WorldWideScience

Sample records for technology-enhanced inquiry instructional

  1. Supporting students' knowledge integration with technology-enhanced inquiry curricula

    Science.gov (United States)

    Chiu, Jennifer Lopseen

    Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry instruction can help students develop robust and durable chemistry knowledge. Using the knowledge integration perspective, I designed Chemical Reactions, a technology-enhanced curriculum unit, with a partnership of teachers, educational researchers, and chemists. This unit guides students in an exploration of how energy and chemical reactions relate to climate change. It uses powerful dynamic visualizations to connect atomic level interactions to the accumulation of greenhouse gases. The series of studies were conducted in typical classrooms in eleven high schools across the country. This dissertation describes four studies that contribute to understanding of how visualizations can be used to transform chemistry learning. The efficacy study investigated the impact of the Chemical Reactions unit compared to traditional instruction using pre-, post- and delayed posttest assessments. The self-monitoring study used self-ratings in combination with embedded assessments to explore how explanation prompts help students learn from dynamic visualizations. The self-regulation study used log files of students' interactions with the learning environment to investigate how external feedback and explanation prompts influence students' exploration of dynamic visualizations. The explanation study compared specific and general explanation prompts to explore the processes by which explanations benefit learning with dynamic visualizations. These studies delineate the conditions under which dynamic visualizations embedded in inquiry instruction can enhance student outcomes. The studies reveal that visualizations can be deceptively clear

  2. Critical thinking instruction and technology enhanced learning from the student perspective: A mixed methods research study.

    Science.gov (United States)

    Swart, Ruth

    2017-03-01

    Critical thinking is acclaimed as a valuable asset for graduates from higher education programs. Technology has advanced in quantity and quality; recognized as a requirement of 21st century learners. A mixed methods research study was undertaken, examining undergraduate nursing student engagement with critical thinking instruction, platformed on two technology-enhanced learning environments: a classroom response system face-to-face in-class and an online discussion forum out-of-class. The Community of Inquiry framed the study capturing constructivist collaborative inquiry to support learning, and facilitate critical thinking capability. Inclusion of quantitative and qualitative data sources aimed to gather a comprehensive understanding of students' development of critical thinking and engagement with technology-enhanced learning. The findings from the students' perspectives were positive toward the inclusion of technology-enhanced learning, and use in supporting their development of critical thinking. Students considered the use of two forms of technology beneficial in meeting different needs and preferences, offering varied means to actively participate in learning. They valued critical thinking instruction being intentionally aligned with subject-specific content facilitating understanding, application, and relevance of course material. While the findings are limited to student participants, the instructional strategies and technology-enhanced learning identified as beneficial can inform course design for the development of critical thinking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  4. Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment

    NARCIS (Netherlands)

    Pedaste, Margus; Kori, Külli; Maeots, Mario; de Jong, Anthonius J.M.; Riopel, Martin; Smyrnaiou, Zacharoula

    2016-01-01

    Inquiry learning is an effective approach in science education. Complex technology-enhanced learning environments are needed to apply inquiry worldwide to support knowledge gain and improvement of inquiry skills. In our study, we applied an ecology mission in the SCY-Lab learning environment and

  5. Inquiry-Based Instruction and High Stakes Testing

    Science.gov (United States)

    Cothern, Rebecca L.

    Science education is a key to economic success for a country in terms of promoting advances in national industry and technology and maximizing competitive advantage in a global marketplace. The December 2010 Program for International Student Assessment (PISA) ranked the United States 23rd of 65 countries in science. That dismal standing in science proficiency impedes the ability of American school graduates to compete in the global market place. Furthermore, the implementation of high stakes testing in science mandated by the 2007 No Child Left Behind (NCLB) Act has created an additional need for educators to find effective science pedagogy. Research has shown that inquiry-based science instruction is one of the predominant science instructional methods. Inquiry-based instruction is a multifaceted teaching method with its theoretical foundation in constructivism. A correlational survey research design was used to determine the relationship between levels of inquiry-based science instruction and student performance on a standardized state science test. A self-report survey, using a Likert-type scale, was completed by 26 fifth grade teachers. Participants' responses were analyzed and grouped as high, medium, or low level inquiry instruction. The unit of analysis for the achievement variable was the student scale score average from the state science test. Spearman's Rho correlation data showed a positive relationship between the level of inquiry-based instruction and student achievement on the state assessment. The findings can assist teachers and administrators by providing additional research on the benefits of the inquiry-based instructional method. Implications for positive social change include increases in student proficiency and decision-making skills related to science policy issues which can help make them more competitive in the global marketplace.

  6. Using inquiry-based instruction with Web-based data archives to facilitate conceptual change about tides among preservice teachers

    Science.gov (United States)

    Ucar, Sedat

    The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual

  7. The impact of inquiry-based instructional professional development upon instructional practice: An action research study

    Science.gov (United States)

    Broom, Frances A.

    This mixed method case study employs action research, conducted over a three month period with 11 elementary math and science practitioners. Inquiry as an instructional practice is a vital component of math and science instruction and STEM teaching. Teachers examined their beliefs and teaching practices with regard to those instructional factors that influence inquiry instruction. Video-taped lessons were compared to a rubric and pre and post questionnaires along with two interviews which informed the study. The results showed that while most beliefs were maintained, teachers implemented inquiry at a more advanced level after examining their teaching and reflecting on ways to increase inquiry practices. Because instructional practices provide only one component of inquiry-based instruction, other components need to be examined in a future study.

  8. Inquiry-Based Instruction in the Social Studies: Successes and Challenges

    Science.gov (United States)

    Beshears, Crystal M.

    2012-01-01

    The purpose of this study was to investigate teachers' perceptions, understanding, and use of inquiry-based instruction in the social studies, to assess the impact of inquiry-based units on instruction, to detail implementation successes and challenges reported by teachers when implementing inquiry-based instruction, and to provide…

  9. Inquiry-Oriented Instruction: A Conceptualization of the Instructional Principles

    Science.gov (United States)

    Kuster, George; Johnson, Estrella; Keene, Karen; Andrews-Larson, Christine

    2018-01-01

    Research has highlighted that inquiry-based learning (IBL) instruction leads to many positive student outcomes in undergraduate mathematics. Although this research points to the value of IBL instruction, the practices of IBL instructors are not well-understood. Here, we offer a characterization of a particular form of IBL instruction:…

  10. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  11. Target Inquiry: Changing Chemistry High School Teachers' Classroom Practices and Knowledge and Beliefs about Inquiry Instruction

    Science.gov (United States)

    Herrington, Deborah G.; Yezierski, Ellen J.; Luxford, Karen M.; Luxford, Cynthia J.

    2011-01-01

    Inquiry-based instruction requires a deep, conceptual understanding of the process of science combined with a sophisticated knowledge of teaching and learning. This study examines the changes in classroom instructional practices and corresponding changes to knowledge and beliefs about inquiry instruction for eight high school chemistry teachers.…

  12. Kindergarten Teachers' Understanding of the Elements of Implementing Inquiry-Based Science Instruction

    Science.gov (United States)

    Blevins, Kathryn

    The purpose of this basic qualitative research study was to identify the extent to which kindergarten teachers understand and implement inquiry-based instruction in their science classrooms. This study was conducted in response to the indication that traditional didactic teaching methods were not enough to adequately prepare American students to compete in the global economy. Inquiry is a teaching method that could prepare students for the critical thinking skills needed to enter society in the 21st century. It is vital that teachers be sufficiently trained in teaching using the necessary components of inquiry-based instruction. This study could be used to inform leaders in educational administration of the gaps in teachers' understanding as it pertains to inquiry, thus allowing for the delivery of professional development that will address teachers' needs. Existing literature on inquiry-based instruction provides minimal information on kindergarten teachers' understanding and usage of inquiry to teach science content, and this information would be necessary to inform administrators in their response to supporting teachers in the implementation of inquiry. The primary research question for this study was "To what extent do kindergarten teachers understand the elements of implementing inquiry-based lessons in science instruction?" The 10 participants in this study were all kindergarten teachers in a midsized school district in the Mid-Atlantic region of the United States. Data were collected using face-to-face semistructured interviews, observations of the teachers implementing what they perceived to be inquiry-based instruction, and the analysis of lesson plans to indicate the components used to plan for inquiry-instruction. The findings of this study indicated that while teachers believed inquiry to be a beneficial method for teaching science, they did not understand the components of inquiry and tended to implement lesson plans created at the district level. By

  13. Preparing Digital Stories through the Inquiry-Based Learning Approach: Its Effect on Prospective Teachers' Resistive Behaviors toward Research and Technology-Based Instruction

    Science.gov (United States)

    Yavuz Konokman, Gamze; Yanpar Yelken, Tugba

    2016-01-01

    The purpose of the study was to determine the effect of preparing digital stories through an inquiry based learning approach on prospective teachers' resistive behaviors toward technology based instruction and conducting research. The research model was convergent parallel design. The sample consisted of 50 prospective teachers who had completed…

  14. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  15. How are scientific thinking skills best developed? Direct instruction vs. inquiry practice

    Science.gov (United States)

    Dean, David Worth, Jr.

    Despite its support and adoption by most major scientific and educational organizations, some researchers have questioned whether inquiry learning is indeed the best method for acquiring the skills of inquiry. Klahr and colleagues have investigated the development of the control of variables strategy, or controlled comparison (CC), and claim that a brief session of direct instruction, characterized by explicit training of CC, as opposed to allowing children to discover CC through inquiry learning, is sufficient for acquisition, maintenance, and transfer of this core aspect of inquiry. Kuhn and colleagues, however, argue that direct instruction may be insufficient for development of the metastrategic level of understanding necessary to adequately maintain and transfer inquiry skills. In the present study, I attempt to identify the intervention most effective in supporting acquisition, maintenance, and transfer of these skills. Three groups of students received either a direct instruction session followed by standard classroom instruction (DI-only), an introductory session (without direct instruction) followed by practice sessions only (PR-only), or a direct instruction session followed by practice sessions (DI+PR). Practice sessions involved the use of a computer-based inquiry task requiring students to investigate the effects of five potential causal variables on an outcome. The two practice groups worked with this program during 12 sessions over nine weeks. They worked with structurally identical software programs during five weekly maintenance sessions. During this time, the DI-only group received standard classroom instruction. All groups were assessed on familiar and unfamiliar computer-based inquiry tasks at the conclusion of intervention (immediate assessment) and maintenance sessions (delayed assessment). Students in the two practice groups demonstrated improvement in an integrative measure of inquiry skill (valid intent, valid strategy, valid inference, and

  16. Instructional Uses of Podcasting in Online Learning Environments: A Cooperative Inquiry Study

    Science.gov (United States)

    Brown, Abbie; Brown, Carol; Fine, Bethann; Luterbach, Kenneth; Sugar, William; Vinciguerra, David C.

    2009-01-01

    A report on the results of a year-long cooperative inquiry study in which 11 faculty members at a southeastern university examined their various uses of podcasting for instruction. Through participation in the study, members developed insights into what technologies are most commonly applied to the task of podcast production and dissemination as…

  17. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-01-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…

  18. Grand Challenge Problem 3: Empowering Science Teachers Using Technology-Enhanced Scaffolding to Improve Inquiry Learning

    NARCIS (Netherlands)

    Pedaste, Margus; Lazonder, Adrianus W.; Raes, Annelies; Wajeman, Claire; Moore, Emily; Girault, Isabelle; Eberle, Julia; Lund, Kristine; Tchounikine, Pierre; Fischer, Frank

    2016-01-01

    Inquiry learning in technology-enhanced learning (TEL) environments has potential to support science learning. The “symbiosis” between teachers and TEL environments is needed and, therefore, virtual assistants should be “taught” based on pedagogical theories. These assistants should be dynamically

  19. Meta-Analysis of Inquiry-Based Instruction Research

    Science.gov (United States)

    Hasanah, N.; Prasetyo, A. P. B.; Rudyatmi, E.

    2017-04-01

    Inquiry-based instruction in biology has been the focus of educational research conducted by Unnes biology department students in collaboration with their university supervisors. This study aimed to describe the methodological aspects, inquiry teaching methods critically, and to analyse the results claims, of the selected four student research reports, grounded in inquiry, based on the database of Unnes biology department 2014. Four experimental quantitative research of 16 were selected as research objects by purposive sampling technique. Data collected through documentation study was qualitatively analysed regarding methods used, quality of inquiry syntax, and finding claims. Findings showed that the student research was still the lack of relevant aspects of research methodology, namely in appropriate sampling procedures, limited validity tests of all research instruments, and the limited parametric statistic (t-test) not supported previously by data normality tests. Their consistent inquiry syntax supported the four mini-thesis claims that inquiry-based teaching influenced their dependent variables significantly. In other words, the findings indicated that positive claims of the research results were not fully supported by good research methods, and well-defined inquiry procedures implementation.

  20. The Effects of Inquiry-Based Integrated Information Literacy Instruction: Four-Year Trends

    Directory of Open Access Journals (Sweden)

    Lin Ching Chen

    2014-07-01

    Full Text Available The purpose of this study was to examine the effects of four-year integrated information literacy instruction via a framework of inquiry-based learning on elementary students’ memory and comprehension. Moderating factors of students’ academic achievement was another focus of this study. The subjects were 72 students who have participated in this study since they entered an elementary school in Chiayi district. This elementary school adopted the integrated information literacy instruction, designed by the researchers and elementary school teachers, and integrated it into various subject matters via a framework of inquiry-based learning, such as Super 3 and Big6 models. A series of inquiry-based integrated information literacy instruction has been implemented since the second semester of the subjects’ first grade. A total of seven inquiry learning projects has been implemented from grade one through grade four. Fourteen instruments were used as pretests and posttests to assess students’ factual recall and conceptual understanding of subject contents in different projects. The results showed that inquiry-based integrated information literacy instruction couldhelp students memorize facts and comprehend concepts of subject contents. Regardless ofacademic achievements, if students would like to devote their efforts to inquiry processes, their memory and comprehension of subject contents improvedeffectively. However, students of low-academic achievement might need more time to be familiar with the inquiry-based learning strategy.

  1. Chemistry Teachers' Perceived Benefits and Challenges of Inquiry-Based Instruction in Inclusive Chemistry Classrooms

    Science.gov (United States)

    Mumba, F.; Banda, A.; Chabalengula, V. M.

    2015-01-01

    Studies on inquiry-based instruction in inclusive science teaching have mainly focused on elementary and middle school levels. Little is known about inquiry-based instruction in high school inclusive science classes. Yet, such classes have become the norm in high schools, fulfilling the instructional needs of students with mild disabilities. This…

  2. First-Year Teachers’ Uphill Struggle to Implement Inquiry Instruction

    Directory of Open Access Journals (Sweden)

    Tanya Chichekian

    2016-05-01

    Full Text Available This longitudinal study of six first-year teachers focused on conceptualizations of inquiry-based pedagogy, self-efficacy for inquiry-based teaching, and its actual enactment. Data included a self-report survey of self-efficacy for inquiry-based instruction, individual interviews at the beginning and end of the year, and five distributed classroom observations. At year’s end, self-efficacy for inquiry teaching declined, as did frequencies of concepts teachers used to describe inquiry enactment. Inquiry descriptions reflected a set of interrelated procedures more than inquiry as conceptual knowledge. Novice teachers were observed least enacting pedagogical actions that required enabling students to communicate findings and the most in student engagement; however, over time frequencies of student engagement declined. Consistent patterns were observed between shifts in self-efficacy and inquiry enactment and shifts between self-efficacy and conceptualizations of inquiry enactment. We found beginning steps toward links between teacher’s conceptualizations and classroom practice.

  3. Designing and Implementing Web-Based Scaffolding Tools for Technology-Enhanced Socioscientific Inquiry

    Science.gov (United States)

    Shin, Suhkyung; Brush, Thomas A.; Glazewski, Krista D.

    2017-01-01

    This study explores how web-based scaffolding tools provide instructional support while implementing a socio-scientific inquiry (SSI) unit in a science classroom. This case study focused on how students used web-based scaffolding tools during SSI activities, and how students perceived the SSI unit and the scaffolding tools embedded in the SSI…

  4. Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction

    Science.gov (United States)

    Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter

    2016-01-01

    To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…

  5. Independent Interactive Inquiry-Based Learning Modules Using Audio-Visual Instruction In Statistics

    OpenAIRE

    McDaniel, Scott N.; Green, Lisa

    2012-01-01

    Simulations can make complex ideas easier for students to visualize and understand. It has been shown that guidance in the use of these simulations enhances students’ learning. This paper describes the implementation and evaluation of the Independent Interactive Inquiry-based (I3) Learning Modules, which use existing open-source Java applets, combined with audio-visual instruction. Students are guided to discover and visualize important concepts in post-calculus and algebra-based courses in p...

  6. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    Science.gov (United States)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  7. Optimizing students' motivation in inquiry-based learning environments: The role of instructional practices

    Science.gov (United States)

    Kempler, Toni M.

    The influence of inquiry science instruction on the motivation of 1360 minority inner-city seventh graders was examined. The project-based curriculum incorporates motivating features like real world questions, collaboration, technology, and lesson variety. Students design investigations, collect and analyze data, and create artifacts; challenging tasks require extensive use of learning and metacognitive strategies. Study 1 used Structural Equation Modeling to investigate student perceptions of the prevalence of project-based features, including real world connections, collaboration, academic press, and work norms, and their relation to interest, efficacy, cognitive engagement, and achievement. Perceptions of features related to different motivational outcomes, indicating the importance of using differentiated rather than single measures to study motivation in context. Cognitive engagement was enhanced by interest and efficacy but did not influence achievement, perhaps because students were not proficient strategy users and were new to inquiry. Study 2 examined the relationship between instructional practices and motivation. The 23 teachers in study 1 were observed six times during one unit. Observations focused on curriculum congruence, content accuracy, contextualization, sense making, and management and climate. A majority of teacher enactment was congruent with the curriculum, indicating that students experienced motivating features of project-based science. Hierarchical Linear Modeling showed that contextualization accounted for between-teacher variance in student interest, efficacy, and cognitive engagement; Teachers encouraged motivation through extended real world examples that related material to students' experiences. Cluster analysis was used to determine how patterns of practice affected motivation. Unexpectedly these patterns did not differentially relate to cognitive engagement. Findings showed that interest and efficacy were enhanced when teachers

  8. Using Inquiry-Based Instructional Strategies to Increase Student Achievement in 3rd Grade Social Studies

    Science.gov (United States)

    McRae-Jones, Wanda Joycelyn

    2017-01-01

    21st Century skills such as critical-thinking and problem-solving skills are very important when it comes to Science Technology Engineering and Mathematics or STEM. But those same skills should be integrated in social studies. The impact of students' learning in social studies as a result of implementing inquiry-based instructional strategies was…

  9. Enhancing English Learners' Willingness to Communicate through Debate and Philosophy Inquiry Discussion

    Science.gov (United States)

    Shamsudin, Mardziah; Othman, Moomala; Jahedi, Maryam; Aralas, Dalia

    2017-01-01

    The present study investigated the impact of two instructional methods, Debate and Philosophy Inquiry (PI), in enhancing Willingness to Communicate (WTC) among two groups of English as a Second Language (ESL) learners who were randomly selected. In each group there were sixteen participants. The researchers used independent samples t-test and…

  10. Inquiry-Based Learning and Technology: Designing and Exploring WebQuests

    Science.gov (United States)

    Lacina, Jan

    2007-01-01

    A WebQuest is an inquiry-based technology activity designed by Bernie Dodge and Tom March at San Diego State University in 1995. Dodge and March describe WebQuests as activities in which most, or all, of the information used by learners is drawn from the Web. WebQuests are a powerful instructional activity for teachers and students. Students will…

  11. Cutting edge technology to enhance nursing classroom instruction at Coppin State University.

    Science.gov (United States)

    Black, Crystal Day; Watties-Daniels, A Denyce

    2006-01-01

    Educational technologies have changed the paradigm of the teacher-student relationship in nursing education. Nursing students expect to use and to learn from cutting edge technology during their academic careers. Varied technology, from specified software programs (Tegrity and Blackboard) to the use of the Internet as a research medium, can enhance student learning. The authors provide an overview of current cutting edge technologies in nursing classroom instruction and its impact on future nursing practice.

  12. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    Science.gov (United States)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  13. Poster session in instructional technology course

    Science.gov (United States)

    Diniaty, Artina; Fauzi'ah, Lina; Wulan Febriana, Beta; Arlianty, Widinda Normalia

    2017-12-01

    Instructional technology course must be studied by students in order to 1) understand the role of technology in learning, 2) capable of analyzing advantages and disadvantages of using technology in teaching, 3) capable of performing technology in teaching. A poster session in instructional technology course was performed to 1) enhance students' interest in this course and develop students' creativity. The step of this research includes: planning, implementation, and evaluation. The result showed that students' responses towards poster session in instructional technology course were good.

  14. E-Learning and the iNtegrating Technology for InQuiry (NTeQ) Model Lesson Design

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The author reflects on the history of technology in education and e-learning and introduces the iNtegrating Technology for inQuiry (NTeQ) model of lesson design authored by Morrison and Lowther (2005). The NTeQ model lesson design is a new pedagogy for academic instruction in response to the growth of the Internet and technological advancements in…

  15. Making learning whole: an instructional approach for mediating the practices of authentic science inquiries

    Science.gov (United States)

    Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka

    2013-03-01

    This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.

  16. Enhancing Teacher Beliefs through an Inquiry-Based Professional Development Program.

    Science.gov (United States)

    McKeown, Tammy R; Abrams, Lisa M; Slattum, Patricia W; Kirk, Suzanne V

    2016-01-01

    Inquiry-based instructional approaches are an effective means to actively engage students with science content and skills. This article examines the effects of an ongoing professional development program on middle and high school teachers' efficacy beliefs, confidence to teach research concepts and skills, and science content knowledge. Professional development activities included participation in a week long summer academy, designing and implementing inquiry-based lessons within the classroom, examining and reflecting upon practices, and documenting ways in which instruction was modified. Teacher beliefs were assessed at three time points, pre- post- and six months following the summer academy. Results indicate significant gains in reported teaching efficacy, confidence, and content knowledge from pre- to post-test. These gains were maintained at the six month follow-up. Findings across the three different time points suggest that participation in the professional development program strongly influenced participants' fundamental beliefs about their capacity to provide effective instruction in ways that are closely connected to the features of inquiry-based instruction.

  17. Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities

    Science.gov (United States)

    Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn

    2012-01-01

    The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…

  18. Using Technology-Nested Instructional Strategies to Enhance Student Learning

    Directory of Open Access Journals (Sweden)

    Angela Lumpkin, PhD

    2015-08-01

    Full Text Available Students today expect the use of technology in their classes, rather than have to listen to less-than-engaging lectures. College students are connected electronically and incessant technology consumers. As a result, they may prefer the infusion of technologies to help them learn and enjoy the process of learning, rather than having to listen exclusively to lectures. To investigate this, the authors solicited student perceptions to assess the importance of learning through technology-nested instructional strategies. Student perceptions give direction to and affirm the benefits of instructional strategies that increase student motivation to engage more actively in their learning. Based on quantitative and qualitative responses through action research in multiple courses, students perceive their learning as more engaging and enjoyable when technology-nested instructional strategies are infused into their classes.

  19. Supporting Collective Inquiry: A Technology Framework for Distributed Learning

    Science.gov (United States)

    Tissenbaum, Michael

    This design-based study describes the implementation and evaluation of a technology framework to support smart classrooms and Distributed Technology Enhanced Learning (DTEL) called SAIL Smart Space (S3). S3 is an open-source technology framework designed to support students engaged in inquiry investigations as a knowledge community. To evaluate the effectiveness of S3 as a generalizable technology framework, a curriculum named PLACE (Physics Learning Across Contexts and Environments) was developed to support two grade-11 physics classes (n = 22; n = 23) engaged in a multi-context inquiry curriculum based on the Knowledge Community and Inquiry (KCI) pedagogical model. This dissertation outlines three initial design studies that established a set of design principles for DTEL curricula, and related technology infrastructures. These principles guided the development of PLACE, a twelve-week inquiry curriculum in which students drew upon their community-generated knowledge base as a source of evidence for solving ill-structured physics problems based on the physics of Hollywood movies. During the culminating smart classroom activity, the S3 framework played a central role in orchestrating student activities, including managing the flow of materials and students using real-time data mining and intelligent agents that responded to emergent class patterns. S3 supported students' construction of knowledge through the use individual, collective and collaborative scripts and technologies, including tablets and interactive large-format displays. Aggregate and real-time ambient visualizations helped the teacher act as a wondering facilitator, supporting students in their inquiry where needed. A teacher orchestration tablet gave the teacher some control over the flow of the scripted activities, and alerted him to critical moments for intervention. Analysis focuses on S3's effectiveness in supporting students' inquiry across multiple learning contexts and scales of time, and in

  20. Effects of explicit instruction on the acquisition of students' science inquiry skills in grades 5 and 6 of primary education

    Science.gov (United States)

    Kruit, P. M.; Oostdam, R. J.; van den Berg, E.; Schuitema, J. A.

    2018-03-01

    In most primary science classes, students are taught science inquiry skills by way of learning by doing. Research shows that explicit instruction may be more effective. The aim of this study was to investigate the effects of explicit instruction on the acquisition of inquiry skills. Participants included 705 Dutch fifth and sixth graders. Students in an explicit instruction condition received an eight-week intervention of explicit instruction on inquiry skills. In the lessons of the implicit condition, all aspects of explicit instruction were absent. Students in the baseline condition followed their regular science curriculum. In a quasi-experimental pre-test-post-test design, two paper-and-pencil tests and three performance assessments were used to examine the acquisition and transfer of inquiry skills. Additionally, questionnaires were used to measure metacognitive skills. The results of a multilevel analysis controlling for pre-tests, general cognitive ability, age, gender and grade level indicated that explicit instruction facilitates the acquisition of science inquiry skills. Specifically on the performance assessment with an unfamiliar topic, students in the explicit condition outperformed students of both the implicit and baseline condition. Therefore, this study provides a strong argument for including an explicit teaching method for developing inquiry skills in primary science education.

  1. Relationship between teacher preparedness and inquiry-based instructional practices to students' science achievement: Evidence from TIMSS 2007

    Science.gov (United States)

    Martin, Lynn A.

    The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.

  2. A comparison of hands-on inquiry instruction to lectureinstruction with special needs high school biology students

    Science.gov (United States)

    Jensen-Ruopp, Helga Spitko

    A comparison of hands-on inquiry instruction with lecture instruction was presented to 134 Patterns and Process Biology students. Students participated in seven biology lessons that were selected from Biology Survey of Living Things (1992). A pre and post paper and pencil assessment was used as the data collecting instrument. The treatment group was taught using hands-on inquiry strategies while the non-treatment group was taught in the lecture method of instruction. The team teaching model was used as the mode of presentation to the treatment group and the non-treatment group. Achievement levels using specific criterion; novice (0% to 50%), developing proficiency (51% to 69%), accomplished (70% to 84) and exceptional or mastery level (85% to 100%) were used as a guideline to tabulate the results of the pre and post assessment. Rubric tabulation was done to interpret the testing results. The raw data was plotted using percentage change in test score totals versus reading level score by gender as well as percentage change in test score totals versus auditory vocabulary score by gender. Box Whisker plot comparative descriptive of individual pre and post test scores for the treatment and non-treatment group was performed. Analysis of covariance (ANCOVA) using MINITAB Statistical Software version 14.11 was run on data of the seven lessons, as well as on gender (male results individual and combined, and female results individual and combined) results. Normal Probability Plots for total scores as well as individual test scores were performed. The results suggest that hands-on inquiry based instruction when presented to special needs students including; at-risk; English as a second language limited, English proficiency and special education inclusive students' learning may enhance individual student achievement.

  3. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  4. Relationship Between Teacher Inquiry Science Instruction Self-Efficacy and Student Achievement

    Science.gov (United States)

    Hanners, Grace D.

    Standardized test data indicate that student achievement in science is a problem both nationally and locally. At the study site, only a small percentage of fifth-grade students score at the advanced level on the Maryland state science assessment (MSA). In addition, the performance of African American, economically disadvantaged, and special education students is well below that of the general student population. Some studies have shown that teacher self-efficacy affects student achievement. Therefore, the purpose of this study was to explore the relationship between fifth-grade teacher inquiry science instruction self-efficacy scores and the scores of their students on the MSA. Bandura's work on the effect of self-efficacy on human behavior provided the theoretical basis for this study. The research questions examined the relationship between teacher inquiry science instructional self-efficacy scores and students' science MSA scores as well as the relationship by student subgroups. A correlational research design was used. The Teaching Science as Inquiry survey instrument was used to quantify teacher self-efficacy, and archival MSA data were the source for student scores. The study included data from 22 teachers and 1,625 of their students. A 2-tailed Pearson coefficient analysis revealed significant, positive relationships with regard to overall student achievement ( r20 = .724, p < .01) and the achievement of each of the subgroups (African American: r20 = .549, p < .01; economically disadvantaged: r20 = .655, p < .01; and special education: r18 = .532, p < .05). The results of this study present an opportunity for positive social change because the local school system can provide professional development that may increase teacher inquiry science instruction self-efficacy as a possible means to improve overall science achievement and to reduce achievement gaps.

  5. An Investigation of Turkish Middle School Science Teachers' Pedagogical Orientations Towards Direct and Inquiry Instructional Approaches

    Science.gov (United States)

    Sahingoz, Selcuk

    One of the most important goals of science education is preparing effective science teachers which includes the development of a science pedagogical orientation. Helping in-service science teachers improve their orientations toward science teaching begins with identifying their current orientations. While there are many aspects of an effective science teaching orientation, this study specifically focuses on effective pedagogy. The interest of this study is to clarify pedagogical orientations of middle school science teachers in Turkey toward the teaching of science conceptual knowledge. It focuses on what instructional preferences Turkish middle school science teachers have in theory and practice. The purpose of this study is twofold: 1) to elucidate teacher pedagogical profiles toward direct and inquiry instructional approaches. For this purpose, quantitative profile data, using a Turkish version of the Pedagogy of Science Teaching Test (POSTT-TR) assessment instrument, was collected from 533 Turkish middle school science teachers; 2) to identify teaching orientations of middle school science teachers and to identify their reasons for preferring specific instructional practices. For this purpose, descriptive qualitative, interview data was collected from 23 teachers attending a middle school science teacher workshop in addition to quantitative data using the POSTT-TR. These teachers sat for interviews structured by items from the POSTT-TR. Thus, the research design is mixed-method. The design provides a background profile on teacher orientations along with insights on reasons for pedagogical choices. The findings indicate that instructional preference distributions for the large group and smaller group are similar; however, the smaller workshop group is more in favor of inquiry instructional approaches. The findings also indicate that Turkish middle school science teachers appear to have variety of teaching orientations and they have varied reasons. Moreover, the

  6. The influence inquiry-based science has on elementary teachers' perception of instruction and self-efficacy

    Science.gov (United States)

    Lewis, Felecia J.

    The nature and purpose of this study was to examine the self-efficacy of teachers who use an inquiry-based science program to provide authentic experiences within the elementary school setting. It is essential to explore necessary improvements to bring about effective science education. Using a mixed methods study, the researcher conducted interviews with elementary teachers from five elementary schools within the same school district. The interviews focused on the teachers' experiences with inquiry-based science and their perceptions of quality science instruction. The Teachers' Sense of Efficacy Scale was used to collect quantitative data regarding the teachers' perception of instructional practice and student engagement. The study revealed that limited science content knowledge, inadequate professional development, and a low sense of self-efficacy have a substantial effect on teacher outcomes, instructional planning, and ability to motivate students to participate in inquiry-based learning. It will take a collective effort from administrators, teachers, parents, and students to discover ways to improve elementary science education.

  7. Using inquiry-based instruction to meet the standards of No Child Left Behind for middle school earth science

    Science.gov (United States)

    Harris, Michael W.

    This study examined the effectiveness of a specific instructional strategy employed to improve performance on the end-of-the-year Criterion-Referenced Competency Test (CRCT) as mandated by the No Child Left Behind (NCLB) Act of 2001. A growing body of evidence suggests that the perceived pressure to produce adequate aggregated scores on the CRCT causes teachers to neglect other relevant aspects of teaching and attend less to individualized instruction. Rooted in constructivist theory, inquiry-based programs provide a o developmental plan of instruction that affords the opportunity for each student to understand their academic needs and strengths. However, the utility of inquiry-based instruction is largely unknown due to the lack of evaluation studies. To address this problem, this quantitative evaluation measured the impact of the Audet and Jordan inquiry-based instructional model on CRCT test scores of 102 students in a sixth-grade science classroom in one north Georgia school. A series of binomial tests of proportions tested differences between CRCT scores of the program participants and those of a matched control sample selected from other district schools that did not adopt the program. The study found no significant differences on CRCT test scores between the treatment and control groups. The study also found no significant performance differences among genders in the sample using inquiry instruction. This implies that the utility of inquiry education might exist outside the domain of test scores. This study can contribute to social change by informing a reevaluation of the instructional strategies that ideally will serve NCLB high-stakes assessment mandates, while also affording students the individual-level skills needed to become productive members of society.

  8. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    Science.gov (United States)

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  9. Investigating the Effect of Argument-Driven Inquiry in Laboratory Instruction

    Science.gov (United States)

    Demircioglu, Tuba; Ucar, Sedat

    2015-01-01

    The aim of this study is to investigate the effect of argument-driven inquiry (ADI) based laboratory instruction on the academic achievement, argumentativeness, science process skills, and argumentation levels of pre-service science teachers in the General Physics Laboratory III class. The study was conducted with 79 pre-service science teachers.…

  10. Using technology to support science inquiry learning

    Directory of Open Access Journals (Sweden)

    P John Williams

    2017-03-01

    Full Text Available This paper presents a case study of a teacher’s experience in implementing an inquiry approach to his teaching over a period of two years with two different classes. His focus was on using a range of information technologies to support student inquiry learning. The study demonstrates the need to consider the characteristics of students when implementing an inquiry approach, and also the influence of the teachers level of understanding and related confidence in such an approach. The case also indicated that a range of technologies can be effective in supporting student inquiry learning.

  11. Developing Instructional Mathematical Physics Book Based on Inquiry Approach to Improve Students’ Mathematical Problem Solving Ability

    Directory of Open Access Journals (Sweden)

    Syarifah Fadillah

    2017-03-01

    Full Text Available The problem in this research is to know how the process of developing mathematics physics instructional book based on inquiry approach and its supporting documents to improve students' mathematical problem-solving ability. The purpose of this research is to provide mathematical physics instruction based on inquiry approach and its supporting documents (semester learning activity plan, lesson plan and mathematical problem-solving test to improve students' mathematical problem-solving ability. The development of textbook refers to the ADDIE model, including analysis, design, development, implementation, and evaluation. The validation result from the expert team shows that the textbook and its supporting documents are valid. The test results of the mathematical problem-solving skills show that all test questions are valid and reliable. The result of the incorporation of the textbook in teaching and learning process revealed that students' mathematical problem-solving ability using mathematical physics instruction based on inquiry approach book was better than the students who use the regular book.

  12. Is it design or is it inquiry? Exploring technology research in a Filipino school setting

    Science.gov (United States)

    Yazon, Jessamyn Marie Olivares

    My case study explored Filipino secondary students' and teachers' experiences with technology research, project-based pedagogy. The study was conducted to examine the nature of a Technology Research (TR) Curriculum, and how it mediates non-Western students' learning, and interest in technology-based careers. The context for my study is Philippine Science High School's (PSHS) TR program wherein students outline a proposal, design an experiment or a device, and implement their design to address a real world problem. My data sources included semi-structured interviews of 27 students and 2 teachers; participant observations of classroom and group activities, teacher-student consultations, and Science-Technology Fair presentations; TR curriculum documents; and researcher journal logs. My examination of curriculum documents revealed that since the 1960s, the Philippine government has implemented specialized educational programs, such as the PSHS Science/Technology Streaming and TR programs, to support Filipino youth interested in science and technology courses and careers. Data analyses showed that the TR program provided a rich, practical learning environment where 'doing technology design' blended with 'doing science inquiry'. The TR activities enhanced student understanding of science and technology; helped them integrate and apply knowledge and skills learned from other school subjects; encouraged them to be creative, problem-solvers; and helped develop their lifelong learning skills. Students recognized that TR teachers adopted alternative instructional strategies that prompted students to adopt more active roles in their learning. Research findings revealed that student interest in pursuing technology-related careers was supported by their participation in the streaming and the TR programs. Data also showed that Filipino cultural practices mediated student learning, and career decision-making. My research findings suggest that present notions of scientific inquiry

  13. Enhancing Literacy Skills through Technology.

    Science.gov (United States)

    Sistek-Chandler, Cynthia

    2003-01-01

    Discusses how to use technology to enhance literacy skills. Highlights include defining literacy, including information literacy; research to support reading and writing instruction; literacy software; thinking skills; organizational strategies for writing and reading; how technology can individualize literacy instruction; and a new genre of…

  14. Designing Technology-Enabled Instruction to Utilize Learning Analytics

    Science.gov (United States)

    Davies, Randall; Nyland, Robert; Bodily, Robert; Chapman, John; Jones, Brian; Young, Jay

    2017-01-01

    A key notion conveyed by those who advocate for the use of data to enhance instruction is an awareness that learning analytics has the potential to improve instruction and learning but is not currently reaching that potential. Gibbons (2014) suggested that a lack of learning facilitated by current technology-enabled instructional systems may be…

  15. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  16. Guided Science Inquiry Instruction with Students with Special Education Needs. R2Ed Working Paper 2015-1

    Science.gov (United States)

    White, Andrew S.; Kunz, Gina M.; Whitham, Rebekah; Houston, Jim; Nugent, Gwen

    2015-01-01

    National and state educational mandates require students achieve proficiency in not only science content, but also "science inquiry", or those process skills associated with science (National Research Council, 2011; Next Generation Science Standards, 2013). Science inquiry instruction has been shown to improve student achievement and…

  17. Why Inquiry? Primary Teachers' Objectives in Choosing Inquiry- and Context-Based Instructional Strategies to Stimulate Students' Science Learning

    Science.gov (United States)

    Walan, Susanne; Nilsson, Pernilla; Ewen, Birgitta Mc

    2017-10-01

    Studies have shown that there is a need for pedagogical content knowledge among science teachers. This study investigates two primary teachers and their objectives in choosing inquiry- and context-based instructional strategies as well as the relation between the choice of instructional strategies and the teachers' knowledge about of students' understanding and intended learning outcomes. Content representations created by the teachers and students' experiences of the enacted teaching served as foundations for the teachers' reflections during interviews. Data from the interviews were analyzed in terms of the intended, enacted, and experienced purposes of the teaching and, finally, as the relation between intended, enacted, and experienced purposes. Students' experiences of the teaching were captured through a questionnaire, which was analyzed inductively, using content analysis. The results show that the teachers' intended teaching objectives were that students would learn about water. During the enacted teaching, it seemed as if the inquiry process was in focus and this was also how many of the students experienced the objectives of the activities. There was a gap between the intended and experienced objectives. Hardly any relation was found between the teachers' choice of instructional strategies and their knowledge about students' understanding, with the exception that the teacher who also added drama wanted to support her students' understanding of the states of water.

