WorldWideScience

Sample records for technology transfer workshop

  1. Technology-transfer workshop

    International Nuclear Information System (INIS)

    1982-08-01

    A workshop was held to generate a better understanding of the many diverse factors and steps involved in the technology transfer process. The introductory presentations reviewed relevant theories, addressed the importance of planning for the process, and presented possible organizational structures to help promote the process. Specific cases were used to expose the participants to a variety of situations that were relevant to EPRI. These sessions served as a common starting point for small group discussions that were eventually combined into a list of recommendations for future action by EPRI (and should be useful for others as well). Some of the key conclusions reached are: it is important to identify incentives; the process is more effective if it is personalized; planning cannot start too early; recipes can be developed for customizing to specific situations; and both transmitter and receptor must recognize and fulfill their roles

  2. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  3. Technology transfer - insider protection workshop (Safeguards Evaluation Method - Insider Threat)

    International Nuclear Information System (INIS)

    Strait, R.S.; Renis, T.A.

    1986-01-01

    The Safeguards Evaluation Method - Insider Threat, developed by Lawrence Livermore National Laboratory, is a field-applicable tool to evaluate facility safeguards against theft or diversion of special nuclear material (SNM) by nonviolent insiders. To ensure successful transfer of this technology from the laboratory to DOE field offices and contractors, LLNL developed a three-part package. The package includes a workbook, user-friendly microcomputer software, and a three-day training program. The workbook guides an evaluation team through the Safeguards Evaluation Method and provides forms for gathering data. The microcomputer software assists in the evaluation of safeguards effectiveness. The software is designed for safeguards analysts with no previous computer experience. It runs on an IBM Personal Computer or any compatible machine. The three-day training program is called the Insider Protection Workshop. The workshop students learn how to use the workbook and the computer software to assess insider vulnerabilities and to evaluate the benefits and costs of potential improvements. These activities increase the students' appreciation of the insider threat. The workshop format is informal and interactive, employing four different instruction modes: classroom presentations, small-group sessions, a practical exercise, and ''hands-on'' analysis using microcomputers. This approach to technology transfer has been successful: over 100 safeguards planners and analysts have been trained in the method, and it is being used at facilities through the DOE complex

  4. Report of the 4th Workshop for Technology Transfer for Intelligent Compaction Consortium.

    Science.gov (United States)

    2016-03-01

    On October 2728, 2015, the Kentucky Transportation Cabinet (KYTC) hosted the 4th workshop for : the Technology Transfer for Intelligent Compaction Consortium (TTICC), a Transportation Pooled Fund : (TPF5(233)) initiative designed to identify, s...

  5. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  6. Magnetic Suspension Technology Workshop

    International Nuclear Information System (INIS)

    Keckler, C.R.; Groom, N.J.; Britcher, C.P.

    1993-01-01

    In order to identify the state of magnetic suspension technology in such areas as rotating systems, pointing of experiments or subsystems, payload isolation, and superconducting materials, a workshop on Magnetic Suspension Technology was held at the Langley Research Center in Hampton, Virginia, on 2-4 Feb. 1988. The workshop included five technical sessions in which a total of 24 papers were presented. The technical sessions covered the areas of pointing, isolation, and measurement, rotating systems, modeling and control, and superconductors. A list of attendees is provided. Separate abstracts have been prepared for articles from this report

  7. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  8. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  9. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  10. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  11. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  12. Technology Transfer

    Science.gov (United States)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  13. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  14. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  15. Universal Interconnection Technology Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Sheaffer, P.; Lemar, P.; Honton, E. J.; Kime, E.; Friedman, N. R.; Kroposki, B.; Galdo, J.

    2002-10-01

    The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology, approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.

  16. Facility decontamination technology workshop

    International Nuclear Information System (INIS)

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted

  17. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  18. NRSE technologies and trends workshop

    Energy Technology Data Exchange (ETDEWEB)

    Seo, W.S.; Lee, T.K.; Jo, D.K.; Jeong, M.W.; Kim, H.W.; Yoon, K.S. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The object of this workshop are to exchange scientific knowledge of exports, to collect the information on the current research trends and policies through the presentations of NRSE technologies and their case studies both at home and aboard. Another objects are to promote the international cooperation in the field of new and renewable energy research, and to provide a chance for taking new technologies to industries for the practical use or for commercialization. Research and development trends in NRSE technologies by major research institutions are investigated to make a comparative review as a reference for the future NRSE projects. Coupled with the government`s`s NRSE development policy, it has played an important role to make an increased public relations with the general public with respect to the development necessity of NRSE. The forum was very useful for an increased exchange of views on NRSE technologies of mutual interest between NRSE lectures and participants. (author)

  19. International Technology Transfer.

    Science.gov (United States)

    Morris, Robert G.

    The flow of technology out of the United States is discussed. Methods of technology flow, such as licensing and investing, are identified, and the advantages and disadvantages of technology transfer are discussed, especially in relation to the government's role. (MLH)

  20. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  1. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  2. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  3. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  4. science, technology and environment: interchange workshops ...

    African Journals Online (AJOL)

    The workshop interchange reported here were funded with a grant from the Foundation for Research. Development (FRD). Two workshops were convened by the Master of Education students of the interacting universities. The theme of science, technology and environment was introduced as a cluster of priorities that has ...

  5. IT Department Technology Transfer

    CERN Multimedia

    Birker, D

    2004-01-01

    The objective of Technology Transfer (TT) at CERN is “to make known and available to third parties under agreed conditions, technical developments achieved in fulfi lling the laboratory’s mission in fundamental research”. The IT Department contributes to this objective by the transfer of technology, expertise and know-how to industry, universities, public institutions and the society at large.

  6. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  7. DOE UST interim subsurface barrier technologies workshop

    International Nuclear Information System (INIS)

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation

  8. Transferring Technology to Industry

    Science.gov (United States)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  9. Industrial technology transfer

    International Nuclear Information System (INIS)

    Bulger, W.

    1982-06-01

    The transfer of industrial technology is an essential part of the CANDU export marketing program. Potential customers require the opportunity to become self-sufficient in the supply of nuclear plant and equipment in the long term and they require local participation to the maximum extent possible. The Organization of CANDU Industries is working closely with Atomic Energy of Canada Ltd. in developing comprehensive programs for the transfer of manufacturing technology. The objectives of this program are: 1) to make available to the purchasing country all nuclear component manufacturing technology that exists in Canada; and 2) to assure that the transfer of technology takes place in an efficient and effective way. Technology transfer agreements may be in the form of joint ventures or license agreements, depending upon the requirements of the recipient

  10. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  11. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  12. Technology transfer quality assurance

    International Nuclear Information System (INIS)

    Hood, F.C.

    1991-03-01

    The results of research conducted at Pacific Northwest Laboratory (PNL) for the DOE are regularly transferred from the laboratory to the private sector. The principal focus of PNL is on environmental research and waste management technology; other programs of emphasis include molecular science research. The technology transfer process is predicated on Quality to achieve its objectives effectively. Total quality management (TQM) concepts and principles readily apply to the development and translation of new scientific concepts into commercial products. The concept of technology transfer epitomizes the TQM tenet of continuous improvement: always striving for a better way to do things and always satisfying the customer. A successful technology transfer process adds value to society by providing new or enhanced processes, products, and services to government and commercial customers, with a guarantee of product pedigree and process validity. 2 refs

  13. Mixed waste focus area alternative technologies workshop

    International Nuclear Information System (INIS)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-01-01

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ''wise'' configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE's mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities

  14. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  15. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  16. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  17. 2nd Topical Workshop on Laser Technology and Optics Design

    CERN Document Server

    2013-01-01

    Lasers have a variety of applications in particle accelerator operation and will play a key role in the development of future particle accelerators by improving the generation of high brightness electron and exotic ion beams and through increasing the acceleration gradient. Lasers will also make an increasingly important contribution to the characterization of many complex particle beams by means of laser-based beam diagnostics methods. The second LANET topical workshop will address the key aspects of laser technology and optics design relevant to laser application to accelerators. The workshop will cover general optics design, provide an overview of different laser sources and discuss methods to characterize beams in details. Participants will be able to choose from a range of topical areas that go deeper in more specific aspects including tuneable lasers, design of transfer lines, noise sources and their elimination and non-linear optics effects. The format of the workshop will be mainly training-based wit...

