lagged longitudinal studies have been carried out to investigate the prospective relationships between academic achievement and task motivation. Moreover, the role that the classroom context plays in this development is largely unknown. The aim of the study was to investigate the developmental dynamics of maths-related motivation and mathematical performance during children's transition to primary school. The role of teachers' pedagogical goals and classroom characteristics on this development was also investigated. A total of 196 Finnish children were examined four times: (0) in October during their preschool year; (1) in October and (2) April during their first grade of primary school; and (3) in October during their second grade. Children's mathematical performance was tested at each measurement point. Task motivation was examined at measurement points 2, 3, and 4 using the Task-value scale for children. First-grade teachers were interviewed in November about their pedagogical goals and classroom characteristics. The results showed that children's mathematical performance and related task motivation formed a cumulative developmental cycle: a high level of maths performance at the beginning of the first grade increased subsequent task motivation towards mathematics, which further predicted a high level of maths performance at the beginning of the second grade. The level of maths-related task motivation increased in those classrooms where the teachers emphasized motivation or self-concept development as their most important pedagogical goal.

  3. What Mathematics Teachers Say about the Teaching Strategies in the Implementation of Tasks

    Science.gov (United States)

    Enríquez, Jakeline Amparo Villota; de Oliveira, Andréia María Pereira; Valencia, Heriberto González

    2018-01-01

    In this article we will discuss, through the explanations given by teachers who teach Mathematics, the importance of using teaching strategies in the implementation of tasks. Teachers who participated in it belong to the group "Observatory Mathematics Education" (OME-Bahia). This study was framed in a qualitative approach and data were…

  4. Construction of Tasks in Order to Develop and Promote Classroom Communication in Mathematics

    Science.gov (United States)

    Olteanu, Lucian

    2015-01-01

    In this article, the focus is on task construction and the importance of this process to develop and promote classroom communication in mathematics. The students' tests, examination of students' mathematical work, the teachers' lesson plans, and reports of the lessons' instructions are the basic data for this article. The analysis indicated that…

  5. UTILIZATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN MATHEMATICS LEARNING

    Directory of Open Access Journals (Sweden)

    Farzaneh Saadati

    2014-07-01

    Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.Keywords: Technology, Mathematics Learning, Facebook, Attitude Toward ICT DOI: http://dx.doi.org/10.22342/jme.5.2.1498.138-147

  6. INFLUENCE OF DEVELOPMENT OF COMPUTER TECHNOLOGIES ON TEACHING

    Directory of Open Access Journals (Sweden)

    Olgica Bešić

    2012-09-01

    Full Text Available Our times are characterized by strong changes in technology that have become reality in many areas of society. When compared to production, transport, services, etc education, as a rule, slowly opens to new technologies. However, children at their homes and outside the schools live in a technologically rich environment, and they expect the change in education in accordance with the imperatives of the education for the twenty-first century. In this sense, systems for automated data processing, multimedia systems, then distance learning, virtual schools and other technologies are being introduced into education. They lead to an increase in students' activities, quality evaluation of their knowledge and finally to their progress, all in accordance with individual abilities and knowledge. Mathematics and computers often appear together in the teaching process. Taking into account the teaching of mathematics, computers and software packages have a significant role. The program requirements are not dominant. The emphasis is on mathematical content and the method of presentation. Computers are especially used in solving various mathematical tasks and self-learning of mathematics. Still, many problems that require solutions appear in the process: how to organise lectures, practice, textbooks, collected mathematical problems, written exams, how to assign and check homework. The answers to these questions are not simple and they will probably be sought continuously, with an increasing use of computers in the teaching process. In this paper I have tried to solve some of the questions above.

  7. A Framework for Examining Teachers' Noticing of Mathematical Cognitive Technologies

    Science.gov (United States)

    Smith, Ryan; Shin, Dongjo; Kim, Somin

    2017-01-01

    In this paper, we propose the mathematical cognitive technology noticing framework for examining how mathematics teachers evaluate, select, and modify mathematical cognitive technology to use in their classrooms. Our framework is based on studies of professional and curricular noticing and data collected in a study that explored how secondary…

  8. The Relationship between Handedness and Mathematics Is Non-linear and Is Moderated by Gender, Age, and Type of Task

    Science.gov (United States)

    Sala, Giovanni; Signorelli, Michela; Barsuola, Giulia; Bolognese, Martina; Gobet, Fernand

    2017-01-01

    The relationship between handedness and mathematical ability is still highly controversial. While some researchers have claimed that left-handers are gifted in mathematics and strong right-handers perform the worst in mathematical tasks, others have more recently proposed that mixed-handers are the most disadvantaged group. However, the studies in the field differ with regard to the ages and the gender of the participants, and the type of mathematical ability assessed. To disentangle these discrepancies, we conducted five studies in several Italian schools (total participants: N = 2,314), involving students of different ages (six to seventeen) and a range of mathematical tasks (e.g., arithmetic and reasoning). The results show that (a) linear and quadratic functions are insufficient for capturing the link between handedness and mathematical ability; (b) the percentage of variance in mathematics scores explained by handedness was larger than in previous studies (between 3 and 10% vs. 1%), and (c) the effect of handedness on mathematical ability depended on age, type of mathematical tasks, and gender. In accordance with previous research, handedness does represent a correlate of achievement in mathematics, but the shape of this relationship is more complicated than has been argued so far. PMID:28649210

  9. MATHEMATICAL BASES DECISION OF OLYMPIAD TASKS FROM INFORMATICS ON SITE E-OLIMP

    Directory of Open Access Journals (Sweden)

    T.A. Vakalyuk

    2010-08-01

    Full Text Available In the article a new section is examined on a portal from the sporting programming of e-olimp, namely mathematical bases during uniting of olympiads them tasks from an informatics.

  10. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    Science.gov (United States)

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  11. The Use of Digital Technology in Finding Multiple Paths to Solve and Extend an Equilateral Triangle Task

    Science.gov (United States)

    Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron

    2016-01-01

    Mathematical tasks are crucial elements for teachers to orient, foster and assess students' processes to comprehend and develop mathematical knowledge. During the process of working and solving a task, searching for or discussing multiple solution paths becomes a powerful strategy for students to engage in mathematical thinking. A simple task that…

  12. Examining the Relationship between Secondary Mathematics Teachers' Self-Efficacy, Attitudes, and Use of Technology to Support Communication and Mathematics Literacy

    Science.gov (United States)

    Letwinsky, Karim Medico

    2017-01-01

    The rich language surrounding mathematical concepts often is reduced in many classrooms to a narrow process of memorizing isolated procedures with little context. This approach has proven to be detrimental to students' ability to understand mathematics at deeper levels and remain engaged with this content. The current generation of students values…

  13. Some aspects of executive functions as predictors of understanding textual mathematical tasks in students with mild intellectual disability

    Directory of Open Access Journals (Sweden)

    Japundža-Milisavljević Mirjana

    2016-01-01

    Full Text Available The most significant segment during the process of solving mathematical tasks is translation from mathematical to native language, in the basis o which, among others, are the following factors: resistance to distraction and forming adequate verbal strategies. The goal of this research is to evaluate the contribution of some aspects of executive functions in explaining the variance of solving illustrative mathematical tasks in students with mild intellectual disability. The sample consists of 90 students with mild intellectual disability aged from 12 to 16 (M=14.7; SD=1.6, of both sexes (44.4% boys and 55.6% girls. The Twenty questions test and the Stroop test were used to estimate the executive functions. Verbal problem tasks were used for the purpose of understanding mathematical language The obtained results show that the estimated aspects of executive functions are significant predictors of understanding mathematical language in students with intellectual disabilities. The strongest predictor is distraction resistance (p=0.01.

  14. TEACHING MATHEMATICS USING LECTURE CAPTURE TECHNOLOGY

    OpenAIRE

    Audi, Diana

    2017-01-01

    Technology in highereducation is dramatically changing and continuously giving a challenging timefor educators and institutions to provide the same level of innovativecontents, environment and interaction to a digital native generation which iswell powered with technology. It has been well observed and recognized thatvideo lectures technology can have positive impacts on student learning andsatisfaction however research on Mathematics intensive subjects have yet to befully explored. This expl...

  15. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  16. The Integration of technology in teaching mathematics

    Science.gov (United States)

    Muhtadi, D.; Wahyudin; Kartasasmita, B. G.; Prahmana, R. C. I.

    2017-12-01

    This paper presents the Transformation of Technological Pedagogical and Content Knowledge (TPACK) of three pre-service math teacher. They participate in technology-based learning modules aligned with teaching practice taught school and became characteristic of teaching method by using the mathematical software. ICT-based learning environment has been the demands in practice learning to build a more effective approach to the learning process of students. Also, this paper presents the results of research on learning mathematics in middle school that shows the influence of design teaching on knowledge of math content specifically.

  17. Utilization of Information and Communication Technologies in Mathematics Learning

    Directory of Open Access Journals (Sweden)

    Farzaneh Saadati

    2014-07-01

    Full Text Available Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students’ perception regarding the use of Information and Communication Technologies (ICT in mathematics learning as well as investigate their opinion about how ICT can be integrated to improve teaching and learning processes. The subjects were Iranian engineering students from two universities. The finding showed they are fully aware of importance of ICT in teaching and learning mathematics. Whilst, they were feeling comfortable and confident with technology, they do not have more experience of using technology in mathematics classes before. The findings supported the other studies, which indicated the potentials of ICT to facilitate students’ learning, improve teaching, and enhance institutional administration as established in the literature.

  18. BASIS OF FORMATION OF SOFTWARE-MATHEMATICAL SUPPORT IN TASKS OF IT EDUCATION

    Directory of Open Access Journals (Sweden)

    Natalya V. Zorina

    2018-03-01

    Full Text Available In the article problems and tasks of software development and mathematical support of the basic business processes of the university are considered on the example of IT education. The necessity of using analytical methods in the development of mathematical software for the IT systems of modern universities, it also lists a number of urgent tasks that can be addressed with the help of the proposed framework. The paper describes the research hypothesis, the purpose, methodology and stages of research, as well as the achieved results. The research material represents a priori (retrospective and a posteriori (current educational data. These data are obtained from publicly available sources and contain information on educational activities in the form of the results of experimental observations on a representative sample of students. For a formal description of the data obtained, a representation based on the mathematical apparatus of set theory and algebraic structures was used. An authorial method for classifying the identified sources of educational information on three significant grounds is proposed. The analysis of business processes reflecting the interaction of students among themselves and the interaction of the student and teacher in the learning process is carried out. A modified model of the architecture of the management system of the teaching process of the university is proposed on this business processes. This model is based on the basis of business processes of collaboration and cooperation during the implementation of educational activities. It reflects the changes that have been occurred in the past five years due to the active introduction of digital communication and interactive interaction. The list of available tools for development using data analysis methods is given, their advantages and disadvantages are listed. The choice of the tool, IDE and programming language to analyze the data module as part of the framework is

  19. INVOLVING STUDENTS IN RESEARCH AS A FORM OF INTEGRATION OF ENGINEERING WITH MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Viktor M. Fedoseyev

    2016-03-01

    Full Text Available Introduction: questions of integration of mathematical with engineering training in educational process of higher education institution are explored. The existing technologies of the integrated training are analyzed, and the project-oriented direction is distinguished. Research involving students as an organisational and methodical form of training bachelors of the technical speciali sations is discussed. Materials and Methods: results of article are based on researches of tendencies of development of technical and mathematical education, works on the theory and methodology of pedagogical integration, methodology of mathematics and technical science. Methods of historical and pedagogical research, analytical, a method of mathematical modeling were used. Results: the main content of the paper is to make discussion of experience in developing and using integrated educational tasks in real educational process. Discussion is based on a specific technological assignment including a number of mathematical tasks used as a subject of research for students. In the assignment a special place is allocated to the questions reflecting the interplay of a technical task with a mathematical method of research highlighting the objective significance of mathematics as a method to solve engineering problems. Discussion and Conclusions: the paper gives reasons to conditions for using research work with students as an organisational and methodical form of integrated training in mathematics. In realisation of educational technology it is logical to apply the method of projects. It is necessary to formulate a task as an engineering project: to set an engineering objective of research, to formulate specifications; to differentiate between engineering and mathematical tasks of the project, to make actual interrelations between them; the mathematical part of the project has to be a body of research; assessment of the project must be carried out not only accounting for

  20. Support of Study on Engineering Technology from Physics and Mathematics

    OpenAIRE

    Mynbaev, Djafar K.; Cabo, Candido; Kezerashvili, Roman Ya.; Liou-Mark, Janet

    2008-01-01

    An approach that provides students with an ability to transfer learning in physics and mathematics to the engineering-technology courses through e-teaching and e-learning process is proposed. E-modules of courses in mathematics, physics, computer systems technology, and electrical and telecommunications engineering technology have been developed. These modules being used in the Blackboard and Web-based communications systems create a virtual interdisciplinary learning community, which helps t...

  1. Сontrol systems using mathematical models of technological objects ...

    African Journals Online (AJOL)

    Сontrol systems using mathematical models of technological objects in the control loop. ... Journal of Fundamental and Applied Sciences ... Such mathematical models make it possible to specify the optimal operating modes of the considered ...

  2. About the Effectiveness of the Training Technology Model of Trigonometry Teaching for the Mathematical Profile Students

    Directory of Open Access Journals (Sweden)

    N. I. Popov

    2013-01-01

    Full Text Available The paper is devoted to trigonometry teaching in higher school as a part of the elementary mathematics course with a complex hierarchical structure. Due to the complicated content of the given discipline,each of its modules can be divided into separate themes; though, the teacher should emphasize their interrelations, as well as the links with the coordinate method, geometry and mathematical analysis.The recommended training technology model allows the teacher to build up and control the training process, and achieve good results in accordance with the assigned tasks. In the course of the model approbation, theauthor developed the e-learning resource and identification method for selecting the key mathematical examples and exercises for each theme and module. The analysis of students’ tests and questionnaires conducted for several years proves the effectiveness of the designed model for the senior university students of mathematical profile. Based on the research findings, the author developed the educational methodology complex for the Basics of Trigonometry course.

  3. Reasoning and mathematical skills contribute to normatively superior decision making under risk: evidence from the game of dice task.

    Science.gov (United States)

    Pertl, Marie-Theres; Zamarian, Laura; Delazer, Margarete

    2017-08-01

    In this study, we assessed to what extent reasoning improves performance in decision making under risk in a laboratory gambling task (Game of Dice Task-Double, GDT-D). We also investigated to what degree individuals with above average mathematical competence decide better than those with average mathematical competence. Eighty-five participants performed the GDT-D and several numerical tasks. Forty-two individuals were asked to calculate the probabilities and the outcomes associated with the different options of the GDT-D before performing it. The other 43 individuals performed the GDT-D at the beginning of the test session. Both reasoning and mathematical competence had a positive effect on decision making. Different measures of mathematical competence correlated with advantageous performance in decision making. Results suggest that decision making under explicit risk conditions improves when individuals are encouraged to reflect about the contingencies of a decision situation. Interventions based on numerical reasoning may also be useful for patients with difficulties in decision making.

  4. Adapting Technological Pedagogical Content Knowledge Framework to Teach Mathematics

    Science.gov (United States)

    Getenet, Seyum Tekeher

    2017-01-01

    The technological pedagogical content knowledge framework is increasingly in use by educational technology researcher as a generic description of the knowledge requirements for teachers using technology in all subjects. This study describes the development of a mathematics specific variety of the technological pedagogical content knowledge…

  5. The Development of the Assessment for Learning Model of Mathematics for Rajamangala University of Technology Rattanakosin

    Directory of Open Access Journals (Sweden)

    Wannaree Pansiri

    2016-12-01

    Full Text Available The objectives of this research were 1 to develop the assessment for learning model of Mathematics for Rajamangala University 2 to study the effectivness of assessment for learning model of Mathematics for Rajamagala University of Technology Rattanakosin. The research target group consisted of 72 students from 3 classes and 3 General Mathematics teachers. The data was gathered from observation, worksheets, achievement test and skill of assessment for learning, questionnaire of the assessment for learning model of Mathematics. The statistics that used in this research were Frequency, Percentage, Mean, Standard Deviation, and Growth Score. The results of this research were 1. The assessment of learning model of Mathematics for Rajamangala University of Technology Rattanakosin consisted of 3 components ; 1. Pre-assessment which consisted of 4 activities ; a Preparation b Teacher development c Design and creation the assessment plan and instrument for assessment and d Creation of the learning experience plan 2. The component for assessment process consisted of 4 steps which were a Identifying the learning objectives and criteria b Identifying the learning experience plan and assessment follow the plan c Learning reflection and giving feedback and d Learner development based on information and improve instruction and 3. Giving feedback component. 2. The effective of assessment for learning model found that most students had good score in concentration, honest, responsibilities, group work, task presentation, worksheets, and doing exercises. The development knowledge of learning and knowledge and skill of assessment for learning of lecturers were fairly good. The opinion to the assessment for learning of learners and assessment for learning model of Mathematics of teachers found that was in a good level.

  6. Students’ Information Literacy: A Perspective from Mathematical Literacy

    OpenAIRE

    Ariyadi Wijaya

    2016-01-01

    Information literacy is mostly seen from the perspective of library science or information and communication technology. Taking another point of view, this study was aimed to explore students’ information literacy from the perspective of mathematical literacy. For this purpose, a test addressing Programme for International Student Assessment (PISA) mathematics tasks were administered to 381 eighth and ninth graders from nine junior high schools in the Province of Yogyakarta. PISA mathematics ...

  7. Constructing knowledge for teaching secondary mathematics tasks to enhance prospective and practicing teacher learning

    CERN Document Server

    Zaslavsky, Orit

    2010-01-01

    This book offers a unifed approach to tasks used in the education of secondary mathematics teachers, based on broad goals such as adaptability, identifying similarities, productive disposition, overcoming barriers, micro simulations, choosing tools, and more.

  8. Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy

    Science.gov (United States)

    Kadir; Adelina, R.; Fatma, M.

    2018-01-01

    Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.

  9. Examining the design features of a communication-rich, problem-centred mathematics professional development

    Science.gov (United States)

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-04-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.

  10. Technology Use and Mathematics Teaching: Teacher Change as Discursive Identity Work

    Science.gov (United States)

    Chronaki, Anna; Matos, Anastasios

    2014-01-01

    Teacher change towards developing competences for technology use in mathematics teaching has been the focus of current educational reforms worldwide. However, a considerable amount of research denotes the extent to which teachers resist a full integration of technology in mathematics classrooms. The present paper is based on an ethnographic study…

  11. GENERAL TASKS OF MATHEMATICAL EDUCATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. A. Testov

    2014-01-01

    Full Text Available The paper discusses basic implementation aspects of the Mathematical Education Development Concept, adopted by the Russian Government in 2013. According to the above document, the main problems of mathematical education include: low motivation of secondary and higher school students for studying the discipline, resulted from underestimation of mathematical knowledge; and outdated educational content, overloaded by technical elements. In the author’s opinion, a number of important new mathematical fields, developed over the last years, - the graph theory, discrete mathematics, encoding theory, fractal geometry, etc – have a large methodological and applied educational potential. However, these new subdisciplines have very little representation both in the secondary and higher school mathematical curricula. As a solution for overcoming the gap between the latest scientific achievements and pedagogical practices, the author recommends integration of the above mentioned mathematical disciplines in educational curricula instead of some outdated technical issues. In conclusion, the paper emphasizes the need for qualified mathematical teachers’ training for solving the problems of students’ motivation development and content updates.

  12. Opportunities and Challenges of Using Technology in Mathematics Education of Creative Technical Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This paper explores the opportunities and challenges of integrating technology to support mathematics teaching and learning in creative engineer- ing disciplines. We base our discussion on data from our research in the Media Technology department of Aalborg University Copenhagen, Denmark. Our ana...... analysis proposes that unlike in other engineering disciplines, technology in these disciplines should be used for contextualizing mathematics rather than in- troducing and exploring mathematical concepts....

  13. Figures of thought mathematics and mathematical texts

    CERN Document Server

    Reed, David

    2003-01-01

    Examines the ways in which mathematical works can be read as texts, examines their textual strategiesand demonstrates that such readings provide a rich source of philosophical debate regarding mathematics.

  14. [Influence of music on a decision of mathematical logic tasks].

    Science.gov (United States)

    Pavlygina, R A; Karamysheva, N N; Sakharov, D S; Davydov, V I

    2012-01-01

    Accompaniment of a decision of mathematical logical tasks by music (different style and power) influenced on the time of the decision. Classical music 35 and 65 dB and roc-music 65 and 85 dB decreased the time of the decision. More powerful classical music (85 dB) did not effect like that. The decision without the musical accompaniment led to increasing of coherent values especially in beta1, beta2, gamma frequency ranges in EEG of occipital cortex. The intrahemispheric and the interhemispheric coherences of frontal EEG increased and EEG asymmetry (in a number of Coh-connections in left and right hemispheres) arose during the tasks decision accompanied by music. Application of classical music 35 and 65 dB caused left-side asymmetry in EEG. Using of more powerful classical or rock music led to prevalence of quantity of Coh-connections in a right hemisphere.

  15. Comparing Views of Primary School Mathematics Teachers and Prospective Mathematics Teachers about Instructional Technologies

    Directory of Open Access Journals (Sweden)

    Adnan Baki

    2009-11-01

    Full Text Available Technology is rapidly improving in both hardware and software side. As one of the contemporary needs people should acquire certain knowledge, skills, attitudes and habits to understand this technology, to adapt to it and to make use of its benefits. In addition, as in all domains of life, change and improvement is also unavoidable for educational field. As known, change and improvement in education depends on lots of factors. One of the most important factors is teacher. In order to disseminate educational reforms, teachers themselves should accept the innovation first (Hardy, 1998, Baki, 2002; Oral, 2004. There has been variety of studies investigating teacher and prospective teachers‟ competences, attitudes and opinions (Paprzychi, Vikovic & Pierson, 1994; Hardy, 1998; Kocasaraç, 2003; Lin, Hsiech and Pierson, 2004; Eliküçük, 2006; YeĢilyurt, 2006; Fendi, 2007; Teo, 2008; Arslan, Kutluca & Özpınar, 2009. As the common result of these studies indicate that teachers‟ interest towards using instructional technology have increased. Accordingly, most of the teachers began to think that using instructional technologies becomes inevitable for teachers. By reviewing the related literature, no studies have been come across comparing the opinions of teachers and teacher candidates about instructional technologies. In this study, it was aimed to investigate and compare the views of mathematics teachers with prospective mathematics teachers about ICT. It was considered that collecting opinions of teachers and teachers candidates about the instructional technologies, comparing and contrasting them will contribute to the field. To follow this research inquiry, a descriptive approach type; case study research design was applied. The reason for choosing such design is that the case study method permits studying one aspect of the problem in detail and in a short time (Yin, 2003; Çepni, 2007. The study was conducted with the total sample of 12. 3 of

  16. Education and working life: VET adults' problem-solving skills in technology-rich environments

    OpenAIRE

    Hämäläinen, Raija; Wever, Bram De; Malin, Antero; Cincinnato, Sebastiano

    2015-01-01

    The rapidly-advancing technological landscape in the European workplace is challenging adults’ problem-solving skills. Workers with vocational education and training need flexible abilities to solve problems in technology-rich work settings. This study builds on Finnish PIAAC data to understand adults’ (N=4503) skills for solving problems in technology-rich environments. The results indicate the critical issue that more than two thirds of adults with vocational education and train...

  17. Digital literacy and problem solving in technology-rich environments

    Directory of Open Access Journals (Sweden)

    Vesna Dolničar

    2015-07-01

    Full Text Available Rapid development and progress, as well as the growing presence of information and communications technologies dictate the need for more highly developed digital skills in individuals. The paper focuses on the concepts of digital skills and problem solving in technology-rich environments. It examines these on the basis of empirical data obtained in the international study PIAAC. The introductory part presents an overview of the literature and the results of previous research in the field of measurement of digital skills, and data on the use of information society services among the EU Member States. The second part of the article refers to the results obtained in the study PIAAC. The results, confirmed by the results of other studies, showed the impact of age and education level on the problem solving in technology-rich environments. Article concludes with suggestions for improving the current state of integration of all population groups in training programs in the field of digital skills.

  18. NEW TEACHING MATHEMATICS TEACHING EFFECTIVENESS OF THE USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES

    OpenAIRE

    Zhanys Aray Boshanqyzy; Nurkasymova Saule Nurkasymovna

    2017-01-01

    The possibilities of computer technologies in improving the quality of teaching mathematics and its application in the 7th grade students studied the impact on the development of mathematical thinking. Teachers and pupils kanşalıktı methodology to apply this technology meñgergendikteri tested and determined to improve the methods of teaching mathematics in the scientific literature of the main ideas, 7th grade, based on the best practices in the teaching of mathematics and taking into account...

  19. Exploring student teachers' perceptions of the influence of technology in learning and teaching mathematics

    Directory of Open Access Journals (Sweden)

    Sarah Bansilal

    2015-11-01

    Full Text Available Rapid global technological developments have affected all facets of life, including the teaching and learning of mathematics. This qualitative study was designed to identify the ways in which technology was used and to explore the nature of this use by a group of 52 mathematics student teachers. The participants were pre-service Mathematics students who were enrolled for a Mathematics module at a South African university. The research instruments were an open question and a semi-structured interview schedule. Saxe's framework was used to analyse the data. Some benefits of mathematics software were found to be the provision of different representations, dynamic visualisation of concepts and variation in mathematical situations. It was also found that students used technology more often in their own learning than in their teaching, because the schools did not have many resources. It is recommended that the education department prioritise the provision of specialist mathematics software that can be used to improve learning outcomes in mathematics.

  20. The Dependency of Engineering Technology Student’s towards the Usage of Calculator in Mathematics

    Directory of Open Access Journals (Sweden)

    Hussin Nor Hafizah

    2017-01-01

    Full Text Available Calculators are one of the important technology used to solve mathematical computations. It also can be the tool for learning mathematics if it is used appropriately. However, too much depends on calculator can be harmful to students ability to solve simple mathematical problem. The purpose of this study is to examine the dependency of students in Faculty of Engineering Technology (FTK, Universiti Teknikal Malaysia Melaka, on the usage of calculator to solve the mathematical problems. A sample of 383 first year Engineering Technology (ET students’ taking mathematics subject are selected from five different course. Students were examined based on the results of Mathematic Competency Test and the survey from a questionnaire that covers questions regarding the students’ enjoyment on the usage of calculator and the usefulness of calculator in mathematic activities. The investigation yield a result showing that the students has a high dependency on using calculator to solve mathematical problem.

  1. Using Assessment for Learning Mathematics with Mobile Tablet Based Solutions

    Directory of Open Access Journals (Sweden)

    Ghislain Maurice Norbert Isabwe

    2014-03-01

    Full Text Available This article discusses assessment for learning in mathematics subjects. Teachers of large classes face the challenge of regularly assessing studentsཿ ongoing mathematical learning achievements. Taking the complexity of assessment and feedback for learning as a background, we have developed a new approach to the assessment for learning mathematics at university level. We devised mobile tablet technology supported assessment processes, and we carried out user studies in both Rwanda and Norway. Results of our study indicated that students found it fruitful to be involved in assessing other studentsཿ mathematics work, i.e. assessing fellow studentsཿ answers to mathematical tasks. By being involved in the assessment process, the students expected mathematical learning gains. Their providing and obtaining of feedback to/from their fellow students using technology supported tools were highly appreciated as regards their own mathematical learning process.

  2. The Views of Mathematics Teachers on the Factors Affecting the Integration of Technology in Mathematics Courses

    Science.gov (United States)

    Kaleli-Yilmaz, Gül

    2015-01-01

    The aim of this study was to determine the views of mathematics teachers on the factors that affect the integration of technology in mathematic courses. It is a qualitative case study. The sample size of the study is 10 teachers who are receiving postgraduate education in a university in Turkey. The current study was conducted in three stages. At…

  3. Introduction to the papers of TWG16: Learning Mathematics with Technology and Other Resources

    NARCIS (Netherlands)

    Drijvers, P.H.M.; Faggiano, Eleonora; Geraniou, Eirini; Weigand, Hans-Georg

    2017-01-01

    The use of technology and other resources for mathematical learning is a current issue in the field of mathematics education and lags behind the rapid advances in Information and Communication Technology. Technological developments offer opportunities, which are not straightforward to exploit in

  4. Empirical Evaluation of a Technology-rich Learning Environment

    OpenAIRE

    McCreary, Faith

    2001-01-01

    In the fall of 1996, the Computer Science Department at Virginia Tech initiated a joint project with a local school district, to determine how ready access to networked computing in the fifth grade would affect students. Called the PCs for Families (PCF) project, its goal was to learn what could be achieved if technology access, support, and curriculum integration could be eliminated as obstacles or constraints in the classroom and at home. A technology-rich classroom was created, with the cl...

  5. Understanding technology use and constructivist strategies when addressing Saudi primary students' mathematics difficulties.

    OpenAIRE

    Alabdulaziz, M.; Higgins, S.

    2017-01-01

    This paper will investigate the relationship between technology use and the use of constructivist strategies when addressing Saudi primary students' mathematics difficulties. Semi-structured interviews and observations were used for the purpose of this research, which were undertaken with three mathematics teachers from school A which used technology, and the other three from school B, which did not use technology. We found that technology can support constructivist approach when teaching and...