  18. Using Technology to Facilitate Differentiated High School Science Instruction

    Science.gov (United States)

    Maeng, Jennifer L.

    2017-10-01

    This qualitative investigation explored the beliefs and practices of one secondary science teacher, Diane, who differentiated instruction and studied how technology facilitated her differentiation. Diane was selected based on the results of a previous study, in which data indicated that Diane understood how to design and implement proactively planned, flexible, engaging instructional activities in response to students' learning needs better than the other study participants. Data for the present study included 3 h of semi-structured interview responses, 37.5 h of observations of science instruction, and other artifacts such as instructional materials. This variety of data allowed for triangulation of the evidence. Data were analyzed using a constant comparative approach. Results indicated that technology played an integral role in Diane's planning and implementation of differentiated science lessons. The technology-enhanced differentiated lessons employed by Diane typically attended to students' different learning profiles or interest through modification of process or product. This study provides practical strategies for science teachers beginning to differentiate instruction, and recommendations for science teacher educators and school and district administrators. Future research should explore student outcomes, supports for effective formative assessment, and technology-enhanced readiness differentiation among secondary science teachers.

  19. WISE Science: Web-based Inquiry in the Classroom. Technology, Education--Connections

    Science.gov (United States)

    Slotta, James D.; Linn, Marcia C.

    2009-01-01

    This book shares the lessons learned by a large community of educational researchers and science teachers as they designed, developed, and investigated a new technology-enhanced learning environment known as WISE: The Web-Based Inquiry Science Environment. WISE offers a collection of free, customizable curriculum projects on topics central to the…

  20. The ESP Instruction: A Study Based on the Pattern of Autonomous Inquiry

    Science.gov (United States)

    Zhang, Jianfeng

    2013-01-01

    Autonomous inquiry learning is a kind of learning model, which relies mainly on learners and emphasizes that learners should inquire knowledge actively; moreover, ESP, which emphasizes the combination of language learning and specific purposes learning, is a goal-oriented and well targeted instruction system. Therefore, ESP and autonomous inquiry…

  1. Assessing the Effectiveness of a Mathematics-Focused, Instructional Technology Program for Grades 6-8: A 5-Year Trend Analysis of NASA CONNECT(tm) Evaluation Data

    Science.gov (United States)

    Glassman, Nanci A.; Perry, Jeannine B.; Giersch, Christopher E.; Lambert, Matthew A.; Pinelli, Thomas E.

    2004-01-01

    NASA CONNECT is a research-, inquiry, and standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (television and web-based) programs for students in grades 6 8. Respondents who evaluated the programs in the series over the first five seasons (1998-99 through 2002-03) reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for the grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  2. The effect of guided inquiry-based instruction in secondary science for students with learning disabilities

    Science.gov (United States)

    Eliot, Michael H.

    Students with learning disabilities (SWLDs) need to attain academic rigor to graduate from high school and college, as well as achieve success in life. Constructivist theories suggest that guided inquiry may provide the impetus for their success, yet little research has been done to support this premise. This study was designed to fill that gap. This quasi-experimental study compared didactic and guided inquiry-based teaching of science concepts to secondary SWLDs in SDC science classes. The study examined 38 students in four classes at two diverse, urban high schools. Participants were taught two science concepts using both teaching methods and posttested after each using paper-and-pencil tests and performance tasks. Data were compared to determine increases in conceptual understanding by teaching method, order of teaching method, and exposure one or both teaching methods. A survey examined participants' perceived self-efficacy under each method. Also, qualitative comparison of the two test formats examined appropriate use with SWLDs. Results showed significantly higher scores after the guided inquiry method on concept of volume, suggesting that guided inquiry does improve conceptual understanding over didactic instruction in some cases. Didactic teaching followed by guided inquiry resulted in higher scores than the reverse order, indicating that SWLDs may require direct instruction in basic facts and procedures related to a topic prior to engaging in guided inquiry. Also application of both teaching methods resulted in significantly higher scores than a single method on the concept of density, suggesting that SWLDs may require more in depth instruction found using both methods. No differences in perceived self-efficacy were shown. Qualitative analysis both assessments and participants' behaviors during testing support the use of performance tasks over paper-and-pencil tests with SWLDs. Implications for education include the use of guided inquiry to increase SWLDs

  3. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  4. Using Appreciative Inquiry to Discover and Deliver Change for Surgical Technology Students

    Science.gov (United States)

    Cabai, Katherine A.

    2012-01-01

    The purpose of this study was to examine efficacious teaching-learning strategies that community college stakeholders employ that enhance surgical technology student outcomes. Knowles's adult learning theory, constructivist theory, and appreciative inquiry served as the theoretical foundation for this study. Discovering effective aspects and…

  5. Effectiveness of the use of question-driven levels of inquiry based instruction (QD-LOIBI) assisted visual multimedia supported teaching material on enhancing scientific explanation ability senior high school students

    Science.gov (United States)

    Suhandi, A.; Muslim; Samsudin, A.; Hermita, N.; Supriyatman

    2018-05-01

    In this study, the effectiveness of the use of Question-Driven Levels of Inquiry Based Instruction (QD-LOIBI) assisted visual multimedia supported teaching materials on enhancing senior high school students scientific explanation ability has been studied. QD-LOIBI was designed by following five-levels of inquiry proposed by Wenning. Visual multimedia used in teaching materials included image (photo), virtual simulation and video phenomena. QD-LOIBI assisted teaching materials supported by visual multimedia were tried out on senior high school students at one high school in one district in West Java. A quasi-experiment method with design one experiment group (n = 31) and one control group (n = 32) were used. Experimental group were given QD-LOIBI assisted teaching material supported by visual multimedia, whereas the control group were given QD-LOIBI assisted teaching materials not supported visual multimedia. Data on the ability of scientific explanation in both groups were collected by scientific explanation ability test in essay form concerning kinetic gas theory concept. The results showed that the number of students in the experimental class that has increased the category and quality of scientific explanation is greater than in the control class. These results indicate that the use of multimedia supported instructional materials developed for implementation of QD-LOIBI can improve students’ ability to provide explanations supported by scientific evidence gained from practicum activities and applicable concepts, laws, principles or theories.

  6. ANALYZE CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDE IN PHYSICS LEARNING USED INQUIRY TRAINING AND DIRECT INSTRUCTION LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Dede Parsaoran Damanik

    2013-06-01

    Full Text Available This study was aimed to determine the differences: (1 the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2 The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3 To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which students of private junior high school Two Raya Kahean District Simalungun. Population choose random sample of each class. Instrument used consisted of: (1 test the scientific attitude of students through a questionnaire with 25 statements questionnaire number (2 test the critical thinking skills in the form of descriptions by 9 questions. The data were analyzed according to ANAVA. It showed that: (1 There are differences in students' critical thinking of skills achievement Inquiry Training model and Direct Instruction model, (2 there was a difference of students' critical thinking in scientific attitude at high is better than who thought there is a difference of students' critical thinking in scientific attitude at low. (3 There was no interaction between Inquiry Training model and Direct Instruction with the scientific attitude students' to increase student’s critical thinking of skills.

  7. Using tablet technology and instructional videos to enhance preclinical dental laboratory learning.

    Science.gov (United States)

    Gadbury-Amyot, Cynthia C; Purk, John H; Williams, Brian Joseph; Van Ness, Christopher J

    2014-02-01

    The purpose of this pilot study was to examine if tablet technology with accompanying instructional videos enhanced the teaching and learning outcomes in a preclinical dental laboratory setting. Two procedures deemed most challenging in Operative Dentistry II were chosen for the development of instructional videos. A random sample of thirty students was chosen to participate in the pilot. Comparison of faculty evaluations of the procedures between the experimental (tablet) and control (no tablet) groups resulted in no significant differences; however, there was a trend toward fewer failures in the experimental group. Examination of the ability to accurately self-assess was compared by exploring correlations between faculty and student evaluations. While correlations were stronger in the experimental group, the control group had significant correlations for all three procedures, while the experimental group had significant correlations on only two of the procedures. Students strongly perceived that the tablets and videos helped them perform better and more accurately self-assess their work products. Students did not support requiring that they purchase/obtain a specific brand of technology. As a result of this pilot study, further development of ideal and non-ideal videos are in progress, and the school will be implementing a "Bring Your Own Device" policy with incoming students.

  8. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    Science.gov (United States)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  9. Designing flexible instructional space for teaching introductory physics with emphasis on inquiry and collaborative active learning

    Science.gov (United States)

    Bykov, Tikhon

    2010-03-01

    In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.

  10. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  11. Long term stability of learning outcomes in undergraduates after an open-inquiry instruction on thermal science

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2018-02-01

    This paper investigates the efficacy of an open-inquiry approach to achieve a long term stability of physics instruction. This study represents the natural continuation of a research project started four years ago when a sample of thirty engineering undergraduates, having already attended traditional university physics instruction, were involved in a six-week long learning experience of open-inquiry research activities within the highly motivating context of developing a thermodynamically efficient space base on Mars. Four years later, we explore the effectiveness of that learning experience by analyzing the outcomes that the students achieved by answering again the same questionnaire that was administered them both prior to and immediately after those activities. As we did in the first work, students' answers were classified within three epistemological profiles. Now, a comparison among students' outcomes during the three phases, namely, preinstruction, postinstruction, and after four years has been carried out. Immediately after the open-inquiry experience, the students obtained significant benefits in terms of the strengthening of their practical and reasoning abilities, by proficiently applying the learned concepts to face and solve real-world problem situations. In this study, the students' answers do not highlight any significant regress towards their preinstruction profiles. The global robustness of the teaching strategy adopted four years ago is confirmed by a statistically significant comparison with a control group of students who experienced the same curricular instruction except for the open inquiry-based workshop. Nevertheless, some changes have been observed and discussed in the light of the answers the students provided to a short interview regarding their studying or working experiences across the four-year temporal window.

  12. Summer Teacher Enhancement Institute for Science, Mathematics, and Technology Using the Problem-Based Learning Model

    Science.gov (United States)

    Petersen, Richard H.

    1997-01-01

    The objectives of the Institute were: (a) increase participants' content knowledge about aeronautics, science, mathematics, and technology, (b) model and promote the use of scientific inquiry through problem-based learning, (c) investigate the use of instructional technologies and their applications to curricula, and (d) encourage the dissemination of TEI experiences to colleagues, students, and parents.

  13. Effects of collaboration and inquiry on reasoning and achievement in biology

    Science.gov (United States)

    Jensen, Jamie Lee

    The primary purpose of the present study was to compare the effectiveness of two collaborative grouping strategies and two instructional methods in terms of gains in reasoning ability and achievement in college biology. In order to do so, a quasi-experimental study was performed in which students were placed in one of four treatment conditions: heterogeneous grouping within inquiry instruction, homogeneous grouping within inquiry instruction, heterogeneous grouping within non-inquiry instruction, and homogeneous grouping within non-inquiry instruction. Students were placed in groups based on initial reasoning level. Reasoning levels and achievement gains were assessed at the end of the study. Results showed that within non-inquiry instruction, heterogeneous mean group scores were higher in both reasoning and achievement than homogeneous groups. In contrast, within inquiry instruction, homogeneous mean group scores were higher in both reasoning and achievement. Inquiry instruction, as a whole, significantly outperformed non-inquiry instruction in the development of reasoning ability. Within inquiry instruction, low-ability students had significantly greater reasoning gains when grouped homogeneously. These results support Piaget's developmental theory and contradict Vygotsky's developmental theory. These results also suggest that the success of one grouping strategy over another is highly dependent upon the nature of instruction, which may be a cause for such conflicting views on grouping strategies within the educational literature. In addition, inquiry instruction led to students having greater confidence in their reasoning ability as well as a more positive attitude toward collaboration. Instructional implications are discussed.

  14. Context-model-based instruction in teaching EFL writing: A narrative inquiry

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    2016-12-01

    Full Text Available This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students’ development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher’s memos, and the students’ reflections on their learning experience in the study. The findings that have resulted from this narrative inquiry show (1 the context-model-based instruction has helped students develop their context model; (2 students could learn to configure the four elements of the context model (i.e. “the purpose of communication, the subject matter, the relationship with the reader and the normal pattern of presentation”; and (3 students could learn to be mindful to proactively apply the context model in the process of EFL writing to manage the situated, dynamic and intercultural issues involved.

  15. Enhancing Instruction through Constructivism, Cooperative Learning, and Cloud Computing

    Science.gov (United States)

    Denton, David W.

    2012-01-01

    Cloud computing technologies, such as Google Docs and Microsoft Office Live, have the potential to enhance instructional methods predicated on constructivism and cooperative learning. Cloud-based application features like file sharing and online publishing are prompting departments of education across the nation to adopt these technologies.…

  16. Teaching Science Through the Language of Students in Technology-Enhanced Instruction

    Science.gov (United States)

    Ryoo, Kihyun

    2015-02-01

    This study examines whether and how tapping into students' everyday language in a web-based learning environment can improve all students' science learning in linguistically heterogeneous classrooms. A total of 220 fifth-grade English Language Learners (ELLs) and their non-ELL peers were assigned to either an everyday English approach condition or a textbook approach condition, and completed technology-enhanced instruction focusing on respiration and photosynthesis. Students in the everyday English approach condition were taught the concepts in everyday, conversational English before content-specific scientific terms were introduced, while students in the textbook approach condition were taught the same concepts and vocabulary simultaneously. The results show that the everyday English approach was significantly more effective in helping both ELLs and non-ELL students develop a coherent understanding of abstract concepts related to photosynthesis and respiration. Students in the everyday English approach condition were also better able to link content-specific terms to their understanding of the concepts. These findings show the potential advantage of using students' everyday English as a resource to make science more accessible to linguistically diverse students in mainstream classrooms. By integrating students' everyday language in science instruction, it is possible for all students including ELLs to acquire both the content and language of science.

  17. Using a Combined Approach of Guided Inquiry & Direct Instruction to Explore How Physiology Affects Behavior

    Science.gov (United States)

    Machtinger, Erika T.

    2014-01-01

    Hands-on activities with live organisms allow students to actively explore scientific investigation. Here, I present activities that combine guided inquiry with direct instruction and relate how nutrition affects the physiology and behavior of the common housefly. These experiments encourage student involvement in the formulation of experimental…

  18. A narrative approach to studying the diversification of inquiry learning across instructional settings

    NARCIS (Netherlands)

    Rutten, N.P.G.; van Joolingen, W.R.; Haverkamp-Hermans, Gerdi G.N.; Bogner, Franz X.; Kretschmer, Thomas; Stracke, Christian M.; Lameras, Petros; Chioccariello, Augusto; Doran, Rosa; Tiemann, Rüdiger; Kastrinogiannis, Timotheos; Maravic, Jasminka; Crotty, Yvonne; Kelly, Claire; Markaki, Vassiliki; Lazoudis, Angelos; Koivula, Jani; Polymatidis, Dimitris

    2015-01-01

    In this study we used a narrative approach to investigate the function that digital, interactive tools can fulfill in inquiry teaching and learning. Such a narrative can be conceived of as 'talking through' a lesson in which a teacher supports inquiry with technology. By subsequently coding these

  19. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  20. Enhancement of quality in chemical inquiry by pre-university students.

    NARCIS (Netherlands)

    van Rens, L.; Pilot, A.; van Dijk, H.

    2005-01-01

    Our pre-university chemistry students face problems achieving sufficient quality in chemical inquiry. To try to enhance the quality of student performance in chemical inquiry, Dutch pre-university chemistry students (age 17) carried out an authentic research project on 'Diffusion of ions in

  1. Enhancement of quality in chemical inquiry by pre-university students

    NARCIS (Netherlands)

    van Rens, L.; Pilot, A.; van Dijk, H.

    2004-01-01

    Our pre-university chemistry students face problems achieving sufficient quality in chemical inquiry. To try to enhance the quality of student performance in chemical inquiry, Dutch pre-university chemistry students (age 17) carried out an authentic research project on 'Diffusion of ions in

  2. The Effect of Guided Inquiry-Based Instruction on Middle School Students' Understanding of Lunar Concepts

    Science.gov (United States)

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.; Sackes, Mesut

    2010-01-01

    This study investigated the effect of non-traditional guided inquiry instruction on middle school students' conceptual understandings of lunar concepts. Multiple data sources were used to describe participants' conceptions of lunar phases and their cause, including drawings, interviews, and a lunar shapes card sort. The data were analyzed via a…

  3. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    Science.gov (United States)

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  4. Comparing Views of Primary School Mathematics Teachers and Prospective Mathematics Teachers about Instructional Technologies

    Directory of Open Access Journals (Sweden)

    Adnan Baki

    2009-11-01

    Full Text Available Technology is rapidly improving in both hardware and software side. As one of the contemporary needs people should acquire certain knowledge, skills, attitudes and habits to understand this technology, to adapt to it and to make use of its benefits. In addition, as in all domains of life, change and improvement is also unavoidable for educational field. As known, change and improvement in education depends on lots of factors. One of the most important factors is teacher. In order to disseminate educational reforms, teachers themselves should accept the innovation first (Hardy, 1998, Baki, 2002; Oral, 2004. There has been variety of studies investigating teacher and prospective teachers‟ competences, attitudes and opinions (Paprzychi, Vikovic & Pierson, 1994; Hardy, 1998; Kocasaraç, 2003; Lin, Hsiech and Pierson, 2004; Eliküçük, 2006; YeĢilyurt, 2006; Fendi, 2007; Teo, 2008; Arslan, Kutluca & Özpınar, 2009. As the common result of these studies indicate that teachers‟ interest towards using instructional technology have increased. Accordingly, most of the teachers began to think that using instructional technologies becomes inevitable for teachers. By reviewing the related literature, no studies have been come across comparing the opinions of teachers and teacher candidates about instructional technologies. In this study, it was aimed to investigate and compare the views of mathematics teachers with prospective mathematics teachers about ICT. It was considered that collecting opinions of teachers and teachers candidates about the instructional technologies, comparing and contrasting them will contribute to the field. To follow this research inquiry, a descriptive approach type; case study research design was applied. The reason for choosing such design is that the case study method permits studying one aspect of the problem in detail and in a short time (Yin, 2003; Çepni, 2007. The study was conducted with the total sample of 12. 3 of

  5. Investigating the Effectiveness of Inquiry-Based Instruction on Students with Different Prior Knowledge and Reading Abilities

    Science.gov (United States)

    Wang, Jing-Ru; Wang, Yuh-Chao; Tai, Hsin-Jung; Chen, Wen-Ju

    2010-01-01

    This study examined the differential impacts of an inquiry-based instruction on conceptual changes across levels of prior knowledge and reading ability. The instrument emphasized four simultaneously important components: conceptual knowledge, reading ability, attitude toward science, and learning environment. Although the learning patterns and…

  6. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    Creating a scientifically literate society appears to be the major goal of recent science education reform efforts (Abd-El-Khalick, Boujaoude, Dushl, Lederman, Hofstein, Niaz, Tregust, & Tuan, 2004). Recent national reports in the U.S, such as Shaping the Future, New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (NSF,1996), Inquiry in Science and In Classroom, Inquiry and the National Science Education Standards (NRC, 2001), Pursuing excellence: Comparison of international eight-grade mathematics and science achievement from a U.S. perspective (NCES, 2001), and Standards for Science Teacher Preparation (NSTA 2003) appear to agree on one thing: the vision of creating a scientifically literate society. It appears from science education literature that the two important components of being a scientifically literate individual are developing an understanding of nature of science and ability to conduct scientific inquiries. Unfortunately, even though teaching science through inquiry has been recommended in national reports since the 1950's, it has yet to find its way into many science classrooms (Blanchard, 2006; Yerrick, 2000). Science education literature identfies several factors for this including: (1) lack of content knowledge (Anderson, 2002; Lee, Hart Cuevas, & Enders, 2004; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Moscovici, 1999; Smith & Naele, 1989; Smith, 1989); (2) high stake tests (Aydeniz, 2006); (3) teachers' conflicting beliefs with inquiry-based science education reform (Blanchard, 2006; Wallace & Kang, 2004); and, (4) lack of collaboration and forums for communication (Anderson, 2002; Davis, 2003; Loucks-Horsely, Hewson, Love, & Stiles, 1998; Wallace & Kang, 2004). In addition to the factors stated above this study suggest that some of the issues and problems that have impeded inquiry instruction to become the primary approach to teaching science in many science classrooms might be related to

  7. Using Interactive Video Instruction To Enhance Public Speaking Instruction.

    Science.gov (United States)

    Cronin, Michael W.; Kennan, William R.

    Noting that interactive video instruction (IVI) should not and cannot replace classroom instruction, this paper offers an introduction to interactive video instruction as an innovative technology that can be used to expand pedagogical opportunities in public speaking instruction. The paper: (1) defines the distinctive features of IVI; (2) assesses…

  8. Teachers and Technology Use in Secondary Science Classrooms: Investigating the Experiences of Middle School Science Teachers Implementing the Web-based Inquiry Science Environment (WISE)

    Science.gov (United States)

    Schulz, Rachel Corinne

    This study investigated the intended teacher use of a technology-enhanced learning tool, Web-based Inquiry Science Environment (WISE), and the first experiences of teachers new to using it and untrained in its use. The purpose of the study was to learn more about the factors embedded into the design of the technology that enabled it or hindered it from being used as intended. The qualitative research design applied grounded theory methods. Using theoretical sampling and a constant comparative analysis, a document review of WISE website led to a model of intended teacher use. The experiences of four middle school science teachers as they enacted WISE for the first time were investigated through ethnographic field observations, surveys and interviews using thematic analysis to construct narratives of each teachers use. These narratives were compared to the model of intended teacher use of WISE. This study found two levels of intended teacher uses for WISE. A basic intended use involved having student running the project to completion while the teacher provides feedback and assesses student learning. A more optimal description of intended use involved the supplementing the core curriculum with WISE as well as enhancing the core scope and sequence of instruction and aligning assessment with the goals of instruction through WISE. Moreover, WISE projects were optimally intended to be facilitated through student-centered teaching practices and inquiry-based instruction in a collaborative learning environment. It is also optimally intended for these projects to be shared with other colleagues for feedback and iterative development towards improving the Knowledge Integration of students. Of the four teachers who participated in this study, only one demonstrated the use of WISE as intended in the most basic way. This teacher also demonstrated the use of WISE in a number of optimal ways. Teacher confusion with certain tools available within WISE suggests that there may be a

  9. Analyze Critical Thinking Skills and Scientific Attitude in Physics Learning Used Inquiry Training and Direct Instruction Learning Model

    OpenAIRE

    Parsaoran Damanik, Dede; Bukit, Nurdin

    2013-01-01

    This study was aimed to determine the differences: (1) the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2) The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3) To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which s...

  10. A mixed methods study of foreign language teachers implementing technology-enhanced multimedia instructio

    Directory of Open Access Journals (Sweden)

    Olha Ketsman

    2014-08-01

    Full Text Available Technology-enhanced multimedia instruction offers benefits for foreign language learners. Despite having much potential, technology itself is neither effective or nor effective, but teachers play a key role in determining its effectiveness because they are in charge of making instructional decisions and choose whether and how to use technology. This article fills a gap in the literature by reporting findings of a mixed methods study of technology- enhanced multimedia instruction in middle and high school foreign language classrooms. Convergent parallel mixed methods design was applied in this study and data was collected through quantitative survey and qualitative semi-structured interviews with teachers. Results from the study indicated a significant positive correlation between variables that contribute to the use of technology-enhanced multimedia instruction in foreign language classrooms and described effective technology-enhanced multimedia practices. The findings of the study have implications for teachers, administrators and faculty of teacher preparation programs as well as state teacher education policy makers.

  11. The impact of technology on the enactment of inquiry in a technology enthusiast's sixth grade science classroom

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2007-01-01

    This study investigated the impact of the use of computer technology on the enactment of inquiry in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several inquiry activities were completed, some of which were supported with the use of technology. Non-participant observation, classroom videotaping, and semi-structured and critical-incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote inquiry in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning-making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching.

  12. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    Science.gov (United States)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  13. The Utilization of Inquiry-Based Science Instruction in Connecticut

    Science.gov (United States)

    Bozzuto, David M.

    The purpose of this study was to explore the perspectives of practitioners of inquiry-based instruction from 35 Connecticut school districts. The source of the participants, Connecticut State Science Assessment Advisory Committee members, and their involvement in science education acted to bound the research. Using a multiple case study design, data were gathered from 28 participants: teachers n = 21, curriculum leaders n = 4, professional development experts n = 2, and state education advisor/ teacher preparation expert n = 1 involved with Connecticut schools. Each participant was asked to complete an online demographic and inquiry utilization questionnaire. From the results of the questionnaires, a cadre of 11 participants was selected to participate in semi-structured interviews. A round of follow-up interviews of five key participants was conducted to further clarify the phenomenon. Two of the follow up interviewees were observed using the EQUIP rubric to assess inquiry implementation. Artifacts such as minutes, PowerPoint presentations, and a reflexive journal were collected throughout the study. An inductive approach to content analysis of data from the survey and interviews was used to explore constructs, themes, and patterns. After segmentation took place, the data were categorized to allow patterns and constructs to emerge. The data were reduced based on the emergent design and those reductions, or themes, were informed by ongoing data collection using constant comparison as different levels of codes emerge. Data collection further informed data analysis and future data collection. Initial coding of patterns was reduced until theoretical saturation occurred and the data allowed five thematic findings to emerge from the data. The five themes were: teach, process, impasse, develop, and support. The significance of each theme and its implication for practitioners and researchers were discussed and offered, respectively.

  14. Technologies and Reformed-Based Science Instruction: The Examination of a Professional Development Model Focused on Supporting Science Teaching and Learning with Technologies

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.

    2015-10-01

    While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional instruction, sits in opposition to most recent standards documents in science education that call for student involvement in evidence-based sense-making activities. Many see technology as a potentially powerful resource that is reshaping society and has the potential to do the same in science classrooms. To consider the promise of technology in science classrooms, this research investigated the impact of a professional development project focused on enhancing teacher and student learning by using information and communication technologies (ICTs) for engaging students in reformed-based instruction. More specifically, these findings revealed positive teacher outcomes with respect to reformed-based and technology-supported instruction and increased ICT and new literacies skills. When considering students, the findings revealed positive outcomes with respect to ICT and new literacies skills and student achievement in science.

  15. The use of computer based instructions to enhance Rwandan ...

    African Journals Online (AJOL)

    Annestar

    (2) To what extent the newly acquired ICT skills impact on teachers' competency? (3) How suitable is computer based instruction to enhance teachers' continuous professional development? Literature review. ICT competency for teachers. Regardless of the quantity and quality of technology available in classrooms, the key ...

  16. Effects of Inquiry-Based Science Instruction on Science Achievement and Interest in Science: Evidence from Qatar

    Science.gov (United States)

    Areepattamannil, Shaljan

    2012-01-01

    The author sought to investigate the effects of inquiry-based science instruction on science achievement and interest in science of 5,120 adolescents from 85 schools in Qatar. Results of hierarchical linear modeling analyses revealed the substantial positive effects of science teaching and learning with a focus on model or applications and…

  17. Preparing for the changing role of instructional technologies in medical education.

    Science.gov (United States)

    Robin, Bernard R; McNeil, Sara G; Cook, David A; Agarwal, Kathryn L; Singhal, Geeta R

    2011-04-01

    As part of an international faculty development conference in February 2010, a working group of medical educators and physicians discussed the changing role of instructional technologies and made recommendations for supporting faculty in using these technologies in medical education. The resulting discussion highlighted ways technology is transforming the entire process of medical education and identified several converging trends that have implications for how medical educators might prepare for the next decade. These trends include the explosion of new information; all information, including both health knowledge and medical records, becoming digital; a new generation of learners; the emergence of new instructional technologies; and the accelerating rate of change, especially related to technology. The working group developed five recommendations that academic health leaders and policy makers may use as a starting point for dealing with the instructional technology challenges facing medical education over the next decade. These recommendations are (1) using technology to provide/support experiences for learners that are not otherwise possible-not as a replacement for, but as a supplement to, face-to-face experiences, (2) focusing on fundamental principles of teaching and learning rather than learning specific technologies in isolation, (3) allocating a variety of resources to support the appropriate use of instructional technologies, (4) supporting faculty members as they adopt new technologies, and (5) providing funding and leadership to enhance electronic infrastructure to facilitate sharing of resources and instructional ideas. © by the Association of American Medical Colleges.

  18. A cross-cultural, multilevel study of inquiry-based instruction effects on conceptual understanding and motivation in physics

    Science.gov (United States)

    Negishi, Meiko

    Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as

  19. Identifying Effective Design Features of Technology-Infused Inquiry Learning Modules: A Two-Year Study of Students' Inquiry Abilities

    Science.gov (United States)

    Hsu, Ying-Shao; Fang, Su-Chi; Zhang, Wen-Xin; Hsin-Kai, Wu; Wu, Pai-Hsing; Hwang, Fu-Kwun

    2016-01-01

    The two-year study aimed to explore how students' development of different inquiry abilities actually benefited from the design of technology-infused learning modules. Three learning modules on the topics of seasons, environmental issues and air pollution were developed to facilitate students' inquiry abilities: questioning, planning, analyzing,…

  20. Applying Technology to Inquiry-Based Learning in Early Childhood Education

    Science.gov (United States)

    Wang, Feng; Kinzie, Mable B.; McGuire, Patrick; Pan, Edward

    2010-01-01

    Children naturally explore and learn about their environments through inquiry, and computer technologies offer an accessible vehicle for extending the domain and range of this inquiry. Over the past decade, a growing number of interactive games and educational software packages have been implemented in early childhood education and addressed a…

  1. Handbook of Research on Instructional Systems and Educational Technology

    Science.gov (United States)

    Kidd, Terry, Ed.; Morris, Lonnie R., Jr., Ed.

    2017-01-01

    Incorporating new methods and approaches in learning environments is imperative to the development of education systems. By enhancing learning processes, education becomes more attainable at all levels. "The Handbook of Research on Instructional Systems and Educational Technology" is an essential reference source for the latest scholarly…

  2. What Is Educational Technology? An Inquiry into the Meaning, Use, and Reciprocity of Technology

    Science.gov (United States)

    Lakhana, Arun

    2014-01-01

    This position paper explores the ambiguity of technology, toward refined understanding of Educational Technology. The purpose of education is described by John Dewey as growing, or habitual learning. Two philosophical conceptions of technology are reviewed. Dewey positions inquiry as a technology that creates knowledge. Val Dusek offers a…

  3. The Effectiveness of Web-Based Instruction: An Initial Inquiry

    Directory of Open Access Journals (Sweden)

    Tatana M. Olson

    2002-10-01

    Full Text Available As the use of Web-based instruction increases in the educational and training domains, many people have recognized the importance of evaluating its effects on student outcomes such as learning, performance, and satisfaction. Often, these results are compared to those of conventional classroom instruction in order to determine which method is “better.” However, major differences in technology and presentation rather than instructional content can obscure the true relationship between Web-based instruction and these outcomes. Computer-based instruction (CBI, with more features similar to Web-based instruction, may be a more appropriate benchmark than conventional classroom instruction. Furthermore, there is little consensus as to what variables should be examined or what measures of learning are the most appropriate, making comparisons between studies difficult and inconclusive. In this article, we review the historical findings of CBI as an appropriate benchmark to Web-based instruction. In addition, we review 47 reports of evaluations of Web-based courses in higher education published between 1996 and 2002. A tabulation of the documented findings into eight characteristics is offered, along with our assessments of the experimental designs, effect sizes, and the degree to which the evaluations incorporated features unique to Web-based instruction.

  4. Inquiries and technological assessment

    International Nuclear Information System (INIS)

    1981-01-01

    The authors examine six Canadian inquiries to determine their values as scientific assessments, their ability to combine scientific data with policy considerations, and their effectiveness in extending public debate on scientific issues. Among the inquiries examined are the environmental assessment hearings into the Point Lepreau nuclear generating station, the Bayda inquiry into the Cluff Lake uranium mine, and the Porter commission on electric power planning in Ontario

  5. Nudging toward Inquiry: Strategies for Searching for and Finding Great Information

    Science.gov (United States)

    Fontichiaro, Kristin, Comp.

    2010-01-01

    Inquiry does not replace information literacy; rather, it encompasses it. Inquiry-based learning invites school librarians to step into all aspects of instructional planning, from activating prior knowledge straight through to reflection. Libraries pursuing inquiry-based instruction are building on the bedrock of information literacy, not starting…

  6. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  7. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  8. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  9. New science teachers' descriptions of inquiry enactment

    Science.gov (United States)

    Dreon, Oliver, Jr.

    This phenomenological study demonstrates the influence that affective factors have on beginning teachers' ability to enact instructional practices. Through narratives shared in interviews and web log postings, two beginning science teachers' emotional engagement with their instructional practices, especially that of implementing inquiry-based instruction, and the resulting impact these emotions had on professional decision-making were evidenced. Anxiety emerged as the most significant impacting emotion on instructional decision-making with the participants. Through their stories, the two participants describe how their emotions and views of self influence whether they continue using inquiry pedagogy or alter their lesson to adopt more didactic means of instruction. These emotions arise from their feelings of being comfortable teaching the content (self-efficacy), from the unpredictability of inquiry lessons (control beliefs), from how they perceive their students as viewing them (teacher identity) and from various school constraints (agency). This research also demonstrates how intertwined these aspects are, informing each other in a complex, dialectical fashion. The participants' self-efficacy and professional identity emerge from their interactions with the community (their students and colleagues) and the perceived agency afforded by their schools' curricula and administration. By providing descriptions of teachers' experiences enacting inquiry pedagogy, this study expands our understanding of factors that influence teachers' instructional practices and provides a basis for reforming science teacher preparation.

  10. LANGUAGE LEARNING UNDER CLASSROOM CONDITIONS DURING THE TRANSITION TO HYBRID INSTRUCTION: A CASE-STUDY OF STUDENT PERFORMANCE DURING THE IMPLEMENTATION OF INSTRUCTIONAL TECHNOLOGY

    OpenAIRE

    Lisbeth O. Swain; Timothy D. Swain

    2017-01-01

    We examined the unmanipulated performance of students under real classroom conditions in order to assess the effect of a technology-enhanced hybrid learning approach to second language, (L2) instruction on beginning and advanced Spanish language learners. This research focused on the transition period of technology implementation when the entire section of Spanish of a modern language department of a liberal arts university transitioned from traditional face-to-face instruction, to a technolo...

  11. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  12. Transformation of Online Teaching Practices Utilizing Appreciative Inquiry to Enhance the Process of Learning

    Science.gov (United States)

    Johnson, Bruce A.

    2010-01-01

    The purpose of this case study was to explore the application and outcome of appreciative andragogy as an online instructional strategy for the development of adult learner motivation, engagement, and performance. Appreciative andragogy was an original phrase developed for this study and is an adaptation of appreciative inquiry. The concept of…

  13. Understanding the Development of a Hybrid Practice of Inquiry-Based Science Instruction and Language Development: A Case Study of One Teacher's Journey Through Reflections on Classroom Practice

    Science.gov (United States)

    Capitelli, Sarah; Hooper, Paula; Rankin, Lynn; Austin, Marilyn; Caven, Gennifer

    2016-04-01

    This qualitative case study looks closely at an elementary teacher who participated in professional development experiences that helped her develop a hybrid practice of using inquiry-based science to teach both science content and English language development (ELD) to her students, many of whom are English language learners (ELLs). This case study examines the teacher's reflections on her teaching and her students' learning as she engaged her students in science learning and supported their developing language skills. It explicates the professional learning experiences that supported the development of this hybrid practice. Closely examining the pedagogical practice and reflections of a teacher who is developing an inquiry-based approach to both science learning and language development can provide insights into how teachers come to integrate their professional development experiences with their classroom expertise in order to create a hybrid inquiry-based science ELD practice. This qualitative case study contributes to the emerging scholarship on the development of teacher practice of inquiry-based science instruction as a vehicle for both science instruction and ELD for ELLs. This study demonstrates how an effective teaching practice that supports both the science and language learning of students can develop from ongoing professional learning experiences that are grounded in current perspectives about language development and that immerse teachers in an inquiry-based approach to learning and instruction. Additionally, this case study also underscores the important role that professional learning opportunities can play in supporting teachers in developing a deeper understanding of the affordances that inquiry-based science can provide for language development.

  14. Longitudinal Study: Efficacy of Online Technology Tools for Instructional Use

    Science.gov (United States)

    Uenking, Michael D.

    2011-01-01

    Studies show that the student population (secondary and post secondary) is becoming increasingly more technologically savvy. Use of the internet, computers, MP3 players, and other technologies along with online gaming has increased tremendously amongst this population such that it is creating an apparent paradigm shift in the learning modalities of these students. Instructors and facilitators of learning can no longer rely solely on traditional lecture-based lesson formals. In order to achieve student academic success and satisfaction and to increase student retention, instructors must embrace various technology tools that are available and employ them in their lessons. A longitudinal study (January 2009-June 2010) has been performed that encompasses the use of several technology tools in an instructional setting. The study provides further evidence that students not only like the tools that are being used, but prefer that these tools be used to help supplement and enhance instruction.

  15. POTENTIAL ENHANCEMENTS TO NATURAL ATTENUATION: LINES OF INQUIRY SUPPORTING ENHANCED PASSIVE REMEDIATION OF CHLORINATED SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Tom Early, T; Michael Heitkamp, M; Brian02 Looney, B; David Major, D; Brian Riha, B; Jody Waugh, J; Gary Wein, G

    2004-06-18

    The Department of Energy (DOE) is sponsoring an initiative to facilitate efficient, effective and responsible use of Monitored Natural Attenuation (MNA) and Enhanced Passive Remediation (EPR) for chlorinated solvents. This Office of Environmental Management (EM) ''Alternative Project,'' focuses on providing scientific and policy support for MNA/EPR. A broadly representative working group of scientists supports the project along with partnerships with regulatory organizations such as the Interstate Technology and Regulatory Council and the U.S. Environmental Protection Agency (EPA). The initial product of the technical working group was a summary report that articulated the conceptual approach and central scientific tenants of the project, and that identified a prioritized listing of technical targets for field research. This report documented the process in which: (1) scientific ground rules were developed, (2) lines of inquiry were identified and then critically evaluated, (3) promising applied research topics were highlighted in the various lines of inquiry, and (4) these were discussed and prioritized. The summary report will serve as a resource to guide management and decision-making throughout the period of the subject MNA/EPR Alternative Project. To support and more fully document the information presented in the summary report, we are publishing a series of supplemental documents that present the full texts from the technical analyses within the various lines of inquiry (see listing). The following report - documenting our evaluation of the state of the science of the characterization and monitoring process and tools-- is one of those supplemental documents.

