WorldWideScience

Sample records for technology vacuum vapor

  1. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  2. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  3. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  4. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  5. Latent fingermark development using low-vacuum vaporization of ninhydrin.

    Science.gov (United States)

    Chen, Chun-Chieh; Yang, Chao-Kai; Liao, Jeh-Shane; Wang, Sheng-Meng

    2015-12-01

    The vacuum technique is a method of vaporizing a solid material to its gas phase, helping deposit reagents gently on target surfaces to develop latent fingermarks. However, this application is rarely reported in the literature. In this study, a homemade fume hood with a built-in vacuum control system and programmable heating system designed by the Taiwan Criminal Investigation Bureau is introduced. Factors that affect the instrument's performance in developing fingermarks are discussed, including the quantity of chemicals for vaporization, heating program arrangement, and paper of different materials. The results show that fingermarks are effectively developed by vaporizing solid ninhydrin. This would be an alternative application in selecting a solvent-free method for protecting the environment and reducing health hazards in the lab. In terms of the heating program, the result indicates that under a low-vacuum condition (50 mTorr), 80-90 °C is a suitable temperature range for ninhydrin vaporization, allowing ninhydrin to be vaporized without bumping and waste. In terms of the performance on different material papers, this instrument demonstrates its capacity by developing latent fingermarks on thermal paper without discoloration or damaging the original writing, and the same results are also observed on Taiwan and United States banknotes. However, a coherent result could be hardly obtained using the same vaporization setting because different banknotes have their own surface features and water absorption ability or other unique factors may influence the effect of ninhydrin deposition. This study provides a reliable application for developing latent fingermarks without using solvents, and it is also expected to contribute to environmental protection along with the trend of green chemistry technology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  7. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  8. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  9. Vacuum Technology for Ion Sources

    International Nuclear Information System (INIS)

    Chiggiato, P

    2013-01-01

    The basic notions of vacuum technology for ion sources are presented, with emphasis on pressure profile calculation and choice of pumping technique. A Monte Carlo code (Molflow+) for the evaluation of conductances and the vacuum-electrical analogy for the calculation of time-dependent pressure variations are introduced. The specific case of the Linac4 H - source is reviewed. (author)

  10. Vacuum Technology for Superconducting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiggiato, P [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  11. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  12. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  13. Vacuum and ultravacuum physics and technology

    CERN Document Server

    Bello, Igor

    2018-01-01

    Vacuum technology has enormous impact on human life in many aspects and fields, such as metallurgy, material development and production, food and electronic industry, microelectronics, device fabrication, physics, materials science, space science, engineering, chemistry, technology of low temperature, pharmaceutical industry, and biology. All decorative coatings used in jewelries and various daily products—including shiny decorative papers, the surface finish of watches, and light fixtures—are made using vacuum technological processes. Vacuum analytical techniques and vacuum technologies are pillars of the technological processes, material synthesis, deposition, and material analyses—all of which are used in the development of novel materials, increasing the value of industrial products, controlling the technological processes, and ensuring the high product quality. Based on physical models and calculated examples, the book provides a deeper look inside the vacuum physics and technology.

  14. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1999-01-01

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  15. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  16. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  17. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  18. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  19. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  20. Surface conductivity of the single crystal aluminum oxide in vacuum and caesium vapors

    International Nuclear Information System (INIS)

    Vasilchenko, A.V.; Izhvanov, O.L.

    1996-01-01

    Results of measurements of surface conductivity of single-crystal aluminum oxide samples in vacuum and cesium vapors at T=620 endash 830 K and P Cs =0.13 endash 2 Pa are shown in the paper. Analysis of caesium vapor influence is carried out and ultimate characteristics of samples conductivity under operation conditions in thermionic nuclear power system (NPP) TFE are estimated. copyright 1996 American Institute of Physics

  1. Steam vacuum cleaning. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. The baseline technology currently used for washing debris is a high-pressure water cleaning (HPWC) system. The system used at the FEMP is the Hotsy reg-sign Model 550B HPWC. Although the HPWC technology has functioned satisfactorily, improvements are being sought in areas related to reduced liquid waste volume, increased productivity, increased washing effectiveness, and decreased airborne contamination. An innovative technology that offers potential improvements in these areas is a steam vacuum cleaning (SVC) system that integrates high-pressure steam cleaning with a vacuum recovery sub-system that simultaneously collects dislodged contaminants thereby reducing airborne contamination. The SVC system selected for demonstration at the FEMP was the Kelly trademark Decontamination System shown. This report provides comparative performance and cost analyses between the Hotsy HPWC system and the Kelly Decontamination System. Both technologies were demonstrated at the FEMP site located at Fernald, Ohio from July 29, 1996 through August 15, 1996. The demonstrations were conducted at the FEMP Plant 1 as part of the LSTD project sponsored by the Deactivation and Decommissioning Focus Area (DDFA) of the US DOE's Office of Science and Technology

  2. Vacuum Technology in the study of Graphene

    International Nuclear Information System (INIS)

    Ghoshal, A K; Banerjee, S N; Chakraborty, D

    2012-01-01

    Graphene, an allotrope of carbon is a two-dimensional sheet of covalently bonded carbon atoms that has been attracting great attention in the field of electronics. In a recent review graphene is defined as a flat monolayer of carbon atoms tightly packed into a 2-D honeycomb lattice. A survey has been made of the production processes and instrumentation for characterization of graphene. In the production of graphene, the methods mainly used are Epitaxial growth, oxide reduction, growth from metal-carbon melts, growth from sugar. In the characterization of graphene, the instruments that are mainly used to study the atomic properties, electronic properties, optical properties, spin properties are Scanning Electron Microscopy, Transmission Electron Microscopy, Raman Spectroscopy. In all these instruments high or ultra-high vacuum is required. This paper attempts to correlate vacuum technology in the production and characterization of graphene.

  3. Review of Current Nuclear Vacuum System Technologies

    International Nuclear Information System (INIS)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-01-01

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested

  4. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  5. 3. International Symposium 'Vacuum Technology and Equipment'. ISVTE-3

    International Nuclear Information System (INIS)

    Kogan, V.S.; Shulaev, V.M.

    1999-01-01

    The reports of the 3th International Symposium 'Vacuum Technology and Equipment', which was held in Kharkov at 22-24 September 1999 are presented. In this issue such subject are published: - structure and properties of thin films and coatings, and their dependencies on deposition and treatment regimes; - uses of vacuum in research and applied fields, investigation and control of vacuum systems parameters, vacuum research

  6. Introduction to vacuum technology: supplementary study material developed for IVS sponsored vacuum courses

    International Nuclear Information System (INIS)

    Bhusan, K.G.

    2008-01-01

    Vacuum technology has advanced to a large extent mainly from the demands of experimental research scientists who have more than ever understood the need for clean very low pressure environments. This need only seems to increase as the lowest pressures achievable in a laboratory setup are dropping down by the decade. What is not usually said is that conventional techniques of producing ultrahigh vacuum have also undergone a metamorphosis in order to cater to the multitude of restrictions in modern day scientific research. This book aims to give that practical approach to vacuum technology. The basics are given in the first chapter with more of a definition oriented approach - which is practically useful. The second chapter deals with the production of vacuum and ultrahigh vacuum with an emphasis on the working principles of several pumps and their working pressure ranges. Measurement of low pressures, both total and partial is presented in the third chapter with a note on leak detection and mass spectrometric techniques. Chapter 4 gives an overview of the materials that are vacuum compatible and their material properties. Chapter 5 gives the necessary methods to be followed for cleaning of vacuum components especially critical if ultrahigh vacuum environment is required. The practical use of a ultrahigh vacuum environment is demonstrated in Chapter 6 for production of high quality thin films through vapour deposition

  7. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  8. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  9. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  10. Ion spectra of the metal vapor vacuum arc ion source with compound and alloy cathodes

    Science.gov (United States)

    Sasaki, Jun; Brown, Ian G.

    1990-01-01

    In metal vapor vacuum arc (MEVVA) ion sources, vacuum arc plasma with cathodes of single, pure elements has been utilized for the production of metal ions. In this study, we have investigated the charge state distributions of ions produced in vacuum arc plasmas in a MEVVA ion source for the case when the cathode is an alloy or a compound material. The ion charge state spectra were analyzed by means of a time-of-flight apparatus. We have compared the ion spectra for a cathode of an alloy or a compound material with its constituent elements: TiC/TiN/TiO2/Ti/C, SiC/Si/C, WC/W/C U/UN/(UN-ZrC)/Zr/C, and brass/Zn/Cu. We find that the MEVVA produces ions of all constituent elements in the compound and the alloy cathodes. The charge state distribution of each element differs, however, from the charge state distribution obtained in the vacuum arc with a cathode made of the pure, single constituent element. Fractional values of the total ion numbers of each constituent element in the extracted beam depart from the stoichiometry of the elements in the cathode material. In an operation with a TiC cathode, we irradiated a 304 stainless-steel plate with the extracted beam. Results from glow-discharge spectroscopy (GDS) of the surface show that both titanium and carbon are implanted in the substrate after the irradiation.

  11. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-01-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl 4 and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system

  12. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  13. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  14. TVA - Thermionic Vacuum Arc - A new type of discharge generating pure metal vapor plasma

    International Nuclear Information System (INIS)

    Musa, G.; Popescu, A.; Mustata, I.; Borcoman, I.; Cretu, M.; Leu, G.F.; Salambas, A.; Ehrich, H.; Schumann, I.

    1996-01-01

    In this paper it is presented a new type of discharge in vacuum conditions generating pure metal vapor plasma with energetic metal ions content. The peculiarities of this heated cathode discharge are described and the dependence of the measured ion energy of the working parameters are established. The ion energy value can be easily and smoothly changed. A nearly linear dependence between energy of ions and arc voltage drop has been observed. The ion energy can be increased by the increase of the interelectrode distance, decrease of cathode temperature, change of the relative position of the electrodes and by the decrease of the arc discharge current. A special configuration with cylindrical geometry has been used to develop a small size and compact metal vapour plasma gun. Due to the mentioned peculiarities, this discharge offers new openings for important applications. (author)

  15. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  16. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    Energy Technology Data Exchange (ETDEWEB)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd, E-mail: hfd1@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States)

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  17. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    Science.gov (United States)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  18. 3. International Symposium 'Vacuum Technology and Equipment'. ISVTE-3

    International Nuclear Information System (INIS)

    Kogan, V.S.; Shulaev, V.M.

    1999-01-01

    The reports of the 3th International Symposium 'Vacuum Technology and Equipment', which was held in Kharkov at 22-24 September 1999 are presented. In this issue such subject are published: equipment and technology for thin and coating preparation. Studies of their surface layer and material modification by corpuscular effect and light

  19. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    Science.gov (United States)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  20. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition

    International Nuclear Information System (INIS)

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2014-01-01

    A key factor in engineering integrated devices such as electro-optic switches or waveguides is the patterning of high quality crystalline thin films into specific geometries. In this contribution high vacuum chemical vapor deposition (HV-CVD) was employed to grow titanium dioxide (TiO 2 ) patterns onto silicon. The directed nature of precursor transport – which originates from the high vacuum environment during the process – allows shading certain regions on the substrate by shadow masks and thus depositing patterned thin films. While the use of such masks is an emerging field in stencil or shadow mask lithography, their use for structuring thin films within HV-CVD has not been reported so far. The advantage of the employed technique is the precise control of lateral spacing and of the distance between shading mask and substrate surface which is achieved by manufacturing them directly on the substrate. As precursor transport takes place in the molecular flow regime, the precursor impinging rates (and therefore the film growth rates) on the surface can be simulated as function of the reactor and shading mask geometry using a comparatively simple mathematical model. In the current contribution such a mathematical model, which predicts impinging rates on plain or shadow mask structured substrates, is presented. Its validity is confirmed by TiO 2 -deposition on plain silicon substrates (450 °C) using titanium tetra isopropoxide as precursor. Limitations of the patterning process are investigated by the deposition of TiO 2 on structured substrates and subsequent shadow mask lift-off. The geometry of the deposits is according to the mathematical model. Shading effects due to the growing film enables to fabricate deposits with predetermined variations in topography and non-flat top deposits which are complicated to obtain by classical clean room processes. As a result of the enhanced residual pressure of decomposition products and titanium precursors and the

  1. Vacuum technology Practice for scientific instruments

    CERN Document Server

    Yoshimura, Nagamitsu

    2008-01-01

    Nanotechnology has reached a level where almost every new development and even every new product uses features of nanoscopic properties of materials. As a consequence, an enormous amount of scientific instruments is used in order to synthesize and analyze new structures and materials. Due to the surface sensitivity of such materials, many of these instruments require ultrahigh vacuum that has to be provided under extreme conditions like very high voltages. In this book, Yoshimura provides a review of the UHV related development during the last decades. His very broad experience in the design enables him to present us this detailed reference. After a general description how to design UHV systems, he covers all important issue in detail, like pumps, outgasing, Gauges, and Electrodes for high voltages. Thus, this book serves as reference for everybody using UVH in his scientific equipment

  2. Advances in vacuum extraction technology for effective subsurface remediation

    International Nuclear Information System (INIS)

    Dodson, M.E.; Pezzullo, J.A.; Piniewski, R.J.

    1994-01-01

    Vacuum extraction technology has become one of the most widely acclaimed methods for remediating soils contaminated by petroleum hydrocarbons and volatile organic compounds. Removal of the source of contamination in the soil is often the first step in effective control of groundwater contamination. Though originally thought effective only for removal of light-end hydrocarbons from permeable vadose-zone soils, vacuum extraction can now be adapted to address situations of low-permeable soils, heavier-end hydrocarbons and groundwater contamination. This paper reviews four innovative modifications to the vacuum extraction process and how they solve a wide variety of subsurface contamination problems. The modifications, or processes, reviewed include: vacuum-extraction-enhanced bioremediation, groundwater sparging, pneumatic soil fracturing, and soil heating

  3. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    Science.gov (United States)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  4. Handbook of vacuum science and technology

    National Research Council Canada - National Science Library

    Hoffman, Dorothy M; Singh, Bawa; Thomas, John H

    1998-01-01

    ... or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333. e-mail: permissions@elsevier.co.uk. You may also com...

  5. Wafer-level vacuum/hermetic packaging technologies for MEMS

    Science.gov (United States)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  6. The vacuum system for technological unit development and design

    Science.gov (United States)

    Zhukeshov, A. M.; Gabdullina, A. T.; Amrenova, A. U.; Giniyatova, Sh G.; Kaibar, A.; Sundetov, A.; Fermakhan, K.

    2015-11-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process.

  7. The vacuum system for technological unit development and design

    International Nuclear Information System (INIS)

    Zhukeshov, A M; Gabdullina, A T; Amrenova, A U; Giniyatova, Sh G; Kaibar, A; Sundetov, A; Fermakhan, K

    2015-01-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process. (paper)

  8. Some novel design features of the LBL metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    MacGill, R.A.; Brown, I.G.; Galvin, J.E.

    1990-01-01

    The family of MEVVA (metal vapor vacuum arc) high current metal ion sources developed at LBL over the past several years has grown to include a number of different source versions with a wide range of some of the design and operational parameters. The MicroMEVVA source is a particularly compact version, about 2 cm diam and 10 cm long, while the MEVVA IV weighs some 30 kG. MEVVAs IV and V incorporate multiple cathode assemblies (16 and 18 separate cathodes, respectively), and the operating cathode can be switched rapidly and without downtime. The new MEVVA V embodiment is quite compact considering its broad beam (10 cm), high voltage (100 kV), and multiple cathode features. The large-area extractor grids used in MEVVA V were fabricated using a particularly simple technique, and they are clamped into position and can thus be changed simply and quickly. The electrical system used to drive the arc is particularly simple and incorporates several attractive features. In this article we review and describe a number of the mechanical and electrical design features that have been developed for these sources

  9. Heteroepitaxial Growth of Germanium-on-Silicon Using Ultrahigh-Vacuum Chemical Vapor Deposition with RF Plasma Enhancement

    Science.gov (United States)

    Alharthi, Bader; Grant, Joshua M.; Dou, Wei; Grant, Perry C.; Mosleh, Aboozar; Du, Wei; Mortazavi, Mansour; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2018-05-01

    Germanium (Ge) films have been grown on silicon (Si) substrate by ultrahigh-vacuum chemical vapor deposition with plasma enhancement (PE). Argon plasma was generated using high-power radiofrequency (50 W) to assist in germane decomposition at low temperature. The growth temperature was varied in the low range of 250°C to 450°C to make this growth process compatible with complementary metal-oxide-semiconductor technology. The material and optical properties of the grown Ge films were investigated. The material quality was determined by Raman and x-ray diffraction techniques, revealing growth of crystalline films in the temperature range of 350°C to 450°C. Photoluminescence spectra revealed improved optical quality at growth temperatures of 400°C and 450°C. Furthermore, material quality study using transmission electron microscopy revealed existence of defects in the Ge layer grown at 400°C. Based on the etch pit density, the average threading dislocation density in the Ge layer obtained at this growth temperature was measured to be 4.5 × 108 cm-2. This result was achieved without any material improvement steps such as use of graded buffer or thermal annealing. Comparison between PE and non-plasma-enhanced growth, in the same machine at otherwise the same growth conditions, indicated increased growth rate and improved material and optical qualities for PE growth.

  10. Proceedings of the international conference on vacuum science and technology and SRS vacuum systems. V.1: accelerators and SRS systems

    International Nuclear Information System (INIS)

    Venkatramani, N.; Sinha, A.K.

    1995-01-01

    An International Conference on Vacuum Science and Technology, INCOVAST-95 was held during January 30 - February 2, 1995 at the Centre for Advanced Technology (CAT), Indore under the aegis of the Indian Vacuum Society. Centre for Advanced Technology has a major programme of design and construction of a 450 MeV electron storage ring, synchrotron radiation source Indus-1 followed by the 1.25 GeV Indus-2. To match the activities at the centre, the present conference had ultrahigh vacuum for Synchrotron Radiation Sources (SRSs) as the main theme. Three major topics, namely accelerators and SRS systems, thin films and surfaces, vacuum components and applications were covered in detail. A short summary of the discussions is also included in the proceedings. Papers relevant to INIS are indexed separately

  11. Manufacturing technology development for vacuum vessel and plasma facing components

    International Nuclear Information System (INIS)

    Laitinen, Arttu; Liimatainen, Jari; Hallila, Pentti

    2005-01-01

    Vacuum vessel and plasma facing components of the ITER construction including shield modules and primary first wall panels have great impact on the production costs and reliability of the installation. From the manufacturing technology point of view, accuracy of shape, properties of the various austenitic stainless steel/austenitic stainless steel interfaces or CuCrZr/austenitic stainless steel interfaces as well as those of the base materials are crucial for technical reliability of the construction. The current approach in plasma facing components has been utilisation of solid-HIP technology and solid-powder-HIP technology. Due to the large size of especially shield modules shape, control of the internal cavities and cooling channels is extremely demanding. This requires strict control of the raw materials and manufacturing parameters

  12. Hanford Tank Farm Vapors Abatement Technology and Vendor Proposals Assessment

    International Nuclear Information System (INIS)

    Burns, H. H.; Farrar, M. E.; Fink, S. D.

    2016-01-01

    Suspected chemical vapor releases from the Hanford nuclear waste tank system pose concerns for worker exposure. Washington River Protection Solutions (WRPS) contracted the Savannah River National Laboratory (SRNL) to explore abatement technologies and strategies to remediate the vapors emitted through the ventilation system. In response, SRNL conducted an evaluation of technologies to abate, or reduce, vapor emissions to below 10% of the recognized occupational exposure limits (OELs). The evaluation included a review of published literature and a broadly communicated Request for Information to commercial vendors through a Federal Business Opportunities (Fed Biz Opps) web posting. In addition, SRNL conducted a workshop and post-workshop conference calls with interested suppliers (vendors) to assess proposals of relevant technologies. This report reviews applicable technologies and summarizes the approaches proposed by the vendors who participated in the workshop and teleconference interviews. In addition, the report evaluates the estimated performance of the individual technologies for the various classes of chemical compounds present in the Hanford Chemicals of Potential Concern (COPCs) list. Similarly, the report provides a relative evaluation of the vendor proposed approaches against criteria of: technical feasibility (and maturity), design features, operational considerations, secondary waste generation, safety/regulatory, and cost / schedule. These rough order-of-magnitude (ROM) cost estimates are intended to provide a comparison basis between technologies and are not intended to be actual project estimates.

  13. Hanford Tank Farm Vapors Abatement Technology and Vendor Proposals Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Farrar, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fink, S. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-20

    Suspected chemical vapor releases from the Hanford nuclear waste tank system pose concerns for worker exposure. Washington River Protection Solutions (WRPS) contracted the Savannah River National Laboratory (SRNL) to explore abatement technologies and strategies to remediate the vapors emitted through the ventilation system. In response, SRNL conducted an evaluation of technologies to abate, or reduce, vapor emissions to below 10% of the recognized occupational exposure limits (OELs). The evaluation included a review of published literature and a broadly communicated Request for Information to commercial vendors through a Federal Business Opportunities (Fed Biz Opps) web posting. In addition, SRNL conducted a workshop and post-workshop conference calls with interested suppliers (vendors) to assess proposals of relevant technologies. This report reviews applicable technologies and summarizes the approaches proposed by the vendors who participated in the workshop and teleconference interviews. In addition, the report evaluates the estimated performance of the individual technologies for the various classes of chemical compounds present in the Hanford Chemicals of Potential Concern (COPCs) list. Similarly, the report provides a relative evaluation of the vendor proposed approaches against criteria of: technical feasibility (and maturity), design features, operational considerations, secondary waste generation, safety/regulatory, and cost / schedule. These rough order-of-magnitude (ROM) cost estimates are intended to provide a comparison basis between technologies and are not intended to be actual project estimates.

  14. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  15. Evaporation of tungsten in vacuum at low hydrogen and water vapor pressures

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Galkin, E.A.; Khromonozhkin, V.V.