  6. What Is the Relationship between Technology and Mathematics Teaching Anxiety?

    Science.gov (United States)

    Tatar, Enver; Zengin, Yilmaz; Kagizmanli, Türkan Berrin

    2015-01-01

    The aim of this study is to determine the relationship between pre-service teachers' perceptions regarding technology use in mathematics teaching and their computer literacy levels as well as their mathematics teaching anxiety. The nonexperimental correlational research, which is included in the quantitative research approach, was used in the…

  7. Strategies of solving arithmetic word problems in students with learning difficulties in mathematics

    OpenAIRE

    Kalan, Marko

    2015-01-01

    Problem solving as an important skill is, beside arithmetic, measure and algebra, included in standards of school mathematics (National Council of Teachers of Mathematics) (NCTM, 2000) and needed as a necessary skill for successfulness in science, technology, engineering and mathematics (STEM) (National Mathematics Advisory Panel, 2008). Since solving of human problems is connected to the real life, the arithmetic word problems (in short AWP) are an important kind of mathematics tasks in scho...

  8. Classroom-Based Professional Expertise: A Mathematics Teacher's Practice with Technology

    Science.gov (United States)

    Bozkurt, Gulay; Ruthven, Kenneth

    2017-01-01

    This study examines the classroom practice and craft knowledge underpinning one teacher's integration of the use of GeoGebra software into mathematics teaching. The chosen teacher worked in an English secondary school and was professionally well regarded as an accomplished user of digital technology in mathematics teaching. Designed in accordance…

  9. Prospective and Current Secondary Mathematics Teachers' Criteria for Evaluating Mathematical Cognitive Technologies

    Science.gov (United States)

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2017-01-01

    As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study…

  10. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  11. Technology use among Ghanaian Senior High School mathematics ...

    African Journals Online (AJOL)

    kofi.mereku

    mathematics teachers and to also uncover the factors influencing their technology use ... the World Links for Development (WorLD)programme was introduced in ... students critical thinking skills and to foster their higher order cognitive abilities ...

  12. Gender Differences in the Use and Benefit of Advanced Learning Technologies for Mathematics

    Science.gov (United States)

    Arroyo, Ivon; Burleson, Winslow; Tai, Minghui; Muldner, Kasia; Woolf, Beverly Park

    2013-01-01

    We provide evidence of persistent gender effects for students using advanced adaptive technology while learning mathematics. This technology improves each gender's learning and affective predispositions toward mathematics, but specific features in the software help either female or male students. Gender differences were seen in the students' style…

  13. The role of technology in fostering creativity in the teaching and learning of mathematics

    Directory of Open Access Journals (Sweden)

    Balarabe Yushau

    2005-10-01

    Full Text Available The paper looks at interrelationships between creativity and technology in the teaching and learning of mathematics. It suggests that a proper use of various technologies especially computers in the teaching and learning of mathematics has the potential of helping learners to develop their creativity. The technologies can provide an atmosphere under which mathematical skills can be extended beyond the ability to calculate or reproduce problems and enable learners to investigate, analyse and interpret problems at hand. Furthermore, with computers learners can use an experimental approach to deal with mathematical problems, which can lead to conjecture, pattern finding, examples and counter examples. In fact, if used effectively, computational aids can help in improving learners’ intellectual ability and hence mathematical achievement while fostering the requisite creativity not found in the traditional approach.

  14. LOGICAL-ORIENTED TASKS AS A FORM OF ORGANIZATION OF THE EDUCATIONAL MATERIAL CONTENT IN TEACHING MATHEMATICS TO STUDENTS

    Directory of Open Access Journals (Sweden)

    Oksana Smirnova

    2015-09-01

    Full Text Available The article substantiates the need to improve the logical preparation of students. The authors regard the logical-oriented tasks as a form of organization of the content of educational material in teaching Mathematics and discriminate the types of tasks aimed at the formation of logical methods and operations.

  15. Designing Tasks to Examine Mathematical Knowledge for Teaching Statistics for Primary Teachers

    Science.gov (United States)

    Siswono, T. Y. E.; Kohar, A. W.; Hartono, S.

    2018-01-01

    Mathematical knowledge for teaching (MKT) is viewed as fuel resources for conducting an orchestra in a teaching and learning process. By understanding MKT, especially for primary teachers, it can predict the success of a goal of an instruction and analyze the weaknesses and improvements of it. To explore what teachers think about subject matters, pedagogical terms, and appropriate curriculum, it needs a task which can be identified the teachers’ MKT including the subject matter knowledge (SMK) and pedagogical content knowledge (PCK). This study aims to design an appropriate task for exploring primary teachers’ MKT for statistics in primary school. We designed six tasks to examine 40 primary teachers’ MKT, of which each respectively represents the categories of SMK (common content knowledge (CCK) and specialised content knowledge (SCK)) and PCK (knowledge of content and students (KCS), knowledge of content and teaching (KCT), and knowledge of content and curriculum (KCC)). While MKT has much attention of numbers of scholars, we consider knowledge of content and culture (KCCl) to be hypothesized in the domains of MKT. Thus, we added one more task examining how the primary teachers used their knowledge of content (KC) regarding to MKT in statistics. Some examples of the teachers’ responses on the tasks are discussed and some refinements of MKT task in statistics for primary teachers are suggested.

  16. Technological pedagogical content knowledge of prospective mathematics teachers regarding evaluation and assessment

    Directory of Open Access Journals (Sweden)

    Ercan Atasoy

    2016-04-01

    Full Text Available The ‘technology integrated assessment process’ is an innovative method to capture and determine students’ understanding of mathematics. This assessment process is claimed to provide a singular dynamism for teaching and learning activities and it is also claimed to be of the most important elements of instruction in the educational system. In this sense, this study aims to investigate technological pedagogical content knowledge (TPACK of prospective mathematics teachers regarding the ‘evaluation’ and ‘assessment’ process. To achieve this aim, the method of qualitative research was conducted with 20 teachers. Video records and lesson plans were collected and a Mathematics Teacher TPACK Development Model was utilized to reveal themes and key features of the data. The findings revealed that, although the majority of teachers stated that they would like to use technology-integrated tools in the assessment and evaluation processes, they strongly preferred to use traditional assessment and evaluation techniques, such as pen and paper activities, multiple-choice questions in virtual environments, etc. Hence, the evidence suggests that teachers would be unable to use appropriately the technological assessment process in order to reveal students’ understanding of mathematics. As seen from the teachers’ lectures, they perceived that technology would be suitable for evaluation and assessment but in a limited way.

  17. IMPROVING TEACHING MATHEMATICS USING MODERN INFORMATION TECHNOLOGIES IN FORMATION MATHEMATICAL COMPETENCE REQUIRED FUTURE SKIPPERS.

    Directory of Open Access Journals (Sweden)

    Elena Gudyreva

    2015-10-01

    Full Text Available The article is devoted to consideration of issues related to identifying the potential for teaching mathematics using network (Internet technology and the introduction of elements of distance learning into educational process of higher educational establishments of the sea profile, as well as achievement of formation of mathematical competence of students of the University generally, and of the University's Maritime profile, in particular. Based on the analysis of psychological and pedagogical literature highlights the factors that influence the increase of efficiency of independent work of students of higher educational institutions and on the formation of steady skills of self-education that ultimately leads to quality of formation of mathematical competence of a student. Specific features of teaching mathematics at the University of the sea profile. The description of the project (complex sites "KSMA. Higher mathematics navigators", who developed and used in the Kherson state Maritime Academy in the teaching of mathematics and the organization of individual techniques of distance learning, shows the simplicity and accessibility of working with complex sites, as well as the simplicity and accessibility of design "personal website", but in fact complex sites, by a teacher of any discipline of higher education. Shown, also a training process with the use of the project "KSMA. Higher mathematics navigators", analyzes the experience of teaching the course "Higher mathematics" in a higher educational institution of the marine profile with the use of a personal website, a teacher and shown positive results in students mastery of basic mathematical competencies.

  18. Transition from Realistic to Real World Problems with the Use of Technology in Elementary Mathematical Education

    Science.gov (United States)

    Budinski, Natalija; Milinkovic, Dragica

    2017-01-01

    The availability of technology has a big impact on education, and that is the main reason for discussing the use of technologies in mathematical education in our paper. The availability of technology influences how mathematical contents could be presented to students. We present the benefits of learning mathematical concepts through real life…

  19. Development of pedagogical design in technology-rich environments for language teaching and learning

    OpenAIRE

    Jalkanen, Juha

    2015-01-01

    This study explores the development of pedagogical design for language teaching and learning in increasingly technology-rich environments. More specifically, it focuses on the process of design, enactment and analysis of language and literacy pedagogies in technology-rich environments. Two substudies are reported in five articles, each of which approaches pedagogical design from a different perspective. The first substudy examined (a) what pedagogical choices language studen...

  20. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  1. Secondary Mathematics Pre-Service Teachers' Processes of Selection and Integration of Technology

    Science.gov (United States)

    Uzan, Erol

    2017-01-01

    This study investigated secondary mathematics pre-service teachers' (PSTs) knowledge of resources in terms of digital technologies, and explored the processes of both selection and integration of technology into their lesson plans. This study employed a case study design. Participants were six secondary mathematics PSTs who enrolled in a methods…

  2. The Impact of Experience and Technology Change on Task-Technology Fit of a Collaborative Technology

    Science.gov (United States)

    Iversen, Jakob H.; Eierman, Michael A.

    2018-01-01

    This study continues a long running effort to examine collaborative writing and editing tools and the factors that impact Task-Technology Fit and Technology Acceptance. Previous studies found that MS Word/email performed better than technologies such as Twiki, Google Docs, and Office Live. The current study seeks to examine specifically the impact…

  3. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  4. Learning to teach mathematics with technology: A survey of professional development needs, experiences and impacts

    Science.gov (United States)

    Bennison, Anne; Goos, Merrilyn

    2010-04-01

    The potential for digital technologies to enhance students' mathematics learning is widely recognised, and use of computers and graphics calculators is now encouraged or required by secondary school mathematics curriculum documents throughout Australia. However, previous research indicates that effective integration of technology into classroom practice remains patchy, with factors such as teacher knowledge, confidence, experience and beliefs, access to resources, and participation in professional development influencing uptake and implementation. This paper reports on a large-scale survey of technology-related professional development experiences and needs of Queensland secondary mathematics teachers. Teachers who had participated in professional development were found to be more confident in using technology and more convinced of its benefits in supporting students' learning of mathematics. Experienced, specialist mathematics teachers in large metropolitan schools were more likely than others to have attended technology-related professional development, with lack of time and limited access to resources acting as hindrances to many. Teachers expressed a clear preference for professional development that helps them meaningfully integrate technology into lessons to improve student learning of specific mathematical topics. These findings have implications for the design and delivery of professional development that improves teachers' knowledge, understanding, and skills in a diverse range of contexts.

  5. The use of mobile technologies for mathematical engagement in informal learning environments

    OpenAIRE

    2014-01-01

    M.Ed. (Ict in Education) South African learners are underperforming in Mathematics. Annual National Assessments for grade 9 and grade 12 results in Mathematics are shocking according to the Ministry of Education. This study investigates informal learning as an alternative method of addressing underperformance in Mathematics in South African schools. Informal learning with the use of mobile technology enhances engagement in Mathematics learning. The participants of this study had access to ...

  6. Instructor Perceptions of Web Technology Feature and Instructional Task Fit

    Science.gov (United States)

    Strader, Troy J.; Reed, Diana; Suh, Inchul; Njoroge, Joyce W.

    2015-01-01

    In this exploratory study, university faculty (instructor) perceptions of the extent to which eight unique features of Web technology are useful for various instructional tasks are identified. Task-technology fit propositions are developed and tested using data collected from a survey of instructors in business, pharmacy, and arts/humanities. It…

  7. Mathematical Modelling as a Professional Task

    Science.gov (United States)

    Frejd, Peter; Bergsten, Christer

    2016-01-01

    Educational research literature on mathematical modelling is extensive. However, not much attention has been paid to empirical investigations of its scholarly knowledge from the perspective of didactic transposition processes. This paper reports from an interview study of mathematical modelling activities involving nine professional model…

  8. A Review of Multi-Sensory Technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) Classroom

    Science.gov (United States)

    Taljaard, Johann

    2016-01-01

    This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…

  9. Mathematics on the Move: Using Mobile Technologies to Support Student Learning (Part 2)

    Science.gov (United States)

    Attard, Catherine; Northcote, Maria

    2012-01-01

    Continuing the series of articles on teaching mathematics with technology, this article furthers the authors' exploration of the use of a range of mobile technologies to enhance teachers' practices in the primary mathematics classroom. In Part 1 of this article, the authors explored the use of the iPod Touch and iPad. In Part 2, they explore…

  10. Tritium tasks for the net fusion technology program

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    Six Tritium Technology tasks have been undertaken in the BRUYERES-LE-CHATEL Research Center of the French Atomic Energy Commission, in June 1986, as part of the NET Tritium Technology Program. Four of these six studies concern the torus exhaust gas purification and two of them are more specific of the involved materials. In 1988, the studies themselves have begun and the objective of this document is to indicate, for each task, the main results which have been obtained during the period 1988-89, for allowing a global valuation of the progress state as well as an anticipation for carrying out the works

  11. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  12. Teachers’ beliefs about the discipline of mathematics and the use of technology in the classroom

    DEFF Research Database (Denmark)

    Misfeldt, Morten; Thomas Jankvist, Uffe; Sánchez Arguilar, Mario

    2016-01-01

    In the article, three Danish secondary level mathematics teachers’ beliefs about the use of technological tools in the teaching of mathematics and their beliefs about mathematics as a scientific discipline are identified and classified - and the process also aspects of their beliefs about...... the teaching and learning of mathematics. The potential relationships between these sets of beliefs are also explored. Results show that the teachers not only manifest different beliefs about the use of technology and mathematics as a discipline, but that one set of beliefs can influence the other set...... of beliefs. The article concludes with a discussion of the research findings and their validity as well as their implications for both practice and research in mathematics education....

  13. Elementary Education Pre-Service Teachers' Development of Mathematics Technology Integration Skills in a Technology Integration Course

    Science.gov (United States)

    Polly, Drew

    2015-01-01

    Preparing pre-service teachers to effectively integrate technology in the classroom requires rich experiences that deepen their knowledge of technology, pedagogy, and content and the intersection of these aspects. This study examined elementary education pre-service teachers' development of skills and knowledge in a technology integration course…

  14. Mathematical modelling of anisotropy of illite-rich shale

    Science.gov (United States)

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the

  15. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    Science.gov (United States)

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  16. Students’ Information Literacy: A Perspective from Mathematical Literacy

    Directory of Open Access Journals (Sweden)

    Ariyadi Wijaya

    2016-09-01

    Full Text Available Information literacy is mostly seen from the perspective of library science or information and communication technology. Taking another point of view, this study was aimed to explore students’ information literacy from the perspective of mathematical literacy. For this purpose, a test addressing Programme for International Student Assessment (PISA mathematics tasks were administered to 381 eighth and ninth graders from nine junior high schools in the Province of Yogyakarta. PISA mathematics tasks which were used in this test had specific characteristics regarding information processing, i.e. containing superfluous information, having missing information, and requiring connection across information sources. An error analysis was performed to analyze students’ incorrect responses. The result of this study shows that students did not acquire three characteristics of information literacy; i.e. recognizing information needs, locating and evaluating the quality of information, and making effective and ethical use of information. This result indicates students’ low ability in information literacy.Keywords: information literacy, mathematical literacy, Programme for International Student Assessment (PISA DOI: http://dx.doi.org/10.22342/jme.7.2.3532.73-82

  17. Conference on "Mathematical Technology of Networks"

    CERN Document Server

    2015-01-01

    Bringing together leading researchers in the fields of functional analysis, mathematical physics and graph theory, as well as natural scientists using networks as a tool in their own research fields, such as neuroscience and machine learning, this volume presents recent advances in functional, analytical, probabilistic, and spectral aspects in the study of graphs, quantum graphs, and complex networks. The contributors to this volume explore the interplay between theoretical and applied aspects of discrete and continuous graphs. Their work helps to close the gap between different avenues of research on graphs, including metric graphs and ramified structures. All papers were presented at the conference "Mathematical Technology of Networks," held December 4–7, 2013 at the Zentrum für interdisziplinäre Forschung (ZiF) in Bielefeld, Germany, and are supplemented with detailed figures illustrating both abstract concepts as well as their real-world applications. Dynamical models on graphs or random graphs a...

  18. Technological pedagogical content knowledge and teaching practice of mathematics trainee teachers

    Science.gov (United States)

    Tajudin, Nor'ain Mohd.; Kadir, Noor Zarinawaty Abd.

    2014-07-01

    This study aims to identify the level of technological pedagogical content knowledge (TPCK) of mathematics trainee teachers at Universiti Pendidikan Sultan Idris (UPSI) and explore their teaching practices during practical training at school. The study was conducted in two phases using a mix-method research. In the first phase, a survey method using a questionnaire was carried out on 156 trainee teachers of Bachelor of Mathematics Education (AT14) and Bachelor of Science (Mathematics) with Education (AT48). The instrument used was a questionnaire that measures the level of content knowledge, pedagogy, technology and TPCK of mathematics. Data were analyzed using descriptive statistics, namely the mean. While in the second phase, the interview method involved four trainee teachers were performed. The instrument used was the semi-structured interview protocol to assess the trainee teacher's TPCK integration in their teaching practice. Data were analyzed using the content analysis. The findings showed that the level of knowledge of TPCK among trainee teachers was moderate with overall mean score of 3.60. This level did not show significant differences between the two programs with mean scores of 3.601 for the AT14 group and 3.603 for the AT48 group. However, there was a difference for gender classification such that the female trainees had mean score of 3.58 and male trainees with mean score of 3.72. Although students' TPCK level was moderate, the level of content knowledge (CK), technological knowledge (TK) and pedagogical knowledge (PK), showed a higher level with overall mean scores of 3.75, 3.87 and 3.84 respectively. The findings also showed that in terms of content knowledge, trainee teacher's learning mathematics background was good, but the knowledge of mathematics was limited in the curriculum, philosophy and application aspect. In terms of pedagogical content knowledge, all respondents tend to use lecture and discussion methods in teaching Trigonometry topic

  19. Cognitive Developmental Level Gender, and the Development of Learned Helplessness on Mathematical Calculation and Reasoning Tasks.

    Science.gov (United States)

    Monaco, Nanci M.; Gentile, J. Ronald

    1987-01-01

    This study was designed to test whether a learned helplessness treatment would decrease performance on mathematical tasks and to extend learned helplessness findings to include the cognitive development dimension. Results showed no differential advantages to either sex in resisting effects of learned helplessness or in benefiting from strategy…

  20. How students process equations in solving quantitative synthesis problems? Role of mathematical complexity in students’ mathematical performance

    Directory of Open Access Journals (Sweden)

    Bashirah Ibrahim

    2017-10-01

    Full Text Available We examine students’ mathematical performance on quantitative “synthesis problems” with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students’ mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students’ simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students’ formulation and combination of equations. Several reasons may explain this difference, including the students’ different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.

  1. Capturing student mathematical engagement through differently enacted classroom practices: applying a modification of Watson's analytical tool

    Science.gov (United States)

    Patahuddin, Sitti Maesuri; Puteri, Indira; Lowrie, Tom; Logan, Tracy; Rika, Baiq

    2018-04-01

    This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms of words and actions, the analysis focused on identifying the types of mathematical engagement promoted through the intended lesson and performed by students during the lesson. Using modified Watson's analytical tool (2007), students' engagement was captured from what the participants' did or said mathematically. We found that teachers' enacted practices had an influence on student mathematical engagement. The teacher who demonstrated content in explicit ways tended to limit the richness of the engagement; whereas the teacher who presented activities in an open-ended manner fostered engagement.

  2. Developing digital technologies for university mathematics by applying participatory design methods

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    This paper presents our research efforts to develop digital technologies for undergraduate university mathematics. We employ participatory design methods in order to involve teachers and students in the design of such technologies. The results of the first round of our design are included...

  3. Ways of Thinking, Ways of Seeing Mathematical and other Modelling in Engineering and Technology

    CERN Document Server

    Dillon, Chris

    2012-01-01

    This fascinating book examines some of the characteristics of technological/engineering models that are likely to be unfamiliar to those who are interested primarily in the history and philosophy of science and mathematics, and which differentiate technological models from scientific and mathematical ones. Themes that will be highlighted include: • the role of language: the models developed for engineering design have resulted in new ways of talking about technological systems • communities of practice: related to the previous point, particular engineering communities have particular ways of sharing and developing knowledge • graphical (re)presentation: engineers have developed many ways of reducing quite complex mathematical models to more simple representations • reification: highly abstract mathematical models are turned into ‘objects’ that can be manipulated almost like components of a physical system • machines: not only the currently ubiquitous digital computer, but also older analogue dev...

  4. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  5. Measuring and factors influencing mathematics teachers' technological pedagogical and content knowledge (TPACK) in three southernmost provinces, Thailand

    Science.gov (United States)

    Adulyasas, Lilla

    2017-08-01

    Technology becomes an important role in teaching and learning mathematics nowadays. Integrating technology in the classroom helps students have better understanding in many of mathematics concepts. One of the major framework for assessing the knowledge of integrating technology with the pedagogy and content in the classroom is Technological Pedagogical and Content Knowledge (TPACK) framework. This study aimed to measure mathematics teachers' TPACK in three southernmost provinces, Thailand and to study on factors influencing their TPACK. A quantitative study was carried out with 210 secondary level mathematics teachers in the three southernmost provinces, Thailand which were random by two stage sampling technique. Data were collected by using a questionnaire to identify the level of mathematics teachers' TPACK and the factors influencing their TPACK. Descriptive statistics, Pearson product moment correlation and multiple regression analysis were used for analysing data. Findings reveal that the mean score of mathematics teachers' TPACK is 3.33 which is in the medium level and the three factors which have positive correlation at .05 level of significant with the level of TPACK are teaching experience factor, individual specialization factor and personal & organization factor. However, there are only two factors influencing mathematics teachers' TPACK. The two factors are individual specialization factor and personal & organization factors. These give better understanding on mathematics teachers' knowledge in integrating technology with the pedagogy and content which will be the important information for improving mathematics teachers' TPACK.

  6. Teaching problem solving using non-routine tasks

    Science.gov (United States)

    Chong, Maureen Siew Fang; Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi

    2018-04-01

    Non-routine problems are related to real-life context and require some realistic considerations and real-world knowledge in order to resolve them. This study examines several activity tasks incorporated with non-routine problems through the use of an emerging mathematics framework, at two junior colleges in Brunei Darussalam. The three sampled teachers in this study assisted in selecting the topics and the lesson plan designs. They also recommended the development of the four activity tasks: incorporating the use of technology; simulation of a reality television show; designing real-life sized car park spaces for the school; and a classroom activity to design a real-life sized dustpan. Data collected from all four of the activity tasks were analyzed based on the students' group work. The findings revealed that the most effective activity task in teaching problem solving was to design a real-life sized car park. This was because the use of real data gave students the opportunity to explore, gather information and give or receive feedback on the effect of their reasons and proposed solutions. The second most effective activity task was incorporating the use of technology as it enhanced the students' understanding of the concepts learnt in the classroom. This was followed by the classroom activity that used real data as it allowed students to work and assess the results mathematically. The simulation of a television show was found to be the least effective since it was viewed as not sufficiently challenging to the students.

  7. Classroom observation data and instruction in primary mathematics education: improving design and rigour

    Science.gov (United States)

    Thompson, Carla J.; Davis, Sandra B.

    2014-06-01

    The use of formal observation in primary mathematics classrooms is supported in the literature as a viable method of determining effective teaching strategies and appropriate tasks for inclusion in the early years of mathematics learning. The twofold aim of this study was to (a) investigate predictive relationships between primary mathematics classroom observational data and student achievement data, and (b) to examine the impact of providing periodic classroom observational data feedback to teachers using a Relational-Feedback-Intervention (RFI) Database Model. This observational research effort focused on an empirical examination of student engagement levels in time spent on specific learning activities observed in primary mathematics classrooms as predictors of student competency outcomes in mathematics. Data were collected from more than 2,000 primary classroom observations in 17 primary schools during 2009-2011 and from standardised end-of-year tests for mathematics achievement. Results revealed predictive relationships among several types of teaching and learning tasks with student achievement. Specifically, the use of mathematics concepts, technology and hands-on materials in primary mathematics classrooms was found to produce substantive predictors of increased student mathematics achievement. Additional findings supported the use of periodic classroom observation data reporting as a positive influence on teachers' decisions in determining instructional tasks for inclusion in primary mathematics classrooms. Study results indicate classroom observational research involving a RFI Database Model is a productive tool for improving teaching and learning in primary mathematics classrooms.

  8. Air Force-Wide Needs for Science, Technology, Engineering, and Mathematics (STEM) Academic Degrees

    Science.gov (United States)

    2014-01-01

    anthropology (0190), mathematical statistics (1529), general math (AFIT faculty only), metallurgy (1321), and actuarial science (1510). 97 Tier II. Few...linking or frEE DownloAD At www.rand.org C O R P O R A T I O N Research Report Air Force–Wide Needs for Science , Technology, Engineering, and...00-00-2014 4. TITLE AND SUBTITLE Air Force-Wide Needs for Science , Technology, Engineering, and Mathematics (STEM) Academic Degrees 5a. CONTRACT

  9. Implementation of Technology in an Elementary Mathematics Lesson: The Experiences of Pre-Service Teachers at One University

    Science.gov (United States)

    Herron, Julie

    2010-01-01

    This study examined pre-service teachers' responses to implementing technology into elementary mathematics lessons. Instructional Architect (IA) was the web-base technology used by the pre-service teachers. Four themes emerged from the data: (a) insights into technology, (b) struggles with technology, (c) access to the mathematics and (d) learning…

  10. Research on the Development of Middle School Mathematics Pre-Service Teachers' Perceptions Regarding the Use of Technology in Teaching Mathematics

    Science.gov (United States)

    Akkaya, Recai

    2016-01-01

    This study aimed to investigate the changes in teacher perceptions regarding the use of technology subsequent to the training about technology integration in mathematics teaching. A training program that included combined technology, pedagogy and content knowledge was prepared and implemented on pre-service teachers with this aim. Exploratory…

  11. Mathematical model for the technological system of working a thin coal bed

    Energy Technology Data Exchange (ETDEWEB)

    Isayev, V V

    1979-01-01

    The principle for constructing a mathematical model of working a thin coal bed using the adaptation criterion is examined. Intersecting parameters of the medium and the unit are presented. Based on these parameters, dependences are presented for the adaptation criterion and its maximization. A general mathematical model is presented for the technological system of unmanned extraction of a thin bed D/sub 5/ under conditions of the mine ''Dolinskaya'' of the Karaganda Basin. The work results can be used to plan technological systems for working thin coal beds.

  12. Mathematics Teachers' Use of Information and Communication Technologies: An International Comparison

    Science.gov (United States)

    Kiru, Elisheba W.

    2018-01-01

    There is an urgent need to understand how often teachers use information and communication technologies (ICT) in mathematics instruction. This information can provide vital links that can help stakeholders make connections about ICT use in mathematics instruction and student learning experiences with ICT. Scholars in the field have reported on the…

  13. Collaborative Teacher Inquiry as a Tool for Building Theory on the Development and Use of Rich Mathematical Tasks

    Science.gov (United States)

    Slavit, David; Nelson, Tamara Holmlund

    2010-01-01

    This article describes the collaborative inquiry activity of a group of high school mathematics teachers interested in increasing student engagement and problem solving in the classroom. Specific findings related to the nature of the teacher interactions and subsequent impacts on practice are discussed. The findings focus on (a) the nature of the…

  14. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  15. Task-technology fit of video telehealth for nurses in an outpatient clinic setting.

    Science.gov (United States)

    Cady, Rhonda G; Finkelstein, Stanley M

    2014-07-01

    Incorporating telehealth into outpatient care delivery supports management of consumer health between clinic visits. Task-technology fit is a framework for understanding how technology helps and/or hinders a person during work processes. Evaluating the task-technology fit of video telehealth for personnel working in a pediatric outpatient clinic and providing care between clinic visits ensures the information provided matches the information needed to support work processes. The workflow of advanced practice registered nurse (APRN) care coordination provided via telephone and video telehealth was described and measured using a mixed-methods workflow analysis protocol that incorporated cognitive ethnography and time-motion study. Qualitative and quantitative results were merged and analyzed within the task-technology fit framework to determine the workflow fit of video telehealth for APRN care coordination. Incorporating video telehealth into APRN care coordination workflow provided visual information unavailable during telephone interactions. Despite additional tasks and interactions needed to obtain the visual information, APRN workflow efficiency, as measured by time, was not significantly changed. Analyzed within the task-technology fit framework, the increased visual information afforded by video telehealth supported the assessment and diagnostic information needs of the APRN. Telehealth must provide the right information to the right clinician at the right time. Evaluating task-technology fit using a mixed-methods protocol ensured rigorous analysis of fit within work processes and identified workflows that benefit most from the technology.

  16. Professional development in statistics, technology, and cognitively demanding tasks: classroom implementation and obstacles

    Science.gov (United States)

    Foley, Gregory D.; Bakr Khoshaim, Heba; Alsaeed, Maha; Nihan Er, S.