  16. The perceptions of inquiry held by greater Houston area science supervisors

    Science.gov (United States)

    Aoki, Jon Michael

    The purpose of this study was to describe the perceptions of inquiry held by responding greater Houston area science supervisors. Leading science organizations proposed that students might be better served if students are mentally and physically engaged in the process of finding out about natural phenomena rather than by didactic modes of teaching and learning. During the past fifty years, inquiry-based instruction has become a significant theme of new science programs. Students are more likely to make connections between classroom exercises and their personal lives through the use of inquiry-based instruction. Learning becomes relevant to students. Conversely, traditional science instruction often has little or no connection to students' everyday lives (Papert, 1980). In short, inquiry-based instruction empowers students to become independent thinkers. The utilization of inquiry-based instruction is essential to a successful reform in science education. However, a reform's success is partly determined by the extent to which science supervisors know and understand inquiry and consequently promote its integration in the district's science curricula. Science supervisors have the role of providing curriculum and instructional support to science teachers and for implementing science programs. There is a fundamental need to assess the perceptions of inquiry held by greater Houston area science supervisors. Science supervisor refers to a class of job titles that include department chairperson, science specialist, science consultant, and science coordinator. The target population was greater Houston area science supervisors in Texas. This study suggests that there are three major implications for educational practice. First, there is the implication that responding greater Houston area science supervisors need an inclusive perception of inquiry. Second, responding greater Houston area science supervisors' perception of inquiry may affect the perceptions and understandings

  17. Supporting Fourth Graders' Ability to Interpret Graphs through Real-Time Graphing Technology: A Preliminary Study

    Science.gov (United States)

    Deniz, Hasan; Dulger, Mehmet F.

    2012-01-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…

  18. Effects of Guided Inquiry versus Lecture Instruction on Final Grade Distribution in a One-Semester Organic and Biochemistry Course

    Science.gov (United States)

    Conway, Colleen J.

    2014-01-01

    A comprehensive guided-inquiry approach was used in a combined organic and biochemistry course for prenursing and predietetics students rather than lecture. To assess its effectiveness, exam grades and final course grades of students in three instructional techniques were compared. The three groups were the following: (i) lecture only, (ii)…

  19. Technology-Enhanced Formative Assessment: A Research-Based Pedagogy for Teaching Science with Classroom Response Technology

    Science.gov (United States)

    Beatty, Ian D.; Gerace, William J.

    2009-01-01

    "Classroom response systems" (CRSs) are a promising instructional technology, but most literature on CRS use fails to distinguish between technology and pedagogy, to define and justify a pedagogical perspective, or to discriminate between pedagogies. "Technology-enhanced formative assessment" (TEFA) is our pedagogy for CRS-based science…

  20. GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools

    Science.gov (United States)

    DiBiase, D.; Baker, T.

    2016-12-01

    According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.

  1. Technology Use in Higher Education Instruction

    Science.gov (United States)

    Elzarka, Sammy

    2012-01-01

    The significance of integrating technology use in higher education instruction is undeniable. The benefits include those related to access to instruction by underserved populations, adequately preparing students for future careers, capitalizing on best instructional practices, developing higher order thinking activities, and engaging students…

  2. Teaching Machines, Programming, Computers, and Instructional Technology: The Roots of Performance Technology.

    Science.gov (United States)

    Deutsch, William

    1992-01-01

    Reviews the history of the development of the field of performance technology. Highlights include early teaching machines, instructional technology, learning theory, programed instruction, the systems approach, needs assessment, branching versus linear program formats, programing languages, and computer-assisted instruction. (LRW)

  3. An Emerging Theory for Evidence Based Information Literacy Instruction in School Libraries, Part 2: Building a Culture of Inquiry

    Directory of Open Access Journals (Sweden)

    Carol A. Gordon

    2009-09-01

    Full Text Available Objective – The purpose of this paper is to articulate a theory for the use of action research as a tool of evidence based practice for information literacy instruction in school libraries. The emerging theory is intended to capture the complex phenomenon of information skills teaching as it is embedded in school curricula. Such a theory is needed to support research on the integrated approach to teaching information skills and knowledge construction within the framework of inquiry learning. Part 1 of this paper, in the previous issue, built a foundation for emerging theory, which established user‐centric information behavior and constructivist learning theory as the substantive theory behind evidence based library instruction in schools. Part 2 continues to build on the Information Search Process and Guided Inquiry as foundational to studying the information‐to‐knowledge connection and the concepts of help and intervention characteristic of 21st century school library instruction.Methods – This paper examines the purpose and methodology of action research as a tool of evidence based instruction. This is accomplished through the explication of three components of theory‐building: paradigm, substantive research, and metatheory. Evidence based practice is identified as the paradigm that contributes values and assumptions about school library instruction. It establishes the role of evidence in teaching and learning, linking theory and practice. Action research, as a tool of evidence based practice is defined as the synthesis of authentic learning, or performance‐based assessment practices that continuously generate evidence throughout the inquiry unit of instruction and traditional data collection methods typically used in formal research. This paper adds social psychology theory from Lewin’s work, which contributes methodology from Gestalt psychology, field theory, group dynamics, and change theory. For Lewin the purpose of action

  4. Nudging toward Inquiry: Developing Questions and a Sense of Wonder

    Science.gov (United States)

    Fontichiaro, Kristin, Comp.

    2010-01-01

    Inquiry does not replace information literacy; it encompasses it. It encourages librarians to consider instructional design beyond information search, retrieval, citation, and use. Inquiry-based learning invites school librarians to step into all aspects of instructional planning, from activating prior knowledge straight through to reflection.…

  5. The Integration of the Big6 Information Literacy and Reading Strategies Instruction in a Fourth Grade Inquiry-Based Learning Course, “Our Aquarium”

    Directory of Open Access Journals (Sweden)

    Lin Ching Chen

    2013-06-01

    Full Text Available This study investigated the student performance in an inquiry learning course which integrated information literacy and reading strategies in a fourth-grade science class. The curriculum design was based on the Big6 model, which includes the stages of task definition, information seeking strategies, location & access, use of information, synthesis, and evaluation. The study duration was one semester. The data was gathered through participant observations, interviews, surveys, tests, and from documents generated in the course implementation. The results showed that the integration of information literacy and reading strategies instruction was feasible. The students performed well in information seeking strategies, locating & accessing information, using and synthesizing information. In contrast, their abilities in task definition and evaluation needed further improvement. Also, while the students did acquire various reading strategies during the inquiry process, they needed more exercises to internalize the skills. The performance on the acquisition of subject knowledge was also improved through the inquiry learning. The participating instructors considered that the collaboration between teachers of different subject matters was the key to a successful integrated instruction [Article content in Chinese

  6. Does a Math-Enhanced Curriculum and Instructional Approach Diminish Students' Attainment of Technical Skills? A Year-Long Experimental Study in Agricultural Power and Technology

    Science.gov (United States)

    Young, R. Brent; Edwards, M. Craig; Leising, James G.

    2009-01-01

    The purpose of this study was to empirically test the posit that students who participated in a contextualized, mathematics-enhanced high school agricultural power and technology (APT) curriculum and aligned instructional approach would not differ significantly (p less than 0.05) in their technical competence from students who participated in the…

  7. Collective inquiry in the context of school-wide reform: Exploring science curriculum and instruction through team-based professional development

    Science.gov (United States)

    Eddy Spicer, David Henning

    Teacher collaboration and joint reflective inquiry have been viewed as central elements of progressive educational reform for more than two decades. More recently, researchers, policy-makers, and practitioners have heralded "blended" or "hybrid" approaches that combine online and on-site environments for collaborative learning as especially promising for "scaling up" instructional improvement. Yet, relatively little is known about how teachers working together navigate organizational and interpersonal constraints to develop and sustain conditions essential to collective inquiry. This in-depth study of meaning making about curriculum and instruction among a group of 11 physics teachers in a public, urban secondary school in the U.S. is an effort to explore collective inquiry as a resource for teacher learning and innovations in teaching practice. Through extended observations, multiple interviews, and close analyses of interaction, the study followed teachers for 7 months as they worked together across 3 settings organized in fundamentally different ways to promote joint inquiry into teaching practice. The explanatory framework of the study rests on the mutually-reinforcing conceptual underpinnings of sociocultural theory and systemic functional linguistics to establish connections between micro-social interactions and macro-social processes. Drawing on systemic functional linguistics, the study explores interpersonal meaning making through close analyses of speech function and speech role in 6 extended sequences of generative interaction. Concepts from activity theory elucidate those features of settings and school that directly impinged on or advanced teachers' collaborative work. Findings run counter to prevailing congenial views of teacher collegiality by identifying ways in which collective inquiry is inherently unstable. That instability makes itself apparent at two levels: (a) the dynamics of authority within the group, and (b) middle-level features of

  8. Science Teachers' Understanding and Practice of Inquiry-Based Instruction in Uganda

    Science.gov (United States)

    Ssempala, Fredrick

    High school students in Uganda perform poorly in science subjects despite the Ugandan government's efforts to train science teachers and build modern science laboratories in many public high schools. The poor performance of students in science subjects has been largely blamed on the inability by many science teachers to teach science through Inquiry-Based Instruction (IBI) to motivate the students to learn science. However, there have been no empirical studies done to establish the factors that influence science teachers' understanding and practice of IBI in Uganda. Most of the published research on IBI has been conducted in developed countries, where the prevailing contexts are very different from the contexts in developing countries such as Uganda. Additionally, few studies have explored how professional development (PD) training workshops on inquiry and nature of science (NOS) affect chemistry teachers' understanding and practice of IBI. My purpose in this multi-case exploratory qualitative study was to explore the effect of a PD workshop on inquiry and NOS on chemistry teachers' understanding and practice of IBI in Kampala city public schools in Uganda. I also explored the relationship between chemistry teachers' NOS understanding and the nature of IBI implemented in their classrooms and the internal and external factors that influence teachers' understanding and practice of IBI. I used a purposive sampling procedure to identify two schools of similar standards from which I selected eight willing chemistry teachers (four from each school) to participate in the study. Half of the teachers (those from School A) attended the PD workshop on inquiry and NOS for six days, while the control group (those from School B) did not. I collected qualitative data through semi-structured interviews, classroom observation, and document analysis. I analyzed these data by structural, conceptual and theoretical coding approach. I established that all the participating chemistry

  9. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    Science.gov (United States)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  10. Four Practical Principles for Enhancing Vocabulary Instruction

    Science.gov (United States)

    Manyak, Patrick C.; Von Gunten, Heather; Autenrieth, David; Gillis, Carolyn; Mastre-O'Farrell, Julie; Irvine-McDermott, Elizabeth; Baumann, James F.; Blachowicz, Camille L. Z.

    2014-01-01

    This article presents four practical principles that lead to enhanced word-meaning instruction in the elementary grades. The authors, a collaborative team of researchers and classroom teachers, identified and developed these principles and related instructional activities during a three-year vocabulary instruction research project. The principles…

  11. Effects of Reflective Inquiry Instructional Technique on Students' Academic Achievement and Ability Level in Electronic Work Trade in Technical Colleges

    Science.gov (United States)

    Ogbuanya, T. C.; Owodunni, A. S.

    2015-01-01

    This study was designed to determine the effect of reflective inquiry instructional technique on achievement of students in Technical Colleges. The study adopted a pre-test, post-test, non-equivalent control group, quasi-experimental research design which involved groups of students in their intact class assigned to experimental group and control…

  12. Supporting Inquiry-based Learning with Google Glass (GPIM)

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Kalz, Marco; Specht, Marcus

    2015-01-01

    Wearable technology is a new genre of technology that is appearing to enhance learning in context. This manuscript introduces a Google Glass application to support Inquiry-based Learning (IBL). Applying Google Glass to IBL, we aim to transform the learning process into a more seamless, personal and

  13. WebQuests: a new instructional strategy for nursing education.

    Science.gov (United States)

    Lahaie, Ulysses

    2007-01-01

    A WebQuest is a model or framework for designing effective Web-based instructional strategies featuring inquiry-oriented activities. It is an innovative approach to learning that is enhanced by the use of evolving instructional technology. WebQuests have invigorated the primary school (grades K through 12) educational sector around the globe, yet there is sparse evidence in the literature of WebQuests at the college and university levels. WebQuests are congruent with pedagogical approaches and cognitive activities commonly used in nursing education. They are simple to construct using a step-by-step approach, and nurse educators will find many related resources on the Internet to help them get started. Included in this article are a discussion of the critical attributes and main features of WebQuests, construction tips, recommended Web sites featuring essential resources, a discussion of WebQuest-related issues identified in the literature, and some suggestions for further research.

  14. A Template for Open Inquiry: Using Questions to Encourage and Support Inquiry in Earth and Space Science

    Science.gov (United States)

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    This article provides an instructional approach to helping students generate open-inquiry research questions, which the authors call the "open-inquiry question template." This template was created based on their experience teaching high school science and preservice university methods courses. To help teachers implement this template, they…

  15. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    Science.gov (United States)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking-inquiry

  16. Technologies and Reformed-Based Science Instruction: The Examination of a Professional Development Model Focused on Supporting Science Teaching and Learning with Technologies

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.

    2015-01-01

    While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional…

  17. Exploring the Benefits of a Collaborative Inquiry Team in Education (CITE Initiative to Develop a Research Community and Enhance Student Engagement

    Directory of Open Access Journals (Sweden)

    Maria Teresa Cantalini-Williams

    2016-06-01

    Full Text Available This study examined a collaborative inquiry process, facilitated by university faculty in an elementary school, intended to develop a research community, foster knowledge mobilization, and enhance student engagement. The Collaborative Inquiry Team in Education (CITE initiative consisted of five school-based sessions that included videos, discussions, and the completion of a research action plan. Data collection and analysis involved sessions’ transcripts, feedback from participants, documents such as brainstorming charts, and student artifacts. Findings indicate that the collaborative inquiry process with enablers of time, flexibility, and support from university faculty increased educators’ research acumen and student engagement in classrooms. The CITE initiative is an effective example of applied education research and knowledge mobilization with the inclusion of faculty and technological support, innovative resources, and the co-construction of new understandings.

  18. Instructional Uses of Web-Based Survey Software

    Directory of Open Access Journals (Sweden)

    Concetta A. DePaolo, Ph.D.

    2006-07-01

    Full Text Available Recent technological advances have led to changes in how instruction is delivered. Such technology can create opportunities to enhance instruction and make instructors more efficient in performing instructional tasks, especially if the technology is easy to use and requires no training. One such technology, web-based survey software, is extremely accessible for anyone with basic computer skills. Web-based survey software can be used for a variety of instructional purposes to streamline instructor tasks, as well as enhance instruction and communication with students. Following a brief overview of the technology, we discuss how Web Forms from nTreePoint can be used to conduct instructional surveys, collect course feedback, conduct peer evaluations of group work, collect completed assignments, schedule meeting times among multiple people, and aid in pedagogical research. We also discuss our experiences with these tasks within traditional on-campus courses and how they were enhanced or expedited by the use of web-based survey software.

  19. Using Inquiry-Based Strategies for Enhancing Students' STEM Education Learning

    Science.gov (United States)

    Lai, Ching-San

    2018-01-01

    The major purpose of this study was to investigate whether or not the inquiry-based method is effective in improving students' learning in STEM (Science, Technology, Engineering, and Mathematics) education. Both quantitative and qualitative methods were used. A total of 73 college students studying Information Technology (IT) were chosen as…

  20. Teen Culture, Technology and Literacy Instruction: Urban Adolescent Students’ Perspectives

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-10-01

    Full Text Available Modern teens have pervasively integrated new technologies into their lives, and technology has become an important component of teen popular culture. Educators have pointed out the promise of exploiting technology to enhance students’ language and literacy skills and general academic success. However, there is no consensus on the effect of technology on teens, and scant literature is available that incorporates the perspective of urban and linguistically diverse students on the feasibility of applying new technologies in teaching and learning literacy in intact classrooms. This paper reports urban adolescents’ perspectives on the use of technology within teen culture, for learning in general and for literacy instruction in particular. Focus group interviews were conducted among linguistically diverse urban students in grades 6, 7 and 8 in a lower income neighborhood in the Northeastern region of the United States. The major findings of the study were that 1 urban teens primarily and almost exclusively used social media and technology devices for peer socializing, 2 they were interested in using technology to improve their literacy skills, but did not appear to voluntarily or independently integrate technology into learning, and 3 8th graders were considerably more sophisticated in their use of technology and their suggestions for application of technology to literacy learning than 6th and 7th graders. These findings lead to suggestions for developing effective literacy instruction using new technologies.

  1. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-01-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning,…

  2. Technology Enhanced Learning in Programming Courses--International Perspective

    Science.gov (United States)

    Ivanovic, Mirjana; Xinogalos, Stelios; Pitner, Tomáš; Savic, Miloš

    2017-01-01

    Technology enhanced learning (TEL) is increasingly influencing university education, mainly in overcoming disadvantages of direct instruction teaching approaches, and encouraging creativity, problem solving and critical thinking in student-centered, interactive learning environments. In this paper, experiences from object-oriented programming…

  3. Instructional Technology in Brazil: A Status Report

    Science.gov (United States)

    Saettler, Paul

    1973-01-01

    A status report on the evolving conceptions of instructional technology and current applications in Brazil. A complementary purpose is to summarize those conditions which vitally influence the general characteristics of the Brazilian educational system and the nature of instructional technology in this major developing country of the world.…

  4. The Influence of Interactive Multimedia Technology to Enhance Achievement Students on Practice Skills in Mechanical Technology

    Science.gov (United States)

    Made Rajendra, I.; Made Sudana, I.

    2018-01-01

    Interactive multimedia technology empowers the educational process by means of increased interaction between teachers and the students. The utilization of technology in the instructional media development has an important role in the increase of the quality of teaching and learning achievements of students. The application of multimedia technology in the instructional media development is able to integrate aspects of knowledge and skills. The success of multimedia technology has revolutionized teaching and learning methods. The design of the study was quasi-experimental with pre and post. The instrument used is the form of questionnaires and tests This study reports research findings indicated that there is a significance difference between the mean performances of students in the experimental group than those students in the control group. The students in the experimental group performed better in mechanical technology practice and in retention test than those in the control group. The study recommended that multimedia instructional tool is an effective tool to enhance achievement students on practice skills in mechanical Technology.

  5. Mass Communication: Technology Use and Instruction. ERIC Digest.

    Science.gov (United States)

    Brynildssen, Shawna

    This Digest reviews the literature on recent attempts to incorporate technology into the instruction of journalism and mass communication. It first discusses the four main categories of current technology use in journalism and mass communication: classroom instruction; online syllabi/materials; distance learning; and technological literacy. It…

  6. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    Science.gov (United States)

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  7. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  8. Optimizing the orchestration of resemiotization with teacher "talk moves": A model of guided-inquiry instruction in middle school science

    Science.gov (United States)

    Millstone, Rachel Diana

    The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply about what constitutes knowledge and understanding in science, and what types of instruction are most conducive to preparing students to participate meaningfully in the society of tomorrow. Because argumentation is the prominent form of productive talk leading to the building of new scientific knowledge, one indicator of successful inquiry lies in students' abilities to communicate their scientific understandings in scientific argumentation structures. The overarching goal of this study is to identify factors that promote effective inquiry-based instruction in middle school science classrooms, as evidenced in students' abilities to engage in quality argumentation with their peers. Three specific research questions were investigated: (1) What factors do teachers identify in their practice as significant to the teaching and learning of science? (2) What factors do students identify as significant to their learning of science? and (3) What factors affect students' opportunities and abilities to achieve sophisticated levels of argumentation in the classroom? Two teachers and forty students participated in this study. Four principle sources of data were collected over a three-month period of time. These included individual teacher interviews, student focus group interviews, fieldnotes, and approximately 85 hours of classroom videotape. From this sample, four pathways for guided-inquiry instruction are identified. Opportunities for student talk were influenced by a combination of factors located in the domains of "teacher practice," "classroom systems," and "physical structures." Combinations of elements from these three

  9. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  10. History and Development of Instructional Technology and Media in Social Work Education

    Science.gov (United States)

    Shorkey, Clayton T.; Uebel, Michael

    2014-01-01

    Since the mid-20th century, instructional technologies and educational media in social work education have undergone significant development with the goals of improving learning and performance and enhancing access. This growth has been marked by technical advances in hardware and by innovations in media, or so-called soft formats. Current…

  11. Technology enhanced learning for occupational and environmental health nursing: a global imperative.

    Science.gov (United States)

    Olson, D K; Cohn, S; Carlson, V

    2000-04-01

    One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information.

  12. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  13. A Study of Cognitive Load for Enhancing Student’s Quantitative Literacy in Inquiry Lab Learning

    Science.gov (United States)

    Nuraeni, E.; Rahman, T.; Alifiani, D. P.; Khoerunnisa, R. S.

    2017-09-01

    Students often find it difficult to appreciate the relevance of the role of quantitative analysis and concept attainment in the science class. This study measured student cognitive load during the inquiry lab of the respiratory system to improve quantitative literacy. Participants in this study were 40 11th graders from senior high school in Indonesia. After students learned, their feelings about the degree of mental effort that it took to complete the learning tasks were measured by 28 self-report on a 4-point Likert scale. The Task Complexity Worksheet were used to asses processing quantitative information and paper based test were applied to assess participants’ concept achievements. The results showed that inquiry instructional induced a relatively low mental effort, high processing information and high concept achievments.

  14. Developing the conceptual instructional design with inquiry-based instruction model of secondary students at the 10th grade level on digestion system and cellular degradation issue

    Science.gov (United States)

    Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn

    2018-01-01

    The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and

  15. Supporting inquiry learning by promoting normative understanding of multivariable causality

    Science.gov (United States)

    Keselman, Alla

    2003-11-01

    Early adolescents may lack the cognitive and metacognitive skills necessary for effective inquiry learning. In particular, they are likely to have a nonnormative mental model of multivariable causality in which effects of individual variables are neither additive nor consistent. Described here is a software-based intervention designed to facilitate students' metalevel and performance-level inquiry skills by enhancing their understanding of multivariable causality. Relative to an exploration-only group, sixth graders who practiced predicting an outcome (earthquake risk) based on multiple factors demonstrated increased attention to evidence, improved metalevel appreciation of effective strategies, and a trend toward consistent use of a controlled comparison strategy. Sixth graders who also received explicit instruction in making predictions based on multiple factors showed additional improvement in their ability to compare multiple instances as a basis for inferences and constructed the most accurate knowledge of the system. Gains were maintained in transfer tasks. The cognitive skills and metalevel understanding examined here are essential to inquiry learning.

  16. Toward a Post-Modern Agenda in Instructional Technology.

    Science.gov (United States)

    Solomon, David L.

    2000-01-01

    Discusses the concept of post-modernism and relates it to the field of instructional technology. Topics include structuralism; semiotics; poststructuralism; deconstruction; knowledge and power; critical theory; self-concept; post-modern assumptions; and potential contributions of post-modern concepts in instructional technology. (Contains 80…

  17. Kidspiration[R] for Inquiry-Centered Activities

    Science.gov (United States)

    Shaw, Edward L., Jr.; Baggett, Paige V.; Salyer, Barbara

    2004-01-01

    Computer technology can be integrated into science inquiry activities to increase student motivation and enhance and expand scientific thinking. Fifth-grade students used the visual thinking tools in the Kidspiration[R] software program to generate and represent a web of hypotheses around the question, "What affects the distance a marble rolls?"…

  18. Self-instructional "virtual pathology" laboratories using web-based technology enhance medical school teaching of pathology.

    Science.gov (United States)

    Marchevsky, Alberto M; Relan, Anju; Baillie, Susan

    2003-05-01

    Second-year medical students have traditionally been taught pulmonary pathophysiology at the University of California-Los Angeles (UCLA) School of Medicine using lectures, discussion groups, and laboratory sessions. Since 1998, the laboratory sessions have been replaced by 4 interactive, self-instructional sessions using web-based technology and case-based instruction. This article addresses nature of transformation that occurred from within the course in response to the infusion of new technologies. The vast majority of the course content has been digitized and incorporated into the website of the Pathophysiology of Disease course. The teaching histological slides have been photographed digitally and organized into "cases" with clinical information, digital images and text, and audio descriptions. The students study the materials from these cases at their own pace in 2 "virtual pathology" laboratory, with a few instructors supervising the on-site sessions. The students discuss additional cases available on the website in 2 other laboratory sessions supervised by a pulmonologist and a pathologist. Marked improvement in student participation and satisfaction was seen with the use of web-based instruction. Attendance at laboratory sessions, where the students had previously been required to bring their own microscopes to study histological slides at their own pace, increased from approximately 30% to 40% of the class in previous years to almost 100%. Satisfaction surveys showed progressive improvement over the past 4 years, as various suggestions were implemented. The value of web-based instruction of pathology at the UCLA School of Medicine is discussed.

  19. Inquiry Teaching in Clinical Periodontics.

    Science.gov (United States)

    Heins, Paul J.; Mackenzie, Richard S.

    1987-01-01

    An adaptation of the inquiry method of teaching, which develops skills of information retrieval and reasoning through systematic questioning by the teacher, is proposed for instruction in clinical periodontics. (MSE)

  20. Scaffolding 6th Graders' Problem Solving in Technology-Enhanced Science Classrooms: A Qualitative Case Study

    Science.gov (United States)

    Kim, Minchi C.; Hannafin, Michael J.

    2011-01-01

    In response to the calls to improve and deepen scientific understanding and literacy, considerable effort has been invested in developing sustainable technology-enhanced learning environments to improve science inquiry. Research has provided important guidance for scaffolding learning in mathematics and science. However, these reports have…

  1. An Exploration of Elementary Teachers' Beliefs and Perceptions About Science Inquiry: A Mixed Methods Study

    Science.gov (United States)

    Hamadeh, Linda

    In order for science-based inquiry instruction to happen on a large scale in elementary classrooms across the country, evidence must be provided that implementing this reform can be realistic and practical, despite the challenges and obstacles teachers may face. This study sought to examine elementary teachers' knowledge and understanding of, attitudes toward, and overall perceptions of inquiry-based science instruction, and how these beliefs influenced their inquiry practice in the classroom. It offered a description and analysis of the approaches elementary science teachers in Islamic schools reported using to promote inquiry within the context of their science classrooms, and addressed the challenges the participating teachers faced when implementing scientific inquiry strategies in their instruction. The research followed a mixed method approach, best described as a sequential two-strand design (Teddlie & Tashakkori, 2006). Sequential mixed designs develop two methodological strands that occur chronologically, and in the case of this research, QUAN→QUAL. Findings from the study supported the notion that the school and/or classroom environment could be a contextual factor that influenced some teachers' classroom beliefs about the feasibility of implementing science inquiry. Moreover, although teacher beliefs are influential, they are malleable and adaptable and influenced primarily by their own personal direct experiences with inquiry instruction or lack of.

  2. Sustaining Innovation: Developing an Instructional Technology Assessment Process

    Science.gov (United States)

    Carmo, Monica Cristina

    2013-01-01

    This case study developed an instructional technology assessment process for the Gevirtz Graduate School of Education (GGSE). The theoretical framework of Adelman and Taylor (2001) guided the development of this instructional technology assessment process and the tools to aid in its facilitation. GGSE faculty, staff, and graduate students…

  3. The Impact of a Practice-Teaching Professional Development Model on Teachers' Inquiry Instruction and Inquiry Efficacy Beliefs

    Science.gov (United States)

    Lotter, Christine R.; Thompson, Stephen; Dickenson, Tammiee S.; Smiley, Whitney F.; Blue, Genine; Rea, Mary

    2018-01-01

    This study examined changes in middle school teachers' beliefs about inquiry, implementation of inquiry practices, and self-efficacy to teach science through inquiry after participating in a year-long professional development program. The professional development model design was based on Bandura's (1986) social cognitive theory of learning and…

  4. Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit

    Science.gov (United States)

    Chiu, Jennifer L.; Linn, Marcia C.

    2014-01-01

    This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent…

  5. Computer-Supported Instruction in Enhancing the Performance of Dyscalculics

    Science.gov (United States)

    Kumar, S. Praveen; Raja, B. William Dharma

    2010-01-01

    The use of instructional media is an essential component of teaching-learning process which contributes to the efficiency as well as effectiveness of the teaching-learning process. Computer-supported instruction has a very important role to play as an advanced technological instruction as it employs different instructional techniques like…

  6. Sustaining inquiry-based teaching methods in the middle school science classroom

    Science.gov (United States)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  7. Mapping Trade-Offs in Teachers' Integration of Technology-Supported Inquiry in High School Science Classes

    Science.gov (United States)

    Sandoval, William A.; Daniszewski, Kenneth

    2004-01-01

    This paper explores how two teachers concurrently enacting the same technology-based inquiry unit on evolution structured activity and discourse in their classrooms to connect students' computer-based investigations to formal domain theories. Our analyses show that the teachers' interactions with their students during inquiry were quite similar,…

  8. Exploring the inquiry experience: A focus on Kentucky teachers

    Science.gov (United States)

    Nolte, Beth

    2007-12-01

    Inquiry-based instruction is driven by active participation by the learner. Through the learning process, critical thinking skills are practiced. While inquiry methods are often discussed in the realm of science education, the methods are not subject specific. In fact, the Kentucky Program of Studies calls for the incorporation of inquiry strategies into all areas of the curriculum. This call for more inquiry-based education occurs in the midst of a national testing debate in which accountability is tied to student test scores. This study takes a narrative approach to explore teachers' experiences with using inquiry methods. Interviews were conducted with teachers who, at least 1 year prior to participating in this study, had attended a weeklong intensive professional development workshop on using inquiry methods for instruction. A method is described for analyzing interview data direct in its digital audio form---without transcription. Eight teachers' experiences are presented here in the narrative form and their narratives are compared for an overall analysis. Themes of conflict previously reported in the literature are explored in participants' stories. This research concludes with a discussion of the results, a reflection on the method, and suggestions for the future based on teachers' experiences with using inquiry-based learning strategies.

  9. Integration of the BSCS 5E instructional method and technology in an anatomy and physiology lab

    Science.gov (United States)

    Gopal, Tamilselvi

    This research provides an understanding of how the 5E instructional method combined with educational technology tools can be used in teaching undergraduate college level anatomy and physiology laboratory classes. The 5E instructional model is the exemplary instructional model in teaching biology for high school students. The phases in the 5E learning cycle are Engage, Explore, Explain, Elaborate, and Evaluate. In every step of the learning cycle, the researcher used appropriate technology tools to enhance the teaching and learning processes. The researcher used the Dynamic Instructional Design model to identify the appropriate technology tools for instruction. The topics selected for modification were 'The Heart' and 'The Vascular System.' The researcher chose these two topics based on results of the preliminary survey that the researcher conducted during summer 2008. The existing topics identified on the syllabus were followed but the teaching method was changed. In order to accomplish this, the researcher created a class Website and included tools including pronunciation, spelling, an Interactive Tool, and Web links. In addition, the researcher also created teacher resources for the Pronunciation Corner and Spelling Bee, so that any teacher can customize and use these tools for their classes. The results indicated that the students took advantage of the technology provided.

  10. Enhancing Quality in Educational Practice and Instructional Delivery ...

    African Journals Online (AJOL)

    FIRST LADY

    instructions to students in technical and vocational education (TVE) programs. ... in Nigeria perceive their traditional methods of instruction as obsolete with ..... Even so, skills necessary to adapt to the modern technology should be taught.

  11. The Intersection of Preservice Teachers' Confidence, Perceptions, and Ideas for Using Instructional Technology for Teaching and Learning

    Science.gov (United States)

    Nadelson, Louis S.; Bennett, Darcie; Gwilliam, Ezra; Howlett, Catherine; Oswalt, Steve; Sand, Jaime

    2013-01-01

    The evolving landscape of instructional technology is influenced by access to a wide range of technology tools that can be accessed to enhance teaching and learning. Technological tools such as smart phones, apps, tablets, social media, and YouTube exemplify the kinds of resources that are readily available for teaching and learning. Further, the…

  12. The Integration of Instructional Technology by Teacher Educators at ...

    African Journals Online (AJOL)

    The argument put up in this study is that if teachers have to use instructional technology in their classroom, they have to see lecturers modelling the best practices in technology utilisation. As such, the purpose of the study was to investigate the use of instructional technology by teacher educators in the Faculty of Education ...

  13. Connecting Effective Instruction and Technology. Intel-elebration: Safari.

    Science.gov (United States)

    Burton, Larry D.; Prest, Sharon

    Intel-ebration is an attempt to integrate the following research-based instructional frameworks and strategies: (1) dimensions of learning; (2) multiple intelligences; (3) thematic instruction; (4) cooperative learning; (5) project-based learning; and (6) instructional technology. This paper presents a thematic unit on safari, using the…

  14. What Do Students Want? Making Sense of Student Preferences in Technology-Enhanced Learning

    Science.gov (United States)

    Pechenkina, Ekaterina; Aeschliman, Carol

    2017-01-01

    This article, with its focus on university students as intended recipients and users of technological innovations in education, explores student preferences across three dimensions of technology-enhanced learning: mode of instruction; communication; and educational technology tools embedded in learning and teaching activities. The article draws on…

  15. Paths through interpretive territory: Two teachers' enactment of a technology-rich, inquiry-fostering science curriculum

    Science.gov (United States)

    McDonald, Scott Powell

    New understandings about how people learn and constructivist pedagogy pose challenges for teachers. Science teachers face an additional challenge of developing inquiry-based pedagogy to foster complex reasoning skills. Theory provides only fuzzy guidance as to how constructivist or inquiry pedagogy can be accomplished in a wide variety of contexts and local constraints. This study contributes to the understanding of the development of constructivist, inquiry-based pedagogy by addressing the question: How do teachers interpret and enact a technology-rich, inquiry fostering science curricula for fifth grade students' biodiversity learning? This research is a case study of two teachers chosen as critical contrasting cases and represent differences across multiple criteria including: urban I suburban, teaching philosophy, and content preparation. The two fifth grade teachers each enacted BioKIDS: Kids' Inquiry in Diverse Species, an eight week curriculum focused on biodiversity. BioKIDS incorporates multiple learning technologies to support student learning including handheld computer software designed to help students collect field data, and a web-based resource for data on local animal species. The results of this study indicate there are tensions teachers must struggle with when setting goals during enactment of inquiry science curricula. They must find a balance between an emphasis on authentic learning and authentic science, and between natural history and natural science. Authentic learning focuses on students' interests and lives; Authentic science focuses on students working with the tools and processes of science. Natural history focuses on the foundational skills in science of observation and classification. Natural science focuses on analytical science drawing on data to develop claims about the world. These two key tensions in teachers' goal setting were critical in defining and understanding differences in how teachers interpreted a curriculum to meet

  16. Students' attitude-related responses to inquiry learning in undergraduate kinesiology laboratory instruction

    Science.gov (United States)

    Henige, Kimberly Ann

    The purpose of this investigation was to determine whether the student attitudes are impacted when teaching methods in an undergraduate Kinesiology lab course shift from a traditional, cookbook-style, low inquiry-level to an investigative, high inquiry-level approach. Students participated in five weeks of Level 0-1 (low) inquiry activities, followed by five weeks of a Level 3 (high) inquiry project. The same Likert-scale survey was administered to students before and after each 5-week period. The attitudes measured by the survey included students' (a) attitude to scientific inquiry, (b) adoption of scientific attitudes, (c) enjoyment of science lessons, and (d) motivation in science. Repeated measures ANOVAs revealed no significant change in any of the attitude measures when the survey results from the different time points were compared. An open-ended qualitative survey was given to the students at the end of the semester and provided more insight. When asked to compare the low and high-level inquiry experiences, most students reported enjoying the higher level of inquiry more. On the other hand, most students felt they learned more during the low inquiry-level activities. The reported level of motivation in lab was about the same for both levels. When asked what they liked most about the high-level inquiry project, students favored aspects such as the independence, responsibility, and personal relevance. When asked what they liked the least, most students said there was nothing they disliked. Of the minority of students who did not like the high-level of inquiry, most claimed to be uncomfortable with the lack of structure and guidance. Other findings were that many students expressed a new or increased respect and appreciation for what scientists do. Some students experienced a decrease in their reliance on science to be true and correct. While some students thought the high-level inquiry was harder, others perceived it as being easier. These findings illustrate

  17. Signature Pedagogy: A Literature Review of Social Studies and Technology Research

    Science.gov (United States)

    Beck, Dennis; Eno, Jenni

    2012-01-01

    A literature review of 121 peer-reviewed articles, books, and conference proceedings was conducted to determine the signature pedagogies of social studies education and technology integration. The authors found that the signature social studies pedagogy is based on two primary instructional models: direct-instruction and inquiry-based,…

  18. THE EFFECTS OF INQUIRY TRAINING ASSIST MEDIA OF HANDOUT AND ATTITUDE SCIENTIFIC TOWARDS SCIENCE PROCESS SKILLS IN PHYSICS STUDENTS

    Directory of Open Access Journals (Sweden)

    Halimatus Sakdiah

    2014-12-01

    Full Text Available The purpose of this research has described difference: (1 skill of student science process between inquiry training assist media of handout and direct instruction, (2 skill of student science process between student possess attitude scientific upon and under of mean, and (3 interaction of inquiry training assist media handout and direct instruction with attitude scientific increase skill of student science process. Type of this research is experiment quasi, use student of senior high school Private sector of  Prayatna as population and chosen sample by cluster sampling random. The instrument used essay test base on skill of science process which have valid and reliable. Data be analysed by using ANAVA two ways. Result of research show that any difference of skill of student science process (1 between inquiry training assist media of handout and direct instruction, where inquiry training assist media of handout better then direct instruction, (2 between student possess attitude scientific upon and under of mean, where possess attitude scientific upon of mean better then student possess attitude scientific under of mean and (3 any interaction between inquiry training assist media of handout and direct instruction with attitude scientific increase skill of student science process, where interaction in class direct instruction better then inquiry training assist media of handout.

  19. Multimedia Instruction Initiative: Building Faculty Competence.

    Science.gov (United States)

    Haile, Penelope J.

    Hofstra University began a university-wide initiative to enhance classroom instruction with multimedia technology and foster collaborative approaches to learning. The Multimedia Instruction Initiative emphasized teamwork among faculty, students, and computer center support staff to develop a technology-enriched learning environment supported by…

  20. Teacher Candidate Technology Integration: For Student Learning or Instruction?

    Science.gov (United States)

    Clark, Cynthia; Zhang, Shaoan; Strudler, Neal

    2015-01-01

    Transfer of instructional technology knowledge for student-centered learning by teacher candidates is investigated in this study. Using the transfer of learning theoretical framework, a mixed methods research design was employed to investigate whether secondary teacher candidates were able to transfer the instructional technology knowledge for…

  1. Big inquiry

    Energy Technology Data Exchange (ETDEWEB)

    Wynne, B [Lancaster Univ. (UK)

    1979-06-28

    The recently published report entitled 'The Big Public Inquiry' from the Council for Science and Society and the Outer Circle Policy Unit is considered, with especial reference to any future enquiry which may take place into the first commercial fast breeder reactor. Proposals embodied in the report include stronger rights for objectors and an attempt is made to tackle the problem that participation in a public inquiry is far too late to be objective. It is felt by the author that the CSS/OCPU report is a constructive contribution to the debate about big technology inquiries but that it fails to understand the deeper currents in the economic and political structure of technology which so influence the consequences of whatever formal procedures are evolved.