  18. Technology transfer and innovation

    International Nuclear Information System (INIS)

    Ashworth, Graham; Thornton, Anna

    1987-01-01

    The aims of the conference were advice, assistance and action for all those with technology to licence or inventions to patent, and for people seeking financial help and advice. There was a free exchange of ideas and information. Of the forty or so papers collected together, many are concerned with the financial aspects of new ventures, others look at technology transfer from academic institutes and schemes which support technological problems. One paper on fast reactor collaboration in Europe, is indexed separately. (U.K.)

  19. Proceedings of the 1997 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1997-09-01

    This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Social Technologies in Shipbuilding Workshop

    National Research Council Canada - National Science Library

    1983-01-01

    Social technology refers to innovative organizations of work and human resource management practices employed in experimental or quasi-experimental settings for the purpose of improving performance...

  1. Technology transfer at TRIUMF

    International Nuclear Information System (INIS)

    Gardner, P.

    1994-06-01

    TRIUMF is Canada's major national research centre for sub-atomic physics. For the past five or six years, there has been an increasing emphasis on commercializing the technology that has emanated from the scientific research at the facility. This emphasis on technology transfer reflects a national policy trend of the Canadian federal government, which is the funding source for the majority of the research performed at TRIUMF. In TRIUMF's case, however, the initiative and funding for the commercialization office came from the provincial, or local government. This paper will describe the evolution of technology transfer at the TRIUMF facility, identifying the theory, policies and practical procedures that have been developed and followed. It will also include TRIUMF's experiences in finding exploitable technologies, protecting those technologies, and locating and linking with suitable industry partners to commercialize the technologies. There will be a discussion of resource allocation, and how TRIUMF has endeavoured to establish a portfolio of projects of assorted risks and expected returns. (author). 15 refs

  2. Refrigeration and air-conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P. J.; Counce, D. M. [eds.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.

  3. Refrigeration and Air-Conditioning Technology Workshop

    Science.gov (United States)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  4. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  5. GAIN Technology Workshops Summary Report

    International Nuclear Information System (INIS)

    Braase, Lori Ann

    2016-01-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  6. GAIN Technology Workshops Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is required to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.

  7. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  8. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  9. Data Access Technology Workshop Position Paper

    Science.gov (United States)

    Hinke, Thomas H.; Parks, John W. (Technical Monitor)

    2002-01-01

    This paper addresses the seven questions that were requested of attendees prior to attending the Data Access Technology Workshop that is scheduled for October 8-9,2002. Each of the questions is addressed in the following seven sections. The seven questions are: 1) What emerging technologies do you feel would best enhance user access to EOSDIS data and why? 2) How do you envision these technologies being used? How should they be used in combination with each other? 3) Can technologies be readily leveraged to achieve these results today? If not, when do you think they will be viable? 4) What investments do you think EOSDIS should make in these technologies today? Over the next 5 years? 5) What are reasonable cost expectations for leveraging these technologies as you've suggested? 6) What are the anticipated impacts on end users if these technologies are deployed, including investments required? 7) What unique researcher data access requirements need to be supported?

  10. TRIUMF: Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In our occasional series highlighting the increasingly important area of technology transfer and industrial spinoff from high energy physics, this month the CERN Courier focuses on TRIUMF in Vancouver, Canada's major national facility for research in subatomic physics, a particularly illustrative example of the rewards and challenges involved. TRIUMF is based on a 520 MeV negative hydrogen ion cyclotron meson factory operated by a consortium of Canadian universities. Although the primary funding from the Canadian government is earmarked for support of basic research, the laboratory has always fostered applications of the technologies available, supporting them with funds from other sources. At first this ''applied programme'' involved simply the provision of particle beams for other scientific, medical and industrial uses - protons for the development of neutrondeficient radioisotopes, neutrons for activation analysis, pions for cancer therapy, and muons for chemistry and condensed-matter physics. Twenty five years on, the technology transfer process has resulted not only in a significantly expanded internal applied programme, with many areas of activity quite independent of the big cyclotron, but also in a number of successful commercial operations in the Vancouver area. Radioisotope production has been a particularly fruitful source for technology transfer, the early development work leading to two important initiatives - the establishment of a commercial radioisotope production facility on site and the inauguration of a positron emission tomography (PET) program at the University of British Columbia nearby. In 1979 Atomic Energy of Canada Ltd's isotope production division (now Nordion International Inc.) decided to establish a western Canadian facility at TRIUMF, to produce the increasingly important neutron-deficient radioisotopes obtainable with accelerator beams, primarily for medical applications. This would complement their

  11. Technology transfer in CANDU marketing

    International Nuclear Information System (INIS)

    Pon, G.A.

    1982-06-01

    The author discusses how the CANDU system lends itself to technology transfer, the scope of CANDU technology transfer, and the benefits and problems associated with technology transfer. The establishment of joint ventures between supplier and client nations offers benefits to both parties. Canada can offer varying technology transfer packages, each tailored to a client nation's needs and capabilities. Such a package could include all the hardware and software necessary to develop a self-sufficient nuclear infrastructure in the client nation

  12. Technology transfer of Cornell university

    International Nuclear Information System (INIS)

    Yoo, Wan Sik

    2010-01-01

    This book introduces technology transfer of Cornell university which deals with introduction of Cornell university, composition of organization and practice of technology transfer : a research contract, research perform, invention report, evaluation and succession of invention, a patent application and management, marketing, negotiation and writing contract, management of contract, compensation, result of technology transfer, cases of success on technical commercialization and daily life of technology transfer center.

  13. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  14. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  15. 77 FR 55482 - Public Workshop on Marine Technology and Standards

    Science.gov (United States)

    2012-09-10

    ... Technology and Standards AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The American Society of...-day public workshop on marine technology and standards in Arlington, VA. This public workshop will...: The workshop will be held at The Double Tree by Hilton Hotel, in the Crystal City neighborhood of...

  16. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  17. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the 1993 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  19. A technology-enhanced patient case workshop.

    Science.gov (United States)

    Pai, Vinita B; Kelley, Katherine A; Bellebaum, Katherine L

    2009-08-28

    To assess the impact of technology-based changes on student learning, skill development, and satisfaction in a patient-case workshop. A new workshop format for a course was adopted over a 3-year period. Students received and completed patient cases and obtained immediate performance feedback in class instead of preparing the case prior to class and waiting for instructors to grade and return their cases. The cases were designed and accessed via an online course management system. Student satisfaction was measured using end-of-course surveys. The impact of the technology-based changes on student learning, problem-solving, and critical-thinking skills was measured and compared between the 2 different course formats by assessing changes in examination responses. Three advantages to the new format were reported: real-life format in terms of time constraint for responses, a team learning environment, and expedient grading and feedback. Students overwhelmingly agreed that the new format should be continued. Students' examination scores improved significantly under the new format. The change in delivery of patient-case workshops to an online, real-time system was well accepted and resulted in enhanced learning, critical thinking, and problem-solving skills.