    2012-03-01

    Attending professional development programmes can support teachers in applying new strategies for teaching mathematics and statistics. This study investigated (a) the extent to which the participants in a professional development programme subsequently used the techniques they had learned when teaching mathematics and statistics and (b) the obstacles they encountered in enacting cognitively demanding instructional tasks in their classrooms. The programme created an intellectual learning community among the participants and helped them gain confidence as teachers of statistics, and the students of participating teachers became actively engaged in deep mathematical thinking. The participants indicated, however, that time, availability of resources and students' prior achievement critically affected the implementation of cognitively demanding instructional activities.

  17. Technology-driven developments and policy implications for mathematics education

    NARCIS (Netherlands)

    Trouche, L.; Drijvers, P.H.M.|info:eu-repo/dai/nl/074302922; Gueudet, G.; Sacristan, A.I.

    2013-01-01

    The advent of technology has done more than merely increase the range of resources available for mathematics teaching and learning: it represents the emergence of a new culture—a virtual culture with new paradigms—which differs crucially from preceding cultural forms. In this chapter, the

  18. Modelling the Intention to Use Technology for Teaching Mathematics among Pre-Service Teachers in Serbia

    Science.gov (United States)

    Teo, Timothy; Milutinovic, Verica

    2015-01-01

    This study aims to examine the variables that influence Serbian pre-service teachers' intention to use technology to teach mathematics. Using the technology acceptance model (TAM) as the framework, we developed a research model to include subjective norm, knowledge of mathematics, and facilitating conditions as external variables to the TAM. In…

  19. Effects of Game Technology on Elementary Student Learning in Mathematics

    Science.gov (United States)

    Shin, Namsoo; Sutherland, LeeAnn M.; Norris, Cathleen A.; Soloway, Elliot

    2012-01-01

    This paper reports the effects of game technology on student learning in mathematics as investigated in two data sets collected from slightly different subjects. In the first, 41 second graders (7 or 8 years old) from two classes used either a technology-based game or a paper-based game for 5 weeks. For the next 13 weeks, both classes used a…

  20. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase task description

    Energy Technology Data Exchange (ETDEWEB)

    Ida, M.; Nakamura, H.; Sugimoto, M.; Yutani, T.; Takeuchi, H. [eds.] [Japan Atomic Energy Research Inst., Tokai Research Establishment, Fusion Neutron Laboratory, Tokai, Ibaraki (Japan)

    2000-08-01

    In 2000, a 3 year Key Element technology Phase (KEP) of the International Fusion Materials Irradiation Facility (IFMIF) has been initiated to reduce the key technology risk factors needed to achieve continuous wave (CW) beam with the desired current and energy and to reach the corresponding power handling capabilities in the liquid lithium target system. In the KEP, the IFMIF team (EU, Japan, Russian Federation, US) will perform required tasks. The contents of the tasks are described in the task description sheet. As the KEP tasks, the IFMIF team have proposed 27 tasks for Test Facilities, 12 tasks for Target, 26 tasks for Accelerator and 18 tasks for Design Integration. The task description by RF is not yet available. The task items and task descriptions may be added or revised with the progress of KEP activities. These task description sheets have been compiled in this report. After 3 years KEP, the results of the KEP tasks will be reviewed. Following the KEP, 3 years Engineering Validation Phase (EVP) will continue for IFMIF construction. (author)

  1. Instructors' use of technology in post-secondary undergraduate mathematics teaching: a local study

    Science.gov (United States)

    Jesso, A. T.; Kondratieva, M. F.

    2016-02-01

    In this study, instructors of undergraduate mathematics from post-secondary institutions in Newfoundland were surveyed (N = 13) and interviewed (N = 8) about their use of, experiences with, and views on, technologically assisted teaching. It was found that the majority of them regularly use technologies for organizational and communication purposes. However, the use of math-specific technology such as computer algebra systems, or dynamic geometry software for instructional, exploratory, and creative activities with students takes place mostly on an individual basis, only occasionally, and is very much topic specific. This was even the case for those instructors who use technology proficiently in their research. The data also suggested that familiarity with and discussions of examples of technology implementation in teaching at regular and field-oriented professional development seminars within mathematics departments could potentially increase the use of math-specific technology by instructors.

  2. 2nd International Conference on Mathematics and Computing

    CERN Document Server

    Chowdhury, Dipanwita; Giri, Debasis

    2015-01-01

    This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. This is the second conference on mathematics and computing organized at Haldia Institute of Technology, India. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate, and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in com...

  3. A Literature Review: The Effect of Implementing Technology in a High School Mathematics Classroom

    Science.gov (United States)

    Murphy, Daniel

    2016-01-01

    This study is a literature review to investigate the effects of implementing technology into a high school mathematics classroom. Mathematics has a hierarchical structure in learning and it is essential that students get a firm understanding of mathematics early in education. Some students that miss beginning concepts may continue to struggle with…

  4. One-to-one iPad technology in the middle school mathematics and science classrooms

    Science.gov (United States)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  5. Real-time Planning Support: A Task-technology Fit Perspective

    NARCIS (Netherlands)

    E. Krauth (Elfriede)

    2008-01-01

    textabstractPlanning technology by itself is not sufficient to improve planning performance. What are the factors that determine the extent to which the benefits of planning technology are realized? In order to answer this question, this dissertation studies four mechanisms of fit between task and

  6. Pre-service teachers’ TPACK competencies for spreadsheet integration: insights from a mathematics-specific instructional technology course

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, J.M.

    2015-01-01

    This article explored the impact of strategies applied in a mathematics instructional technology course for developing technology integration competencies, in particular in the use of spreadsheets, in pre-service teachers. In this respect, 104 pre-service mathematics teachers from a teacher training

  7. Tracking Professional Development of Novice Teachers When Integrating Technology in Teaching Mathematics

    Science.gov (United States)

    Gurevich, Irina; Stein, Hana; Gorev, Dvora

    2017-01-01

    This research traced changes in choices of technological tools and attitudes toward technology use among novice mathematics teachers at three stages of their professional development: as pre-service teachers, a year later, and in their work as novice teachers. At each stage, the participants were required to evaluate the benefits of technology use…

  8. The Exponential Growth of Mathematics and Technology at the University of Portsmouth

    Science.gov (United States)

    McCabe, Michael

    2009-01-01

    The number of students studying university mathematics in the UK has been increasing gradually and linearly since 2002. At the University of Portsmouth, number of students studying mathematics doubled from 30 to 60 between 2002 and 2007, then increased by 240% in just 1 year to over 140 in 2008. This article explains how learning technology has…

  9. Restructuring STM (Science, Technology, and Mathematics) Education for Entrepreneurship

    Science.gov (United States)

    Ezeudu, F. O.; Ofoegbu, T. O.; Anyaegbunnam, N. J.

    2013-01-01

    This paper discussed the need to restructure STM (science, technology, and mathematics) education to reflect entrepreneurship. This is because the present STM education has not achieved its aim of making graduates self-reliant. Entrepreneurship education if introduced in the STM education will produce graduate who can effectively manage their…

  10. Orientations toward Mathematical Processes of Prospective Secondary Mathematics Teachers as Related to Work with Tasks

    Science.gov (United States)

    Cannon, Tenille

    2016-01-01

    Mathematics can be conceptualized in different ways. Policy documents such as the National Council of Teachers of Mathematics (NCTM) (2000) and the Common Core State Standards Initiative (CCSSI) (2010), classify mathematics in terms of mathematical content (e.g., quadratic functions, Pythagorean theorem) and mathematical activity in the form of…

  11. Technology and testing.

    Science.gov (United States)

    Quellmalz, Edys S; Pellegrino, James W

    2009-01-02

    Large-scale testing of educational outcomes benefits already from technological applications that address logistics such as development, administration, and scoring of tests, as well as reporting of results. Innovative applications of technology also provide rich, authentic tasks that challenge the sorts of integrated knowledge, critical thinking, and problem solving seldom well addressed in paper-based tests. Such tasks can be used on both large-scale and classroom-based assessments. Balanced assessment systems can be developed that integrate curriculum-embedded, benchmark, and summative assessments across classroom, district, state, national, and international levels. We discuss here the potential of technology to launch a new era of integrated, learning-centered assessment systems.

  12. A Cognition Analysis of QUASAR's Mathematics Performance Assessment Tasks and Their Sensitivity to Measuring Changes in Middle School Students' Thinking and Reasoning.

    Science.gov (United States)

    Cai, Jinfa, And Others

    1996-01-01

    Presents a conceptual framework for analyzing students' mathematical understanding, reasoning, problem solving, and communication. Analyses of student responses indicated that the tasks appear to measure the complex thinking and reasoning processes that they were designed to assess. Concludes that the QUASAR assessment tasks can capture changes in…

  13. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    Science.gov (United States)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  14. Mathematical literacy teachers' engagement with contextual tasks ...

    African Journals Online (AJOL)

    This article reports on a study carried out with a group of 108 practising Mathematical Literacy (ML) teachers who participated in an Advanced Certificate in Education (ACE) programme. The purpose of the qualitative study was to identify and describe the teachers' varying levels of engagement with mathematics tools and ...

  15. A Problem-Based Learning Approach of Teaching Mathematics to Media Technology Students Using a Game Engine

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Misfeldt, Morten; Timcenko, Olga

    2015-01-01

    In this article, we present our idea of using a game engine (Unity) to teach Media Technology students mathematics-related concepts. In order to observe how the introduction of a technological tool, namely the game engine, changes the practices in mathematical work, we adopted the anthropological...

  16. An Invitation to Mathematics

    CERN Document Server

    Schleicher, Dierk

    2011-01-01

    This "Invitation to Mathematics" consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is

  17. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    OpenAIRE

    Stoet, G; Geary, DC

    2018-01-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. P...

  18. Science, Technology, Engineering, and Mathematics (STEM) Education Issues and Legislative Options

    National Research Council Canada - National Science Library

    Kuenzi, Jeffrey J; Matthews, Christine M; Mangan, Bonnie F

    2006-01-01

    There is growing concern that the United States is not preparing a sufficient number of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM...

  19. Specific modes of vibratory technological machines: mathematical models, peculiarities of interaction of system elements

    Science.gov (United States)

    Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.

    2018-03-01

    The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.

  20. Pre-Service Teachers' TPACK Competencies for Spreadsheet Integration: Insights from a Mathematics-Specific Instructional Technology Course

    Science.gov (United States)

    Agyei, Douglas D.; Voogt, Joke M.

    2015-01-01

    This article explored the impact of strategies applied in a mathematics instructional technology course for developing technology integration competencies, in particular in the use of spreadsheets, in pre-service teachers. In this respect, 104 pre-service mathematics teachers from a teacher training programme in Ghana enrolled in the mathematics…

  1. Does Teaching Geometry with Augmented Reality Affect the Technology Acceptance of Elementary School Mathematics Teacher Candidates?

    Science.gov (United States)

    Önal, Nezih; Ibili, Emin; Çaliskan, Erkan

    2017-01-01

    The purpose of this research is to determine the impact of augmented reality technology and geometry teaching on elementary school mathematics teacher candidates' technology acceptance and to examine participants' views on augmented reality. The sample of the research was composed of 40 elementary school mathematics teacher candidates who were…

  2. Mathematical and numerical foundations of turbulence models and applications

    CERN Document Server

    Chacón Rebollo, Tomás

    2014-01-01

    With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...

  3. The CMETS Program: Grounding Middle Grade Mathematics and Technology Professional Development in Research-Based Best Practice

    Science.gov (United States)

    Guerrero, Shannon; Dugdale, Sharon

    2009-01-01

    The past few decades have seen middle school teachers in the United States hit especially hard by contradictory messages about the use and importance of technology in support of their standards-based mathematics teaching. This paper considers this dichotomy with respect to the California Mathematics Education Technology Site (CMETS), a…

  4. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  5. Strategic Alliance to Advanced Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level

    Science.gov (United States)

    Scarborough, Jule Dee

    2004-01-01

    This document (book) reports on the Strategic Alliance to Advance Technological Education through Enhanced Mathematics, Science, Technology, and English Education at the Secondary Level, funded by National Science Foundation. It was a collaborative partnership involving the Rockford Public Schools, Rock Valley College, and Northern Illinois…

  6. Information seeking research needs extension towards tasks and technology

    Directory of Open Access Journals (Sweden)

    Kalervo Järvelin

    2004-01-01

    Full Text Available This paper discusses the research into information seeking and its directions at a general level. We approach this topic by analysis and argumentation based on past research in the domain. We begin by presenting a general model of information seeking and retrieval (IS&R which is used to derive nine broad dimensions that are needed to analyze IS&R. Past research is then contrasted with the dimensions and shown not to cover the dimensions sufficiently. Based on an analysis of the goals of information seeking research, and a view on human task performance augmentation, it is then shown that information seeking is intimately associated with, and dependent on, other aspects of work; tasks and technology included. This leads to a discussion on design and evaluation frameworks for IS&R, based on which two action lines are proposed: information retrieval research needs extension towards more context and information seeking research needs extension towards tasks and technology.

  7. Longitudinal Effects of Technology Integration and Teacher Professional Development on Students' Mathematics Achievement

    Science.gov (United States)

    Bicer, Ali; Capraro, Robert M.

    2017-01-01

    MathForward is a program that provides teacher professional development and integrates the use of technology as a tool in the classroom. The present study examined students' mathematics growth from 2012 to 2013 and observed how students' mathematics scores changed after their school implemented the MathForward program. The sample consisted of two…

  8. Understanding Prospective Teachers' Mathematical Modeling Processes in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat

    2017-01-01

    This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…

  9. The Incorporation of Micro-Computer Technology into School Mathematics: Some Suggestions for Middle and Senior Mathematics Courses.

    Science.gov (United States)

    Newton, Bill

    1987-01-01

    Argues that the use of computer technologies in secondary schools should change the nature of mathematics education. Urges the rethinking of the uses of traditional paper-and-pencil computations. Suggests some computer applications for elementary algebra and for problem solving in arithmetic and calculus. (TW)

  10. History of Mathematics in Korean Mathematics Textbooks: Implication for Using Ethnomathematics in Culturally Diverse School

    Science.gov (United States)

    Ju, Mi-Kyung; Moon, Jong-Eun; Song, Ryoon-Jin

    2016-01-01

    From a multicultural perspective, this research investigated to what extent Korean mathematics textbooks use history of mathematics. The results show even though educational use of history presented in Korean mathematics textbooks may provide a rich outlook, it does not encourage a fundamental change in the educational practice of school…

  11. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  12. INVESTIGATING AND COMMUNICATING TECHNOLOGY MATHEMATICS PROBLEM SOLVING EXPERIENCE OF TWO PRESERVICE TEACHERS

    Directory of Open Access Journals (Sweden)

    Ana Kuzle

    2012-04-01

    Full Text Available In this paper, I report on preservice teachers’ reflections and perceptions on theirproblem-solving process in a technological context. The purpose of the study was to to investigatehow preservice teachers experience working individually in a dynamic geometry environment andhow these experiences affect their own mathematical activity when integrating content (nonroutineproblems and context (technology environment. Careful analysis of participants’ perceptionsregarding their thinking while engaged in problem solving, provided an opportunity to explorehow they explain the emergence of problem solving when working in a dynamic geometryenvironment. The two participants communicated their experience both through the lenses ofthemselves as problem solvers and as future mathematics educators. Moreover, the results of thestudy indicated that problem solving in a technology environment does not necessarily allow focuson decision-making, reflection, and problem solving processes as reported by previous research.

  13. Technological Pedagogical Content Knowledge of Prospective Mathematics Teacher in Three Dimensional Material Based on Sex Differences

    Science.gov (United States)

    Aqib, M. A.; Budiarto, M. T.; Wijayanti, P.

    2018-01-01

    The effectiveness of learning in this era can be seen from 3 factors such as: technology, content, and pedagogy that covered in Technological Pedagogical Content Knowledge (TPCK). This research was a qualitative research which aimed to describe each domain from TPCK include Content Knowledge, Pedagogical Knowledge, Pedagogical Content Knowledge, Technological Knowledge, Technological Content Knowledge, Technological Pedagogical Knowledge and Technological, Pedagogical, and Content Knowledge. The subjects of this research were male and female mathematics college students at least 5th semester who has almost the same ability for some course like innovative learning, innovative learning II, school mathematics I, school mathematics II, computer applications and instructional media. Research began by spreading the questionnaire of subject then continued with the assignment and interview. The obtained data was validated by time triangulation.This research has result that male and female prospective teacher was relatively same for Content Knowledge and Pedagogical Knowledge domain. While it was difference in the Technological Knowledge domain. The difference in this domain certainly has an impact on other domains that has technology components on it. Although it can be minimized by familiarizing the technology.

  14. Pre-Service Science and Mathematics Teachers' Thoughts about Technology

    Science.gov (United States)

    Aran, Özge Can; Derman, Ipek; Yagci, Esed

    2016-01-01

    This study aims to investigate pre-service teachers' opinions about the technology. In this respect, the opinions of pre-service science and mathematics teachers were taken. The study was carried out at a university, located in the capital of Turkey. The data were collected from 20 pre-service teachers in the department of secondary school science…

  15. Generations of Research on New Technologies in Mathematics Education

    Science.gov (United States)

    Sinclair, Nathalie

    2014-01-01

    This article traces some of the influential ideas and motivations that have shaped a large part of the research on the use of new technologies in mathematics education over the past 40 years. Particular attention is focused on Papert's legacy, Celia's Hoyles' transformation of it, and how both relate to the current research landscape that features…

  16. Pacific Northwest Laboratory tasks supporting the Office of Technology Development national program

    International Nuclear Information System (INIS)

    Slate, S.C.

    1993-01-01

    The purpose of this document is to provide a concise summary of the Pacific Northwest Laboratory's (PNL) tasks being conducted for the Department of Energy's (DOE) Office of Technology Development (OTD). The summaries are useful to principal investigators who want to link their work to others doing similar work, to staff in DOE operating programs who are looking for better solutions to current problems, and to private industry which may be interested in teaming with PNL to commercialize the technology. The tasks are organized within Hanford's overall Work Breakdown Structure (WBS), which is a hierarchical organization of the Hanford mission into subordinate missions. The technology development tasks are all in WBS 3.2. The first subordinate steps under WBS 3.2 are general categories of technology development, such as Soils and Groundwater Cleanup. The next level is the Integrated Program (IP) and Integrated Demonstration (ID) level. An IP is a centrally managed series of projects which explore and develop a particular technology, such as characterization, for application to a wide spectrum of problems. An ID brings multiple technology systems to bear on an actual problem; for example, a carbon tetrachloride plume migrating through the soil is being remediated with biological agents, heating the soil, and destruction of the contamination in vapor removed from the soil. IDs and IPs are identified by an alphanumeric code: GSO2 is the second ID under Groundwater and Soils Cleanup. The final step in the breakout is the Technical Task Plan (TTP). These are individual tasks which support the ID/IP. They are identified by a six-digit number in the format 3211-01. The WBS structure for Technology Development down to the ID/IP level is shown

  17. Primary school teachers' use of digital technology in mathematics: the complexities

    Science.gov (United States)

    Loong, Esther Yook-Kin; Herbert, Sandra

    2018-02-01

    This paper seeks to theorise primary teachers' degree of integration of digital technology in the mathematics classroom. In an age where digital technology use is ubiquitous, the issues surrounding teachers' choice, and ultimately their uptake of digital technologies in the classroom, is an area that need to be further unpacked. Cross-case analysis of the two teachers' uptake of digital technologies in their classroom, their pedagogical approaches and the reason for their choices provide insight into teachers' technological, pedagogical and content knowledge (TPACK). Differences in the way the teachers use digital technology in their classroom seem to be connected to their TPACK developmental stage.

  18. Application of mathematical methods of analysis in selection of competing information technologies

    Science.gov (United States)

    Semenov, V. L.; Kadyshev, E. N.; Zakharova, A. N.; Patianova, A. O.; Dulina, G. S.

    2018-05-01

    The article discusses the use of qualimetry methods using the apparatus of mathematical analysis in the formation of the integral index that allows one to select the best option among competing information technology. The authors propose the use of affine space in the evaluation and selection of competing information technologies.

  19. Myths and Motives behind STEM (Science, Technology, Engineering, and Mathematics) Education and the STEM-Worker Shortage Narrartive

    Science.gov (United States)

    Stevenson, Heidi J.

    2014-01-01

    The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…

  20. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  1. Pre-Service Teachers' Mathematics Language and Reflection in the Context of an Early Childhood Mathematics Methods Course

    Science.gov (United States)

    Boyd, Soleil

    2016-01-01

    Preschool teachers are expected to engage young children in challenging and supportive mathematics learning. Rich and responsive language experiences in mathematics support children's language acquisition and engagement related to mathematics, however, such engaging experiences may be minimally available to many young children. Professional…

  2. Fielding an After-School Mathematics Lab

    Science.gov (United States)

    Punches-Guntsch, Christina M.; Kenney, Erin N.

    2012-01-01

    Many students will need remedial work in mathematics during their high school years. Some sort of help will be needed to fulfill the National Council of Teachers of Mathematics' (NCTM's) (2000) vision of a mathematics classroom that involves students having access to mathematically rich problems and being engaged in solving them. The high school…

  3. Is it health information technology? : Task complexity and work substitution

    NARCIS (Netherlands)

    Medina Palomino, Hector; Rutkowski, Anne; Verhulst, Matthijs

    2015-01-01

    New technology is making it possible to replace professions built on complex knowledge, e.g. medicine. In our exploratory research we examined how Information Technologies might be replacing some of the tasks formerly processed by physician anesthesiologists (MDAs). Data (N=1178) were collected at a

  4. Construction of mathematical knowledge using graphic calculators (CAS) in the mathematics classroom

    Science.gov (United States)

    Hitt, Fernando

    2011-09-01

    Mathematics education researchers are asking themselves about why technology has impacted heavily on the social environment and not in the mathematics classroom. The use of technology in the mathematics classroom has not had the expected impact, as it has been its use in everyday life (i.e. cell phone). What about teachers' opinions? Mathematics teachers can be divided into three categories: those with a boundless overflow (enthusiasm) who want to use the technology without worrying much about the construction of mathematical concepts, those who reject outright the use of technology because they think that their use inhibits the development of mathematical skills and others that reflect on the balance that must exist between paper-pencil activities and use of technology. The mathematics teacher, by not having clear examples that support this last option about the balance of paper-pencil activities and technology, opt for one of the extreme positions outlined above. In this article, we show the results of research on a methodology based on collaborative learning (ACODESA) in the training of mathematics teachers in secondary schools and implementation of activities in an environment of paper-pencil and CAS in the mathematics classroom. We also note that with the development of technology on the use of electronic tablets and interactive whiteboards, these activities will take on greater momentum in the near future.

  5. Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth

    2012-01-01

    On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…

  6. Incorporating the iPad2 in the Mathematics Classroom: Extending the Mind into the Collective

    Directory of Open Access Journals (Sweden)

    Armando Paulino Preciado Babb

    2012-04-01

    Full Text Available Doubtlessly, mathematics is one of the most important subjects in education from K to 12 levels especially for students interested in eventually pursuing undergraduate studies in the fields of science and technology. As it has been argued in mathematics education research, not only the content, but also the form in which students learn is important for mathematics learning. Particularly, an inquiry approach permeates through the mathematics curriculum of several countries around the world. Additionally, the use of technology to learn mathematics has been increasing in the last decades, requiring teachers and professionals in education to constantly explore and learn new possibilities or affordances in the classroom. The purpose of this paper is to initiate a discussion about the possible and complex forms of interaction among students, teacher, mathematical tasks, and the electronic tablet (iPad2 in an inquiry learning environment. An experience from a grade 10 classroom is used as a context to exemplify these interactions.

  7. VET Workers' Problem-Solving Skills in Technology-Rich Environments: European Approach

    Science.gov (United States)

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults' problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults' skills to date. The present study (N = 50 369) focuses on gaining insight…

  8. Helping Mathematics Teachers Develop Noticing Skills: Utilizing Smartphone Technology for One-on-One Teacher/Student Interviews

    Science.gov (United States)

    Chao, Theodore; Murray, Eileen; Star, Jon R.

    2016-01-01

    Teaching mathematics for understanding requires listening to each student's mathematical thinking, best elicited in a one-on-one interview. Interviews are difficult to enact in a teacher's busy schedule, however. In this study, the authors utilize smartphone technology to help mathematics teachers interview a student in a virtual one-on-one…

  9. Progress report 1995 on fusion technology tasks

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der [ed.

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.).

  10. Progress report 1995 on fusion technology tasks

    International Nuclear Information System (INIS)

    Laan, J.G. van der

    1996-07-01

    This annual progress report describes research activities which have been performed at ECN within the framework of the European Fusion Technology Programme during the period 1 January to 31 December 1995. The work is organized in R and D contracts for the next step NET/ITER Technology, the Blanket Development Programme, the Long Term Programme and in NET contracts. The topics concern: Irradiation damage in austenitic and martensitic stainless steel, weldments, low-activation vanadium alloys, first wall coatings, simulation off-normal heat loads, nuclear data and neutronics for fusion, safety studies, development of ceramic breeding material and structural analysis on magnet coils. In addition the supporting and supplementary tasks and investigations in the category underlying technology are reported. A list of publications and staff members is also given. (orig.)

  11. Improving grade 7 students’ achievement in initial algebra through a technology-based intervention.

    NARCIS (Netherlands)

    Jupri, A.; Drijvers, P.H.M.; Van den Heuvel-Panhuizen, M.

    2015-01-01

    Digital technology plays an increasingly important role in daily life, mathematics education and algebra education in particular. To investigate the effect of a technology-rich intervention related to initial algebra on the achievement of 12–13 year old Indonesian students, we set up an experiment.

  12. The Effectiveness of Educational Technology Applications for Enhancing Mathematics Achievement in K-12 Classrooms: A Meta-Analysis. Educator's Summary

    Science.gov (United States)

    Center for Research and Reform in Education, 2012

    2012-01-01

    This review summarizes research on the effects of technology use on mathematics achievement in K-12 classrooms. The main research questions included: (1) Do education technology applications improve mathematics achievement in K-12 classrooms as compared to traditional teaching methods without education technology?; and (2) What study and research…

  13. Teachers' Perceptions of Factors Affecting the Educational Use of ICT in Technology-Rich Classrooms

    Science.gov (United States)

    Badia, Antoni; Meneses, Julio; Sigales, Carles

    2013-01-01

    Introduction: The purpose of this study is to identify the main factors that influence teachers' decision-making regarding the educational use of ICT (Information and Communication Technologies) in technology-rich classrooms. Method: We collected data from 278 teachers in Catalonia (Spain) working in eight primary and secondary education schools…

  14. Problem posing as a didactic resource in formal mathematics courses to train future secondary school mathematics teachers

    Directory of Open Access Journals (Sweden)

    Lorena Salazar Solórzano

    2015-06-01

    Full Text Available Beginning university training programs must focus on different competencies for mathematics teachers, i.e., not only on solving problems, but also on posing them and analyzing the mathematical activity. This paper reports the results of an exploratory study conducted with future secondary school mathematics teachers on the introduction of problem-posing tasks in formal mathematics courses, specifically in abstract algebra and real analysis courses. Evidence was found that training which includes problem-posing tasks has a positive impact on the students’ understanding of definitions, theorems and exercises within formal mathematics, as well as on their competency in reflecting on the mathematical activity. 

  15. [Decision of mathematical logical tasks in sensory enriched environment (classical music)].

    Science.gov (United States)

    Pavlygina, R A; Karamysheva, N N; Tutushkina, M V; Sakharov, D S; Davydov, V I

    2012-01-01

    The time of a decision of mathematical logical tasks (MLT) was decreased during classical musical accompaniment (power 35 and 65 dB). Music 85 dB did not influence on the process of decision of MLT. Decision without the musical accompaniment led to increasing of coherent function values in beta1, beta2, gamma frequency ranges in EEG of occipital areas with prevalence in a left hemisphere. A coherence of potentials was decreased in EEG of frontal cortex. Music decreasing of making-decision time enhanced left-sided EEG asymmetry The intrahemispheric and the interhemispheric coherences of frontal cortex were increased during the decision of MLT accompanied by music. Using of musical accompaniment 85 dB produced a right-side asymmetry in EEG and formed a focus of coherent connections in EEG of temporal area of a right hemisphere.

  16. Technological pedagogical content knowledge in South African mathematics classrooms: A secondary analysis of SITES 2006 data

    Directory of Open Access Journals (Sweden)

    Verona Leendertz

    2013-12-01

    Full Text Available This article reports on a secondary data analysis conducted on the South African mathematics teachers’ dataset of the Second Information Technology in Education Study (SITES 2006. The sample consisted of a stratified sample of 640 mathematics teachers from 504 randomly selected computer-using and non–computer-using schools that completed the SITES 2006 teachers’ questionnaire, which investigated their pedagogical use of Information Communication Technology (ICT. The purpose of the current investigation was to investigate the level of Technological Pedagogical Content Knowledge (TPACK of mathematics teachers, and how TPACK attributes contribute towards more effective Grade 8 mathematics teaching in South African schools, using the TPACK conceptual framework. The findings are presented according to the three clusters identified through the association between the main variables of the TPACK model and other variables on the SITES 2006 teachers’ questionnaire: (1 impact of ICT use, (2 teacher practices and (3 barriers. A Cramér V of between 0.3 and 0.4 was considered to signal a medium effect that tended towards practically significant association, and a Cramér V of 0.4 or larger was considered to signal a large effect with practically significant association. The results indicate that the TPACK of mathematics teachers contributes towards more effective Grade 8 mathematics teaching in South African schools.