    1981-01-01

    The results of experimental investigations of tungsten evaporation rates in the temperature range 1650-2500 K, partial hydrogen and water vapours pressures 1x10 -5 -10 Pa are presented. Experi-- mental plant, equipment employed and radiometric technique of tungsten evaporation study are described. The dependences of evaporation rate and probabilities of tungsten oxidation by residual vacuum water vapours and dependences of tungsten evaporation rate on partial hydrogen and water vapours pressures are determined [ru

  16. Interwell coupling effect in Si/SiGe quantum wells grown by ultra high vacuum chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Loh Ter-Hoe

    2007-01-01

    Full Text Available AbstractSi/Si0.66Ge0.34coupled quantum well (CQW structures with different barrier thickness of 40, 4 and 2 nm were grown on Si substrates using an ultra high vacuum chemical vapor deposition (UHV-CVD system. The samples were characterized using high resolution x-ray diffraction (HRXRD, cross-sectional transmission electron microscopy (XTEM and photoluminescence (PL spectroscopy. Blue shift in PL peak energy due to interwell coupling was observed in the CQWs following increase in the Si barrier thickness. The Si/SiGe heterostructure growth process and theoretical band structure model was validated by comparing the energy of the no-phonon peak calculated by the 6 + 2-bandk·pmethod with experimental PL data. Close agreement between theoretical calculations and experimental data was obtained.

  17. Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Eldridge, David; Hickey, Ryan; Fernando, Nalin; Adam, Thomas; Zollner, Stefan; Kolodzey, James

    2016-01-01

    Tetrasilane and digermane were used to grow epitaxial silicon germanium layers on silicon substrates in a commercial ultra-high vacuum chemical vapor deposition tool. Films with concentrations up to 19% germanium were grown at temperatures from 400 °C to 550 °C. For all alloy compositions, the growth rates were much higher compared to using mono-silane and mono-germane. The quality of the material was assessed using X-ray diffraction, atomic force microscopy, and spectroscopic ellipsometry; all indicating high quality epitaxial films with low surface roughness suitable for commercial applications. Studies of the decomposition kinetics with regard to temperature were performed, revealing an unusual growth rate maximum between the high and low temperature deposition regimes. - Highlights: • Higher order precursors tetrasilane and digermane • Low temperature deposition • Thorough film characterization with temperature • Arrhenius growth rate peak

  18. The nuclear liquid-vapor phase transition: Equilibrium between phases or free decay in vacuum?

    International Nuclear Information System (INIS)

    Phair, L.; Moretto, L.G.; Elliott, J.B.; Wozniak, G.J.

    2002-01-01

    Recent analyses of multifragmentation in terms of Fisher's model and the related construction of a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown to scale according to Fisher's formula and can be simultaneously fit with the much higher energy ISiS multifragmentation data

  19. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    Science.gov (United States)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  20. Modern vacuum physics

    CERN Document Server

    Chambers, Austin

    2005-01-01

    Modern Vacuum Physics presents the principles and practices of vacuum science and technology along with a number of applications in research and industrial production. The first half of the book builds a foundation in gases and vapors under rarefied conditions, The second half presents examples of the analysis of representative systems and describes some of the exciting developments in which vacuum plays an important role. The final chapter addresses practical matters, such as materials, components, and leak detection. Throughout the book, the author''s explanations are presented in terms of first principles and basic physics, augmented by illustrative worked examples and numerous figures.

  1. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  2. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  3. Vacuum evaporation of KCl-NaCl salts. Part 2: Vaporization-rate model and experimental results

    International Nuclear Information System (INIS)

    Wang, L.L.; Wallace, T.C. Sr.; Hampel, F.G.; Steele, J.H.

    1996-01-01

    Separation of chloride salts from the actinide residue by vacuum evaporation is a promising method of treating wastes from the pyrochemical plutonium processes. A model based on the Hertz-Langmuir relation is used to describe how evaporation rates of the binary KCl-NaCl system change with time. The effective evaporation coefficient (α), which is a ratio of the actual evaporation rate to the theoretical maximum, was obtained for the KCl-NaCl system using this model. In the temperature range of 640 C to 760 C, the effective evaporation coefficient ranges from ∼0.4 to 0.1 for evaporation experiments conducted at 0.13 Pa. At temperatures below the melting point, the lower evaporation coefficients are suggested to result from the more complex path that a molecule needs to follow before escaping to the gas phase. At the higher liquid temperatures, the decreasing evaporation coefficients result from a combination of the increasing vapor-flow resistances and the heat-transfer effects at the evaporation surface and the condensate layer. The microanalysis of the condensate verified that composition of the condensate changes with time, consistent with the model calculation. The microstructural examination revealed that the vaporate may have condensed as a single solution phase, which upon cooling forms fine lamellar structures of the equilibrium KCl and NaCl phases. In conclusion, the optimum design of the evaporation process and equipment must take the mass and heat transfer factors and equipment materials issues into consideration

  4. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  5. Feasibility study of vacuum technology integrated fused deposition ...

    African Journals Online (AJOL)

    vacuum pump connected will absorb the air inside the chamber until desire pressure while printing object. Mitutoyo SJ-301 portable surface roughness tester and optical microscope used to analyze the quality of surface finish. Result reveal with ...

  6. Sewerage force adjustment technology for energy conservation in vacuum sanitation systems

    Science.gov (United States)

    Guo, Zhonghua; Li, Xiaoning; Kagawa, Toshiharu

    2013-03-01

    The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological

  7. Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing

    Science.gov (United States)

    Arzymatov, B.; Deulin, E.

    2016-07-01

    A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.

  8. Proceedings of the national symposium on vacuum science and technology and power beams. Volume 2

    International Nuclear Information System (INIS)

    Venkatramani, N.; Ray, A.K.

    1997-11-01

    This volume contains the proceedings of the national symposium on vacuum science and technology and power beams. The main topics dealt with are: accelerators and vacuum systems, thin films deposition techniques, lasers and electron power beams and their applications in nuclear facilities. Papers relevant to INIS are indexed separately

  9. Application of vacuum technology during nuclear fuel fabrication, inspection and characterization

    International Nuclear Information System (INIS)

    Majumdar, S.

    2003-01-01

    Full text: Vacuum technology plays very important role during various stages of fabrication, inspection and characterization of U, Pu based nuclear fuels. Controlled vacuum is needed for melting and casting of U, Pu based alloys, picture framing of the fuel meat for plate type fuel fabrication, carbothermic reduction for synthesis of (U-Pu) mixed carbide powder, dewaxing of green ceramic fuel pellets, degassing of sintered pellets and encapsulation of fuel pellets inside clad tube. Application of vacuum technology is also important during inspection and characterization of fuel materials and fuel pins by way of XRF and XRD analysis, Mass spectrometer Helium leak detection etc. A novel method of low temperature sintering of UO 2 developed at BARC using controlled vacuum as sintering atmosphere has undergone successful irradiation testing in Cirus. The paper will describe various fuel fabrication flow sheets highlighting the stages where vacuum applications are needed

  10. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  11. Development of vacuum continuous casting technology for uranium

    International Nuclear Information System (INIS)

    Lee, Y.S.; Kim, C. K.; Kim, K. H.; Lee, D. B.; Kim, J. D.; Jang, S. J.; Ahn, H. S.; Shin, Y. J.

    2001-02-01

    The spent fuel disposal process of new dry storage concept has been developed in KAERI, in which the uranium metal abstracted by Li-reduction of spent fuel will be formed to long rods and then the rods will be arranged uniformly in canister. The objective of this study is to review the feasibility of applying the continuous casting method to cast a long rod with modifying the vacuum high-frequency induction furnace to vacuum continuous casting system, which was normally used to cast the uranium. The results are as follows. With the nozzle size of 3mm and the withdrawal speed of 3.5 mm/sec, the length of 160mm, diameter of 30 mm continuous casting uranium bar was successfully cast. This result shows there might be a possibility of continuous casting of uranium and helps the design and fabrication of new continuous casting equipment

  12. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  13. Applications of vacuum technology to novel accelerator problems

    Energy Technology Data Exchange (ETDEWEB)

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.

  14. Applications of vacuum technology to novel accelerator problems

    International Nuclear Information System (INIS)

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10 -9 torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed

  15. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  16. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  17. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  18. Vacuum technologies developed for at-400A Type B transportation and storage package

    International Nuclear Information System (INIS)

    Franklin, K.W.; Cockrell, G.D.

    1995-01-01

    The AT-400A TYPE B transportation and storage container will be used at Pantex Plant for the transportation and interim storage of plutonium pits. The AT-400A was designed by a joint effort between Sandia National Labs, Los Alamos National Labs, Lawrence Livermore National Laboratory, and Mason and Hanger-Silas Mason Co., Inc. In order to meet the requirements for transportation and storage, five different vacuum technologies had to be developed. The goals of the various vacuum technologies were to verify the plutonium pit was sealed, perform the assembly verification leak check in accordance with ANSI N-14.5 and to provide a final inert gas backfill in the containment vessel. This paper will discuss the following five vacuum technologies: (1) Pit Leak Testing, (2) Containment Vessel Purge and Backfill with tracer gas, (3) Containment Vessel Leak Testing, (4) Containment Vessel Purge and Final Backfill, and (5) Leak Testing of the Containment Vessel Gas Transfer tube

  19. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    Science.gov (United States)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  20. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    Science.gov (United States)

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  1. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  2. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  3. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Amiotti, M [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate, Milano (Italy)], E-mail: Marco_Amiotti@saes-group.com

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl{sub 4} powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H{sub 2} poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H{sub 2} per unit of

  4. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Science.gov (United States)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  5. Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Teoman; Al Madani, Hussain [Mechanical Engineering Department, College of Engineering, University of Bahrain, P.O. box 32038, Isatown 32036 (Bahrain)

    2010-02-15

    With an ever-increasing population and rapid growth of industrialization, there is great demand for fresh water. Desalination has been a key proponent to meet the future challenges due to decreasing availability of fresh water. However, desalination uses significant amount of energy, today mostly from fossil fuels. It is, therefore, reasonable to rely on renewable energy sources such as solar energy, wind energy, ocean thermal energy, waste heat from the industry and other renewable sources. The present study deals with the energy-efficient seawater desalination system utilizing renewable energy sources and natural vacuum technique. A new desalination technology named Natural Vacuum Desalination is proposed. The novel desalination technique achieve remarkable energy efficiency through the evaporation of seawater under vacuum and will be described in sufficient detail to demonstrate that it requires much less electric energy compared to any conventional desalination plant of fresh water production of similar capacity. The discussion will highlight the main operative and maintenance features of the proposed natural vacuum seawater desalination technology which seems to have promising techno-economic potential providing also advantageous coupling with renewable energy sources. (author)

  6. Proceedings of the Japan-U.S. workshop P-118 on vacuum technologies for fusion devices

    International Nuclear Information System (INIS)

    Miyahara, A.

    1989-01-01

    Fusion community does not appreciate vacuum technologies to the same extent as accelerator community does. This is because, in the case of accelerators, in particular storage ring systems, the requirement of attaining ultrahigh vacuum in order to avoid collisional loss is well defined, on the other hand, it is not possible to define the requirement so precisely in the case of fusion devices. One of the reasons is that core plasma interacts with vessel wall so strongly and unpredictably that it becomes difficult to identify the role played by individual components. However, in the next step and the next generation machines like CIT, LHS, ITER, FER and NET, vacuum technologies would play more significant roles, because the CIT will introduce tritium in a vacuum vessel, and the aim of the ITER project is to demonstrate particle balance, namely, to achieve steady state operation with D-T fuel. The Japan-U.S. workshop P-118 was held at the Institute of Plasma Physics, Nagoya University, from August 1 to 5, 1988. 33 participants including 4 from the U.S. took part in the workshop. In the plenary session, 12 lectures were given, and also the topics-oriented session on pumping, gauging, remote maintenance, first wall, pump limiter, divertor and others was held. (K.I.)

  7. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    Science.gov (United States)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  8. Direct growth of Ge1-xSnx films on Si using a cold-wall ultra-high-vacuum chemical-vapor-deposition system

    Directory of Open Access Journals (Sweden)

    Aboozar eMosleh

    2015-04-01

    Full Text Available Germanium tin alloys were grown directly on Si substrate at low temperatures using a cold-wall ultra-high vacuum chemical vapor deposition system. Epitaxial growth was achieved by adopting commercial gas precursors of germane and stannic chloride without any carrier gases. The X-ray diffraction analysis showed the incorporation of Sn and that the Ge1-xSnx films are fully epitaxial and strain relaxed. Tin incorporation in the Ge matrix was found to vary from 1% to 7%. The scanning electron microscopy images and energy dispersive X-ray spectra maps show uniform Sn incorporation and continuous film growth. Investigation of deposition parameters shows that at high flow rates of stannic chloride the films were etched due to the production of HCl. The photoluminescence study shows the reduction of bandgap from 0.8 eV to 0.55 eV as a result of Sn incorporation.

  9. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  10. Scientometric mapping of vacuum research in nuclear science and technology: a global perspective

    International Nuclear Information System (INIS)

    Kademani, B S; Sagar, A; Kumar, A; Kumar, V

    2008-01-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers

  11. Key composition optimization of meat processed protein source by vacuum freeze-drying technology

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2018-05-01

    Full Text Available Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined. Keywords: Ham, Tenderloin, Vacuum freeze-dry, Processing, Optimization

  12. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  13. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    Science.gov (United States)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  14. LCA of strippable coatings and of steam vacuum technology used for nuclear plants decontamination

    International Nuclear Information System (INIS)

    Guidi, Giambattista; Cumo, Fabrizio; Santoli, Livio de

    2010-01-01

    The application of strippable coatings is an innovative technology for decontamination of nuclear plants and for any decontamination project aiming at removing surface contamination. An adhesive plastic coating is applied on the contaminated surface. The strippable coating is allowed to cure for up to 24 h, after which it can be easily peeled. The coating traps the contaminants in the polymer matrix. Strippable coatings are non-toxic and do not contain volatile compounds or heavy metals. Since the coating constitutes a solid waste, disposal is easier than treating contaminated liquid wastes, produced by the baseline technology: steam vacuum cleaning, based upon superheated pressurized water in order to remove contaminants from floors and walls. A life cycle assessment (LCA) has been carried out with the purpose of comparing the strippable coating with the steam vacuum technology. The functional unit of the study is represented by a surface of 1 m 2 to be decontaminated. The results of LCA achieved using Sima Pro 5.0 registered software confirm the good environmental performances of strippable coatings. Taking into account both LCA and environmental costs for liquid wastes, the advantages of strippable coatings will be more and more evident. (orig.)

  15. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    Science.gov (United States)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  16. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    Science.gov (United States)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  17. "Physics Stories": How the Early Technologies of High Voltage and High Vacuum Led to "Modern Physics"

    Science.gov (United States)

    Greenslade, Thomas B.

    2018-05-01

    Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections seem to be stretched at times, and led to a book by Burke. In a number of talks that I have given over the years, I have made somewhat less fanciful connections that suggest how the technologies of high vacuum and high voltage led to what used to be called "modern physics." Today we might limit the "modern" era to the years from 1890 to 1920 that gave the first workable theories of small-scale physics.

  18. Boron mediation on the growth of Ge quantum dots on Si (1 0 0) by ultra high vacuum chemical vapor deposition system

    International Nuclear Information System (INIS)

    Chen, P.S.; Pei, Z.; Peng, Y.H.; Lee, S.W.; Tsai, M.-J.

    2004-01-01

    Self-assembled Ge quantum dots (QDs) with boron mediation are grown on Si (1 0 0) by an industrial hot wall ultra-high-vacuum chemical vapor deposition (UHV/CVD) system with different growth temperatures and dopant gas flow rates. Diborane (B 2 H 6 ) gas is applied as a surfactant on the Si (1 0 0) prior to the growth of Ge QDs. Small dome and pyramid shaped Ge QDs are observed after boron treatment as compared to the hut shaped Ge cluster without boron pre-treatment at 525 and 550 deg. C. The Ge QDs have a typical base width and height of about 30 and 6 nm, respectively, and the density is about 2.5x10 10 cm -2 for the growth temperature of 525 deg. C. Through weakening the Si-H bond during the epitaxy growth and changing the stress field on the surface of the Si (1 0 0) buffer, boron mediation can modify the growth mode of Ge QDs. When the growth temperature is low (525-550 deg. C), the former factor is dominate, as the growth temperature is raised (600 deg. C), the latter parameter may play an important role on the formation of Ge QDs. Optical transition from Ge QDs is demonstrated from photoluminescence (PL) spectra. Furthermore, multifold Ge/Si layers are also carried out to enhance the PL intensity with first Ge layer treated by B 2 H 6 and avoid the generation of threading dislocations

  19. Implantation of titanium, chromium, yttrium, molybdenum, silver, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum ion source into 440C stainless steel

    International Nuclear Information System (INIS)

    Sasaki, Jun; Hayashi, Kazunori; Sugiyama, Kenji; Ichiko, Osami; Hashiguchi, Yoshihiro

    1992-01-01

    Titanium, yttrium, molybdenum, silver, chromium, hafnium, tantalum, tungsten and platinum ions generated by a metal vapor vacuum arc (MEVVA) ion source were implanted into 440C stainless steel in the dose region 10 17 ions cm -2 with extraction voltages of up to 70 kV. Glow discharge spectroscopy (GDS), friction coefficient, and Vickers microhardness of the specimens were studied. Grooves made by friction tests were investigated by electron probe microanalysis (EPMA). GDS showed incorporation of carbon in the yttrium, hafnium, tantalum, tungsten and platinum implanted specimens, as well as titanium implanted samples. A large amount of oxygen was observed in the yttrium implanted specimen. The friction coefficient was measured by reciprocating sliding of an unimplanted 440C ball without lubricant at a load of 0.245 N. The friction decreased and achieved a stable state after implantation of titanium, hafnium and tantalum. The friction coefficient of the platinum implanted specimen showed a gradual decrease after several cycles of sliding at high friction coefficient. The yttrium implanted sample exhibited a decreased but slightly unstable friction coefficient. Results from EPMA showed that the implanted elements, which gave decreased friction, remained even after sliding of 200 cycles. Implantation of chromium, molybdenum, silver and tungsten did not provide a decrease in friction and the implants were gone from the wear grooves after the sliding tests. (orig.)

  20. Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO_4 laser patterned rutile TiO_2 nanorods

    International Nuclear Information System (INIS)

    Fakharuddin, Azhar; Wali, Qamar; Rauf, Muhammad; Jose, Rajan; Palma, Alessandro L; Giacomo, Francesco Di; Casaluci, Simone; Matteocci, Fabio; Carlo, Aldo Di; Brown, Thomas M

    2015-01-01

    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH_3NH_3PbX_3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO_2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO_2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs’ patterning over substrates is resolved by using precise Nd:YVO_4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH_3NH_3PbI_3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices. (paper)

  1. 3. International Symposium 'Vacuum Technology and Equipment'. ISVTE-3; 3. Mezhdunarodnyj Simpozium 'Vakuumnye tekhnologii i oborudovanie'. ISVTE-3

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V S; Shulaev, V M [eds.

    1999-07-01

    The reports of the 3th International Symposium 'Vacuum Technology and Equipment', which was held in Kharkov at 22-24 September 1999 are presented. In this issue such subject are published: equipment and technology for thin and coating preparation. Studies of their surface layer and material modification by corpuscular effect and light.

  2. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  3. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    Science.gov (United States)

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  4. New vision in fractional radiofrequency technology with switching, vacuum and cooling.

    Science.gov (United States)

    Elman, Monica; Gauthier, Nelly; Belenky, Inna

    2015-04-01

    Since the introduction of fractional technology, various systems were launched to the market. The first generation of fractional RF systems created epidermal ablation with coagulative/necrosis of the dermis with sufficient clinical outcomes, but with some limitations. The aim of this study was to evaluate the efficacy and safety of SVC technology, based on the principle of separate biological responses. Fifty-two patients were treated for 3-6 sessions using fractional RF handpiece and eight patients received combination treatments with non-invasive RF handpiece. All volunteers showed notable to significant improvement in the photoageing symptoms, without any significant complications or adverse events. Due to its wide spectrum of parameters, the SVC technology can promote different biological responses. Owing to the "Switching" technology, the control of energy depth penetration enables delivery of the necessary thermal dose to the targeted skin layer. In addition, this novel technology includes the "Vacuum" and "Cooling" mechanisms, each contributing to the safety of the treatment. The Smart Heat function reduces the necessary energy levels and thereby reduces the pain level and risks for side effects.

  5. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology

    Science.gov (United States)

    Matsui, Tatsunosuke

    2017-09-01

    Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.

  7. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  8. Vapor Phase Growth of High-Quality Bi-Te Compounds Using Elemental Bi and Te Sources: A Comparison Between High Vacuum and Atmospheric Pressure

    Science.gov (United States)

    Concepción, O.; Escobosa, A.; de Melo, O.

    2018-03-01

    Bismuth telluride (Bi2Te3), traditionally used in the industry as thermoelectric material, has deserved much attention recently due to its properties as a topological insulator, a kind of material that might have relevant applications in spintronics or quantum computing, among other innovative uses. The preparation of high-quality material has become a very important technological task. Here, we compare the preparation of Bi2Te3 by physical vapor transport from the evaporation of elemental Bi and Te sources, under either low pressure or atmospheric pressure. The layers were characterized by different techniques to evaluate its structural properties. As a result, it is concluded that, as a consequence of the different transport regimes, films grown at atmospheric pressure present better crystal quality.

  9. The main achievements of the Technological Development Department in 1998. Vacuum and Cleanroom Techniques Group

    International Nuclear Information System (INIS)

    Batulescu, C.