  2. Instructional Technology, Temper, Technique, and Teacher Empowerment.

    Science.gov (United States)

    Hunter, J. Mark; Garrison, James W.

    1991-01-01

    Scientific management and hierarchical accountability tend to destroy dialogue and issue ideas as orders to be obeyed. Instructional technology packages can actually enslave teachers. The emendation or feedback loop built into all instructional systems should allow educators to alter design in the context of practice and help technologists design…

  3. An impoverished machine: challenges to human learning and instructional technology.

    Science.gov (United States)

    Taraban, Roman

    2008-08-01

    Many of the limitations to human learning and processing identified by cognitive psychologists over the last 50 years still hold true, including computational constraints, low learning rates, and unreliable processing. Instructional technology can be used in classrooms and in other learning contexts to address these limitations to learning. However, creating technological innovations is not enough. As part of psychological science, the development and assessment of instructional systems should be guided by theories and practices within the discipline. The technology we develop should become an object of research like other phenomena that are studied. In the present article, I present an informal account of my own work in assessing instructional technology for engineering thermodynamics to show not only the benefits, but also the limitations, in studying the technology we create. I conclude by considering several ways of advancing the development of instructional technology within the SCiP community, including interdisciplinary research and envisioning learning contexts that differ radically from traditional learning focused on lectures and testing.

  4. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  5. An Inquiry-Based Laboratory Design for Microbial Ecology

    Science.gov (United States)

    Tessier, Jack T.; Penniman, Clayton A.

    2006-01-01

    There is a collective need to increase the use of inquiry-based instruction at the college level. This paper provides of an example of how inquiry was successfully used in the laboratory component of an undergraduate course in microbial ecology. Students were offered a collection of field and laboratory methods to choose from, and they developed a…

  6. Inquiry Teaching in High School Chemistry Classrooms: The Role of Knowledge and Beliefs

    Science.gov (United States)

    Roehrig, Gillian H.; Luft, Julie A.

    2004-01-01

    The call for implementation of inquiry-based teaching in secondary classrooms has taken on a new sense of urgency, hence several instructions models are developed to assists teachers in implementing inquiry in their classrooms. The role of knowledge and beliefs in inquiry teaching are examined.

  7. Technology-enhanced simulation in emergency medicine: a systematic review and meta-analysis.

    Science.gov (United States)

    Ilgen, Jonathan S; Sherbino, Jonathan; Cook, David A

    2013-02-01

    Technology-enhanced simulation is used frequently in emergency medicine (EM) training programs. Evidence for its effectiveness, however, remains unclear. The objective of this study was to evaluate the effectiveness of technology-enhanced simulation for training in EM and identify instructional design features associated with improved outcomes by conducting a systematic review. The authors systematically searched MEDLINE, EMBASE, CINAHL, ERIC, PsychINFO, Scopus, key journals, and previous review bibliographies through May 2011. Original research articles in any language were selected if they compared simulation to no intervention or another educational activity for the purposes of training EM health professionals (including student and practicing physicians, midlevel providers, nurses, and prehospital providers). Reviewers evaluated study quality and abstracted information on learners, instructional design (curricular integration, feedback, repetitive practice, mastery learning), and outcomes. From a collection of 10,903 articles, 85 eligible studies enrolling 6,099 EM learners were identified. Of these, 56 studies compared simulation to no intervention, 12 compared simulation with another form of instruction, and 19 compared two forms of simulation. Effect sizes were pooled using a random-effects model. Heterogeneity among these studies was large (I(2) ≥ 50%). Among studies comparing simulation to no intervention, pooled effect sizes were large (range = 1.13 to 1.48) for knowledge, time, and skills and small to moderate for behaviors with patients (0.62) and patient effects (0.43; all p 0.1). Qualitative comparisons of different simulation curricula are limited, although feedback, mastery learning, and higher fidelity were associated with improved learning outcomes. Technology-enhanced simulation for EM learners is associated with moderate or large favorable effects in comparison with no intervention and generally small and nonsignificant benefits in comparison

  8. How to Incorporate Technology with Inquiry-Based Learning to Enhance the Understanding of Chemical Composition; How to Analyze Unknown Samples

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2017-02-01

    Full Text Available The use of technology in teaching offers numerous amounts of possibilities and can be challenging for physics, chemistry and geology content courses. When incorporating technology into a science content lab it is better to be driven by pedagogy than by technology in an inquiry-based lab setting. Students need to be introduced to real-world technology in the beginning of first year chemistry or physics course to ensure real-world technology concepts while assisting with content such as periodic trends on the periodic table. This article will describe the use of technology with Raman Spectroscopy and Energy Dispersive XRay Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR to research chemical compositions in the real world of unknown samples. Such unknown samples utilized in this lab were clamshell (parts of clams that look like shark teeth versus shark teeth. The data will be shared to show how the students (pre-service teachers and in-service teachers solved the problem using technology while learning important content that will assist in the next level of chemistry, physics and even geology.

  9. Re-thinking instructional strategies for enhancing gender equity in ...

    African Journals Online (AJOL)

    Re-thinking instructional strategies for enhancing gender equity in learning ... instructional mode on the cognitive achievement of boys and girls in primary science. ... Results revealed no statistically significant difference in the achievement of ...

  10. Investigating Preservice Teachers' Beliefs toward Cultural Diversity Employing an Inquiry through Literature Approach

    Science.gov (United States)

    Rangseechatchawan, Dusadee

    2012-01-01

    This study investigated preservice teachers' beliefs toward cultural diversity by employing an inquiry through literature approach. The purpose of this study was to examine the impact of an inquiry through literature instructional format, such as book clubs, and whole class and individual inquiry, on preservice teachers' beliefs regarding cultural…

  11. Exploring Mechanisms for Effective Technology-Enhanced Simulation-based Education in Wilderness Medicine: A Systematic Review.

    Science.gov (United States)

    MacKinnon, Ralph; Aitken, Deborah; Humphries, Christopher

    2015-12-17

     Technology-enhanced simulation is well-established in healthcare teaching curricula, including those regarding wilderness medicine. Compellingly, the evidence base for the value of this educational modality to improve learner competencies and patient outcomes are increasing.  The aim was to systematically review the characteristics of technology-enhanced simulation presented in the wilderness medicine literature to date. Then, the secondary aim was to explore how this technology has been used and if the use of this technology has been associated with improved learner or patient outcomes.  EMBASE and MEDLINE were systematically searched from 1946 to 2014, for articles on the provision of technology-enhanced simulation to teach wilderness medicine. Working independently, the team evaluated the information on the criteria of learners, setting, instructional design, content, and outcomes.  From a pool of 37 articles, 11 publications were eligible for systematic review. The majority of learners in the included publications were medical students, settings included both indoors and outdoors, and the main focus clinical content was initial trauma management with some including leadership skills. The most prevalent instructional design components were clinical variation and cognitive interactivity, with learner satisfaction as the main outcome.  The results confirm that the current provision of wilderness medicine utilizing technology-enhanced simulation is aligned with instructional design characteristics that have been used to achieve effective learning. Future research should aim to demonstrate the translation of learning into the clinical field to produce improved learner outcomes and create improved patient outcomes.

  12. TECHNOLOGY-ENHANCED TEACHING: A REVOLUTIONARY APPROACH TO TEACHING ENGLISH AS A FOREIGN LANGUAGE

    Directory of Open Access Journals (Sweden)

    Alberth Alberth

    2013-01-01

    Full Text Available The online course offerings have grown exponentially globally since the turn of the 21st century - be they as a primary mode of instruction or as a supplement to traditional face-to-face classroom instruction, and this phenomenon is most noticeable in higher education. More recently, the new technology has also been integrated into the English as a Foreign Language,henceforth called EFL, classrooms. This article argues that the notion of technology-enhanced language learning is not just an intriguing idea – it is a necessity, for it has a great potential to offer in facilitating the development of English language proficiency of EFL learners through computer-mediated communication. Additionally, it contends that the new technology can potentially address most, if not all, of the shortcomings inherent to the EFL classroom including, but not limited to, lack of exposure to the target language, lack of practice, and lack of learning resources. Theoretical implications of technology-enhanced language teaching and learning will also be explored.

  13. The Effect of Serious Video Game Play on Science Inquiry Scores

    Science.gov (United States)

    Hilosky, Alexandra Borzillo

    American students are not developing the science inquiry skills needed to solve complex 21st century problems, thus impacting the workforce. In 2009, American high school students ranked 21 out of 26 in the category of problem-solving according to the Program for International Student Assessment. Serious video games have powerful epistemic value and are beneficial with respect to enhancing inquiry, effective problem-solving. The purpose of this correlational, quantitative study was to test Gee's assumption regarding the cycle of thinking (routinization, automatization, and deroutinization) by determining whether players status was a significant predictor of science inquiry scores, controlling for age, gender, and major. The 156 non-random volunteers who participated in this study were enrolled in a 2-year college in the northeastern U.S. Multiple regression analyses revealed that major was the strongest overall (significant) predictor, b = -.84, t(149) = -3.70, p video game play. Recommendations include using serious games as instructional tools and to assess student learning (formative and summative), especially among non-traditional learners.

  14. Towards an Ecological Inquiry in Child-Computer Interaction

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Iversen, Ole Sejer; Hjermitslev, Thomas

    2013-01-01

    The paper introduces an Ecological Inquiry as a methodological approach for designing technology with children. The inquiry is based on the ‘ecological turn’ in HCI, Ubiquitous Computing and Participatory Design that shift the emphasis of design from technological artifacts to entire use ecologies...... into which technologies are integrated. Our Ecological Inquiry extends Cooperative Inquiry in three directions: from understanding to emergence of social practices and meanings, from design of artifacts to hybrid environments, and from a focus on technology to appropriations through design and use. We...... exemplify our approach in a case study in which we designed social technologies for hybrid learning environments with children in two schools, and discuss how an Ecological Inquiry can inform existing approaches in CCI....

  15. SAS2: A Guide to Collaborative Inquiry and Social Engagement ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2008-01-01

    Jan 1, 2008 ... It also provides detailed instructions on how to integrate and ground collaborative inquiry in the projects, plans, evaluations and activities of multiple stakeholders. Part 2 presents a selection of techniques for collaborative inquiry and examples of real-life applications in South Asia and Latin America.

  16. Virtual science instructional strategies: A set of actual practices as perceived by secondary science educators

    Science.gov (United States)

    Gillette, Tammy J.

    2009-12-01

    technology tools that were used by online instructors. Online instructors tend to rely on more technological tools such as virtual labs. A list of preferred instructional practices was generated from the qualitative responses to the open-ended questions. Research concerned with this line of inquiry should continue in order to enhance both theory and practice in regard to online instruction.

  17. Learning How to Design a Technology Supported Inquiry-Based Learning Environment

    Science.gov (United States)

    Hakverdi-Can, Meral; Sonmez, Duygu

    2012-01-01

    This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…

  18. Technologically Enhanced Language Learning and Instruction: Подорожі.UA: Beginners’ Ukrainian

    Directory of Open Access Journals (Sweden)

    Olena Sivachenko

    2017-03-01

    Full Text Available This article reports on the development of a new blended-learning model for beginners’ Ukrainian language learning and instruction, an innovative approach in foreign language education. This model is a combination of face-to-face and online learning and is a response to new realities in education, and language learning in particular, in our fast-paced, technologically enhanced everyday life. The authors focuses on the design of their new blended-learning textbook Подорожі.UA (Travels.UA, which contains a considerable online component, closely interconnected with in-class, or face-to-face, learning and teaching materials. They discuss their approach to the pedagogical design of this new model, used in the textbook, and also address piloting challenges. The study concludes with a report on the overall success of this project and invites others who teach Ukrainian at postsecondary levels to pilot the project in their institutions.

  19. Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms

    Science.gov (United States)

    Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…

  20. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-04-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  1. Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?

    Science.gov (United States)

    Ryker, Katherine; McConnell, David

    2014-01-01

    This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…

  2. Research in Brief: Shared Decision Making Enhances Instructional Leadership.

    Science.gov (United States)

    Lindle, Joan Clark

    1992-01-01

    A study of three middle school principals about their instructional leadership activities before and after the establishment of shared decision making revealed an enhancement of leadership. The nature of the middle school teacher's role demands participative leadership and communication and decision making revolved around instructional issues.…

  3. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    Science.gov (United States)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry

  4. Orchestrating Inquiry Learning

    Science.gov (United States)

    Littleton, Karen, Ed.; Scanlon, Eileen, Ed.; Sharples, Mike, Ed.

    2011-01-01

    There is currently a rapidly growing interest in inquiry learning and an emerging consensus among researchers that, particularly when supported by technology, it can be a significant vehicle for developing higher order thinking skills. Inquiry learning methods also offer learners meaningful and productive approaches to the development of their…

  5. Principal Leadership for Technology-enhanced Learning in Science

    Science.gov (United States)

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2008-02-01

    Reforms such as technology-enhanced instruction require principal leadership. Yet, many principals report that they need help to guide implementation of science and technology reforms. We identify strategies for helping principals provide this leadership. A two-phase design is employed. In the first phase we elicit principals' varied ideas about the Technology-enhanced Learning in Science (TELS) curriculum materials being implemented by teachers in their schools, and in the second phase we engage principals in a leadership workshop designed based on the ideas they generated. Analysis uses an emergent coding scheme to categorize principals' ideas, and a knowledge integration framework to capture the development of these ideas. The analysis suggests that principals frame their thinking about the implementation of TELS in terms of: principal leadership, curriculum, educational policy, teacher learning, student outcomes and financial resources. They seek to improve their own knowledge to support this reform. The principals organize their ideas around individual school goals and current political issues. Principals prefer professional development activities that engage them in reviewing curricula and student work with other principals. Based on the analysis, this study offers guidelines for creating learning opportunities that enhance principals' leadership abilities in technology and science reform.

  6. Potentials in Udeskole: Inquiry-Based Teaching Outside the Classroom

    Directory of Open Access Journals (Sweden)

    Karen S. Barfod

    2018-05-01

    Full Text Available Most research on outdoor education, including the Scandinavian concept udeskole (regular curriculum-based teaching outside the classroom, has focused on pupils' outcomes, whereas less has focused on teachers' practices. In this article, we described the occurrence of inquiry-based teaching in udeskole. To analyze practice, we extended the notion of inquiry-based education. Within science and mathematics education, a strong stepwise teaching approach formerly was established, called Inquiry Based Science and Mathematics Education (IBSME, emphasizing pupils' hypothesis testing, data validation and systematic experimentation. In this study, we broadened the IBSME-concept of inquiry in order to include a more holistic, non-linear teaching approach, but excluding teacher-instructed inquiry. Using this idea, we observed and documented by field notes how five experienced teachers practiced mathematics and science teaching in udeskole at primary level in Denmark. Twenty-eight outdoor days were observed. Each day was divided into separate teaching incidents with a distinct start and end. The level of teacher interference and possible choices in each teaching incidents formed the analytic background. We analyzed each of the 71 teaching incidents, and categorized each of them into one of five categories numbered 4–0. The categories designated numbers 4–2 contained the inquiry-based teaching incidents, and the categories designated 1 and 0 were categorized as “non-inquiry-based.” They contained teaching incidents where the teacher was instructing the pupils (category 1, and outdoor teaching activities with no sign of inquiry, called training activities (category 0. Our results showed that about half of the analyzed outdoor teaching practice seemed to be inquiry-based, emphasizing pupils' choice and presenting cognitive challenge. This indicates that the analyzed udeskole had the potential to support an explorative and multifaceted inquiry

  7. The Diagrammatic Inquiry of Architectural Media

    Directory of Open Access Journals (Sweden)

    Peter Bertram

    2018-04-01

    Full Text Available According to the philosopher C.S. Peirce the diagram is a system of interrelated parts that operates in a manner similar to another system of interrelated parts. It is a mental map of relations. It drives an open-ended inquiry on a given problem. In architectural discourse a diagram is often defined as a particular form of drawing. It is a simplified image and/or it uses a notation system. In this context, the latter is termed a digital diagram. However, an architectural medium has material properties that influence both the making and the translation of the drawing. It is both a singular artefact and a set of instructions for actions undertaken in another space than that of the medium. This article introduces the notion of an immanent diagram to discuss how the composition of a drawing is distributed. The proposition is that the architectural diagrammatic inquiry operates in the struggle between digital and analogue diagrams. I develop the argument using a traditional architectural drawing as a starting point. In the last section, I discuss a contemporary computer based design practice in which drawings and prototype modelling constitute a heterogeneous technological environment.

  8. Transforming student's discourse as a method of teaching science inquiry

    Science.gov (United States)

    Livingston, David

    2005-07-01

    A qualitative case study on the instructional practice of one secondary science teacher addresses the persistent reluctance of many science teachers to integrate the cultural resources and social practices of professional science communities into the science content they teach. The literature has shown that teachers' hesitation to implement a social and locally situated learning strategy curtails students' ability to draw upon the language of science necessary to co-construct and shape authentic science inquiry and in particular appropriate argument schemes. The study hypothesized that a teacher's dialogic facilitation of a particular social context and instructional practices enhances a students' ability to express verbally the claims and warrants that rise from evidence taken from their inquiries of natural phenomena. The study also tracks students' use of the Key Words and Ideas of this science curriculum for the purpose of assessing the degree of students' assimilation of these terms into their speech and written expressions of inquiry. The theoretical framework is Vygotskian (1978) and the analysis of the qualitative data is founded on Toulmin (1958), Walton (1996), Jimenez-Alexandre et al. (2000) and Shavelson (1996). The dialogic structure of this teacher's facilitation of student's science knowledge is shown to utilize students' presumptive statements to hone their construction of inductive or deductive arguments. This instructional practice may represent teacher-student activity within the zone of proximal development and supports Vygotsky's notion that a knowledgeable other is instrumental in transforming student's spontaneous talk into scientific speech. The tracking of the curriculum's Key Words and Ideas into students' speech and writing indicated that this teachers' ability to facilitate students' presumptuous reasoning into logic statements did not necessarily guarantee that they could post strong written expressions of this verbal know-how in

  9. Does Varying Attentional Focus Affect Skill Acquisition in Children? A Comparison of Internal and External Focus Instructions and Feedback

    Science.gov (United States)

    Agar, Charles; Humphries, Charlotte A.; Naquin, Millie; Hebert, Edward; Wood, Ralph

    2016-01-01

    Recently, researchers have concluded that motor skill performance is enhanced when learners adopt an external attentional focus, compared to adopting an internal focus. We extended the line of inquiry to children and examined if skill learning in children was differentially affected by providing instructions and feedback that direct attentional…

  10. The influence of an inquiry professional development program on secondary science teachers' conceptions and use of inquiry teaching

    Science.gov (United States)

    Lotter, Christine

    2005-11-01

    This research investigated nine secondary science teachers' conceptions and use of inquiry teaching throughout a year-long professional development program. The professional development program consisted of a two-week summer inquiry institute and research experience in university scientists' laboratories, as well as three academic year workshops. Teachers' conceptions of inquiry teaching were established through both qualitative interviews and a quantitative instrument given before and after the summer institute and again at the end of the academic year. Videotapes of all nine teachers presenting inquiry lessons in their own classrooms were evaluated using an observation protocol that measured the teachers' degree of reform teaching. Three of the teachers were chosen for an in-depth case study of their classroom teaching practices. Data collected from each of the case study teachers included videotapes from classroom observations, responses to an inquiry survey, and transcripts from two additional qualitative interviews. Students' responses to their teachers' use of inquiry teaching were also investigated in the case study classrooms. Through their participation in the professional development experience, the teachers gained a deeper understanding of how to implement inquiry practices in their classrooms. The teachers gained confidence and practice with inquiry methods through developing and presenting their institute-developed inquiry lessons, through observing other teachers' lessons, and participating as students in the workshop inquiry activities. Data analysis revealed that the teachers' knowledge of inquiry was necessary but not sufficient for their implementation of inquiry teaching practices. The teachers' conceptions of science, their students, effective teaching practices, and the purpose of education were found to have a direct effect on the type and amount of inquiry instruction performed in the high school classrooms. The research findings suggest that

  11. EFFECT SCIENTIFIC INQUIRY TEACHING MODELS AND SCIENTIFIC ATTITUDE TO PHYSICS STUDENT OUTCOMES

    Directory of Open Access Journals (Sweden)

    Dian Clara Natalia Sihotang

    2014-12-01

    Full Text Available The objectives of this study were to determine whether: (1 the student’s achievement taught by using Scientific Inquiry Teaching Models is better than that of taught by using Direct Instruction; (2 the student’s achievement who have a high scientific attitude is better than student who have low scientific attitude; and (3 there is interaction between Scientific Inquiry Teaching Models and scientific attitude for the student’s achievement. The results of research are: (1 the student’s achievement given learning through Scientific Inquiry Teaching Models better than Direct Instruction; (2 the student’s achievement who have a high scientific attitude better than student who have low scientific attitude; and (3 there was interaction between Scientific Inquiry Teaching Models and scientific attitude for student’s achievement which this models is better to apply for student who have a high scientific attitude.

  12. Instructional Technology for Rural Schools: Access and Acquisition

    Science.gov (United States)

    Sundeen, Todd H.; Sundeen, Darrelanne M.

    2013-01-01

    Integrating instructional technology into all classrooms has the potential to transform modern education and student learning. However, access to technology is not equally available to all districts or schools. Decreased funding and budgetary restraints have had a direct impact on technology acquisition in many rural school districts. One of the…

  13. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  14. Appreciative inquiry enhances cardiology nurses’ clinical decision making when using a clinical guideline on delirium

    DEFF Research Database (Denmark)

    Vedsegaard, Helle; Schrader, Anne-Marie; Rom, Gitte

    2016-01-01

    The current study responds to implementation challenges with translating evidence-based knowledge into practice. We explore how appreciative inquiry can be used in in-house learning sessions for nurses to enhance their knowledge in using a guideline on delirium as part of clinical decision making...... and axial coding drawing on the principles of grounded theory. The study shows that appreciative inquiry was meaningful to cardiology nurses in providing them with knowledge of using a guideline on delirium in clinical decision making, the main reasons being a) data on a current patient were included, b....... Through 18 sessions with 3–12 nurses, an appreciative inquiry approach was used. Specialist nurses from the Heart Centre of Copenhagen and senior lecturers from the Department of Nursing at Metropolitan University College facilitated the sessions. Field notes from the sessions were analysed using open...

  15. Informal Learning in Online Knowledge Communities: Predicting Community Response to Visitor Inquiries

    NARCIS (Netherlands)

    Nistor, Nicolae; Dascalu, Mihai; Stavarache, Lucia Larise; Serafin, Yvonne; Trausan-Matu, Stefan

    2016-01-01

    Nistor, N., Dascalu, M., Stavarache, L.L., Serafin, Y., & Trausan-Matu, S. (2015). Informal Learning in Online Knowledge Communities: Predicting Community Response to Visitor Inquiries. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced

  16. Inquiry based learning in physical education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    2014-01-01

    The present project is a case study founded on the decreasing motivation and engagement in physical education. The project suggests inquiry based learning (IBL) as an educational methodology. This may help to turn the trend as IBL has shown to engage and motivate students at different educational...... levels and within different subjects. In this pilot research project performed at a physical education teacher education program, qualitative methods were chosen to investigate students’ motivation and engagement within an IBL-unit in physical education and to accentuate challenges, advantages...... and disadvantages within the IBL-methodology in relation to students’ motivation. Instructed in guided inquiry, 32 students of physical education in a teacher training college worked with inquiry based learning in physical education over a four week period. During the IBL-unit, qualitative data such as the students...

  17. Using innovative instructional technology to meet training needs in public health: a design process.

    Science.gov (United States)

    Millery, Mari; Hall, Michelle; Eisman, Joanna; Murrman, Marita

    2014-03-01

    Technology and distance learning can potentially enhance the efficient and effective delivery of continuing education to the public health workforce. Public Health Training Centers collaborate with instructional technology designers to develop innovative, competency-based online learning experiences that meet pressing training needs and promote best practices. We describe one Public Health Training Center's online learning module design process, which consists of five steps: (1) identify training needs and priority competencies; (2) define learning objectives and identify educational challenges; (3) pose hypotheses and explore innovative, technology-based solutions; (4) develop and deploy the educational experience; and (5) evaluate feedback and outcomes to inform continued cycles of revision and improvement. Examples illustrate the model's application. These steps are discussed within the context of design practices in the fields of education, engineering, and public health. They incorporate key strategies from across these fields, including principles of programmatic design familiar to public health professionals, such as backward design. The instructional technology design process we describe provides a structure for the creativity, collaboration, and systematic strategies needed to develop online learning products that address critical training needs for the public health workforce.

  18. Investigation of Inquiry-based Science Pedagogy among Middle Level Science Teachers: A Qualitative Study

    Science.gov (United States)

    Weiland, Sunny Minelli

    This study implemented a qualitative approach to examine the phenomenon of "inquiry-based science pedagogy or inquiry instruction" as it has been experienced by individuals. Data was collected through online open-ended surveys, focus groups, and teacher reported self-reflections to answer the research questions: 1) How do middle level science teachers conceptualize "inquiry-based instruction?" 2) What are preferred instructional strategies for implementation in middle level science classrooms? And 3) How do middle level science teachers perceive the connection between science instruction and student learning? The participants within this research study represent 33 percent of teachers in grades 5 through 9 within six school districts in northeastern Pennsylvania. Of the 12 consent forms originally obtained, 10 teachers completed all three phases of the data collection, including the online survey, participation in focus groups, and teacher self-reflection. 60 percent of the participants taught only science, and 40 percent taught all content areas. Of the ten participants, 50 percent were certified teachers of science and 50 percent were certified as teachers of elementary education. 70 percent of the research participants reflected having obtained a master's, with 60 percent of these degrees being received in areas of education, and 10 percent in the area of science. The research participants have a total of 85 collective years of experience as professional educators, with the average years of experience being 8.5 years. Analysis of data revealed three themes related to research question #1) How do middle-level science teachers conceptualize inquiry-based instruction? and sub-question #1) How do middle-level science teachers characterize effective instruction? The themes that capture the essence of teachers' formulation of inquiry-based instruction that emerged in this study were student centered, problem solving, and hands-on . Analysis of data revealed one theme

  19. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    Science.gov (United States)

    Avraamidou, Lucy

    2017-06-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related instructional practices. In order to explore Sofia's beliefs and instructional practices, several kinds of data were collected in a period of 9 months: a self-portrait and an accompanying narrative, a personal philosophy assignment, three interviews, three journal entries, ten lesson plans, and ten videotaped classroom observations. The analysis of these data showed that Sofia's beliefs and instructional practices were reform-minded. She articulated contemporary beliefs about scientific inquiry and how children learn science and was able to translate these beliefs into practice. Central to Sofia's beliefs about science teaching were scientific inquiry and engaging students in investigations with authentic data, with a prevalent emphasis on the role of evidence in the construction of scientific claims. These findings are important to research aiming at supporting teachers, especially beginning ones, to embrace reform recommendations.

  20. Known Structure, Unknown Function: An Inquiry-Based Undergraduate Biochemistry Laboratory Course

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's…

  1. PENGEMBANGAN DIKTAT PRAKTIKUM BERBASIS GUIDED DISCOVERY-INQUIRY BERVISI SCIENCE, ENVIRONMENT, TECHNOLOGY AND SOCIETY

    Directory of Open Access Journals (Sweden)

    Risqiatun Nikmah

    2016-01-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui validitas diktat praktikum berbasis Guided Discovery–Inquiry bervisi Science, Environment, Technology and Society (SETS, mengetahui pengaruh terhadap peningkatan keterampilan proses sains dan tanggapan siswa terhadap diktat pada materi penyangga dan hidrolisis. Penelitian ini menggunakan tipe research and development yang diadopsi dari Sugiyono. One-Group Pretest and Posttest Design digunakan pada saat uji coba skala luas dan pengambilan sampelnya menggunakan teknik Purposive Sampling. Berdasarkan hasil penelitian, validitas diktat praktikum mencapai skor 202 (sangat layak. Penggunaan diktat praktikum berbasis Guided Discovery–Inquiry bervisi SETS dapat meningkatkan keterampilan proses sains siswa. Adanya peningkatan tersebut dibuktikan dengan hasil thitung (10,34 lebih dari ttabel (2,04. Hasil tanggapan siswa menunjukkan 7 dari 30 siswa memberi tanggapan dengan kriteria sangat layak dan sisanya memberikan tanggapan dengan kriteria layak. Selain itu, rata-rata hasil belajar pada ranah psikomotorik maupun afektif mencapai kategori baik dan 21 dari 30 siswa mampu mencapai KKM berdasarkan hasil belajar pada ranah kognitif. Jadi hasil penelitian ini menunjukkan diktat praktikum berbasis Guided Discovery–Inquiry bervisi SETS sangat valid, dapat meningkatkan keterampilan proses sains dan mendapat tanggapan positif dari siswa. Study aims to determine the validity of practicum dictates based Guided Discovery- Inquiry with Science, Environment, Technology and Society (SETS vision, investigate the effect on the improvement of scientific process skills and knowing student responses toward the dictates used in buffer and hydrolisis. This study used research and development type which is adopted from Sugiyono. One-group pretest and posttest design is used when this product was tried in large scale and the sample was taken by using purposive sampling technique. Based on the results of research, the validity of

  2. Literacy Instruction in the Brave New World of Technology

    Science.gov (United States)

    McKenna, Michael C.

    2014-01-01

    Technology integration into language arts instruction has been slow and tentative, even as information technologies have evolved with frightening speed. Today's teachers need to be aware of several extant and unchanging realities: Technology is now indispensable to literacy development; reading with technology requires new skills and…

  3. At-Risk and Bilingual Fifth-Grade Students' On-Task Behavior and Conceptual Understanding in Earth Science-Related Topics during Inquiry-, Technology-, and Game-Based Activities

    Science.gov (United States)

    McNeal, K.; Vasquez, Y.; Avandano, C.; Moreno, K.; Besinaiz, J.

    2007-12-01

    -based instruction tended to increase their scores and decrease gaps with other groups. Using different pedagogical approaches (e.g., technology-, inquiry- and game-based methods) to teach Earth science is important to reach all elementary students. Earth science educators should not forget that there does not exist any one teaching and learning method that will be a 'quick fix' for the masses. However, educational partnerships between universities and K-12 schools strengthen the efforts to increase scientific literacy among all students, including diverse and at risk populations.

  4. Managing Innovation and Change for Instructional Technology.

    Science.gov (United States)

    Holznagel, Donald C.

    1991-01-01

    Introduces the term "orgware" and reviews the literature on managing technological innovation in instructional settings. Six areas of management concern are described, and advice on managing innovation and change is provided. (11 references) (GLR)

  5. Preparing for Further Introduction of Computing Technology in Vancouver Community College Instruction. Report of the Instructional Computing Committee.

    Science.gov (United States)

    Vancouver Community Coll., British Columbia.

    After examining the impact of changing technology on postsecondary instruction and on the tools needed for instruction, this report analyzes the status and offers recommendations concerning the future of instructional computing at Vancouver Community College (VCC) in British Columbia. Section I focuses on the use of computers in community college…

  6. Creating Inquiry Between Technology Developers and Civil Society Actors: Learning from Experiences Around Nanotechnology.

    Science.gov (United States)

    Krabbenborg, Lotte

    2016-06-01

    Engaging civil society actors as knowledgeable dialogue partners in the development and governance of emerging technologies is a new challenge. The starting point of this paper is the observation that the design and orchestration of current organized interaction events shows limitations, particularly in the articulation of issues and in learning how to address the indeterminacies that go with emerging technologies. This paper uses Dewey's notion of 'publics' and 'reflective inquiry' to outline ways of doing better and to develop requirements for a more productive involvement of civil society actors. By studying four novel spaces for interaction in the domain of nanotechnology, this paper examines whether and how elements of Dewey's thought are visible and under what conditions. One of the main findings is that, in our society, special efforts are needed in order for technology developers and civil society actors to engage in a joint inquiry on emerging nanotechnology. Third persons, like social scientists and philosophers, play a role in this respect in addition to external input such as empirically informed scenarios and somewhat protected spaces.

  7. Using Reflective Practice to Facilitate Conversations and Transform Instructional Practice for Middle School Science Teachers

    Science.gov (United States)

    Higdon, Robbie L.

    The process of teaching, especially inquiry, is complex and requires extended time for developing one's instructional practice (Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 2010). The implementation of a continued cycle of self-reflection can engage teachers in analyzing their prior experiences and understandings about their instructional practice to promote the accommodation of new concepts and transform their practice. However, many teachers have difficulty engaging in the cognitive dissonance needed to identify those problems and promote their own growth without support. As one's professional practice becomes more repetitive and routine, it is difficult for the practitioner to recognize opportunities in which to contemplate one's habitual actions (Schon, 1983). In this multi-case study, two middle school science teachers who were engaged within a sustained professional development initiative participated in a series of one-on-one reflective dialogues regarding the decisions they made about the utilization of inquiry-based instruction. In addition, these teachers were asked to reflect upon the criteria used to determine how and when to implement these inquiry-based practices. These reflective dialogue sessions provided the opportunity to observe teacher conceptions and stimulate teacher cognitive dissonance about instructional practice. Qualitative analysis of data collected from these reflective dialogues along with informal and formal classroom observations of instructional practice uncovered diverse perceptions regarding the implementation of inquiry-based methods into present teaching practice. The use of reflective dialogue within the existing structure of the professional development initiative allowed for the facilitators of the professional development initiative to tailor ongoing support and their effective implementation of inquiry-based instruction. Additional research is needed to investigate the impact of reflective dialogue in achieving

  8. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    Science.gov (United States)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  9. DO Get Technical! Using Technology in Library Instruction

    Directory of Open Access Journals (Sweden)

    Nicole Eva

    2011-12-01

    Full Text Available Today’s post-secondary students are digital natives. Much has been said and written about how to reach this generation, and the consensus seems to be that we need to meet them on their turf. In this session presented at WILU 2011 in Regina, SK, two librarians from the University of Lethbridge shared their experiences with using technology to engage students in library instruction. The hands-on session introduced some simple tools librarians can learn quickly and apply to spice up their instruction with technology. These include creating online animated videos using Xtranormal, a low-cost tool way to create polished and humourous videos to introduce or summarize key information literacy concepts; and adding interactive polling to PowerPoint presentations using a tool called Poll Everywhere, which is an effective way to instantly engage students in instruction using the web or web-enabled devices. Interactive polling eliminates many of the challenges of using clickers which are prevalent in many post-secondary library instruction environments. The presenters also discussed how they have experimented with wikis to encourage active learning and student collaboration in a series of library instruction sessions. Wikis allow for free and paperless student participation in knowledge creation in an online forum. Finally, they demonstrated how they have used Skype to deliver library instruction at a distance, including the use of the screen sharing feature. The presenters stressed the ease of use of these free or low-cost tools to improve classroom engagement and add interest to sessions.

  10. Exploring the Benefits of a Collaborative Inquiry Team in Education (CITE) Initiative to Develop a Research Community and Enhance Student Engagement

    Science.gov (United States)

    Cantalini-Williams, Maria; Curtis, Debra; Eden-DeGasperis, Kimberley; Esposto, Lauren; Guibert, Jenny; Papp, Heather; Roque, Carlos

    2015-01-01

    This study examined a collaborative inquiry process, facilitated by university faculty in an elementary school, intended to develop a research community, foster knowledge mobilization, and enhance student engagement. The Collaborative Inquiry Team in Education (CITE) initiative consisted of five school-based sessions that included videos,…

  11. Technology-Aided Interventions and Instruction for Adolescents with Autism Spectrum Disorder

    Science.gov (United States)

    Odom, Samuel L.; Thompson, Julie L.; Hedges, Susan; Boyd, Brian A.; Dykstra, Jessica R.; Duda, Michelle A.; Szidon, Kathrine L.; Smith, Leann E.; Bord, Aimee

    2015-01-01

    The use of technology in intervention and instruction for adolescents with autism spectrum disorder (ASD) is increasing at a striking rate. The purpose of this paper is to examine the research literature underlying the use of technology in interventions and instruction for high school students with ASD. In this paper, authors propose a theoretical…

  12. Implementation of Inquiry-Based Tutorials in AN Introductory Physics Course: the Role of the Graduate Teaching Assistant.

    Science.gov (United States)

    Thoresen, Carol Wiggins

    1994-01-01

    This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance

  13. Using Technology and Assessment to Personalize Instruction: Preventing Reading Problems.

    Science.gov (United States)

    Connor, Carol McDonald

    2017-09-15

    Children who fail to learn to read proficiently are at serious risk of referral to special education, grade retention, dropping out of high school, and entering the juvenile justice system. Accumulating research suggests that instruction regimes that rely on assessment to inform instruction are effective in improving the implementation of personalized instruction and, in turn, student learning. However, teachers find it difficult to interpret assessment results in a way that optimizes learning opportunities for all of the students in their classrooms. This article focuses on the use of language, decoding, and comprehension assessments to develop personalized plans of literacy instruction for students from kindergarten through third grade, and A2i technology designed to support teachers' use of assessment to guide instruction. Results of seven randomized controlled trials demonstrate that personalized literacy instruction is more effective than traditional instruction, and that sustained implementation of personalized literacy instruction first through third grade may prevent the development of serious reading problems. We found effect sizes from .2 to .4 per school year, which translates into about a 2-month advantage. These effects accumulated from first through third grade with a large effect size (d = .7) equivalent to a full grade-equivalent advantage on standardize tests of literacy. These results demonstrate the efficacy of technology-supported personalized data-driven literacy instruction to prevent serious reading difficulties. Implications for translational prevention research in education and healthcare are discussed.

  14. Instructional Technology Practices in Developmental Education in Texas

    Science.gov (United States)

    Martirosyan, Nara M.; Kennon, J. Lindsey; Saxon, D. Patrick; Edmonson, Stacey L.; Skidmore, Susan T.