  17. Developing CORE model-based worksheet with recitation task to facilitate students’ mathematical communication skills in linear algebra course

    Science.gov (United States)

    Risnawati; Khairinnisa, S.; Darwis, A. H.

    2018-01-01

    The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.

  18. Reflective Implementation of DERIVE in Teaching Mathematics at the University of Food Technology, Plovdiv

    Science.gov (United States)

    Dimitrova, Eva D.

    2007-01-01

    The Department of Mathematics at the University of Food Technology, Plovdiv, Bulgaria, has introduced the Computer Algebra System DERIVE into the Mathematics courses with a view to increasing student motivation and understanding of the material taught as well as the efficiency of the teaching process. With the aim of investigating the effect of…

  19. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    Science.gov (United States)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  20. Learning by Preparing to Teach: Fostering Self-Regulatory Processes and Achievement during Complex Mathematics Problem Solving

    Science.gov (United States)

    Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.

    2016-01-01

    We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…

  1. Interdisciplinary education - a predator-prey model for developing a skill set in mathematics, biology and technology

    Science.gov (United States)

    van der Hoff, Quay

    2017-08-01

    The science of biology has been transforming dramatically and so the need for a stronger mathematical background for biology students has increased. Biological students reaching the senior or post-graduate level often come to realize that their mathematical background is insufficient. Similarly, students in a mathematics programme, interested in biological phenomena, find it difficult to master the complex systems encountered in biology. In short, the biologists do not have enough mathematics and the mathematicians are not being taught enough biology. The need for interdisciplinary curricula that includes disciplines such as biology, physical science, and mathematics is widely recognized, but has not been widely implemented. In this paper, it is suggested that students develop a skill set of ecology, mathematics and technology to encourage working across disciplinary boundaries. To illustrate such a skill set, a predator-prey model that contains self-limiting factors for both predator and prey is suggested. The general idea of dynamics, is introduced and students are encouraged to discover the applicability of this approach to more complex biological systems. The level of mathematics and technology required is not advanced; therefore, it is ideal for inclusion in a senior-level or introductory graduate-level course for students interested in mathematical biology.

  2. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    Science.gov (United States)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  3. Selecting and Using Mathematics Methods Texts: Nontrivial Tasks

    Science.gov (United States)

    Harkness, Shelly Sheats; Brass, Amy

    2017-01-01

    Mathematics methods textbooks/texts are important components of many courses for preservice teachers. Researchers should explore how these texts are selected and used. Within this paper we report the findings of a survey administered electronically to 132 members of the Association of Mathematics Teacher Educators (AMTE) in order to answer the…

  4. What Are We Afraid of? Arguments against Teaching Mathematics with Technology in the Professional Publications of Organisations for US Mathematicians

    Science.gov (United States)

    Risser, Hilary Smith

    2011-01-01

    More than twenty years after the introduction of the first handheld graphing calculator the mathematics community appears to still be struggling with the use of technology in the teaching and learning of mathematics. One major venue for arguments against technology use in the teaching and learning of mathematics is the news magazines of…

  5. Student Interactions in Technology-Rich Classrooms

    Science.gov (United States)

    Fonkert, Karen L.

    2010-01-01

    Students are more likely to develop a deep conceptual understanding of mathematics when they interact with and discuss their thoughts with others. The National Council of Teachers of Mathematics (NCTM) (1989, 2000) has recommended that students be active learners--communicating with one another, conjecturing, exploring, and justifying claims by…

  6. An Analysis of Mathematics Interventions: Increased Time-on-Task Compared with Computer-Assisted Mathematics Instruction

    Science.gov (United States)

    Calhoun, James M., Jr.

    2011-01-01

    Student achievement is not progressing on mathematics as measured by state, national, and international assessments. Much of the research points to mathematics curriculum and instruction as the root cause of student failure to achieve at levels comparable to other nations. Since mathematics is regarded as a gate keeper to many educational…

  7. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  8. Mobile Technology and Mathematics Learning in the Early Grades. Interactive STEM Research + Practice Brief

    Science.gov (United States)

    Presser, Ashley Lewis; Busey, Amy

    2016-01-01

    This research brief describes the value of using mobile technologies in and out of elementary mathematics classrooms, and investigates the view that teachers may not be getting the guidance they need to best leverage those technologies. The authors explore three areas of concern: How can teachers use technology in developmentally appropriate ways…

  9. Multimedia technologies in university libraries: opportunities and tasks

    Directory of Open Access Journals (Sweden)

    Tavalbekh Serkhan Ali

    2010-03-01

    Full Text Available Multimedia technologies (MMT are considered as a factor of qualitative changes of informational environment of education. Leading role of libraries in the process of integration of MMT environment of university is determined. Influence of libraries experience in usage of informational technologies both traditional and computer-aided, Internet in particular is observed. Determined that introduction of MMT noticeable improving the importance of library in MMT environment organization of universities, improvement of library informational service. Tasks of university libraries with integration into united media space are defining.

  10. Digital technology in mathematics education : Why it works (or doesn't)

    NARCIS (Netherlands)

    Drijvers, P.H.M.

    2015-01-01

    The integration of digital technology confronts teachers, educators and researchers with many questions. What is the potential of ICT for learning and teaching, and which factors are decisive in making it work in the mathematics classroom? To investigate these questions, six cases from leading

  11. TEACHING MATHEMATICAL DISCIPLINES AT THE MEDICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    V. Ya. Gelman

    2018-01-01

    Full Text Available Introduction.In programs of training of students of medical specialties, Mathematics is a subject of basic education, i.e. non-core discipline. However, studying Mathematics is extremely important for future physicians, as recently there has been an impetuous development of mathematization in the field of health care. Today, a set of the new medical devices, the equipment and high technologies are being developed based on the mathematical modeling, analysis and forecasting. Mathematical methods are widely applied to diagnostics, development of life-support systems and the description of various biological processes both at the molecular level,  and at the level of a whole organism, its systems, bodies and tissues. The solution of many medical tasks in the field of taxonomy, genetics, and organization of medical service is impossible without knowledge of mathematics. Unfortunately, along with the evident importance of mathematical preparation for a medical profession, its need is poorly realized not only by junior students, but even by some teachers of specialized departments of medical schools.The aim of the publication is to discuss the problems that arise in the teaching of mathematical disciplines to students at a medical school and to suggest possible solutions to these problems.Methodology and research methods. The study is based on the use of modeling of the educational process. The methods of analysis, generalization and the method of expert assessments were applied in the course of the research.Results and scientific novelty. The aspects of mathematical preparation at the university are considered on the basis of the application of the multiplicative model of training quality. It is shown that the main students’ learning difficulties in Mathematics are connected with the following factors: the initial level of mathematical preparation of students and their motivation; outdated methods of Mathematics teaching and academic content

  12. Innovation in mathematics education: beyond the technology

    Directory of Open Access Journals (Sweden)

    Salvador Llinares

    2013-06-01

    Full Text Available Relationships between mathematical competence and mathematics teaching innovation do emerge the need for new practices of mathematics teaching. One of the aspects of this new practice is the interaction patterns in the classroom characterizing the mathematical discourse. From these perspectives, the relation between innovation and new mathematics practices defines different contexts for professional development of mathematics teacher.

  13. The Impact of Project-Based Learning on Pre-Service Teachers' Technology Attitudes and Skills

    Science.gov (United States)

    Alexander, Curby; Knezek, Gerald; Christensen, Rhonda; Tyler-Wood, Tandra; Bull, Glen

    2014-01-01

    Researchers in this study looked at the effect of content-specific, technology-rich project-based learning activities on EC-8 pre-service teachers' competencies and skills, as well as pre-service teacher's attitudes toward science, technology, engineering and mathematics (STEM). Researchers employed a quantitative design involving participants in…

  14. Leadership Training in Science, Technology, Engineering and Mathematics Education in Bulgaria

    Science.gov (United States)

    Bairaktarova, Diana; Cox, Monica F.; Evangelou, Demetra

    2011-01-01

    This synthesis paper explores current leadership training in science, technology, engineering and mathematics (STEM) education in Bulgaria. The analysis begins with discussion of global factors influencing the implementation of leadership training in STEM education in general and then presents information about the current status of leadership…

  15. Pathways to excellence: A Federal strategy for science, mathematics, engineering, and technology education

    Science.gov (United States)

    1993-01-01

    This Strategic Plan was developed by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) through its Committee on Education and Human Resources (CEHR), with representatives from 16 Federal agencies. Based on two years of coordinated interagency effort, the Plan confirms the Federal Government's commitment to ensuring the health and well-being of science, mathematics, engineering, and technology education at all levels and in all sectors (i.e., elementary and secondary, undergraduate, graduate, public understanding of science, and technology education). The Plan represents the Federal Government's efforts to develop a five-year planning framework and associated milestones that focus Federal planning and the resources of the participating agencies toward achieving the requisite or expected level of mathematics and science competence by all students. The priority framework outlines the strategic objectives, implementation priorities, and components for the Strategic Plan and serves as a road map for the Plan. The Plan endorses a broad range of ongoing activities, including continued Federal support for graduate education as the backbone of our country's research and development enterprise. The Plan also identifies three tiers of program activities with goals that address issues in science, mathematics, engineering, and technology education meriting special attention. Within each tier, individual agency programs play important and often unique roles that strengthen the aggregate portfolio. The three tiers are presented in descending order of priority: (1) reforming the formal education system; (2) expanding participation and access; and (3) enabling activities.

  16. Teaching Middle-Grades Mathematics through Financial Literacy

    Science.gov (United States)

    Crawford-Ferre, Heather Glynn; Wiest, Lynda R.; Vega, Stephanie

    2016-01-01

    Because financial literacy is an important skill for middle-grades students, this article suggests numerous personal financial literacy tasks for use in the mathematics classroom. Also provided are specifics for implementing one of these tasks to address mathematical content.

  17. Tool Choice for E-Learning: Task-Technology Fit through Media Synchronicity

    Science.gov (United States)

    Sun, Jun; Wang, Ying

    2014-01-01

    One major challenge in online education is how to select appropriate e-learning tools for different learning tasks. Based on the premise of Task-Technology Fit Theory, this study suggests that the effectiveness of student learning in online courses depends on the alignment between two. Furthermore, it conceptualizes the formation of such a fit…

  18. Team Conflict in ICT-Rich Environments: Roles of Technologies in Conflict Management

    Science.gov (United States)

    Correia, Ana-Paula

    2008-01-01

    This study looks at how an information and communication technologies (ICT)-rich environment impacts team conflict and conflict management strategies. A case study research method was used. Three teams, part of a graduate class in instructional design, participated in the study. Data were collected through observations of team meetings, interviews…

  19. Students’ Attention when Using Touchscreens and Pen Tablets in a Mathematics Classroom

    Directory of Open Access Journals (Sweden)

    Chiung-Hui Chiu

    2017-03-01

    Full Text Available Aim/Purpose: The present study investigated and compared students’ attention in terms of time-on-task and number of distractors between using a touchscreen and a pen tablet in mathematical problem-solving activities with virtual manipulatives. Background: Although there is an increasing use of these input devices in educational practice, little research has focused on assessing student attention while using touchscreens or pen tablets in a mathematics classroom. Methodology: A qualitative exploration was conducted in a public elementary school in New Taipei, Taiwan. Six fifth-grade students participated in the activities. Video recordings of the activities and the students’ actions were analyzed. Findings: The results showed that students in the activity using touchscreens maintained greater attention and, thus, had more time-on-task and fewer distractors than those in the activity using pen tablets. Recommendations for Practitioners: School teachers could employ touchscreens in mathematics classrooms to support activities that focus on students’ manipulations in relation to the attention paid to the learning content. Recommendation for Researchers: The findings enhance our understanding of the input devices used in educational practice and provide a basis for further research. Impact on Society: The findings may also shed light on the human-technology interaction process involved in using pen and touch technology conditions. Future Research: Activities similar to those reported here should be conducted using more participants. In addition, it is important to understand how students with different levels of mathematics achievement use the devices in the activities.

  20. Mathematics and linguistics

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.

  1. Rockets: An Educator's Guide with Activities in Science, Mathematics, and Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This educational guide discusses rockets and includes activities in science, mathematics, and technology. It begins with background information on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry focus on Sir Isaac Newton's Three Laws of Motion. These laws explain…

  2. The Foundations of Technology Course: Teachers Like It!

    Science.gov (United States)

    Moye, Johnny J.

    2009-01-01

    Over the past several decades there has been a call to raise student technological literacy. To take such an abstract concept and produce a program that will increase student science, technology, engineering, and mathematics (STEM) literacy was not an easy task. However, it was accomplished. During the past two years many United States school…

  3. Resource Review: Why So Few? Women in Science, Technology, Engineering, and Mathematics

    OpenAIRE

    Patricia A. Dawson

    2014-01-01

    “Why So Few? Women in Science, Technology, Engineering and Mathematics” (Hill, C., Corbett, C., Rose, A., 2010) reports on an extensive study of women’s underrepresentation in science, technology, engineering, and mathematics professions. Funded by the National Science Foundation, the project was conducted by American Association of University Women. The resource includes findings from eight research studies which examined social and environmental factors which contribute to women’s underrepr...

  4. Special Education Teachers' Views on Using Technology in Teaching Mathematics

    Science.gov (United States)

    Baglama, Basak; Yikmis, Ahmet; Demirok, Mukaddes Sakalli

    2017-01-01

    Individuals with special needs require support in acquiring various academic and social skills and mathematical skills are one of the most important skills in which individuals with special needs need to acquire in order to maintain their daily lives. Current approaches in education emphasize the importance of integrating technology into special…

  5. The New Technologies in Mathematics: A Personal History of 30 Years

    Science.gov (United States)

    de la Villa, Agustín; García, Alfonsa; García, Francisco; Rodríguez, Gerardo

    2017-01-01

    A personal overview about the use of new technologies for teaching and learning mathematics is given in this paper. We analyse the introduction of Computer Algebra Systems with learning purposes, reviewing different frameworks and didactical resources, some of them generated according the philosophy of the European Area of Higher Education.…

  6. Application of mathematical model methods for optimization tasks in construction materials technology

    Science.gov (United States)

    Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.

    2018-05-01

    In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.

  7. Mixed Methods Evaluation of Statewide Implementation of Mathematics Education Technology for K-12 Students

    Science.gov (United States)

    Brasiel, Sarah; Martin, Taylor; Jeong, Soojeong; Yuan, Min

    2016-01-01

    An extensive body of research has demonstrated that the use in a K-12 classroom of technology, such as the Internet, computers, and software programs, enhances the learning of mathematics (Cheung & Slavin, 2013; Cohen & Hollebrands, 2011). In particular, growing empirical evidence supports that certain types of technology, such as…

  8. Fostering Technology-Rich Service-Learning Experiences between School Librarians and Teacher Education Programs

    Science.gov (United States)

    Shepherd, Craig E.; Dousay, Tonia; Kvenild, Cassandra; Meredith, Tamara

    2015-01-01

    School libraries are untapped resources for fieldwork by preservice teachers. Many school librarians have expertise in pedagogy and standards-based curriculum development, both for information literacy and for technology integration. By forging partnerships with teacher-preparation programs, school librarians can provide fieldwork sites rich in…

  9. Adaptation of the Mathematics and Technology Attitudes Scale (MTAS) into Turkish: Validity and Reliability Studies for Middle School Students

    Science.gov (United States)

    Tabuk, Mesut

    2018-01-01

    The paper aims to present the adaptation study of "The Mathematics and Technology Attitudes Scale (MTAS)" into Turkish. The original form MTAS was developed by Pierce, Stacey and Barkatsas (2007) in order to investigate the effect of five different variables in learning mathematics with technology. The original form of the attitudes…

  10. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    Science.gov (United States)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  11. Digital Technologies in Mathematics Classrooms: Barriers, Lessons and Focus on Teachers

    Science.gov (United States)

    Sacristán, Ana Isabel

    2017-01-01

    In this paper, drawing from data from several experiences and studies in which I have been involved in Mexico, I reflect on the constraints and inertia of classroom cultures, and the barriers to successful, meaningful and transformative technology integration in mathematics classroom. I focus on teachers as key players for this integration,…

  12. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  13. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  14. Uses of technology in lower secondary mathematics education : a concise topical survey

    NARCIS (Netherlands)

    Drijvers, P.H.M.; Ball, Lynda; Barzel, Barbel; Heid, M. Kathleen; Cao, Yiming; Maschietto, Michela

    2016-01-01

    This topical survey provides an overview of the current state of the art in technology use in mathematics education, including both practice-oriented experiences and research-based evidence, as seen from an international perspective. Three core themes are discussed: Evidence of effectiveness;

  15. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    Science.gov (United States)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  16. Mathematics Learning Assisted Geogebra using Technologically Aligned Classroom (TAC) to Improve Communication Skills of Vocasional High School Student

    Science.gov (United States)

    Yuliardi, R.; Nurjanah

    2017-09-01

    The purpose of this study to analyze mathematical communication skill’s student to resolve geometry transformation problems through computer Assisted Geogebra using Technologically Aligned Classroom (TAC). The population in this study were students from one of Vocasional High School Student in West Java. Selection of sample by purposed random sampling, the experimental class is taught Technologically Aligned Classroom (TAC) with GeoGebra, while the control class is taught by conventional learning. This study was quasi-experimental with pretest and posttest control group design. Based on the results; (1) The enhancement of student mathematical communication skills through TAC was higher than the conventional learning; (2) based on gender, there were no differences of mathematical communication skilss student who exposed with TAC and conventional learning; (3) based on KAM test, there was significant enhancement of students’ communication skills among ability of high, middle, and low KAM. The differences occur between high KAM and middle KAM, and also between high KAM and low KAM. Based on this result, mathematics learning Assisted Geogebra using Technologically Aligned Classroom (TAC) can be applied in the process of Mathematics Learning in Vocasional High School.

  17. Performance factors of mobile rich media job aids for community health workers.

    Science.gov (United States)

    Florez-Arango, Jose F; Iyengar, M Sriram; Dunn, Kim; Zhang, Jiajie

    2011-01-01

    To study and analyze the possible benefits on performance of community health workers using point-of-care clinical guidelines implemented as interactive rich media job aids on small-format mobile platforms. A crossover study with one intervention (rich media job aids) and one control (traditional job aids), two periods, with 50 community health workers, each subject solving a total 15 standardized cases per period per period (30 cases in total per subject). Error rate per case and task, protocol compliance. A total of 1394 cases were evaluated. Intervention reduces errors by an average of 33.15% (p = 0.001) and increases protocol compliance 30.18% (p technologies in general, and the use of rich media clinical guidelines on cell phones in particular, for the improvement of community health worker performance in developing countries.

  18. Psycho-Social Determinants of Gender Prejudice in Science, Technology, Engineering and Mathematics

    Science.gov (United States)

    Nnachi, N. O.; Okpube, M. N.

    2015-01-01

    This work focused on the "Psycho-social Determinants of Gender Prejudice in Science, Technology, Engineering and Mathematics (STEM)". The females were found to be underrepresented in STEM fields. The under-representation results from gender stereotype, differences in spatial skills, hierarchical and territorial segregations and…

  19. Writing and mathematical problem solving in Grade 3

    Directory of Open Access Journals (Sweden)

    Belinda Petersen

    2017-06-01

    Full Text Available This article looks at writing tasks as a methodology to support learners’ mathematical problemsolving strategies in the South African Foundation Phase context. It is a qualitative case study and explores the relation between the use of writing in mathematics and development of learners’ problem-solving strategies and conceptual understanding. The research was conducted in a suburban Foundation Phase school in Cape Town with a class of Grade 3 learners involved in a writing and mathematics intervention. Writing tasks were modelled to learners and implemented by them while they were engaged in mathematical problem solving. Data were gathered from a sample of eight learners of different abilities and included written work, interviews, field notes and audio recordings of ability group discussions. The results revealed an improvement in the strategies and explanations learners used when solving mathematical problems compared to before the writing tasks were implemented. Learners were able to reflect critically on their thinking through their written strategies and explanations. The writing tasks appeared to support learners in providing opportunities to construct and apply mathematical knowledge and skills in their development of problem-solving strategies.

  20. Control of technology as a public and private task

    International Nuclear Information System (INIS)

    Kirchhof, P.

    1988-01-01

    In the opinion of the author the control of technology is as well a public as a private task. But due to the constitutional order first of all it is incumbent on the state to control technical installations. This state supervisory function cannot be replaced by private self-control. (WG) [de

  1. Improving mathematics teaching and learning experiences for hard of hearing students with wireless technology-enhanced classrooms.

    Science.gov (United States)

    Liu, Chen-Chung; Chou, Chien-Chia; Liu, Baw-Jhiune; Yang, Jui-Wen

    2006-01-01

    Hard of hearing students usually face more difficulties at school than other students. A classroom environment with wireless technology was implemented to explore whether wireless technology could enhance mathematics learning and teaching activities for a hearing teacher and her 7 hard of hearing students in a Taiwan junior high school. Experiments showed that the highly interactive communication through the wireless network increased student participation in learning activities. Students demonstrated more responses to the teacher and fewer distraction behaviors. Fewer mistakes were made in in-class course work because Tablet PCs provided students scaffolds. Students stated that the environment with wireless technology was desirable and said that they hoped to continue using the environment to learn mathematics.

  2. Women's Leadership in Science, Technology, Engineering and Mathematics: Barriers to Participation

    Science.gov (United States)

    McCullough, Laura

    2011-01-01

    Despite gains overall, women are still under-represented in leadership positions in science, technology, engineering, and mathematics (STEM) fields. Data in the US suggest around one-quarter of deans and department heads are women; in science this drops to nearly 1 in 20. Part of this problem of under-representation stems from the population pool:…

  3. LMS Use and Instructor Performance: The Role of Task-Technology Fit

    Science.gov (United States)

    McGill, Tanya; Klobas, Jane; Renzi, Stefano

    2011-01-01

    The introduction of learning management systems (LMS) has changed the way in which instructors work. This paper uses Goodhue and Thompson's (1995) technology-to-performance chain (TPC) to explore the roles of task-technology fit (TTF) and level of LMS use in the performance impacts of LMS for instructors. A mixed method approach was used: an…

  4. Structural Equation Model to Validate: Mathematics-Computer Interaction, Computer Confidence, Mathematics Commitment, Mathematics Motivation and Mathematics Confidence

    Science.gov (United States)

    Garcia-Santillán, Arturo; Moreno-Garcia, Elena; Escalera-Chávez, Milka E.; Rojas-Kramer, Carlos A.; Pozos-Texon, Felipe

    2016-01-01

    Most mathematics students show a definite tendency toward an attitudinal deficiency, which can be primarily understood as intolerance to the matter, affecting their scholar performance adversely. In addition, information and communication technologies have been gradually included within the process of teaching mathematics. Such adoption of…

  5. An Examination of Pre-Service Mathematics Teachers' Integration of Technology into Instructional Activities Using a Cognitive Demand Perspective and Levels of Technology Implementation

    Science.gov (United States)

    Akcay, Ahmet Oguz

    2016-01-01

    Technology has changed every aspect of our lives such as communication, shopping, games, business, and education. Technology has been used for decades in the teaching and learning environment in K-12 education and higher education, especially in mathematics education where the use of instructional technology has great potential. Today's students…

  6. Mathematical people profiles and interviews

    CERN Document Server

    Albers, Donald

    2008-01-01

    This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introduction by Philip J. Davis.

  7. International Mathematical Internet Olympiad

    Directory of Open Access Journals (Sweden)

    Alexander Domoshnitsky

    2012-10-01

    Full Text Available Modern Internet technologies open new possibilities in wide spectrum of traditional methods used in mathematical education. One of the areas, where these technologies can be efficiently used, is an organization of mathematical competitions. Contestants can stay at their schools or universities and try to solve as many mathematical problems as possible and then submit their solutions through Internet. Simple Internet technologies supply audio and video connection between participants and organizers.

  8. Technology Tips: Investigating Extrema with GeoGebra

    Science.gov (United States)

    Cullen, Craig J.; Hertel, Joshua T.; John, Sheryl

    2013-01-01

    The NCTM Algebra Standard suggests that students use technology to explore the effects of varying the parameters in y = ax2 + bx + c. This article discusses an extension of this task that incorporates dynamic geometry software to engage students in generating, testing, and proving mathematical conjectures.

  9. Enhancing student engagement through the affordances of mobile technology: a 21st century learning perspective on Realistic Mathematics Education

    Science.gov (United States)

    Bray, Aibhín; Tangney, Brendan

    2016-03-01

    Several recent curriculum reforms aim to address the shortfalls traditionally associated with mathematics education through increased emphasis on higher-order-thinking and collaborative skills. Some stakeholders, such as the US National Council of Teachers of Mathematics and the UK Joint Mathematical Council, advocate harnessing the affordances of digital technology in conjunction with social constructivist pedagogies, contextual scenarios, and/or approaches aligned with Realistic Mathematics Education (RME). However, it can be difficult to create technology-mediated, collaborative and contextual activities within a conventional classroom setting. This paper explores how a combination of a transformative, mobile technology-mediated approach, RME, and a particular model of 21st century learning facilitates the development of mathematics learning activities with the potential to increase student engagement and confidence. An explanatory case study with multiple embedded units and a pre-experimental design was conducted with a total of 54 students in 3 schools over 25 hours of class time. Results from student interviews, along with pre-test/post-test analysis of questionnaires, suggest that the approach has the potential to increase student engagement with, and confidence in, mathematics. This paper expands on these results, proposing connections between aspects of the activity design and their impact on student attitudes and behaviours.

  10. Mathematical model for estimating of technical and technological indicators of railway stations operation

    Directory of Open Access Journals (Sweden)

    D.M. Kozachenko

    2013-06-01

    Full Text Available Purpose. The article aims to create a mathematical model of the railway station functioning for the solving of problems of station technology development on the plan-schedule basis. Methodology. The methods of graph theory and object-oriented analysis are used as research methods. The model of the station activity plan-schedule includes a model of technical equipment of the station (plan-schedule net and a model of the station functioning , which are formalized on the basis of parametric graphs. Findings. The presented model is implemented as an application to the graphics package AutoCAD. The software is developed in Visual LISP and Visual Basic. Taking into account that the construction of the plan-schedule is mostly a traditional process of adding, deleting, and modifying of icons, the developed interface is intuitively understandable for a technologist and practically does not require additional training. Originality. A mathematical model was created on the basis of the theory of graphs and object-oriented analysis in order to evaluate the technical and process of railway stations indicators; it is focused on solving problems of technology development of their work. Practical value. The proposed mathematical model is implemented as an application to the graphics package of AutoCAD. The presence of a mathematical model allows carrying out an automatic analysis of the plan-schedule and, thereby, reducing the period of its creation more than twice.

  11. PRODUCTION WELL PERFORMANCE ENHANCEMENT USING SONICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Adewumi; M. Thaddeus Ityokumbul; Robert W. Watson; Mario Farias; Glenn Heckman; Johnson Olanrewaju; Eltohami Eltohami; Bruce G. Miller; W. Jack Hughes; Thomas C. Montgomery

    2003-12-17

    The objective of this project is to develop a sonic well performance enhancement technology that focuses on near wellbore formations. In order to successfully achieve this objective, a three-year project has been defined with each year consisting of four tasks. The first task is the laboratory-scale study whose goal is to determine the underlying principles of the technology. The second task will develop a scale-up mathematical model to serve as the design guide for tool development. The third task is to develop effective transducers that can operate with variable frequency so that the most effective frequencies can be applied in any given situation. The system, assembled as part of the production string, ensures delivery of sufficient sonic energy to penetrate the near-wellbore formation. The last task is the actual field testing of the tool. The first year of the project has been completed.

  12. Interactive whiteboard in mathematics education

    OpenAIRE

    Cendelín, Jan

    2013-01-01

    Title: Interactive whiteboard in mathematics education Author: Bc. Jan Cendelín Department:Department of Mathematics Education Supervisor: RNDr. Antonín Slavík, Ph.D., Department of Mathematics Education Abstract: The development of modern technology is very fast. Almost everyone uses the technology at work and at home as well. So it is not unexpected that the technology gets into education at schools. This thesis focuses on the education of modern mathematics, and especially on the use of th...

  13. Building on Authentic Learning for Pre-Service Teachers in a Technology-Rich Environment

    Science.gov (United States)

    Latham, Gloria; Carr, Nicky

    2015-01-01

    The article "Authentic learning for pre-service teachers in a technology-rich environment" (Latham & Carr, 2012) appeared in the "Journal of Learning Design," Volume 5, Issue 1 in 2012. Since writing this paper three years ago, the authors reflect upon and brainstorm what they describe here as a radically revised approach.…

  14. Language Tasks Using Touch Screen and Mobile Technologies: Reconceptualizing Task-Based CALL for Young Language Learners

    Science.gov (United States)

    Pellerin, Martine

    2014-01-01

    This article examines how the use of mobile technologies (iPods and tablets) in language classrooms contributes to redesigning task-based approaches for young language learners. The article is based on a collaborative action research (CAR) project in Early French Immersion classrooms in the province of Alberta, Canada. The data collection included…

  15. VET workers problem-solving skills in technology-rich environments: European approach

    OpenAIRE

    Hämäläinen, Raija

    2014-01-01

    The European workplace is challenging VET adults problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults skills to date. The present study (N=50 369) focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults problem-solving sk...