    1999-01-01

    The purpose of this research work was the manufacturing of the electron beam diagnosis device prototype used for optimization of both electron gun construction and the main parameters of electron beam welding carried out in a vacuum atmosphere. In order to obtain high quality weldings the precise geometry and the main electrical parameters characterizing the beam must be well known by both the manufacturer and the users of the equipment. Three of the most important parameters of the beam can be experimentally analysed using the diagnosis device: - Output current of the beam (on the metal part); - Minimum diameter of the beam; - Power density on the metal part. The main components of the diagnosis device are: - Faraday Cage; - Cooling Water Feedthrough; - Electrical Feedthrough; - Two-channel Function Generator Module; - Entrance Amplifier; - Deflection Control System; - Two-channel Oscilloscope. The device includes specific components that allows an efficient dissipation of the energy released by the electronic welding gun. Several requirements with high level of difficulty such as equipment operation under high voltage/vacuum conditions, a high level of noise and overfeeding due to parasitic electrical discharges or thyristors, an efficient water cooling for every component, and a satisfactory insulation resistance of the coolant so that the low level input from the Faraday cage to rest unaltered, have been taken into consideration. The beam diagnosis device allows optimization of the main parameters of the electron welding guns such as effective power on the welded parts, beam diameter, current and power density across the stream of particles. The contribution of the beam diagnosis to the improvement of the existing or future welding guns will play an important role in research and for the establishing of the new electron-beam welding technologies demanded by industry. (authors)

  10. Control technologies for soil vapor extraction at petroleum hydrocarbon impacted sites -- Regulatory challenges to system operations

    International Nuclear Information System (INIS)

    Cacossa, K.F.; Campbell, G.E.; Devine, K.

    1995-01-01

    Soil vapor extraction (SVE) is frequently used to remediate soils impacted by petroleum hydrocarbons. Four technologies have proven to be viable methods to control the off-gas emissions from SVE systems, namely, internal combustion, thermal oxidation, catalytic oxidation, and granular activated carbon adsorption. The optimal range of influent vapor concentrations for system operation differs for each of the technologies. Over the past several years the authors have worked proactively with the state regulatory community to develop general, all inclusive air pollution control permits which allow for the potential use of all four technologies over the life of the permit. Private industry has similarly worked with the state regulators to develop a less labor intensive sampling/monitoring procedure. Actual system performances, which were monitored using summa canisters and field equipment, provided the basis for the new procedure. System performance data indicated that field sampling with portable hydrocarbon analyzers, such as flame ionization detectors (FID), was preferable over the use of summa canister sampling. In addition, to reduce the costs associated with the analysis of samples, the new SVE monitoring protocol also reduced the number of system monitoring visits. These reductions equated into a cost effective, yet environmentally sound SVE system monitoring programs. Finally, the authors have worked with the regulatory community to establish permit limitations which allow operational flexibility

  11. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Directory of Open Access Journals (Sweden)

    Jui-Che Huang

    2017-06-01

    Full Text Available An in-vacuum undulator (IVU provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced–heat load, phase errors, and the deformation of support girders.

  12. The Properties of Binary and Ternary Ti Based Coatings Produced by Thermionic Vacuum Arc (TVA Technology

    Directory of Open Access Journals (Sweden)

    Aurelia Mandes

    2018-03-01

    Full Text Available A series of the multicomponent thin films (binary: Ti-C; Ti-Ag and ternary: Ti-C-Ag; Ti-C-Al were fabricated by Thermionic Vacuum Arc (TVA technology in order to study the wear resistance and the anticorrosion properties. The effects of Ti amount on the microstructure, tribological and morphological properties were subsequently investigated. TVA is an original deposition method using a combination of anodic arc and electron gun systems for the growth of films. The samples were characterized using scanning electron microscope (SEM and a transmission electron microscope (TEM accompanied by selected area electron diffraction (SAED. Tribological properties were studied by a ball-on-disc tribometer in the dry regime and the wettability was assessed by measuring the contact angle with the See System apparatus. Wear Rate results indicate an improved sliding wear behavior for Ti-C-Ag: 1.31 × 10−7 mm3/N m (F = 2 N compared to Ti-C-Al coating wear rate: 4.24 × 10−7 mm3/N m. On the other hand, by increasing the normal load to 3 N an increase to the wear rate was observed for Ti-C-Ag: 2.58 × 10−5 mm3 compared to 2.33 × 10−6 mm3 for Ti-C-Al coating.

  13. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Science.gov (United States)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chang, Cheng-Hsing; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2017-06-01

    An in-vacuum undulator (IVU) provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs) has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced-heat load, phase errors, and the deformation of support girders.

  14. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Ma, En; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2013-12-15

    Highlights: • The vacuum pyrolysis–vacuum chlorinated separation system was proposed to recover the waste LCD panel. • The system can recycle the whole waste LCD panels efficiently without negative effects to environment. • The 82.03% of the organic materials was reclaimed. All pyrolysis products can be utilized by a reasonable way. • The separation of indium was optimized by the central composite design (CCD) under response surface methodology (RSM). • The recovery ratio of indium was further increased to 99.97%. -- Abstract: In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300 °C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH{sub 4}Cl to glass powder is 50 wt% and temperature is 450 °C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly.

  15. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    Energy Technology Data Exchange (ETDEWEB)

    Daehn, Glenn S. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Vivek, Anupam [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Liu, Bert C. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2016-09-30

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good number of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.

  16. PREFACE: 16th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2009)

    Science.gov (United States)

    Möller, Wolfhard; Guerassimov, Nikolay; Ghelev, Chavdar

    2010-04-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977 when the series of VEIT Schools was launched by the Institute of Electronics, Bulgarian Academy of Sciences with the aim to act as a forum for interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. Beginning from 2001, the school has been jointly organized with the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Germany. Whereas, the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance grew issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions or exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers, Journal of Physics: Conference Series. The Sixteenth VEIT school was held in the Black Sea resort Sunny Beach, Bulgaria on 28 September to 2 October 2009. It was attended by close to 110 participants from 13 countries: Belgium, Bulgaria, Czech Republic, France, Germany, The Netherlands, Romania, Slovak Republic, Spain, Sweden, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, under the originality and quality criteria of acceptance by the journal, including

  17. Ethanol production from food waste at high solids content with vacuum recovery technology.

    Science.gov (United States)

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  18. In-well vapor stripping drilling and characterization work plan

    International Nuclear Information System (INIS)

    Koegler, K.J.

    1994-01-01

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable

  19. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    Science.gov (United States)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  20. Historical review of the vacuum chamber technology for INS-ES

    International Nuclear Information System (INIS)

    Yoshida, Katsuhide

    2006-01-01

    The INS (Institute for Nuclear Study), University of Tokyo, was founded in 1955. Construction of the ES (electron synchrotron) was approved in 1956 and finished in 1961. 1.3 GeV INS-ES consists of 8 electric magnets with 3.14m length at intervals of 1.2m. It used resonant exciting current. The vacuum chamber was called donut made of ceramics at first and changed by araldite in 1964, and metal in 1970's. 53% of troubles were caused by the vacuum system in 1966. The metal donut with stainless steel welding bellows was changed by the stainless steel from SUS304 to SUS316L. These improvement methods solved the vacuum problems. The donut made of araldite, a trial piece of stainless steel welding bellows, increase of beam intensity of INS-ES and position of stainless steel welding bellows in section are shown. (S.Y.)

  1. Technological plasma source equipped with combined system of vacuum-arc discharge initiation

    International Nuclear Information System (INIS)

    Sysoev, Yu.O.

    2013-01-01

    The construction and the operation principle of erosion plasma source with a three-stage system of vacuum-arc discharge excitation is described. As first two step was used the modified contactless start system with plasma injector, which was widely used in standard plasma sources of the ''Bulat'' systems. The operation principle of the third stage was based on the transition of glow discharge to arc discharge. Coordinated operation of three stages during various stages of coating deposition provided significant increasing of service life and reliability of the system of vacuum-arc discharge initiation and extended the functionality of the plasma source

  2. Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge

    International Nuclear Information System (INIS)

    Metel, A. S.; Grigoriev, S. N.; Melnik, Yu. A.; Panin, V. V.

    2009-01-01

    Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V ∼ 0.12 m 3 of a technological system 'Bulat-6' in argon pressure range 0.005-5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S ∼ 1.5 m 2 . It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S a ranging from ∼0.001 to ∼0.1 m 2 , as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U c = 0.4-3 kV on the pressure p at a constant discharge current in the range I = 0.2-2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S o = S a + S f of the anode surface S a and the floating electrode surface S f . The sum S o defines the lower limit p o of the pressure range, in which U c is independent of p. At p o the cathode fall U c grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p ex , which is in fact the discharge extinction pressure. At p ∼ p ex electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600-800 o C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S a 1/2 S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U a up to 0.5 kV.

  3. 19th International Summer School on Vacuum, Electron and Ion Technologies (VEIT2015)

    International Nuclear Information System (INIS)

    2016-01-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1978, when the series of VEIT Schools was launched by the Institute of Electronics, Bulgarian Academy of Sciences with the aim to act as a forum for exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. The organizers of the 2015 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands. While the school has initially been providing a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions or exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers, Journal of Physics: Conference Series. The Nineteenth edition of VEIT was held in the Black Sea resort Sozopol, Bulgaria, on 21--25 September 2015. It was attended by 101 participants from 16 countries: Bulgaria, Czech Republic, France, Germany, Greece, The Netherlands, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Turkey, Ukraine and UK. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event are published in this special issue of Journal of Physics: Conference Series, under the

  4. PREFACE: Fifteenth International Summer School on Vacuum, Electron and Ion Technologies (VEIT 2007)

    Science.gov (United States)

    Guerassimov, Nikolay; Möller, Wolfhard; Ghelev, Chavdar

    2008-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biannually since 1977. It is a forum for the interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. The organizers of the event (since 2001) have been the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria, the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Dresden, Germany, and the Evrika Foundation, Sofia, Bulgaria. The fifteenth meeting of VEIT was held in the Black Sea resort of Sozopol, Bulgaria from 17-21 September 2007 and was attended by around 120 participants from 17 countries: Australia, Belgium, Bulgaria, Canada, Czech Republic, Germany, Hungary, Italy, The Netherlands, Poland, Pakistan, Romania, Sweden, Switzerland, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, all peer reviewed to meet the originality and quality criteria of the journal. The school consisted of 11 oral and 3 poster sessions. There were 17 invited talks of general interest and 12 progress reports were presented orally. In total 86 contributed papers were presented during the three poster sessions. There were several scientific highlights covering the fundamentals of gas discharges and interaction of fast particles with solids, a wide range of conventional and novel applications such as for hard coatings and optical/protective layers, nanosized structures produced by evaporation, sputtering or external irradiation. Recent achievements in the modification of materials using charged particles or laser beams, thin layers deposition, properties, and characterization and novel materials, techniques, devices were highlighted. Despite the busy scientific program, the atmosphere was relaxed and informal

  5. Detecting leaks in vacuum bags

    Science.gov (United States)

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  6. Vacuum distilling vessel

    Energy Technology Data Exchange (ETDEWEB)

    Reik, H

    1928-12-27

    Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.

  7. ITER articulated inspection arm (AIA): R and d progress on vacuum and temperature technology for remote handling

    International Nuclear Information System (INIS)

    Perrot, Y.; Cordier, J.J.; Friconneau, J.P.; Gargiulo, L.; Martin, E.; Palmer, J.D.; Tesini, A.

    2005-01-01

    This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R and D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER. It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs. To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 o C). The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility. As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system. This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module

  8. ITER articulated inspection arm (AIA): R and d progress on vacuum and temperature technology for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y. [Robotics and Interactive Systems Unit-CEA/LIST, BP6 F-92265 Fontenay aux Roses Cedex (France)]. E-mail: yann.perrot@cea.fr; Cordier, J.J. [DRFC-CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [Robotics and Interactive Systems Unit-CEA/LIST, BP6 F-92265 Fontenay aux Roses Cedex (France); Gargiulo, L. [DRFC-CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Martin, E. [ITER International Team, Boltzmannstrasse 2, 85748 Garching (Germany); Palmer, J.D. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching (Germany); Tesini, A. [ITER International Team, ITER Naka Joint Work Site, 801-1, Muouyama, Naka-machi, Naka-gun, Iberaki-ken 311-0193 (Japan)

    2005-11-15

    This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R and D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER. It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs. To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 {sup o}C). The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility. As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system. This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module.

  9. Technology Development of Salak (Salacca Zalacca) Chips With Vacuum Frying Machine Base On Expert System In Kramat-Bangkalan Regency

    Science.gov (United States)

    Rosida, D. F.; Happyanto; Anggraeni; Sugiarto; Hapsari

    2018-01-01

    Agropolitan Program is one form of regional development to improve agribusiness system and effort to improve the welfare of the community. One of the leading commodities in Bangkalan agroclimates is salak which is a potentially very large commodity to be developed. Salak commodities in Kramat Bangkalan Indonesia have developed varous salak produced such as dates of salak, syrup and dodol salak. Salak chips was the target of innovation from processed salak. The Production of salak chips using frying technology with vacuum system to obtain crunchy chips. To get the results need to be developed synergy technology to combine the process conditions and the right system in producing good quality salak chips. Bangkalan Regency is the potential to continue to develop products using a variety of salak to the processed form of vacuum frying machine based on expert system so that the resulting product would be great texture, aroma and taste. This will make the area of Bangkalan, Indonesia be more independent in producing and increasing revenue.

  10. Application Of Vacuum Salt Distillation Technology For The Removal Of Fluoride And Chloride From Legacy Fissile Materials

    International Nuclear Information System (INIS)

    Pierce, R.; Peters, T.

    2011-01-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO 2 ). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl 2 ), calcium fluoride (CaF 2 ), and plutonium fluoride (PuF 3 ) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl 2 , CaF 2 and PuF 3 below 1000 C using VSD technology.

  11. Cleaning of the equipment of residual sodium by means of water-vacuum technology

    International Nuclear Information System (INIS)

    Klykov, B.P.; Lednev, A.I.

    1997-01-01

    Results of investigation into a problem of equipment decontamination from sodium, that have been conducted in OKBM since 1960 are given. The investigations performed have shown that a water-vacuum washing process is the most optimal method for equipment decontamination from sodium residues. The essence of the method is in conduction of sodium-water reaction under reduced pressure in a leak-tight tank. Boundary conditions are selected experimentally which not allow sodium to be melted during the process, that gives possibility to control the sodium-water reaction. Continuous removal of H 2 and reaction products creates safe conditions for the process conduction. More that 20-year period of operation of a stationary water-vacuum facility and washing the electromagnetic pump for BN-350 fast nuclear reactor directly at is test rig are the best proofs of the proposed method. This method is well suitable for washing the equipment contaminated by radioactive sodium, because by-products of the process are simply utilized. The method is used in a number of Russian enterprises, and recommended for implementation at BN-350 and BN-600 reactor plants. (author)

  12. Vacuum leak detector and method

    Science.gov (United States)

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  13. Shape Memory Alloy connectors for Ultra High Vacuum applications: a breakthrough for accelerator technologies

    CERN Document Server

    AUTHOR|(CDS)2091326; Garion, Cedric

    Beam-pipe coupling in particle accelerators is nowadays provided by metallic flanges that are tightly connected by several screws or heavy collars. Their installation and dismounting in radioactive areas contribute to the radiation doses received by the technical personnel. Owing to the increased proton-beam intensity and luminosity of the future High-Luminosity LHC (HL-LHC), radioactivity in some specific zones will be significantly higher than in the present LHC; the presence of the technical staff in these areas will be strictly controlled and minimized. Remote interventions are being considered, too. Shape Memory Alloys (SMAs) offer a unique possibility to generate tight connections and fast clamping/unclamping by remotely changing the temperature of the junction unit. In fact, SMAs exhibit unique strain and stress recovery capabilities which are related to reversible phase transition mechanisms, induced thermally or mechanically. In this PhD work, a novel Ultra-High Vacuum (UHV) coupling system based on ...

  14. Vacuum decay container/closure integrity testing technology. Part 1. ASTM F2338-09 precision and bias studies.

    Science.gov (United States)

    Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Godorov, Phillip; Guazzo, Dana Morton

    2009-01-01

    ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method is applicable for leak-testing rigid and semi-rigid non-lidded trays; trays or cups sealed with porous barrier lidding materials; rigid, nonporous packages; and flexible, nonporous packages. Part 1 of this series describes the precision and bias studies performed in 2008 to expand this method's scope to include rigid, nonporous packages completely or partially filled with liquid. Round robin tests using three VeriPac 325/LV vacuum decay leak testers (Packaging Technologies & Inspection, LLC, Tuckahoe, NY) were performed at three test sites. Test packages were 1-mL glass syringes. Positive controls had laser-drilled holes in the barrel ranging from about 5 to 15 microm in nominal diameter. Two different leak tests methods were performed at each site: a "gas leak test" performed at 250 mbar (absolute) and a "liquid leak test" performed at about 1 mbar (absolute). The gas leak test was used to test empty, air-filled syringes. All defects with holes > or = 5.0 microm and all no-defect controls were correctly identified. The only false negative result was attributed to a single syringe with a ASTM F2338-09 test method and the precision and bias study report are available by contacting ASTM International in West Conshohocken, PA, USA (www.astm.org).

  15. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  16. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Onozuka, M.; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G.

    2001-01-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible

  17. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: onozukm@itereu.de; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G

    2001-09-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible.

  18. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  19. Regeneration performance of CO2-rich solvents by using membrane vacuum regeneration technology: Relationships between absorbent structure and regeneration efficiency

    International Nuclear Information System (INIS)

    Yan, Shuiping; Fang, Mengxiang; Wang, Zhen; Luo, Zhongyang

    2012-01-01

    Highlights: ► MVR may be viable to successfully use less valuable heat to replace high grade steam. ► Increasing OH and amine groups will increase the regeneration efficiency. ► Absorbents with a four carbon chain length will be more attractive to MVR. ► Amino acid salts will be more appropriate for MVR. ► HRM conducted at ambient pressure and low temperature is inferior to MVR. -- Abstract: In order to give a better understanding for the selection of suitable absorbents for the novel membrane vacuum regeneration technology (MVR) which has the potential to reduce CO 2 energy requirement by utilizing the waste heat or low-grade energy, an experimental study to determine the relationships between chemical structure and vacuum regeneration behavior of CO 2 absorbents at 70 °C and 10 kPa was performed. Eleven typical absorbents with different functional groups in their chemical structures were investigated in terms of vacuum regeneration efficiencies. Results showed that the regeneration efficiency decreased with an increase of number of activated hydrogen atom in amine group and decreased with the number of hydroxyl group. Especially, more attention should be paid to these alkanolamines with one hydrogen atom in amine group and two or more hydroxyl groups in the structures due to their better comprehensive performance in regeneration, absorbent loss and CO 2 absorption aspects. Increasing the carbon chain length and amine groups in the absorbent structure contributed to the improvement of regeneration performance and reduction of absorbent volatile loss. These absorbents with a four carbon chain length bonded at amine group might be more attractive to MVR. Furthermore, polyamines were superior to monoamines in terms of higher regeneration efficiencies and lower absorbent losses. Additionally, the individual effects of the potassium carboxylate group and hydroxymethylene group were also compared in this study. Results showed that amino acid salts were more

  20. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  1. "Physics Stories": How the Early Technologies of High Voltage and High Vacuum Led to "Modern Physics"

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2018-01-01

    Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections…

  2. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies

    International Nuclear Information System (INIS)

    Vian, J.G.; Astrain, D.

    2009-01-01

    A domestic refrigerator with three compartments has been developed: refrigerator compartment, at 4 deg. C (vapor compression cooling system); freezer compartment, at -22 deg. C (vapor compression cooling system); and a new super-conservation compartment, at 0 deg. C (thermoelectric cooling system). The thermoelectric system designed for the super-conservation compartment eliminates the oscillation of its temperature due to the start and stop compressor cycles, obtaining a constant temperature and thus, a better preservation of the food. For the design and optimization of this application, a computational model, based in the numerical method of finite differences, has been developed. This model allows to simulate the complete hybrid refrigerator (vapor compression-thermoelectricity). The accuracy of the model has been experimentally checked, with a maximum error of 1.2 deg. C for temperature values, and 8% for electric power consumption. By simulations with the computational model, the design of the refrigerator has been optimized, obtaining a final prototype highly competitive, by the features on food preservation and power consumption: 1.15 kW h per day (48.1 W) for an ambient temperature of 25 deg. C. According to European rules, this power consumption value means that this new refrigerator could be included on energy efficiency class B.

  3. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  4. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  5. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology.

    Science.gov (United States)

    Nguyen, Jacques D; Aarde, Shawn M; Vandewater, Sophia A; Grant, Yanabel; Stouffer, David G; Parsons, Loren H; Cole, Maury; Taffe, Michael A

    2016-10-01

    Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  7. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  8. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  9. Ionized physical vapor deposition (IPVD): A review of technology and applications

    International Nuclear Information System (INIS)

    Helmersson, Ulf; Lattemann, Martina; Bohlmark, Johan; Ehiasarian, Arutiun P.; Gudmundsson, Jon Tomas

    2006-01-01

    In plasma-based deposition processing, the importance of low-energy ion bombardment during thin film growth can hardly be exaggerated. Ion bombardment is an important physical tool available to materials scientists in the design of new materials and new structures. Glow discharges and in particular, the magnetron sputtering discharge have the advantage that the ions of the discharge are abundantly available to the deposition process. However, the ion chemistry is usually dominated by the ions of the inert sputtering gas while ions of the sputtered material are rare. Over the last few years, various ionized sputtering techniques have appeared that can achieve a high degree of ionization of the sputtered atoms, often up to 50% but in some cases as much as approximately 90%. This opens a complete new perspective in the engineering and design of new thin film materials. The development and application of magnetron sputtering systems for ionized physical vapor deposition (IPVD) is reviewed. The application of a secondary discharge, inductively coupled plasma magnetron sputtering (ICP-MS) and microwave amplified magnetron sputtering, is discussed as well as the high power impulse magnetron sputtering (HIPIMS), the self-sustained sputtering (SSS) magnetron, and the hollow cathode magnetron (HCM) sputtering discharges. Furthermore, filtered arc-deposition is discussed due to its importance as an IPVD technique. Examples of the importance of the IPVD-techniques for growth of thin films with improved adhesion, improved microstructures, improved coverage of complex shaped substrates, and increased reactivity with higher deposition rate in reactive processes are reviewed

  10. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  11. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  12. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  13. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  14. 20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

    CERN Document Server

    Pantelia, Anna

    2014-01-01

    20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

  15. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  16. PARAFFIN SEPARATION VACUUM DISTILLATION

    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman

    2013-05-01

    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  17. Vacuum evaporation, a technology for re-using water and reducing waste; La evaporacion al vacio una tecnologia para la reduccion de residuos y reutilizacion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Casas, O.; Sabate, E.; Casas, F.; Lopez, J.