  20. Proceedings of the 1995 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1995-04-01

    This report documents the Proceedings of the 1995 Oil Heat Technology Conference and Workshop, held on March 22-23 at Brookhaven National Laboratory (BNL), and sponsored by the U.S. Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the ninth held since 1984, is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: (1) Identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1995 Oil Technology Conference comprised: (a) three plenary sessions devoted to presentations and summations by public and private sector industry representatives from the United States, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. Individual reports presented at the conference have been processed separately for database entry.

  1. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  2. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  3. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  4. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  5. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  6. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

  7. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  8. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  9. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  10. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  11. Technological inductive power transfer systems

    Science.gov (United States)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  12. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda

  13. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  14. Proceedings of the 1996 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1996-07-01

    This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1996 Oil Technology Conference comprised: (a) fourteen technical papers, and (b) four workshops which focused on mainstream issues in oil-heating technology, namely: oilheat research agenda forum; fan atomized burner commercialization, applications, and product development; fuel quality, storage and maintenance--industry discussion; and application of oil heat venting tables, NFPA 31 standard. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Entrepreneurial separation to transfer technology.

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Richard R.

    2010-09-01

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  16. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  17. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  18. Technology transfer - the role of AEA Technology

    International Nuclear Information System (INIS)

    Hughes, A.E.; Bullough, R.; Mason, J.P.

    1989-01-01

    This paper concentrates mostly on examples of spin offs which have arisen from the more basic research carried out by the AEA. However, it should not be inferred from this that the only examples of successful technology transfer by the AEA are of a similar, often unforeseen nature. The most outstanding example of technology transfer by the AEA must surely be that achieved through the applied research which has enabled the establishment of a successful civil nuclear power programme in the UK. The natural transfer of technology here, achieved by virtue of the unique bridging position of the AEA with respect to universities and the nuclear industry, means that its success can easily be overlooked; to do so would be a mistake. However, by including spin off examples, we hope to illustrate how the AEA has also succeeded in bridging to more difficult areas where the special relationship which it shares with the nuclear industry is absent. (author)

  19. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  20. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  1. Proceedings -- US Russian workshop on fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Sylwester, A. [comps.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cell technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. International Workshop on Evidence-Based Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Marenzi, Ivana; Prieta, Fernando; Rodríguez, Juan

    2012-01-01

    Research on Technology Enhanced Learning (TEL) investigates how information and communication technologies can be designed in order to support pedagogical activities. The workshop proceedings collects contributions concerning evidence based TEL systems, like their design following EBD principles as well as studies or best practices that educators, education stakeholders or psychologists used to diagnose or improve their students' learning skills, including students with specific difficulties. The international ebTEL’12 workshop wants to be a forum in which TEL researchers and practitioners alike can discuss ideas, projects, and lessons related to ebTEL. The workshop takes place in Salamanca, Spain, on March 28th-30th 2012.  

  3. Workshop on Learning Technology for Education in Cloud

    CERN Document Server

    Rodríguez, Emilio; Santana, Juan; Prieta, Fernando

    2012-01-01

    Learning Technology for Education in Cloud investigates how cloud computing can be used to design applications to support real time on demand learning using technologies. The workshop proceedings provide opportunities for delegates to discuss the latest research in TEL (Technology Enhanced Learning) and its impacts for learners and institutions, using cloud.   The Workshop on Learning Technology for Education in Cloud (LTEC '12) is a forum where researchers, educators and practitioners came together to discuss ideas, projects and lessons learned related to the use of learning technology in cloud, on the 11th-13th July at Salamanca in Spain.

  4. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  5. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  6. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  7. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  8. WORKSHOP PROGRAMMING AS PART OF TECHNOLOGICAL PREPARATION OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    Tomáš Dodok

    2017-03-01

    Full Text Available The article deals with application of workshop programing system - Sinumerik Operate 840D SL in technological preparation of production. Application of system in real situation pointed out on several problems and disad-vantage of system. Article contains a comparison of the effectiveness between workshop programming, ISO programming, and CAM system programming. Sinumerik Operate was used as a control system at a milling machine EMCO Concept Mill 105.

  9. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  10. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  11. Technology Transfer and its effect on Innovation

    OpenAIRE

    Sen, Neelanjan

    2014-01-01

    This paper analyses technology transfer and innovation activities by the high cost firm in a Cournot duopoly framework, where technology transfer between the firms may occur after the innovation decision. The two effects of innovation are to access the superior technology of the low cost firm if higher cost prohibits technology transfer and to affect the pricing rule of technology transfer via higher bargaining power. The incentive for innovation is more in fixed-fee licensing than in two-par...

  12. Technology transfer and localization: A Framatome perspective

    International Nuclear Information System (INIS)

    Preneuf, R. de

    2000-01-01

    Localization and technology transfer have been important factors influencing the decision-making process in countries embarking on a nuclear power programme. It seems natural that relationships between donors and recipients of technology, beginning with sub-contracting, should evolve towards technology transfers and cooperation on an equal footing. France was both a receiver and a donor of technology transfer in the area of nuclear power. This paper describes the French experience in technology transfer and the lesson learned therefrom. (author)

  13. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

  14. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    International Nuclear Information System (INIS)

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  15. Project approach helps technology transfer

    International Nuclear Information System (INIS)

    Walcher, M.W.

    1982-01-01

    The placing of the contract by the National Power Corporation with Westinghouse for the Philippines nuclear power plant (PNPP-1) is described. Maximised use of Philippine contractors under Westinghouse supervision was provided for. Technology transfer is an important benefit of the contract arrangements, since National Power Corporation project management acquires considerable nuclear plant experience during plant construction through consultation with technical personnel. (U.K.)

  16. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  17. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  18. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  19. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  20. Bridging the Gap from Networking Technologies to Applications: Workshop Report

    Science.gov (United States)

    Johnson, Marjory J.; desJardins, Richard

    2000-01-01

    The objective of the Next Generation Internet (NGI) Federal program is threefold, encompassing development of networking technologies, high-performance network testbeds, and revolutionary applications. There have been notable advances in emerging network technologies and several nationwide testbeds have been established, but the integration of emerging technologies into applications is lagging. To help bridge this gap between developers of NGI networking technologies and developers of NGI applications, the NASA Research and Education Network (NREN) project hosted a two-day workshop at NASA Ames Research Center in August 1999. This paper presents a summary of the results of this workshop and also describes some of the challenges NREN is facing while incorporating new technologies into HPCC and other NASA applications. The workshop focused on three technologies - Quality of Service (QoS), advanced multicast, and security-and five major NGI application areas - telemedicine, digital earth, digital video, distributed data-intensive applications, and computational infrastructure applications. Network technology experts, application developers, and NGI testbed representatives came together at the workshop to promote cross-fertilization between the groups. Presentations on the first day, including an overview of the three technologies, application case studies and testbed status reports, laid the foundation for discussions on the second day. The objective of these latter discussions, held within smaller breakout groups, was to establish a coherent picture of the current status of the various pieces of each of the three technologies, to create a roadmap outlining future technology development, and to offer technological guidance to application developers. In this paper we first present a brief overview of the NGI applications that were represented at the workshop, focusing on the identification of technological advances that have successfully been incorporated in each

  1. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  2. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  3. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fernandez, Alisha R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modular hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.