  16. VET workers’ problem-solving skills in technology-rich environments: European approach

    OpenAIRE

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults’ problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults’ skills to date. The present study (N=50 369) focuses on gaining insight into the problem-solving skills in TREs of adults with a VET background. When examining the similarities and differences in VET adults’ problem-solving...

  17. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    Science.gov (United States)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital

  18. FEATURES OF FOREIGN STUDENTS PRE-UNIVERSITY MATHEMATICAL TRAINING

    Directory of Open Access Journals (Sweden)

    Наталья Александровна Пыхтина

    2017-12-01

    Full Text Available The aim of improving the international competitiveness of the higher education Russian system at the global level by increasing the number of foreign students leads to the fact, that pre-university training is becoming essential for next years at higher educational programmes.Pre-university mathematical training of international students contributes to the scientific style formation of speech skills, which is so useful in higher educational institute. This article highlights some of the features of foreign students pre-university mathematical training.Design of “Mathematics” course methodical ware for preparatory departments of higher educational institutions is an important element of the educational process. Features of mathematics teaching are shown by the example of such important for foreign students pre-university mathematical training branch of mathematics like the set theory.The article also gives consideration to such aspects of mathematics teaching for foreign students as the inclusion of text mathematical problems in the “Mathematics” course programme for helping to achieve lexical skills and abilities, as well as the organization of individual work of the students with the use of information and communication technologies.The paper refers to the collection of exercises and tasks for the “Mathematics” course for foreign citizens studying at the preparatory departments of higher educational institutions, it additionally gives the themes of the course.

  19. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    Science.gov (United States)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  20. Integration of Technology in Elementary Pre-Service Teacher Education: An Examination of Mathematics Methods Courses

    Science.gov (United States)

    Mitchell, Rebecca; Laski, Elida

    2013-01-01

    Instructors (N = 204) of elementary mathematics methods courses completed a survey assessing the extent to which they stay informed about research related to effective uses of educational technology and the kinds and numbers of educational technologies they include in their courses. Findings indicate that, while they view educational technology…

  1. Exploring Young Children's Self-Efficacy Beliefs Related to Mathematical and Nonmathematical Tasks Performed in Kindergarten: Abused and Neglected Children and Their Peers

    Science.gov (United States)

    Tirosh, Dina; Tsamir, Pessia; Levenson, Esther; Tabach, Michal; Barkai, Ruthi

    2013-01-01

    This article reports on young children's self-efficacy beliefs and their corresponding performance of mathematical and nonmathematical tasks typically encountered in kindergarten. Participants included 132 kindergarten children aged 5-6 years old. Among the participants, 69 children were identified by the social welfare department as being abused…

  2. Opening inquiry mathematics to parents: Can they be engaged as teachers’ partners in mathematical work?

    Directory of Open Access Journals (Sweden)

    Ioannis Papadopoulos

    2017-12-01

    Full Text Available This paper presents a two-stage project designed to develop the partnership between teacher and parents. The project began with a workshop constructed to motivate parents to be interested in doing mathematics in a way that is different from the one they experienced as students and, as a result, to be eager to become involved in the co-production of didactic materials for classroom use. Parents were engaged in real, collaborative, high-level mathematical work as a first step in engaging them as partners in mathematical work with their children.  During this first stage, parents were familiarized with inquiry mathematics tasks to provide them with the foundation necessary to become partners and co-producers during the second. The findings give evidence that the learning of reform math tasks and their co-creation supported teacher and parents’ partnership and that parents were moved mathematically and personally by the experience.

  3. Mathematical modeling courses for Media technology students

    DEFF Research Database (Denmark)

    Timcenko, Olga

    2009-01-01

    This paper addresses curriculum development for Mathematical Modeling course at Medialogy education. Medialogy as a study line was established in 2002 at Faculty for Engineering and Natural Sciences at Aalborg University, and mathematics curriculum has already been revised three times, Mathematic...

  4. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  5. Open access web technology for mathematics learning in higher education

    Directory of Open Access Journals (Sweden)

    Mari Carmen González-Videgaray

    2016-05-01

    Full Text Available Problems with mathematics learning, “math anxiety” or “statistics anxiety” among university students can be avoided by using teaching strategies and technological tools. Besides personal suffering, low achievement in mathematics reduces terminal efficiency and decreases enrollment in careers related to science, technology and mathematics. This paper has two main goals: 1 to offer an organized inventory of open access web resources for math learning in higher education, and 2 to explore to what extent these resources are currently known and used by students and teachers. The first goal was accomplished by running a search in Google and then classifying resources. For the second, we conducted a survey among a sample of students (n=487 and teachers (n=60 from mathematics and engineering within the largest public university in Mexico. We categorized 15 high-quality web resources. Most of them are interactive simulations and computer algebra systems. ResumenLos problemas en el aprendizaje de las matemáticas, como “ansiedad matemática” y “ansiedad estadística” pueden evitarse si se usan estrategias de enseñanza y herramientas tecnológicas. Además de un sufrimiento personal, el bajo rendimiento en matemáticas reduce la eficiencia terminal y decrementa la matrícula en carreras relacionadas con ciencia, tecnología y matemáticas. Este artículo tiene dos objetivos: 1 ofrecer un inventario organizado de recursos web de acceso abierto para aprender matemáticas en la universidad, y 2 explorar en qué medida estos recursos se usan actualmente entre alumnos y profesores. El primer objetivo se logró con un perfil de búsqueda en Google y una clasificación. Para el segundo, se condujo una encuesta en una muestra de estudiantes (n=487 y maestros (n=60 de matemáticas e ingeniería de la universidad más grande de México. Categorizamos 15 recursos web de alta calidad. La mayoría son simulaciones interactivas y

  6. Mobile learning to improve mathematics teachers mathematical competencies

    Science.gov (United States)

    Hendrayana, A.; Wahyudin

    2018-01-01

    The role of teachers is crucial to the success of mathematics learning. One of the learning indicator is characterized by the students’ improved mathematical proficiency. In order to increase that, it is necessary to improve the teacher’s mathematical skills first. For that, it needs an innovative way to get teachers close to easily accessible learning resources through technology. The technology can facilitate teachers to access learning resources anytime and anywhere. The appropriate information technology is mobile learning. Innovations that can make teachers easy to access learning resources are mobile applications that can be accessed anytime and anywhere either online or offline. The research method was research development method. In preliminary analysis, subjects consist of teachers and lecturers in professional teacher education program. The results that the teachers ready to adopt mobile-learning for the improvement of their skills.

  7. Using Mobile Technology to Encourage Mathematical Communication in Maori-Medium Pangarau Classrooms

    Science.gov (United States)

    Allen, Piata

    2017-01-01

    Maori-medium pangarau classrooms occupy a unique space within the mathematics education landscape. The language of instruction is an endangered minority language and many teachers and learners in Maori-medium pangarau classrooms are second language (L2) learners of te reo Maori. Mobile technology could be used in Maori-medium pangarau classrooms…

  8. Teachers' perceptions of effective science, technology, and mathematics professional development and changes in classroom practices

    Science.gov (United States)

    Boriack, Anna Christine

    The purpose of this study is to examine teachers' perceptions of professional development and changes in classroom practice. A proposed conceptual framework for effective professional development that results in changes in classroom practices was developed. Data from two programs that provided professional development to teachers in the areas of technology, mathematics, and science was used to inform the conceptual framework. These two programs were Target Technology in Texas (T3) and Mathematics, Science, and Technology Teacher Preparation Academies (MSTTPA). This dissertation used a multiple article format to explore each program separately, yet the proposed conceptual framework allowed for comparisons to be made between the two programs. The first study investigated teachers' perceptions of technology-related professional development after their districts had received a T3 grant. An online survey was administrated to all teachers to determine their perceptions of technology-related professional development along with technology self-efficacy. Classroom observations were conducted to determine if teachers were implementing technology. The results indicated that teachers did not perceive professional development as being effective and were not implementing technology in their classrooms. Teachers did have high technology self-efficacy and perceived adequate school support, which implies that effective professional development may be a large factor in whether or not teachers implement technology in their classrooms. The second study evaluated participants' perceptions of the effectiveness of mathematics and science professional development offered through a MSTTP academy. Current and former participants completed an online survey which measured their perceptions of academy activities and school environment. Participants also self-reported classroom implementation of technology. Interviews and open-ended survey questions were used to provide further insight into

  9. Concept definition for space station technology development experiments. Experiment definition, task 2

    Science.gov (United States)

    1986-01-01

    The second task of a study with the overall objective of providing a conceptual definition of the Technology Development Mission Experiments proposed by LaRC on space station is discussed. During this task, the information (goals, objectives, and experiment functional description) assembled on a previous task was translated into the actual experiment definition. Although still of a preliminary nature, aspects such as: environment, sensors, data acquisition, communications, handling, control telemetry requirements, crew activities, etc., were addressed. Sketches, diagrams, block diagrams, and timeline analyses of crew activities are included where appropriate.

  10. Digital Technology in Teaching International Business: Is a Tradeoff between Richness and Reach Required?

    Science.gov (United States)

    Wymbs, Cliff; Kijne, Hugo

    2003-01-01

    This analysis extends the traditional marketing tradeoffs between richness (depth of knowledge) and reach (geographic area coverage) to the emerging technology-mediated education industry, and then specifically evaluates their effect on the teaching of international business. It asserts that interactive learning, particularly as it applies to team…

  11. A Survey of Mathematics Education Technology Dissertation Scope and Quality: 1968-2009

    Science.gov (United States)

    Ronau, Robert N.; Rakes, Christopher R.; Bush, Sarah B.; Driskell, Shannon O.; Niess, Margaret L.; Pugalee, David K.

    2014-01-01

    We examined 480 dissertations on the use of technology in mathematics education and developed a Quality Framework (QF) that provided structure to consistently define and measure quality. Dissertation studies earned an average of 64.4% of the possible quality points across all methodology types, compared to studies in journals that averaged 47.2%.…

  12. Tracing the Construction of Mathematical Activity with an Advanced Graphing Calculator to Understand the Roles of Technology Developers, Teachers and Students

    Science.gov (United States)

    Hillman, Thomas

    2014-01-01

    This article examines mathematical activity with digital technology by tracing it from its development through its use in classrooms. Drawing on material-semiotic approaches from the field of Science and Technology Studies, it examines the visions of mathematical activity that developers had for an advanced graphing calculator. It then follows the…

  13. Teaching mathematics using excel

    OpenAIRE

    Bonello, Mary Rose; Camilleri, Silvana

    2004-01-01

    'Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning.' (Principles and Standards for School Mathematics-NCTM April 2000)

  14. Stealing from Physics: Modeling with Mathematical Functions in Data-Rich Contexts

    Science.gov (United States)

    Erickson, Tim

    2006-01-01

    In the course of a project to create physics education materials for secondary schools in the USA we have, not surprisingly, had insights into how students develop certain mathematical understandings. Some of these translate directly into the mathematics classroom. With our materials, students get data from a variety of sources, data that arise in…

  15. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons

    2001-01-01

    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  16. Summer Teacher Enhancement Institute for Science, Mathematics, and Technology Using the Problem-Based Learning Model

    Science.gov (United States)

    Petersen, Richard H.

    1997-01-01

    The objectives of the Institute were: (a) increase participants' content knowledge about aeronautics, science, mathematics, and technology, (b) model and promote the use of scientific inquiry through problem-based learning, (c) investigate the use of instructional technologies and their applications to curricula, and (d) encourage the dissemination of TEI experiences to colleagues, students, and parents.

  17. Phenomenology and Mathematics

    CERN Document Server

    Hartimo, Mirja

    2010-01-01

    During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.

  18. Impact of clicker technology in a mathematics course

    Directory of Open Access Journals (Sweden)

    Sibongile Simelane

    2012-09-01

    Full Text Available This article reports on the implementation of clickers to improve the success rate of first-year mathematics students. There were 105 students registered in this course, in a university of technology in South Africa. In order to do this, an orientation test in the form of a paper-based assessment was first conducted to determine what students already knew. About 21.9% of the students did not take the test and 20% did not pass it. These results raised concerned. Thereafter students were taught. After four weeks they were evaluated on their understanding of the concept taught in class. Results did not improve much, as 48.6% of the students did not pass the test. Therefore, a technology-engagement teaching strategy (TETS using clicker technology was developed and implemented in order to improve the pass rate. Weekly continuous assessments or diagnostic tests were conducted in order to establish the changes in students’ academic performance. A survey questionnaire was administered after the teaching and learning of incorporating clickers. This questionnaire also examined students’ perspective on the usefulness of clickers in teaching and learning. The results showed that the effective implementation of clickers with the integration of a TETS improved students’ success rate.

  19. Mathematical Investigations for Supporting Pre-Service Primary Teachers Repeating a Mathematics Education Course

    Science.gov (United States)

    Bailey, Judy

    2014-01-01

    Preparing to become an effective primary school mathematics teacher is a challenging and complex task; and is influenced by one's past experiences, personal knowledge of, and beliefs and attitudes towards mathematics. This paper examines the experiences of a small group of pre-service teachers who did not pass their first year mathematics…

  20. Visual technology for the autonomous learning of mathematics

    Directory of Open Access Journals (Sweden)

    Helmut Linneweber‐Lammerskitten

    2010-09-01

    Full Text Available This paper describes a collaborative research and development project between the University of Applied Sciences Northwestern Switzerland and Rhodes University in South Africa. The project seeks to establish, disseminate and research the efficacy and use of short video clips designed specifically for the autonomous learning of mathematics. Specific to the South African context is our interest in capitalising on the ubiquity of cellphone technology and the autonomous affordances offered by mobile learning. This paper engages with a number of theoretical and pedagogical issues relating to the design, production and use of these video clips. Although the focus is specific to the contexts of South Africa and Switzerland, the discussion is of broad applicability.

  1. 6th International School of Mathematical Physics "Ettore Majorana"

    CERN Document Server

    Wightman, Arthur Strong

    1986-01-01

    The sixth Ettore Majorana International School of Mathematical Physics was held at the Centro della Cultura Scientifica Erice, Sicily, 1-14 July 1985. The present volume collects lecture notes on the ses­ sion which was devoted to Fundamental Problems of Gauge Field Theory. The School was a NATO Advanced Study Institute sponsored by the Italian Ministry of Public Education, the Italian Ministry of Scientific and Technological Research and the Regional Sicilian Government. As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now pro­ vides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lectures and seminars of the school concentrated on the many unsolved pro...

  2. Information technology in university-level mathematics teaching and learning: a mathematician's point of view

    Directory of Open Access Journals (Sweden)

    Alexandre Borovik

    2011-12-01

    Full Text Available Although mathematicians frequently use specialist software in direct teaching ofmathematics, as a means of delivery e-learning technologies have so far been lesswidely used. We (mathematicians insist that teaching methods should be subjectspecificand content-driven, not delivery-driven. We oppose generic approaches toteaching, including excessively generalist, content-free, one-size-fits-allpromotion of information and communications technology. This stance is fullyexpressed, for example, in the recent Teaching Position Statement from the LondonMathematical Society (2010 and is supported by a recent report from the NationalUnion of Students (2010, 5: “Not every area of study needed or was compatiblewith e-learning, and so to assume it would grant blanket advantages was notaccurate”. This paper is an attempt to explain mathematicians' selectivity in use ofinformation and communications technology and its guiding principles. The paperis addressed to our non-mathematician colleagues and is not intended to be a surveyof the existing software and courseware for mathematics teaching – the corpus ofexisting solutions is enormous and its discussion inevitably involves hardcoremathematics.

  3. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

    CERN Document Server

    Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

    2016-01-01

    The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

  4. Economic-mathematical substantiation of optimizing the use of technical means, to perform tasks in conditions of uncertainty

    Directory of Open Access Journals (Sweden)

    I. V. Kuksova

    2017-01-01

    Full Text Available In this article a variant of the economic-mathematical substantiation of optimization approaches choice of tools for the survey of airfields, the mechanism of the use of multiple statistical criteria for optimality and usefulness of the decisions taken in this matter, when operating in conditions of uncertainty. Lately in the modern world in many socio-economic areas of human life quite often there are thematic challenges of managerial decision-making in a conflict environment and competition, when several in the General case, reasonable working actors perform collective decision-making, and the benefits of each depends not only on the chosen business strategies, but also from management decisions of other partners and the success of the experiments. Therefore, it is necessary to develop and substantiation of optimum variants of decision of choice of forces and means to perform tasks in conditions of uncertainty, that is also acceptable for military units. The actual problem currently is to optimize system control engineering-airfield security, the components of which perform their tasks under conditions of uncertainty. Analysis of opportunities of technical means (unmanned aerial vehicles shows that under the condition of equipping them with the appropriate equipment can be considered about the possibility of their use as part of a complex of technical means for inspection of airfields after the who enemy action in the runway. Therefore, the scientific goal in this article is to examine the possibilities of using technical means for inspection of airfield engineering and airfield services, and the aim of the study is using mathematical methods to justify the choice of the most effective means, from the point of view of economic cost of its introduction and use when performing tasks in conditions of uncertainty.

  5. Leading Undergraduate Research Projects in Mathematical Modeling

    Science.gov (United States)

    Seshaiyer, Padmanabhan

    2017-01-01

    In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…

  6. Hybrid Task Design: Connecting Learning Opportunities Related to Critical Thinking and Statistical Thinking

    Science.gov (United States)

    Kuntze, Sebastian; Aizikovitsh-Udi, Einav; Clarke, David

    2017-01-01

    Stimulating thinking related to mathematical content is the focus of many tasks in the mathematics classroom. Beyond such content-related thinking, promoting forms of higher order thinking is among the goals of mathematics instruction as well. So-called hybrid tasks focus on combining both goals: they aim at fostering mathematical thinking and…

  7. Dual Task of Fine Motor Skill and Problem Solving in Individuals With Multiple Sclerosis: A Pilot Study.

    Science.gov (United States)

    Goverover, Y; Sandroff, B M; DeLuca, J

    2018-04-01

    To (1) examine and compare dual-task performance in patients with multiple sclerosis (MS) and healthy controls (HCs) using mathematical problem-solving questions that included an everyday competence component while performing an upper extremity fine motor task; and (2) examine whether difficulties in dual-task performance are associated with problems in performing an everyday internet task. Pilot study, mixed-design with both a within and between subjects' factor. A nonprofit rehabilitation research institution and the community. Participants (N=38) included persons with MS (n=19) and HCs (n=19) who were recruited from a nonprofit rehabilitation research institution and from the community. Not applicable. Participant were presented with 2 testing conditions: (1) solving mathematical everyday problems or placing bolts into divots (single-task condition); and (2) solving problems while putting bolts into divots (dual-task condition). Additionally, participants were required to perform a test of everyday internet competence. As expected, dual-task performance was significantly worse than either of the single-task tasks (ie, number of bolts into divots or correct answers, and time to answer the questions). Cognitive but not motor dual-task cost was associated with worse performance in activities of everyday internet tasks. Cognitive dual-task cost is significantly associated with worse performance of everyday technology. This was not observed in the motor dual-task cost. The implications of dual-task costs on everyday activity are discussed. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Task 10 -- Technology development integration. Semi-annual report, April 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.; Daly, D.J.; Jones, M.L.

    1997-12-31

    Task 10 activities by the Energy and Environmental Research Center (EERC) have focused on the identification and integration of new cleanup technologies for use in the US Department of Energy (DOE) Environmental Management Program to address environmental issues within the nuclear defense complex. Under Subtask 10A, activities focused on a review of technology needs compiled by the Site Technology Coordination Groups as part of an ongoing assessment of the relevance of the EM Cooperative Agreement Program activities to EM site needs. Work under this subtask was completed August 31. Work under Task 10B had as its goal assisting in the definition and development of specific models to demonstrate several approaches to be used by DOE to encourage the commercialization of environmental technologies. This activity included identification and analysis of economic and regulatory factors affecting feasibility of commercial development of two specific projects and two general models to serve as a mechanism for the transfer of federally supported or developed environmental technologies to the private sector or for rapid utilization in the federal government`s efforts to clean up the weapons complex.

  9. The use of technology in international collaboration

    DEFF Research Database (Denmark)

    Livonen, Mirja; Sonnenwald, Diane H.

    2000-01-01

    International collaboration is emerging as an essential function for organizations, playing an important role in organizational strategy, performance and knowledge management. Two case studies of international collaboration are discussed in this paper. Participants' perceptions and use...... of technology to collaborate are examined from the perspective of sense of presence, participation, task type, productivity and ease of use. The data suggest that technology compatibility with cultural and work style preferences and technology infrastructure is more important than media richness, in contrast...

  10. Developing Digital Technologies for Undergraduate University Mathematics

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2013-01-01

    Our research effort presented in this paper relates with developing digital tools for mathematics education at undergraduate university level. It focuses specifically on studies where mathematics is not a core subject but it is very important in order to cope with core subjects. For our design, we...... requirements for the development of digital tools that support mathematics teaching and learning at university level....... during lectures and exercise time. During these observations we were able to investigate how the applets were used in practice but also to get insight in the challenges that the students face during mathematics learning. These findings together with student feedback inspire the next round of design...

  11. The application of metal cutting technologies in tasks performed in radioactive environments

    International Nuclear Information System (INIS)

    Fogle, R.F.; Younkins, R.M.

    1997-01-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ''We need it ASAP'' design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter

  12. Robotics and nuclear power. Report by the Technology Transfer Robotics Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    A task team was formed at the request of the Department of Energy to evaluate and assess technology development needed for advanced robotics in the nuclear industry. The mission of these technologies is to provide the nuclear industry with the support for the application of advanced robotics to reduce nuclear power generating costs and enhance the safety of the personnel in the industry. The investigation included robotic and teleoperated systems. A robotic system is defined as a reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks. A teleoperated system includes an operator who remotely controls the system by direct viewing or through a vision system

  13. Factors involved in making post-performance judgments in mathematics problem-solving.

    Science.gov (United States)

    García Fernández, Trinidad; Kroesbergen, Evelyn; Rodríguez Pérez, Celestino; González-Castro, Paloma; González-Pienda, Julio A

    2015-01-01

    This study examines the impact of executive functions, affective-motivational variables related to mathematics, mathematics achievement and task characteristics on fifth and sixth graders’ calibration accuracy after completing two mathematical problems. A sample of 188 students took part in the study. They were divided into two groups as function of their judgment accuracy after completing the two tasks (accurate= 79, inaccurate= 109). Differences between these groups were examined. The discriminative value of these variables to predict group membership was analyzed, as well as the effect of age, gender, and grade level. The results indicated that accurate students showed better levels of executive functioning, and more positive feelings, beliefs, and motivation related to mathematics. They also spent more time on the tasks. Mathematics achievement, perceived usefulness of mathematics, and time spent on Task 1 significantly predicted group membership, classifying 71.3% of the sample correctly. These results support the relationship between academic achievement and calibration accuracy, suggesting the need to consider a wide range of factors when explaining performance judgments.

  14. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  15. A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics

    Science.gov (United States)

    Liang, Jiajuan; Pan, William S. Y.

    2009-01-01

    MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…

  16. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    A curriculum designed around habits of mind comprises both the content and the process. The existing .... Research in learning shows that ... and various interrelated experiences that ... mathematics has very little connection with .... that uses workplace and everyday tasks to .... cognitive sciences has supported the notion.

  17. MATHEMATICAL SUPPORT OF THE INTELLIGENT INFORMATION SYSTEM OF ASSESSING THE OBJECT STATE

    Directory of Open Access Journals (Sweden)

    Sofiia Yakubovska

    2017-11-01

    Full Text Available At present, information technologies (IT are intensively used all over the world in various sectors, and today medical institutions cannot do without them when organizing the process of medical diagnostic. The IT efficiency is determined by the degree of their intellectualization that is by including knowledge bases as their component and by the transition from data processing to the processing of knowledge. The efficiency of making decisions in various areas of activity is determined by the quality and quick delivery of information. Medicine constitutes no exception in this sense. The advanced level of computer technology, applied tools, diagnostics on the basis of automated systems of decision support made it possible to solve the tasks of assessing the state of the object at a qualitatively new level. The subject matter of this study is to ensure the mathematical support of the intelligent information system (IS of assessing the state of the object. The object is understood as a patient who came through a myocardial infarction (MI. The goal of the study is to develop mathematical support of the intelligent IS of assessing and predicting a patient’s condition. To achieve the stated goal, the following tasks were solved: statistically valid and uncorrelated signs were specified; these signs enable distinguishing the group of patients who survived from those who died, “decisive rules” were formulated for predicting the MI clinical outcome. In the process of the study, the mathematical IT of assessing the state of the object was developed. The following result was obtained: the suggested mathematical models for predicting the outcome of myocardial infarction that were developed with the use of the method of discriminant function and took into account human blood values can prevent sudden coronary death and improve the diagnostic efficiency. Conclusions. Mathematical models were developed to predict the state of the object in the event of

  18. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  19. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  20. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  1. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  2. Exploring Primary Student’s Problem-Solving Ability by Doing Tasks Like PISA's Question

    Directory of Open Access Journals (Sweden)

    Rita Novita

    2012-07-01

    Full Text Available Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development students’ problem-solving ability. The tasks that have been developed by PISA meet both of these criteria. As stated by the NCTM, that problem-solving skill and ability should be developed to students when they were in primary school (K5-8, therefore, it is important to do an effort to guide students in developing problem-solving ability from primary school such as accustom students to do some mathematical solving-problem tasks. Thus, in this research we tried to investigate how to develop mathematical problem-solving tasks like PISA’s question that have potential effect toward students’ mathematical problem-solving abilities?. We used a  formative evaluation type of development research as an mean  to achieve this research goal. This type of research is conducted in two steps, namely preliminary stage and formative evaluation stage covering self evaluation, prototyping (expert reviews, one-to-one, and small group, and  field test. This research involve four primary schools in Palembang, there are SD Muhammadiyah 6 Palembang, MIN 1 & MIN 2 Palembang, and SDN 179 Palembang. The result of this research showed that the mathematical problem-solving tasks  that have been developed have potential effect in exploring mathematical problem-solving ability of the primary school students. It  is shown from their work in solving problem where all of the indicators of problem solving competency have emerged quite well category. In addition, based on interview

  3. Microgravity: A Teacher's Guide with Activities in Science, Mathematics, and Technology

    Science.gov (United States)

    Rogers, Melissa J.B.; Vogt, Gregory L.; Wargo, Michael J.

    1997-01-01

    Microgravity is the subject of this teacher's guide. This publication identifies the underlying mathematics, physics, and technology principles that apply to microgravity. The topics included in this publication are: 1) Microgravity Science Primer; 2) The Microgravity Environment of Orbiting Spacecraft; 3) Biotechnology; 4) Combustion Science; 5) Fluid Physics; 6) Fundamental Physics; and 7) Materials Science; 8) Microgravity Research and Exploration; and 9) Microgravity Science Space Flights. This publication also contains a glossary of selected terms.

  4. Mathematical reasoning analogies, metaphors, and images

    CERN Document Server

    English, Lyn D

    2013-01-01

    How we reason with mathematical ideas continues to be a fascinating and challenging topic of research--particularly with the rapid and diverse developments in the field of cognitive science that have taken place in recent years. Because it draws on multiple disciplines, including psychology, philosophy, computer science, linguistics, and anthropology, cognitive science provides rich scope for addressing issues that are at the core of mathematical learning. Drawing upon the interdisciplinary nature of cognitive science, this book presents a broadened perspective on mathematics and mat

  5. Visual short term memory related brain activity predicts mathematical abilities.

    Science.gov (United States)

    Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah

    2017-07-01

    Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Using Technology to Differentiate and Accommodate Students with Disabilities

    Science.gov (United States)

    Mahoney, Jamie; Hall, Carol

    2017-01-01

    Improving the abilities of students with disabilities is a difficult task. Students with disabilities strive to be successful academically in the content areas of reading, writing, and mathematical concepts. Teachers can use technology to individualize and differentiate instruction for students who need the assistance and support. Vocaroo, Quick…

  7. Analysis of the e-learning technologies used for teaching mathematics at Tomsk Polytechnic University

    OpenAIRE

    Pakhomova, Elena Grigorievna; Yanushchik, Olga Vladimirovna; Dorofeeva, Maria

    2016-01-01

    This article analyzes the implementation of e-learning technologies in the study of mathematics at Tomsk Polytechnic University. It describes research findings of the suitability of the e-learning technology for first year students of an engineering university. The research involved 248 students and 38 teachers of Tomsk Polytechnic University. The authors surveyed first-year students to check whether they are ready to learn in the electronic environment. In addition, the students and teachers...

  8. Mathematics. [SITE 2002 Section].

    Science.gov (United States)

    Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

    This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Teachers' Learning of Mathematics in the Presence of Technology: Participatory Cognitive Apprenticeship" (Mara Alagic); (2) "A Fractal Is a Pattern in Your Neighborhood" (Craig N. Bach); (3)…

  9. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  10. Involvement of African-American Girls in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Nkere, Nsidi

    2016-01-01

    A qualitative case study was conducted by examining the perceptions of fifth-grade African American girls about their experiences with science, technology, engineering and mathematics (STEM) education and potential for STEM as a future career. As the United States suffers from waning participation across all demographics in STEM and a high level…

  11. Robotic Toys as a Catalyst for Mathematical Problem Solving

    Science.gov (United States)

    Highfield, Kate

    2010-01-01

    Robotic toys present unique opportunities for teachers of young children to integrate mathematics learning with engaging problem-solving tasks. This article describes a series of tasks using Bee-bots and Pro-bots, developed as part a larger project examining young children's use of robotic toys as tools in developing mathematical and metacognitive…

  12. INFORMATION TECHNOLOGY AS A MEANS TO CAPTURE THE STUDENTS OF THE COURSE "METHODS OF "MATHEMATICS" EDUCATIONAL TEACHING FIELD"

    Directory of Open Access Journals (Sweden)

    Skvortsova S.