    2009-07-01

    In order to improve companies sustain ability and environmental commitment, we have developed a concentration technology for reducing the volume of industrial waste water at low energy cost and recovering the water for various applications. The advantages of this system are recovery of the water, minimum maintenance without reagents and compactness with any type of waste water. Industrials Titan represents and example of the recycling of water by means of vacuum evaporation to solve a double problem: the conductivity of the water from the decalcified and the COD of the water from the painting process. (Author)

  18. ITER articulated inspection arm (AIA): R and D progress on vacuum and temperature technology for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y.; Friconneau, J.P. [Robotics and Interactive Systems Unit - CEA/LIST, 92 - Fontenay aux Roses (France); Cordier, J.J.; Gargiulo, L. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Palmer, J.D. [EFDA CSU Garching (Germany); Martin, E. [ITER International Team, Garching (Germany); Tesini, A. [ITER International Team, ITER Naka Joint Work Site, Iberaki-ken (Japan)

    2004-07-01

    To perform an intervention a short time after plasma shutdown, the operation of the robot will have to be under ITER conditions which means: under high vacuum, pollution avoidance and a temperature ambience around 120 C. The feasibility studies have led to the design of a robot in the shape of a 8.2 meter long articulated arm made up of 5 modules with 11 articulated joints. A single module prototype has been manufactured to be tested. The prototype was set up in a specific vacuum vessel at Tore-Supra facility that can be baked up to 230 C under high-vacuum conditions. The first tests have shown that: -) the efficiency of the actuators at 120 C was the same than in air at room temperature, the speed was slightly lower, -) the monitoring of the temperature of the motor and of the power electronics components showed an increasing of only 40 C during 3 full pitch movements, and -) most of the greases was degassed during the 1 week long baking at 200 C except one which comes from an organic material in a component that has to be identified.

  19. ITER articulated inspection arm (AIA): R and D progress on vacuum and temperature technology for remote handling

    International Nuclear Information System (INIS)

    Perrot, Y.; Friconneau, J.P.; Cordier, J.J.; Gargiulo, L.; Martin, E.; Tesini, A.

    2004-01-01

    To perform an intervention a short time after plasma shutdown, the operation of the robot will have to be under ITER conditions which means: under high vacuum, pollution avoidance and a temperature ambience around 120 C. The feasibility studies have led to the design of a robot in the shape of a 8.2 meter long articulated arm made up of 5 modules with 11 articulated joints. A single module prototype has been manufactured to be tested. The prototype was set up in a specific vacuum vessel at Tore-Supra facility that can be baked up to 230 C under high-vacuum conditions. The first tests have shown that: -) the efficiency of the actuators at 120 C was the same than in air at room temperature, the speed was slightly lower, -) the monitoring of the temperature of the motor and of the power electronics components showed an increasing of only 40 C during 3 full pitch movements, and -) most of the greases was degassed during the 1 week long baking at 200 C except one which comes from an organic material in a component that has to be identified

  20. Vacuum gauges

    International Nuclear Information System (INIS)

    Power, B.D.; Priestland, C.R.D.

    1978-01-01

    This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)

  1. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  2. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  3. Consequences of the technology survey and gap analysis on the EU DEMO R&D programme in tritium, matter injection and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Day, Chr., E-mail: Christian.Day@kit.edu [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Butler, B. [Culham Science Centre (CCFE), Abingdon (United Kingdom); Giegerich, T. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Lang, P.T. [Max-Planck-Institute of Plasma Physics (IPP), Garching (Germany); Lawless, R. [Culham Science Centre (CCFE), Abingdon (United Kingdom); Meszaros, B. [EUROfusion Consortium, Programme Management Unit, Garching (Germany)

    2016-11-01

    Highlights: • The inner fuel cycle architecture of DEMO is developed in a systems engineering approach as a functional break-down diagram, driven by the need for inventory minimisation. • Technologies to fulfil the required functions are discussed and ranked. • Prime technologies are identified and an associated R&D programme is developed. • The core challenges of a DEMO fuel cycle beyond those already addressed in ITER are discussed. - Abstract: In the framework of the EUROfusion Programme, EU is preparing the conceptual design of the inner fuel cycle of a pulsed tokamak DEMO. This paper illustrates a quantified process to shape a R&D programme that exploits as much as possible previous R&D. In an initial step, the high-level requirements are collected and a novel DEMO inner fuel cycle architecture with its three sub-systems vacuum pumping, matter injection (fuelling and injection of plasma enhancement gases) and tritium systems (tritium plant and breeder coolant purification) is delineated, driven by the DEMO key challenge to reduce tritium inventory. Then, a technology survey is carried out to review potential existing solutions for the required process functions and to assess their maturity and risks. Finally, a decision-making scheme is applied to select the most promising candidates. ITER technology is exploited where possible. As a primary result, a fuel cycle architecture is suggested with an advanced tritium plant that avoids full isotope separation in the main loop and with a Direct Internal Recycling path in the vacuum systems to shorten cycle times. For core fuelling, classical inboard pellet injection technology is selected, in principle similar to that proposed for ITER but aiming for higher launch speeds to achieve deep fuelling of the DEMO plasma. Based on these findings, a tailored R&D programme is shaped that tackles the key questions until 2020.

  4. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas

    International Nuclear Information System (INIS)

    Zhang, Jun; Webley, Paul A.; Xiao, Penny

    2008-01-01

    This study focuses on the effects of process and operating parameters - feed gas temperature, evacuation pressure and feed concentration - on the performance of carbon dioxide vacuum swing adsorption (CO 2 VSA) processes for CO 2 capture from gas, especially as it affects power consumption. To obtain reliable data on the VSA process, experimental work was conducted on a purposely built three bed CO 2 VSA pilot plant using commercial 13X zeolite. Both 6 step and 9 step cycles were used to determine the influences of temperature, evacuation pressure and feed concentration on process performance (recovery, purity, power and corresponding capture cost). A simple economic model for CO 2 capture was developed and employed herein. Through experiments and analysis, it is found that the feed gas temperature, evacuation pressure and feed concentration have significant effects on power consumption and CO 2 capture cost. Our data demonstrate that the CO 2 VSA process has good recovery (>70%), purity (>90%) and low power cost (4-10 kW/TPDc) when operating with 40 C feed gas provided relatively deep vacuum is used. Enhanced performance is obtained when higher feed gas concentration is fed to the plant, as expected. Our data indicates large potential for application of CO 2 VSA to CO 2 capture from flue gas. (author)

  5. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  6. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    International Nuclear Information System (INIS)

    Betts, S.E.

    1993-01-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON's evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA)

  7. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    Energy Technology Data Exchange (ETDEWEB)

    Piallat, Fabien, E-mail: fabien.piallat@gmail.com [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); CEA, LETI, Campus Minatec, F-38054 Grenoble (France); LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France); Gassilloud, Remy [CEA, LETI, Campus Minatec, F-38054 Grenoble (France); Caubet, Pierre [STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles (France); Vallée, Christophe [LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis, this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.

  8. Thermal enhanced vapor extraction systems: Design, application and performance prediction including contaminant behavior

    International Nuclear Information System (INIS)

    Phelan, J.M.; Webb, S.W.

    1994-01-01

    Soil heating technologies have been proposed as a method to accelerate contaminant removal from subsurface soils. These methods include the use of hot air, steam, conductive heaters, in-situ resistive heating and in-situ radiofrequency heating (Buettner et.al., EPA, Dev et.al., Heath et.al.). Criteria for selection of a particular soil heating technology is a complex function of contaminant and soil properties, and efficiency in energy delivery and contaminant removal technologies. The work presented here seeks to expand the understanding of the interactions of subsurface water, contaminant, heat and vacuum extraction through model predictions and field data collection. Field demonstration will involve the combination of two soil heating technologies (resistive and dielectric) with a vacuum vapor extraction system and will occur during the summer of 1994

  9. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de

    2010-07-01

    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  10. An evaluation of absorption spectroscopy to monitor YBa2Cu3O7-x precursors for metal organics chemical vapor deposition processing

    International Nuclear Information System (INIS)

    Matthew Edward Thomas

    1999-01-01

    Absorption spectroscopy was evaluated as a technique to monitor the metal organics chemical vapor deposition (MOCVD) process for forming YBa 2 Cu 3 O 7-x superconducting coated conductors. Specifically, this study analyzed the feasibility of using absorption spectroscopy to monitor the MOCVD supply vapor concentrations of the organic ligand 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD) metal chelates of barium, copper, and yttrium. Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 compounds have successfully been vaporized in the MOCVD processing technique to form high temperature superconducting ''coated conductors,'' a promising technology for wire fabrication. The absorption study of the barium, copper, and yttrium (TMHD) precursors was conducted in the ultraviolet wavelength region from 200nm to 400nm. To simulate the MOCVD precursor flows the Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 complexes were vaporized at vacuum pressures of (0.03--10)Torr. Spectral absorption scans of each precursor were conducted to examine potential measurement wavelengths for determining vapor concentrations of each precursor via Beer's law. The experimental results show that under vacuum conditions the barium, copper, and yttrium (TMHD) precursors begin to vaporize between 90 C and 135 C, which are considerably lower vaporization temperatures than atmospheric thermal gravimetric analyses indicate. Additionally, complete vaporization of the copper and yttrium (TMHD) precursors occurred during rapid heating at temperatures between 145 C and 195 C and after heating at constant temperatures between 90 C and 125 C for approximately one hour, whereas the Ba(TMHD) 2 precursor did not completely vaporize. At constant temperatures, near constant vaporization levels for each precursor were observed for extended periods of time. Detailed spectroscopic scans at stable vaporization conditions were conducted

  11. Discussion on Construction of Vacuum Salt Industrial Technology Innovation Strategic Alliance%浅谈真空制盐产业技术创新战略联盟建设

    Institute of Scientific and Technical Information of China (English)

    张滇军; 蔡洪川

    2013-01-01

    在阐述我国产业技术创新战略联盟和真空制盐产业发展的基础上,本文分析了建立真空制盐产业技术创新战略联盟的必要性,并提出真空制盐产业技术创新战略联盟的建设思路和具体措施,认为建立产业技术创新战略联盟是充分整合真空制盐行业资源、统一行业标准、突破行业技术瓶颈、提高国际竞争力的有效途径。%Based on development of industrial technology innovation strategic alliance and vacuum salt, this paper studied the necessity to establish vacuum salt industrial technology innovation strategic alliance. Construction ideas and specific measures of vacuum salt industrial technology innovation strategic alliance are pointed. The establishment of vacuum salt industrial technology innovation strategic alliance is an effective way to integrate resources, unify standard, break through technology bottleneck and improve international competitiveness.

  12. Film self-assembly properties of vacuum residua from crude oil and correlation to the stability of water/crude oil emulsions[Supercritical fluid extraction and fractional technology (SFEF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo

    2005-07-01

    In this thesis, SFEF technology has been used to obtain a fine separation of vacuum residua. Three kinds of vacuum residua from Iranian Heavy Crude Oil, Iranian Light Crude Oil and Daqing Crude Oil have been separated respectively into three series narrow cut fractions as a function of the average molecular weight. And their molecular parameters have been characterized by Vapour Pressure Osmometry(VPO) system, Ultraviolet(UV) spectroscopy, Infrared(IR) spectroscopy as well as by elemental analysis. The various fractions of vacuum residua have been added to an oil/water model system. The oil phase used was pure heptane, pure toluene, a mixture of heptane and toluene etc. Various properties of the interfacial film have been studied such as the self-assembly properties, interfacial tension and interfacial viscosity, etc. The self-assembly procedure of interfacial film of vacuum residua fractions were focused by means of the Wilhelmy plate method (Paper 1). The self-assembly states of interfacial film of vacuum residua fraction from Iranian Heavy and Daqing crude oil have been revealed by using Langmuir-Blodgett technology respectively (Paper II and Paper III). From measurement of the interfacial shear viscosity, the mechanical strength of the interfacial film formed by the vacuum residua fraction has been described (Paper IV) and the roles of the surfactants added in the interfacial film have been confirmed (Paper V). At the same time, the oil/water interfacial tensions of vacuum residua fractions from the three kinds of crude oil have been studied and compared (Paper VI and Paper VII). Characteristic properties of emulsions stabilized by the vacuum residua, such as Zeta potential (Paper VIII) and particle size distribution (Paper IX), have also been studied. An attempt has been made to explain the variations of emulsion properties in terms of the interfacial self-assembly of vacuum residua fractions. Finally, based up the above research and using chemometric methods

  13. ELETTRA vacuum system

    International Nuclear Information System (INIS)

    Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.

    1993-01-01

    Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source

  14. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  15. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  16. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  17. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  18. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  19. Design foundation of vacuum system for electron beam machine

    International Nuclear Information System (INIS)

    Darsono; Suprapto; Djasiman

    1999-01-01

    Vacuum system is a main part of electron beam Machine because (EBM) the electron can not be produced without this vacuum. Vacuum system consists of vacuum pump, connecting pipe, valve, and vacuum gauge. The design vacuum system of EBM, basis knowledge and technology of vacuum is needed. The paper describes types of vacuum pump, calculation of pipe conductance and pumping time of vacuum system then there are used as consideration of criteria to choose vacuum pump for EBM. From the result of study, it is concluded that for EBM of 500 keV/10 mA which is going to use for wood coating and with consideration of economic and technic factor it is better to use diffusion pump. (author)

  20. Development of a large lithium coolant system for operation under vacuum

    International Nuclear Information System (INIS)

    Kolowith, R.; Schwartz, K.E.; Meadows, G.E.; Berg, J.D.

    1983-11-01

    Argon and vacuum systems for the Experimental Lithium System (ELS) were tested to demonstrate vacuum-break capability, vacuum pumping performance, and vacuum sensor compatibility with a hostile liquid metal vapor/aerosol environment. Mechanical, diffusion and cryogenic vacuum pumps were evaluated. High-vacuum levels in the 10 -3 Pa range were achieved over a 270 0 C flowing lithium system. Ionization, thermal conductivity, capacitance manometer, and compound-type pressure sensors were evaluated to determine the effects of this potentially deleterious environment. Screening elbows were evaluated as pressure sensor protective devices. A dual-purpose vacuum-level/nitrogen partial-pressure sensor was evaluated as a means of detecting air in-leakage. Several types of static mechanical vacuum seals were also evaluated. Measurements of the vapor/aerosol generation were made at several system locations and operating conditions

  1. Vacuum engineering, calculations, formulas, and solved exercises

    CERN Document Server

    Berman, Armand

    1992-01-01

    This book was written with two main objectives in mind-to summarize and organize the vast material of vacuum technology in sets of useful formulas, and to provide a collection of worked out exercises showing how to use these formulas for solving technological problems. It is an ideal reference source for those with little time to devote to a full mathematical treatment of the many problems issued in vacuum practice, but who have a working knowledge of the essentials of vacuum technology, elementary physics, and mathematics. This time saving book employs a problem-solving approach throughout, p

  2. Hanford stakeholder participation in evaluating innovative technologies: VOC product line, Passive soil vapor extraction using borehole flux tunable hybrid plasma

    International Nuclear Information System (INIS)

    Peterson, T.; McCabe, G.; Niesen, K.; Serie, P.

    1995-05-01

    A three-phased stakeholder participation program was conducted to support the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID). The US DOE's Office of Technology Development (OTD) sponsored and directed the VOC-Arid ID. Its purpose was to develop and demonstrate new technologies for remediating VOC contamination in soil and ground water. The integrated demonstration, hosted by the Hanford site in Washington State, is being transitioned into the Department of Energy's (DOE) Plume Focus Area. The Plume Focus Area has the same basic objectives as the ID, but is broader in scope and is a team effort with technology developers and technology users. The objective is to demonstrate a promising technology once, and if results warrant deploy it broadly across the DOE complex and in private sector applications

  3. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    2001-01-01

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites

  4. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  5. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  6. Preparation of Water-Selective Polybutadiene Membranes and Their Use in Drying Alcohols by Pervaporation and Vapor Permeation Technologies

    Science.gov (United States)

    Separating azeotrope-forming solvent-water mixtures by conventional distillation poses technical, economic, and environmental challenges. Membrane technology using water-permselective membranes provides an efficient alternative for water removal from solvents. We present here a n...

  7. Ahşap Kurutmada Çevre Dostu bir Teknoloji : Yüksek Frekans / High-Frequency-Vacuum Wood Drying Technology

    Directory of Open Access Journals (Sweden)

    Cengiz Güler

    2012-12-01

    Full Text Available Katma değerli olmasına karşın kurutulması güç ağaç türlerine ait kalın kerestelerin, klasik kurutma metoduyla çok uzun sürelerde kurutulabilmesi ve istenen kalite düzeylerinin tam olarak elde edilememesi nedeniyle günümüzde Yüksek Frekans-Vakum kombinasyonlu kurutma metodu (YFV kendini göstermiş durumdadır. Geçmişte özellikle yatırım maliyetleri ve teknolojik altyapı zorlukları nedeniyle yaygınlaşamayan bu yöntem tekrar güncel hale gelmiştir. Bu kurutma metodunda prensip; ısı kaynağının, elektrik enerjisi olmasıdır. Dolayısı ile katı ve sıvı yakıta göre çevre dostu olduğu kabul edilebilir. Bu metot ile ağaç malzemeye gönderilen elektromanyetik dalgaların meydana getirdiği ısıdan yararlanmak suretiyle, kalın ve güç kuruyan, başlangıç nemi yüksek olan ağaç türlerinin %10 un altındaki sonuç nemlerine kadar çok kısa sürelerde kurutulması amaçlanmaktadır. Bu çalışmada öncelikle kurutma teknoloji hakkında genel bilgi verilmiştir. Daha sonra ise, günümüze kadar yapılan orijinal çalışmalar özetlenerek klasik yöntemle kurutulmasında önemli zorluklar olan, kurutma süresi çok uzun olan veya hiç kurutulamayan Meşe, Ceviz, Kayın, İroko, Kestane gibi ağaç türlerinin kalın kerestelerinin kurutulması denemelerinden elde edilen sonuçlar ortaya konulmuştur. Son bölümde ise elde edilen bu sonuçlar özellikle metodun donanım ve işletme giderleri, ortaya çıkan kurutma süreleri ve kalite düzeyleri, çevreye uyumlu teknoloji ekseninde ele alınmıştır. Ayrıca, bu metodun kereste kurutma dışında diğer tarımsal ürün ve atıkların kurutulmasında kullanılabilir olması nedeniyle çevreye uyumlu üretim ve geri dönüşüme sağladığı katkı da bu kapsamda irdelenmiştir. High-Frequency-Vacuum Wood Drying Technology High density wood species dried very long period’s and very low quality levels with method in conventional drying. So High

  8. LHC vacuum system

    CERN Document Server

    Gröbner, Oswald

    1999-01-01

    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  9. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  10. Progress in vacuum metal extraction, refining and consolidation

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mukherjee, T.K.; Sharma, B.P.

    1973-01-01

    The unique achievements in the process metallurgy of rare metals in the past quarter century should largely be attributed to advances in vacuum technology. New standards for high purity, increasing demand for pure metals and alloys for established applications, and steady improvement in sophistication and capacity of vacuum furnaces have provided the stimulus for developing and expanding vacuum metal extraction processes, and also exploring totally new processes. The paper discusses the thermochemistry of vacuum metallurgy, carbothermic and metallothermic reduction reactions, consolidation and refining by vacuum arc melting, electron beam melting and high temperature high vacuum sintering, and ultrapurification, with special reference to the reactive and refractory metals of Group IV to VI. (author)

  11. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  12. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.D., E-mail: Duy.Nguyen@imec.b [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Rosseel, E. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Takeuchi, S. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Physics and Astronomy, KU Leuven, B-3001 Leuven (Belgium); Everaert, J.-L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Yang, L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry and INPAC Institute, KU Leuven, B-3001 Leuven (Belgium); Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Zaima, S. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, 464-8603 (Japan); Sakai, A. [Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Loo, R. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, J.C. [TSMC, R and D, 8, Li-Hsin 6th Rd., Hsinchu Science-Based Park, Hsinchu, Taiwan (China); TSMC assignee at IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysika - IKS, KU Leuven, B-3001 Leuven (Belgium); Caymax, M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 {sup o}C, we measured an active dopant concentration of about 2.1 x 10{sup 20} cm{sup -} {sup 3} and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10{sup 13} cm{sup -} {sup 2}) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  13. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    International Nuclear Information System (INIS)

    Nguyen, N.D.; Rosseel, E.; Takeuchi, S.; Everaert, J.-L.; Yang, L.; Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H.; Zaima, S.; Sakai, A.; Loo, R.; Lin, J.C.; Vandervorst, W.; Caymax, M.

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 o C, we measured an active dopant concentration of about 2.1 x 10 20 cm - 3 and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10 13 cm - 2 ) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  14. Evaluating the Impact of Ambient Benzene Vapor Concentrations on Product Water of Condensation Water from Air Technology

    Science.gov (United States)

    2016-03-07

    by a sediment filter; or a combination of 8 water treatment technologies. Water treatment type is chosen by the manufacture and is diverse...the water treatment module was comprised of a sediment , charcoal and ultra-fine membrane and Halo Pure cartridge. Other components such as the... water was calculated. This study used the EPA site assessment calculator for the Office of Solid Waste and Emergency Response (OSWER) Method to

  15. Industrial metalorganic chemical vapor deposition technology for the growth of YBa2Cu3O7-∂

    International Nuclear Information System (INIS)

    Schulte, B.; Richards, B.C.; Cook, S.L.