    2017-01-01

    The purpose of this study was to examine the current state of technology integration in developmental education in Texas higher education. Analyzing survey data from developmental education faculty members in 70 2- and 4-year colleges in Texas, researchers identified instructor-reported best instructional technology practices in developmental…

  15. Improving Inquiry Teaching through Reflection on Practice

    Science.gov (United States)

    Lotter, Christine R.; Miller, Cory

    2017-08-01

    In this paper, we explore middle school science teachers' learning of inquiry-based instructional strategies through reflection on practice teaching sessions during a summer enrichment program with middle level students. The reflection sessions were part of a larger year-long inquiry professional development program in which teachers learned science content and inquiry pedagogy. The program included a 2-week summer institute in which teachers participated in science content sessions, practice teaching to middle level students, and small group-facilitated reflection sessions on their teaching. For this study, data collection focused on teachers' recorded dialogue during the facilitator - run reflection sessions, the teachers' daily written reflections, a final written reflection, and a written reflection on a videotaped teaching session. We investigated the teachers' reflection levels and the themes teachers focused on during their reflection sessions. Teachers were found to reflect at various reflection levels, from simple description to a more sophisticated focus on how to improve student learning. Recurrent themes point to the importance of providing situated learning environments, such as the practice teaching with immediate reflection for teachers to have time to practice new instructional strategies and gain insight from peers and science educators on how to handle student learning issues.

  16. The Impact of a Professional Development Model on Middle School Science Teachers' Efficacy and Implementation of Inquiry

    Science.gov (United States)

    Lotter, Christine; Smiley, Whitney; Thompson, Stephen; Dickenson, Tammiee

    2016-01-01

    This study investigated a professional development model designed to improve teachers' inquiry teaching efficacy as well as the quality of their inquiry instruction through engaging teachers in practice-teaching and reflection sessions. The programme began with a two-week summer Institute focused on both inquiry pedagogy and science content and…

  17. The impact of whole-plant instruction of preservice teachers' understanding of plant science principles

    Science.gov (United States)

    Hypolite, Christine Collins

    The purpose of this research was to determine how an inquiry-based, whole-plant instructional strategy would affect preservice elementary teachers' understanding of plant science principles. This study probed: what preservice teachers know about plant biology concepts before and after instruction, their views of the interrelatedness of plant parts and the environment, how growing a plant affects preservice teachers' understanding, and which types of activity-rich plant themes studies, if any, affect preservice elementary teachers' understandings. The participants in the study were enrolled in two elementary science methods class sections at a state university. Each group was administered a preinstructional test at the beginning of the study. The treatment group participated in inquiry-based activities related to the Principles of Plant Biology (American Society of Plant Biologists, 2001), while the comparison group studied those same concepts through traditional instructional methods. A focus group was formed from the treatment group to participate in co-concept mapping sessions. The participants' understandings were assessed through artifacts from activities, a comparison of pre- and postinstructional tests, and the concept maps generated by the focus group. Results of the research indicated that the whole-plant, inquiry-based instructional strategy can be applied to teach preservice elementary teachers plant biology while modeling the human constructivist approach. The results further indicated that this approach enhanced their understanding of plant science content knowledge, as well as pedagogical knowledge. The results also showed that a whole-plant approach to teaching plant science concepts is an instructional strategy that is feasible for the elementary school. The theoretical framework for this study was Human Constructivist learning theory (Mintzes & Wandersee, 1998). The content knowledge and instructional strategy was informed by the Principles of Plant

  18. Trends and issues of regulative support use during inquiry learning: patterns from three studies

    NARCIS (Netherlands)

    Manlove, S.A.; Lazonder, Adrianus W.; de Jong, Anthonius J.M.

    2009-01-01

    This paper looks across three experimental studies that examined supports designed to assist high-school students (age 15–19) with cognitive regulation of their physics inquiry learning efforts in a technology-enhanced learning environment called Co-Lab. Cognitive regulation involves the recursive

  19. Analogy-Enhanced Instruction: Effects on Reasoning Skills in Science

    Science.gov (United States)

    Remigio, Krisette B.; Yangco, Rosanelia T.; Espinosa, Allen A.

    2014-01-01

    The study examined the reasoning skills of first year high school students after learning general science concepts through analogies. Two intact heterogeneous sections were randomly assigned to Analogy-Enhanced Instruction (AEI) group and Non Analogy-Enhanced (NAEI) group. Various analogies were incorporated in the lessons of the AEI group for…

  20. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    Science.gov (United States)

    Willis, Jerry W.

    1993-01-01

    For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not

  1. The effect of instructional methodology on high school students natural sciences standardized tests scores

    Science.gov (United States)

    Powell, P. E.

    Educators have recently come to consider inquiry based instruction as a more effective method of instruction than didactic instruction. Experience based learning theory suggests that student performance is linked to teaching method. However, research is limited on inquiry teaching and its effectiveness on preparing students to perform well on standardized tests. The purpose of the study to investigate whether one of these two teaching methodologies was more effective in increasing student performance on standardized science tests. The quasi experimental quantitative study was comprised of two stages. Stage 1 used a survey to identify teaching methods of a convenience sample of 57 teacher participants and determined level of inquiry used in instruction to place participants into instructional groups (the independent variable). Stage 2 used analysis of covariance (ANCOVA) to compare posttest scores on a standardized exam by teaching method. Additional analyses were conducted to examine the differences in science achievement by ethnicity, gender, and socioeconomic status by teaching methodology. Results demonstrated a statistically significant gain in test scores when taught using inquiry based instruction. Subpopulation analyses indicated all groups showed improved mean standardized test scores except African American students. The findings benefit teachers and students by presenting data supporting a method of content delivery that increases teacher efficacy and produces students with a greater cognition of science content that meets the school's mission and goals.

  2. Inquiry-based training improves teaching effectiveness of biology teaching assistants

    Science.gov (United States)

    Hughes, P. William; Ellefson, Michelle R.

    2013-01-01

    Graduate teaching assistants (GTAs) are used extensively as undergraduate science lab instructors at universities, yet they often have having minimal instructional training and little is known about effective training methods. This blind randomized control trial study assessed the impact of two training regimens on GTA teaching effectiveness. GTAs teaching undergraduate biology labs (n = 52) completed five hours of training in either inquiry-based learning pedagogy or general instructional “best practices”. GTA teaching effectiveness was evaluated using: (1) a nine-factor student evaluation of educational quality; (2) a six-factor questionnaire for student learning; and (3) course grades. Ratings from both GTAs and undergraduates indicated that indicated that the inquiry-based learning pedagogy training has a positive effect on GTA teaching effectiveness. PMID:24147138

  3. Process oriented guided inquiry learning (POGIL®) marginally effects student achievement measures but substantially increases the odds of passing a course.

    Science.gov (United States)

    Walker, Lindsey; Warfa, Abdi-Rizak M

    2017-01-01

    While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI = 0.15-0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95% CI: 1.45-2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38%. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.

  4. Creating a Community of Inquiry in Online Library Instruction

    Science.gov (United States)

    Rapchak, Marcia E.

    2017-01-01

    According to the Community of Inquiry (CoI) model (Garrison, Anderson, & Archer, 2000), an enriching educational experience online in a collaborative learning environment requires three interdependent elements: social presence, teaching presence, and cognitive presence. Social presence provides interaction in the online environment that allows…

  5. Impact of technology-infused interactive learning environments on college professors' instructional decisions and practices

    Science.gov (United States)

    Kuda Malwathumullage, Chamathca Priyanwada

    Recent advancements in instructional technology and interactive learning space designs have transformed how undergraduate classrooms are envisioned and conducted today. Large number of research studies have documented the impact of instructional technology and interactive learning spaces on elevated student learning gains, positive attitudes, and increased student engagement in undergraduate classrooms across nation. These research findings combined with the movement towards student-centered instructional strategies have motivated college professors to explore the unfamiliar territories of instructional technology and interactive learning spaces. Only a limited number of research studies that explored college professors' perspective on instructional technology and interactive learning space use in undergraduate classrooms exist in the education research literature. Since college professors are an essential factor in undergraduate students' academic success, investigating how college professors perceive and utilize instructional technology and interactive learning environments can provide insights into designing effective professional development programs for college professors across undergraduate institutions. Therefore, the purpose of this study was to investigate college professors' pedagogical reasoning behind incorporating different types of instructional technologies and teaching strategies to foster student learning in technology-infused interactive learning environments. Furthermore, this study explored the extent to which college professors' instructional decisions and practices are affected by teaching in an interactive learning space along with their overall perception of instructional technology and interactive learning spaces. Four college professors from a large public Midwestern university who taught undergraduate science courses in a classroom based on the 'SCALE-UP model' participated in this study. Major data sources included classroom

  6. The impact of science teachers' epistemological beliefs on authentic inquiry: A multiple-case study

    Science.gov (United States)

    Jackson, Dionne Bennett

    The purpose of this study was to examine how science teachers' epistemological beliefs impacted their use of authentic inquiry in science instruction. Participants in this multiple-case study included a total of four teachers who represented the middle, secondary and post-secondary levels. Based on the results of the pilot study conducted with a secondary science teacher, adjustments were made to the interview questions and observation protocol. Data collection for the study included semi-structured interviews, direct observations of instructional techniques, and the collection of artifacts. The cross case analysis revealed that the cases epistemological beliefs were mostly Transitional and the method of instruction used most was Discussion. Two of the cases exhibited consistent beliefs and instructional practices, whereas the other two exhibited beliefs beyond their instruction. The findings of this study support the literature on the influence of contextual factors and professional development on teacher beliefs and practice. The findings support and contradict literature relevant to the consistency of teacher beliefs with instruction. This study's findings revealed that the use of reform-based instruction, or Authentic Inquiry, does not occur when science teachers do not have the beliefs and experiences necessary to implement this form of instruction.

  7. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  8. GeoMapApp Learning Activities: Grab-and-go inquiry-based geoscience activities that bring cutting-edge technology to the classroom

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    NSF-funded GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) provide self-contained learning opportunities that are centred around the principles of guided inquiry. The activities allow students to interact with and analyse research-quality geoscience data to explore and enhance student understanding of underlying geoscience content and concepts. Each activity offers ready-to-use step-by-step student instructions and answer sheets that can be downloaded from the web page. Also provided are annotated teacher versions of the worksheets that include teaching tips, additional content and suggestions for further work. Downloadable pre- and post- quizzes tied to each activity help educators gauge the learning progression of their students. Short multimedia tutorials and details on content alignment with state and national teaching standards round out the package of material that comprises each "grab-and-go" activity. GeoMapApp Learning Activities expose students to content and concepts typically found at the community college, high school and introductory undergraduate levels. The activities are based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool that allows students to access a wide range of geoscience data sets in a virtual lab-like environment. Activities that have so far been created under this project include student exploration of seafloor spreading rates, a study of mass wasting as revealed through geomorphological evidence, and an analysis of plate motion and hotspot traces. The step-by-step instructions and guided inquiry approach lead students through each activity, thus reducing the need for teacher intervention whilst also boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities

  9. Primary Teachers' Reflections on Inquiry- and Context-Based Science Education

    Science.gov (United States)

    Walan, Susanne; Mc Ewen, Birgitta

    2017-04-01

    Inquiry- and context-based teaching strategies have been proven to stimulate and motivate students' interests in learning science. In this study, 12 teachers reflected on these strategies after using them in primary schools. The teachers participated in a continuous professional development (CPD) programme. During the programme, they were also introduced to a teaching model from a European project, where inquiry- and context-based education (IC-BaSE) strategies were fused. The research question related to teachers' reflections on these teaching strategies, and whether they found the model to be useful in primary schools after testing it with their students. Data collection was performed during the CPD programme and consisted of audio-recorded group discussions, individual portfolios and field notes collected by researchers. Results showed that compared with using only one instructional strategy, teachers found the new teaching model to be a useful complement. However, their discussions also showed that they did not reflect on choices of strategies or purposes and aims relating to students' understanding, or the content to be taught. Before the CPD programme, teachers discussed the use of inquiry mainly from the aspect that students enjoy practical work. After the programme, they identified additional reasons for using inquiry and discussed the importance of knowing why inquiry is performed. However, to develop teachers' knowledge of instructional strategies as well as purposes for using certain strategies, there is need for further investigations among primary school teachers.

  10. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  11. Predicting the Use of Instructional Technology among Community College Instructors: An Extension of the Technology Acceptance Model (TAM)

    Science.gov (United States)

    Miller, Emma Rebecca

    2017-01-01

    The purpose of this study was to determine what variables predict the use of instructional technology among community college instructors. Legislators, community college administrators, and students expect innovative lessons from instructors that use technology. This study addresses the problem of not knowing what predicts instructional technology…

  12. Rethinking Teaching in STEM Education in a Community College: Role of Instructional Consultation and Digital Technologies

    Science.gov (United States)

    Kurland, Shelley Chih-Hsian

    Community college faculty members educate almost half of all U.S. undergraduates, who are often more diverse and more academically underprepared when compared to undergraduate students who attend four-year institutions. In addition, faculty members in community colleges are facing increased accountability for meeting student learning outcomes, expectations to adjust their teaching practices to include active learning practices, and expectations to incorporate more technologies into the classroom. Faculty developers are one of the support structures that faculty members can look to in order to meet those challenges. A survey of literature in faculty development suggests that instructional consultation can play an important role in shaping and transforming teaching practices. Hence, this action research study examined my work using instructional consulting with four full-time STEM faculty colleagues in order to examine and shape their teaching practices with and without the use of digital technologies. The two foci of the research, examining shifts in faculty participants' teaching practices, and my instructional consulting practices, were informed by Thomas and Brown's (2011) social view of learning and the concept of teaching and learning in a "co-learning" environment. Two dominant factors emerged regarding faculty participants' shift in teaching practices. These factors concerned: 1) the perception of control and 2) individual faculty participant's comfort level, expectations, and readiness. In addition to these two dominant factors, the instructional consultation process also supported a range of shifts in either mindset and/or teaching practices. My analysis showed that the use of digital technologies was not an essential factor in shifting faculty participant mindset and/or teaching practices, instead digital technologies were used to enhance the teaching process and students' learning experiences.

  13. Measuring Changes in Interest in Science and Technology at the College Level in Response to Two Instructional Interventions

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.

    2016-06-01

    Improving interest in science, technology, engineering, and mathematics (STEM) is crucial to widening participation and success in STEM studies at the college level. To understand how classroom and extracurricular interventions affect interest, it is necessary to have appropriate measurement tools. We describe the adaptation and revalidation of a previously existing multidimensional instrument to the end of measuring interest in environmental science and technology in college nonscience majors. We demonstrate the revised instrument's ability to detect change in this group over an 8-week time period. While collection of demographic information was not part of the study design, participating students were similar in that they hailed from three environmental science nonmajor classes sharing a common syllabus and instructional delivery method. Change in interest was measured in response to two types of scientific literature-based learning approaches: a scientific practice approach and a traditional, quiz-driven approach. We found that both approaches led to moderate gains in interest in learning environmental science and careers in environmental science across an 8-week time period. Interest in using technology for learning increased among students using the scientific practice approach; in contrast, the same measure decreased among students using the reading/quiz approach. This result invites the possibility that interest in using technology as a learning tool may relate to technological literacy, which must be taught explicitly in the context of authentic inquiry experiences.

  14. Searching for a Common Ground--A Literature Review of Empirical Research on Scientific Inquiry Activities

    Science.gov (United States)

    Rönnebeck, Silke; Bernholt, Sascha; Ropohl, Mathias

    2016-01-01

    Despite the importance of scientific inquiry in science education, researchers and educators disagree considerably regarding what features define this instructional approach. While a large body of literature addresses theoretical considerations, numerous empirical studies investigate scientific inquiry on quite different levels of detail and also…

  15. Teachers' Perspective on Using Technology as an Instructional Tool

    Science.gov (United States)

    Davidson, Leavery Y. Jefferson; Richardson, Martha; Jones, Don

    2014-01-01

    Federal mandates require technology use in the classroom, but not all English language arts (ELA) teachers have implemented technology as an integral part of teaching. The purpose of this qualitative case study was to investigate why ELA teachers in 2 local high schools rarely or never use technology as an instructional tool. The study was…

  16. Technology-enhanced instruction in learning world languages: The Middlebury interactive learning program

    Directory of Open Access Journals (Sweden)

    Cynthia Lake

    2015-03-01

    Full Text Available Middlebury Interactive Language (MIL programs are designed to teach world language courses using blended and online learning for students in kindergarten through grade 12. Middlebury Interactive courses start with fundamental building blocks in four key areas of world-language study: listening comprehension, speaking, reading, and writing. As students progress through the course levels, they deepen their understanding of the target language, continuing to focus on the three modes of communication: interpretive, interpersonal, and presentational. The extensive use of authentic materials (video, audio, images, or texts is intended to provide a contextualized and interactive presentation of the vocabulary and the linguistic structures. In the present paper, we describe the MIL program and the results of a mixed-methods survey and case-study evaluation of its implementation in a broad sample of schools. Technology application is examined with regard to MIL instructional strategies and the present evaluation approach relative to those employed in the literature.

  17. The Fourth Revolution; Instructional Technology in Higher Education.

    Science.gov (United States)

    Carnegie Commission on Higher Education , Berkeley, CA.

    The technology of communications and data processing that has had a profound impact on American Society generally in recent decades promises to have powerful influences on higher education as well. What these influences may be and what steps should be taken to assure that the benefits of instructional technology will be realized in an orderly and…

  18. Identifying Interdisciplinary Research Collaboration in Instructional Technology

    Science.gov (United States)

    Cho, Yonjoo

    2017-01-01

    Interdisciplinarity is defined as communication and collaboration across academic disciplines. The instructional technology (IT) field has claimed to have an interdisciplinary nature influenced by neighboring fields such as psychology, communication, and management. However, it has been difficult to find outstanding evidence of the field's…

  19. The effects of geographic information system (GIS) technologies on students' attitudes, self-efficacy, and achievement in middle school science classrooms

    Science.gov (United States)

    Baker, Thomas Ray

    . Instructor effects, despite controlling for the curriculum, instruction, and technology were still very strong. Results of the study suggest that GIS can enhance student outcomes when engaged in scientific inquiry, enriching student achievement through improved classroom data analysis activities. Finally, study implications direct future efforts to consider the need a science curriculum aimed at spatial reasoning and pattern seeking activities, ultimately allowing students to more completely leverage the powerful analytics of GIS and similar technologies.

  20. The Future of Foreign Language Instructional Technology: BYOD MALL

    Directory of Open Access Journals (Sweden)

    Jack Burston

    2016-05-01

    Full Text Available This paper describes trends in instructional technology that are influencing foreign language teaching today and that can be expected to increasingly do so in the future. Though already an integral part of foreign language instruction, digital technology is bound to play an increasing role in language teaching in the coming years. The greatest stimulus for this will undoubtedly be the accessibility of Mobile-Assisted Language Learning (MALL, made possible through the exploitation of mobile devices owned by students themselves. The ubiquitous ownership of smartphones and tablet computers among adolescents and adults now makes a Bring Your Own Device (BYOD approach a feasible alternative to desktop computer labs. Making this work, however, especially in a financially and technologically restricted environment, presents a number of challenges which are the focus of this paper.

  1. Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study and Teacher Use of NASA Web Resources

    Science.gov (United States)

    McCarthy, Marianne C.; Grabowski, Barbara L.; Koszalka, Tiffany

    2003-01-01

    Over a three-year period, researchers and educators from the Pennsylvania State University (PSU), University Park, Pennsylvania, and the NASA Dryden Flight Research Center (DFRC), Edwards, California, worked together to analyze, develop, implement and evaluate materials and tools that enable teachers to use NASA Web resources effectively for teaching science, mathematics, technology and geography. Two conference publications and one technical paper have already been published as part of this educational research series on Web-based instruction and learning. This technical paper, Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study, is the culminating report in this educational research series and is based on the final report submitted to NASA. This report describes the broad spectrum of data gathered from teachers about their experiences using NASA Web resources in the classroom. It also describes participating teachers responses and feedback about the use of the NASA Web-Enhanced Learning Environment Strategies reflection tool on their teaching practices. The reflection tool was designed to help teachers merge the vast array of NASA resources with the best teaching methods, taking into consideration grade levels, subject areas and teaching preferences. The teachers described their attitudes toward technology and innovation in the classroom and their experiences and perceptions as they attempted to integrate Web resources into science, mathematics, technology and geography instruction.

  2. Contextual inquiry for medical device design

    CERN Document Server

    Privitera, Mary Beth

    2015-01-01

    Contextual Inquiry for Medical Device Design helps users understand the everyday use of medical devices and the way their usage supports the development of better products and increased market acceptance. The text explains the concept of contextual inquiry using real-life examples to illustrate its application. Case studies provide a frame of reference on how contextual inquiry is successfully used during product design, ultimately producing safer, improved medical devices. Presents the ways contextual inquiry can be used to inform the evaluation and business case of technologyHelps users

  3. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    Science.gov (United States)

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  4. Health Instruction Packages: Medical Technologies--EEG, Radiology, & Biomedical Photography.

    Science.gov (United States)

    Brittenham, Dorothea; And Others

    Text, illustrations, and exercises are utilized in this set of four learning modules to instruct medical technology students in a variety of job-related skills. The first module, "EEG Technology: Measurement Technique of the 'International 10-20 System'" by Dorothea Brittenham, describes a procedure used by electroencephalograph…

  5. Applying the Brakes: How Practical Classroom Decisions Affect the Adoption of Inquiry Instruction

    Science.gov (United States)

    Yarnall, Louise; Fusco, Judi

    2014-01-01

    If college science instructors are to use inquiry practices more in the classroom, they need both professional support to foster comfort with the pedagogy and practical ways to engage students in inquiry. Over a semester, we studied 13 community college biology instructors as they adopted bioinformatics problem-based learning (PBL) modules in…

  6. A Fallibilistic Model for Instruction

    Science.gov (United States)

    Dawson, A. J.

    1971-01-01

    Discusses models in inquiry and of instruction based on critical Fallibilistic philosophy, developed by Karl R. Popper, which holds that all knowledge grows by conjecture and refutation. Classroom applications of strategies which result from the model are presented. (JP)

  7. Agricultural Education from a Knowledge Systems Perspective: From Teaching to Facilitating Joint Inquiry and Learning.

    Science.gov (United States)

    Engel, Paul G. H.; van den Bor, Wout

    1995-01-01

    Application of a knowledge and information systems perspective shows how agricultural innovation can be enhanced through networking. In the Netherlands, a number of alternative systems of inquiry and learning are infused with this perspective: participatory technology development, participatory rural appraisal, soft systems methodology, and rapid…

  8. Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students’ perceptions of task relevance and selfefficacy. Given the under-representation of girls in science

  9. Animated pedagogical agents effects on enhancing student motivation and learning in a science inquiry learning environment

    NARCIS (Netherlands)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students’ perceptions of task relevance and self-efficacy. Given the under-representation of girls in science

  10. Known structure, unknown function: An inquiry?based undergraduate biochemistry laboratory course

    OpenAIRE

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry? and research?based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year?long undergraduate biochemistry laboratory curriculum wherein students determine...

  11. DESIGNING INSTRUCTION FOR THE TRADITIONAL, ADULT, AND DISTANCE LEARNER: A New Engine for Technology-Based Teaching

    Directory of Open Access Journals (Sweden)

    Lawrence A. Tomei

    2011-10-01

    Full Text Available Adult students demand a wider variety of instructional strategies that encompass real-world, interactive, cooperative, and discovery learning experiences.Designing Instruction for the Traditional, Adult, and Distance Learner: A New Engine for Technology-Based Teaching explores how technology impacts the process of devising instructional plans as well as learning itself in adult students. Containing research from leading international experts, this publication proposes realistic and accurate archetypes to assist educators in incorporating state-of-the-art technologies into online instruction.This text proposes a new paradigm for designing, developing, implementing, and assessed technology-based instruction. It addresses three target populations of today's learner: traditional, adult, and distance education. The text proposes a new model of instructional system design (ISD for developing effective technology-based education that involves a five-step process focusing on the learner, learning theories, resources, delivery modalities, and outcomes.

  12. SERVQUAL-Based Measurement of Student Satisfaction with Classroom Instructional Technologies: A 2001 Update.

    Science.gov (United States)

    Kleen, Betty; Shell, L. Wayne

    The researchers, using a variation of the SERVQUAL instrument, repeated a 1999 study to measure students' satisfaction with instructional technology tools used in their classrooms. Student satisfaction varied by course discipline, by instructional technology, by anticipated grade, and by frequency of use. Female respondents were less satisfied…

  13. Where’s the Transformation? Unlocking the Potential of Technology-Enhanced Assessment

    Directory of Open Access Journals (Sweden)

    Trudy Sweeney

    2017-03-01

    Full Text Available This study provides insight into technology-enhanced assessment (TEA in diverse higher education contexts. The effectiveness of using technology for assessment in higher education is still equivocal, particularly in regard to evidence of improvements in student learning. This empirical research explores the affordances that technology offers to assessment for transforming student learning. A systematic literature review, guided by an analytic survey tool, was used to identify and interrogate recent scholarly articles published in 19 international journals. From a total of 1713 articles, 139 articles were identified as being focused on the use of technology for assessment. The analytic tool guided the rigorous exploration of the literature regarding the types of technology being used, the educational goal, the type of assessment, and the degree of “transformation” afforded by the technology. Results showed that, in the sample investigated, TEA is used most frequently for formative peer learning, as part of the task design and feedback stages of the assessment cycle, and that social media has been a major affordance for this. Results are discussed with a view to fostering a future culture of inquiry and scholarship around TEA in higher education.

  14. Evaluating Blended and Flipped Instruction in Numerical Methods at Multiple Engineering Schools

    Science.gov (United States)

    Clark, Renee; Kaw, Autar; Lou, Yingyan; Scott, Andrew; Besterfield-Sacre, Mary

    2018-01-01

    With the literature calling for comparisons among technology-enhanced or active-learning pedagogies, a blended versus flipped instructional comparison was made for numerical methods coursework using three engineering schools with diverse student demographics. This study contributes to needed comparisons of enhanced instructional approaches in STEM…

  15. Pittsburgh Science Technology Society Project: Instruction Modules. Interrelationships Science--Technology--Society.

    Science.gov (United States)

    O'Brien, George, Ed.

    This collection of instruction modules studies the interactions of science, technology, and society (STS) using five activity sets. The introduction module includes activities which show students the STS relationships in their world, develop good organizational skills, develop an understanding of who and what a scientist is, develop graphing…

  16. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    Science.gov (United States)

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  17. The Role of Instructional Technology in Correctional Education.

    Science.gov (United States)

    Askov, Eunice N.; Turner, Terilyn C.

    1990-01-01

    Advantages of instructional technology include privacy, individualization, achievement gains, cost effectiveness, flexibility, open-entry/open-exit, and workplace relevance. Disadvantages are constant change, compatibility, cost, expertise and training needed, inappropriateness, and change in teacher and learner roles. (SK)

  18. Science Teachers' Perceptions of the Relationship Between Game Play and Inquiry Learning

    Science.gov (United States)

    Mezei, Jessica M.

    The implementation of inquiry learning in American science classrooms remains a challenge. Teachers' perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers' instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers' game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers' game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences?. Results showed weak quantitative links between science teachers' game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers

  19. Comic Books' Latest Plot Twist: Enhancing Literacy Instruction

    Science.gov (United States)

    Rapp, David N.

    2011-01-01

    Recently, support has grown for using comic books and graphic novels to enhance and support literacy instruction. In some ways, it's surprising that the medium has only recently enjoyed such support. Stereotyped views of comics as unsophisticated, disposable entertainment or material written to the lowest common denominator fail to consider the…

  20. Improving students’ creative mathematical reasoning ability students through adversity quotient and argument driven inquiry learning

    Science.gov (United States)

    Hidayat, W.; Wahyudin; Prabawanto, S.

    2018-01-01

    This study aimed to investigate the role factors of Adversity Quotient (AQ) and Argument-Driven Inquiry (ADI) instruction in improving mathematical creative reasoning ability from students’ who is a candidate for a math teacher. The study was designed in the form of experiments with a pretest-posttest control group design that aims to examine the role of Adversity Quotient (AQ) and Argument-Driven Inquiry (ADI) learning on improving students’ mathematical creative reasoning abilities. The population in this research was the student of mathematics teacher candidate in Cimahi City, while the sample of this research was 90 students of the candidate of the teacher of mathematics specified purposively then determined randomly which belong to experiment class and control class. Based on the results and discussion, it was concluded that: (1) Improvement the ability of mathematical creative reasoning of students’ who was a candidate for a math teacher who received Argument-Driven Inquiry (ADI) instruction is better than those who received direct instruction is reviewed based on the whole; (2) There was no different improvement the ability of mathematical creative reasoning of students’ who is a candidate for a math teacher who received Argument-Driven Inquiry (ADI) instruction and direct instruction was reviewed based on the type of Adversity Quotient (Quitter / AQ Low, Champer / AQ Medium, and the Climber / AQ High); (3) Learning factors and type of Adversity Quotient (AQ) affected the improvement of students’ mathematical creative reasoning ability. In addition, there was no interaction effect between learning and AQ together in developing of students’ mathematical creative reasoning ability; (4) mathematical creative reasoning ability of students’ who is a candidate for math teacher had not been achieved optimally on the indicators novelty.

  1. Transforming the Learning Environment of Undergraduate Physics Laboratories to Enhance Physics Inquiry Processes

    Directory of Open Access Journals (Sweden)

    Gregory P. Thomas

    2017-04-01

    Full Text Available Concerns persist regarding the lack of promotion of students’ scientific inquiry processes in undergraduate physics laboratories. The consensus in the literature is that, especially in the early years of undergraduate physics programs, students’ laboratory work is characterized by recipe type, step-by-step instructions for activities where the aim is often confirmation of an already well-established physics principle or concept. In response to evidence reflecting these concerns at their university, the authors successfully secured funding for this study. A mixed-method design was employed. In the 2011/2012 academic year baseline data were collected. A quantitative survey, the Undergraduate Physics Laboratory Learning Environment Scale (UPLLES was developed, validated, and used to explore students’ perceptions of their physics laboratory environments. Analysis of data from the UPLLES and from interviews confirmed the concerns evident in the literature and in a previous evaluation of laboratories undertaken in 2002. To address these concerns the activities that students were to perform in the laboratory section of the course/s were re/designed to engage students in more inquiry oriented thinking and activity. In Fall 2012, the newly developed laboratory activities and tutorials, were implemented for the first time in PHYS124; a first year course. These changes were accompanied by structured training of teaching assistants and changes to the structure of the evaluation of students’ laboratory performance. At the end of that term the UPLLES was administered (n = 266 and interviews with students conducted (n = 16 to explore their perceptions of their laboratory environments. Statistically significant differences (p<.001 between the students in the PHYS 124 classes of 2011/2012 and 2012/2013 across all dimensions were found. Effect sizes of 0.82 to 1.3, between the views of students in the first semester physics classes of 2011/2012 and 2012

  2. Technology-Enhanced Language Learning (Tell): An Update and a Principled Framework for English for Academic Purposes (EAP) Courses

    Science.gov (United States)

    Chau, Juliana; Lee, Alfred

    2014-01-01

    The range and number of technologies currently available have yielded both opportunities and challenges for language educators. This study aims to review recent technology-enhanced language learning (TeLL) research, and to examine their potential relevance to EAP pedagogy, curricula, assessment and instruction. The results of this study show TeLL…

  3. Perceptions of Instructional Technology: Factors of Influence and Anticipated Consequences

    Science.gov (United States)

    Parker, Robyn E.; Bianchi, Alison; Cheah, Tsui Yi

    2008-01-01

    The use of instructional technologies such as PowerPoint[TM] and WebCT[TM] are nearly ubiquitous in contemporary college classrooms. The literature is rich with ideas about the transformative powers of technology. What is less understood is how users perceive technology and its effects on classroom dynamics such as student attendance and…

  4. Translating Research into New Instructional Technologies for Higher Education: The Active Ingredient Process

    Science.gov (United States)

    Clark, Richard E.

    2009-01-01

    This article describes a research-based approach for developing new instructional technologies for higher education. The argument is made that the most common instructional methods used by faculty and educational technology in colleges and universities are based on adult learning theories that have not been supported in the past half-century of…

  5. Refining Inquiry with Multi-Form Assessment: Formative and summative assessment functions for flexible inquiry

    Science.gov (United States)

    Zuiker, Steven; Reid Whitaker, J.

    2014-04-01

    This paper describes the 5E+I/A inquiry model and reports a case study of one curricular enactment by a US fifth-grade classroom. A literature review establishes the model's conceptual adequacy with respect to longstanding research related to both the 5E inquiry model and multiple, incremental innovations of it. As a collective line of research, the review highlights a common emphasis on formative assessment, at times coupled either with differentiated instruction strategies or with activities that target the generalization of learning. The 5E+I/A model contributes a multi-level assessment strategy that balances formative and summative functions of multiple forms of assessment in order to support classroom participation while still attending to individual achievement. The case report documents the enactment of a weeklong 5E+I/A curricular design as a preliminary account of the model's empirical adequacy. A descriptive and analytical narrative illustrates variable ways that multi-level assessment makes student thinking visible and pedagogical decision-making more powerful. In light of both, it also documents productive adaptations to a flexible curricular design and considers future research to advance this collective line of inquiry.

  6. The Web as a Delivery Medium To Enhance Instruction.

    Science.gov (United States)

    Gillani, Bijan

    1998-01-01

    Discusses how to design and develop an effective Web site to enhance instruction based on a graduate course at California State University at Hayward. Topics include the analysis phase, content organization, site architecture, interface design, testing, and the evaluation process. (LRW)

  7. Learning stoichiometry: A comparison of text and multimedia instructional formats

    Science.gov (United States)

    Evans, Karen L.

    Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.

  8. Animated Pedagogical Agents Effects on Enhancing Student Motivation and Learning in a Science Inquiry Learning Environment

    Science.gov (United States)

    van der Meij, Hans; van der Meij, Jan; Harmsen, Ruth

    2015-01-01

    This study focuses on the design and testing of a motivational animated pedagogical agent (APA) in an inquiry learning environment on kinematics. The aim of including the APA was to enhance students' perceptions of task relevance and self-efficacy. Given the under-representation of girls in science classrooms, special attention was given to…

  9. Multiple Lines Of Evidence Supporting Natural Attenuation: Lines Of Inquiry Supporting Monitored Natural Attenuation And Enhanced Attenuatin Of Chlorinated Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, Karen; Widemeirer, T. H.; Barden, M.J.; Dickson, W. Z.; Major, David

    2004-12-31

    The Department of Energy (DOE) is sponsoring an initiative to facilitate efficient, effective and responsible use of Monitored Natural Attenuation (MNA) and Enhanced Attenuation (EA) for chlorinated solvents. This Office of Environmental Management (EM) ''Alternative Project,'' focuses on providing scientific and policy support for MNA/EA. A broadly representative working group of scientists supports the project along with partnerships with regulatory organizations such as the Interstate Technology Regulatory Council (ITRC) and the United States Environmental Protection Agency (USEPA). The initial product of the technical working group was a summary report that articulated the conceptual approach and central scientific tenants of the project, and that identified a prioritized listing of technical targets for field research. This report documented the process in which: (1) scientific ground rules were developed, (2) lines of inquiry were identified and then critically evaluated, (3) promising applied research topics were highlighted in the various lines of inquiry, and (4) these were discussed and prioritized. The summary report will serve as a resource to guide management and decision making throughout the period of the subject MNA/EA Alternative Project. To support and more fully document the information presented in the summary report, the DOE is publishing a series of supplemental documents that present the full texts from the technical analyses within the various lines of inquiry (see listing). The following report--documenting our evaluation of the state of the science for the lines of evidence for supporting decision-making for MNA--is one of those supplemental documents.

  10. Use of Technology Solutions to Improve CAD Instruction

    Science.gov (United States)

    Ault, Holly K.; Fraser, Alister

    2012-01-01

    Engineering Graphics curricula have changed dramatically in the past three decades. In the past, students in nearly all engineering disciplines were instructed in manual drafting and descriptive geometry. Students spent many hours "on the board", and this training enhanced the students' graphics communication, design and visualization…

  11. Pre-service teachers' competencies for technology integration: Insights from a mathematics-specific instructional technology course

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, Joke; Resta, P.

    2012-01-01

    A combination of various measures (self-report, learning outcomes and written reports) was employed to investigate 104 pre-service teachers’ competencies in spreadsheet integration after enrolling in an Instructional Technology course. The pre-service teachers engaged in a “learning technology by

  12. Critical Success Factors in The Infusion of Instructional Technologies for Open Learning in Development Settings

    Directory of Open Access Journals (Sweden)

    Philip M. Uys

    2003-10-01

    Full Text Available This article seeks to identify critical success factors for the appropriate infusion of instructional technologies to advance open learning in higher education within developing settings. Describe here is a descriptive account of a two-year case study based on the author’s personal analysis of, and reflection on, factors that contributed to the infusion of instructional technologies to advance open learning at the University of Botswana. The first critical success factors identified in this article include: a clear vision, support of committed leadership, and dedicated personnel/ change agents to ensure successful project implementation. The second critical success factor identified was the need for all involved to fully appreciate and understand the systemic nature of the infusion of instructional technologies for open learning purposes, as well as garner the commitment of strategic partners working in related systems. Finally highlighted, are the requirements needed to address the complex nature of the infusion of instructional technologies into the University’s educational offerings. It is hoped that those involved in education in developing countries, and particularly those desirous of advancing open learning through the use of instructional technologies, will find this descriptive analysis useful. Indeed, those of us involved in implementing instructional technologies in developing nations are still in the initial stages of this exciting yet challenging endeavour.

  13. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    Science.gov (United States)

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  14. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  15. Use of Instructional Technology for Effective Management of Primary ...

    African Journals Online (AJOL)

    Use of Instructional Technology for Effective Management of Primary Schools in ... AFRREV IJAH: An International Journal of Arts and Humanities ... of Primary Education Studies, Federal College of Education (Technical), Asaba, Delta State.

  16. A High-Performance Parallel FDTD Method Enhanced by Using SSE Instruction Set

    Directory of Open Access Journals (Sweden)

    Dau-Chyrh Chang

    2012-01-01

    Full Text Available We introduce a hardware acceleration technique for the parallel finite difference time domain (FDTD method using the SSE (streaming (single instruction multiple data SIMD extensions instruction set. The implementation of SSE instruction set to parallel FDTD method has achieved the significant improvement on the simulation performance. The benchmarks of the SSE acceleration on both the multi-CPU workstation and computer cluster have demonstrated the advantages of (vector arithmetic logic unit VALU acceleration over GPU acceleration. Several engineering applications are employed to demonstrate the performance of parallel FDTD method enhanced by SSE instruction set.