    2014-11-01

    Full Text Available The paper presents an analysis of the concepts of "information technology", "Information Technologies in Education", "Information technology education", "computer technology", "New Information Technologies", "New Information Technologies in Education". Found that the most common concept in this list is the concept of "information technology" as a set of methods and technical means for collecting, processing, storing, processing, transmission and presentation of data. Slightly narrower in this context, the concept of "new information technologies," which mandates the involvement of computer and other technical means to work with data. The emphasis on the learning process of information technology requires detailed terms "Information Technologies in Education" and "New Information Technologies in Education", which are defined as involvement of information technology and accordingly, including the technical means to create new perceptions and knowledge transfer, evaluation studies and all-round development of the individual in the educational process. Along with these terms also used such as "information technology training," which denotes a set of training and educational materials, and technical tools for educational purposes, as well as the system of scientific knowledge about their role and place in the educational process. Meanwhile, the term "information technology" encompasses all these concepts, so in a broad sense can be used to denote any signified concepts. As an extension of the term "information technology", the term information and communication technologies (ICT, and "information technology education", understood as educational technology using special methods, software and hardware to work with information and "ICT training "- as IT training focused on the use of computer communications networks for solving instructional problems or their fragments. Taking into account tasks, such as creating methodical maintenance of discipline

  13. DEVELOPMENT OF THE MATHEMATICAL INTUITION OF STUDENTS IN TRAINING THE INVERSE PROBLEMS FOR DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Виктор Семенович Корнилов

    2017-12-01

    Full Text Available In article attention to that fact that at students of higher educational institutions of the physical and mathematical and natural-science directions of preparation when training in the reverse tasks for differential equations the mathematical intuition which is an important component of their creative potential develops is paid. The mathematical intuition helps students to comprehend a physical sense of the researched application-oriented task, to select effective methods of mathematical physics for the decision of the reverse task for differential equations.The mathematical intuition of students develops in many respects in case of the decision of different educational jobs. Among such educational jobs: creation of system of integrable equations of the reverse task for differential equations, the proof of the conditional correctness of the decision of the reverse task for differential equations, creation of the difference analog of the reverse task for a differential equation; finding of the numerical decision of the reverse task, the proof of convergence of approximate solution of the reverse task to the exact decision, reasons for the idea of the proof of a correctness (the conditional correctness of the decision of the reverse task for differential equations, a statement of logical outputs of application-oriented or humanitarian character on the basis of the conducted research of the reverse task and other educational jobs.In the course of such training students create system of fundamental knowledge in the field of the reverse and incorrect tasks, acquire new scientific knowledge in the field of applied and calculus mathematics, but, obviously, and develop a mathematical intuition.

  14. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning

  15. Mathematics of aperiodic order

    CERN Document Server

    Lenz, Daniel; Savinien, Jean

    2015-01-01

    What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomolog...

  16. Mathematics everywhere

    CERN Document Server

    Aigner, Martin; Spain, Philip G

    2010-01-01

    Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde

  17. Post secondary project-based learning in science, technology, engineering and mathematics

    OpenAIRE

    Ralph, Rachel A.

    2016-01-01

    Project-based learning (PjBL - to distinguish from problem-based learning - PBL) has become a recurrent practice in K-12 classroom environments. As PjBL has become prominent in K-12 classrooms, it has also surfaced in post-secondary institutions.  The purpose of this paper is to examine the research that has studied a variety of science, technology, engineering and mathematic subjects using PjBL in post-secondary classrooms. Eleven articles (including qualitative, quantitative and mixed metho...

  18. 11th Biennial Conference on Emerging Mathematical Methods, Models and Algorithms for Science and Technology

    CERN Document Server

    Manchanda, Pammy; Bhardwaj, Rashmi

    2015-01-01

    The present volume contains invited talks of 11th biennial conference on “Emerging Mathematical Methods, Models and Algorithms for Science and Technology”. The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.

  19. Real-time control data wrangling for development of mathematical control models of technological processes

    Science.gov (United States)

    Vasilyeva, N. V.; Koteleva, N. I.; Fedorova, E. R.

    2018-05-01

    The relevance of the research is due to the need to stabilize the composition of the melting products of copper-nickel sulfide raw materials in the Vanyukov furnace. The goal of this research is to identify the most suitable methods for the aggregation of the real time data for the development of a mathematical model for control of the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace. Statistical methods of analyzing the historical data of the real technological object and the correlation analysis of process parameters are described. Factors that exert the greatest influence on the main output parameter (copper content in matte) and ensure the physical-chemical transformations are revealed. An approach to the processing of the real time data for the development of a mathematical model for control of the melting process is proposed. The stages of processing the real time information are considered. The adopted methodology for the aggregation of data suitable for the development of a control model for the technological process of melting copper-nickel sulfide raw materials in the Vanyukov furnace allows us to interpret the obtained results for their further practical application.

  20. Construction mathematics

    CERN Document Server

    Virdi, Surinder; Virdi, Narinder Kaur

    2014-01-01

    Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

  1. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    Science.gov (United States)

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…

  2. Conversations about Curriculum Change: Mathematical Thinking and Team-Based Learning in a Discrete Mathematics Course

    Science.gov (United States)

    Paterson, Judy; Sneddon, Jamie

    2011-01-01

    This article reports on the learning conversations between a mathematician and a mathematics educator as they worked together to change the delivery model of a third year discrete mathematics course from a traditional lecture mode to team-based learning (TBL). This change prompted the mathematician to create team tasks which increasingly focused…

  3. Creativity and Technology in Mathematics: From Story Telling to Algorithmic with Op'Art

    Science.gov (United States)

    Mercat, Christian; Filho, Pedro Lealdino; El-Demerdash, Mohamed

    2017-01-01

    This article describes some of the results of the European project mcSquared (http://mc2-project.eu/) regarding the use of Op'Art and optical illusion pieces as a tool to foster modeling and creative mathematical thinking in students. We present briefly the c-book technology and some results we got experimenting it. The Op'Art movement, with…

  4. Intentional and Automatic Numerical Processing as Predictors of Mathematical Abilities in Primary School Children

    Directory of Open Access Journals (Sweden)

    Violeta ePina

    2015-03-01

    Full Text Available Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1 to 6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved.

  5. Mathematical Reasoning Requirements in Swedish National Physics Tests

    Science.gov (United States)

    Johansson, Helena

    2016-01-01

    This paper focuses on one aspect of mathematical competence, namely mathematical reasoning, and how this competency influences students' knowing of physics. This influence was studied by analysing the mathematical reasoning requirements upper secondary students meet when solving tasks in national physics tests. National tests are constructed to…

  6. The history of mathematics in the Krakow University of Technology (1945–2015 (in Polish

    Directory of Open Access Journals (Sweden)

    Jan Koroński

    2015-12-01

    Full Text Available The subject of the paper is the history of Mathematics at the Krakow University of Technology since 1945 up to 2015. It presents profiles of the most famous mathematicians in the history of the Krakow University of Technology (M. Krzyżański, J. Bochenek, F. Barański, I. Łojczyk-Królikiewicz and some information about their scientific achievements.

  7. Information Technology in University-Level Mathematics Teaching and Learning: A Mathematician's Point of View

    Science.gov (United States)

    Borovik, Alexandre

    2011-01-01

    Although mathematicians frequently use specialist software in direct teaching of mathematics, as a means of delivery e-learning technologies have so far been less widely used. We (mathematicians) insist that teaching methods should be subject-specific and content-driven, not delivery-driven. We oppose generic approaches to teaching, including…

  8. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    Science.gov (United States)

    Stoet, Gijsbert; Geary, David C

    2018-04-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths and pursuit of STEM degrees rose with increases in national gender equality. The gap between boys' science achievement and girls' reading achievement relative to their mean academic performance was near universal. These sex differences in academic strengths and attitudes toward science correlated with the STEM graduation gap. A mediation analysis suggested that life-quality pressures in less gender-equal countries promote girls' and women's engagement with STEM subjects.

  9. Learning mathematics from hierarchies to networks

    CERN Document Server

    Burton, Prof Leone

    2012-01-01

    How and why is mathematics taught? This book seeks to improve on our current answers. The contributors provide various perspectives in this richly cross-referenced work. Relevant to policy makers, practitioners and researchers.

  10. Overcoming barriers to ITS : lessons from other technologies : final task E report

    Science.gov (United States)

    1995-12-01

    The Task E report involves an analysis of franchises and license agreements for the provision of public services, which is the fourth in a series in the study. Overcoming Barriers to ITS - Lessons from Other Technologies. This report follows alternat...

  11. Promoting Reasoning through the Magic V Task

    Science.gov (United States)

    Bragg, Leicha A.; Widjaja, Wanty; Loong, Esther Yook-Kin; Vale, Colleen; Herbert, Sandra

    2015-01-01

    Reasoning in mathematics plays a critical role in developing mathematical understandings. In this article, Bragg, Loong, Widjaja, Vale & Herbert explore an adaptation of the Magic V Task and how it was used in several classrooms to promote and develop reasoning skills.

  12. New frontiers of multidisciplinary research in STEAM-H (science, technology, engineering, agriculture, mathematics, and health)

    CERN Document Server

    2014-01-01

    This highly multidisciplinary volume contains contributions from leading researchers in STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health). The volume explores new frontiers in multidisciplinary research, including: the mathematics of cardiac arrhythmia; brain research on working memory; penalized ordinal regression to classify melanoma skin samples; forecasting of time series data; dynamics of niche models; analysis of chemical moieties as anticancer agents; study of gene locus control regions; qualitative mathematical modelling; convex quadrics and group circle systems; remanufacturing planning and control; complexity reduction of functional differential equations; computation of viscous interfacial motion; and differentiation in human pluripotent stem cells. An extension of a seminar series at Virginia State University, the collection is intended to foster student interest and participation in interdisciplinary research, and to stimulate new research. The content wi...

  13. Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics.

    Directory of Open Access Journals (Sweden)

    Marios A. Pappas

    2018-02-01

    Full Text Available Specific Learning Disorder with impairment in Mathematics (Developmental Dyscalculia is a complex learning disorder which affects arithmetic skills, symbolic magnitude processing, alertness, flexibility in problem solving and maintained attention. Neuro-cognitive studies revealed that such difficulties in children with DD could be related to poor Working Memory and attention deficits. Furthermore, neuroimaging studies indicate that brain structure differences in children with DD compared to typically developing children could affect mathematical performance. In this study we present the cognitive profile of Dyscalculia, as well as the neuropsychological aspects of the deficit, with special reference to the utilization of enhanced assessment technology such as computerized neuropsychological tools and neuroimaging techniques.

  14. The Relationship between Students' Performance on Conventional Standardized Mathematics Assessments and Complex Mathematical Modeling Problems

    Science.gov (United States)

    Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.

    2016-01-01

    Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…

  15. Mathematics for energy

    International Nuclear Information System (INIS)

    Snow, D.R.

    1975-01-01

    This paper provides mathematicians and other persons interested in energy problems with some ideas of the kinds of mathematics being applied and a few ideas for further investigation both in the relevant mathematics and in mathematical modeling. This paper is not meant to be an extensive bibliography on the subject, but references are provided. The Conference emphasized large scale and economic considerations related to energy rather than specific technologies, but additional mathematical problems arising in current and future technologies are suggested. Several of the papers dealt with linear programming models of large scale systems related to energy. These included economic models, policy models, energy sector models for supply and demand and environmental concerns. One of the economic models utilized variational techniques including such things as the Hamiltonian, the Euler-Lagrange differential equation, transversality and natural boundary conditions

  16. Noncommutative mathematics for quantum systems

    CERN Document Server

    Franz, Uwe

    2016-01-01

    Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...

  17. Effects of Mathematics Innovation and Technology on Students Performance in Open and Distance Learning

    Science.gov (United States)

    Israel, Oginni 'Niyi

    2016-01-01

    This study investigated the effect of mathematics innovation and technology on students' academic performance in open and distance learning. Quasi -- experimental research design was adopted for the study. The population for the study consisted of all the 200 level primary education students at the National Open University of Nigeria (Ekiti and…

  18. Integrated Spreadsheets as a Paradigm of Type II Technology Applications in Mathematics Teacher Education

    Science.gov (United States)

    Abramovich, Sergei

    2016-01-01

    The paper presents the use of spreadsheets integrated with digital tools capable of symbolic computations and graphic constructions in a master's level capstone course for secondary mathematics teachers. Such use of spreadsheets is congruent with the Type II technology applications framework aimed at the development of conceptual knowledge in the…

  19. Women of Science, Technology, Engineering, and Mathematics: A Qualitative Exploration into Factors of Success

    Science.gov (United States)

    Olund, Jeanine K.

    2012-01-01

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the…

  20. Mathematics in the K-8 Classroom and Library

    Science.gov (United States)

    McKinney, Sueanne; Hinton, KaaVonia

    2010-01-01

    Two experts on education offer a rich and diverse selection of children's literature and teaching strategies for the K-8 mathematics classroom. To date, a vast majority of classrooms continue to fall short in the implementation and direction of NCTM Principles and Standards for School Mathematics (PSSM), in part because most of these classrooms…

  1. The Language of Mathematics Utilizing Math in Practice

    CERN Document Server

    Baber, Robert L

    2011-01-01

    A new and unique way of understanding the translation of concepts and natural language into mathematical expressions Transforming a body of text into corresponding mathematical expressions and models is traditionally viewed and taught as a mathematical problem; it is also a task that most find difficult. The Language of Mathematics: Utilizing Math in Practice reveals a new way to view this process-not as a mathematical problem, but as a translation, or language, problem. By presenting the language of mathematics explicitly and systematically, this book helps readers to learn mathematics¿and i

  2. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  3. Herbart's mathematical psychology.

    Science.gov (United States)

    Boudewijnse, G J; Murray, D J; Bandomir, C A

    1999-08-01

    J.F. Herbart (1824/1890b) provided a mathematical theory about how mental ideas (Vorstellungen) in consciousness at Time 1 (T1) could compete, possibly driving 1 or more Vorstellungen below a threshold of consciousness. At T1 a Vorstellung A could also fuse with another, B. If at a later T2, A resurfaced into consciousness, it could help B to re-resurface into consciousness. This article describes the historical and mathematical background of Herbart's theory, outlines the mathematical theory itself with the aid of computer graphics, and argues that the theory can be applied to the modern problem of predicting recognition latencies in short-term memory (Sternberg's task; Sternberg, 1966)

  4. Exploration of the Lived Experiences of Undergraduate Science, Technology, Engineering, and Mathematics Minority Students

    Science.gov (United States)

    Snead-McDaniel, Kimberly

    2010-01-01

    An expanding ethnicity gap exists in the number of students pursuing science, technology, engineering, and mathematics (STEM) careers in the United States. The National Action Council for Minorities in Engineering revealed that the number of minorities pursuing STEM degrees and careers has declined over the past few years. The specific origins of…

  5. Early Childhood Teachers' Beliefs about Readiness for Teaching Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Park, Mi-Hwa; Dimitrov, Dimiter M.; Patterson, Lynn G.; Park, Do-Yong

    2017-01-01

    The purpose of this study was to examine beliefs of early childhood teachers about their readiness for teaching science, technology, engineering, and mathematics, with a focus on testing for heterogeneity of such beliefs and differential effects of teacher-related factors. The results from latent class analysis of survey data revealed two latent…

  6. Technology-Enhanced Learning in College Mathematics Remediation

    Science.gov (United States)

    Foshee, Cecile M.; Elliott, Stephen N.; Atkinson, Robert K.

    2016-01-01

    US colleges presently face an academic plight; thousands of high school graduates are performing below the expected ability for college-level mathematics. This paper describes an innovative approach intended to improve the mathematics performance of first-year college students, at a large US university. The innovation involved the integration of…

  7. Improving Mathematics at Work The Need for Techno-Mathematical Literacies

    CERN Document Server

    Hoyles, Celia; Kent, Phillip; Bakker, Arthur

    2010-01-01

    What are the mathematical knowledge and skills that actually matter for the world of work today? Has technology reduced the necessary knowledge to the most basic arithmetic? This book argues that there has been a radical shift in the nature of mathematical skills required for work

  8. Open-Ended Tasks in the Promotion of Classroom Communication in Mathematics

    Science.gov (United States)

    Viseu, Floriano; Oliveira, Inês Bernardo

    2012-01-01

    Mathematics programmes in basic education are currently undergoing reform in Portugal. This paper sets out to see how teachers are putting the new guidelines for the teaching of mathematics into practice, with particular emphasis on maths communication in the classroom. To achieve this, an experiment in teaching the topic "Sequences and…

  9. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  10. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  11. An investigation on task-technology fit of mobile nursing information systems for nursing performance.

    Science.gov (United States)

    Hsiao, Ju-Ling; Chen, Rai-Fu

    2012-05-01

    This study investigates factors affecting the fit between nursing tasks and mobile nursing information systems and the relationships between the task-technology fit of mobile nursing information systems and nurse performance from the perspective of task-technology fit. Survey research recruited nursing staffs as subjects from selected case hospital. A total of 310 questionnaires were sent out, and 219 copies were obtained, indicating a valid response rate of 70.6%. Collected data were analyzed using the structural equation modeling technique. Our study found that dependence tasks have positive effects on information acquisition (γ=0.234, Pinformation identification (γ=0.478, Pinformation acquisition (γ=0.213, Pintroduction of mobile nursing information systems in assisting nursing practices can help facilitate both independent and dependent nursing tasks. Our study discovered that the supporting functions of mobile nursing information systems have positive effects on information integration and interpretation (γ=0.365, Pinformation acquisition (γ=0.253, Pinformation systems have positive effects on information acquisition (γ=0.318, Pinformation integration and interpretation (γ=0.143, Pinformation identification (β=.055, Pinformation acquisition (β=.176, Pinformation integration and interpretation (β=.706, Pinformation systems have positive effects on nursing performance, indicating 83.2% of totally explained variance. As shown, the use of mobile nursing information systems could provide nursing staffs with real-time and accurate information to increase efficiency and effectiveness in patient-care duties, further improving nursing performance.

  12. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  13. Retrieval process development and enhancements project Fiscal year 1995: Simulant development technology task progress report

    International Nuclear Information System (INIS)

    Golcar, G.R.; Bontha, J.R.; Darab, J.G.

    1997-01-01

    The mission of the Retrieval Process Development and Enhancements (RPD ampersand E) project is to develop an understanding of retrieval processes, including emerging and existing technologies, gather data on these technologies, and relate the data to specific tank problems such that end-users have the requisite technical bases to make retrieval and closure decisions. The development of waste simulants is an integral part of this effort. The work of the RPD ampersand E simulant-development task is described in this document. The key FY95 accomplishments of the RPD ampersand E simulant-development task are summarized below

  14. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry

  15. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    International Nuclear Information System (INIS)

    Howe, S.; Borowski, S.; Helms, I.; Diaz, N.; Anghaie, S.; Latham, T.

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a ''level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs

  16. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  17. Mathematics for sustainability

    CERN Document Server

    Roe, John; Jamshidi, Sara

    2018-01-01

    Designed for the 21st century classroom, this textbook poses, refines, and analyzes questions of sustainability in a quantitative environment. Building mathematical knowledge in the context of issues relevant to every global citizen today, this text takes an approach that empowers students of all disciplines to understand and reason with quantitative information. Whatever conclusions may be reached on a given topic, this book will prepare the reader to think critically about their own and other people’s arguments and to support them with careful, mathematical reasoning. Topics are grouped in themes of measurement, flow, connectivity, change, risk, and decision-making. Mathematical thinking is at the fore throughout, as students learn to model sustainability on local, regional, and global scales. Exercises emphasize concepts, while projects build and challenge communication skills. With no prerequisites beyond high school algebra, instructors will find this book a rich resource for engaging all majors in the...

  18. Mathematical olympiad challenges

    CERN Document Server

    Andreescu, Titu

    2000-01-01

    Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-e...

  19. Early numerical foundations of young children's mathematical development.

    Science.gov (United States)

    Chu, Felicia W; vanMarle, Kristy; Geary, David C

    2015-04-01

    This study focused on the relative contributions of the acuity of the approximate number system (ANS) and knowledge of quantitative symbols to young children's early mathematical learning. At the beginning of preschool, 191 children (Mage=46 months) were administered tasks that assessed ANS acuity and explicit knowledge of the cardinal values represented by number words, and their mathematics achievement was assessed at the end of the school year. Children's executive functions, intelligence, and preliteracy skills and their parents' educational levels were also assessed and served as covariates. Both the ANS and cardinality tasks were significant predictors of end-of-year mathematics achievement with and without control of the covariates. As simultaneous predictors and with control of the covariates, cardinality remained significantly related to mathematics achievement, but ANS acuity did not. Mediation analyses revealed that the relation between ANS acuity and mathematics achievement was fully mediated by cardinality, suggesting that the ANS may facilitate children's explicit understanding of cardinal value and in this way may indirectly influence early mathematical learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mathematics and engineering in real life through mathematical competitions

    Science.gov (United States)

    More, M.

    2018-02-01

    We bring out an experience of organizing mathematical competitions that can be used as a medium to motivate the student and teacher minds in new directions of thinking. This can contribute to fostering research, innovation and provide a hands-on experience of mathematical concepts with the real world. Mathematical competitions can be used to build curiosity and give an understanding of mathematical applications in real life. Participation in the competition has been classified under four broad categories. Student can showcase their findings in various forms of expression like model, poster, soft presentation, animation, live performance, art and poetry. The basic focus of the competition is on using open source computation tools and modern technology, to emphasize the relationship of mathematical concepts with engineering applications in real life.

  1. Five Women in Science, Technology, Engineering, and Mathematics Majors: A Portraiture of Their Lived Experiences

    Science.gov (United States)

    Torcivia, Patrice Prusko

    2012-01-01

    Numerous studies have addressed science, technology, engineering and mathematics (STEM) and their relation to education and gender ranging from elementary school pedagogy to career choices for traditional-aged college students. Little research has addressed nontraditional female students returning to the university to in the STEM fields. This…

  2. Roll paper pilot. [mathematical model for predicting pilot rating of aircraft in roll task

    Science.gov (United States)

    Naylor, F. R.; Dillow, J. D.; Hannen, R. A.

    1973-01-01

    A mathematical model for predicting the pilot rating of an aircraft in a roll task is described. The model includes: (1) the lateral-directional aircraft equations of motion; (2) a stochastic gust model; (3) a pilot model with two free parameters; and (4) a pilot rating expression that is a function of rms roll angle and the pilot lead time constant. The pilot gain and lead time constant are selected to minimize the pilot rating expression. The pilot parameters are then adjusted to provide a 20% stability margin and the adjusted pilot parameters are used to compute a roll paper pilot rating of the aircraft/gust configuration. The roll paper pilot rating was computed for 25 aircraft/gust configurations. A range of actual ratings from 2 to 9 were encountered and the roll paper pilot ratings agree quite well with the actual ratings. In addition there is good correlation between predicted and measured rms roll angle.

  3. A 10-Year Assessment of Information and Communication Technology Tasks Required in Undergraduate Agriculture Courses

    Science.gov (United States)

    Edgar, Leslie D.; Johnson, Donald M.; Cox, Casandra

    2012-01-01

    This study sought to assess required information and communication technology (ICT) tasks in selected undergraduate agriculture courses in a land-grant university during a 10-year period. Selected agriculture faculty members in the fall 1999 (n = 63), 2004 (n = 55), and 2009 (n = 64) semesters were surveyed to determine the ICT tasks they required…

  4. Mathematical competencies and the role of mathematics in physics education: A trend analysis of TIMSS Advanced 1995 and 2008

    Directory of Open Access Journals (Sweden)

    Trude Nilsen

    2013-10-01

    Full Text Available As students advance in their learning of physics over the course of their education, the requirement of mathematical applications in physics-related tasks increases, especially so in upper secondary school and in higher education. Yet there is little empirical work (particularly large-scale or longitudinal on the application of mathematics in physics education compared with the research related to the conceptual knowledge of physics. In order to clarify the nature of mathematics in physics education, we developed a theoretical framework for mathematical competencies pertinent to various physics tasks based on theoretical frameworks from mathematics and physics education. We used this synthesis of frameworks as a basis to create a model for physics competence. The framework also served as a tool for analyzing and categorizing trend items from the international large-scale survey, TIMSS Advanced 1995 and 2008. TIMSS Advanced assessed students in upper secondary school with special preparation in advanced physics and mathematics. We then investigated the changes in achievements on these categorized items across time for nations who participated in both surveys. The results from our analysis indicate that students whose overall physics achievement declined struggled the most with items requiring mathematics, especially items requiring them to handle symbols, such as manipulating equations. This finding suggests the importance of collaboration between mathematics and physics education as well as the importance of traditional algebra for physics education.

  5. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  6. Using Task Like PISA's Problem to Support Students' Creativity in Mathematics

    Science.gov (United States)

    Novita, Rita; Putra, Mulia

    2016-01-01

    Creativity is one of keys to success in the evolving global economy and also be a fundamental skill that is absolutely necessary in the 21st century. Also in mathematics, creativity or thinking creatively is important to be developed because creativity is an integral part of mathematics. However, limiting the use of creativity in the classroom…

  7. Mathematics in civilization

    CERN Document Server

    Resnikoff, Howard L

    2015-01-01

    Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co

  8. What Software to Use in the Teaching of Mathematical Subjects?

    Science.gov (United States)

    Berežný, Štefan

    2015-01-01

    We can consider two basic views, when using mathematical software in the teaching of mathematical subjects. First: How to learn to use specific software for the specific tasks, e. g., software Statistica for the subjects of Applied statistics, probability and mathematical statistics, or financial mathematics. Second: How to learn to use the…

  9. ICT use in the teaching of mathematics: Implications for professional development of pre-service teachers in Ghana. Education and information technologies

    NARCIS (Netherlands)

    Agyei, D.D.; Agvei, Douglas D.; Voogt, Joke

    2011-01-01

    Included in the contemporary mathematics curricula in Ghana is the expectation that mathematics teachers will integrate technology in their teaching. However, importance has not been placed on preparing teachers to use ICT in their instruction. This paper reports on a study conducted to explore the

  10. Adaptation of the Science, Technology, Engineering, and Mathematics Career Interest Survey (STEM-CIS) into Turkish

    Science.gov (United States)

    Koyunlu Unlu, Zeynep; Dokme, Ilbilge; Unlu, Veli

    2016-01-01

    Problem Statement: Science, technology, engineering, and mathematics (STEM) education has recently become a remarkable research topic, especially in developed countries as a result of the skilled workforce required in the fields of the STEM. Considering that professional tendencies are revealed at early ages, determining students' interest in STEM…

  11. Tasks and challenges in prototype development with novel technology - an empirical study

    DEFF Research Database (Denmark)

    Ravn, Poul Martin; Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik

    2015-01-01

    This paper presents a thematic analysis of 138 monthly reports from a joint industrial and academic project where multiple prototypes were developed based on the same technology. The analysis was based on tasks and challenges described in the reports by project managers over a period of three years...

  12. Teaching mathematics to non-mathematicians

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Timcenko, Olga

    2017-01-01

    Over the past years, a number of engineering programs have arisen that transcend the division between technical, scientific and art-related disciplines. Media Technology at Aalborg University, Denmark is such an engineering program. In relation to mathematics education, this new development has...... changed the way mathematics is applied in practice and is taught in these disciplines. This paper discusses a doctoral dissertation that investigated and assessed interventions to increase student motivation and engagement in mathematics among Media Technology students. The results of this dissertation...

  13. International seminar series on mathematics and applied mathematics and a series of three focused international research workshops on engineering mathematics organised by the Research Environment in Mathematics and Applied Mathematics at Mälardalen University from autumn 2014 to autumn 2015: the International Workshop on Engineering Mathematics for Electromagnetics and Health Technology; the International Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics; and the 1st Swedish-Estonian International Workshop on Engineering Mathematics, Algebra, Analysis and Applications

    CERN Document Server

    Rancic, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. It addresses mathematical methods of algebra, applied matrix analysis, operator analysis, probability theory and stochastic processes, geometry and computational methods in network analysis, data classification, ranking and optimisation. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The book consists of contributed chapters covering research developed as a result of a focused interna...

  14. Mathematics for operations research

    CERN Document Server

    1994-01-01

    Effective procedures for mathematical tasks in many fields: resolving linear independence, finding null spaces and factors of matrices; differentiating vectors and matrices by chain rule, many more. Techniques illustrated in examples. 1,300 problems. 1978 edition.

  15. The written mathematical communication profile of prospective math teacher in mathematical proving

    Science.gov (United States)

    Pantaleon, K. V.; Juniati, D.; Lukito, A.; Mandur, K.