    1997-01-01

    MOCVD is the established technology for the mass production of compound semiconductors for e.g. opto-electronic devices. To transfer the MOCVD technology for HTS films to the standard MOCVD technology used in semiconductor production two major challenges have to be solved: 1. the Ba-precursor instability and 2. the demonstration of uniform deposition of HTS films onto large area substrates. This paper presents an industrial MOCVD process solving these challenges using a new stable fluorinated Ba-precursor and a gas foil rotation trademark susceptor. On a 2 inch diameter substrate area state-of-the-art YBCO thin films were fabricated having a thickness uniformity of 1% and compositional uniformity of 2% and 5% for Y/Ba and Cu/Ba, respectively. The films show a surface morphology with low defect density ( 2 ) and excellent superconducting properties (T c (50%) > 90 K, j c (T=77 K, B=0T) > 5 x 10 6 A cm -2 ). The residual contamination by fluorine was determined by SIMS to be less than 250 ppm. This gives the strong evidence that this industrial process can be transferred to the multiwafer planetary reactors trademark for mass production. (orig.)

  16. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  17. DTS technology: evaluation in steam injection pilots in PETROBRAS; Tecnologias DTS: avaliacao em pilotos de injecao de vapor na PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Triques, Adriana Lucia Cerri; Rodrigues, Renato Cunha; Souza, Carlos Francisco Sales de; Izetti, Ronaldo Goncalves [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    In oil and gas industry, downhole pressure and temperature distributed sensors can provide strategic information for production optimization throughout the field. Upon the successful implementation of a pilot for optical fiber distributed temperature monitoring of observer wells in a steam injection field, two new pilots have been implemented to also monitor injectors and producers in both cyclic and continuous injection fields strongly influenced by H2S. The pilots demonstrated that this technology is suitable to monitor producers in onshore fields under the conditions above without risks to the production. The sensors did not prove to be suitable for long term monitoring of injectors under continuous steam injection if fiber is installed inside the injection tubing. For cyclic injection applications, the development of steam injection packers is needed to guarantee casing integrity during the injection cycle. The application of the technology in offshore wells is nowadays restricted to dry completion situation. The potential applicability in submarine wells is tightly linked to the development of downhole and wellhead wet mate optical fiber connectors. (author)

  18. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  19. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  20. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  1. Vacuum education courses at the General Electric Company's Neutron Devices Department, St. Petersburg, Florida

    International Nuclear Information System (INIS)

    Provo, J.L.; Brown, W.C.

    1978-01-01

    Vacuum Technology has, from the beginning, played a key role in the production of the Department's products at the General Electric Company's Neutron Devices Department (GEND). Early recognition was given to the need for vacuum education and training for producing and maintaining vacuums to meet departmental objectives. The vacuum courses taught at GEND are described. These include basic Vacuum Technology, Advanced Vacuum Technology, and specialized vacuum related courses. Course offering rationale, outlines of subject matter covered and criteria for measuring effectiveness will be presented for each course. Such vacuum technology related courses have resulted in improved GEND product quality and in reducing losses and production cost. At the same time, these courses have given participating employees career motivation for fulfilling more challenging vacuum technology job related positions and have enabled them to achieve upward mobility in the Department's work force

  2. Proceedings of the workshop on vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.

    1996-08-01

    Topics included in the papers presented at this conference are: vacuum arc ion source development at GSI (Gesellschaft fuer Schwerionenforschung, Germany), ITEP (Institute for Theoretical and Experimental Physics, Russia), Lawrence Berkeley Laboratory, and ANSTO (Australian Nuclear Science and Technology Organization); triggers for vacuum arc sources; plasma distribution of cathodic arc deposition system; high ion charge states in vacuum arc ion sources; and gas and metal ion sources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  3. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  4. Composite plastic coatings and face rolled materials technology, energy- and environment-saving, based on irradiation of liquid monomers by broad and high-current electron beams in vacuum

    Science.gov (United States)

    Vaisburd, David

    1994-05-01

    The technology is based on the well-known process of hardening some organic liquid monomers and oligomers (resins and lacquers) under the action of ionizing radiation, i.e. electron, ion, ultra-violet, laser, and X-ray beams. The main mechanism of hardening is 3D polymerization of initial monomers induced by irradiation. First of all 1D polymer chains are created. And the next stage is cross-linking of them. Numerical attempts to apply such a process for plastic materials production met some earnest difficulties. Our decision to perform the whole processing in vacuum changed radically the main properties of radiation induced hardening technology. The inhibition of polymerization by reactive oxygen became unessential. The output window foil of accelerator became unnecessary. Application of super broad beams such as 1 sq.m became possible. The entire efficiency of grid electricity was increased to 60% and it was not the limit. One of the main advantages is that the processing carried out in vacuum may satisfy the highest ecological standards. The technology developed is contamination free and environment-saving.

  5. Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry

    Science.gov (United States)

    Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.

    2014-01-01

    Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…

  6. Work Plan for the Evaluation of Soil Vapor Extraction Using Internal Combustion Engine Technology at Site SS-42 Luke Air Force Base, Arizona

    National Research Council Canada - National Science Library

    1996-01-01

    ...). Luke AFB is one of several Air Force installations identified as prospective test sites to demonstrate the ICE system with advanced emission controls as part of a low-cost soil vapor extraction (SVE...

  7. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  8. Microstructure of vapor deposited coatings on curved substrates

    International Nuclear Information System (INIS)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-01-01

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness

  9. Removal of salt from rare earth precipitates by vacuum distillation

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Eun, Hee-Chul; Cho, Yong-Zun; Park, Hwan-Seo; Kim, In-Tae

    2008-01-01

    This study investigated the distillation rates of LiCl-KCl eutectic salt from the rare earth (RE) precipitates originating from the oxygen-sparging RE precipitation process. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. The second part study tested the removal efficiency of eutectic salt from RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature, the degree of vacuum and the time. Salt distillation operation with a moderated distillation rate of 10 -4 - 10 -5 mole sec -1 cm -2 is possible at temperature less than 1300 K and vacuums of 5-50 Torr, by minimizing the potentials of the RE particle entrainment. An increase in the vaporizing surface area is relatively effective for removing the residual salt in pores of bulk of the precipitated RE particles, when compared to that for the vaporizing time. Over 99.9% of the salt removal from the salt-RE precipitate mixture could be achieved by increasing the vaporizing surface area under moderate vacuum conditions of 50 Torr at 1200 K. (author)

  10. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  11. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  12. Baking results of KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported.

  13. Baking results of KSTAR vacuum vessel

    International Nuclear Information System (INIS)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M.

    2009-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported

  14. Pulsed vapor source for use in ion sources for heavy-ion accelerators

    International Nuclear Information System (INIS)

    Shiloh, J.; Chupp, W.; Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.

    1980-01-01

    A pulsed cesium vapor source for use in ion sources for high-current heavy-ion accelerators is described. The source employs a vacuum spark in Cs and its properties are measured with a hot-filament Cs detector

  15. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  16. Analytical and numerical tools for vacuum systems

    CERN Document Server

    Kersevan, R

    2007-01-01

    Modern particle accelerators have reached a level of sophistication which require a thorough analysis of all their sub-systems. Among the latter, the vacuum system is often a major contributor to the operating performance of a particle accelerator. The vacuum engineer has nowadays a large choice of computational schemes and tools for the correct analysis, design, and engineering of the vacuum system. This paper is a review of the different type of algorithms and methodologies which have been developed and employed in the field since the birth of vacuum technology. The different level of detail between simple back-of-the-envelope calculations and more complex numerical analysis is discussed by means of comparisons. The domain of applicability of each method is discussed, together with its pros and cons.

  17. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  18. Ultra high vacuum systems for accelerators

    International Nuclear Information System (INIS)

    Loefgren, P.

    2001-01-01

    Full text: In order to perform controlled, stable, and reproducible experiments, several research areas today require very low pressures. Maybe the most important example is the research that is performed in storage rings and accelerators where the lifetime and stability of particle beams depends critically on the vacuum conditions. Although the vacuum requirements ultimately depend on the kind of experiments that is performed, the studies of more and more rare and exotic species in storage rings and accelerators today pushes the demands on the vacuum conditions towards lower and lower pressures. The final pressure obtained in the vacuum system can often be the key factor for the outcome of an experiment. Pioneering work in vacuum technology has therefore often been performed at storage rings and accelerator facilities around the world. In order to reach pressures in the low UHV regime and lower (below 10 -11 mbar), several aspects have to be considered which implies choosing the proper materials, pumps and vacuum gauges. In the absence of gases inleaking from the outside, the rate of gas entering a vacuum system is determined by the release of molecules adsorbed on the surfaces and the outgassing from the bulk of the vacuum chamber walls. This means that the choice of material and, equally important, the pre treatment of the material, must be such that these rates are minimised. Today the most widely used material for vacuum applications are stainless steel. Besides its many mechanical advantages, it is resistant to corrosion and oxidation. If treated correctly the major gas source in a stainless steel chamber is hydrogen outgassing from the chamber walls. The hydrogen outgassing can be decreased by vacuum firing at 950 deg. C under vacuum. In addition to choosing the right materials the choice of vacuum pumps is important for the final pressure. Since no vacuum pump is capable of taking care of all kinds of gases found in the rest gas at pressures below 10 -11

  19. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  20. Molecular dynamics study of the vaporization of an ionic drop.

    Science.gov (United States)

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  1. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  2. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  3. Vacuum considerations: summary

    International Nuclear Information System (INIS)

    Blechschmidt, D.; Halama, H.J.

    1978-01-01

    A summary is given of the efforts of a vacuum systems study group of the workshop on a Heavy Ion Demonstration Experiment (HIDE) for heavy ion fusion. An inadequate knowledge of cross-sections prevents a more concrete vacuum system design. Experiments leading to trustworthy numbers for charge exchange, stripping and capture cross-sections are badly needed and should start as soon as possible. In linacs, beam loss will be almost directly proportional to the pressure inside the tanks. The tanks should, therefore, be built in such a way that they can be baked-out in situ to improve their vacuum, especially if the cross-sections turn out to be higher than anticipated. Using standard UHV techniques and existing pumps, an even lower pressure can be achieved. The vacuum system design for circular machines will be very difficult, and in some cases, beyond the present state-of-the-art

  4. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  5. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  6. TFTR diagnostic vacuum controller

    International Nuclear Information System (INIS)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller

  7. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  8. Upgraded vacuum arc ion source for metal ion implantation

    International Nuclear Information System (INIS)

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-01-01

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  9. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    International Nuclear Information System (INIS)

    Mohr, D.H.; Merz, P.H.

    1995-01-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature

  10. Thermodynamic Behavior of Lead-Antimony Alloy in Vacuum Distillation

    Institute of Scientific and Technical Information of China (English)

    1989-01-01

    The distribution of metals in Pb-Sb ailoy during vacuum distillation was calculated.The composition curve of vapor-liquid phases determined by this work is different from those of. other researchers.The curve intersects the diagonal at C.The compositions of vapor and liquid at C are identical.The antimony content of vapor on the left of C is less than that of liquid,and the vapor on the right-side of C contains more antimony.These characteristics can be applied to the elimination of antimony from crude lead or the elimination of lead from crude antimony.The position of C moves rightwards with temperature increment.The discrepency among the compositions of C suggested by diffrent authors was explained.

  11. Multiple (Two) Met Bel 601 In Series Ultimate Vacuum Testing

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now EumecaSARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was a viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.

  12. Efficient Phosphorescent OLEDS Based on Vacuum Deposition ...

    African Journals Online (AJOL)

    Thereby, we demonstrate high-efficiency organic light-emitting diodes by incorporating a double emission layer {i.e. both doped with the green phosphorescent dye tris(phenylpyridine)iridium [Ir(ppy)3]} into p-i-n-type device structure based on vacuum deposition technology. The intrinsic and doped transports layers are ...

  13. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  14. Buried chip skin grafting in neuropathic diabetic foot ulcers following vacuum-assisted wound bed preparation: enhancing a classic surgical tool with novel technologies.

    Science.gov (United States)

    Kopp, Jürgen; Kneser, Ulrich; Bach, Alexander D; Horch, Raymund E

    2004-09-01

    In patients with diabetes mellitus, complications such as polyneuropathy and peripheral angiopathy inevitably lead to diabetic foot complications including foot ulcers, gangrene, and osteoarthropathy. These conditions necessitate minor or major amputation as part of treatment. In patients with Charcot's arthropathy and predominant neuropathy, recurrent foot ulcers are common in areas of high pressure. Such high pressure is caused by the degrading of the architecture of the foot and inadequate footwear. These patients are a clinical challenge. A select group of such patients may benefit from free surgical tissue transfer, though free or local flap surgery is often difficult or even impossible owing to an impaired arterial circulation. In such wounds, surgical debridement followed by skin grafts often fail due to bacterial burden in the wounds. To circumvent these problems, the authors developed a therapeutic approach using buried chip skin grafting to close granulation wound beds in diabetic feet. Locally applied vacuum therapy (VAC) for wound bed preparation of chronic, nonresponsive foot ulcers and subsequent grafting using the burying technique with a minute fraction of skin was used. Firm closure was achieved. The closed wound was resistant to mechanical irritation.

  15. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  16. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  17. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  18. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  19. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  20. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2017-09-15

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  1. Vacuum considerations summary

    International Nuclear Information System (INIS)

    1977-01-01

    The vacuum system for Heavy Ion Fusion machines can be divided according to pressure into 4 parts: (a) Ion Sources; (b) Linear Accelerators; (c) Circular Accelerators, Accumulators and Storage Rings; and (d) Reactors. Since ion sources will need rather conventional pumping arrangements and reactors will operate with greater pressures, depending on their mode of operation, only items b and c will be treated in this report. In particular, the vacuum system design will be suggested for the machines proposed by various scenarios arrived at during the workshop. High mass numbers will be assumed

  2. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  3. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    McMillin, Summer D.; Broerman, Craig D.; Swickrath, Michael; Anderson, Molly

    2011-01-01

    A principal concern for extravehicular activity (EVA) spacesuits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O control become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing regenerable beds has been developed by Hamilton Sundstrand. The application of solidamine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with nonregenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA implements radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrated the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or sub-ambient atmosphere.

  4. Vacuum arc ion charge state distributions

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.

    1990-06-01

    We have measured vacuum arc ion charge state spectra for a wide range of metallic cathode materials. The charge state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. We have obtained data for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U. The arc was operated in a pulsed mode with pulse length 0.25 msec; arc current was 100 A throughout. This array of elements extends and completes previous work by us. In this paper the measured distributions are cataloged and compared with our earlier results and with those of other workers. We also make some observations about the performance of the various elements as suitable vacuum arc cathode materials

  5. Vacuum arc ion charge-state distributions

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.

    1991-01-01

    The authors have measured vacuum arc ion charge-state spectra for a wide range of metallic cathode materials. The charge-state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. They have obtained data for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th, and U. The arc was operated in a pulsed mode with pulse length 0.25 ms; arc current was 100 A throughout. This array of elements extends and completes previous work by the authors. In this paper the measured distributions are cataloged and compared with their earlier results and those of other workers. They also make some observations about the performance of the various elements as suitable vacuum arc cathode materials

  6. Role of vacuum in food preservation

    International Nuclear Information System (INIS)

    Bongirwar, D.R.

    1997-01-01

    Considerable progress has been made in the processing of foods using operations viz. drying, evaporation, distillation, concentration, centrifugation, filtration, irradiation, freeze drying, osmotic drying etc. to get ready to eat food, convenience food, pre cooked dried food. Vacuum technology in direct or indirect way has played a vital role in carrying out these food processing operations. The role of vacuum in getting these processes developed and its use in the development of these high quality products with respect to colour, flavour, texture and other attributes has been highlighted along with process details. (author)

  7. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  8. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  9. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  10. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  11. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  12. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.

  13. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  14. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  15. On Lovelock vacuum solution

    OpenAIRE

    Dadhich, Naresh

    2010-01-01

    We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.

  16. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  17. EVALUATION OF A VACUUM DISTILLER FOR PERFORMING METHOD 8261 ANALYSES

    Science.gov (United States)

    Vacuum distillation uses a specialized apparatus. This apparatus has been developed and patented by the EPA. Through the Federal Technology Transfer Act this invention has been made available for commercialization. Available vendors for this instrumentation are being evaluated. ...

  18. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  19. CHEMICAL-THERMAL PROCESSING OF TRACTOR PARTS IN VACUUM AT APPLICATION OF TECHNOLOGY OF HARDENING IN THE MEDIUM OF INERT GASES

    Directory of Open Access Journals (Sweden)

    статья Редакционная

    2011-01-01

    Full Text Available Advantages of technology of hardening by inert gases are considered. It is shown that use of unit ModulTherm7/1 at RUP «MTZ» allows to improve quality of chemical thermal processing of details and to provide decrease of expenses for manufacture.

  20. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  1. Design of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    The ITER vacuum vessel is a major safety barrier and must support electromagnetic loads during plasma disruptions and vertical displacement events (VDE) and withstand plausible accidents without losing confinement.The vacuum vessel has a double wall structure to provide structural and electrical continuity in the toroidal direction. The inner and outer shells and poloidal stiffening ribs between them are joined by welding, which gives the vessel the required mechanical strength. The space between the shells will be filled with steel balls and plate inserts to provide additional nuclear shielding. Water flowing in this space is required to remove nuclear heat deposition, which is 0.2-2.5% of the total fusion power. The minor and major radii of the tokamak are 3.9 m and 13 m respectively, and the overall height is 15 m. The total thickness of the vessel wall structure is 0.4-0.7 m.The inboard and outboard blanket segments are supported from the vacuum vessel. The support structure is required to withstand a large total vertical force of 200-300 MN due to VDE and to allow for differential thermal expansion.The first candidate for the vacuum vessel material is Inconel 625, due to its higher electric resistivity and higher yield strength, even at high temperatures. Type 316 stainless steel is also considered a vacuum vessel material candidate, owing to its large database and because it is supported by more conventional fabrication technology. (orig.)

  2. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  3. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  4. Vacuum window glazings for energy-efficient buildings

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  5. The symmetries of the vacuum

    International Nuclear Information System (INIS)

    Fleming, H.

    1985-01-01

    The vacuum equation of state required by cosmological inflation is taken seriously as a general property of the cosmological vacuum. This correctly restricts the class of theories which admit inflation. A model of such a vacuum is presented that leads naturally to the cosmological principle. (Author) [pt

  6. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    Energy Technology Data Exchange (ETDEWEB)

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  7. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  8. Nonperturbative QED vacuum birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)

    2017-05-19

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  9. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  10. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  11. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  12. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  13. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  14. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  15. Vacuum inhomogeneous cosmological models

    International Nuclear Information System (INIS)

    Hanquin, J.-L.

    1984-01-01

    The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)

  16. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    Science.gov (United States)

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.; Ogletree, David F.; Salmeron, Miquel

    1998-01-01

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.

  17. Vacuum system for LHC

    International Nuclear Information System (INIS)

    Groebner, O.

    1995-01-01

    The Large Hadron Collider (LHC) which is planned at CERN will be housed in the tunnel of the Large Electron Positron collider (LEP) and will store two counter-rotating proton beams with energies of up to 7 TeV in a 27 km accelerator/storage ring with superconducting magnets. The vacuum system for the LHC will be at cryogenic temperatures (between 1.9 and 20 K) and will be exposed to synchrotron radiation emitted by the protons. A stringent limitation on the vacuum is given by the energy deposition in the superconducting coils of the magnets due to nuclear scattering of the protons on residual gas molecules because this may provoke a quench. This effect imposes an upper limit to a local region of increased gas density (e.g. a leak), while considerations of beam lifetime (100 h) will determine more stringent requirements on the average gas density. The proton beam creates ions from the residual gas which may strike the vacuum chamber with sufficient energy to lead to a pressure 'run-away' when the net ion induced desorption yield exceeds a stable limit. These dynamic pressure effects will be limited to an acceptable level by installing a perforated 'beam screen' which shields the cryopumped gas molecules at 1.9 K from synchrotron radiation and which also absorbs the synchrotron radiation power at a higher and, therefore, thermodynamically more efficient temperature. (author)

  18. Anomalous vacuum expectation values

    International Nuclear Information System (INIS)

    Suzuki, H.

    1986-01-01

    The anomalous vacuum expectation value is defined as the expectation value of a quantity that vanishes by means of the field equations. Although this value is expected to vanish in quantum systems, regularization in general produces a finite value of this quantity. Calculation of this anomalous vacuum expectation value can be carried out in the general framework of field theory. The result is derived by subtraction of divergences and by zeta-function regularization. Various anomalies are included in these anomalous vacuum expectation values. This method is useful for deriving not only the conformal, chiral, and gravitational anomalies but also the supercurrent anomaly. The supercurrent anomaly is obtained in the case of N = 1 supersymmetric Yang-Mills theory in four, six, and ten dimensions. The original form of the energy-momentum tensor and the supercurrent have anomalies in their conservation laws. But the modification of these quantities to be equivalent to the original one on-shell causes no anomaly in their conservation laws and gives rise to anomalous traces

  19. 5 February 2010: Romanian Former Minister of Justice V. Stoica (4th from left) visiting SM18 with, from left to right, University of Bucharest Faculty of Physics A. Costescu, DESY Hamburg C. Diaconu; Mrs Valeriu Stoica; Université de Montpellier II S. Ciulli; Technology Department Vacuum, Surfaces and Coatings group S. Ilie; Technology Department Head F. Bordry and Adviser for Russian Federation, Central and Eastern Europe T. Kurtyka.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    5 February 2010: Romanian Former Minister of Justice V. Stoica (4th from left) visiting SM18 with, from left to right, University of Bucharest Faculty of Physics A. Costescu, DESY Hamburg C. Diaconu; Mrs Valeriu Stoica; Université de Montpellier II S. Ciulli; Technology Department Vacuum, Surfaces and Coatings group S. Ilie; Technology Department Head F. Bordry and Adviser for Russian Federation, Central and Eastern Europe T. Kurtyka.