  4. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and

  5. Technology Requirements For In Situ Decommissioning Workshop Report

    International Nuclear Information System (INIS)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-01-01

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private

  6. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  7. Computer-Assisted Language Learning : proceedings of the seventh Twente Workshop on Language Technology

    NARCIS (Netherlands)

    Appelo, L.; de Jong, Franciska M.G.

    1994-01-01

    TWLT is an acronym of Twente Workshop(s) on Language Technology. These workshops on natural language theory and technology are organised bij Project Parlevink (sometimes with the help of others) a language theory and technology project conducted at the Department of Computer Science of the

  8. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  9. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  10. Transfer of technology; communicating helps

    Science.gov (United States)

    Poolman, M. I.

    2009-04-01

    How water resources technology and knowledge can or should be transferred has been subject to a number of paradigm shifts. There were shifts between believing that water-users were ignorant to believing in the need to stimulate water-users' participation in water-system design. Participation in design is viewed to enhance water-users' competence in and willingness to maintain water resources infrastructure. However, there are many different parties involved in design, all with different interests and backgrounds. This research therefore focuses on developing a methodology with which water-users, local supporting institutions and researchers could develop a basis for common dialogue when discussing redesign of small water systems. During the development of this methodology discussions between the stakeholders showed that one obstacle towards using the water to its full potential is caused by infrastructural problems that hinder water storage and transportation. Assessment of a water resource should therefore not look only at the (potential) value of water, but also at the (potential) value of the storage and transportation infrastructure that enables use of water. Results so far also show that redesign of water systems to enhance the productivity of water was not necessarily related to the viewed value of water by stakeholders, but to the possibility of stakeholders to invest in or to find ways to stimulate investment in the infrastructure. Thereby it was also concluded that investments in transferring understanding about use and maintenance of the infrastructure means investing in stakeholder communication that enable all stakeholders to express their views about the use of, maintenance of and investment in technology.

  11. science, technology and environment: interchange workshops ...

    African Journals Online (AJOL)

    education' and opened discussions on how the three developing concerns emerged as differing disciplines, environmental education, science education and technology education, amongst specialist curriculum development initiatives. After introductory remarks on the interchange theme by Rob O'Donoghue (Natal Parks ...

  12. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, S. [ed.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  13. Fly-By-Light/Power-By-Wire Requirements and Technology Workshop

    Science.gov (United States)

    Baker, Robert L. (Editor); Pitts, Felix L. (Editor)

    1992-01-01

    The results of the Fly-By-Light/Power-By-Wire (FBL/PBW) Workshop held on March 17-19, 1992, at the NASA Langley Research Center are presented. The FBL/PBW program is a joint NASA LeRC/LaRC effort to develop the technology base for confident application of integrated FBL/PBW systems to transport aircraft. The objectives of the workshop were to ascertain the FBL/PBW program technical requirements and satisfy the requirements and needs from the industry viewpoint, provide a forum for presenting and documenting alternative technical approaches which satisfy the requirements, and assess the plan adequacy in accomplishing plan objectives, aims, and technology transfer. Areas addressed were: optical sensor systems, power-by-wire systems, FBL/PBW fault-tolerant architectures, electromagnetic environment assessment, and system integration and demonstration. The workshop consisted of an introductory meeting, a 'keynote' presentation, a series of individual panel sessions covering the above areas, with midway presentations by the panel chairpersons, followed by a final summarizing/integrating session by the individual panels, and a closing plenary session summarizing the results of the workshop.

  14. SWAMI II technology transfer plan

    International Nuclear Information System (INIS)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-01-01

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection

  15. Report on a workshop on the measurement of soils to plant transfer factors for radionuclides

    International Nuclear Information System (INIS)

    1982-01-01

    This report includes the proceedings of the workshop on soil-plant transfer factors of radionuclides. Part 1 deals with a general introduction of soil-plant transfer factors, recommendations for the determination of these transfer factors and computer listing of transfer factors specified according to nuclide; type of crop; type of soil; and type of experiment. The second part offers the 12 contributions presented, of which several are included in INIS separately. (G.J.P.)

  16. 8th Cambridge Workshop on Universal Access and Assistive Technology

    CERN Document Server

    Lazar, Jonathan; Heylighen, Ann; Dong, Hua

    2016-01-01

    This book presents the proceedings of the 8th Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT '14), incorporating the 11th Cambridge Workshop on Rehabilitation Robotics, held in Cambridge, England in March 2016. It presents novel and state-of-the-art research from an international group of leaders in the fields of universal access and assistive technology. It explores various issues including the reconciliation of usability, accessibility and inclusive design, the design of inclusive assistive and rehabilitation systems, measuring product demand and human capabilities, data mining and visualizing inclusion, legislation in inclusive design, and situational inclusive interfaces (automotive and aerospace). This book provides an invaluable resource to researchers, postgraduates, design practitioners, therapists and clinical practitioners, as well as design teachers.

  17. 7th Cambridge Workshops on Universal Access and Assistive Technology

    CERN Document Server

    Lazar, J; Heylighen, A; Dong, H; Inclusive Designing : Joining Usability, Accessibility, and Inclusion

    2014-01-01

    ‘Inclusive Designing’ presents the proceedings of the seventh Cambridge Workshop on Universal Access and Assistive Technology (CWUAAT '14). It represents a unique multi-disciplinary workshop for the Inclusive Design Research community where designers, computer scientists, engineers, architects, ergonomists, policymakers and user communities can exchange ideas. The research presented at CWUAAT '14 develops methods, technologies, tools and guidance that support product designers and architects to design for the widest possible population for a given range of capabilities, within a contemporary social and economic context. In the context of developing demographic changes leading to greater numbers of older people and people with disabilities, the general field of Inclusive Design Research strives to relate the capabilities of the population to the design of products. Inclusive populations of older people contain a greater variation in sensory, cognitive and physical user capabilities. These variations may be...

  18. BCI meeting 2005--workshop on technology: hardware and software.

    Science.gov (United States)

    Cincotti, Febo; Bianchi, Luigi; Birch, Gary; Guger, Christoph; Mellinger, Jürgen; Scherer, Reinhold; Schmidt, Robert N; Yáñez Suárez, Oscar; Schalk, Gerwin

    2006-06-01

    This paper describes the outcome of discussions held during the Third International BCI Meeting at a workshop to review and evaluate the current state of BCI-related hardware and software. Technical requirements and current technologies, standardization procedures and future trends are covered. The main conclusion was recognition of the need to focus technical requirements on the users' needs and the need for consistent standards in BCI research.

  19. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    Science.gov (United States)

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  20. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  1. A dynamic approach to technology transfer

    International Nuclear Information System (INIS)

    Shave, D.F.; Kent, G.F.; Giambusso, A.; Jacobs, S.B.

    1987-01-01

    Stone and Webster Engineering Corporation has developed a systematic program for achieving efficient, effective technology transfer. This program is based on transferring both know-why and know-how. The transfer of know-why and know-how is achieved most effectively by working in partnership with the recipient of the technology; by employing five primary transfer mechanisms, according to the type of learning required; by treating the technology transfer as a designed process rather than an isolated event; and by using a project management approach to control and direct the process. This paper describes the philosophy, process, and training mechanisms that have worked for Stone and Webster, as well as the project management approach needed for the most effective transfer of technology. (author)

  2. BUSINESS MODELS FOR INCREASING TECHNOLOGICAL TRANSFER EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Simina FULGA

    2016-05-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer organizations (centers from ReNITT, by using the specific instruments of Business Model Canvas, associated to the technological transfer value chain for the value added services addressed to their clients and according to a continuously improved competitive strategy over competition analysis.