    2018-01-01

    Written mathematical communication is the process of expressing mathematical ideas and understanding in writing. It is one of the important aspects that must be mastered by the prospective math teacher as tool of knowledge transfer. This research was a qualitative research that aimed to describe the mathematical communication profile of the prospective mathematics teacher in mathematical proving. This research involved 48 students of Mathematics Education Study Program; one of them with moderate math skills was chosen as the main subject. Data were collected through tests, assignments, and task-based interviews. The results of this study point out that in the proof of geometry, the subject explains what is understood, presents the idea in the form of drawing and symbols, and explains the content/meaning of a representation accurately and clearly, but the subject can not convey the argument systematically and logically. Whereas in the proof of algebra, the subject describes what is understood, explains the method used, and describes the content/meaning of a symbolic representation accurately, systematically, logically, but the argument presented is not clear because it is insufficient detailed and complete.

  16. Effectiveness of Mathematics Teaching and Learning Experiences through Wireless Technology as Recent Style to Enhance B.Ed. Trainees

    Science.gov (United States)

    Joan, D. R. Robert

    2015-01-01

    The objective of the study was to find out the effect of learning through Wireless technologies and the traditional method in teaching and learning Mathematics. The investigator adopted experimental research to find the effectiveness of implementing Wireless technologies in the population of B.Ed. trainees. The investigator selected 32 B.Ed.…

  17. Assessing the Effectiveness of a Mathematics-Focused, Instructional Technology Program for Grades 6-8: A 5-Year Trend Analysis of NASA CONNECT(tm) Evaluation Data

    Science.gov (United States)

    Glassman, Nanci A.; Perry, Jeannine B.; Giersch, Christopher E.; Lambert, Matthew A.; Pinelli, Thomas E.

    2004-01-01

    NASA CONNECT is a research-, inquiry, and standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (television and web-based) programs for students in grades 6 8. Respondents who evaluated the programs in the series over the first five seasons (1998-99 through 2002-03) reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for the grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  18. The relationship between mathematics and language: academic implications for children with specific language impairment and English language learners.

    Science.gov (United States)

    Alt, Mary; Arizmendi, Genesis D; Beal, Carole R

    2014-07-01

    The present study examined the relationship between mathematics and language to better understand the nature of the deficit and the academic implications associated with specific language impairment (SLI) and academic implications for English language learners (ELLs). School-age children (N = 61; 20 SLI, 20 ELL, 21 native monolingual English [NE]) were assessed using a norm-referenced mathematics instrument and 3 experimental computer-based mathematics games that varied in language demands. Group means were compared with analyses of variance. The ELL group was less accurate than the NE group only when tasks were language heavy. In contrast, the group with SLI was less accurate than the groups with NE and ELLs on language-heavy tasks and some language-light tasks. Specifically, the group with SLI was less accurate on tasks that involved comparing numerical symbols and using visual working memory for patterns. However, there were no group differences between children with SLI and peers without SLI on language-light mathematics tasks that involved visual working memory for numerical symbols. Mathematical difficulties of children who are ELLs appear to be related to the language demands of mathematics tasks. In contrast, children with SLI appear to have difficulty with mathematics tasks because of linguistic as well as nonlinguistic processing constraints.

  19. University mathematics teachers' views on the required reasoning in calculus exams

    OpenAIRE

    Bergqvist, Ewa

    2012-01-01

    Students often use imitative reasoning, i.e. copy algorithms or recall facts, when solving mathematical tasks. Research show that this type of imitative reasoning might weaken the students' understanding of the underlying mathematical concepts. In a previous study, the author classified tasks from 16 final exams from introductory calculus courses at Swedish universities. The results showed that it was possible to pass 15 of the exams, and solve most of the tasks, using imitative reasoning. Th...

  20. Modelling Mathematical Argumentation: The Importance of Qualification

    Science.gov (United States)

    Inglis, Matthew; Mejia-Ramos, Juan; Simpson, Adrian

    2007-01-01

    In recent years several mathematics education researchers have attempted to analyse students' arguments using a restricted form of Toulmina's ["The Uses of Argument," Cambridge University Press, UK, 1958] argumentation scheme. In this paper we report data from task-based interviews conducted with highly talented postgraduate mathematics students,…

  1. Validation of the Domains of Creativity Scale for Nigerian Preservice Science, Technology, and Mathematics Teachers

    Science.gov (United States)

    Awofala, Adeneye O. A.; Fatade, Alfred O.

    2015-01-01

    Introduction: Investigation into the factor structure of Domains of Creativity Scale has been on for sometimes now. The purpose of this study was to test the validity of the Kaufman Domains of Creativity Scale on Nigerian preservice science, technology, and mathematics teachers. Method: Exploratory and confirmatory factor analyses were performed…

  2. Pre-service teachers’ challenges in presenting mathematical problems

    Science.gov (United States)

    Desfitri, R.

    2018-01-01

    The purpose of this study was to analyzed how pre-service teachers prepare and assigned tasks or assignments in teaching practice situations. This study was also intended to discuss about kind of tasks or assignments they gave to students. Participants of this study were 15 selected pre-service mathematics teachers from mathematics education department who took part on microteaching class as part of teaching preparation program. Based on data obtained, it was occasionally found that there were hidden errors on questions or tasks assigned by pre-service teachers which might lead their students not to be able to reach a logical or correct answer. Although some answers might seem to be true, they were illogical or unfavourable. It is strongly recommended that pre-service teachers be more careful when posing mathematical problems so that students do not misunderstand the problems or the concepts, since both teachers and students were sometimes unaware of errors in problems being worked on.

  3. The development of mathematics

    CERN Document Server

    Bell, Eric Temple

    1945-01-01

    ""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from

  4. Implementation of the concept of home hospitalisation for heart patients by means of telehomecare technology: integration of clinical tasks

    Directory of Open Access Journals (Sweden)

    Birthe Dinesen

    2007-05-01

    Full Text Available Purpose: To explore how the implementation of the concept ‘Home hospitalisation of heart patients’ by means of telehomecare technology influences the integration of clinical tasks across healthcare sectors. Theory: Inter-organisational theory. Methods: The case study approach was applied. Triangulations of data collection techniques were used: documentary materials, participant observation, qualitative and focus group interviews. Results: The clinical decision-making and task solving became multidisciplinary and integrated with the implementation of telehomecare and, therefore, complex in terms of the prescription and adjustment of patient medicine. Workflows between healthcare professionals across sectors changed from sequential to collective client flows. Pre-existing procedures for patient care, treatment, and responsibility were challenged. In addition, the number of tasks for the district nurses increased. Integration in the clinical task-solving area increases fragmentation in the knowledge technologies in a network perspective. Conclusions: Implementing the concept of ‘Home hospitalisation of heart patients’ by means of telehomecare technology will result in a more integrated clinical task-solving process that involves healthcare professionals from various sectors. Overall, the integration of clinical tasks between hospital and district nursing will result in a direct benefit for the heart patients.

  5. Humans-with-media and the reorganization of mathematical thinking information and communication technologies, modeling, visualization and experimentation

    CERN Document Server

    Borba, Marcelo C; Villarreal, Monica E

    2005-01-01

    This book offers a new conceptual framework for reflecting on the role of information and communication technology in mathematics education. Discussion focuses on how computers, writing and oral discourse transform education at an epistemological as well as a political level. Building on examples, research and theory, the authors propose that knowledge is not constructed solely by humans, but by collectives of humans and technologies of intelligence.

  6. COMPUTER TOOLS OF DYNAMIC MATHEMATIC SOFTWARE AND METHODICAL PROBLEMS OF THEIR USE

    OpenAIRE

    Olena V. Semenikhina; Maryna H. Drushliak

    2014-01-01

    The article presents results of analyses of standard computer tools of dynamic mathematic software which are used in solving tasks, and tools on which the teacher can support in the teaching of mathematics. Possibility of the organization of experimental investigating of mathematical objects on the basis of these tools and the wording of new tasks on the basis of the limited number of tools, fast automated check are specified. Some methodological comments on application of computer tools and ...

  7. Learning Scientific Reasoning Skills May Be Key to Retention in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Jensen, Jamie L.; Neeley, Shannon; Hatch, Jordan B.; Piorczynski, Ted

    2017-01-01

    The United States produces too few Science, Technology, Engineering, and Mathematics (STEM) graduates to meet demand. We investigated scientific reasoning ability as a possible factor in STEM retention. To do this, we classified students in introductory biology courses at a large private university as either declared STEM or non-STEM majors and…

  8. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    Science.gov (United States)

    Lee, Sang Eun

    2017-01-01

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…

  9. Enhancing Teacher Education in Primary Mathematics with Mobile Technologies

    Science.gov (United States)

    Schuck, Sandy

    2016-01-01

    A challenge of teacher education is to produce graduate primary school teachers who are confident and competent teachers of mathematics. Various approaches to primary school teacher education in mathematics have been investigated, but primary teacher education graduates still tend to be diffident in their teaching of mathematics. In an age where…

  10. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  11. Classroom Climate among Teacher Education Mathematics Students

    Directory of Open Access Journals (Sweden)

    Polemer M. Cuarto

    2015-11-01

    Full Text Available Classroom climate has gained prominence as recent studies revealed its potentials as an effective mediator in the various motivational factors as well as an antecedent of academic performance outcome of the students. This descriptive-correlational study determined the level of classroom climate dimensions among teacher education students specializing in Mathematics at Mindoro State College of Agriculture and Technology. Employing a self-structured questionnaire adapted to the WIHIC (What Is Happening In this Class questionnaire, the surveyed data were treated statistically using Pearson’s r. Result showed that there was high level of classroom climate among the respondents in their Mathematics classes in both teacher-directed and student-directed dimensions specifically in terms of equity, teacher support, cohesiveness, involvement, responsibility and task orientation. Also, it revealed that equity and teacher support were both positively related to the students-directed classroom climate dimensions. With these results, teachers are seen to be very significant determinants of the climate in the classroom. Relevant to this, the study recommended that faculty should develop effective measures to enhance classroom climate dimensions such as equity and teacher support to address the needs of diverse studentsdespite large size classes. Moreover, faculty should provide greater opportunitiesfor the students to achieve higher level of responsibility, involvement, cohesiveness, and task orientation as these could motivate them to develop positive learning attitude, perform to the best of their ability, as well as maximize their full potential in school.

  12. Task summary: Hot demonstration of proposed commercial nuclide removal technology

    International Nuclear Information System (INIS)

    Lee, D.D.; Travis, J.R.

    1995-11-01

    Radionuclides represent only a small fraction of the components in millions of gallons of storage tank supernatant at various sites, including Oak Ridge, Hanford, Savannah River, and Idaho. Most of the radioactivity is contributed by cesium, strontium, and technetium along with high concentrations of sodium and potassium salts. The purpose of this task is to test and select sorbents and commercial removal technologies supplied by ESP for removing and concentrating the radionuclides, thereby reducing the volume of waste to be stored or disposed

  13. Technological geological and mathematical models of petroleum stratum

    International Nuclear Information System (INIS)

    Zhumagulov, B.T.; Monakhov, V.N.

    1997-01-01

    The comparative analysis of different mathematical methods of petroleum stratum, the limit of their applicability and hydrodynamical analysis of numerical calculation's results is carried out. The problem of adaptation of the mathematical models and the identification of petroleum stratum parameters are considered. (author)

  14. I. SPATIAL SKILLS, THEIR DEVELOPMENT, AND THEIR LINKS TO MATHEMATICS.

    Science.gov (United States)

    Verdine, Brian N; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy; Newcombe, Nora S

    2017-03-01

    Understanding the development of spatial skills is important for promoting school readiness and improving overall success in STEM (science, technology, engineering, and mathematics) fields (e.g., Wai, Lubinski, Benbow, & Steiger, 2010). Children use their spatial skills to understand the world, including visualizing how objects fit together, and can practice them via spatial assembly activities (e.g., puzzles or blocks). These skills are incorporated into measures of overall intelligence and have been linked to success in subjects like mathematics (Mix & Cheng, 2012) and science (Pallrand & Seeber, 1984; Pribyl & Bodner, 1987). This monograph sought to answer four questions about early spatial skill development: 1) Can we reliably measure spatial skills in 3- and 4-year-olds?; 2) Do spatial skills measured at 3 predict spatial skills at age 5?; 3) Do preschool spatial skills predict mathematics skills at age 5?; and 4) What factors contribute to individual differences in preschool spatial skills (e.g., SES, gender, fine-motor skills, vocabulary, and executive function)? Longitudinal data generated from a new spatial skill test for 3-year-old children, called the TOSA (Test of Spatial Assembly), show that it is a reliable and valid measure of early spatial skills that provides strong prediction to spatial skills measured with established tests at age 5. New data using this measure finds links between early spatial skill and mathematics, language, and executive function skills. Analyses suggest that preschool spatial experiences may play a central role in children's mathematical skills around the time of school entry. Executive function skills provide an additional unique contribution to predicting mathematical performance. In addition, individual differences, specifically socioeconomic status, are related to spatial and mathematical skill. We conclude by exploring ways of providing rich early spatial experiences to children. © 2017 The Society for Research in Child

  15. Using the Wonder of Inequalities between Averages for Mathematics Problems Solving

    Science.gov (United States)

    Shaanan, Rachel Mogilevsky; Gordon, Moshe Stupel

    2016-01-01

    The study presents an introductory idea of using mathematical averages as a tool for enriching mathematical problem solving. Throughout students' activities, a research was conducted on their ability to solve mathematical problems, and how to cope with a variety of mathematical tasks, in a variety of ways, using the skills, tools and experiences…

  16. The Emergence of Mathematical Structures

    Science.gov (United States)

    Hegedus, Stephen John; Moreno-Armella, Luis

    2011-01-01

    We present epistemological ruptures that have occurred in mathematical history and in the transformation of using technology in mathematics education in the twenty-first century. We describe how such changes establish a new form of digital semiotics that challenges learning paradigms and mathematical inquiry for learners today. We focus on drawing…

  17. Integration of Technology, Curriculum, and Professional Development for Advancing Middle School Mathematics: Three Large-Scale Studies

    Science.gov (United States)

    Roschelle, Jeremy; Shechtman, Nicole; Tatar, Deborah; Hegedus, Stephen; Hopkins, Bill; Empson, Susan; Knudsen, Jennifer; Gallagher, Lawrence P.

    2010-01-01

    The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, which integrates an interactive representational technology, paper curriculum,…

  18. Development of a Multidisciplinary Middle School Mathematics Infusion Model

    Science.gov (United States)

    Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura

    2011-01-01

    The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…

  19. Meyerhoff Scholars Program: a strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics.

    Science.gov (United States)

    Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.

  20. KUSPACE: Embedding Science Technology and Mathematics Ambassador Activities in the Undergradiuate Engineering Curriculum

    Science.gov (United States)

    Welch, C.; Osborne, B.

    The UK national STEM Ambassadors programme provides inspiring role models for school students in science, technology, engineering, mathematics (STEM) subjects. STEMNET, the national body responsible for STEM Ambassa- dors aims to provide more than 27,000 STEM Ambassadors nationwide by the end of 2011. This paper reports on a project at Kingston University to embed STEM Ambassador training and activity in Year 2 of the undergraduate Aerospace Engineering, Astronautics and Space Technology degree. The project, known as KUSPACE (Kingston University Students Providing Amazing Classroom Experiences), was conceived to develop students' communication, planning and presentation skills and build links between different cohort years, while providing a valuable contribution to local primary schools' STEM programmes and simultaneously raising the public engagement profile of the university. This paper describes the pedagogical conception of the KUSPACE, its implementation in the curriculum, the delivery of it in the university and schools and its effect on the undergraduate students, as well as identifying good practice and drawing attention to lessons learned.STEMNET (www.stemnet.org) is the UK's Science, Technol- ogy, Engineering and Mathematics Network. Working with a broad range of UK partners and funded by the UK govern- ment's Department for Business Innovation and Skills, STEMNET plays a significant role in ensuring that five to nineteen year olds and their teachers can experience a wide range of activities and schemes which enhance and enrich the school curriculum [1]. Covering all aspects of Science, Tech- nology, Engineering and Maths (STEM), these activities and schemes are designed both to increase STEM awareness and literacy in the young people and also to encourage more of them to undertake post-16 STEM qualifications and associated careers [2]. STEMNET operates through forty-five local con- tract holders around the UK which help the network deliver its

  1. Elementary Preservice Teachers' and Elementary Inservice Teachers' Knowledge of Mathematical Modeling

    Science.gov (United States)

    Schwerdtfeger, Sara

    2017-01-01

    This study examined the differences in knowledge of mathematical modeling between a group of elementary preservice teachers and a group of elementary inservice teachers. Mathematical modeling has recently come to the forefront of elementary mathematics classrooms because of the call to add mathematical modeling tasks in mathematics classes through…

  2. Exploring Kuwaiti mathematics: student-teachers' beliefs toward using Logo and mathematics education

    OpenAIRE

    Sulaiman, NAJ

    2011-01-01

    The main objective of this study is to explore the effect of one taught course, a Logo module, on Kuwaiti elementary mathematics student-teachers’ beliefs about Information and Communication Technology (ICT) and Logo. The Logo module incorporated ICT, in particular the Logo programming language, as a cognitive tool, that supports the constructivist perspective for mathematics instruction. The Logo module comprised of 24-sessions (deducted from the hours of the Methods of Teaching Mathematics ...

  3. Using Citation Analysis Methods to Assess the Influence of Science, Technology, Engineering, and Mathematics Education Evaluations

    Science.gov (United States)

    Greenseid, Lija O.; Lawrenz, Frances

    2011-01-01

    This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…

  4. "Photographing money" task pricing

    Science.gov (United States)

    Jia, Zhongxiang

    2018-05-01

    "Photographing money" [1]is a self-service model under the mobile Internet. The task pricing is reasonable, related to the success of the commodity inspection. First of all, we analyzed the position of the mission and the membership, and introduced the factor of membership density, considering the influence of the number of members around the mission on the pricing. Multivariate regression of task location and membership density using MATLAB to establish the mathematical model of task pricing. At the same time, we can see from the life experience that membership reputation and the intensity of the task will also affect the pricing, and the data of the task success point is more reliable. Therefore, the successful point of the task is selected, and its reputation, task density, membership density and Multiple regression of task positions, according to which a nhew task pricing program. Finally, an objective evaluation is given of the advantages and disadvantages of the established model and solution method, and the improved method is pointed out.

  5. Who Chooses STEM Careers? Using A Relative Cognitive Strength and Interest Model to Predict Careers in Science, Technology, Engineering, and Mathematics.

    Science.gov (United States)

    Wang, Ming-Te; Ye, Feifei; Degol, Jessica Lauren

    2017-08-01

    Career aspirations in science, technology, engineering, and mathematics (STEM) are formulated in adolescence, making the high school years a critical time period for identifying the cognitive and motivational factors that increase the likelihood of future STEM employment. While past research has mainly focused on absolute cognitive ability levels in math and verbal domains, the current study tested whether relative cognitive strengths and interests in math, science, and verbal domains in high school were more accurate predictors of STEM career decisions. Data were drawn from a national longitudinal study in the United States (N = 1762; 48 % female; the first wave during ninth grade and the last wave at age 33). Results revealed that in the high-verbal/high-math/high-science ability group, individuals with higher science task values and lower orientation toward altruism were more likely to select STEM occupations. In the low-verbal/moderate-math/moderate-science ability group, individuals with higher math ability and higher math task values were more likely to select STEM occupations. The findings suggest that youth with asymmetrical cognitive ability profiles are more likely to select careers that utilize their cognitive strengths rather than their weaknesses, while symmetrical cognitive ability profiles may grant youth more flexibility in their options, allowing their interests and values to guide their career decisions.

  6. Participants in the “Schweizer Jugendforscht’” projects at CERN under the supervision of Günther Dissertori, professor at the Swiss Federal Institute of Technology (ETH Zürich) and other members of ETH Zürich, Werner Lustermann and Michael Dittmar.

    CERN Multimedia

    2005-01-01

    Participants in the “Schweizer Jugendforscht’” projects at CERN under the supervision of Günther Dissertori, professor at the Swiss Federal Institute of Technology (ETH Zürich) and other members of ETH Zürich, Werner Lustermann and Michael Dittmar.

  7. Environmental management technology demonstration and commercialization: Tasks 2, 3, 4, and 8. Semiannual report, October 1994--March 1995

    International Nuclear Information System (INIS)

    Hawthorne, S.B.; Ness, R.O. Jr.; Nowok, J.W.; Pflughoeft-Hassett, D.; Hurley, J.P.; Steadman, E.N.

    1995-05-01

    The objective of the Environmental Management program at the Energy and Environmental Research Center (EERC) is to develop, demonstrate, and commercialize technologies that address the environmental management needs of contaminated sites, including characterization, sensors, and monitoring; low-level mixed waste processing; material disposition technology; improved waste forms; in situ containment and remediation; and efficient separation technologies for radioactive wastes. Task 2 is the extraction and analysis of pollutant organics from contaminated solids using off-line supercritical fluid extraction (SFE) and on-line SFE-infrared spectroscopy. Task 3, pyrolysis of plastics, has as its objectives to develop a commercial process to significantly reduce the volume of mixed-plastics-paper-resin waste contaminated with low-level radioactive material; concentrate contaminants in a collectible form; and determine the distribution and form of contaminants after pyrolysis of the mixed waste. Task 4, stabilization of vitrified wastes, has as its objectives to (1) demonstrate a waste vitrification procedure for enhanced stabilization of waste materials and (2) develop a testing protocol to understand the long-term leaching behavior of the stabilized waste form. The primary objective of Task 8, Management and reporting, is coordination of this project with other programs and opportunities. In addition, management oversight will be maintained to ensure that tasks are completed and coordinated as planned and that deliverables are submitted in a timely manner. Accomplishments to date is each task are described. 62 refs

  8. Situated cognition and cognitive apprenticeship: a model for teaching and learning clinical skills in a technologically rich and authentic learning environment.

    Science.gov (United States)

    Woolley, Norman N; Jarvis, Yvonne

    2007-01-01

    The acquisition of a range of diverse clinical skills is a central feature of the pre-registration nursing curriculum. Prior to exposure to clinical practice, it is essential that learners have the opportunity to practise and develop such skills in a safe and controlled environment under the direction and supervision of clinical experts. However, the competing demands of the HE nursing curriculum coupled with an increased number of learners have resulted in a reduced emphasis on traditional apprenticeship learning. This paper presents an alternative model for clinical skills teaching that draws upon the principles of cognitive apprenticeship [Collins, A., Brown, J.S., Newman, S., 1989. Cognitive Apprenticeship: teaching the crafts of reading, writing and mathematics. In: Resnick, L.B. (Ed.) Knowing. Learning and Instruction: Essays in Honor of Robert Glaser. Lawrence Erlbaum Associates, New Jersey, pp. 453-494] and situated cognition within a technologically rich and authentic learning environment. It will show how high quality DVD materials illustrating clinical skills performed by expert practitioners have been produced and used in conjunction with CCTV and digital recording technologies to support learning within a pedagogic framework appropriate to skills acquisition. It is argued that this model not only better prepares the student for the time they will spend in the practice setting, but also lays the foundation for the development of a clinically competent practitioner with the requisite physical and cognitive skills who is fit for purpose [UKCC, 1999. Fitness for Practice: The UKCC Commission for Nursing and Midwifery Education. United Kingdom Central Council for Nursing Midwifery and Health Visiting, London].

  9. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  10. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  11. Essential Conditions for Technology-Supported, Student-Centered Learning: An Analysis of Student Experiences with Math Out Loud Using the ISTE Standards for Students

    Science.gov (United States)

    Dondlinger, Mary Jo; McLeod, Julie; Vasinda, Sheri

    2016-01-01

    This article explores links between student experiences with technology-rich mathematics instruction and the ISTE Standards for Students. Research methods applied constructivist grounded theory to analyze data from student interviews against the ISTE Standards for Students to identify which elements of the design of this learning environment…

  12. Mathematical analysis and numerical methods for science and technology

    CERN Document Server

    Dautray, Robert

    These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

  13. Discrete Mathematics Re "Tooled."

    Science.gov (United States)

    Grassl, Richard M.; Mingus, Tabitha T. Y.

    1999-01-01

    Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

  14. Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question

    OpenAIRE

    Novita, Rita; Zulkardi, Zulkardi; Hartono, Yusuf

    2012-01-01

    Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development student...

  15. Task design for improving students’ engagement in mathematics learning

    Science.gov (United States)

    Khairunnisa

    2018-01-01

    This article analysed the importance of task design as one of the instruments in the learning and its application in several studies. Through task design, students engage in learning caused them enthusiastically in expressing ideas, opinion or knowledge of them. Thus, the teacher was able to gain an idea of knowledge belonging to students. By using this information, teachers are able to develop the thinking ability of students.

  16. R&D manpower and technological performance : The impact of demographic and task-related diversity

    NARCIS (Netherlands)

    Faems, D.L.M.; Subramaniam, A.

    2013-01-01

    We assess the impact of R&D manpower diversity on firms' technological performance. Relying on insights from two theoretical perspectives on team diversity (i.e. social categorization perspective and information decision-making perspective), we hypothesize that both demographic and task-related

  17. Fullness of life as minimal unit: Science, technology, engineering, and mathematics (STEM) learning across the life span.

    NARCIS (Netherlands)

    Roth, W.-M.; Eijck, van M.W.

    2011-01-01

    Challenged by a National Science Foundation–funded conference, 2020 Vision: The Next Generation of STEM Learning Research, in which participants were asked to recognize science, technology, engineering, and mathematics (STEM) learning as lifelong, life-wide, and life-deep, we draw upon 20 years of

  18. Limited near and far transfer effects of jungle memory working memory training on learning mathematics in children with attentional and mathematical difficulties

    NARCIS (Netherlands)

    Nelwan, Michel; Kroesbergen, Evelyn H.

    2016-01-01

    The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9-12 years old (N = 64) with both

  19. Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college

    Science.gov (United States)

    LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.

    2012-04-01

    Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.

  20. Teaching Statistics: Creating an Intersection for Intra and Interdisciplinarity

    Science.gov (United States)

    Savard, Annie; Manuel, Dominic

    2016-01-01

    Statistics is taught in mathematics courses in all school levels. We suggest that using rich tasks in statistics can develop statistical reasoning and create both intra and interdisciplinary links in students. In this paper, we present three case studies where middle school mathematics teachers used different tasks in lessons on pie charts. We…

  1. Strategy Instruction in Mathematics.

    Science.gov (United States)

    Goldman, Susan R.

    1989-01-01

    Experiments in strategy instruction for mathematics have been conducted using three models (direct instruction, self-instruction, and guided learning) applied to the tasks of computation and word problem solving. Results have implications for effective strategy instruction for learning disabled students. It is recommended that strategy instruction…

  2. Internet Usage, User Satisfaction, Task-Technology Fit, and Performance Impact among Public Sector Employees in Yemen

    Science.gov (United States)

    Isaac, Osama; Abdullah, Zaini; Ramayah, T.; Mutahar, Ahmed M.

    2017-01-01

    Purpose: The internet technology becomes an essential tool for individuals, organizations, and nations for growth and prosperity. The purpose of this paper is to integrate the DeLone and McLean IS success model with task-technology fit (TTF) to explain the performance impact of Yemeni Government employees. Design/methodology/approach:…

  3. Examining Middle School Mathematics Teachers’ Use of Information and Communication Technologies and Psychomotor Skills

    Directory of Open Access Journals (Sweden)

    Alattin Ural

    2015-04-01

    Full Text Available The aim of this study is to investigate what kind of materials are used in which grades in order to improve psychomotor skills and the use of information technologies by students in the courses taught by mathematics teachers and how these materials are used; and to elicit the perceptions of these teachers on the use of these materials. Twenty two mathematics teachers (out of 25 working in 7 secondary schools were given a questionnaire form containing open ended questions and they were asked to write down the answers to those questions on the same form. The research was designed in the scanning model as a qualitative study. The data obtained from teachers were analyzed descriptively and samples from the data were presented categorically. It was observed that, regarding the psychomotor skills, a pair compass-ruler-protractor, dotted-isometric-graph paper, cutting-folding paper in geometry; fraction slips and algebra squares in algebra were the materials used respectively. The grades where these materials are used were 5, 6, 7, and 8 respectively. Regarding the use of information and communication technologies, it was observed that Morpa and Vitamin, the software developed by Turkish Ministery of Education was used to teach the subjects which contain shapes or animation; PowerPoint presentations to teach solid objects, fractals; and animations and videos on the internet to teach solid materials, triangles, fractals, patterns and decoration, equations and symmetry. These activities are used in the grades 8, 7, 6, 5 respectively. The teachers stated that the fact that information technologies and psychomotor skills are not used to the extent they should be stems from the lack of time, lack of computers, the overpopulated classes and the washback effect of the national exams. Keywords: Information and communication technologies (ICT, psychomotor skills, teacher’s opinions

  4. Preferences for technology versus human assistance and control over technology in the performance of kitchen and personal care tasks in baby boomers and older adults.

    Science.gov (United States)

    Beach, Scott R; Schulz, Richard; Matthews, Judith T; Courtney, Karen; Dabbs, Annette DeVito

    2014-11-01

    Quality of Life technology (QoLT) stresses humans and technology as mutually dependent and aware, working together to improve task performance and quality of life. This study examines preferences for technology versus human assistance and control in the context of QoLT. Data are from a nationally representative, cross-sectional web-based sample of 416 US baby boomers (45-64) and 114 older adults (65+) on preferences for technology versus human assistance and control in the performance of kitchen and personal care tasks. Multinomial logistic regression and ordinary least squares regression were used to determine predictors of these preferences. Respondents were generally accepting of technology assistance but wanted to maintain control over its' operation. Baby boomers were more likely to prefer technology than older adults, and those with fewer QoLT privacy concerns and who thought they were more likely to need future help were more likely to prefer technology over human assistance and more willing to relinquish control to technology. Results suggest the need for design of person- and context-aware QoLT systems that are responsive to user desires for level of control over operation of the technology. The predictors of these preferences suggest potentially receptive markets for the targeting of QoLT systems.