  17. Will the No Child Left Behind Act Promote Direct Instruction of Science?

    Science.gov (United States)

    Hake, Richard

    2005-03-01

    Education research in physics at the high school and undergraduate level strongly suggests that interactive engagement enhances students' conceptual understanding much more than traditional Direct Science Instruction (DSI). Similar conclusions can be drawn from K-8 science-education research. Nevertheless, DSI predominates in CA because of the DSI- orientation of the CA State Board of Education and Curriculum Commission [1]. Likewise the U.S. Dept. of Education's (USDE's): (a) DSI-orientation as demonstrated by its recent national-education summit showcasing of the research of Klahr and Nigam [2]; and (b) science achievement testing starting in 2007; threatens to promote DSI nationwide. It might be hoped that NRC's expert science education committees will steer the USDE away from promoting DSI, the antithesis of the NRC's own recommendations for inquiry methods. [1] R.R. Hake. ``Direct Science Instruction Suffers a Setback in California - Or Does It?" (2004), pdf>. [2] Klahr, D. & M. Nigam. 2004. ``The equivalence of learning paths in early science instruction: effects of direct instruction and discovery learning" (2004), .

  18. Organizational Decision Making Related to Instructional Technology at Small Liberal Arts Colleges and Universities

    Science.gov (United States)

    Vandover, William Frederick

    2013-01-01

    This study examines the factors that influence the creation, purchase, and selection of free instructional technology. Specifically, this study uses the RIPPLES Model to examine the perceptions and reflections of instructional technology directors and staff members with regard to the Resources, Infrastructure, People, Policies, Learning,…

  19. "Structured Discovery": A Modified Inquiry Approach to Teaching Social Studies.

    Science.gov (United States)

    Lordon, John

    1981-01-01

    Describes structured discovery approach to inquiry teaching which encourages the teacher to select instructional objectives, content, and questions to be answered. The focus is on individual and group activities. A brief outline using this approach to analyze Adolf Hitler is presented. (KC)

  20. Peningkatan Keterlibatan Dalam Perkuliahan Scientific Writing Menggunakan Model Pengajaran Social Inquiry

    Directory of Open Access Journals (Sweden)

    Suwartono Suwartono

    2016-02-01

    Full Text Available This research aimed to solve student low involvement in Scientific Writing classes.The method used in this research was Classroom Action Research (CAR. The planned action was Social Inquiry teaching model, i.e. an autonomous instruction in which students do inquiries for facts (new knowledge on scientific writings along with the linguistic aspects of writings and exercises in communicating the inquiry results within the classroom society are prioritized. The CAR employed Lewin's cyclic model. The model procedures are: (1 identification, evaluation and formulation of the problem; (2 fact finding; (3 review of literature; (4 information gathering to test hypothesis; (5 selection of the planned action procedures; (6 implementation; and (7 interpretation of the data and overall evaluation. The CAR's result has shown that teaching Scientific Writing using Social Inquiry can promote student involvement in scientific writing class activities.

  1. Implementing e-network-supported inquiry learning in science

    DEFF Research Database (Denmark)

    Williams, John; Cowie, Bronwen; Khoo, Elaine

    2013-01-01

    The successful implementation of electronically networked (e-networked) tools to support an inquiry-learning approach in secondary science classrooms is dependent on a range of factors spread between teachers, schools, and students. The teacher must have a clear understanding of the nature......-construct knowledge using a wide range of resources for meaning making and expression of ideas. These outcomes were, however, contingent on the interplay of teacher understanding of the nature of science inquiry and school provision of an effective technological infrastructure and support for flexible curriculum...... of inquiry, the school must provide effective technological infrastructure and sympathetic curriculum parameters, and the students need to be carefully scaffolded to the point of engaging with the inquiry process. Within this study, e-networks supported students to exercise agency, collaborate, and co...

  2. Springing into Inquiry: Using Student Ideas to Investigate Seasons

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid

    2012-01-01

    Although inquiry is more engaging and results in more meaningful learning (Minner, Levy, and Century 2010) than traditional science classroom instruction, actually involving students in the process is difficult. Furthermore, many students have misconceptions about Earth's seasons, which are supported by students' prior knowledge of heat sources.…

  3. Categories for Barriers to Adoption of Instructional Technologies

    Science.gov (United States)

    Reid, Pat

    2014-01-01

    Although higher education has spent millions of dollars on instructional technologies, often higher education administration complains that instructors are not adopting them. Without a full understanding of possible barriers, higher education institutes are hard-pressed to develop either appropriate goals or sound strategies for the adoption of…

  4. Testing the Utility of Person-Environment Correspondence Theory with Instructional Technology Students in Turkey

    Science.gov (United States)

    Perkmen, Serkan

    2012-01-01

    The main objective of this study was to examine the validity and usefulness of the person-environment correspondence theory with instructional technology students in Turkey. The participants included 211 students and three teachers. Results revealed that instructional technology students value achievement most and that they believe that entering a…

  5. Teacher learning in technology professional development and its impact on student achievement in science

    Science.gov (United States)

    Lee, Hyunju; Longhurst, Max; Campbell, Todd

    2017-07-01

    This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.

  6. Early bedside care during preclinical medical education: can technology-enhanced patient simulation advance the Flexnerian ideal?

    Science.gov (United States)

    Gordon, James A; Hayden, Emily M; Ahmed, Rami A; Pawlowski, John B; Khoury, Kimberly N; Oriol, Nancy E

    2010-02-01

    Flexner wanted medical students to study at the patient bedside-a remarkable innovation in his time-so that they could apply science to clinical care under the watchful eye of senior physicians. Ever since his report, medical schools have reserved the latter years of their curricula for such an "advanced" apprenticeship, providing clinical clerkship experiences only after an initial period of instruction in basic medical sciences. Although Flexner codified the segregation of preclinical and clinical instruction, he was committed to ensuring that both domains were integrated into a modern medical education. The aspiration to fully integrate preclinical and clinical instruction continues to drive medical education reform even to this day. In this article, the authors revisit the original justification for sequential preclinical-clinical instruction and argue that modern, technology-enhanced patient simulation platforms are uniquely powerful for fostering simultaneous integration of preclinical-clinical content in a way that Flexner would have applauded. To date, medical educators tend to focus on using technology-enhanced medical simulation in clinical and postgraduate medical education; few have devoted significant attention to using immersive clinical simulation among preclinical students. The authors present an argument for the use of dynamic robot-mannequins in teaching basic medical science, and describe their experience with simulator-based preclinical instruction at Harvard Medical School. They discuss common misconceptions and barriers to the approach, describe their curricular responses to the technique, and articulate a unifying theory of cognitive and emotional learning that broadens the view of what is possible, feasible, and desirable with simulator-based medical education.

  7. Predicting Elementary Education Candidates' Technology Integration during Their Field Placement Instruction.

    Science.gov (United States)

    Negishi, Meiko; Elder, Anastasia D.; Hamil, J. Burnette; Mzoughi, Taha

    A growing concern in teacher education programs is technology training. Research confirms that training positively affects perservice teachers' attitudes and technology proficiency. However, little is known about the kinds of factors that may predict preservice teachers' integration of technology into their own instruction. The goal of this study…

  8. Challenges Pre-Service Teachers Face When Implementing a 5E Inquiry Model of Instruction

    Science.gov (United States)

    Enugu, Ramya; Hokayem, Hayat

    2017-01-01

    This study examined the challenges that pre-service teachers faced when implementing inquiry and their perspective on how to overcome them. The data sample was 55 pre-service teachers (PSTs) enrolled into two sections of a science methods course in a private university in North Texas. The data sources consisted of inquiry-based lesson plans, PST…

  9. Computer Education and Instructional Technology Teacher Trainees' Opinions about Cloud Computing Technology

    Science.gov (United States)

    Karamete, Aysen

    2015-01-01

    This study aims to show the present conditions about the usage of cloud computing in the department of Computer Education and Instructional Technology (CEIT) amongst teacher trainees in School of Necatibey Education, Balikesir University, Turkey. In this study, a questionnaire with open-ended questions was used. 17 CEIT teacher trainees…

  10. Instructor Perceptions of Web Technology Feature and Instructional Task Fit

    Science.gov (United States)

    Strader, Troy J.; Reed, Diana; Suh, Inchul; Njoroge, Joyce W.

    2015-01-01

    In this exploratory study, university faculty (instructor) perceptions of the extent to which eight unique features of Web technology are useful for various instructional tasks are identified. Task-technology fit propositions are developed and tested using data collected from a survey of instructors in business, pharmacy, and arts/humanities. It…

  11. Webquest 2.0: An Instructional Model for Digital Learners

    Science.gov (United States)

    Dell, Diana F. Abernathy

    2012-01-01

    Teaching and learning tools such as Moodle and Web 2.0 tools are appearing in K-12 classrooms; however, there is a lack of scholarly research to guide the implementation of these tools. The WebQuest model, a widely adopted inquiry-based model for online instruction, has instructional inadequacies and does not make the most of emerging…

  12. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  13. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    Science.gov (United States)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  14. From theory to practice: integrating instructional technology into veterinary medical education.

    Science.gov (United States)

    Wang, Hong; Rush, Bonnie R; Wilkerson, Melinda; Herman, Cheryl; Miesner, Matt; Renter, David; Gehring, Ronette

    2013-01-01

    Technology has changed the landscape of teaching and learning. The integration of instructional technology into teaching for meaningful learning is an issue for all educators to consider. In this article, we introduce educational theories including constructivism, information-processing theory, and dual-coding theory, along with the seven principles of good practice in undergraduate education. We also discuss five practical instructional strategies and the relationship of these strategies to the educational theories. From theory to practice, the purpose of the article is to share our application of educational theory and practice to work toward more innovative teaching in veterinary medical education.

  15. IMPLEMENTASI MODEL PEMBELAJARAN INQUIRY TRAINING DALAM PEMBELAJARAN FISIKA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR FORMAL SISWA

    Directory of Open Access Journals (Sweden)

    D. Nasution

    2015-07-01

    Full Text Available Low ability of formal thinking students caused the learning outcomes they get too low. This study aims to determine the effectiveness of the inquiry learning model training in improving students' ability to think formal. The design was used quasi-experimental "non-equivalent groups pretest-posttest design". Implementation  experimental class learning with inquiry learning model training, control class learning with direct instruction. Data obtained through a formal thinking ability test thinking ability. Learning model efectivity in improving formal thinking ability is determined based on the gain score average which normalized by average difference test of statistic, namely t test. The results of the reasearch found that the inquiry training learning model is more effective in improving students formal thinking ability compared with the direct instruction learning model. The N-gain percentage of formal thinking ability of students in the experiment class in the indicators of hypothetical deductive thinking, combination thinking and reflection thinking are in the medium category, just proportional thinking is the high category. N-gain average percentage of control class for the hypothesis deductive thinking is just in the low category, while the proportional thinking, combination thinking and reflection thinking are in the medium category.Rendahnya kemampuan berpikir formal siswa menyebabkan hasil belajar yang mereka peroleh juga rendah. Penelitian ini bertujuan untuk mengetahui efektivitas  model pembelajaran inquiry training dalam meningkatkan kemampuan berpikir formal  siswa. Disain yang digunakan adalah kuasi eksperimen “non-equivalent groups pretest-posttest design”. Implementasi pembelajaran kelas eksperimen dibelajarkan dengan model pembelajaran inquiry training, kelas kontrol dengan model pembelajaran direct instruction.  Data kemampuan berpikir formal diperoleh melalui tes kemampuan berpikir formal. Efektivitas

  16. The opportunities and challenges of guided inquiry science for students with special needs

    Science.gov (United States)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  17. Developing Computer-Assisted Instruction Multimedia For Educational Technology Course of Coastal Area Students

    Science.gov (United States)

    Idris, Husni; Nurhayati, Nurhayati; Satriani, Satriani

    2018-05-01

    This research aims to a) identify instructional software (interactive multimedia CDs) by developing Computer-Assisted Instruction (CAI) multimedia that is eligible to be used in the instruction of the Educational Technology course; b) analysis the role of instructional software (interactive multimedia CDs) on the Educational Technology course through the development of Computer-Assisted Instruction (CAI) multimedia to improve the quality of education and instructional activities. This is Research and Development (R&D). It employed the descriptive procedural model of development, which outlines the steps to be taken to develop a product, which is instructional multimedia. The number of subjects of the research trial or respondents for each stage was 20 people. To maintain development quality, an expert in materials outside the materials under study, an expert in materials who is also a Educational Technology lecturer, a small groupof 3 students, a medium-sized group of 10 students, and 20 students to participate in the field testing took part in this research. Then, data collection instruments were developed in two stages, namely: a) developing the instruments; and b) trying out instruments. Data on students’ responses were collected using questionnaires and analyzed using descriptive statistics with percentage and categorization techniques. Based on data analysis results, it is revealed that the Computer-Assisted Instruction (CAI) multimedia developed and tried out among students during the preliminary field testing falls into the “Good” category, with the aspects of instruction, materials, and media falling into the “Good” category. Subsequently, results of the main field testing among students also suggest that it falls into the “Good” category, with the aspects of instruction, materials, and media falling into the “Good” category. Similarly, results of the operational field testing among students also suggest that it falls into the

  18. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  19. Enhanced Learning of Biotechnology Students by an Inquiry-Based Cellulase Laboratory

    Science.gov (United States)

    Ketpichainarong, Watcharee; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-01-01

    This study explored the effectiveness of an inquiry-based cellulase laboratory unit in promoting inquiry in undergraduate students in biotechnology. The following tools were used to assess the students' achievements and attitude: conceptual understanding test, concept mapping, students' documents, CLES questionnaire, students' self reflection, and…

  20. Teachers' Initial and Sustained Use of an Instructional Assistive Technology Tool: Exploring the Mitigating Factors

    Science.gov (United States)

    Bouck, Emily C.; Flanagan, Sara; Heutsche, Anne; Okolo, Cynthia M.; Englert, Carol Sue

    2011-01-01

    This qualitative research project explored factors that mitigated teachers implementing an instructional assistive technology and factors that mitigated its sustained use. Specifically, it explored these issues in relation to a social studies based instructional assistive technology (Virtual History Museum [VHM]), which was originally implemented…

  1. Examining the Beliefs and Instructional Practices of Technology Teachers Regarding Copyright Laws

    Science.gov (United States)

    Parker, Zachari. A.

    2012-01-01

    The influence that teacher beliefs have on classroom instructional practices in areas such as science and mathematics have been studied and documented by researchers. However, only a few researchers were found to have specifically investigated the influence of technology teachers' beliefs on instructional practices, relating to the teaching…

  2. Inquiry-based science: Preparing human capital for the 21 st century and beyond

    Science.gov (United States)

    Boyd, Yolanda F.

    High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of

  3. Development of Pre-Service Teachers' Information and Communication Technology (ICT) in Education Competencies in a Mainland Chinese University

    Science.gov (United States)

    Lim, Cher Ping; Yan, Hanbing; Xiong, Xibei

    2015-01-01

    This paper examines how the design and implementation of a core teacher education course develops pre-service teachers' information communication technology (ICT) in education competencies in a mainland Chinese university. This course adopted a four-component instructional design system to develop its curriculum, incorporated an inquiry-based…

  4. Invention Versus Direct Instruction: For Some Content, It's a Tie

    Science.gov (United States)

    Chase, Catherine C.; Klahr, David

    2017-12-01

    An important, but as yet unresolved pedagogical question is whether discovery-oriented or direct instruction methods lead to greater learning and transfer. We address this issue in a study with 101 fourth and fifth grade students that contrasts two distinct instructional methods. One is a blend of discovery and direct instruction called Invent-then-Tell (IT), and the other is a version of direct instruction called Tell-then-Practice (TP). The relative effectiveness of these methods is compared in the context of learning a critical inquiry skill—the control-of-variables strategy. Previous research has demonstrated the success of IT over TP for teaching deep domain structures, while other research has demonstrated the superiority of direct instruction for teaching simple experimental design, a domain-general inquiry skill. In the present study, students in both conditions made equally large gains on an immediate assessment of their application and conceptual understanding of experimental design, and they also performed similarly on a test of far transfer. These results were fairly consistent across school populations with various levels of prior achievement and socioeconomic status. Findings suggest that broad claims about the relative effectiveness of these two distinct methods should be conditionalized by particular instructional contexts, such as the type of knowledge being taught.

  5. Literacity: A multimedia adult literacy package combining NASA technology, recursive ID theory, and authentic instruction theory

    Science.gov (United States)

    Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob

    1994-01-01

    An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'

  6. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    Science.gov (United States)

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-03-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.

  7. Teaching neuroscience to science teachers: facilitating the translation of inquiry-based teaching instruction to the classroom.

    Science.gov (United States)

    Roehrig, G H; Michlin, M; Schmitt, L; MacNabb, C; Dubinsky, J M

    2012-01-01

    In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers' inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.

  8. Re-Envisioning Instructional Technology Research in Higher Education Environments: A Content Analysis of a Grant Program

    Science.gov (United States)

    Paulus, Trena M.; Phipps, Gina; Harrison, John; Varga, Mary Alice

    2012-01-01

    Within the field of instructional technology, scholars have long worked to define the scope and purpose of research and its role in informing practice. Increasingly, researchers outside of the instructional technology field are conducting studies to examine their use of technology in educational contexts. Few studies have been done on how…

  9. Prospective Teachers' Views about Video-Enhanced General Biology Instruction

    Science.gov (United States)

    Çetin, Gülcan

    2014-01-01

    The aim of the study is to determine the views of the prospective physics and chemistry teachers about the video-enhanced General Biology instruction. The participants included 19 second-year prospective teachers (10 in Physics and 9 in Chemistry Education) at Necatibey Faculty of Education, Balikesir University, Turkey in the 2011-2012 academic…

  10. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    Science.gov (United States)

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  11. An inquiry-based approach to the Franck-Hertz experiment

    International Nuclear Information System (INIS)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2015-01-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competencies is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr’s postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception’s change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  12. An inquiry-based approach to the Franck-Hertz experiment

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola

    2016-05-01

    The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competences is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr's postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception's change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.

  13. Digital Technology and Teacher Preparation: The Instructional Role of Social Media Among Pre-Service Teachers

    Science.gov (United States)

    Trytten, Bria Klotz

    As social media use becomes more prevalent among teachers, it becomes vital to understand how teachers are using social media and what effects it has, if any, on teaching practices in the classroom. This study sought to explore the relationship between pre-service teachers' use of social media and their perceptions of inquiry-based science education, an important teaching best practice. This study is unique in that it explores pre-service teachers' use of three social media platforms--Twitter, Facebook, and Pinterest--and how pre-service teachers plan to apply them to classroom education. Previous studies focused on only one social media platform, usually Twitter or Facebook. This study surveyed 113 pre-service teachers in their 3rd or 4th year of school at one of two teacher colleges. The survey employed multiple choice, open-ended, and Likert-type questions to assess pre-service teachers' use of social media as well as their attitudes surrounding inquiry-based instruction. In order to better explain and analyze survey results, fourteen survey participants were interviewed with follow-up questions to elaborate on both social media use and inquiry attitudes. Findings indicated that the pre-service teachers used social media, and overwhelmingly Pinterest, to find lesson plans and classroom organizational ideas. Cited reasons for this practice included convenience, variety of lesson planning, and easily searchable databases. The study found statistical significance in that teachers who aspire to teach lower grade levels will turn to social media to find lesson plans more frequently than those who aspire to teach higher grade levels. The study found social media use had no statistically significant effect on the level of inquiry-based teaching that the participants aimed to achieve in their future classrooms.

  14. Students' Attitude in a Web-enhanced Hybrid Course: A Structural Equation Modeling Inquiry

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Sam Pan

    2003-12-01

    Full Text Available The present study focuses on five latent factors affecting students use of WebCT in a Web-enhanced hybrid undergraduate course at a southeastern university in the United States. An online questionnaire is used to measure a hypothetic model composed of two exogenous variables (i.e., subjective norm and computer self-efficacy, three endogenous variables (i.e., perceived ease of use, perceived usefulness, and attitude toward WebCT use, one dependent variable (i.e., actual system use, and eleven demographic items. PROC CALIS is used to analyze the data collected. Results suggest the technology acceptance model may not be applicable to the higher education setting. However, student attitude toward WebCT instruction remains a significant determinant to WebCT use on a non-voluntary basis. Educational achievement (i.e., student final grades is regressed on the attitude factor as an outcome variable.Suggestions for practitioners and researchers in the field are mentioned.

  15. Dialectical Inquiry as an Instructional Heuristic in Organization Theory and Design.

    Science.gov (United States)

    Dehler, Gordon E.; Welsh, M. Ann

    1993-01-01

    A strategy for teaching undergraduate organization theory and design uses dialectical inquiry (thesis-antithesis-synthesis) and involves students actively in classroom learning. Concepts are introduced through dichotomies as typically introduced in texts; discussion elaborates grey areas. Case analysis by this method conveys the often ambiguous…

  16. Naturalistic Inquiry in E-Learning Research

    Directory of Open Access Journals (Sweden)

    Shirley Agostinho

    2005-03-01

    Full Text Available In this article, the author explains how and why one particular qualitative research approach, the naturalistic inquiry paradigm, was implemented in an e-learning research study that investigated the use of the World Wide Web technology in higher education. A framework is presented that situates the research study within the qualitative research literature. The author then justifies how the study was compliant with naturalistic inquiry and concludes by presenting a model for judging the quality of such research. The purpose of this article is to provide an example of how naturalistic inquiry can be implemented in e-learning research that can serve as a guide for researchers undertaking this form of qualitative inquiry. As such, the focus of the article is to illustrate how methodological issues pertaining to naturalistic inquiry were addressed and justified to represent a rigorous research approach rather than presenting the results of the research study.

  17. Implementation of Process Oriented Guided Inquiry Learning (POGIL) in Engineering

    Science.gov (United States)

    Douglas, Elliot P.; Chiu, Chu-Chuan

    2013-01-01

    This paper describes implementation and testing of an active learning, team-based pedagogical approach to instruction in engineering. This pedagogy has been termed Process Oriented Guided Inquiry Learning (POGIL), and is based upon the learning cycle model. Rather than sitting in traditional lectures, students work in teams to complete worksheets…

  18. Transformation of Online Teaching Practices through Implementation of Appreciative Inquiry

    Science.gov (United States)

    Johnson, Bruce A.

    2014-01-01

    The purpose of this case study was to explore the application and outcome of appreciative inquiry as an online instructional strategy for the development of three specific factors: adult learner motivation, engagement, and performance. Appreciative andragogy was an original phrase developed for this study and is an adaptation of appreciative…

  19. Exploring Osmosis and Diffusion in Cells: A Guided-Inquiry Activity for Biology Classes, Developed through the Lesson-Study Process

    Science.gov (United States)

    Maguire, Lauren; Myerowitz, Lindsay; Sampson, Victor

    2010-01-01

    Guided inquiry is an instructional technique that requires students to answer a teacher-proposed research question, design an investigation, collect and analyze data, and then develop a conclusion (Bell, Smetana, and Binns 2005; NRC 2000). In this article, the authors describe a guided-inquiry lesson developed through the lesson-study process…

  20. An Exploration into First-Year University Students' Approaches to Inquiry and Online Learning Technologies in Blended Environments

    Science.gov (United States)

    Ellis, Robert A.; Bliuc, Ana-Maria

    2016-01-01

    The use of online learning technologies in experiences of inquiry is increasingly ubiquitous in university contexts. In blended environments, research into university experiences suggests that student approaches to learning are a key determiner of the quality of outcomes. The purpose of this study was to develop relevant measures which help…

  1. Problem-Based Learning and Creative Instructional Approaches for Laboratory Exercises in Introductory Crop Science

    Science.gov (United States)

    Teplitski, Max; McMahon, Margaret J.

    2006-01-01

    The implementation of problem-based learning (PBL) and other inquiry-driven educational techniques is often resisted by both faculty and students, who may not be comfortable with this learning/instructional style. We present here a hybrid approach, which combines elements of expository education with inquiry-driven laboratory exercises and…

  2. Educational Technology: Best Practices from America's Schools.

    Science.gov (United States)

    Bozeman, William C.; Baumbach, Donna J.

    This book begins with an overview of computer technology concepts, including computer system configurations, computer communications, and software. Instructional computer applications are then discussed; topics include computer-assisted instruction, computer-managed instruction, computer-enhanced instruction, LOGO, authoring programs, presentation…

  3. Using Technology-Nested Instructional Strategies to Enhance Student Learning

    OpenAIRE

    Angela Lumpkin, PhD; Rebecca M. Achen, PhD; Regan K. Dodd, PhD

    2015-01-01

    Students today expect the use of technology in their classes, rather than have to listen to less-than-engaging lectures. College students are connected electronically and incessant technology consumers. As a result, they may prefer the infusion of technologies to help them learn and enjoy the process of learning, rather than having to listen exclusively to lectures. To investigate this, the authors solicited student perceptions to assess the importance of learning through technology-nested...

  4. Evaluation of a pictograph enhancement system for patient instruction: a recall study.

    Science.gov (United States)

    Zeng-Treitler, Qing; Perri, Seneca; Nakamura, Carlos; Kuang, Jinqiu; Hill, Brent; Bui, Duy Duc An; Stoddard, Gregory J; Bray, Bruce E

    2014-01-01

    We developed a novel computer application called Glyph that automatically converts text to sets of illustrations using natural language processing and computer graphics techniques to provide high quality pictographs for health communication. In this study, we evaluated the ability of the Glyph system to illustrate a set of actual patient instructions, and tested patient recall of the original and Glyph illustrated instructions. We used Glyph to illustrate 49 patient instructions representing 10 different discharge templates from the University of Utah Cardiology Service. 84 participants were recruited through convenience sampling. To test the recall of illustrated versus non-illustrated instructions, participants were asked to review and then recall a set questionnaires that contained five pictograph-enhanced and five non-pictograph-enhanced items. The mean score without pictographs was 0.47 (SD 0.23), or 47% recall. With pictographs, this mean score increased to 0.52 (SD 0.22), or 52% recall. In a multivariable mixed effects linear regression model, this 0.05 mean increase was statistically significant (95% CI 0.03 to 0.06, pillustration is a novel approach to improve the comprehension and recall of discharge instructions. Our results showed a statistically significant in recall with automated illustrations. Subjects with no-colleague education and younger subjects appeared to benefit more from the illustrations than others. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Faculty Integration of Technology into Instruction and Students' Perceptions of Computer Technology to Improve Student Learning

    Science.gov (United States)

    Keengwe, Jared

    2007-01-01

    There has been a remarkable improvement in access and rate of adoption of technology in higher education. Even so, reports indicate that faculty members are not integrating technology into instruction in ways that make a difference in student learning (Cuban, 2001; McCannon & Crews, 2000). To help faculty make informed decisions on student…

  6. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    International Nuclear Information System (INIS)

    Tran, Trinh-Ba; Ed van den Berg, Ed; Beishuizen, Jos; Ellermeijer, Ton

    2015-01-01

    Integration of technology (e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers’ learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2–3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  7. Preparing pre-service teachers to integrate technology into inquiry-based science education: Three case studies in The Netherlands

    Science.gov (United States)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos

    2016-05-01

    Integration of technology ( e.g. measuring with sensors, video measurement, and modeling) into secondary-school science teaching is a need globally recognized. A central issue of incorporating these technologies in teaching is how to turn manipulations of equipment and software into manipulations of ideas. Therefore, preparation for pre-service teachers to apply ICT tools should be combined with the issues of minds-on inquiring and meaning-making. From this perspective, we developed a course within the post-graduate teacher-education program in the Netherlands. During the course, pre-service teachers learnt not only to master ICT skills but also to design, teach, and evaluate an inquiry-based lesson in which the ICT tool was integrated. Besides three life sessions, teachers' learning scenario also consisted of individual tasks which teachers could carry out mostly in the school or at home with support materials and online assistance. We taught three iterations of the course within a design-research framework in 2013, 2014 and collected data on the teacher learning processes and outcomes. The analyses of these data from observation, interviews, questionnaires, and documents were to evaluate implementation of the course, then suggest for revisions of the course set-up, which was executed and then assessed again in a subsequent case study. Main outcomes of the three case studies can be summarized as follows: within a limited time (3 life sessions spread over 2-3 months), the heterogeneous groups of pre-service teachers achieved a reasonable level of competence regarding the use of ICT tools in inquiry-based lessons. The blended set-up with support materials, especially the Coach activities and the lesson-plan form for an ICT-integrated inquiry-based lesson, contributed to this result under the condition that the course participants really spent considerable time outside the life sessions. There was a need for more time for hands-on, in-group activities in life

  8. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    Science.gov (United States)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  9. Narratives of Inquiry Learning in Middle-School Geographic Inquiry Class

    Science.gov (United States)

    Kuisma, Merja

    2018-01-01

    This study aimed at modifying a teaching and learning model for a geographic inquiry to enhance both the subject-related skills of geography and so-called twenty-first century skills in middle-school students (14-15 years old). The purpose of this research is to extend our understanding of the user experiences concerning certain tools for learning…

  10. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  11. Using Technology-Nested Instructional Strategies to Enhance Student Learning

    Science.gov (United States)

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    Students today expect the use of technology in their classes, rather than have to listen to less-than-engaging lectures. College students are connected electronically and incessant technology consumers. As a result, they may prefer the infusion of technologies to help them learn and enjoy the process of learning, rather than having to listen…

  12. Investigating Human Impact in the Environment with Faded Scaffolded Inquiry Supported by Technologies

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Nagy, Robin

    2012-01-01

    Teaching science as inquiry is advocated in all national science education documents and by leading science and science teaching organizations. In addition to teaching science as inquiry, we recognize that learning experiences need to connect to students' lives. This article details how we use a sequence of faded scaffolded inquiry supported by…

  13. E-Learning Implementation Issues and Strategies to Address Low Participation Using an Enhanced Model of Acceptance of Web 2.0 Technologies: A Case Study of a Scottish University

    Science.gov (United States)

    Echeng, Razep; Usoro, Abel

    2017-01-01

    Inquiry learning provides the opportunity to develop an improved understanding of concepts being taught to students. It is a useful way of learning which enhances interest and motivation by providing the opportunity to access and manipulate information in a tactical and strategic ways. Web 2.0 technology platforms serve as medium for inquiry…

  14. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  15. Development of Guided Inquiry-Based Student Lab Worksheet on the Making of Pineapple Flavoring

    Science.gov (United States)

    Dwiyanti, G.; Suryatna, A.; Taibah, I.

    2017-02-01

    The aim of this research was to develop guided inquiry based student lab worksheet on making pineapple flavour and knowing the quality of worksheet that is being developed. Research methods that is being conducted is research and development that is limited by a preliminary studies (literature studies, field surveys, and preparation of the initial product) and development of the model (within limited testing). The results from analyze the books sources and fields survey showed that the characteristic of esterification lab worksheet that currently available still in the direct instruction form (cookbook). The optimization result of making pineapple flavour experiment that was conducted are the ethanol volume 3 mL, butyric acid volume 2 mL, sulfuric acid 5 drops, saturated NaHCO3 solution volume 9 mL, and temperature of heating was 80 °C. The characteristic of guided inquiry based student lab worksheet that was developed contained phenomenon and instructions that suitable with inquiry stages to guide the students in doing the experiment of making pineapple flavour. The evaluation of designated teachers and lecturers of the developed student worksheet were very good (96,08%). Lab-experiment feasibility achieved by using guided inquiry based student lab worksheets that is being developed based on the inquiry stages that conducted by student were found very good (97,50%) and accomplishment based on students’ answer of the tasks in the worksheet were found very good (83,84%). Students’ responses of the experiments using the developed worksheet are found very good (81,84%).

  16. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  17. Knowing Inquiry as Practice and Theory: Developing a Pedagogical Framework with Elementary School Teachers

    Science.gov (United States)

    Poon, Chew-Leng; Lee, Yew-Jin; Tan, Aik-Ling; Lim, Shirley S. L.

    2012-04-01

    In this paper, we characterize the inquiry practices of four elementary school teachers by means of a pedagogical framework. Our study revealed core components of inquiry found in theoretically-driven models as well as practices that were regarded as integral to the success of day-to-day science teaching in Singapore. This approach towards describing actual science inquiry practices—a surprisingly neglected area—uncovered nuances in teacher instructions that can impact inquiry-based lessons as well as contribute to a practice-oriented perspective of science teaching. In particular, we found that these teachers attached importance to (a) preparing students for investigations, both cognitively and procedurally; (b) iterating pedagogical components where helping students understand and construct concepts did not follow a planned linear path but involved continuous monitoring of learning; and (c) synthesizing concepts in a consolidation phase. Our findings underscore the dialectical relationship between practice-oriented knowledge and theoretical conceptions of teaching/learning thereby helping educators better appreciate how teachers adapt inquiry science for different contexts.

  18. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    Science.gov (United States)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  19. The Windscale Inquiry: the public inquiry system on trial

    International Nuclear Information System (INIS)

    Garry, A.M.

    1992-01-01

    This thesis is concerned with the Windscale Inquiry of 1977 and its effect on the public inquiry system. It focusses both on the major influences of the Windscale Inquiry process, and on the participants, their aims, motivations, expectations and achievements. It provides the most detailed examination of the Inquiry to date and, as a result, uncovers aspects of the process while have not been explored previously. The central questions of the thesis are: Was the outcome of the Windscale Inquiry inevitable or could it have reached different conclusions? and did the Windscale Inquiry demonstrate that the public inquiry system could be used by a government to reach a decision which it favoured? The thesis argues that the outcome of the Windscale Inquiry was almost inevitable. In fact it was found that the Inspector had made up his mind in favour of oxide reprocessing before the Inquiry opened. However, this finding does not express fully the Inquiry's impact, because, as the thesis shows, the Inquiry became a mechanism which forced the nuclear industry and the government to explain, and substantially alter, some parts of their policies. The process of bringing the government and industry to account, did not alter the THORP decision, but it demonstrated that any subsequent inquiries could subject nuclear developments to searching criticism and investigation. Indeed it is suggested that the Windscale Inquiry made it impossible for subsequent Governments to proceed with nuclear expansion without subjecting them to the public inquiry process. Part I of the thesis examines the history and structure of the public Inquiry system and the relevant aspects of planning law. Part II describes the history of reprocessing and the themes which led to the public inquiry being established. Part III forms the most detailed part of the thesis and examines the Windscale Inquiry process focussing on the participants and the issues involved. (author)

  20. Physics By Inquiry: Addressing Student Learning and Attitude

    Science.gov (United States)

    Sadaghiani, Homeyra R.

    2008-10-01

    In the last decade, the results of Physics Education Research and research-based instructional materials have been disseminated from traditional research universities to a wide variety of colleges and universities. Nevertheless, the ways in which different institutions implement these materials depend on their students and the institutional context. Even with the widespread use of these curriculums, the research documenting the effectiveness of these materials with different student populations is scarce. This paper describes the challenges associated with implementing Physics by Inquiry at California State Polytechnic University Pomona and confirms its effectiveness in promoting student conceptual knowledge of physics. However, despite the positive effect on student learning, the evidence suggests that the students did not appreciate the self-discovery aspect of the inquiry approach and characterized the learning process as difficult and unpleasant.

  1. Research and Teaching. From Verification to Guided Inquiry: What Happens When a Chemistry Laboratory Curriculum Changes?

    Science.gov (United States)

    Scott, Pamela; Pentecost, Thomas C.

    2013-01-01

    How does the degree of inquiry-based laboratory instruction impact student performance and student perseverance in the laboratory portion of a first-semester general chemistry course? The implementation of a new

  2. Second Graders' Emerging Particle Models of Matter in the Context of Learning through Model-Based Inquiry

    Science.gov (United States)

    Samarapungavan, Ala; Bryan, Lynn; Wills, Jamison

    2017-01-01

    In this paper, we present a study of second graders' learning about the nature of matter in the context of content-rich, model-based inquiry instruction. The goal of instruction was to help students learn to use simple particle models to explain states of matter and phase changes. We examined changes in students' ideas about matter, the coherence…

  3. Interactive Computer Lessons for Introductory Economics: Guided Inquiry-From Supply and Demand to Women in the Economy.

    Science.gov (United States)

    Miller, John; Weil, Gordon

    1986-01-01

    The interactive feature of computers is used to incorporate a guided inquiry method of learning introductory economics, extending the Computer Assisted Instruction (CAI) method beyond drills. (Author/JDH)

  4. Socio-Materiality and Modes of Inquiry

    DEFF Research Database (Denmark)

    Buch, Anders

    2018-01-01

    the character of the socio-material relationship. The discussion will be guided by John Dewey’s and Arthur F. Bentley’s reflections on Knowing and the Known (1989/1948), as they distinguish between different levels of describing inquiry into the world we inhabit. At some levels of inquiry, we tend to construe...... of technology on human activity. In Science and Technology Studies (STS) the question has been discussed as the ‘social shaping of technology’ and various theoretical frameworks have been put forward that stress the interwoven character of the social and the material, e.g. Social Construction of Technology...... (SCOT), Actor-Network Theory (ANT), and Agential Realism. Whereas there is general agreement in STS that the social and the material is related there is no general agreement about how the socio-material relationship should be understood. Ontological, epistemological and methodological issues tend...

  5. Web2Quests: Updating a Popular Web-Based Inquiry-Oriented Activity

    Science.gov (United States)

    Kurt, Serhat

    2009-01-01

    WebQuest is a popular inquiry-oriented activity in which learners use Web resources. Since the creation of the innovation, almost 15 years ago, the Web has changed significantly, while the WebQuest technique has changed little. This article examines possible applications of new Web trends on WebQuest instructional strategy. Some possible…

  6. Fostering Face to Face Oral Interaction through Webquests: A Case Study in ESP for Tourism

    Science.gov (United States)

    Laborda, Jesus Garcia

    2010-01-01

    Webquests have been used for some time to research a variety of topics. According to Lacina (2007), a webquest is an inquiry-based technology activity designed by Bernie Dodge and Tom March in which information is usually drawn from the Internet, and is a powerful instructional exercise both for teachers and students.Webquests enhance personal and…

  7. Flipped Instruction: Breakthroughs in Research and Practice

    Science.gov (United States)

    IGI Global, 2017

    2017-01-01

    The integration of technology into modern classrooms has enhanced learning opportunities for students. With increased access to educational content, students gain a better understanding of the concepts being taught. "Flipped Instruction: Breakthroughs in Research and Practice" is a comprehensive reference source for the latest scholarly…

  8. Does technology really enhance nurse education?

    Science.gov (United States)

    Goodchild, Tim

    2018-07-01

    Technology has clearly impacted upon our working lives, and the purpose of this paper is to offer a critical insight into the ubiquitous presence of technology in nurse education. This paper argues that technology enhanced learning is predicated on the promise of potential and purported transformation of teaching and learning. It suggests that there is a lack of critical engagement in the academic field of technology enhanced learning, and adds a critical voice to some of the emerging arguments in this area. There is also a lack of systematic evidence supporting the enhancement offered by technology, and yet the technology enhanced project continues to persist. The discourse surrounding technology enhanced learning has become so dominant, so pervasive, that those of us within it can no longer see alternatives. But there are alternatives, and this paper argues that we need to challenge the dominance of technology enhanced learning, and become aware of its contingent nature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Inquiry of Pre-Service Teachers' Concern about Integrating Web 2.0 into Instruction

    Science.gov (United States)

    Hao, Yungwei; Lee, Kathryn S.