  20. Cathodic Vacuum Arc Plasma of Thallium

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150microsec, respectively. Both ion charge states and ion velocities decay further towards steady state values, which are not reached within the 300microsec pulses used here. It is argued that the exceptionally high vapor pressure and charge exchange reactions are associated with the establishment of steady state ion values

  1. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  2. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  3. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  4. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    Science.gov (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  5. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  6. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  7. Vacuum ultraviolet photochemistry of polymers

    International Nuclear Information System (INIS)

    Skurat, Vladimir

    2003-01-01

    The interaction of vacuum UV radiation (wavelength range from 1 to 200 nm) with polymers is interesting for fundamental and applied sciences. This interest is stimulated by various reasons: - Wide applications of polymeric materials in semiconductor technology, where they are used as photoresist materials in combination with VUV light sources (lasers, excimer lamps, synchrotron radiation and others). - Polymers are widely used as spacecraft materials in the last 20 years. On near-Earth orbits, the polymeric materials of spacecraft surfaces are destroyed by solar radiation. - VUV radiation is one of the components of gas discharge plasmas, which are used for treatment of polymer, with the aim of modifying their surface properties. The main features of interaction of VUV radiation with polymers are discussed. The spectra of intrinsic absorption of saturated polymers (polyethylene, polypropylene, polytetrafluoroethylene and others) are situated mainly in the VUV region. The photochemistry of polymers in the VUV region is very different from their photochemistry at wavelengths longer than 200 nm, where the absorption spectra belong to impurities and polymer defects. The polymer photochemistry in the VUV region is wavelength-dependent. At wavelengths longer than about 140 nm, the main role is played by transformations of primary-formed singlet excited molecules. At shorter wavelengths the role of photoionization increases progressively and the main features of VUV photolysis become similar to the picture of radiolysis, with significant contributions of charge pairs and triplet excited molecules. Very important features of VUV light absorption in polymers are high absorption coefficients. Because of this, the surface layers absorb large doses of energy. This leads to very profound transformation of material on the polymer surface. In particular for polymers which are considered destroyed by radiation (for example, perfluoropolymers), this leads to VUV-induced erosion

  8. Progress of ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Bayon, A.; Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B.; Kim, B.C.; Kuzmin, E.; Le Barbier, R.; Martinez, J.-M.; Pathak, H.; Preble, J.; Sa, J.W.; Terasawa, A.; Utin, Yu.

    2013-01-01

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure

  9. CERN's vacuums honoured to the full

    CERN Multimedia

    2002-01-01

    CERN's Cristoforo Benvenuti is awarded one of the most prestigious prizes in the world of vacuum techniques     Because we constantly run into such individuals, we tend to forget that CERN has specialists with world reputations. It takes the international prizes they win to remind us of the fact. One such prize, the American Vacuum Society (AVS)'s Gaede-Langmuir Award for 2002, has gone to Cristoforo Benvenuti, Leader of the Surfaces and Materials Technologies Group in EST Division. The award, conferred once every two years, is one of the leading prizes in the vacuum field. By coincidence, its very first winner was Pierre Auger, one of CERN's founding fathers, back in 1978. Cristoforo Benvenuti, a senior physicist who joined CERN in 1966, has been singled out for his work on getter technologies. These technologies made their name at CERN with the coming of LEP, where they were used for pumping the machine. Getter is a material with the property of capturing gas molecules and thereby actin...

  10. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  11. R and D ERL: Vacuum

    International Nuclear Information System (INIS)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the ∼10 -9 torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2 o K is reduced to low 10 -11 torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally

  12. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  13. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  14. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-12-01

    The Mirror Fusion Test Facility (MFTF) vacuum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 - 6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorption pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  15. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  16. Vacuum-assisted drainage in cardiopulmonary bypass: advantages and disadvantages.

    Science.gov (United States)

    Carvalho Filho, Elio Barreto de; Marson, Fernando Augusto de Lima; Costa, Loredana Nilkenes Gomes da; Antunes, Nilson

    2014-01-01

    Systematic review of vacuum assisted drainage in cardiopulmonary bypass, demonstrating its advantages and disadvantages, by case reports and evidence about its effects on microcirculation. We conducted a systematic search on the period 1997-2012, in the databases PubMed, Medline, Lilacs and SciELO. Of the 70 selected articles, 26 were included in the review. Although the vacuum assisted drainage has significant potential for complications and requires appropriate technology and professionalism, prevailed in literature reviewed the concept that vacuum assisted drainage contributed in reducing the rate of transfusions, hemodilutions, better operative field, no significant increase in hemolysis, reduced complications surgical, use of lower prime and of smaller diameter cannulas.

  17. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  18. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The present paper reports the first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  19. Vacuum guidelines for ISA insertions

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1976-01-01

    Vacuum requirements place design restrictions on the ISA insertions. The vacuum tube diameter, given a distance L between pumps, is determined by the desorption of molecules from the wall under the impact of ions created by the beam, whereas the thickness of the tube must be sufficient to prevent collapse. In addition, the entire vacuum chamber must be able to be baked out at approximately 200 0 C

  20. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  1. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  2. Performance Characterization and Simulation of Amine-Based Vacuum Swing Sorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    Swickrath, Michael J.; Watts, Carly; Anderson, Molly; McMillin, Summer; Broerman, Craig; Colunga, Aaron; Vogel, Matthew

    2012-01-01

    Controlling carbon dioxide (CO2) and water (H2O) vapor concentrations in a space suit is critical to ensuring an astronauts safety, comfort, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxide (MetOx) canisters. Lithium hydroxide is a consumable material that requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications. The vacuum swing units control atmospheric concentrations of both CO2 and H2O through fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed experimentally and documented in previous reports. To support developmental e orts, a first principles model has also been established for the vacuum swing sorption technology. For the first time in several decades, a major re-design of Portable Life Support System (PLSS) for the extra-vehicular mobility unit (EMU) is underway. NASA at Johnson Space Center built and tested an integrated PLSS test bed of all subsystems under a variety of simulated EVA conditions of which the RCA prototype played a significant role. The efforts documented herein summarize RCA test performance and simulation results for single and variable metabolic rate experiments in an integrated context. In addition, a variety of off-nominal tests were performed to assess the capability of the RCA to function under challenging circumstances. Tests included high water production experiments, degraded vacuum regeneration, and deliberate valve/power failure and recovery.

  3. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  4. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  5. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  6. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  7. Shiva and Argus target diagnostics vacuum systems

    International Nuclear Information System (INIS)

    Glaros, S.S.; Mayo, S.E.; Campbell, D.; Holeman, D.

    1978-09-01

    The normal operation of LLL's Argus and Shiva laser irradiation facilities demand a main vacuum system for the target chamber and a separate local vacuum system for each of the larger appendage dianostics. This paper will describe the Argus and Shiva main vacuum systems, their respective auxiliary vacuum systems and the individual diagnostics with their respective special vacuum requirements and subsequent vacuum systems. Our latest approach to automatic computer-controlled vacuum systems will be presented

  8. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  9. Historical evolution toward achieving ultrahigh vacuum in JEOL electron microscopes

    CERN Document Server

    Yoshimura, Nagamitsu

    2014-01-01

    This book describes the developmental history of the vacuum system of the transmission electron microscope (TEM) at the Japan Electron Optics Laboratory (JEOL) from its inception to its use in today’s high-technology microscopes. The author and his colleagues were engaged in developing vacuum technology for electron microscopes (JEM series) at JEOL for many years. This volume presents a summary and explanation of their work and the technology that makes possible a clean ultrahigh vacuum. The typical users of the TEM are top-level researchers working at the frontiers of new materials or with new biological specimens. They often use the TEM under extremely severe conditions, with problems sometimes occurring in the vacuum system of the microscopes. JEOL engineers then must work as quickly as possible to improve the vacuum evacuation system so as to prevent the recurrence of such problems. Among the wealth of explanatory material in this book are examples of users’ reports of problems in the vacuum system of...

  10. Design and construction of Alborz tokamak vacuum vessel system

    International Nuclear Information System (INIS)

    Mardani, M.; Amrollahi, R.; Koohestani, S.

    2012-01-01

    Highlights: ► The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. ► As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. ► A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. ► Structural analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. - Abstract: The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. At the heart of the tokamak is the vacuum vessel and limiter which collectively are referred to as the vacuum vessel system. As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. The VV systems need upper and lower vertical ports, horizontal ports and oblique ports for diagnostics, vacuum pumping, gas puffing, and maintenance accesses. A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. Basic structure analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. Stresses at general part of the VV body are lower than the structure material allowable stress (117 MPa) and this analysis show that the maximum stresses occur near the gravity support, and is about 98 MPa.

  11. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.

    1980-01-01

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  12. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  13. Vacuum Large Current Parallel Transfer Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Enyuan Dong

    2014-01-01

    Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.

  14. Tailored vacuum chambers for ac magnets

    International Nuclear Information System (INIS)

    Harvey, A.

    1985-01-01

    The proposed LAMPF-II accelerator has a 60-Hz booster synchrotron and a 3-Hz main ring. To provide a vacuum enclosure inside the magnets with low eddy-current losses and minimal field distortion, yet capable of carrying rf image currents and providing beam stabilization, we propose an innovative combination pipe. Structurally, the enclosure is high-purity alumina ceramic, which is strong, radiation resistant, and has good vacuum properties. Applied to the chamber are thin, spaced, silver conductors using adapted thick-film technology. The conductor design can be tailored to the stabilization requirements, for example, longitudinal conductors for image currents, circumferential for transverse stabilization. The inside of the chamber has a thin, resistive coating to avoid charge build-up. The overall 60-Hz power loss is less than 100 W/m

  15. Vacuum strings in FRW models

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C; Oattes, L M; Starkman, G D

    1988-01-01

    The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.

  16. The realm of the vacuum

    International Nuclear Information System (INIS)

    Buchholz, D.; Wanzenberg, R.

    1992-01-01

    The spacelike asymptotic structure of physical states in local quantum theory is analysed. It is shown that this structure can be described in terms of a vacuum state if the theory satisfies a condition of timelike asymptotic abelianess. Theories which violate this condition can have an involved asymptotic vacuum structure as is illustrated by a simple example. (orig.)

  17. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  18. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N_...

  19. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  20. Classification Characteristics of Carbon Nanotube Polymer Composite Chemical Vapor Detectors

    National Research Council Canada - National Science Library

    Hinshaw, Huynh A

    2006-01-01

    .... This is accomplished by the detection and identification of chemical agents. The Air Force has several instruments to detect chemical vapors, but is always looking for lighter, faster, and more accurate technology for a better capability...

  1. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  2. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  3. Cosmology with decaying vacuum energy

    International Nuclear Information System (INIS)

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs

  4. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  5. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  6. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  7. Researches on Position Detection for Vacuum Switch Electrode

    Science.gov (United States)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  8. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  9. Vacuum deposition onto webs, films and foils

    CERN Document Server

    Bishop, Charles A

    2011-01-01

    Roll-to-roll vacuum deposition is the technology that applies an even coating to a flexible material that can be held on a roll and provides a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces, such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging (e.g. snack packets). Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology: solar energy products are moving from rigid panels onto flexible substrates, which are cheaper and more versatile; in a similar way, electronic circuit 'boards' can be produced on a flexible polymer, creating a new range of 'flexible electronics' products; and, flexible displays are another area of new technology in vacuum coating, with flexible display panels and light sources emerging. Charles Bishop has written this book to meet the need he identified, as a t...

  10. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  11. Use of vacuum-steam-vacuum and ionizing radiation to eliminate Listeria innocua from ham.

    Science.gov (United States)

    Sommers, Christopher; Kozempel, Michael; Fan, Xuetong; Radewonuk, E Richard

    2002-12-01

    Listeria spp. are a frequent postprocess contaminant of ready-to-eat (RTE) meat products, including ham. Vacuum-steam-vacuum (VSV) technology has been used successfully to eliminate Listeria innocua from hot dogs. Ionizing radiation can eliminate Listeria spp. from RTE meats. However, the excessive application of either technology can cause changes in product quality, including structural changes, changes in cure color (redness), and lipid oxidation. In this study, two cycles of VSV were combined with 2.0 kGy of ionizing radiation to obtain 4.40- and 4.85-log10 reductions of L. innocua on ham meat and skin, respectively. The use of both treatments resulted in an additive, as opposed to synergistic, reduction of L. innocua on ham. The combination treatment did not cause statistically significant changes in product structure, color (redness), or lipid oxidation.

  12. Vacuum system for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Lange, W.J.; Green, D.; Sink, D.A.

    1976-01-01

    The vacuum system for TFTR is described. Insofar as possible, conventional and ultrahigh vacuum (UHV) components and technology will be employed. Subassemblies will be prebaked in vacuum to reduce subsequent outgassing, and assembly will employ TIG welding and metal gaskets. It is not anticipated that the totally assembled torus with its numerous diagnostic appendages will be baked in situ to a high temperature, however a lower bakeout temperature (approximately 250 0 C) is under consideration. Final vacuum conditioning will be performed using discharge cleaning to obtain a specific outgassing rate of less than or = to 10 -10 Torr liter/sec cm 2 hydrogen isotopes and less than or = to 10 -12 Torr liter/sec cm 2 of other gases, and a base pressure of less than or = to 5 x 10 -8 Torr

  13. Vacuum nanoelectronic devices novel electron sources and applications

    CERN Document Server

    Evtukh, Anatoliy; Yilmazoglu, Oktay; Mimura, Hidenori; Pavlidis, Dimitris

    2015-01-01

    Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments.  This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. Unique coverage of quantum physical results for electron-field emission and novel electron sourc...

  14. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  15. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  16. Uses of the vacuum

    International Nuclear Information System (INIS)

    Rohrlich, D.M.

    1986-01-01

    Three problems in quantum field theory are analyzed. Each presents the vacuum in a different role. The connections among these significant roles are discussed in Chapter I. Chapter II contains a calculation of the zero-point energy in the Kaluza-Klein model. The zero-point fluctuations induce a potential which makes the compact dimensional contract. The effective potential is seen to be the four-dimensional version of the Casimir effect. Chapter III contains a Monte Carlo study of asymptotic freedom scales in lattice QCD. Two versions of SU(2) gauge theory, having different representations of the gauge group, are compared. A new method is used to calculate the ratio of scale parameters of the two theories. The method directly uses the weak-coupling behavior of the theories. The Monte-Carlo results are compared with perturbative calculations on the lattice, one of which is presented. They are in good agreement. Chapter IV applies the hypothesis of dimensional reduction to five-dimensional SU(2) and four-dimensional SO(3) lattice gauge theories. New analytic results for the strong- and weak-coupling limits are derived. Monte Carlo calculations show dimensional reduction in the strong coupling phases of both theories. At the phase transition, the two theories show a similar loss of dimensional reduction. An external source of random flux does not induce dimensional reduction where it is not already present

  17. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-01-01

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 -6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  18. Vacuum type D initial data

    Science.gov (United States)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  19. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsuo, K.; Fukuyama, T.; Yonehara, R.; Namatame, H.; Taniguchi, M.; Gekko, K.

    2005-01-01

    We have constructed a vacuum-ultraviolet circular dichroism (VUVCD) spectrophotometer using a synchrotron radiation and an assembled-type MgF 2 cell endurable under a high vacuum, to measure the CD spectra of biomaterials in aqueous solutions from 310 to 140 nm. To avoid the absorption of light by air and water vapor, all optical devices of the spectrophotometer were set up under a high vacuum (10 -4 Pa). A path length of the optical cell can be adjusted by various Teflon spacers in the range from 1.3 to 50 μm and its temperature can be controlled to an accuracy of ±1 deg. C over the range from -30 to 70 deg. C by a temperature-control unit using a Peltier thermoelectric element. The performance of the spectrophotometer and the optical cell constructed was tested by measuring the CD spectra of ammonium d-camphor-10-sulfonate, D- and L-isomers of amino acids, and myoglobin in aqueous solutions. The spectra obtained demonstrate that the optical system and the sample cell constructed operate normally under a high vacuum and provide useful information on the structure of biomolecules based on the higher energy chromophores

  20. Beam tube vacuum in future superconducting proton colliders

    International Nuclear Information System (INIS)

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H 2 . Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits

  1. TFCX pumped limiter and vacuum pumping system design and analysis

    International Nuclear Information System (INIS)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs

  2. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  3. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  4. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  5. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  6. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  7. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  8. The localized quantum vacuum field

    International Nuclear Information System (INIS)

    Dragoman, D

    2008-01-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles

  9. The localized quantum vacuum field

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com

    2008-03-15

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  10. Resistor cooling in a vacuum

    International Nuclear Information System (INIS)

    Crittenden, R.; Krider, J.

    1987-01-01

    This note describes thermal measurements which were done on a resistor operating both in air at one atmosphere pressure and in a vacuum of a few milliTorr. The motivation for this measurement was our interest in operating a BGO crystal-photomultiplier tube-base assembly in a vacuum, as a synchrotron radiation detector to tag electrons in the MT beam. We wished to determine what fraction of the total resistor power was dissipated by convection in air, in order to know whether there would be excessive heating of the detector assembly in a vacuum. 3 figs

  11. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  12. Vacuum chamber 'bicone'

    CERN Multimedia

    1977-01-01

    This chamber is now in the National Museum of History and Technology, Smithsonian Institution, Washington, DC, USA, where it was exposed in an exhibit on the History of High Energy Accelerators (1977).

  13. Structural characterization of asphaltenes from vacuum residue distillation

    International Nuclear Information System (INIS)

    Silva, Ronaldo C.; Seidl, Peter R.; Menezes, Sonia M.C. de; Teixeira, Marco A.G.

    2001-01-01

    The aim of this work was to do structural characterization of asphaltenes from different vacuum residues distillation. Several average molecular parameters using some analytical techniques were obtained and these techniques were: nuclear magnetic resonance ( 1 H and 13 C NMR), elemental analysis (C,H,N,O and S content), Fourier transform infrared (FT-IR), vapor pressure osmometry and gel permeation chromatography. Particularly from NMR, some important molecular parameters were obtained, such as aromatic carbon fraction, aliphatic carbons fraction, alkyl substituted aromatic carbons, unsubstituted aromatic carbons, etc. Molecular modeling will be employed to build the structure of asphaltenes using the experimental data. (author)

  14. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    International Nuclear Information System (INIS)

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with 65 Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor

  15. Cryogenic vacuum pumping at the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Elo, D.; Morris, D.; Clark, D.J.; Gough, R.A.

    1978-09-01

    A cryogenic vacuum pumping panel has been in operation at the 88-inch cyclotron since 1974. The nude pumping panel is located in the acceleration chamber. The pumping surface consists of tubing cooled to 20 0 K by a closed loop helium refrigeration system. The pumping surfaces are shielded from radiation heat loads and water vapors by liquid nitrogen cooled baffles. The panel was designed for an average pumping speed of 14,000 liters/sec. for air. This approximately tripled the total effective pumping on the acceleration chamber from the existing diffusion pumped system, significantly reducing charge exchange losses of heavy ions during acceleration. Design, installation and performance characteristics are described

  16. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  17. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.

    1994-01-01

    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  18. Sensor for the working surface cleanliness definition in vacuum

    Science.gov (United States)

    Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.

    2016-07-01

    Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.

  19. Sensor for the working surface cleanliness definition in vacuum

    International Nuclear Information System (INIS)

    Deulin, E A; Mashurov, S S; Gatsenko, A A

    2016-01-01

    Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work. (paper)

  20. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Takahiro [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan); Kawaharamura, Toshiyuki [Research Institute, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); School of Systems Engineering, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); Fujita, Shizuo, E-mail: fujitasz@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520 (Japan); Orita, Hiroyuki [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan)

    2015-12-31

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10{sup −4} Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac){sub 2}], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH{sub 3} to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10{sup −3} Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac){sub 2}] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10{sup −3} Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  1. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    International Nuclear Information System (INIS)

    Shirahata, Takahiro; Kawaharamura, Toshiyuki; Fujita, Shizuo; Orita, Hiroyuki

    2015-01-01

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10"−"4 Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac)_2], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH_3 to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10"−"3 Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac)_2] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10"−"3 Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  2. NCSX Vacuum Vessel Fabrication

    International Nuclear Information System (INIS)

    Viola ME; Brown T; Heitzenroeder P; Malinowski F; Reiersen W; Sutton L; Goranson P; Nelson B; Cole M; Manuel M; McCorkle D.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 o vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1-inch of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 o vessel segments are formed by welding two 60 o segments together. Each 60 o segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8-inch (20.3 cm) wide spacer ''spool pieces''. The vessel must have a total leak rate less than 5 X 10 -6 t-l/s, magnetic permeability less than 1.02(micro), and its contours must be within 0.188-inch (4.76 mm). It is scheduled for completion in January 2006

  3. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  4. Shock Wave Propagation and Gas-Debris Transport into a Vacuum: A Novel Computational Model - TEXAS-NCV

    International Nuclear Information System (INIS)

    Utschig, Tristan T.; Corradini, Michael L.

    2003-01-01

    Pulsed power experiments for basic physics investigations as well as inertial confinement fusion designs have developed Z-pinch technologies that produce terawatt level power using multiwire arrays. The energy released from such pulsed power tests results in fragmentation and vaporization of structures at the central wire array as well as shock wave propagation to the chamber boundaries. Practical design and safety considerations require that tracking of this shock front and the associated gas-debris field be done for a variety of experimental configurations to predict the arrival time of hazardous or radioactive debris at fast closure valve locations. A novel computational model has been developed to handle gas expansion into vacuum using a computer model (TEXAS) operating on a Eulerian mesh. Upon expansion of a high-pressure gas into a region of hard vacuum where free molecular transport dominates, the transport model switches between a traditional Eulerian continuum mechanics model and a free molecular transport model across the interface between the two regions. The interface location then propagates along the mesh as the gas expands. This new quasi-one-dimensional model (TEXAS-NCV) has been implemented and tested for two benchmark cases. Such a model can be useful in the design of inertial fusion systems

  5. Particle creation during vacuum decay

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1984-01-01

    The hamiltonian approach is developed with regard to the problem of particle creation during the tunneling process, leading to the decay of the false vacuum in quantum field theory. It is shown that, to the lowest order in (h/2π), the particle creation is described by the euclidean Schroedinger equation in an external field of a bounce. A technique for solving this equation is developed in an analogy to the Bogoliubov transformation technique, in the theory of particle creation in the presence of classical background fields. The technique is illustrated by two examples, namely, the particle creation during homogeneous vacuum decay and during the tunneling process leading to the materialization of the thin-wall bubble of a new vacuum in the metastable one. The curious phenomenon of intensive particle annihilation during vacuum decay is discussed and explicitly illustrated within the former example. The non-unitary extension of the Bogoliubov u, v transformations is described in the appendix. (orig.)