  5. The Lottery Is a Mathematics Powerball

    Science.gov (United States)

    Lim, Vivian; Rubel, Laurie; Shookhoff, Lauren; Sullivan, Mathew; Williams, Sarah

    2016-01-01

    The lottery has rich potential for mathematical explorations. It serves as a real-world context to explore concepts of permutations, combinations, sample space, and probability in terms of making sense of the lottery games. The lottery offers additional possibilities in terms of scaling, data analysis, and spatial analysis. Finally, by readily…

  6. The Ellipse A Historical and Mathematical Journey

    CERN Document Server

    Mazer, Arthur

    2011-01-01

    Explores the development of the ellipse and presents mathematical concepts within a rich, historical context The Ellipse features a unique, narrative approach when presenting the development of this mathematical fixture, revealing its parallels to mankind's advancement from the Counter-Reformation to the Enlightenment. Incorporating illuminating historical background and examples, the author brings together basic concepts from geometry, algebra, trigonometry, and calculus to uncover the ellipse as the shape of a planet's orbit around the sun. The book begins with a discussion that tells the st

  7. Gender Equality in Public Higher Education Institutions of Ethiopia: The Case of Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Egne, Robsan Margo

    2014-01-01

    Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…

  8. Soundoff: Mathematics Is Getting Easier.

    Science.gov (United States)

    Usiskin, Zalman

    1984-01-01

    Teaching mathematics in hard ways, rather than using easier methods or technology, is described. Employing the most efficient means possible to solve a problem is the essence of good mathematics, rather than wasting time in practicing obsolete skills. (MNS)

  9. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  10. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    Science.gov (United States)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late

  11. Comparison of Mathematics and Humanitarian Sciences Students’ Metacognitive Strategies

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Javanmard

    2014-09-01

    Full Text Available Abstract The purpose of this study was to compare the differences of using meta-cognitive strategies in high school students who study in the fields of mathematics and humanities. For do this, 140 high school students were selected randomly. The Swanson’s Meta-cognition Strategies Test was administrated for sample groups. The acquired means for two regroups were compared with t-test for two independent groups’ method. Results indicated that two groups were meaningfully differed from each other (sig=0.01 in using meta-cognitive strategies, and mean of students in mathematics field were high. Also there was a meaningful difference in task component between two groups (sig=0.002, and the mean of students in mathematics field was higher than from students in humanities field in this component. The high school students in mathematics field use more metacognitive strategies, especially task component, than the students in humanities field.

  12. Automation of Presentation Record Production Based on Rich-Media Technology Using SNT Petri Nets Theory

    Directory of Open Access Journals (Sweden)

    Ivo Martiník

    2015-01-01

    Full Text Available Rich-media describes a broad range of digital interactive media that is increasingly used in the Internet and also in the support of education. Last year, a special pilot audiovisual lecture room was built as a part of the MERLINGO (MEdia-rich Repository of LearnING Objects project solution. It contains all the elements of the modern lecture room determined for the implementation of presentation recordings based on the rich-media technologies and their publication online or on-demand featuring the access of all its elements in the automated mode including automatic editing. Property-preserving Petri net process algebras (PPPA were designed for the specification and verification of the Petri net processes. PPPA does not need to verify the composition of the Petri net processes because all their algebraic operators preserve the specified set of the properties. These original PPPA are significantly generalized for the newly introduced class of the SNT Petri process and agent nets in this paper. The PLACE-SUBST and ASYNC-PROC algebraic operators are defined for this class of Petri nets and their chosen properties are proved. The SNT Petri process and agent nets theory were significantly applied at the design, verification, and implementation of the programming system ensuring the pilot audiovisual lecture room functionality.

  13. Using Food Science Demonstrations to Engage Students of All Ages in Science, Technology, Engineering, and Mathematics (STEM)

    Science.gov (United States)

    Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.

    2012-01-01

    The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…

  14. Mathematical logic foundations for information science

    CERN Document Server

    Li, Wei

    2014-01-01

    Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds...

  15. Mathematical and information maintenance of biometric systems

    Science.gov (United States)

    Boriev, Z.; Sokolov, S.; Nyrkov, A.; Nekrasova, A.

    2016-04-01

    This article describes the different mathematical methods for processing biometric data. A brief overview of methods for personality recognition by means of a signature is conducted. Mathematical solutions of a dynamic authentication method are considered. Recommendations on use of certain mathematical methods, depending on specific tasks, are provided. Based on the conducted analysis of software and the choice made in favor of the wavelet analysis, a brief basis for its use in the course of software development for biometric personal identification is given for the purpose of its practical application.

  16. Investigating the Role of Context in Experimental Research Involving the Use of Digital Media for the Learning of Mathematics: Boundary Objects as Vehicles for Integration

    Science.gov (United States)

    Kynigos, Chronis; Psycharis, Giorgos

    2009-01-01

    The paper describes a study of the contexts of six teams, expert in research and development of digital media for learning mathematics, who cross-experimented in classrooms with the use of each other's artefacts. Contextual issues regarding the designed tasks and technologies, the socio-systemic milieu and the ways in which the researchers worked…

  17. VIRTUAL ENVIRONMENT FOR THE SUBJECT TEACHING MATHEMATICS IN ELEMENTARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Karla Elizabeth Barrera-del Castillo

    2015-07-01

    Full Text Available In this work is described the proposal of a model of semi-presence educational intervention for the subject, "Teaching of Mathematics in basic education", corresponding to the fourth semester of Special Education Bachelor's Degree, Plan 2004, of the Specializing Teaching School of the State of Sinaloa (ENEES, that attend the desirable characteristics of the graduates in the effective and efficient use of the technological tools, disciplinary competences, collaborative work and digital competences which are developed through the adaptation and the use of the model proposed. In this task, it is attended the digital literacy too, that the society of knowledge demands; firstly in function of the personal development needs, and then to respond to the actual educational context. The model of educational intervention defined in this task contributes to the interaction of teachers and students with technological background, collaborative work, groups of study, material and activities for each topic to develop. It was used the e-Collaborative Learning Sistema Integral Colaborativo para la Educación sin Barreras (SICEB implemented by the Secretary of Public Education and Culture (SEPyC, in which various types of learning objects are integrated among synchronized and unsynchronized activities. The proposed model is given through the defined criteria by the e-pedagogy which involves concepts such as quality, values and efficiency with support of the Learning Technologies and Knowledge (TAC.

  18. Intelligent mathematics II applied mathematics and approximation theory

    CERN Document Server

    Duman, Oktay

    2016-01-01

    This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.

  19. University Students' Reading of Their First-Year Mathematics Textbooks

    Science.gov (United States)

    Shepherd, Mary D.; Selden, Annie; Selden, John

    2012-01-01

    This article reports the observed behaviors and difficulties that 11 precalculus and calculus students exhibited in reading new passages from their mathematics textbooks. To gauge the "effectiveness" of these students' reading, we asked them to attempt straightforward mathematical tasks, based directly on what they had just read. The…

  20. Geocaching: Finding Mathematics in a Global Treasure Hunt

    Science.gov (United States)

    Bragg, Leicha A.

    2014-01-01

    If you love taking mathematics lessons outdoors, then you will love this article. Leicha Bragg describes geocaching, which combines technology, treasure hunting and mathematics, and results in purposeful, authentic and engaging mathematics.

  1. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  2. Enabling collaboration on semiformal mathematical knowledge by semantic web integration

    CERN Document Server

    Lange, C

    2011-01-01

    Mathematics is becoming increasingly collaborative, but software does not sufficiently support that: Social Web applications do not currently make mathematical knowledge accessible to automated agents that have a deeper understanding of mathematical structures. Such agents exist but focus on individual research tasks, such as authoring, publishing, peer-review, or verification, instead of complex collaboration workflows. This work effectively enables their integration by bridging the document-oriented perspective of mathematical authoring and publishing, and the network perspective of threaded

  3. Engineering Students' Self-Efficacy Judgment to Solve Mathematical Problems in the Classroom or Online

    Science.gov (United States)

    Villarreal-Treviño, Maria Guadalupe; Villarreal-Lozano, Ricardo Jesus; Morales-Martinez, Guadalupe Elizabeth; Lopez-Ramirez, Ernesto Octavio; Flores-Moreno, Norma Esthela

    2017-01-01

    This study explored in a sample of 560 high level education students their judgment formation to perceived self-efficacy to solve mathematical tasks. Students had to read 36 experimental vignettes describing educative scenarios to learn mathematics. Each scenario presented four manipulated pieces of information (learning modality, task difficulty,…

  4. Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.

    Science.gov (United States)

    Lauer, Jillian E; Lourenco, Stella F

    2016-10-01

    Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.

  5. Partial Derivative Games in Thermodynamics: A Cognitive Task Analysis

    Science.gov (United States)

    Kustusch, Mary Bridget; Roundy, David; Dray, Tevian; Manogue, Corinne A.

    2014-01-01

    Several studies in recent years have demonstrated that upper-division students struggle with the mathematics of thermodynamics. This paper presents a task analysis based on several expert attempts to solve a challenging mathematics problem in thermodynamics. The purpose of this paper is twofold. First, we highlight the importance of cognitive task…

  6. Experiences of high school Hispanic girls in pursuit of science, technology, engineering, and mathematics-related coursework and careers

    Science.gov (United States)

    Vijil, Veronica G.

    2011-12-01

    An overall increased awareness of the importance of science, technology, engineering, and mathematics (STEM) has prompted attention toward the continued underrepresentation of Hispanic women in this field. The purpose of this collective case study was to explore the support systems, perceived barriers, and prior experiences influencing high school Hispanic girls' decisions to pursue advanced coursework and related careers through a career pathway in science, technology, engineering, and mathematics (STEM) areas. Specifically, participants were interviewed regarding their mathematics and science experiences in elementary and middle schools, as well as perceived supports and barriers to their choices to pursue STEM careers and advanced coursework. Results indicated that the participants linked their elementary and middle school experiences with their teachers rather than specific activities. Accolades such as certificates and good grades for academic achievement contributed to the girls' strong self-efficacy at an early age. The participants possessed self-discipline and self-confidence, using intrinsic motivation to pursue their goals. Support systems included families and a few teachers. Barriers were revealed in different forms including derogatory comments by boys in class, difficult curricula with limited tutors available for higher level courses, and receipt of financial assistance to attend a university of their choice.

  7. Primary Trainee Teachers' Attitudes to and Use of Computer and Technology in Mathematics: The Case of Turkey

    Science.gov (United States)

    Dogan, Mustafa

    2010-01-01

    This study explores Turkish primary mathematics trainee teachers' attitudes to computer and technology. A survey was conducted with a self constructed questionnaire. Piloting, factor and reliability ([alpha] = 0.94) analyses were performed. The final version of the questionnaire has three parts with a total of 48 questions including a Likert type…

  8. Revisiting Mathematical Problem Solving and Posing in the Digital Era: Toward Pedagogically Sound Uses of Modern Technology

    Science.gov (United States)

    Abramovich, S.

    2014-01-01

    The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…

  9. The concept of competence and its relevance for science, technology, and mathematics education

    DEFF Research Database (Denmark)

    Ropohl, Mathias; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    . In contrast to earlier ed-ucational goals that focused more on basic skills and knowledge expectations, competences are more functionally oriented. They involve the ability to solve complex problems in a particular context, e.g. in vocational or everyday situations. In science, technology, and mathematics...... education, the concept of competence is closely linked to the concept of literacy. Apart from these rather cognitive and af-fective perspectives influenced by the need to assess students’ achievement of de-sired learning goals in relation to their interest and motivation, the perspectives of the concept...

  10. Reservoir Maintenance and Development Task Report for the DOE Geothermal Technologies Office GeoVision Study.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carrigan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennedy, Mack B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corbet, Thomas F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doughty, Christine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pye, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sonnenthal, Eric L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study can be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.

  11. Rethinking the mathematics curriculum

    CERN Document Server

    Hoyles, Celia; Woodhouse, Geoffrey

    1998-01-01

    At a time when political interest in mathematics education is at its highest, this book demonstrates that the issues are far from straightforward. A wide range of international contributors address such questions as: What is mathematics, and what is it for? What skills does mathematics education need to provide as technology advances? What are the implications for teacher education? What can we learn from past attempts to change the mathematics curriculum? Rethinking the Mathematics Curriculum offers stimulating discussions, showing much is to be learnt from the differences in culture, national expectations, and political restraints revealed in the book. This accessible book will be of particular interest to policy makers, curriculum developers, educators, researchers and employers as well as the general reader.

  12. Tenth-Grade High School Students' Mathematical Self-Efficacy, Mathematics Anxiety, Attitudes toward Mathematics, and Performance on the New York State Integrated Algebra Regents Examination

    Science.gov (United States)

    Catapano, Michael

    2013-01-01

    Strong mathematical abilities are important for the continuation of a successful society. Mathematics is required and involved in all aspects of daily life: banking, communications, business, education, and travel are just a few examples. More specifically the areas of finance, engineering, architecture, and technology require individuals with…

  13. E-learning materials in mathematics education

    OpenAIRE

    Fajfar, Tina

    2012-01-01

    When studying mathematics, most pupils and students need mathematical tools, along with the teachers' explanation. The updated curriculum for mathematics in primary and secondary education also recommends using materials connected to information and communication technology. Although e-learning materials are not directly mentioned in a curricula as a tool for learning mathematics, they should, nevertheless, be considered as a tool which can be used in a class with the help of a teacher or ind...

  14. Assessing consumer benefits of selected gas appliance technology center tasks. Topical report, April-December 1992

    International Nuclear Information System (INIS)

    Smith, T.R.; Bournakis, A.D.; Worek, W.M.; Kalensky, D.C.; Dombrowski, L.P.

    1992-12-01

    The Gas Appliance Technology Center (GATC) was created in 1983 to assist the gas industry in bringing about a new generation of reasonably priced, advanced gas appliances. The objective of the report is to evaluate consumer benefits of sixteen selected GATC tasks for the time period between 1983 and 1990. Tasks were selected for review based upon their degree of industry impact and how well they represented activities in the four targeted research areas of Space Conditioning, Commercial Appliances, Residential Appliances, and Codes and Standards

  15. Characterization of mathematics instructional practises for prospective elementary teachers with varying levels of self-efficacy in classroom management and mathematics teaching

    Science.gov (United States)

    Lee, Carrie W.; Walkowiak, Temple A.; Nietfeld, John L.

    2017-03-01

    The purpose of this study was to investigate the relationship between prospective teachers' (PTs) instructional practises and their efficacy beliefs in classroom management and mathematics teaching. A sequential, explanatory mixed-methods design was employed. Results from efficacy surveys, implemented with 54 PTs were linked to a sample of teachers' instructional practises during the qualitative phase. In this phase, video-recorded lessons were analysed based on tasks, representations, discourse, and classroom management. Findings indicate that PTs with higher levels of mathematics teaching efficacy taught lessons characterised by tasks of higher cognitive demand, extended student explanations, student-to-student discourse, and explicit connections between representations. Classroom management efficacy seems to bear influence on the utilised grouping structures. These findings support explicit attention to PTs' mathematics teaching and classroom management efficacy throughout teacher preparation and a need for formative feedback to inform development of beliefs about teaching practises.

  16. National STEM School Education Strategy: A Comprehensive Plan for Science, Technology, Engineering and Mathematics Education in Australia

    Science.gov (United States)

    Education Council, 2015

    2015-01-01

    There are many factors that affect student engagement in science, technology, engineering and mathematics (STEM). Underlying this are the views of the broader community--and parents in particular--about the relevance of STEM, and the approach to the teaching and learning of STEM from the early years and continuing throughout schooling. Connected…

  17. Mathematical modelling in economic processes.

    Directory of Open Access Journals (Sweden)

    L.V. Kravtsova

    2008-06-01

    Full Text Available In article are considered a number of methods of mathematical modelling of economic processes and opportunities of use of spreadsheets Excel for reception of the optimum decision of tasks or calculation of financial operations with the help of the built-in functions.

  18. Mathematics computer-based training tool for pupils with special educational needs

    OpenAIRE

    Čeponienė, Lina

    2010-01-01

    Mathematics has a great influence on the development of world science and education, technology and human culture. Ukeje observes that without mathematics there is no science, without science there is no modern technology and without modern technology there is no modern society. In other words, mathematics is the precursor and the queen of science and technology and the indispensable single element in modern societal development. So, it plays a vital role in developing learners abilities to c...

  19. A Case-Based Exploration of Task/Technology Fit in a Knowledge Management Context

    Science.gov (United States)

    2008-03-01

    have a difficult time articulating to others. Researchers who subscribe to the constructionist perspective view knowledge as an inherently social ...Acceptance Model With Task-Technology Fit Constructs. Information & Management, 36, 9-21. Dooley, D. (2001). Social Research Methods (4th ed.). Upper...L. (2006). Social Research Methods : Qualitative and Quantitative Approaches (6 ed.). Boston: Pearson Education, Inc. Nonaka, I. (1994). A Dynamic

  20. Teacher training and the use of digital information and communication technologies in mathematics classes in basic

    Directory of Open Access Journals (Sweden)

    Danilo Augusto Ferreira de Jesuz

    2018-01-01

    Full Text Available The current article has the objective of presenting results of a proposal of docent formation for the use digital technologies of information and communication inside mathematics classes, by using software GeoGebra. The proposal is part of an extension project, developed in the Federal Institute of Paraná at Jaguariaíva. We highlight that the project is revealed interesting, as it promotes formative action, articulating scientific and technological knowledges and gives opportunity of discussion moments about pedagogical strategies and changes of experience to the use of the software inside classes to the students.

  1. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  2. Quality of Teaching Mathematics and Learning Achievement Gains: Evidence from Primary Schools in Kenya

    Science.gov (United States)

    Ngware, Moses W.; Ciera, James; Musyoka, Peter K.; Oketch, Moses

    2015-01-01

    This paper examines the contribution of quality mathematics teaching to student achievement gains. Quality of mathematics teaching is assessed through teacher demonstration of the five strands of mathematical proficiency, the level of cognitive task demands, and teacher mathematical knowledge. Data is based on 1907 grade 6 students who sat for the…

  3. Mathematical Lives

    CERN Document Server

    Bartocci, Claudio; Guerraggio, Angelo; Lucchetti, Roberto; Williams, Kim

    2011-01-01

    Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the soci

  4. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    Science.gov (United States)

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  5. Does Personality Matter? Applying Holland's Typology to Analyze Students' Self-Selection into Science, Technology, Engineering, and Mathematics Majors

    Science.gov (United States)

    Chen, P. Daniel; Simpson, Patricia A.

    2015-01-01

    This study utilized John Holland's personality typology and the Social Cognitive Career Theory (SCCT) to examine the factors that may affect students' self-selection into science, technology, engineering, and mathematics (STEM) majors. Results indicated that gender, race/ethnicity, high school achievement, and personality type were statistically…

  6. Utilization of online technologies in mathematical problem solving at high school level: Student and teacher perceptions

    Directory of Open Access Journals (Sweden)

    Zeynep Yurtseven Avci

    2014-08-01

    Full Text Available The availability of internet-based technologies and practices are increasing every day for our daily lives. Most of those contemporary technologies have interactive features and provide unique opportunities for today’s learners. Although a growing amount of research focuses on learning with online tools, little known about which features and affordances contribute for effective classroom learning. This study investigates student and teacher perceptions on how students’ mathematics learning was impacted by online practice, communication and collaboration tools. The present experimental research has been designed with using qualitative case study method and provides detailed accounts of students' experiences with the technologies along with investigation of the features and affordances of the tools that made them contribute to effective learning.

  7. In-service and Pre-service Middle School Mathematics Teachers' Attitudes and Decisions Regarding Teaching Mathematics Using Mobile Phones

    Directory of Open Access Journals (Sweden)

    Wajeeh M. Daher

    2014-10-01

    Full Text Available Several researches examined students' mathematics learning using mobile phones, while very few researches examined mathematics teaching using this new educational tool. This research attempts to analyze in-service and pre-service teachers' attitudes and decisions regarding mathematics teaching with mobile phones using activity theory. More specifically, three case studies are analyzed in this research: One concerns an in-service teacher who used mobile phones in her class, the second case study involves a pre-service teacher who collaborated with the in-service teacher to teach mathematics lessons using mobile phones, and the third case study is about 15 pre-service teachers who were observers of the experiment but did not use mobile phones in their teaching. We held one-hour semi-structured interviews with the in-service teacher, with the leading pre-service teacher and with the group of other observer pre-service teachers. This happened three times during the academic year: at the beginning of the experiment, after three months and after it ended. The research findings indicate that different factors have an impact on the attitudes and decisions of the teacher: history of the teacher using technologies in teaching, perceptions of the teacher using technologies in teaching, community’s teacher, rules regulating the use of technologies in teaching mathematics, and division of labor. For example, questions as to who decides which technologies to use in the classroom and who should prepare the learning material for the students. Contradictions were identified in mathematics teachers' activity when utilizing mobile phones in their teaching. These contradictions hinder or slow such utilization. Community, especially its leading members, mediated and helped overcome the activity contradictions that arose throughout the experiment regarding the teaching processes in and/or out of the mathematics classroom.

  8. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics

    Science.gov (United States)

    Simzar, Rahila M.; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210

  9. Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.

    Science.gov (United States)

    Simzar, Rahila M; Domina, Thurston; Tran, Cathy

    2016-01-01

    This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.

  10. The potential impact of 3D telepresence technology on task performance in emergency trauma care

    DEFF Research Database (Denmark)

    Söderholm, Hanna M.; Sonnenwald, Diane H.; Cairns, Bruce

    2007-01-01

    a simulated emergency situation 60 paramedics diagnosed and treated a trauma victim while working alone or in collaboration with a physician via 2D video or a 3D proxy. Analysis of paramedics' task performance shows that the fewest harmful procedures occurred in the 3D proxy condition. Paramedics in the 3D...... proxy condition also reported higher levels of self-efficacy. These results indicate 3D telepresence technology has potential to improve paramedics' performance of complex emergency medical tasks and improve emergency trauma health care when designed appropriately....

  11. Developing a framework for energy technology portfolio selection

    Science.gov (United States)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  12. IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study

    Directory of Open Access Journals (Sweden)

    Iller Carola

    2006-01-01

    Full Text Available Abstract Background Factors of IT adoption have largely been discussed in the literature. However, existing frameworks (such as TAM or TTF are failing to include one important aspect, the interaction between user and task. Method Based on a literature study and a case study, we developed the FITT framework to help analyse the socio-organisational-technical factors that influence IT adoption in a health care setting. Results Our FITT framework ("Fit between Individuals, Task and Technology" is based on the idea that IT adoption in a clinical environment depends on the fit between the attributes of the individual users (e.g. computer anxiety, motivation, attributes of the technology (e.g. usability, functionality, performance, and attributes of the clinical tasks and processes (e.g. organisation, task complexity. We used this framework in the retrospective analysis of a three-year case study, describing the adoption of a nursing documentation system in various departments in a German University Hospital. We will show how the FITT framework helped analyzing the process of IT adoption during an IT implementation: we were able to describe every found IT adoption problem with regard to the three fit dimensions, and any intervention on the fit can be described with regard to the three objects of the FITT framework (individual, task, technology. We also derive facilitators and barriers to IT adoption of clinical information systems. Conclusion This work should support a better understanding of the reasons for IT adoption failures and therefore enable better prepared and more successful IT introduction projects. We will discuss, however, that from a more epistemological point of view, it may be difficult or even impossible to analyse the complex and interacting factors that predict success or failure of IT projects in a socio-technical environment.

  13. ICT- The Educational Programs in Teaching Mathematics

    Directory of Open Access Journals (Sweden)

    Dance Sivakova

    2017-08-01

    Full Text Available The range of information and communication technology in teaching mathematics is unlimited. Despite numerous researches about the opportunities and application of the ICT in teaching mathematics and in the world, however, many aspects remain unexplored. This research comes to knowledge that will be applicable to the educational practice. The findings will serve as motivation for more frequent use of the ICT in teaching mathematics from first to fifth grade as a mean for improving of the educational process. Through application of the ICT in the educational programs in teaching mathematics the technological improved practice is investigated and discussed and it helps overcoming of the challenges that arise when trying to integrate the ICT in the educational curricula in mathematics. The biggest challenge are the findings about the possibilities of the application of the ICT in the educational programs in math from first to fifth grade as well as their dissemination, all aimed to improving of teaching mathematics from the first to the fifth grade. The application of the most ICT in the educational programs of mathematics affects the training of the students for easier adoption of the mathematical concepts and the mathematical procedures and in the easier identification and resolving problem situations.

  14. Does Inquiry Based Learning Affect Students' Beliefs and Attitudes towards Mathematics?

    Science.gov (United States)

    McGregor, Darren

    2014-01-01

    Ill-structured tasks presented in an inquiry learning environment have the potential to affect students' beliefs and attitudes towards mathematics. This empirical research followed a Design Experiment approach to explore how aspects of using ill-structured tasks may have affected students' beliefs and attitudes. Results showed this task type and…

  15. Adapting the Mathematical Task Framework to Design Online Didactic Objects

    Science.gov (United States)

    Bowers, Janet; Bezuk, Nadine; Aguilar, Karen

    2011-01-01

    Designing didactic objects involves imagining how students can conceive of specific mathematical topics and then imagining what types of classroom discussions could support these mental constructions. This study investigated whether it was possible to design Java applets that might serve as didactic objects to support online learning where…

  16. How Well Does the SAT and GPA Predict the Retention of Science, Technology, Engineering, Mathematics, and Business Students

    Science.gov (United States)

    Rohr, Samuel L.

    2013-01-01

    This study examined the relationship between various admissions selection criteria utilized by a small, Liberal Arts College in Indiana. More specifically, the study examined if a higher college preparatory GPA and a higher aggregate score on the SAT helped predict the retention of science, technology, engineering, mathematics, and business…

  17. Developing Pre-Service Teachers' Technological Pedagogical Content Knowledge for Teaching Mathematics with the Geometer's Sketchpad through Lesson Study

    Science.gov (United States)

    Meng, Chew Cheng; Sam, Lim Chap

    2013-01-01

    The purpose of this study was to develop pre-service secondary teachers' technological pedagogical content knowledge (TPACK) for teaching mathematics with The Geometer's Sketchpad (GSP) through Lesson Study (LS). Specifically, a single-group pretest-posttest design was employed to examine whether there was a significant difference in the…

  18. Gender involvement in manual material handling (mmh) tasks in agriculture and technology intervention to mitigate the resulting musculoskeletal disorders.

    Science.gov (United States)

    Singh, Suman; Sinwal, Neelima; Rathore, Hemu

    2012-01-01

    The lifting and carrying of loads in agriculture on small landholdings are unavoidable. Rural communities often lack access to appropriate technologies which may result in various health hazards. The objective was to study gender participation in agricultural activities involving manual material handling tasks, to assess MSDs experienced in various MMH tasks and to evaluate traditional method and designed technology. The study was conducted on 100 agricultural workers. Data on gender participation in MMH tasks in household, animal husbandry and agriculture and resulting MSDs was gathered. Pre and post assessment of technology intervention was done for NIOSH Lifting Index, QEC, and RPE. The results revealed greater susceptibility of females to musculoskeletal problems in most of the household and animal husbandry tasks. The hand trucks designed were pushing type with power grasp handle. The respondents were advised to carry 5 kg of weight per lift instead of lifting more weight in one lift/minute while filling the hand truck. By decreasing the weight and increasing the number of lifts per minute the respondents were seen falling in green zone indicating significant reduction in NIOSH lifting index. QEC scores concluded that for filling the hand truck 5 kg of weight should be carried to keep the exposure level low.

  19. A Population of Assessment Tasks

    Science.gov (United States)

    Daro, Phil; Burkhardt, Hugh

    2012-01-01

    We propose the development of a "population" of high-quality assessment tasks that cover the performance goals set out in the "Common Core State Standards for Mathematics." The population will be published. Tests are drawn from this population as a structured random sample guided by a "balancing algorithm."

  20. Quantitative Deficits of Preschool Children at Risk for Mathematical Learning Disability

    Directory of Open Access Journals (Sweden)

    Felicia W. Chu

    2013-05-01

    Full Text Available The study tested the hypothesis that acuity of the potentially inherent approximate number system (ANS contributes to risk of mathematical learning disability (MLD. Sixty-eight (35 boys preschoolers at risk for school failure were assessed on a battery of quantitative tasks, and on intelligence, executive control, preliteracy skills, and parental education. Mathematics achievement scores at the end of one year of preschool indicated that 34 of these children were at high risk for MLD. Relative to the 34 typically achieving children, the at risk children were less accurate on the ANS task, and a one standard deviation deficit on this task resulted in a 2.4 fold increase in the odds of MLD status. The at risk children also had a poor understanding of ordinal relations, and had slower learning of Arabic numerals, number words, and their cardinal values. Poor performance on these tasks resulted in 3.6 to 4.5 fold increases in the odds of MLD status. The results provide some support for the ANS hypothesis but also suggest these deficits are not the primary source of poor mathematics learning.