  3. Partnering Events | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  4. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  5. Workshop on technology issues of superconducting Maglev transportation systems

    International Nuclear Information System (INIS)

    Wegrzyn, J.E.; Shaw, D.T.

    1991-01-01

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration

  6. Workshop on technology issues of superconducting Maglev transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wegrzyn, J.E. (Brookhaven National Lab., Upton, NY (United States)); Shaw, D.T. (New York State Inst. of Superconductivity, Buffalo, NY (United States))

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  7. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  8. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  9. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...... are able to upgrade their ‘dynamic capabilities’. It uses three indicators of firms’ dynamic capabilities: R&D expenditures to sales ratio, fuel consumption to sales ratio and total factor productivity growth. Secondly, it moves away from the analysis of technology transfer claims made in either Project...

  10. Development of nuclear technology transfer - Korea as a recipient

    International Nuclear Information System (INIS)

    Sung, N.C.

    1988-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigenous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turn-key approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented

  11. Technology Transfer in Digital Era: Legal Environment

    Directory of Open Access Journals (Sweden)

    Ivan Anatol’yevich Bliznets

    2018-03-01

    Full Text Available The spread of disruptive technology in the digital era is the ruling condition of modern sustainable development. The authors proceed from the fact that legal tools for the creation and use, protection of advanced technologies provide the technology transfer process from the owner to interested parties for further practical, commercial application or further improvement. The article analyzes the legal positions of the concept of technology, legal ways to use modern technologies, stages of their implementation and practical application. In the innovation process legal mechanism in combination with the modern means of innovative development stimulates the creation and transfer of new technologies and at the same time it is a key factor for sustainable development in the context of modern digital technology revolution. In the modern digital revolution, the technology transfer acquires new features and ways for the dissemination of technical innovation, which creates new challenges for legal theory and practice, and legal tools should meet the challenges of the time.

  12. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  13. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    Science.gov (United States)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  14. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  15. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  16. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  17. Workshop to transfer VELMA watershed model results to ...

    Science.gov (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  18. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  19. Preface: Workshop on Off-Grid Technology Systems

    Science.gov (United States)

    Alonso-Marroquin, Fernando

    2017-06-01

    Off-grid houses are dwellings that do not rely on water supply, sewer, or electrical power grid, and are able to operate independently of all public utility services. These houses are ideal for remote communities or population suffering natural or human-made disasters. Our aim is to develop compact and affordable off-grid technologies by integrating high-end nano-engineering with systems that imitates natural biological processes. The key areas of focus in the workshop were: solar energy harvesting using nanotechnology, wind energy harvesting from vertical-axis wind turbines, supercapacitors energy storage systems, treatment of greywater, and green roofs to achieve air comfort.

  20. Transfer of heat pump technology

    Science.gov (United States)

    Broders, Martin A.

    1990-02-01

    The traveler participated in the activities of the first meeting of the IEA Heat Pump Center National Team Working Group. The meeting provided a forum for National Team representatives from seven participating countries to share information about their respective National Team organization, activities and priorities; and the status of heat pumps in their countries. Particular attention was given to discussion of topics and content of future IEA-HPC Newsletters, analysis studies and workshops. In-depth, follow-up discussions of U.S. National Team activities with both the IEA-HPC and IEA-CADDET were held with staff personnel at the operating agent Netherlands Agency for Energy and the Environment (NOVEM) headquarters in Sittard, The Netherlands.

  1. 76 FR 32993 - Toward Innovative Spectrum-Sharing Technologies: A Technical Workshop on Coordinating Federal...

    Science.gov (United States)

    2011-06-07

    ... Broadband Revolution. WSRD-SSG operates under the auspices of the Networking and Information Technology... NATIONAL SCIENCE FOUNDATION Toward Innovative Spectrum-Sharing Technologies: A Technical Workshop... Office (NCO) for Networking and Information Technology Research and Development (NITRD). ACTION: Notice...

  2. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  3. Technology Transfers for Climate Change

    OpenAIRE

    May Elsayyad; Florian Morath

    2013-01-01

    This paper considers investments in cost-reducing technology in the context of contributions to climate protection. Contributions to mitigating climate change are analyzed in a two-period model where later contributions can be based on better information, but delaying the contribution to the public good is costly because of irreversible damages. We show that, when all countries have access to the new technology, countries have an incentive to invest in technology because this can lead to an e...

  4. Distance technology transfer course content development.

    Science.gov (United States)

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  5. Risk Management in Biologics Technology Transfer.

    Science.gov (United States)

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  6. Technology Transfer: Creating the Right Environment.

    Science.gov (United States)

    McCullough, John M.

    2003-01-01

    Small and medium-sized enterprises are considered to be the backbone of many European economies and a catalyst for economic growth. Universities are key players in encouraging and supporting economic growth through technology and knowledge-related transfer. The right environment to foster transfer is a proactive culture. (Contains 22 references.)…

  7. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  8. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  9. Highlighting the Transfer, Honors, and Excellence Workshop. CSCC Bulletin, Issue 7, 1983.

    Science.gov (United States)

    Center for the Study of Community Colleges, Los Angeles, CA.

    Summaries are provided for the major presentations given at a workshop on honors, transfer, and excellence, held in Los Angeles in October 1982. Following a brief overview of the main topics covered, highlights are presented from the talks of: (1) Robert McCabe, president of Miami-Dade Community College (MDCC), who urged participants to set high…

  10. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  11. Workshop

    DEFF Research Database (Denmark)

    Hess, Regitze; Lotz, Katrine

    2003-01-01

    Program for en arkitektur-workshop med focus på de danske havne. Præsentation af 57 yngre danske og internationale deltagende arkitekter.......Program for en arkitektur-workshop med focus på de danske havne. Præsentation af 57 yngre danske og internationale deltagende arkitekter....

  12. 75 FR 9007 - National Science and Technology Council, Committee on Technology Capstone Workshop Risk...

    Science.gov (United States)

    2010-02-26

    ... Technology Capstone Workshop Risk Management Methods & Ethical, Legal, and Societal Implications of... and Ethical, Legal, and Societal Implications (ELSI) of Nanotechnology. Risk Management Methods is one... electronic comments should be submitted by e-mail to [email protected] until April 30, 2010. Information...

  13. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Understanding the CDM's contribution to technology transfer

    International Nuclear Information System (INIS)

    Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.

    2008-01-01

    Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations

  15. Transfer of space technology to industry

    Science.gov (United States)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  16. NASA partnership with industry: Enhancing technology transfer

    Science.gov (United States)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  17. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  18. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  19. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  20. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Workshop: Preserving competence in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Steinwarz, Wolfgang

    2017-10-15

    On the 19{sup th} workshop ''Preserving Competence in Nuclear Technology'' 17 young scientists presented the results from their thesis work for a diploma, mastership or a PhD covering a broad spectrum of technical areas. This demonstrated again the strong engagement of the younger generation for the nuclear technology and the significant support by the involved German institutions. The jury awarded Thomas Schaefer (Helmholtz-Zentrum Dresden- Rossendorf) with the Siempelkamp Competence Price 2017.