    2017-01-01

    To promote technology integration, it is essential to address pre-service teacher (PST) concerns about facilitating technology-enhanced learning environments. This study adopted the Concerns-Based Adoption Model to investigate PST concern on Web 2.0 integration. Four hundred and eighty-nine PSTs in a teacher education university in north Taiwan…

  10. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  11. Enhancing Engineering Students’ Reading Comprehension of English for Science and Technology With the Support of an Online Cumulative Sentence Analysis System

    Directory of Open Access Journals (Sweden)

    Yea-Ru Tsai

    2014-09-01

    Full Text Available For engineering students, reading in English is the core competence to absorb professional knowledge in academic settings and their future career, because many authentic textbooks and information about advanced technology have been published in English. The present study sets out to improve English reading comprehension among tertiary-level engineering students. An online reading strategy instruction based on cumulative sentence analysis (CSA was constructed to enhance the students’ reading comprehension of English technology texts. The comparison between the pre-test and post-test showed that the participants achieved a higher level of reading comprehension performance following the instruction. The findings clearly demonstrated that online CSA strategy instruction is an efficient and feasible approach to helping engineering students cope with their problems of reading English texts. Pedagogical implications are briefly discussed based on the findings of this study.

  12. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  13. Negotiating Competing Goals in the Development of an Urban Ecology Practitioner Inquiry Community

    Science.gov (United States)

    Piazza, Peter; McNeill, Katherine L.

    2013-01-01

    Teacher learning communities are hailed by many as vehicles for reforming and elevating the professional status of teaching. While much research explores teacher community as a venue for measurable gains, our research examines the orientation of practitioner inquiry toward critical debate about effective instruction. Specifically, our study…

  14. The effects of online science instruction using geographic information systems to foster inquiry learning of teachers and middle school science students

    Science.gov (United States)

    Hagevik, Rita Anne

    This study investigated the effects of using Geographic Information Systems (GIS) to improve middle school students' and their teachers' understanding of environmental content and GIS. Constructivism provided the theoretical framework with Bonnstetter's inquiry evolution and Swartz's problem solving as the conceptual framework for designing these GIS units and interpreting the results. Teachers from nine schools in five counties attended a one-week workshop and follow-up session, where they learned how to teach the online Mapping Our School Site (www.ncsu.edu/scilink/studysite) and CITYgreen GIS inquiry-based problem-solving units. Two years after the workshop, two teachers from the workshop taught the six week Mapping Our School Site (MOSS) unit in the fall and one teacher from a different school taught the MOSS unit in the fall and the CITYgreen GIS unit in the spring. The students in the MOSS experimental group (n = 131) and the CITYgreen GIS comparison group (n = 33) were compared for differences in understanding of environmental content. Other factors were investigated such as students' spatial abilities, experiences, and learning preferences. Teachers and students completed the online Learning Styles Inventory (LSI), Spatial Experience Survey (SES), and the Purdue Spatial Visualization Test: Rotations (PSVT:R). Using qualitative and quantitative analyses, results indicated that the CITYgreen GIS group learned the environmental content better than the MOSS group. The MOSS group better understood how to design experiments and to use GIS to analyze problem questions. Both groups improved in problem identification and problem solving, data accuracy, and hypothesis testing. The spatial reasoning score was compared to learning style as reported on the LSI, and other spatial experiences as reported on the SES. Males scored higher than females on the spatial reasoning test, the more computer games played the higher the score, and the fewer shop classes taken the

  15. A Pre-Service Teacher Training Model with Instructional Technology Graduate Students as Peer Coaches to Elementary Pre-Service Teachers

    Science.gov (United States)

    Slagter van Tryon, Patricia J.; Schwartz, Catherine Stein

    2012-01-01

    This paper describes a peer coaching collaboration between graduate students in a Master's program in Instructional Technology and undergraduate pre-service teachers enrolled in an elementary mathematics methods course. Integrated as a major project in a graduate level K-12 technology integration course, the Instructional Technology students…

  16. TEACHING IN ONLINE COURSES: Experiences of Instructional Technology Faculty Members

    Directory of Open Access Journals (Sweden)

    Omur AKDEMIR

    2008-04-01

    Full Text Available The Internet and computer technology have altered the education landscape. Online courses are offered throughout the world. Learning about the experiences of faculty members is important to guide practitioners and administrators. Using qualitative research methodology, this study investigated the experiences of faculty members teaching online courses. A convenience sampling was used to select the instructional technology faculty members to investigate their experiences in online courses. Semi-structured interviews with faculty members teaching online courses were used as the primary source to collect data about the experiences of faculty members in online courses. Results of the study showed that faculty members' interest in using technology and the amount of time available to them for online course design affected the quality of online courses. The findings of this study also indicated that design quality of online courses is affected by the interest of faculty members to use the technology and the time that they can devote to planning, designing, and developing online courses. The poor design of existing online courses, high learning expectations of ndividuals from these courses, and the future of online courses are the concerns of faculty members. Higher education institutions should support workshops and trainings to increase the skills and interests of non-instructional design faculty members to design and develop online courses.

  17. Effect of passive concentration as instructional set for training enhancement of EEG alpha.

    Science.gov (United States)

    Knox, S S

    1980-12-01

    The technique of passive concentration, employed by autogenic training and Transcendental Meditation for achieving relaxation, was tested here as a technique for enhancing EEG alpha. Of 30 subjects displaying between 15% and 74% alpha in their resting EEGs recruited, 10 had to be eliminated. The remaining 20 constituted two groups. One was instructed only to attempt to maintain a tone indicating alpha but given no information about technique (control group). The other was given additional instructions in passive concentration (experimental group). Both were given four 5-min. trials a day for 4 consecutive days. Heart rate and skin conductance were measured to monitor autonomic arousal. The group receiving instructions in passive concentration had significantly less alpha than the control group, which did not increase amount of alpha above baseline. The reduction of alpha in the experimental group was interpreted as resulting from beginning long training periods (20 min. per day), a practice advocated by Transcendental Meditation but discouraged by autogenic training. It was concluded that the relevance of passive concentration for alpha enhancement is doubtful.

  18. A Teacher Action Research Study: Enhancing Student Critical Thinking Knowledge, Skills, Dispositions, Application and Transfer in a Higher Education Technology Course

    Science.gov (United States)

    Phelan, Jack Gordon

    2012-01-01

    This study examined the effects of a critical thinking instructional intervention in a higher education technology course with the purpose of determining the extent to which the intervention enhanced student critical thinking knowledge, skills, dispositions, application and transfer abilities. Historically, critical thinking has been considered…

  19. Look at That!: Using Madagascar Hissing Cockroaches to Develop and Enhance the Scientific Inquiry Skill of Observation in Middle School Students

    Science.gov (United States)

    Wagler, Ron

    2011-01-01

    Middle school students can develop and enhance their observation skills by participating in teacher-guided scientific inquiry (NRC 1996) activities where they observe animals that tend to act in known, predictable ways. Madagascar hissing cockroaches ("Gromphadorhina portentosa") are one such animal. This article presents beginning, intermediate,…

  20. Facilitating Administrators' Instructional Leadership through the Use of a Technology Integration Discussion Protocol

    Science.gov (United States)

    McLeod, Scott

    2015-01-01

    Digital learning tools are increasingly prevalent in classrooms, yet too often technology integration efforts by educators replicate rather than transform traditional instructional practices. Opportunities to take advantage of the new affordances that technologies bring to the learning environment thus become forfeit. Administrators' use of a…

  1. Learning from Errors in Dual Vocational Education: Video-Enhanced Instructional Strategies

    Science.gov (United States)

    Cattaneo, Alberto A. P.; Boldrini, Elena

    2017-01-01

    Purpose: Starting from the identification of some theoretically driven instructional principles, this paper presents a set of empirical cases based on strategies to learn from errors. The purpose of this paper is to provide first evidence about the feasibility and the effectiveness for learning of video-enhanced error-based strategies in…

  2. Effects of Didactic Instruction and Test-Enhanced Learning in a Nursing Review Course.

    Science.gov (United States)

    Tu, Yu-Ching; Lin, Yi-Jung; Lee, Jonathan W; Fan, Lir-Wan

    2017-11-01

    Determining the most effective approach for students' successful academic performance and achievement on the national licensure examination for RNs is important to nursing education and practice. A quasi-experimental design was used to compare didactic instruction and test-enhanced learning among nursing students divided into two fundamental nursing review courses in their final semester. Students in each course were subdivided into low-, intermediate-, and high-score groups based on their first examination scores. Mixed model of repeated measure and two-way analysis of variance were applied to evaluate students' academic results and both teaching approaches. Intermediate-scoring students' performances improved more through didactic instruction, whereas low-scoring students' performances improved more through test-enhanced learning. Each method had differing effects on individual subgroups within the different performance level groups of their classes, which points to the importance of considering both the didactic and test-enhanced learning approaches. [J Nurs Educ. 2017;56(11):683-687.]. Copyright 2017, SLACK Incorporated.

  3. Context-Model-Based Instruction in Teaching EFL Writing: A Narrative Inquiry

    Science.gov (United States)

    Lin, Zheng

    2016-01-01

    This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students' development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher's…

  4. Incorporating Practitioner Inquiry into an Online Professional Development Program: The Prime Online Experience

    Science.gov (United States)

    Dana, Nancy Fichtman; Pape, Stephen J.; Griffin, Cynthia C.; Prosser, Sherri Kay

    2017-01-01

    Engagement in practitioner inquiry by classroom teachers is a promising mechanism for teacher professional learning. While much has been learned about the positive role inquiry can play in traditional professional development efforts, we know less about the impact of inquiry in a rapidly advancing technological age that includes the proliferation…

  5. Content analysis of science material in junior school-based inquiry and science process skills

    Science.gov (United States)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  6. Exploring Technology-Enhanced Learning Using Google Glass to Offer Students a Unique Instructor's Point of View Live Laboratory Demonstration

    Science.gov (United States)

    Man, Fung Fun

    2016-01-01

    Technology-enhanced learning (TEL) is fast gaining momentum among educational institutions all over the world. The usual way in which laboratory instructional videos are filmed takes the third-person view. However, such videos are not as realistic and sensorial. With the advent of Google Glass and GoPro cameras, a more personal and effective way…

  7. Student Motivation And Instructional Strategies In English Learning In Ghana

    Directory of Open Access Journals (Sweden)

    Dr. Mustapha Bin Danquah

    2017-11-01

    Full Text Available Motivation has been referred to as the single most important ingredient of learning Wieman 2013. However it does not come by chance application of appropriate instructional strategies are necessary. The present study conducted in-depth inquiry into the relevance of student motivation and its relationship with higher achievement in L2 learning. Descriptive research design was adopted for the study. Using stratified sampling technique 60 students were sampled from three public schools in Kumasi Metropolis. Also by means of purposive sampling six English teachers were selected in the three schools as participants. Set of questionnaires were the instrument for the study and analysis involved simple frequencies percentages tables and Pearsons Correlation Coefficient r. The study revealed that students can be motivated by simplicity clarity practical and insightful analogies making lessons lively and interesting and most importantly generous use of TLMs. Positive relationship also existed between students motivation and the use of effective instructional strategies with the attendant proficiency in English. Unequivocally student motivation is pivotal to facilitating proficiency in English a key to riding the crest of globalization and technology.

  8. Communication Education and Instructional Communication: Genesis and Evolution as Fields of Inquiry

    Science.gov (United States)

    Morreale, Sherwyn; Backlund, Philip; Sparks, Leyla

    2014-01-01

    Communication education is concerned with the communicative aspects of teaching and learning in various situations and contexts. Although the historical roots of this area of inquiry date back to the classical study of rhetoric by the Greeks and Romans, this report focuses on the field's emergence as an important area of modern scholarly…

  9. Enhancing Elementary Pre-Service Teachers' Plant Processes Conceptions

    Science.gov (United States)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-01-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to…

  10. Instructional Technologies in the Workforce: Case Studies from the Nuclear Industry.

    Science.gov (United States)

    Widen, William C.; Roth, Gene L.

    1992-01-01

    Describes six types of instructional technology used in the nuclear industry: Study Pacs, computerized test banks, computer-based training, interactive videodisc, artificial intelligence, and full-scope simulation. Each description presents the need, training device, outcomes, and limitations or constraints on use. (SK)

  11. IRANIAN LEARNERS’ PERCEPTIONS OF THE IMPACT OF TECHNOLOGY-ASSISTED INSTRUCTION ON THEIR ENGLISH AURAL/ORAL SKILLS

    Directory of Open Access Journals (Sweden)

    Rozi Souzanzan

    2017-02-01

    Full Text Available The present study aimed to investigate the perceptions of Iranian English as Foreign Language (EFL learners regarding the impact of technology-assisted instruction through the utilization of Information and Communication Technologies (ICTs on their listening comprehension and speaking ability. To this end, eighty Iranian EFL learners whose age range was between twenty to thirty five took part in the study. They were randomly divided into four groups and were exposed to technology-assisted instruction on their course-related contents through different ICTs as their out-of-class activities for one hour per week during two and a half months. The ICTs which were the focus of this study included: Podcasts, YouTube, Skype, and Instagram. The analysis of the participants’ answers indicated that the majority of them (83.8% were positive toward technology-assisted instruction. In addition, 80% of them tended to use ICTs for their future language learning purposes.

  12. Inquiry-based Laboratory Activities on Drugs Analysis for High School Chemistry Learning

    Science.gov (United States)

    Rahmawati, I.; Sholichin, H.; Arifin, M.

    2017-09-01

    Laboratory activity is an important part of chemistry learning, but cookbook instructions is still commonly used. However, the activity with that way do not improve students thinking skill, especially students creativity. This study aims to improve high school students creativity through inquiry-based laboratory on drugs analysis activity. Acid-base titration is used to be method for drugs analysis involving a color changing indicator. The following tools were used to assess the activity achievement: creative thinking test on acid base titration, creative attitude and action observation sheets, questionnaire of inquiry-based lab activities, and interviews. The results showed that the inquiry-based laboratory activity improving students creative thinking, creative attitude and creative action. The students reacted positively to this teaching strategy as demonstrated by results from questionnaire responses and interviews. This result is expected to help teachers to overcome the shortcomings in other laboratory learning.

  13. Self-Study as an Emergent Methodology in Career and Technical Education, Adult Education and Technology: An Invitation to Inquiry

    Science.gov (United States)

    Hawley, Todd S.; Hostetler, Andrew L.

    2017-01-01

    In this manuscript, the authors explore self-study as an emerging research methodology with the potential to open up spaces of inquiry for researchers, graduate students, and teachers in a broad array of fields. They argue that the fields of career and technical education (CTE), adult education and technology can leverage self-study methodology in…

  14. Elementary teachers' ideas about, planning for and implementation of learner-directed and teacher-directed inquiry: A mixed methods study

    Science.gov (United States)

    Biggers, Mandy Sue

    Using a framework for variations of classroom inquiry (National Research Council [NRC], 2000, p. 29), this study explored 40 inservice elementary teachers' planning, modification, and enactment of kit-based science curriculum materials. As part of the study, a new observation protocol was modified from an existing protocol (Practices of Science Observation Protocol [P-SOP]) to measure the amount of teacher direction in science inquiry lessons (Practices of Science Observation Protocol + Directedness [P-SOPd]). An embedded mixed methods design was employed to investigate four questions: 1. How valid and reliable is the P-SOPd? 2. In what ways do inservice elementary teachers adapt existing elementary science curriculum materials across the inquiry continuum? 3. What is the relationship between the overall quality of inquiry and variations of inquiry in elementary teachers' enacted science instruction? 4. How do inservice elementary teachers' ideas about the inquiry continuum influence their adaptation of elementary science curriculum materials? Each teacher chose three lessons from a science unit for video-recorded observation, and submitted lesson plans for the three lessons. Lesson plans and videos were scored using the P-SOPd. The scores were also compared between the two protocols to determine if a correlation existed between the level of inquiry (measured on the P-SOP) and the amount of teacher direction (measured on the P-SOPd). Findings indicated no significant differences between planned and enacted lessons for the amount of teacher direction, but a correlation existed between the level of inquiry and the amount of teacher direction. In effect, the elementary teachers taught their science curriculum materials with a high level of fidelity for both the features of inquiry and the amount of teacher direction. A smaller group of three case study teachers were followed for the school year to give a more in-depth explanation of the quantitative findings. Case

  15. Overview of Instructional Technology Used in the Education of Occupational Therapy Students: A Survey Study

    Directory of Open Access Journals (Sweden)

    Bryan M. Gee

    2017-10-01

    Full Text Available The purpose of this study was to explore the type of instructional technology (IT master’s degree level occupational therapy educational programs routinely use as a part of their lecture- and laboratory-based instruction. Surveying the administrators of 121 graduate occupational therapy programs in the United States, we found that the majority of the respondents identified their program as using IT in some form for lecturebased courses, with less inclusion of IT for laboratory-based courses. Hybrid instruction, with the majority of the content being delivered face-to-face and the remainder via online, were the trends among the respondents. The findings also indicated that the respondents’ programs avoid certain IT, including synchronous online chat rooms or instant messaging, digital image collections, blogs or online journaling, Wikis, and audio/video podcasting. Few of the respondents said their programs had made a significant leap into implementing a larger online presence with instructional technology

  16. Effect of Robotics-Enhanced Inquiry-Based Learning in Elementary Science Education in South Korea

    Science.gov (United States)

    Park, Jungho

    2015-01-01

    Much research has been conducted in educational robotics, a new instructional technology, for K-12 education. However, there are arguments on the effect of robotics and limited empirical evidence to investigate the impact of robotics in science learning. Also most robotics studies were carried in an informal educational setting. This study…

  17. Instructional Technology and Objectification

    Directory of Open Access Journals (Sweden)

    Bekir S. Gur

    2008-05-01

    Full Text Available Objectification refers to the way in which everything (including human beings is treated as an object, raw material, or resource to be manipulated and used. In this article, objectification refers to the way that education is often reduced to the packaging and delivery of information. A critique of objectification in instructional technology is presented. In the context of Heidegger’s critique of technology, the authors claim that objectification in education is metaphysical in the sense that the intelligibility (being of education is equated with ready-to-use packages, and thus is reduced to delivery and transmission of objects. The embodiment dimension of teaching and learning can help us in resisting this reduction. The authors argue that objectification increases bureaucratic control over the teaching process and deskills teachers; and by which teachers are proletarianized. The authors conclude that instructional designers should create structures in which a care relation and dialogue between students and teachers can take place. Résumé: L’objectification réfère à la façon dont tout (incluant les être humains est traité comme un objet, une matière première ou une ressource qui peut être manipulée et utilisée. Dans cet article, l’objectification réfère à la façon dont l’éducation est souvent réduite à la mise en boîte et à la livraison de l’information. Une critique de l’objectification en technologie éducative est présentée. Dans le contexte de la critique de la technologie par Heidegger, les auteurs prétendent que l’objectification en éducation est métaphysique dans le sens que l’intelligibilité (être de l’éducation équivaut à la mise en boîte prêt-à –utiliser, et se résume donc à la livraison et à la transmission d’objets. L’incarnation de l’enseignement et de l’apprentissage peuvent nous aider à résister à cette réduction. Les auteurs arguent que l

  18. Double-loop Learning: A Coaching Protocol for Enhancing Principal Instructional Leadership

    Directory of Open Access Journals (Sweden)

    Gary W. Houchens

    2012-10-01

    Full Text Available Executive coaching has become increasingly commonplace in both the corporate and non-profit sectors as a means of improving professional effectiveness but there is a dearth of empirically-based protocols geared specifically toward the growth needs of school principals. This qualitative case study explores the implementation of a principal coaching protocol using a theories of practice framework based on concepts originally articulated by Argyris and Schön (1974 and further explicated by the authors in previous publications. This study examined the extent to which a coaching protocol based on theories of practice enhanced principals’ self-perceived capacity for reflection and effective instructional leadership. Findings suggest that principals valued the structure, feedback, and reflective dimensions of the protocol and found their confidence level about an important instructional leadership problem – how to support and assist struggling teachers improve their teaching practice – was greatly enhanced. Implications for further iterations of the coaching protocol, as well as future directions of research on principal professional growth, are discussed.

  19. The Instructional Network: Using Facebook to Enhance Undergraduate Mathematics Instruction

    Science.gov (United States)

    Gregory, Peter; Gregory, Karen; Eddy, Erik

    2014-01-01

    Facebook is a website with over one billion users worldwide that is synonymous with social-networking. However, in this study, Facebook is used as an "instructional network". Two sections of an undergraduate calculus course were used to study the effects of participating in a Facebook group devoted solely to instruction. One section was…

  20. Comparing the perceptions of scientific inquiry between experts and practitioners

    Science.gov (United States)

    Gooding, Julia Terese Chembars

    The purpose of this study was to determine if there was a difference in the perception of scientific inquiry between experts and practitioners, and, if a difference was shown to exist, to analyze those perceptions in order to better understand the extent of that difference or gap. A disconnect was found between how experts and practitioners perceived scientific inquiry. The practitioners differed from both the experts and the literature in three key areas. First, although the teachers indicated that students would be manipulating materials, there was no direct reference to this manipulation actually being performed for the purpose of investigating. Second, the practitioners implied active physical engagement with materials, but they did not tie this to active mental engagement or direct involvement in their own learning. Third, teachers omitted their role in laying the foundation for inquiry. Though classroom teachers lacked a complete understanding of true inquiry and its place in the K-12 classroom, most of them actually believed they were practicing the art of teaching via inquiry. Additionally, two other points of interest arose. First, an examination of the national standards for a number of curricular areas established that the process skills of scientific inquiry are mirrored in those standards, implying that inquiry is not limited to the sciences. Second, a definition of inquiry was formulated based upon interviews with experts in the field. Although the literature and the experts were in unison in their definition, there was a disparity between the accepted definition and that provided by the teachers. The struggle for a comprehensive understanding of inquiry continues to this day. It might very well be that the concept still remains elusive partly because the teacher behaviors associated with it run counter to more traditional methods of instruction...methods that most teachers have experienced throughout their own educational careers. The most pervasive

  1. Identifying Multimedia Production Competencies and Skills of Instructional Design and Technology Professionals: An Analysis of Recent Job Postings

    Science.gov (United States)

    Sugar, William; Hoard, Brent; Brown, Abbie; Daniels, Lee

    2012-01-01

    In an effort to document necessary multimedia production competencies of Instructional Design and Technology graduates, a recent analysis of over 7 months' worth of Instructional Design and Technology job advertisements (n = 615) were conducted. Specific job skills from these postings were categorized and analyzed. The data set includes three job…

  2. An investigation of children's levels of inquiry in an informal science setting

    Science.gov (United States)

    Clark-Thomas, Beth Anne

    Elementary school students' understanding of both science content and processes are enhanced by the higher level thinking associated with inquiry-based science investigations. Informal science setting personnel, elementary school teachers, and curriculum specialists charged with designing inquiry-based investigations would be well served by an understanding of the varying influence of certain present factors upon the students' willingness and ability to delve into such higher level inquiries. This study examined young children's use of inquiry-based materials and factors which may influence the level of inquiry they engaged in during informal science activities. An informal science setting was selected as the context for the examination of student inquiry behaviors because of the rich inquiry-based environment present at the site and the benefits previously noted in the research regarding the impact of informal science settings upon the construction of knowledge in science. The study revealed several patterns of behavior among children when they are engaged in inquiry-based activities at informal science exhibits. These repeated behaviors varied in the children's apparent purposeful use of the materials at the exhibits. These levels of inquiry behavior were taxonomically defined as high/medium/low within this study utilizing a researcher-developed tool. Furthermore, in this study adult interventions, questions, or prompting were found to impact the level of inquiry engaged in by the children. This study revealed that higher levels of inquiry were preceded by task directed and physical feature prompts. Moreover, the levels of inquiry behaviors were haltered, even lowered, when preceded by a prompt that focused on a science content or concept question. Results of this study have implications for the enhancement of inquiry-based science activities in elementary schools as well as in informal science settings. These findings have significance for all science educators

  3. "I am a scientist": How setting conditions that enhance focused concentration positively relate to student motivation and achievement outcomes in inquiry-based science

    Science.gov (United States)

    Ellwood, Robin B.

    This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged thirteen to fourteen years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on forty-six percent of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. This research also illustrates the positive gains in motivation and achievement outcomes that emerge from student experiences with extended time in isolated areas referred to

  4. Using Peer Feedback to Improve Students' Scientific Inquiry

    Science.gov (United States)

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-02-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of Inquiry. Videotapes of classroom lessons and artifacts such as student work were collected as part of the corpus of data. In the case examined, Ms. E supports her students to collectively define "meaningful feedback," thereby improving the quality of feedback that was provided in the future. This is especially timely, given the attention in Next Generation Science Standards to cross-cutting concepts and practices that require students discuss and debate ideas with each other in order to improve their understanding and their written inquiry reports (NGSS, 2013).

  5. Developing an intranet towards knowledge sharing: A practitioner-based inquiry

    Directory of Open Access Journals (Sweden)

    U. R. Averweg

    2008-11-01

    Full Text Available The intranet is a common feature in many organizations. With the increasing use of a technology infrastructure in organizations, there is a continued challenge for employees in an organization to contribute their knowledge willingly and to make use of knowledge sharing with other employees. Intranets are well-suited for use as a strategic tool in knowledge sharing due to their ability to support the distribution, connectivity and publishing of data and information. Intranets should be seen as integral to an organization’s knowledge management strategy and should be tailored to suit and enhance an organization’s knowledge-sharing activities. The question arises: To what extent does an organization’s existing intranet facilitate knowledge sharing? From a practitioner-based inquiry perspective, this question was explored by the selection of a large organization – eThekwini Municipality, Durban, South Africa – as the field of application. Derived from a mixed methodology approach, the results of a survey are presented. It is suggested that encouragement be given for more practitioner-based inquiry research.

  6. Learning Technology through Three Generations of Technology Enhanced Distance Education Pedagogy

    Science.gov (United States)

    Anderson, Terry; Dron, Jon

    2012-01-01

    This paper updates earlier work in which we defined three generations of distance education pedagogy. We then describe emerging technologies that are most conducive to instructional designs that evolve with each generation. Finally we discuss matching the pedagogies with learning outcomes. (Contains 3 figures.)

  7. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    Science.gov (United States)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  8. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  9. Inquiry-based course in physics and chemistry for preservice K-8 teachers

    Directory of Open Access Journals (Sweden)

    Michael E. Loverude

    2011-05-01

    Full Text Available We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat unusual for its interdisciplinary focus. We describe the course structure in detail, providing examples of course materials and assessment strategies. Finally, we provide research data illustrating both the need for the course and the effectiveness of the course in developing student understanding of selected topics. Student responses to various questions reflect a lack of understanding of many relatively simple physical science concepts, and a level of performance that is usually lower than that in comparable courses serving a general education audience. Additional data suggest that course activities improve student understanding of selected topics, often dramatically.

  10. Development and use of an instrument to measure scientific inquiry and related factors

    Science.gov (United States)

    Dunbar, Terry Frank

    limits" indicated as an inquiry-limiting factor. The following eight variables (all inquiry-limiting factors) were negatively correlated with inquiry use: available instructional materials, student prior knowledge/reading level, lack of experience with inquiry, not enough time, unsuccessful previous attempts, doubts about students' capability, insufficient time and support, and insufficient background in science.

  11. Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports

    Science.gov (United States)

    Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin

    2012-01-01

    Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…

  12. Stoichiometry in Context: Inquiry-Guided Problems of Chemistry for Encouraging Critical Thinking in Engineering Students

    Directory of Open Access Journals (Sweden)

    Gabriel Pinto

    2013-01-01

    Full Text Available This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufacturers. These cases were developed in the context of an inquiry-guided instruction model. By bringing tangible chemistry examples into the classroom we provide an opportunity for engineering students to apply this science to familiar products in hopes that they will appreciate chemistry more, will be motivated to study concepts in greater detail, and will connect the relevance of chemistry to everyday life.

  13. Bruce's Magnificent Quartet: Inquiry, Community, Technology and Literacy--Implications for Renewing Qualitative Research in the Twenty-First Century

    Science.gov (United States)

    Davidson, Judith

    2014-01-01

    Bruce and Bishop's community informatics work brings forward four critical concepts: inquiry, community, technology, and literacy. These four terms serve as the basis for a discussion of qualitative research in the twenty-first century--what is lacking and what is needed. The author suggests that to resolve the tensions or challenges…

  14. Improving Information Technology Curriculum Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Derrick L Anderson

    2017-06-01

    The case study research methodology has been selected to conduct the inquiry into this phenomenon. This empirical inquiry facilitates exploration of a contemporary phenomenon in depth within its real-life context using a variety of data sources. The subject of analysis will be two Information Technology classes composed of a combination of second year and third year students; both classes have six students, the same six students. Contribution It is the purpose of this research to show that the use of improved approaches to learning will produce more desirable learning outcomes. Findings The results of this inquiry clearly show that the use of the traditional behaviorist based pedagogic model to achieve college and university IT program learning outcomes is not as effective as a more constructivist based andragogic model. Recommendations Instruction based purely on either of these does a disservice to the typical college and university level learner. The correct approach lies somewhere in between them; the most successful outcome attainment would be the product of incorporating the best of both. Impact on Society Instructional strategies produce learning outcomes; learning outcomes demonstrate what knowledge has been acquired. Acquired knowledge is used by students as they pursue professional careers and other ventures in life. Future Research Learning and teaching approaches are not “one-size-fits-all” propositions; different strategies are appropriate for different circumstances and situations. Additional research should seek to introduce vehicles that will move learners away from one the traditional methodology that has been used throughout much of their educational careers to an approach that is better suited to equip them with the skills necessary to meet the challenges awaiting them in the professional world.

  15. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    Science.gov (United States)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes

  16. Enhancement of information and communications technologies (ICTs)

    African Journals Online (AJOL)

    ... therefore examines one of these possibilities by the development of Instruction Delivery Expert System for Teachers and also the need and benefits of the proposed expert system. KEYWORDS: Information and Communications Technologies (ICTs), Expert System, Artificial Intelligence, Knowledge Base, Inference Engine, ...

  17. Inquiry, A Project of the Wisconsin Bar Foundation. Vols. 1 and 2, Revised.

    Science.gov (United States)

    Scheurich, G. Michael, Ed.

    This new, revised edition of the Inquiry instructional materials is designed for use in teaching high school students about the U. S. laws and legal systems. The revised outlines, designed for instructors who have had legal training, are less technical and more informal, include new concepts and many current relevant topics, and de-emphasize…

  18. Using the ICOT Instrument to Improve Instructional Technology Usage in the ABE Classroom

    Science.gov (United States)

    Lentz, Brannon W.

    2011-01-01

    The International Society for Technology (ISTE) in Education promotes the use of a specific tool--the ISTE Classroom Observation Tool (ICOT)--to measure and improve the use of instructional technologies in Adult Basic Education (ABE) classrooms. The purpose of this article is to describe an application process for the use of the ICOT instrument…

  19. Students with Learning Disabilities Perspective on Reading Comprehension Instruction: A Qualitative Inquiry

    Science.gov (United States)

    Rose, Dale Rennard

    2017-01-01

    The three article dissertation was a presentation of students' with learning disabilities perspectives on reading comprehension instruction. Article 1 set out to provide an historical perspective of reading and reading comprehension instruction. Topics covered in this research review included: reading comprehension, reading and learning…

  20. Incorporating Active Learning and Student Inquiry into an Introductory Merchandising Class

    Science.gov (United States)

    Lee, Hyun-Hwa; Hines, Jean D.

    2012-01-01

    Many educators believe that student learning is enhanced when they are actively involved in classroom activities that require student inquiry. The purpose of this paper is to report on three student inquiry projects that were incorporated into a merchandising class with the focus on making students responsible for their learning, rather than the…

  1. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  2. The Sizewell inquiry - is there a better way

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1984-01-01

    The author sees the Inquiry as the latest in a line arising from government's wish to achieve greater public participation in controversial decisions. He believes that the Sizewell Inquiry is unlikely to shake the public out of its apathy, while a decision that goes against them will not satisfy the objectors. The concept of the Inquiry is based on the belief that the legal process will unearth objective truth, while most of the issues are matters of opinion and judgement. The wide-ranging terms of reference are leading to constitutional anomalies and attempts to take on Herculean tasks in the search for objective truth. However, while concluding that an Inquiry Commission adopting a legal approach and following courtroom procedures is not a satisfactory way of dealing with large-scale technological projects, the author finds it hard to suggest alternatives short of more direct parliamentary control. (author)

  3. Roadblocks to Integrating Technology into Classroom Instruction

    Science.gov (United States)

    Knight, Courteney Lester

    2012-01-01

    Although research has concluded that technology can enhance the teaching and learning processes, teachers have not yet fully adopted technology to support their teaching methodologies. In the last decade or so, as the accessible gap narrowed, the focus switched to other factors. This study attempts to answer the question: Why teachers do not fully…

  4. Books Only Got Us so Far: The Need for Multi-Genre Inquiry

    Science.gov (United States)

    Jewett, Pamela

    2010-01-01

    This study examines the instructional steps I took, based on gaps between what was happening in a graduate literacy class I taught and what I had intended to happen. This study describes the ways that I re-imagined the class and what came about when I created a pedagogical approach that featured multi-genre inquiry. I define inter-discursivity as…

  5. Design Studios in Instructional Design and Technology: What Are the Possibilities?

    Science.gov (United States)

    Knowlton, Dave S.

    2016-01-01

    Design studios are an innovative way to educate Instructional Design and Technology (IDT) students. This article begins by addressing literature about IDT design studios. One conclusion from this literature is that IDT studios have been theoretically conceptualized. However, much of this conceptualization is insular to the field of IDT and only…

  6. The Tools of Teacher Education: Preservice Teachers' Use of Technology To Create Instructional Materials.

    Science.gov (United States)

    Roberts, Sherron Killingsworth; Hsu, Ying-Shao

    2000-01-01

    Examines the effectiveness/efficiency of preservice teachers' use of technology to create instructional materials developed in an undergraduate reading/language arts course. Results showed no significant difference between measures of overall quality of the technology assistance as compared to handmade prompts. Eighty-five percent of the teachers…

  7. Lecture to inquiry: The transformation of a tech prep biology teacher

    Science.gov (United States)

    Haskell, Deborah Harris

    As teachers implement the National Science Education Standards (NRC, 1996) many have to reform the instructional methods they have used throughout their careers. This case study examines the transformation of Laurie, a 20-year teacher, during her first year of change from a "traditional" textbook/lecture style of teaching to a facilitator of an inquiry-based classroom. Implementing change requires not only pedagogical expertise, but also the belief that the modifications can be made and that the outcomes are significant. Using Bandura's social cognitive theory as a framework, changes in Laurie's self-efficacy, outcome expectancy, and motivation are followed throughout the transition. During her first year of change, Laurie used worksheets, small group activities, and guided inquiry activities, all strategies in which she had high self-efficacy and experienced positive student outcomes. She rarely used class forums, authentic assessment, and formative assessment. Factors that influenced her change were experiential professional development opportunities that allowed her to practice inquiry-based techniques, a change in her teaching environment from college prep chemistry to tech prep biology, autonomy regarding classroom decisions, and reflective decision making as she learned through experience. Using a standards-based biology textbook increased her self-efficacy toward using inquiry-based practices. The textbook format of embedding text in activities rather than adding activities to the text resulted in an increase of the number and frequency of activities done. Facilitating the textbook's Guided Inquiries and Extended Inquiries helped Laurie gain experience with inquiry-based methods. She also realized that when building from the students' concrete experiences, her students were able to attain higher-level thinking skills. The study revealed six factors contributing to Laurie's change process: (a) experiential professional development, (b) motivation for change

  8. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    2017-01-01

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that…

  9. Proposal of Instruction Process for Improvement of Language Activities in Technology Education Course

    OpenAIRE

    山本, 智広; 山本, 利一

    2012-01-01

    This study is a proposal of instruction process for improvement of language activities in the technology education course in the junior high school in Japan. In this study, two efforts were carried out for the technology concerning material and processing. The first effort was the extraction of the learning situations that develop abilities of thinking, judgment and expression through language activities peculiar to the technology education course. The second effort was the verification o...

  10. Research and Teaching: WikiED--Using Web 2.0 Tools to Teach Content and Critical Thinking

    Science.gov (United States)

    Frisch, Jennifer K.; Jackson, Paula C.; Murray, Meg C.

    2013-01-01

    WIKIed Biology is a National Science Foundation Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics interdisciplinary project in which the authors developed and implemented a model for student centered, inquiry-driven instruction using Web 2.0 technologies to increase inquiry and conceptual understanding in…

  11. The assessment of virtual reality for human anatomy instruction

    Science.gov (United States)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  12. Instructional and Learning Modes in Math. Module CMM:006:02.

    Science.gov (United States)

    Rexroat, Melvin E.

    This is the second module in a series on mathematics methods and materials for preservice elementary teachers. This module focuses on three instructional and learning modes: expository, guided discovery, and inquiry (pure discovery). Objectives for the module are listed, the prerequisites are stated, pre- and post-assessment standards are…

  13. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    Science.gov (United States)

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  14. Teacher Supervision and Evaluation Challenges: Canadian Perspectives on Overall Instructional Leadership

    Science.gov (United States)

    Brandon, Jim; Hollweck, Trista; Donlevy, James Kent; Whalen, Catherine

    2018-01-01

    This inquiry focuses on the "overall instructional leadership" approaches used by exemplary principals in three high performing Canadian provinces to overcome three persistent obstacles to effective teacher supervision and evaluation: (a) the management challenge, (b) the complexity challenge, and (c) the learning challenge. Analysis of…

  15. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    Science.gov (United States)

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  16. Inquiring with Geoscience Datasets: Instruction and Assessment

    Science.gov (United States)

    Zalles, D.; Quellmalz, E.; Gobert, J.

    2005-12-01

    This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.

  17. Student Inquiry in the Research Process: Part I: Inquiry Research Basics.

    Science.gov (United States)

    Preddy, Leslie B.

    2002-01-01

    Discusses the appropriate use of inquiry among students, teachers, and library media specialists. Topics include planning for an inquiry research project; collaboration between the library media specialist and classroom teacher; national goals, standards, and best practices; teacher roles for inquiry; and evaluating inquiry research. (LRW)

  18. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  19. Effect of student engagement on multimedia-assisted instruction

    Directory of Open Access Journals (Sweden)

    Hsiu-Ping Yueh

    2012-09-01

    Full Text Available This study applied multimedia in a general engineering and technology course in Taiwan and evaluated the effectiveness of multimedia-assisted instruction and learning. The course presented trends in technological development and the achievements of Taiwanese industries and research institutes from a historical perspective, and overviewed the technology industries and industrial transformation development in Taiwan. The course units adopted multimedia to support class teaching and student learning, and a survey was conducted to collect students’ attitudes and perception toward multimedia-assisted instruction and learning in the course. Research data were collected from 45 male and 9 female students with varied academic and cultural backgrounds. Results showed that multimedia videos help raise students’ awareness of learning issues, improve their understanding of content, and increase the depth of their learning. Almost all students liked the approach of using multimedia to assist teaching and learning, preferring this approach over traditional lecture-based instruction. They also would recommend this course to their peers. This study also found that the degree of students’ engagement caused variance in the students’ perception of multimedia helpfulness in assisting their learning. Finally, this study further proposes suggestions in both design and research on applications of multimedia-enhanced learning in engineering and technology education.