  6. Vacuum in intensive gauge fields

    International Nuclear Information System (INIS)

    Matinian, S.G.

    1977-12-01

    The behaviour of vacuum in a covariantly constant Yang-Mills field is considered. The expressions for the effective Lagrangian in an intensive field representing the asymptotic freedom of the theory are found

  7. LTC vacuum blasting machine (concrete): Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration

  8. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  9. Experiment to measure vacuum birefringence: Conceptual design

    Science.gov (United States)

    Mueller, Guido; Tanner, David; Doebrich, Babette; Poeld, Jan; Lindner, Axel; Willke, Benno

    2016-03-01

    Vacuum birefringence is another lingering challenge which will soon become accessible to experimental verification. The effect was first calculated by Euler and Heisenberg in 1936 and is these days described as a one-loop correction to the differential index of refraction between light which is polarized parallel and perpendicular to an external magnetic field. Our plan is to realize (and slightly modify) an idea which was originally published by Hall, Ye, and Ma using advanced LIGO and LISA technology and the infrastructure of the ALPS light-shining-through-walls experiment following the ALPS IIc science run. This work is supported by the Deutsche Forschungsgemeinschaft and the Heising-Simons Foundation.

  10. Vacuum energy from noncommutative models

    Science.gov (United States)

    Mignemi, S.; Samsarov, A.

    2018-04-01

    The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.

  11. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  12. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  13. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  14. Technical specification for vacuum systems

    International Nuclear Information System (INIS)

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10 -5 to 10 -11 Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components

  15. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Kurita, Gen-ichi; Onozuka, Masaki; Suzuki, Masaru.

    1997-01-01

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and γ rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  16. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Kurita, Gen-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masaki; Suzuki, Masaru

    1997-07-31

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and {gamma} rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  17. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Story, M.S.

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  18. Vapor characterization of Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  19. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  20. Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum

    Science.gov (United States)

    Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.

    2018-05-01

    Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.

  1. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  2. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  3. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  4. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  5. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  6. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  7. Atomic beam formed by the vaporization of a high velocity pellet

    International Nuclear Information System (INIS)

    Foster, C.A.; Hendricks, C.D.

    1974-01-01

    A description of an atomic beam formed by vaporizing an electrostatically accelerated high velocity pellet is given. Uniformly sized droplets of neon will be formed by the mechanical disintegration of liquid jet and frozen by adiabatic vaporization in vacuum. The pellets produced will be charged and accelerated by contacting a needle held at high potential. The accelerated pellets will be vaporized forming a pulse of mono-energetic atoms. The advantages are that a wide range of energies will be possible. The beam will be mono-energetic. The beam is inheretly pulsed, allowing a detailed time of flight velocity distribution measurement. The beam will have a high instantaneous intensity. The beam will be able to operate into an ultra high vacuum chamber

  8. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  9. Preliminary results of sugar maple carbohydrate and growth response under vacuum and gravity sap extraction

    Science.gov (United States)

    Mark L. Isselhardt; Timothy D. Perkins; Abby K. van den Berg; Paul G. Schaberg

    2016-01-01

    Recent technological advancements have increased the amount of sugar-enriched sap that can be extracted from sugar maple (Acer saccharum). This pilot study quantified overall sugar removal and the impacts of vacuum (60 cm Hg) and gravity sap extraction on residual nonstructural carbohydrate (NSC) concentrations and on stem and twig growth. Vacuum...

  10. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Nagashima, Keisuke; Suzuki, Masaru; Onozuka, Masaki.

    1997-01-01

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  11. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Nagashima, Keisuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Suzuki, Masaru; Onozuka, Masaki

    1997-07-11

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  12. Vacuum fused deposition modelling system to improve tensile ...

    African Journals Online (AJOL)

    In the printing process, the interlayer bonding is made too quick thus the layers are not fully fused together causing the reduced tensile strength. This paper presents a possible solution to this problem by incorporating vacuum technology in FDM system to improve tensile strength of 3D printed specimens. In this study, a ...

  13. Development of vacuum glazing with advanced thermal properties - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Manz, H.

    2009-03-15

    Windows constitute a weak link in the building envelope and hence contribute significantly to the total heating energy demand in buildings. By evacuating the glazing cavity a vacuum glazing is created and heat transfer can be significantly reduced. This project was designed to build knowledge and technology necessary to fabricate vacuum glazing with advanced thermal properties. More specifically, various strategies for improvement of conventional technology were investigated. Of central importance was the development of a novel edge sealing approach which can in theory circumvent the main limitation of conventional glass soldering technology. This approach which is rapid, low temperature, low cost and completely vacuum compatible was filed for patenting in 2008. With regards to thermal insulation performance and glazing deflection, numerical studies were performed demonstrating the importance of nonlinear behavior with glazing size and the results published. A detailed service life prediction model was elaborated which defines a set of parameters necessary to keep the expected pressure increase below a threshold value of 0.1 Pa after 30 years. The model takes into account four possible sources of pressure increase and a getter material which acts as a sink. For the production of 0.5 m by 0.5 m glazing assembly prototypes, a high vacuum chamber was constructed and a first sealing prototype realized therein. The manufacture of improved prototypes and optimization of the anodic bonding edge sealing technology with emphasis on process relevant aspects is the goal of a follow-up project. (authors)

  14. [Evaluation of the quality of poultry meat and its processing for vacuum packaging].

    Science.gov (United States)

    Swiderski, F; Russel, S; Waszkiewicz-Robak, B; Cholewińska, E

    1997-01-01

    The aim of study was to evaluate the quality of poultry meat, roasted and smoked chicken and poultry pie packing under low and high vacuum. All investigated products were stored at +4 degrees C and evaluated by microbiological analysis. It was showed that packing under low and high vacuum inhibited development of aerobic microorganisms, proteolytic bacteria, yeasts and moulds. Vacuum-packaged storage of poultry meat and its products stimulated activity of anaerobic, nonsporeforming bacteria. The fast spoilage of fresh poultry meat was observed both under vacuum and conventional storage. The microbiology quality of poultry products depended on technology of production and microbiological quality of raw material.

  15. Increasing of charge of uranium ion beam in vacuum-arc-type source (MEVVA)

    CERN Document Server

    Kulevoj, T V; Petrenko, S V; Seleznev, D N; Pershin, V I; Batalin, V A; Kolomiets, A A

    2002-01-01

    Research efforts with MEVVA type source (Metal Vapor Vacuum Arc) and with its modifications are in progress now in the ITEP. In the course of research one revealed possibility to increase charge state of generated beam of uranium ions. Increase of charge results from propagation of high-current vacuum-arc charge from the source cathode to the extra anode located in increasing axial magnetic field. One obtained uranium ion beam with 150 mA output current 10% of which were contributed by U sup 7 sup + uranium ions

  16. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  17. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  18. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  19. Quantum electrodynamics with unstable vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (P.N. Lebedev Physical Inst., USSR Academy of Sciences, Moscow (USSR)); Gitman, D.M. (Moscow Inst. of Radio Engineering Electronics and Automation (USSR)); Shvartsman, Sh.M. (Tomsk State Pedagogical Inst. (USSR))

    1991-01-01

    Intense external fields destabilize vacuum inducing the creation of particle pairs. In this book the formalism of quantum electrodynamics (QED), using a special perturbation theory with matrix propagators, is systematically analyzed for such systems. The developed approach is, however, general for any quantum field with unstable vacuum. The authors propose solutions for real pair-creating fields. They discuss the general form for the causal function and many other Green's functions, as well as methods for finding them. Analogies to the optical theorem and rules for computing total probabilities are given, as are solutions for non-Abelian theories. (orig.).

  20. QED vacuum loops and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Brown University, Department of Physics, Providence, RI (United States); Gabellini, Y. [UMR 6618 CNRS, Institut Non Lineaire de Nice, Valbonne (France)

    2015-03-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  1. QED vacuum loops and inflation

    International Nuclear Information System (INIS)

    Fried, H.M.; Gabellini, Y.

    2015-01-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  2. Field installed brazed thermocouple feedthroughs for high vacuum experiments

    International Nuclear Information System (INIS)

    Anderson, P.; Messick, C.

    1983-01-01

    In order to reduce the occurrence of vacuum leaks and to increase the availability of the DIII vacuum vessel for experimental operation, effort was applied to developing a vacuum-tight brazed feedthrough system for sheathed thermocouples, stainless steel sheathed conductor cables and tubes for cooling fluids. This brazed technique is a replacement for elastomer ''O'' ring sealed feedthroughs that have proven vulnerable to leaks caused by thermal cycling, etc. To date, about 200 feedthroughs have been used. Up to 91 were grouped on a single conflat flange mounted in a bulkhead connector configuration which facilitates installation and removal. Investigation was required to select a suitable braze alloy, flux and installation procedure. Braze alloy selection was challenging since the alloy was required to have: 1) Melting temperature in excess of the 250 0 C (482 0 F) bakeout temperature. 2) No high vapor pressure elements. 3) Good wetting properties when used in air with acceptable flux. 4) Good wettability to 300 series stainless steel and inconel

  3. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  4. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  5. Technology Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1979-09-15

    Linked to the 25th Anniversary celebrations, an exhibition of some of CERN's technological achievements was opened on 22 June. Set up in a new 600 m{sup 2} Exhibition Hall on the CERN site, the exhibition is divided into eight technology areas — magnets, vacuum, computers and data handling, survey and alignment, radiation protection, beam monitoring and handling, detectors, and workshop techniques.

  6. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    Science.gov (United States)

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    International Nuclear Information System (INIS)

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published

  8. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  9. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  10. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the “graininess” of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  11. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the "graininess" of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  12. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  13. Investigations of Pulsed Vacuum Gap.

    Science.gov (United States)

    1981-02-10

    Violet Spectra of Hot Sparks in Hh’Iacua, ’ ?hys. Rev., Vol. 12, p. 167, (1913). 31A Maitland , "Spark CondiiIoning Equation for Olane ElectrodesI-in...Appl. Phys., Vol. 1, 1291 G. Thecohilus, K. Srivastava, and R. ’ ian Heeswi.k, ’tn-situ Observation of !Microparticles in a Vacuum-Tnsulated Gap Using

  14. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  15. Vacuum therapy for chronic wounds

    Directory of Open Access Journals (Sweden)

    Ekaterina Leonidovna Zaytseva

    2012-09-01

    Full Text Available Chronic wound in patients with diabetes mellitus (DM is one of the most urgent problems of modern diabetology and surgery. Numberof patients suffering from different types of chronic wounds follows increase in DM incidence. Vacuum therapy is a novel perspectivemethod of topical treatment for non-healing chronic wounds of various etiology. Current review addresses experimental and clinicalevidence for this method.

  16. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  17. Gas flow through the clearances of screw spindle vacuum pumps; Gasspaltstroemungen in Schraubenspindel-Vakuumpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Wenderott, D. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The documentation `Schraubenmaschinen` deals with the subject `screw spindle vacuum pump` for the first time. Therefore, this paper presents the type of maschine `screw spindle vacuum pump`, fixes its limits to the better known screw type compressor and finally classifies it in the crossover of vacuum-technology, characteristic geometry and the numerical simulation. The suggested reflections to choose a proper model of flow are based on the geometry of the screw spindle vacuum pump and fundamentals concerning the vacuum-technology and the state of flow. (orig.) [Deutsch] Die Schriftenreihe `Schraubenmaschinen` behandelt erstmals das Thema `Schraubenspindel-Vakuumpumpe`. Aus diesem Grund stellt der vorliegende Beitrag den Maschinentyp Schraubenspindel-Vakuumpumpe vor, grenzt ihn zur bekannteren Schraubenmaschine ab und ordnet ihn in der Schnittmenge aus Vakuumtechnik, charakteristischer Maschinengeometrie und der Simulation ein. Auf den vakuumtechnischen und stroemungstechnischen Grundlagen sowie geometrischen Betrachtungen basieren die genannten Ueberlegungen zur Auswahl geeigneter Stroemungsmodelle. (orig.)

  18. Three-dimensional computer simulations of bioremediation and vapor extraction

    International Nuclear Information System (INIS)

    Travis, B.; Trent, B.

    1991-01-01

    Numerical simulations of two remediation strategies are presented. These calculations are significant in that they will play a major role in the actual field implementation of two very different techniques. The first set of calculations simulates the actual spill event of nearly 60,000 gallons of No. 2 diesel fuel oil and its subsequent flow toward the water table for 13 years. Hydrogen peroxide saturated water flooding is then performed and bioremediation of the organic material is then calculated. The second set of calculations describes the vacuum extraction of organic vapors subject to various assumed formation properties and boundary conditions

  19. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  20. Development and Measurement of Strain Free RF Photoinjector Vacuum Windows

    CERN Document Server

    Biedron, Sandra G

    2004-01-01

    RF photoinjectors produce the highest brightness electron bunches only under nearly ideal illumination by a drive laser. The vacuum window used to introduce the laser beam is an essential element that may potentially degrade any distribution, making it difficult or impossible to know the actual uniformity achieved at the cathode. Because of the necessity to obtain ultrahigh vacuum near the photoinjector, some restrictions are imposed on the fabrication technology available to manufacture distortion-free windows. At the UV wavelengths commonly used for photoinjectors, it is challenging to measure and eliminate degradation caused by vacuum windows. Here, we discuss the initial laser-based measurements of a strain-free, coated, UHV window manufactured by Insulator Seal in collaboration with members of Brookhaven and Argonne National Laboratories.

  1. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  2. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  3. Very Low-Cost, Rugged, High-Vacuum System for Mass Spectrometers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, the DoD, DHS, and commercial industry have a pressing need for miniaturized, rugged, low-cost, high vacuum systems. Recent advances in sensor technology at...

  4. Regulating vacuum pump speed with feedback control

    International Nuclear Information System (INIS)

    Ludington, D.C.; Aneshansley, D.J.; Pellerin, R.; Guo, F.

    1992-01-01

    Considerable energy is wasted by the vacuum pump/motor on dairy farms. The output capacity (m 3 /min or cfm) of the vacuum pump always exceeds the capacity needed to milk cows and wash pipelines. Vacuum pumps run at full speed and load regardless of actual need for air. Excess air is admitted through a controller. Energy can be saved from electrical demand reduced by regulating vacuum pump speed according to air based on air usage. An adjustable speed drive (ASD) on the motor and controlled based upon air usage, can reduce the energy used by the vacuum pump. However, the ASD unit tested could not maintain vacuum levels within generally accepted guidelines when air usage changed. Adding a high vacuum reserve and a dual vacuum controller between the vacuum pump and the milking pipeline brought vacuum stability within guidelines. The ASD/dual vacuum system can reduce energy consumption and demand by at least 50 percent during milking and provide better vacuum stability than conventional systems. Tests were not run during washing cycles. Using 1990 costs and only the energy saved during milking, the simple payback on investment in new equipment for a 5 hp motor, speed controller and vacuum regulator would be about 5 years

  5. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  6. Compactified vacuum in ten dimensions

    International Nuclear Information System (INIS)

    Wurmser, D.

    1987-01-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum

  7. Low temperature synthesis of Zn nanowires by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Philipp; Kast, Michael; Brueckl, Hubert [Austrian Research Centers GmbH ARC, Nano- Systemtechnologies, Donau-City-Strasse 1, A-1220 Wien (Austria)

    2007-07-01

    We demonstrate catalytic growth of zinc nanowires by physical vapor deposition at modest temperatures of 125-175 C on various substrates. In contrast to conventional approaches using tube furnaces our home-built growth system allows to control the vapor sources and the substrate temperature separately. The silicon substrates were sputter coated with a thin gold layer as metal catalyst. The samples were heated to the growth temperature and subsequently exposed to the zinc vapor at high vacuum conditions. The work pressure was adjusted by the partial pressure of oxygen or argon flow gas. Scanning electron microscopy and atomic force microscopy characterizations revealed that the nanowires exhibit straight, uniform morphology and have diameters in the range of 50-350 nm and lengths up to 70 {mu}m. The Zn nanowires grow independently of the substrates crystal orientation via a catalytic vapor-solid growth mechanism. Since no nanowire formation was observed without gold coating, we expect that the onedimensional growth is initiated by a surface reactive Au seed. ZnO nanowires can be produced in the same preparation chamber by oxidation at 500 C in 1atm (80% Ar, 20% O{sub 2}) for 1 hour. ZnO is highly attractive for sensor applications.

  8. Vacuum chambers full of ideas for the Swedish synchrotron

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    CERN’s Vacuum, Surfaces and Coatings group has contributed to the development of vacuum chambers for the MAX IV synchrotron, which has just been officially opened in Sweden.   A section of the new 3 GeV MAX IV synchrotron at the time of installation. In the centre of the magnets you can see the vacuum chamber developed in collaboration with CERN. (Photo: Marek Grabski, MAX IV Vacuum group) On 21 June, the King and the Prime Minister of Sweden officially opened MAX IV, a brand-new synchrotron in Lund, Sweden. The summer solstice, the longest day of the year, was deliberately chosen for the ceremony: MAX IV, a cutting-edge synchrotron, will deliver the brightest X-rays ever produced to more than 2000 users. Some 1500 kilometres away, a team at CERN followed the opening ceremony with a touch of pride. The Vacuum, Surfaces and Coatings group in the Technology department (TE-VSC) participated in the construction of this new synchrotron. Its contribution lies at the very hea...

  9. Vacuum Drying Tests for Storage of Aluminum Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Chen, K.F.; Large, W.S.; Sindelar, R.L.

    1998-05-01

    A total inventory of up to approximately 32,000 aluminum-based spent nuclear fuel (Al SNF) assemblies are expected to be shipped to Savannah River Site (SRS) from domestic and foreign research reactors over the next several decades. Treatment technologies are being developed as alternatives to processing for the ultimate disposition of Al SNF in the geologic repository. One technology, called Direct/Co-disposal of Al SNF, would place the SNF into a canister ready for disposal in a waste package, with or without canisters containing high-level radioactive waste glass logs, in the repository. The Al SNF would be transferred from wet storage and would need to be dried in the Al SNF canister. The moisture content inside the Al SNF canister is limited to avoid excessive Al SNF corrosion and hydrogen buildup during interim storage before disposal. A vacuum drying process was proposed to dry the Al SNF in a canister. There are two major concerns for the vacuum drying process. One is water inside the canister could become frozen during the vacuum drying process and the other one is the detection of dryness inside the canister. To vacuum dry an irradiated fuel in a heavily shielded canister, it would be very difficult to open the lid to inspect the dryness during the vacuum drying operation. A vacuum drying test program using a mock SNF assembly was conducted to demonstrate feasibility of drying the Al SNF in a canister. These tests also served as a check-out of the drying apparatus for future tests in which irradiated fuel would be loaded into a canister under water followed by drying for storage

  10. Gauge field vacuum structure in geometrical aspect

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  11. Characteristics of the ISABELLE vacuum system

    International Nuclear Information System (INIS)

    Aggus, J.R.; Edwards, D. Jr.; Halama, H.J.; Herrera, J.C.

    1977-01-01

    A discussion is given of the complete vacuum system of ISABELLE, emphasizing those design characteristics dictated by high vacuum, the avoidance of beam current loss, and the reduction of background. The experimental and theoretical justifications for the design are presented

  12. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  13. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  14. Experimental Study on Solar Cooling Tube Using Thermal/Vacuum Emptying Method

    Directory of Open Access Journals (Sweden)

    Huizhong Zhao

    2012-01-01

    Full Text Available A solar cooling tube using thermal/vacuum emptying method was experimentally studied in this paper. The coefficient of performance (COP of the solar cooling tube was mostly affected by the vacuum degree of the system. In past research, the thermal vacuum method, using an electric oven and iodine-tungsten lamp to heat up the adsorbent bed and H2O vapor to expel the air from the solar cooling tube, was used to manufacture solar cooling tubes. This paper presents a novel thermal vacuum combined with vacuum pump method allowing an increased vacuum state for producing solar cooling tubes. The following conclusions are reached: the adsorbent bed temperature of solar cooling tube could reaches up to 233°C, and this temperature is sufficient to meet desorption demand; the refrigerator power of a single solar cooling tube varies from 1 W to 12 W; the total supply refrigerating capacity is about 287 kJ; and the COP of this solar cooling tube is about 0.215.

  15. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  16. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  17. Lab-scale tests on ISV vapor transport phenomena

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Gardner, B.M.

    1996-01-01

    In situ vitrification (ISV) is a promising technology for remediating buried waste sites and contaminated soil sites. However, concerns exist that low soil permeabilities may limit vapor transport away from the advancing melt front and cause a melt expulsion that breaches ISV containment. As a result, two ISV lab tests were conducted at the Idaho National Engineering Laboratory (INEL) using INEL soil (permeability: 10 -6 cm/s) and a low permeability (10 -10 cm/s) clay material. The clay test also had a ceramic tube inserted vertically through the center of the area being melted to provide one-dimensional data on vapor transport. Results confirm that low soil permeabilities can limit vapor transport away from the advancing ISV melt front. In addition, peak pressures inside the ceramic tube were significantly greater than those outside the tube, indicating the importance of horizontal vapor transport around the advancing ISV melt front

  18. A high current metal vapour vacuum arc ion source for ion implantation studies

    International Nuclear Information System (INIS)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.; Cohen, D.D.; Bailey, G.M.

    1989-01-01

    The main features of the metal vapour vacuum arc(MEVA) as an ion source are presented. The technology utilizes the plasma production capabilities of a vacuum arc cathode. Some of the ions produced in this discharge flow through the anode and the 3 extraction grids to form an extracted ion beam. The high beam current and the potential for generating broad beams, make this technology suitable for implantation of large surface areas. The composition of the vacuum arc cathode determines the particular ions obtained from the MEVA source. 3 refs., 1 tab., 2 figs

  19. LHC Detector Vacuum System Consolidation for Long Shutdown 1 (LS1) in 2013-2014

    CERN Document Server

    Gallilee, M; Cruikshank, P; Gallagher, J; Garion, C; Jimenez, J M; Kersevan, R; Kos, H; Leduc, L; Lepeule, P; Provot, N; Rambeau, H; Veness, R

    2012-01-01

    The LHC has ventured into unchartered territory for Particle Physics accelerators. A dedicated consolidation program is required between 2013 and 2014 to ensure optimal physics performance. The experiments, ALICE, ATLAS, CMS, and LHCb, will utilise this shutdown, along with the gained experience of three years of physics running, to make optimisations to their detectors. New vacuum technologies have been developed for the experimental areas, to be integrated during this first phase shutdown. These technologies include bellows, vacuum chambers and ion pumps in aluminium, new beryllium vacuum chambers, and composite mechanical supports. An overview of this first phase consolidation program for the LHC experiments is presented.