  1. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  2. Technical workshop on safeguards, verification technologies, and other related experience

    International Nuclear Information System (INIS)

    1998-01-01

    The aim of the Technical Workshop on safeguards was to encourage a clearer understanding of the IAEA Safeguards System, its origins and evolution and the present state of the art. Presentations held by the IAEA officials and outside experts examined as well other components of the non-proliferation regime, the current practices and procedures, and the future prospects. A series of presentations described the characteristics of the interaction between global and regional verification systems and described relevant past and present experience. Prominence given to such state of the art verification technologies as environmental sampling, satellite imaging and monitoring thorough remote and unattended techniques demonstrated, beyond any doubt, the essentially dynamic nature of verification. It is generally acknowledged that there have been major achievements in preventing spread of nuclear weapons, but no verification system can in itself prevent proliferation

  3. Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2018-01-01

    A workshop on assessment of battery technologies for future aerospace applications was held in Cleveland, OH on August 16-17. The focus of the workshop, hosted by NASA GRC, was to assess (1) the battery needs for future aerospace missions, (2) the state of battery technology and projected technology advances, and (3) the need for additional investments for future aerospace missions. The workshop had 109 attendees that included internationally recognized technology leaders from academia and national laboratories, high level executives from government and industry, small businesses, and startup companies. A significant portion of the workshop was focused on batteries for electrified aircraft. The presentation will summarize the finding on the state of battery technologies for electrified aircraft and will include assessment of current state of battery technology, gaps in battery technology for application in electrified aircraft, and recommended technology development options for meeting near-term and long-term needs of electrified aircraft.

  4. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  5. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  6. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  7. People transfer-sinequanon for nuclear technology transfer

    International Nuclear Information System (INIS)

    Ahmed, M.

    1977-01-01

    The main obstacles facing the developing countries which wish to adopt sophisticated nuclear technology can be the following: lack of trained personnel, lack of entrepreneurs and capital, and bureaucracy. Of these the greatest problem is undoubtedly the lack of trained manpower. Urgently required skilled manpower may be obtained through training of selected persons in foreign countries on a crash program of nuclear energy. Exchange of expertise can also take place among the developing countries themselves. Another problem particularly peculiar to the poor developing countries is the lack of entrepreneurs and capital. It therefore becomes necessary to attract entrepreneurs from abroad with all the benefit of managerial know-how and capital transfer that it entails. Exchange of scientist, teachers, managerial and administrative personnel between the developed and developing countries and also among the developing countries themselves is therefore essential for an effective transfer of nuclear technology

  8. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  9. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  10. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    , the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and

  11. Implications of the Acquisition and Transfer of Technology | Opafola ...

    African Journals Online (AJOL)

    Acquisition and transfer of technology presupposes the acquisition and transfer of scientific and technological knowledge. I recognize and draw attention to the difference between acquiring and transferring scientific and technological knowledge, and acquiring and transferring technology. They are related. However, they ...

  12. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  13. Technology transfer, a two-way street

    International Nuclear Information System (INIS)

    Martin, H.L.

    1994-01-01

    Technology transfer through the Pollution Prevention ampersand Control Conferences, which have been cosponsored by the Environmental Protection Agency and by the professional societies of industry, greatly improved the environmental projects of the Department of Energy at Savannah River Site (SRS) in the mid-1980's. Those technologies, used in the liquid effluent treatment of the metal finishing liquid effluents from aluminum cleaning and nickel plating of fuel and targets for the nuclear production reactors, have been enhanced by the research and development of SRS engineers and scientists. The technology transfer has now become a two-way street to the benefit of our Nation's environment as these enhancements are being adopted in the metal finishing industry. These success stories are examples of the achievements anticipated in the 1990's as technology development in the federal facilities is shared with commercial industry

  14. Cyber Science, Biometrics and Digital Forensics: Workshop on Emerging Cyber Techniques and Technologies

    Science.gov (United States)

    2016-09-07

    journals : Final Report Proceedings: Cyber Science, Biometrics and Digital Forensics: Workshop on Emerging Cyber Techniques and Technologies Report...and Digital Forensics. Through this one-day workshop, over fifteen feature presentations were made and the group held two Panels to discuss...09-2016 10-Jul-2015 9-Jul-2016 Final Report Proceedings: Cyber Science, Biometrics and Digital Forensics: Workshop on Emerging Cyber Techniques and

  15. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  16. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  17. Research Funding, Patent Search Training and Technology Transfer: a collaboration

    KAUST Repository

    Tyhurst, Janis

    2016-01-01

    This paper will focus on the collaboration efforts of three different university departments to create, teach and evaluate the benefits of a joint patent training series, as well as the future directions this collaboration will take. KAUST has as one of its goals the diversification of the Saudi economy. There is a strong focus at the university on developing entrepreneurial ideas and commercializing research done. The University Library supports this goal through the provision of electronic resources and introductory patent search training skills. However, the patent training class offered by the University Library is only one step in a process that faculty and students need when starting or taking their research to the next level. In the Fall of 2015, I met with representatives of the two major stakeholders in the patent arena, the office of Sponsored Research (OSR) and the Technology Transfer Office (TTO), to develop a patent training program to meet the needs of researchers. The OSR provides funding to researchers who have demonstrated that their ideas have merit with potential applications, the TTO works with researchers who are at the point of needing IP protection. The resulting discussion led us to collaborate on creating a workshop series that benefit the researcher’s information needs and each of our departments as well. In the first of the series of three 2 hour workshops, the Manager of TTO and the Lead Integrative Specialist from the OSR presented a workshop on an overview of Intellectual Property and the patenting process. These presentations focused on when and how to determine whether research is potentially patentable, why a researcher needs to protect his/her research and how to go about protecting it. The second workshop focused on introductory patent search skills and tools, how to expand a literature search to include the information found in patents, and how this kind of research will improve not only the literature search but the research

  18. Assessing technology transfer in the Clean Development Mechanism

    OpenAIRE

    Cools, Sara Lena Yri

    2007-01-01

    This paper presents an operational definition of technology transfer, to be applied in studies of technology transfer in projects under the Kyoto Protocol’s Clean Development Mechanism (CDM). Although the CDM has never been given an explicit mandate for transferring technologies, its contribution in this respect has both been hoped for and exacted. The discussions of technology transfer in CDM projects are however blurred by widely varying conceptions of what technology transfer is. Qu...

  19. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available -economic opportunities. It concludes by emphasing that a strategy to promnote technology innovation and transfer is required before tapping into, and adding value to, the local input in order that international co-operation and partnerships are adavanced and can...

  20. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... This paper, discusses the impact of oligopolistic research on transfer of global pharmaceutical manufacturing technology to the less developed countries of the South (Nigeria) in post globalism. On the basis of empirical evidence from the advanced industrialized world, it is argued that the growth of.

  1. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the long-run equilibrium relationship between various international factors and economic growth, as well as to assess the short-term impact of inward FDI, trade and economic growth on international technology transfer to Nigeria. To achieve this, the study used a time series data from ...

  2. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    2015-05-29

    May 29, 2015 ... Awosusi and Awolusi: Foreign Direct Investment and Economic Growth in Nigeria development ... (Saggi 2002) of international technology transfer, domestic investment, and growth is imperative, hence, the .... developing countries to draw upon the stock of knowledge created by their innovations. Contrary ...

  3. Advancing Green Economy through Technology Transfer ...

    African Journals Online (AJOL)

    We recommend increased knowledge-sharing to popularise the integration of green economy measures into poverty alleviation projects. This can be accomplished through both technical and educational study visits to the technology transfer projects, documenting practical, locally generated sustainable ideas, and ...