  20. Teachers' implementation of reform-oriented instructional strategies in science: Lessons from two professional development programs

    Science.gov (United States)

    Cook, Nicole D.

    This dissertation reports findings from two studies that investigated the relationship between professional development and teachers' instructional practices in Science,Technology, Engineering, and Mathematics (STEM). The first program, the Indiana Science Initiative (ISI) focused on K-8 teachers and their use of inquiry-based science instruction in conjunction with curricular modules provided by the ISI program. The second program, Research Goes to School (RGS), focused on high school STEM teachers and their use of problem-based learning (PBL) as they implemented curricular units that they developed themselves at the RGS summer workshop. In-service teachers were recruited from both programs. They were observed teaching their respective curricular materials and interviewed about their experiences in order to investigate the following research questions: 1. How do teachers implement the reform-oriented instructional strategies promoted by their professional development experiences with the ISI or RGS? 2. What are the challenges and supports that influence teachers' use of the reform-oriented instructional strategies promoted by their professional development experiences with the ISI or RGS? To investigate these questions the fidelity of implementation was it was conceptualized by Century, Rudnick, and Freeman (2010) was used as a theoretical framework. The study of the ISI program was conducted during the program's pilot year (2010-11). Five teachers of grades 3 through 6 were recruited from three different schools. Participants were observed as they taught lessons related to the modules and they were interviewed about their experiences. Based on analysis of the data from the observations, using a modified version of the Science Teacher Inquiry Rubric (STIR) (Bodzin & Beerer, 2003), the participants were found to exhibit partial fidelity of implementation to the model of inquiry-based instruction promoted by the ISI. Based on data from the interviews, the

  1. From inside the black box: Teacher perceptions of science instruction at the elementary level

    Science.gov (United States)

    Ferrini, Cynthia D.

    Science education reform projects aimed at elementary school children arose in the 1960's. The most prevalent of these reforms utilized the inquiry, or hands-on, science method. Billions of dollars have been invested in these reforms. Yet, reports indicate that science is not being taught at the level one might expect in elementary schools. This research was an analysis of the problems and concerns teachers at one school district faced as they tried to implement and sustain elementary inquiry science instruction. The district chosen was a large suburban district in the Western United States. The population was ninety percent Caucasian with a slightly more ethnically diverse school population. This district was chosen because it had an elementary science program for over twenty years and had received national acclaim for that program. The district had a stable and homogeneous staff there was a low administrator and teacher turnover rate and the elementary teaching population was ninety percent Caucasian and ninety percent female. Interviews with administrators and teachers were conducted. Data were collected from focus groups of teachers and science partners. Observations of elementary science classroom instruction and professional development sessions were made. Results of this research indicated that one important key to elementary science reform rests in the hands of teachers. Once the door to the classroom is closed, the teacher can decide to teach or not to teach science. The findings of this research illustrate that teachers hold ideas about science and science instruction that are antithetical to some tenets of inquiry science. Until these ideas are addressed it will be difficult, if not impossible, to implement a systemic elementary inquiry science program. This study demonstrates that professional development for elementary teachers in science needs to change from a focus on the mechanical usage of individual units to a focus on teacher expectations for

  2. Establishing a Multidimensional Interaction in Science Instruction: Usage of Mobile Technology

    Science.gov (United States)

    Yilmaz, Özkan; Sanalan, Vehbi Aytekin

    2015-01-01

    The aim of this study is to examine the effect of mobile technology use in university science instruction on students' academic achievement and self-regulation skills. An experimental study is conducted to test the use of mobile in-class interaction system (M-CIS) and to determine the change in students' academic achievement and self-regulation…

  3. Balancing Teacher and Student Roles in Elementary Classrooms: Preservice Elementary Teachers' Learning about the Inquiry Continuum

    Science.gov (United States)

    Biggers, Mandy; Forbes, Cory T.

    2012-01-01

    Using the National Research Council's inquiry continuum framework, we use a multiple-case study research design to investigate the teacher- and student-directedness of elementary preservice teachers' planned and enacted science lessons and their pedagogical reasoning about science instruction during a semester-long science methods course. Our…

  4. "How do I say that?": Using communication principles to enhance medication therapy management instruction.

    Science.gov (United States)

    Denvir, Paul M; Cardone, Katie E; Parker, Wendy M; Cerulli, Jennifer

    2018-02-01

    Medication therapy management (MTM) is a comprehensive, patient-centered approach to improving medication use, reducing the risk of adverse events and improving medication adherence. Given the service delivery model and required outputs of MTM services, communication skills are of utmost importance. The objectives of this study were to identify and describe communication principles and instructional practices to enhance MTM training. Drawing on formative assessment data from interviews of both pharmacy educators and alumni, this article identifies and describes communication principles and instructional practices that pharmacy educators can use to enhance MTM training initiatives to develop student communication strategies. Analysis revealed five key communication challenges of MTM service delivery, two communication principles that pharmacy teachers and learners can use to address those challenges, and a range of specific strategies, derived from communication principles, that students can use when challenges emerge. Implications of the analysis for pharmacy educators and researchers are described. Proactive communication training provided during MTM advanced pharmacy practice experiences enabled students to apply the principles and instructional strategies to specific patient interactions during the advanced pharmacy practice experiences and in their post-graduation practice settings. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fundamental Research in Engineering Education. Development of Concept Questions and Inquiry-Based Activities in Thermodynamics and Heat Transfer: An Example for Equilibrium vs. Steady-State

    Science.gov (United States)

    Vigeant, Margot; Prince, Michael; Nottis, Katharyn

    2011-01-01

    This study examines the use of inquiry-based instruction to promote the understanding of critical concepts in thermodynamics and heat transfer. Significant research shows that students frequently enter our courses with tightly held misconceptions about the physical world that are not effectively addressed through traditional instruction. Students'…

  6. Technology Enhanced Learning

    NARCIS (Netherlands)

    Klemke, Roland; Specht, Marcus

    2013-01-01

    Klemke, R., & Specht, M. (2013, 26-27 September). Technology Enhanced Learning. Presentation at the fourth international conference on eLearning (eLearning 2013), Belgrade, Serbia. http://econference.metropolitan.ac.rs/

  7. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  8. INQUIRY –BASED LEARNING FOR ENHANCING CRITICAL THINKING SKILLS: INDONESIAN STUDENTS‘ PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    Hersulastuti Hersulastuti

    2017-12-01

    Full Text Available This paper was mainly intended to shed light on students‘ response towards the implementation of Inquiry-Based Learning (IBL in Reading and Writing subject, and explore its benefits for enhancing critical thinking skills from students‘perspectives in ELT context. This research was conducted through a qualitative case study approach. Three students of graduate program were purposively selected to be the participants. Data were gathered primarily from observation notes and interviews, and then further analyzed using interractive model analysis as proposed by Miles & Huberman (1994. The findings demonstrate that students have good responses towards the implementation of IBL. Moreover, IBL is beneficial to make students become more self-directed, selfdisciplined, self-monitored thinkers. Through IBL, students develop their critical thinking abilities: 1 raise vital questions and problems; 2 gather and assess relevant information; 3 drawing well-reasoned conclusions; and 4 communicate effectively with others to seek solution to complex problems.

  9. Mentoring a new science teacher in reform-based ways: A focus on inquiry

    Science.gov (United States)

    Schomer, Scott D.

    The processes, understandings, and uses of inquiry are identified by the National Science Education Standards (National Research Council, 1996) as a key component of science instruction. Currently, there are few examples in the literature demonstrating how teachers go about co-constructing inquiry-based activities and how mentors can promote the use of reform-based practices by novices. The purpose of this interpretive case study was to investigate how a mentor and her protege collaboratively developed, implemented and assessed three inquiry-based experiences. The questions that guided this research were: (1) How does the mentor assist protege growth in the development, implementation and assessment of inquiry-based experiences for secondary science students? (2) How are the protege's perceptions of inquiry influenced by her participation in developing, implementing and assessing inquiry-based experiences for secondary science students? The co-construction of the inquiry activities and the facilitation provided by the mentor represented Lev Vygotsky's (1978) social construction of information as the mentor guided the protege beyond her cognitive zone of proximal development. The participants in this study were a veteran science teacher who was obtaining her mentor certification, or Teacher Support Specialist, and her protege who was a science teacher in the induction phase of her career. Data were collected through in-depth, semi-structured interviews, tape recordings of planning sessions, researcher field notes, and email reflections during the co-construction process. Inductive analysis of the data led to the identification of common categories and subsequent findings, which reflected what the mentor and protege discussed about inquiry and the process of collaboration. The six themes that emerged from this study led to several implications that are significant for science teacher preparation and the mentoring community. The teachers indicated tools, such as the

  10. Enhancement of Self Efficacy of Vocational School Students in Buffer Solution Topics through Guided Inquiry Learning

    Science.gov (United States)

    M, Ardiany; W, Wahyu; A, Supriatna

    2017-09-01

    The more students who feel less confident in learning, so doing things that are less responsible, such as brawl, drunkenness and others. So researchers need to do research related to student self efficacy in learning, in order to reduce unwanted things. This study aims to determine the effect of guided inquiry learning on improving self-efficacy of learners in the buffer solution topics. The method used is the mixed method which is the two group pretest postest design. The subjects of the study are 60 students of class XI AK in one of the SMKN in Bandung, consisting of 30 experimental class students and 30 control class students. The instruments used in this study mix method consist of self-efficacy questionnaire of pretest and posttest learners, interview guides, and observation sheet. Data analysis using t test with significant α = 0,05. Based on the result of inquiry of guided inquiry study, there is a significant improvement in self efficacy aspect of students in the topic of buffer solution. Data of pretest and posttest interview, observation, questionnaire showed significant result, that is improvement of experimental class with conventionally guided inquiry learning. The mean of self-efficacy of student learning there is significant difference of experiment class than control class equal to 0,047. There is a significant relationship between guided inquiry learning with self efficacy and guided inquiry learning. Each correlation value is 0.737. The learning process with guided inquiry is fun and challenging so that students can expose their ideas and opinions without being forced. From the results of questionnaires students showed an attitude of interest, sincerity and a good response of learning. While the results of questionnaires teachers showed that guided inquiry learning can make students learn actively, increased self-efficacy.

  11. An Exploration of Interrelationships among Presence Indicators of a Community of Inquiry in a 3D Game-Like Environment for High School Programming Courses

    Science.gov (United States)

    Pellas, Nikolaos

    2017-01-01

    The combination of Open Sim and Scratch4OS can be a worthwhile innovation for introductory programming courses, using a Community of Inquiry (CoI) model as a theoretical instructional design framework. This empirical study had a threefold purpose to present: (a) an instructional design framework for the beneficial formalization of a virtual…

  12. The Teaching and Assessment of Inquiry Competences

    DEFF Research Database (Denmark)

    Rönnebeck, Silke; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    New competence-oriented learning goals can only be sustainably implemented if they are aligned with teaching and assessment goals. Within the fields of science, technology and mathematics education, one approach of compe-tence-oriented teaching is based on the concept of inquiry-based education....... Scien-tific inquiry in science, problem solving in mathematics, design processes in tech-nology and innovation as a cross-curricular approach to teaching and learning that is emphasised as a key element of 21st century skills allow students to engage in the thinking and working processes of scientists....... By applying these approaches, teachers can address subject-specific as well as generic competences (e.g. investi-gation in science as a subject-specific competence vs. argumentation or communi-cation as more generic competences). Since what is assessed strongly influences what is taught, changes in teaching...

  13. Implementation of 5E Inquiry Incorporated with Analogy Learning Approach to Enhance Conceptual Understanding of Chemical Reaction Rate for Grade 11 Students

    Science.gov (United States)

    Supasorn, Saksri; Promarak, Vinich

    2015-01-01

    The main purpose of this study was to enhance student understanding of the scientific concepts of chemical reaction rate. Forty-four grade 11 students were the target group. The treatment tools were seven learning plans of 5E inquiry incorporated with an analogy learning approach during 15 hours of class time. In each learning plan, the students…

  14. A collaborative narrative inquiry: Two teacher educators learning about narrative inquiry

    Directory of Open Access Journals (Sweden)

    Barkhuizen, Gary

    2009-12-01

    Full Text Available With its capacity to unharness the power of narrative to promote meaning-making of lived experience, narrative inquiry is developing as a credible approach to research in several areas in the field of language teaching (Johnson, 2006. This article tells the story of two narrative researchers working in language teacher education who engaged in a collaborative narrative inquiry as both participants and inquirers, in order to learn more about narrative inquiry. The ‘bounded’ nature of their inquiry design provided a feasible way for them to explore their focus of research (i.e. their learning about narrative inquiry, and led them, through an iterative and reflexive process of analysing their narrative data, to formulate what they believe are essential ingredients of principled narrative inquiry work. Four narrative inquiry variables became the scaffolding which enabled them to answer their research questions, and are offered here as a heuristic for teaching practitioners, whether they be teachers, teacher educators or researchers, to guide them in narrative inquiries into their own work.

  15. Effect of Modeling Instruction on Concept Knowledge Among Ninth Grade Physics Students

    Science.gov (United States)

    Ditmore, Devin Alan

    A basic knowledge of physics concepts is the gateway to success through high-paying careers in science, technology, engineering, and mathematics (STEM). Many students show little understanding of concepts following traditional physics instruction. As an alternative to current lecture-based approaches for high school physics instruction, Piaget's theory of cognitive development supports using real scientific experiences to lead learners from concrete to formal understanding of complex concepts. Modeling instruction (MI) is a pedagogy that guides learners through genuine scientific experiences. This project study analyzed the effects of MI on 9th grade physics students' gains on the test measuring mastery of physics concepts, Force Concept Inventory (FCI). A quasi-experimental design was used to compare the FCI scores of a traditional lecture-taught control group to a treatment group taught using MI. A t test t(-.201) = 180.26, p = .841 comparing the groups and an analysis of variance F(2,181) = 5.20 comparing female to male students indicated MI had no significant positive effect on students. A partial eta squared of the effect size showed that 5.4% of the variance in FCI gains was accounted for by gender, favoring female participants for both groups. The significant relationship between content and gender bears further inquiry. A lesson plan guide was designed to help teachers use computer simulation technology within the MI curriculum. The project promotes positive social change by exploring further ways to help adolescents experience success in physics at the beginning of high school, leading to future success in all STEM areas.

  16. Learning Complex Grammar in the Virtual Classroom: A Comparison of Processing Instruction, Structured Input, Computerized Visual Input Enhancement, and Traditional Instruction

    Science.gov (United States)

    Russell, Victoria

    2012-01-01

    This study investigated the effects of processing instruction (PI) and structured input (SI) on the acquisition of the subjunctive in adjectival clauses by 92 second-semester distance learners of Spanish. Computerized visual input enhancement (VIE) was combined with PI and SI in an attempt to increase the salience of the targeted grammatical form…

  17. Using the DSAP Framework to Guide Instructional Design and Technology Integration in BYOD Classrooms

    Science.gov (United States)

    Wasko, Christopher W.

    2016-01-01

    The purpose of this study was to determine the suitability of the DSAP Framework to guide instructional design and technology integration for teachers piloting a BYOD (Bring Your Own Device) initiative and to measure the impact the initiative had on the amount and type of technology used in pilot classrooms. Quantitative and qualitative data were…

  18. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  19. Development of innovative classroom instruction material for enhancing creative teaching and learning nuclear topics: A proposal

    International Nuclear Information System (INIS)

    Puse, Judeza S.; Awata, Takaaki; Atobe, Kozo

    2005-01-01

    The role of education all over the world is becoming more and more significant and requires an in depth study since the life of the people is advanced, expanded and complicated. Educators are once again asked to address problems which have arisen within their own society. Thus, the search for ways to improve quality of education is global especially in line with nuclear science and technology. One area of focus is that managing and promoting learning inside the classroom, how teacher's utilized instructional materials were such an issue. Indeed, qualifications and resources are not the only factors that influence teachers' effectiveness, equally important are teachers' motivation, commitment, resourcefulness, innovativeness and creativeness in dealing with instructional materials. Lack of these things will produce poor attendance and unprofessional attitudes towards students. This paper aims to present a proposal on the use of innovative teaching device from the sample photographs as a result of the experiment taken at Kyoto University Research Reactor Institute (KURRI) where samples were treated with gamma rays from a radioactive source 60 Co and lately exposed to photographic giving rise to understanding of photons emitted by radioactive material in a form of electromagnetic waves and later converted into visible light in a more authentic and simplified manners. As a consequent, this proposal was made to enhance teaching and encourage science teachers to exert great effort to develop instructional materials specifically in this area that requires the concretization of concepts which could not be detected by human senses. (author)

  20. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  1. Introducing the World Population Crises to Secondary Social Studies Classes: An Inquiry-Oriented Instructional Strategy

    Science.gov (United States)

    Anderson, Randall C.

    1970-01-01

    The author contends that students must be alerted to the dangers of overpopulation of the world and to the methods that exist to control population growth. He suggests topics for student inquiry. (CK)

  2. An Examination of Pre-Service Mathematics Teachers' Integration of Technology into Instructional Activities Using a Cognitive Demand Perspective and Levels of Technology Implementation

    Science.gov (United States)

    Akcay, Ahmet Oguz

    2016-01-01

    Technology has changed every aspect of our lives such as communication, shopping, games, business, and education. Technology has been used for decades in the teaching and learning environment in K-12 education and higher education, especially in mathematics education where the use of instructional technology has great potential. Today's students…

  3. Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.

    2009-12-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in

  4. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  5. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  6. Recommender Systems in Technology Enhanced Learning

    NARCIS (Netherlands)

    Manouselis, Nikos; Drachsler, Hendrik; Verbert, Katrien; Santos, Olga

    2010-01-01

    Manouselis, N., Drachsler, H., Verbert, K., & Santos, C. S. (Eds.) (2010). Recommender System in Technology Enhanced Learning. Elsevier Procedia Computer Science: Volume 1, Issue 2. Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL). September, 29-30,

  7. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    Science.gov (United States)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  8. Guided Inquiry and Consensus-Building Used to Construct Cellular Models

    Directory of Open Access Journals (Sweden)

    Joel I. Cohen

    2015-02-01

    Full Text Available Using models helps students learn from a “whole systems” perspective when studying the cell. This paper describes a model that employs guided inquiry and requires consensus building among students for its completion. The model is interactive, meaning that it expands upon a static model which, once completed, cannot be altered and additionally relates various levels of biological organization (molecular, organelle, and cellular to define cell and organelle function and interaction. Learning goals are assessed using data summed from final grades and from images of the student’s final cell model (plant, bacteria, and yeast taken from diverse seventh grade classes. Instructional figures showing consensus-building pathways and seating arrangements are discussed. Results suggest that the model leads to a high rate of participation, facilitates guided inquiry, and fosters group and individual exploration by challenging student understanding of the living cell.

  9. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    Science.gov (United States)

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…

  10. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  11. Technology Mediated Instruction and its Effect on Cognitive Scaffolding, motivation and Academic Performance in EFL Context

    Directory of Open Access Journals (Sweden)

    Sepideh Berenji

    2017-11-01

    Full Text Available Technology mediated learning brings together the users with shared interests. This method makes learners informally engaged in language learning. This study intended to investigate the effect of technology mediated instruction on cognitive scaffolding, academic performance and motivation. Employing a quasi-experimental research, 80 learners from two intact classes at Islamic Azad University, Osku Branch were selected as the experimental and control groups. Telegram as a tool was used in the experimental group, while the control group received traditional way of instruction. Critical ethnography approach was implemented to consider the amount of cognitive scaffolding. To measure the students’ motivational level in both groups, Course Interest Survey (CIS was administered at the end of the semester. The total average score for each group was calculated. To compare students’ academic achievement, their average scores in the final academic test were considered. An Independent samples t-test in was used to compare the mean scores. The results indicated that technology mediated learning brought about cognitive scaffolding and the students in the experimental group outperformed the control group in terms of motivation and academic achievement. The results of the study suggest that to bring about academically successful students, practitioners should use technology mediated instruction.

  12. The Model of the Development of Instructional Material for Enhancing Students' English Speaking Skills at Elementary Schools in Bandar Lampung

    OpenAIRE

    Sutiyono, Akhmad

    2014-01-01

    The main problem of the research is what instructional material that should be developed to enhance students' speaking skills. The main objective of this research is to develop English instructional material for enhancing students' speaking skills at elementary schools. In conducting the research, the writer used Research and Development method. The data of the research were collected through observation, questionnaire, interview, test, and documentation. The validation of the model was carri...

  13. Instructional Technology in the Armed Forces.

    Science.gov (United States)

    Hitchens, Howard B., Jr.

    Broad areas of communications media used in technical training in specific occupational skills within the armed forces are examined in the first part of this report. These areas include: traditional audiovisual media, television, the techniques of programed instruction and instructional systems development, and the use of computers. In the second…

  14. Is Instructional Technology All Worthwhile? I'm Retiring in the Next Decade.

    Science.gov (United States)

    Balajthy, Ernest

    This paper surveys issues that draw together instructional technology (IT) with the goals of the traditional classroom curriculum. Ways that IT serves to further the traditional educational goals of developing lifelong learners who function with skills, knowledge, and wisdom are examined, as well as the potentials and challenges of IT. The first…

  15. Modifying ADDIE: Incorporating New Technologies in Library Instruction

    Science.gov (United States)

    Campbell, Paul Clayton

    2014-01-01

    There are many instructional design theories to assist librarians in creating effective instructional modules for student learning. ADDIE is a generic instructional design model that has been in existence for more than 30 years and is known for its flexibility in application (Molenda, 2003). Using instructional design theories such as ADDIE helps…

  16. Children, Technology, and Instruction: A Case Study of Elementary School Children Using an Online Public Access Catalog (OPAC).

    Science.gov (United States)

    Solomon, Paul

    1994-01-01

    Examines elementary school students' use of an online public access catalog to investigate the interaction between children, technology, curriculum, instruction, and learning. Highlights include patterns of successes and breakdowns; search strategies; instructional approaches and childrens' interests; structure of interaction; search terms; and…

  17. Using Appreciative Inquiry to Build and Enhance a Learning Culture

    Science.gov (United States)

    Lehner, Rachelle; Ruona, Wendy

    2004-01-01

    Appreciative Inquiry (AI) has emerged as a powerful organization development philosophy that builds on past successes to impel positive change. AI is a highly participative, holistic approach to change that values the wisdom of members of the organization and amplifies positive forces. This session will introduce AI as a tool to enhance…

  18. Inspiring Instructional Change in Elementary School Science: The Relationship Between Enhanced Self-efficacy and Teacher Practices

    Science.gov (United States)

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2014-10-01

    This longitudinal study examined the extent to which teachers' participation in a 3-year professional development program enhanced their self-efficacy and prompted changes in science instruction in the early elementary grades. The study used a mixed-methods design, and included 39 teachers who taught in kindergarten, first grade, or second grade classrooms in rural school districts. Data sources, administered pre-program and at the end of each year, included a self-efficacy assessment and teacher survey. Interviews and classroom observations provided corroborating data about teachers' beliefs and science instruction. Results showed significant increases in teachers' overall self-efficacy in teaching science, personal efficacy, and outcome expectancy efficacy during the 3 years. Gains in self-efficacy were correlated with changes in reported instructional practices, particularly student participation activities. However, changes in self-efficacy tended not to be correlated with changes in instructional time. Contextual factors beyond teachers' direct control, such as curricular and testing requirements in mathematics and language arts influenced time allotted to science instruction.

  19. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  20. Using Webquests to Create Online Learning Opportunities in Physical Education

    Science.gov (United States)

    Woods, Marianne L.; Karp, Grace Goc; Shimon, Jane M.; Jensen, Karla

    2004-01-01

    Teachers in all academic disciplines face increasing expectations to integrate technological applications into their lessons. These applications can be used to supplement face-to-face instruction or as stand-alone learning modules. Either way, technological applications can facilitate student-centered, inquiry-based instructional approaches.…

  1. Pre-service teachers’ TPACK competencies for spreadsheet integration: insights from a mathematics-specific instructional technology course

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, J.M.

    2015-01-01

    This article explored the impact of strategies applied in a mathematics instructional technology course for developing technology integration competencies, in particular in the use of spreadsheets, in pre-service teachers. In this respect, 104 pre-service mathematics teachers from a teacher training

  2. Learner Ownership of Technology-Enhanced Learning

    Science.gov (United States)

    Dommett, Eleanor J.

    2018-01-01

    Purpose: This paper aims to examine the different ways in which learners may have ownership over technology-enhanced learning by reflecting on technical, legal and psychological ownership. Design/methodology/approach: The paper uses a variety of examples of technology-enhanced learning ranging from open-source software to cloud storage to discuss…

  3. Analysis of multiple instructional techniques on the understanding and retention of select mechanical topics

    Science.gov (United States)

    Fetsco, Sara Elizabeth

    There are several topics that introductory physics students typically have difficulty understanding. The purpose of this thesis is to investigate if multiple instructional techniques will help students to better understand and retain the material. The three units analyzed in this study are graphing motion, projectile motion, and conservation of momentum. For each unit students were taught using new or altered instructional methods including online laboratory simulations, inquiry labs, and interactive demonstrations. Additionally, traditional instructional methods such as lecture and problem sets were retained. Effectiveness was measured through pre- and post-tests and student opinion surveys. Results suggest that incorporating multiple instructional techniques into teaching will improve student understanding and retention. Students stated that they learned well from all of the instructional methods used except the online simulations.

  4. Blending Online Components into Traditional Instruction in Pre-Service Teacher Education: The Good, the Bad, and the Ugly

    Science.gov (United States)

    Lin, Hong

    2008-01-01

    This study investigated the effectiveness of using online instruction as a supplement to a face-to-face introductory technology education course. Survey data were collected from 46 pre-service teachers. Findings indicated that when traditional face-to-face instruction was combined with online components, learning was enhanced over a single…

  5. Investigating Island Evolution: A Galapagos-Based Lesson Using the 5E Instructional Model.

    Science.gov (United States)

    DeFina, Anthony V.

    2002-01-01

    Introduces an inquiry-based lesson plan on evolution and the Galapagos Islands. Uses the 5E instructional model which includes phases of engagement, exploration, explanation, elaboration, and evaluation. Includes information on species for exploration and elaboration purposes, and a general rubric for student evaluation. (YDS)

  6. A Web-Based Learning Support System for Inquiry-Based Learning

    Science.gov (United States)

    Kim, Dong Won; Yao, Jingtao

    The emergence of the Internet and Web technology makes it possible to implement the ideals of inquiry-based learning, in which students seek truth, information, or knowledge by questioning. Web-based learning support systems can provide a good framework for inquiry-based learning. This article presents a study on a Web-based learning support system called Online Treasure Hunt. The Web-based learning support system mainly consists of a teaching support subsystem, a learning support subsystem, and a treasure hunt game. The teaching support subsystem allows instructors to design their own inquiry-based learning environments. The learning support subsystem supports students' inquiry activities. The treasure hunt game enables students to investigate new knowledge, develop ideas, and review their findings. Online Treasure Hunt complies with a treasure hunt model. The treasure hunt model formalizes a general treasure hunt game to contain the learning strategies of inquiry-based learning. This Web-based learning support system empowered with the online-learning game and founded on the sound learning strategies furnishes students with the interactive and collaborative student-centered learning environment.

  7. The Effects of Input-Enhanced Instruction on Iranian EFL Learners' Production of Appropriate and Accurate Suggestions

    Science.gov (United States)

    Ghavamnia, M.; Eslami-Rasekh, A.; Vahid Dastjerdi, H.

    2018-01-01

    This study investigates the relative effectiveness of four types of input-enhanced instruction on the development of Iranian EFL learners' production of pragmatically appropriate and grammatically accurate suggestions. Over a 16-week course, input delivered through video clips was enhanced differently in four intact classes: (1) metapragmatic…

  8. Using Science Inquiry Methods to Promote Self-Determination and Problem-Solving Skills for Students with Moderate Intellectual Disability

    Science.gov (United States)

    Miller, Bridget; Doughty, Teresa; Krockover, Gerald

    2015-01-01

    This study investigated the use of guided science inquiry methods with self-monitoring checklists to support problem-solving for students and increased autonomy during science instruction for students with moderate intellectual disability. Three students with moderate intellectual disability were supported in not only accessing the general…

  9. Working with mathematics and science teachers on Inquiry Based Learning (IBL) approaches : teacher belief. [VISIONS 2011: Teacher Education

    NARCIS (Netherlands)

    Sikko, S.A.; Lyngved, R.; Pepin, B.

    2012-01-01

    This paper reports on mathematics and science teachers’ beliefs concerning the use of inquiry-based teaching strategies. Two different surveys were conducted: one with 24 teachers who were to become future instructional leaders; and one with 75 teachers as part of an international baseline study. We

  10. Shifting more than the goal posts: developing classroom norms of inquiry-based learning in mathematics

    Science.gov (United States)

    Makar, Katie; Fielding-Wells, Jill

    2018-03-01

    The 3-year study described in this paper aims to create new knowledge about inquiry norms in primary mathematics classrooms. Mathematical inquiry addresses complex problems that contain ambiguities, yet classroom environments often do not adopt norms that promote curiosity, risk-taking and negotiation needed to productively engage with complex problems. Little is known about how teachers and students initiate, develop and maintain norms of mathematical inquiry in primary classrooms. The research question guiding this study is, "How do classroom norms develop that facilitate student learning in primary classrooms which practice mathematical inquiry?" The project will (1) analyse a video archive of inquiry lessons to identify signature practices that enhance productive classroom norms of mathematical inquiry and facilitate learning, (2) engage expert inquiry teachers to collaborate to identify and design strategies for assisting teachers to develop and sustain norms over time that are conducive to mathematical inquiry and (3) support and study teachers new to mathematical inquiry adopting these practices in their classrooms. Anticipated outcomes include identification and illustration of classroom norms of mathematical inquiry, signature practices linked to these norms and case studies of primary teachers' progressive development of classroom norms of mathematical inquiry and how they facilitate learning.

  11. Policy implications of technologies for cognitive enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Sarewitz, Daniel R. (Arizona State University, Tempe, AZ); Karas, Thomas H.

    2007-02-01

    The Advanced Concepts Group at Sandia National Laboratory and the Consortium for Science, Policy and Outcomes at Arizona State University convened a workshop in May 2006 to explore the potential policy implications of technologies that might enhance human cognitive abilities. The group's deliberations sought to identify core values and concerns raised by the prospect of cognitive enhancement. The workshop focused on the policy implications of various prospective cognitive enhancements and on the technologies/nanotechnology, biotechnology, information technology, and cognitive science--that enable them. The prospect of rapidly emerging technological capabilities to enhance human cognition makes urgent a daunting array of questions, tensions, ambitions, and concerns. The workshop elicited dilemmas and concerns in ten overlapping areas: science and democracy; equity and justice; freedom and control; intergenerational issues; ethics and competition; individual and community rights; speed and deliberations; ethical uncertainty; humanness; and sociocultural risk. We identified four different perspectives to encompass the diverse issues related to emergence of cognitive enhancement technologies: (1) Laissez-faire--emphasizes freedom of individuals to seek and employ enhancement technologies based on their own judgment; (2) Managed technological optimism--believes that while these technologies promise great benefits, such benefits cannot emerge without an active government role; (3) Managed technological skepticism--views that the quality of life arises more out of society's institutions than its technologies; and (4) Human Essentialism--starts with the notion of a human essence (whether God-given or evolutionary in origin) that should not be modified. While the perspectives differ significantly about both human nature and the role of government, each encompasses a belief in the value of transparency and reliable information that can allow public discussion and

  12. Personal Inquiry Manager

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Specht, Marcus

    2014-01-01

    The Personal Inquiry Manager (PIM) is an integration approach based on a mobile application, based on Android, to support the IBL process and gives users mobile access to their inquiries. Moreover it facilitates a more self-directed approach as it enables to set up their own personal inquiries. The

  13. The Implementation of Web 2.0 Technology for Information Literacy Instruction in Thai University Libraries

    Science.gov (United States)

    Sawetrattanasatian, Oranuch

    2014-01-01

    Web 2.0 technology has drawn much attention recently as a fascinating tool for Information Literacy Instruction (ILI), especially in academic libraries. This research was aimed to investigate the implementation of Web 2.0 technology for ILI in Thai university libraries, in terms of information literacy skills being taught, types of Web 2.0…

  14. Motivating Calculus-Based Kinematics Instruction with Super Mario Bros

    Science.gov (United States)

    Nordine, Jeffrey C.

    2011-09-01

    High-quality physics instruction is contextualized, motivates students to learn, and represents the discipline as a way of investigating the world rather than as a collection of facts and equations. Inquiry-oriented pedagogy, such as problem-based instruction, holds great promise for both teaching physics content and representing the process of doing real science.2 A challenge for physics teachers is to find instructional contexts that are meaningful, accessible, and motivating for students. Today's students are spending a growing fraction of their lives interacting with virtual environments, and these environments—physically realistic or not—can provide valuable contexts for physics explorations3-5 and lead to thoughtful discussions about decisions that programmers make when designing virtual environments. In this article, I describe a problem-based approach to calculus-based kinematics instruction that contextualizes students' learning within the Super Mario Bros. video game—a game that is more than 20 years old, but still remarkably popular with today's high school and college students.

  15. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that connects students to their communities and their world. Therefore, teachers are in need of instructional support for science teaching that can enable them to achieve these higher expectations. This dissertation explored whether implementing a Project-Based Learning (PBL)-centered science specialist changed classroom teachers' frequency of science instruction and use of instructional strategies that support NGSS science delivery. In addition, this study examined how providing a PBL science specialist supported teachers in their comfort with using these more rigorous instructional strategies. Five elementary teachers participated in an action research project conducted over the course of a school year. The frequency with which teachers used the following instructional strategies was analyzed: connecting science to real world phenomena, accessing community resources, integrating science into other subject areas, and using inquiry in science instruction. Quantitative and qualitative data revealed that a PBL science specialist does support classroom teachers in implementing teaching practices aligned to the conceptual shifts implicated by the NGSS; however, individual growth rates varied by instructional strategy. The results of this study provide a foundation for the legitimacy of utilizing a PBL-focused science specialist to support teachers in shifting their instructional practices in order to achieve the Next Generation Science Standards.

  16. Impact of problem finding on the quality of authentic open inquiry science research projects

    Science.gov (United States)

    Labanca, Frank

    2008-11-01

    Problem finding is a creative process whereby individuals develop original ideas for study. Secondary science students who successfully participate in authentic, novel, open inquiry studies must engage in problem finding to determine viable and suitable topics. This study examined problem finding strategies employed by students who successfully completed and presented the results of their open inquiry research at the 2007 Connecticut Science Fair and the 2007 International Science and Engineering Fair. A multicase qualitative study was framed through the lenses of creativity, inquiry strategies, and situated cognition learning theory. Data were triangulated by methods (interviews, document analysis, surveys) and sources (students, teachers, mentors, fair directors, documents). The data demonstrated that the quality of student projects was directly impacted by the quality of their problem finding. Effective problem finding was a result of students using resources from previous, specialized experiences. They had a positive self-concept and a temperament for both the creative and logical perspectives of science research. Successful problem finding was derived from an idiosyncratic, nonlinear, and flexible use and understanding of inquiry. Finally, problem finding was influenced and assisted by the community of practicing scientists, with whom the students had an exceptional ability to communicate effectively. As a result, there appears to be a juxtaposition of creative and logical/analytical thought for open inquiry that may not be present in other forms of inquiry. Instructional strategies are suggested for teachers of science research students to improve the quality of problem finding for their students and their subsequent research projects.

  17. Integrating Direct and Inquiry-Based Instruction in the Teaching of Critical Thinking: An Intervention Study

    Science.gov (United States)

    Ku, Kelly Y. L.; Ho, Irene T.; Hau, Kit-Tai; Lai, Eva C. M.

    2014-01-01

    Critical thinking is a unifying goal of modern education. While past research has mostly examined the efficacy of a single instructional approach to teaching critical thinking, recent literature has begun discussing mixed teaching approaches. The present study examines three modes of instruction, featuring the direct instruction approach and the…

  18. An Inquiry into Flipped Learning in Fourth Grade Math Instruction

    Science.gov (United States)

    D'addato, Teresa; Miller, Libbi R.

    2016-01-01

    The objective of this action research project was to better understand the impact of flipped learning on fourth grade math students in a socioeconomically disadvantaged setting. A flipped instructional model was implemented with the group of students enrolled in the researcher's class. Data was collected in the form of classroom observations,…

  19. Framework for Instructional Technology: Methods of Implementing Adaptive Training and Education

    Science.gov (United States)

    2014-01-01

    whether instructional environment actually has the time and resources to implement an adaptive strategy. For this reason, in this paper we...referred to as fading. Just as a person healing from a broken leg may go from crutches to a cane to no assistance, ultimately, the learner should be...Chicago. Retrieved from http://www.fossati.us/ papers /ilist-phdthesis.pdf Graesser, A. C., Jeon, M. & Dufty, D. (2008). Agent technologies designed

  20. An Emerging Theory for Evidence Based Information Literacy Instruction in School Libraries, Part 1: Building a Foundation

    Directory of Open Access Journals (Sweden)

    Carol A. Gordon

    2009-06-01

    Full Text Available Objective – Part I of this paper aims to create a framework for an emerging theory of evidence based information literacy instruction. In order to ground this framework in existing theory, a holistic perspective views inquiry as a learning process that synthesizes information searching and knowledge building. An interdisciplinary approach is taken to relate user-centric information behavior theory and constructivist learning theory that supports this synthesis. The substantive theories that emerge serve as a springboard for emerging theory. A second objective of this paper is to define evidence based information literacy instruction by assessing the suitability of performance based assessment and action research as tools of evidence based practice.Methods – An historical review of research grounded in user-centered information behavior theory and constructivist learning theory establishes a body of existing substantive theory that supports emerging theory for evidence based information literacy instruction within an information-to-knowledge approach. A focused review of the literature presents supporting research for an evidence based pedagogy that is performance assessment based, i.e., information users are immersed in real-world tasks that include formative assessments. An analysis of the meaning of action research in terms of its purpose and methodology establishes its suitability for structuring an evidence based pedagogy. Supporting research tests a training model for school librarians and educators which integrates performance based assessment, as well as action research. Results – Findings of an historical analysis of information behavior theory and constructivist teaching practices, and a literature review that explores teaching models for evidence based information literacy instruction, point to two elements of evidence based information literacy instruction: the micro level of information searching behavior and the macro level of