  20. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  1. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  2. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  3. 46 CFR 154.804 - Vacuum protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either paragraph...

  4. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  5. The Tynode: A new vacuum electron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Harry van der, E-mail: vdgraaf@nikhef.nl [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Akhtar, Hassan; Budko, Neil; Chan, Hong Wah; Hagen, Cornelis W. [Delft University of Technology, Delft (Netherlands); Hansson, Conny C.T. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Nützel, Gert; Pinto, Serge D. [Photonis, Roden (Netherlands); Prodanović, Violeta; Raftari, Behrouz; Sarro, Pasqualina M. [Delft University of Technology, Delft (Netherlands); Sinsheimer, John; Smedley, John [Brookhaven National Laboratory, Upton, NY 11973 (United States); Tao, Shuxia [Eindhoven University of Technology/DIFFER (Netherlands); Theulings, Anne M.M.G. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Vuik, Kees [Delft University of Technology, Delft (Netherlands)

    2017-03-01

    By placing, in vacuum, a stack of transmission dynodes (tynodes) on top of a CMOS pixel chip, a single free electron detector could be made with outstanding performance in terms of spatial and time resolution. The essential object is the tynode: an ultra thin membrane, which emits, at the impact of an energetic electron on one side, a multiple of electrons at the other side. The electron yields of tynodes have been calculated by means of GEANT-4 Monte Carlo simulations, applying special low-energy extensions. The results are in line with another simulation based on a continuous charge-diffusion model. By means of Micro Electro Mechanical System (MEMS) technology, tynodes and test samples have been realized. The secondary electron yield of several samples has been measured in three different setups. Finally, several possibilities to improve the yield are presented.

  6. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  7. Wafer-Level Vacuum Packaging of Smart Sensors

    Directory of Open Access Journals (Sweden)

    Allan Hilton

    2016-10-01

    Full Text Available The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  8. Wafer-Level Vacuum Packaging of Smart Sensors.

    Science.gov (United States)

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  9. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  10. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  11. Deflated-Victims of vacuum

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2007-01-01

    Atmospheric pressure combined with a partial vacuum within chemical plant or refinery tanks can result in some ego-deflating moments. This article will review three catastrophic vessel failures in detail and touch on several other incidents. A 4000-gal acid tank was destroyed by a siphoning action; a well maintained tank truck was destroyed during a routine delivery; and a large, brand new refinery mega-vessel collapsed as the steam within it condensed. Seasoned engineers are aware of the frail nature of tanks and provide safeguards or procedures to limit damages. The purpose of this paper is to ensure this new generation of chemical plant/refinery employees understand the problems of the past and take the necessary precautions to guard against tank damages created by partial vacuum conditions

  12. Quantum friction across the vacuum

    International Nuclear Information System (INIS)

    Ebelein, C.

    1998-01-01

    Friction is so ubiquitous that it seems to be almost trivially familiar. The rubbing of two solid surfaces is opposed by a resistance and accompanied by the production of heat. Engineers still dream of perfectly smooth surfaces that can be moved against each other without any friction. However, this dream has now been shattered by John Pendry of Imperial College, London, who has published a theory that shows that even two perfectly smooth surfaces can experience an appreciable friction when moved relative to each other (J. Phys.: Condens. Matter 1997 9 10301-10320). Moreover, the two surfaces he considers are not even in contact but separated by a gap a lattice constant or so wide. The explanation of this lies in what Pendry calls the shearing of the vacuum in the gap. In quantum physics the vacuum is not just empty nothingness; it is full of virtually everything. The vacuum abounds with virtual photons. These zero-point fluctuations cannot normally be seen, but they give the vacuum a structure that manifests itself in a variety of effects (for example, the Casimir effect). A more subtle, yet more familiar, manifestation of these zero-point fluctuations is the van der Waals force. The effect described by Pendry can be understood as a van der Waals interaction between two infinite slabs of dielectric material moving relative to each other. Each slab will be aware of the motion of the other because the virtual photons reflected from the moving surface are Doppler-shifted up or down, depending on the direction of the photon wave vector relative to the motion. Pendry shows that this asymmetry in the exchange of virtual photons can lead to an appreciable effect for materials of reasonably strong dispersion. (author)

  13. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  14. Acceleration of plasma into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, John [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    The first part of this paper is a discussion of the magnetic acceleration of plasma. The second part contains a description of some experiments which have been performed. In the work reported the intention is: 1. To produce a burst of gas in vacuo; 2. To ionize the gas and heat it to such an extent that it becomes a good electrical conductor. 3. To accelerate the plasma thus produced into vacuum by the use of external time-varying magnetic fields.

  15. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  16. Vacuum mammotomy under ultrasound guidance

    International Nuclear Information System (INIS)

    Luczynska, E.; Kocurek, A.; Pawlik, T.; Aniol, J.; Herman, K.; Skotnicki, P.

    2007-01-01

    Breast ultrasound is a non-invasive method of breast examination. You can use it also for fine needle biopsy, core needle biopsy, vacuum mammotomy and for placing the '' wire '' before open surgical biopsy. 106 patients (105 women and 1 man) aged 20-71 years (mean age 46.9) were treated in Cancer Institute in Cracow by vacuum mammotomy under ultrasound guidance. The lesions found in ultrasonography were divided into three groups: benign lesions (BI RADS II), ambiguous lesions (BI RADS 0, III and IVa), and suspicious lesions (BI RADS IV B, IV C and V). Then lesions were qualified to vacuum mammotomy. According to USG, fibroadenoma or '' fibroadenoma-like '' lesions were found in 75 women, in 6 women complicated cysts, in 6 women cyst with dense fluid (to differentiate with FA), and in 19 patients undefined lesions. Fibroadenoma was confirmed in histopathology in 74% patients among patients with fibroadenoma or '' fibroadenoma-like '' lesions in ultrasound (in others also benign lesions were found). Among lesions undefined after ultrasound examination (total 27 patients) cancer was confirmed in 6 % (DCIS and IDC). In 6 patients with complicated cysts in ultrasound examination, histopathology confirmed fibroadenoma in 4 women, an intraductal lesion in 1 woman and inflamatory process in 1 woman. Also in 6 women with a dense cyst or fibroadenoma seen in ultrasound, histopathology confirmed fibroadenoma in 3 women and fibrosclerosis in 3 women. Any breast lesions undefined or suspicious after ultrasound examination should be verified. The method of verification or kind of operation of the whole lesion (vacuum mammotomy or '' wire '') depends on many factors, for example: lesion localization; lesion size; BI RADS category. (author)

  17. QCD contributions to vacuum polarization

    International Nuclear Information System (INIS)

    Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.

    1980-01-01

    We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)

  18. Vacuum vessel for plasma devices

    International Nuclear Information System (INIS)

    Yamada, Masao; Taguchi, Masami.

    1975-01-01

    Object: To permit effective utility of the space in the inner and outer sides of the container wall and also permit repeated assembly for use. Structure: Vacuum vessel wall sections are sealed together by means of welding bellows, and also flange portions formed at the end of the wall sections are coupled together by bolts and are sealed together with a seal ring and a seal cap secured by welding. (Nakamura, S.)

  19. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  20. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Brandea, Iulian; Anghel, Mihai

    2001-01-01

    The monitoring of industrial plants by virtual instrumentation represents the most modern trend in the domain of electronic equipment. The integrated vacuum system presented here has several facilities, including the automated data storing of measurement results on hard disk and providing warning messages for operators when the measured parameters are lower or higher upper than the fixed values. The system can also work stand-alone, receiving the commands from the keyboards placed on his front panel but, when it is included in a automation complex system, a remote control from PC is necessary . Both parts of the system, power supply unit for turbo-molecular pump and the vacuum gage, are controlled by an 80C31 microcontroller. Because this microcontroller has a built-in circuitry for a serial communication, we established a serial communication between the PC and the power supply unit for turbo-molecular pump and the vacuum gage, according to the RS-232 hardware standard. As software, after careful evaluation of several options, we chose to develop a hybrid software packing using two different software development tools: LabVIEW, and assembly language. We chose LabVIEW because it is dedicated to data acquisition and communications, containing libraries for data collection, analysis, display and storage. (authors)

  1. Running jobs in the vacuum

    International Nuclear Information System (INIS)

    McNab, A; Stagni, F; Garcia, M Ubeda

    2014-01-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously 'in the vacuum' rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  2. Structural integrity testing of glass-ceramic/molybdenum vacuum tube frames

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    In this study, vacuum tube subassemblies made of glass-ceramic insulators sealed to inner and outer molybdenum frames were loaded in compression to failure with a tensile test machine. Several factors were varied in processing these subassemblies. These factors included etching and nonetching of molybdenum piece parts, annealing and nonannealing of subassemblies, and vapor and non-vapor honing of insulators after sealing. After failure, the subassemblies were examined for fracture patterns. In most cases, fracture started at points near the lower portion of the inner sleeve-insulator interface. More load was carried by subassemblies having molybdenum piece parts that were acid etched. No difference appeared between the strength of subassemblies having annealed and nonannealed glass-ceramic insulators. Parts with vapor-honed insulators failed at substantially lower loads

  3. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  4. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  5. Solvent refined coal (SRC) process. Flashing of SRC-II slurry in the vacuum column on Process Development Unit P-99. Interim report, February-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J. A.; Mathias, S. T.

    1980-10-01

    This report presents the results of 73 tests on the vacuum flash system of Process Development Unit P-99 performed during processing of three different coals; the second batch, fourth shipment (low ash batch) of Powhatan No. 5 Mine (LR-27383), Powhatan No. 6 Mine (LR-27596) and Ireland Mine (LR-27987). The objective of this work was to obtain experimental data for use in confirming and improving the design of the vacuum distillation column for the 6000 ton/day SRC-II Demonstration Plant. The 900/sup 0/F distillate content of the bottoms and the percent of feed flashed overhead were correlated with flash zone operating conditions for each coal, and the observed differences in performance were attributed to differences in the feed compositions. Retrogressive reactions appeared to be occurring in the 900/sup 0/F+ pyridine soluble material leading to an increase in the quantity of pyridine insoluble organic matter. Stream physical properties determined include specific gravity, viscosity and melting point. Elemental, distillation and solvent analyses were used to calculate component material balances. The Technology and Materials Department has used these results in a separate study comparing experimental K-values and vapor/liquid split with CHAMP computer program design predictions.

  6. 10 October 2013 - D. Braun First Deputy Minister for Regional Development, Czech Republic, P. Styczeń Deputy Minister of Transport, Construction and Maritime Economy, Republic of Poland and F. Palko State Secretary, Ministry of Transport, Construction and Regional Development, Slovak Republic visiting the LHC tunnel at Point 1 with Technology Department, Vacuum, Surfaces and Coatings Group Leader J. M. Jimenez and signing the Guest book with CERN Director-General R. Heuer

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    10 October 2013 - D. Braun First Deputy Minister for Regional Development, Czech Republic, P. Styczeń Deputy Minister of Transport, Construction and Maritime Economy, Republic of Poland and F. Palko State Secretary, Ministry of Transport, Construction and Regional Development, Slovak Republic visiting the LHC tunnel at Point 1 with Technology Department, Vacuum, Surfaces and Coatings Group Leader J. M. Jimenez and signing the Guest book with CERN Director-General R. Heuer

  7. Preliminary analysis of NAPL behavior in soil-heated vapor extraction for in-situ environmental restoration

    International Nuclear Information System (INIS)

    Webb, S.W.; Phelan, J.M.

    1995-01-01

    Simulations of soil-heated vapor extraction have been performed to evaluate the NAPL removal performance as a function of borehole vacuum. The possibility of loss of NAPL containment, or NAPL migration into the unheated soil, is also evaluated in the simulations. A practical warning sign indicating migration of NAPL into the unheated zone is discussed

  8. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    Science.gov (United States)

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  9. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    Science.gov (United States)

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  10. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year

  11. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1994-01-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1 1/2 inches inner pipe size, 3 inches vacuum jacket, and 4 inches inner pipe size, 6 inches vacuum jacket. The single wall vacuum service bayonets are in 4 inch and 6 inch pipe sizes. The bayonets have successfully been in active service for over one year

  12. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  13. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  14. Differential ultrahigh-vacuum pump for electron microscope

    International Nuclear Information System (INIS)

    Kroshkov, A.A.; Aseev, A.L.; Baranova, E.A.; Latyshev, A.V.; Yakushenko, O.A.

    1985-01-01

    A differential cryogenic pump for the JEM-7A microscope is described. It reduces the vacuum pressure in the region of the specimen. The device allows tilting and movement of the specimen, direct electrical heating, measurement of specimen temperature, and deposition of films of various substances on the specimen surface. A diagram of the pump shows its placement in the objective chamber of the microscope. The fittings are equipped with bellows and provide for input and output of liquid nitrogen or liquid-helium vapor coolants. The enumerated results attest to a reduction of residual atmospheric pressure in the area of the specimen and the possibility of producing a pure silicon surface in the described device

  15. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  16. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  17. Remediation in clay using two-phase vacuum extraction

    International Nuclear Information System (INIS)

    Lindhult, E.C.; Tarsavage, J.M.; Foukaris, K.A.

    1995-01-01

    Soil and groundwater contamination in a tight clay usually requires costly and/or time consuming remediation, due to the inherently low hydraulic conductivity of the soil. However, Dames and Moore is successfully using an innovative, cost-effective two-phase vacuum extraction (VE) technology at a former gasoline service station. Dramatic decreases in BTEX concentrations in onsite and downgradient monitoring wells are apparent

  18. Running vacuum cosmological models: linear scalar perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  19. Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation

    International Nuclear Information System (INIS)

    Matsu, K.; Yonehara, R.; Gekko, K.

    2004-01-01

    Full text: Circular dichroism (CD) spectroscopy is powerful for analyzing the structure of optically active materials such as biopolymers. However, no commercial CD spectrophotometer is capable of measuring the CD in the vacuum ultraviolet (VUV) region below 190 nm because of technical difficulties involved in the light source, optical device, and sample cell. CD measurements extended to the VUV region can provide more detailed and new information on the structure of biopolymers based on the higher energy transition of chromophores such as hydroxyl and acetal groups. We have constructed a VUVCD spectrophotometer to measure the CD spectra of biomaterials in aqueous solutions in the 310-140 nm wavelength region under a high vacuum, using a small-scale SR source (0.7 GeV) at Hiroshima Synchrotron Radiation Center (HiSOR). All optical devices of the spectrophotometer were set up under a high vacuum (10 -6 Torr), to avoid the absorption of light by air and water vapor. The SR light is separated into two orthogonal linearly polarized light beams by a linear polarizer and then modulated to circularly polarized light at 50 kHz by a photo-elastic modulator (PEM). In order to control PEM accurately and to stabilize the lock-in amplifier under a high vacuum, we used the optical servo-control system. Also, an assembled-type MgF 2 cell with a temperature-control unit was constructed using a Peltier thermoelectric element. Its path length can be adjusted by various Tefron spacers in the range from 1.3 to 50 μm and its temperature can be controlled within an accuracy of ± 1 deg C in the range from -30 to 70 deg C. The performance of the spectrophotometer and MgF 2 cell constructed was tested by monitoring the CD spectra of ammonium d-camphor-10-sulfonate (ACS), D- and L-isomers of amino acids. These obtained results demonstrate that the optical system and the sample cell constructed normally operate under a high vacuum to provide useful information on the structure analysis of

  20. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  1. Machine for extrusion under vacuum

    International Nuclear Information System (INIS)

    Gautier, A.

    1958-01-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [fr

  2. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes...

  3. Performance Characterization and Simulation of Amine-Based Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    Swickrath, Michael J.; Watts,Carly; Anderson, Molly; McMillin, Summer; Boerman, Craig; Colunga, Aaron; Vogel, Matthew

    2011-01-01

    Controlling carbon dioxide (CO2) and water (H2O) concentrations in the vapor phase of a space suit is critical to ensuring an astronauts safety, comfortability, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxides (MetOx). Lithium hydroxide is a consumable material and requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications which control atmospheric concentrations of both CO2 and H2O through a fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed and documented from experimental and theoretical perspectives. To support developmental efforts, a first principles model has also been established for the vacuum swing adsorption technology. The efforts documented herein summarize performance characterization and simulation results for several variable metabolic profiles subjected to the RCA. Furthermore, a variety of control methods are explored including timed swing cycles, instantaneous CO2 feedback control, and time-averaged CO2 feedback control. A variety of off-nominal tests are also explored including high/low suit temperatures, increasingly high humidity cases, and dynamic pressure cases simulating the suit pre-breathe protocol. Consequently, this work builds on efforts previous efforts to fully bound the performance of the rapid cycle amine under a variety of nominal and off-nominal conditions.

  4. Treatment of uranium-bearing wastewater by vacuum membrane distillation

    International Nuclear Information System (INIS)

    Duan Xiaolin; Li Qicheng; Chen Bingbing

    2006-01-01

    The removal of uranium from wastewater was carried out by vacuum membrane distillation (VMD) using microporous polypropylene membrane. The effects of feed temperature, mass concentration of U, flow rate and vacuum-side pressure on permeation flux and rejection were studied. The optimum experimental conditions are as follows: feed flow rate is 0.5 m/s, feed temperature is 55 degree C, vacuum-side pressure is 2.66 kPa. When the mass concentrations of U in the feed solution range from 1 mg/L to 9 mg/L, the membrane flux is 3.5 kg/(m 2 ·h) and the rejection rate is 99.1% under the optimum conditions. The water separated from uranium solution by vacuum membrane distillation could meet the state-controlled discharge standard 0.05 mg/L. The VMD as a novel technology will play an important role in the treatment of uranium-bearing wastewater. (authors)

  5. Development of a novel rf waveguide vacuum valve

    CERN Document Server

    Grudiev, A

    2006-01-01

    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  6. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  7. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  8. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  9. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  10. The JET vacuum interspace system

    International Nuclear Information System (INIS)

    Orchard, J.; Scales, S.

    1999-01-01

    In the past JET has suffered from a number of vacuum leaks on components such as bellows, windows and feedthroughs due, in part, to the adverse conditions, including high mechanical forces, which may prevail during plasma operation. Therefore before the recent Tritium experiments on JET it was deemed prudent to manufacture and install items with a secondary containment or interspace in order to minimise the effect of failure of the primary vacuum barrier on both the leak integrity of the machine and the outcome of the experiments. This paper describes the philosophy, logistics, method and implementation of an integrated connection and monitoring system on the 330 interspaces currently in position on the JET machine. Using the JET leak database comparisons are drawn of leak failure rates of the components allied to the number of operational hours, prior to the system being present and after installation and commissioning, and the case of detection compared to the previous situation. An argument is also presented on the feasibility and adaptability of this system to any large complex machine and the benefits to be obtained in reduction of leaks and operational down time. (author)

  11. Gases vacuum dedusting and cooling

    Directory of Open Access Journals (Sweden)

    Alexey А. Burov

    2015-03-01

    Full Text Available Represented are the results of operating the ladle degassing vacuum plant (productivity: 120 tons of liquid steel with various dust collectors. The process gases’ cooling and dedusting, obtained in the closed loop buran study, provides opportunity to install a bag filter after that closed loop and its efficient use. Proven is the effectiveness of the cylindrical cyclone replacement with a multichannel (buran dust collector, based on a system of closed-loop (return coupling serially connected curved ducts, where the dusty gas flow rotation axis is vertically positioned. The system of closed-loop serially connected curvilinear channels creates preconditions for the emergence of a negative feedback at the curvilinear gas flow containing transit and circulating flows. These conditions are embodied with circulating flows connecting the in- and outputs of the whole system each channel. The transit flow multiple continuous filtration through the circulating dust layers leads to the formation and accumulation of particles aggregates in the collection chamber. The validity of such a dusty flow control mechanism is confirmed by experimental data obtained in a vacuum chamber. Therefore, replacing one of the two buran’s forevacuum pumps assemblies with the necessary number of curved channels (closed loop is estimated in a promising method.

  12. Advanced Photon Source accelerator ultrahigh vacuum guide

    International Nuclear Information System (INIS)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS

  13. TORE SUPRA vacuum vessel and shield manufacturing

    International Nuclear Information System (INIS)

    Blateyron, J.; Lepez, R.

    1984-01-01

    TORE SUPRA vacuum vessel and vacuum chamber shield manufacturing in progress at Jeumont-Schneider consists of three main phases: - Detail engineering and manufacturing fixture construction; - Prototype section manufacturing and process preparation; - Construction of the 6 production modules. The welding techniques adopted, call for three special automatic processes: TIG, MIG and PLASMA welding which guarantee mechanical strength, vacuum tightness and absence of distortion. Production of the modules began July 1984. (author)

  14. Development of a vacuum superinsulation panel

    Energy Technology Data Exchange (ETDEWEB)

    Timm, H; Seefeldt, D; Nitze, C

    1983-05-01

    After completion of the investigations the vacuum-insulated panel is available as prototype. The aim of the investigations was to optimize and to finalize the vacuum superinsulation system with regard to a pressure-resistant, temperature-resistant thermal insulation of high efficiency. In this connection, particularly investigations with regard to vacuum-tight sealing, compression and evacuation of powder filling as well as special material investigations were performed. The application-specific utilization of the vacuum-insulated panel and the adjustment to special operational conditions can now be started. Application possibilities are at present seen in coverings or linings with high temperature and/or pressure requirements.

  15. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  16. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  17. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  18. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Muller, R.A.

    1987-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports

  19. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Mueller, R.

    1986-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports. (author)

  20. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.