  4. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  5. Enterprise Systems and Technology, Proceedings of the 2nd International Workshop on Enterprise Systems and Technology - I-WEST 2008

    NARCIS (Netherlands)

    Cordeiro, J.; van Sinderen, Marten J.; Shishkov, Boris

    This volume contains the proceedings of the Second International Workshop on Enterprise Systems and Technology (I-WEST 2008), held on May 23 in Enschede, The Netherlands. The I-WEST workshop is a scientific event of IICREST, the Interdisciplinary Institute for Collaboration and Research on

  6. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rooney, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  7. Proceedings of the 1st Workshop on Technology Support for Self-Organized Learners

    NARCIS (Netherlands)

    Kalz, Marco; Koper, Rob; Hornung-Prähauser, Veronika; Luckmann, Michaela

    2008-01-01

    Kalz, M., Koper, R., Hornung-Prähauser, V., & Luckmann, M. (Eds.) (2008). Proceedings of the 1st Workshop on Technology Support for Self-Organized Learners. June, 2-3, 2008, Salzburg, Austria: CEUR Workshop Proceedings, ISSN 1613-0073. Available at http://ceur-ws.org/Vol-349.

  8. An AHP-based evaluation method for teacher training workshop on information and communication technology.

    Science.gov (United States)

    Lucas, Rochelle Irene; Promentilla, Michael Angelo; Ubando, Aristotle; Tan, Raymond Girard; Aviso, Kathleen; Yu, Krista Danielle

    2017-08-01

    The emergence of information and communication technology (ICT) has created opportunities for enhancing the learning process at different educational levels. However, its potential benefits can only be fully realized if teachers are properly trained to utilize such tools. The rapid evolution of ICT also necessitates rigorous assessment of training programs by participants. Thus, this study proposes an evaluation framework based on the Analytic Hierarchy Process (AHP) to systematically evaluate such workshops designed for teachers. The evaluation model is decomposed hierarchically into four main criteria namely: (1) workshop design, (2) quality of content of the workshop, (3) quality of delivery of the content of the workshop, and the (4) relevance of the workshop. These criteria are further disaggregated into 24 sub-indicators to measure the effectiveness of the workshop as perceived by the participants based on their own expectations. This framework is applied to a case study of ICT workshops done in the Philippines. In this case, relevance of the workshop is found to be the most important main criterion identified by the participants, particularly on the new ICT knowledge that promotes teachers' professional growth and development. The workshop evaluation index (WEI) is also proposed as a metric to support decision-making by providing a mechanism for benchmarking performance, tracking improvement over time, and developing strategies for the design and improvement of training programs or workshops on ICT for teachers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. International exchange project for the engineer exchange project (in coal mine technology area) in fiscal 1998. Overseas workshop; 1998 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The international exchange project for the engineer exchange project (in coal mine technology area) in fiscal 1998, the 'Overseas workshop' has performed exchange in technologies with Australian coal mine engineers. The project refers to the Australian technological levels and needs in coal production, safety control and environment, as well as transfer of the Japanese coal mine technologies. This report summarizes the result of a survey on the engineer exchange project in the coal mine technology area and the possibility of joint researches. The 'overseas workshop' was held in November 1998 for two days in Brisbane City in QLD Province as the 'Japan-Australia coal technology workshop'. The 'Japan-Australia coal technology workshop' gave lectures in five sessions (the basic lecture, Japan-Australia high-speed excavation project, coal mine gas control project, exploration and resources, and development and experience of Japan). It also discussed two themes (mine safety management and rules, and greenhouse effect gases and coal mining). Two coal mines were visited thereafter to deepen the exchange with the Australian coal mine engineers. (NEDO)

  10. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  11. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  12. Course workshop for teachers Nuclear energy in education: A didactic focus, an interactive approach with contributions from the new communications and information technologies

    International Nuclear Information System (INIS)

    Perez Matzen, Claudio; Herrera Carmona, Erik

    2000-01-01

    A teacher education activity is describes, a course-workshop with a mixed interactive approach, N uclear Energy in Education: A Didactic Focus , which was undertaken from July to October 2000 from Region III to X in Chile, in university rooms with video-conferencing and with Internet communications support. It is a course-workshop that uses the new information and communications (NTIC) technologies to present and discuss the peaceful uses of nuclear energy, as crossover curricular content that exemplifies the relationships between science, technology and society, while presenting methodological proposals for transferring the contents and activities to the Educational System's primary and secondary levels

  13. Urban development applications project. Urban technology transfer study

    Science.gov (United States)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  14. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  15. Proceedings of the 2nd Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL 2012)

    NARCIS (Netherlands)

    Manouselis, Nikos; Drachsler, Hendrik; Verbert, Katrien; Santos, Olga

    2012-01-01

    Manouselis, N., Drachsler, H., Verbert, K., & Santos, O. C. (Eds.) (2012). Proceedings of the 2nd Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL 2012). Published by CEUR Workshop Proceedings, 2012, Vol. 896.

  16. 2010 annual meeting on nuclear technology. Workshop on ''Preservation of competence in nuclear technology''

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang

    2010-01-01

    Within the two-day workshop on ''Preservation of Competence in Nuclear Technology'', 21 young scientists competed for the ''Competence Prize'' awarded by Siempelkamp Nukleartechnik for the twelfth time. They reported about their term papers, diploma or doctoral theses focusing on reactor technology and reactor safety, the development of innovative reactor systems, and waste management. For the first time, contributions this year were presented also from the field of radiation protection. The jury composed of Prof. T. Schulenberg (Karlsruhe Institute of Technology), Prof. M.K. Koch (Ruhr University, Bochum), and Dr. W. Steinwarz (Siempelkamp Nukleartechnik) assessed the advance compacts as well as the oral presentations. The winner of the 2010 Competence Prize is Heiko Herbell of the Karlsruhe Institute of Technology. Cornelia Heintze of the Dresden-Rossendorf Research Center, and Carola Hartel of the GSI Helmholtz Center for Heavy Ion Research won the second and third prizes. (orig.)

  17. Technology transfers, foreign investment and productivity spillovers

    OpenAIRE

    NEWMAN, CAROL

    2015-01-01

    PUBLISHED This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers fr...

  18. Evaluation of the Transfer of Permanent Formation: Analysis of an Experience of Workshops on Astronomy

    Science.gov (United States)

    Cano, Elena; Fabregat, Jaime; Ros, Rosa M.

    2016-08-01

    In the framework of a European project to bring astronomy near to children, several permanent teachers training activities were developed. These actions included workshops with teachers from various stages of the educational system. This paper presents the process and results of the evaluation of that training program. It intends to assess the satisfaction of the participants, as well as their learning and their later transfer of formation to the classroom. Barriers encountered in the transfer of formation, some of them linked to the type of training method chosen and other factors derived from personal and institutional conditions, are outlined. Finally, some guidelines for improving the transfer of scientific formation to the classroom in the future are pointed out.

  19. Technology transfer in Activities Implemented Jointly (AIJ)

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P.E.O. [United Nations Environment Programme (Cayman Islands)

    1998-08-01

    The agreed objective of the United Nations Framework Convention on Climate Change is to bring about early and significant reductions in greenhouse gas emissions. For many, the most attractive option for promoting this end is joint implementation. Indivisible from this is the transfer of current and innovative technology, though technology transfer is not conditional on joint implementation. The somewhat ad hoc nature of Activities Implemented Jointly (AIJ) and the failure to establish ground rules at the outset is considered. Common action can contribute to cost-effective mitigation of climate change through a sharing of the costs, benefits and risks of R and D, cross fertilisation of ideas among countries, economies of scale for new technologies, and clear signals to the international market. Potential problems include: the reluctance of national private industry to share proprietary information which might compromise competitiveness; premature convergence on technical standards that might inhibit the emergence of more developed technology; specific national circumstances which mean that solutions satisfactory to others are inappropriate in its case. This latter issue is of particular relevance to developing countries. AIJ needs to be approached in a systematic way taking into account lessons learned from evaluating the pilot phase if it is to be seen to be working effectively. (UK)

  20. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  1. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  2. 2012 annual meeting on nuclear technology. Workshop on 'Preservation of competence in nuclear technology'

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang

    2012-01-01

    Within the 2-day workshop on 'Preservation of Competence in Nuclear Technology,' 31 young scientists competed for the 'Competence Prize' awarded by Siempelkamp Nukleartechnik for the 14th time. They reported about their papers focusing on nuclear technology, reactor technology, innovative reactor systems, radioactive waste management, radiological protection and energy supply systems. The jury composed of Prof. J. Starflinger (Universitaet Stuttgart, IKE), Prof. M.K. Koch (Ruhr-Universitaet Bochum, LEE), and Dr. W. Steinwarz (Siempelkamp Nukleartechnik) assessed the advance compacts as well as the oral presentations. The winner of the 2012 Competence Prize is Dipl.-Ing.(M.S.) Thomas M. Fesich (University Stuttgart). Dr.-Ing. Oliver Czaikowski (Techn. University Clausthal) and Dipl.-Ing. Mario Kuschewski (Universitaet Stuttgart) won the second and third prizes. (orig.)

  3. Proceedings of a workshop on American Eel passage technologies

    Science.gov (United States)

    Haro, Alexander J.

    2013-01-01

    can effectively pass thousands of individuals in a season (Appendix D). technologies for preventing impingement and entrainment mortality and injury of downstream migrant eels at hydropower projects are not well developed. Traditional downstream fish passage mitigative techniques originally developed for salmonids and other species are frequently ineffective passing eels (Richkus and Dixon 2003, EPRI 2001, Bruijs and Durif 2009). Large hydropower projects, with high project flows or intake openings that cannot be fitted with racks or screens with openings small enough to exclude eels, pose significant passage problems for this species, and turbine impingement and entrainment mortality of eels can be as high as 100%. Spill mortality and injury may also be significant for eels, given their tendency to move during high flow events when projects typically spill large amounts of flow. Delays in migration of eels that have difficulty locating and utilizing bypass entrances can also be significant. Therefore, downstream passage technologies are at a much more nebulous state of development than upstream passage technologies, and require further evaluation and improvement before rigorous design guidelines can be established. There have been few studies conducted to evaluate effectiveness of current mitigative measures for both upstream and downstream passage of eels. Research is needed to determine eel migratory timing, behavior, and appropriate mitigation technologies for specific sites and eel life history stages. Both upstream and downstream eel passage structures can be difficult to evaluate in terms of performance, and examples of how evaluation and monitoring can be accomplished were reviewed at the workshop.

  4. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  5. Workshop on Direct Contact Heat Transfer at the Solar Energy Research Institute

    CERN Document Server

    Boehm, R

    1988-01-01

    to increase the use of direct contact processes, the National Science Foundation sup­ ported a workshop on direct contact heat transfer at the Solar Energy Research Insti­ tute in the summer of 1985. We served as organizers for this workshop, which em­ phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi­ tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten­ tial that could be realized if the information to be obtained through the proposed research activities were available.

  6. The Change Book: A Blueprint for Technology Transfer.

    Science.gov (United States)

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  7. 76 FR 52670 - 2011 Technology Transfer Summit North America Conference

    Science.gov (United States)

    2011-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health 2011 Technology Transfer...: Notice of Conference. SUMMARY: The NIH Office of Technology Transfer extends invitations to attend the 2011 Technology Transfer Summit North America Conference. DATES: October 3-4, 2011. ADDRESSES: NIH...

  8. Technology transfer from research and development to European industry

    International Nuclear Information System (INIS)

    Conrads, H.; Theenhaus, R.

    1989-01-01

    This paper gives an overview of technology transfer, i.e. the transfer of knowledge, insights and technologies from research and development to practical application, especially in the Federal Republic of Germany. Some examples and perspectives of technology transfer for nuclear fusion are given. (author). 7 refs.; 5 figs

  9. 48 CFR 970.5227-3 - Technology transfer mission.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  10. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  11. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  12. Introduction to geospatial semantics and technology workshop handbook

    Science.gov (United States)

    Varanka, Dalia E.

    2012-01-01

    The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.

  13. Technology transfer in the Spanish nuclear programme

    International Nuclear Information System (INIS)

    Perez-Naredo, F.

    1983-01-01

    The paper describes the process of technology transfer under the Spanish nuclear programme and its three generations of nuclear power plants during the last 20 years, with special reference to the nine new plants equipped with Westinghouse pressurized water reactors and the rising level of national involvement in these stations. It deals with the development of Westinghouse Nuclear's organization in Spain, referring to its staff and to the manufacturers who supply equipment for the programme, going into particular detail where problems of quality assurance are concerned. In conclusion, it summarizes the present capacity of Spanish industry in various areas connected with the design, manufacture and construction of nuclear power plants. (author)

  14. Results of the joint ESARDA/INMM workshop on science and modern technology for safeguards

    International Nuclear Information System (INIS)

    Stein, G.; Dupree, S.; Sonnier, C.

    1997-01-01

    The Joint ESARDA/INMM Workshop on Science and Modem Technology for Safeguards was held in Arona, Italy, October 28-31, 1996. It was attended by some 120 participants, consisting principally of scientists from various disciplines and safeguards experts from the inspectorates. The Workshop provided a full discussion on the near and far term scientific technologies that may be applied to safeguards. In addition, there were extended discussions on the social and political aspects surrounding the areas of Nonproliferation, International Safeguards, and Regional Safeguards. The general opinion was that the Workshop met and exceeded its goals, setting the stage for future workshops of this type. One of the outstanding characteristics of this Workshop was the ample amount of time allowed for full discussion of each presentation, both for technical issues and social/political issues. This procedure was substantially different from the usual ESARDA and INMM meetings. This paper will discuss the organization and conduct of the Workshop, as well as the results as reported by the four Working Group Chairs and the Workshop Co-chairs

  15. Workshop on nuclear technology: A joint effort between ANS and the University of Massachusetts-Lowell

    International Nuclear Information System (INIS)

    Brown, G.J.; McDevitt, M.A.; Schmidt, D.

    1992-01-01

    The University of Massachusetts Lowell (UML) (formerly University of Lowell) sponsored, along with the American Nuclear Society (ANS), a 5-day workshop entitled 'Understanding and Teaching about Nuclear Technology and Its Place in Our Society.' More than 30 middle and high school teachers from the New England area (Connecticut, New Hampshire, and Massachusetts) attended the workshop, which was held June 24 through 28, 1991. Based on this experience, and with the expectation of replicating if not improving upon initial success, plans are now under way to offer a similar workshop at UML from June 29 through July 3, 1992

  16. Freeway bottleneck removals : workshop enhancement and technology transfer.

    Science.gov (United States)

    2009-12-01

    As transportation improvement projects become increasingly costly and complex and as funding sources are not : keeping pace with needs in highly urbanized areas, it becomes critical that existing freeway systems be finetuned to : maximize capacity...

  17. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  18. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    This study examines how inter-firm heterogeneities in technology modes and intensities are linked to ownership of firms in India, using a panel dataset of 2000 odd Bombay Stock Exchange listed firms for the period from 2003 to 2014 drawn from the PROWESS database of CMIE. For the analysis, foreign...... ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008......-2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...

  19. Third international spent fuel storage technology symposium/workshop: proceedings. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 2 contains the papers from the poster session and workshops that were conducted during the meeting. There were 18 poster presentations. Four workshops were held: Fuel Integrity; Storage System Modeling and Analysis; Rod Consolidation Technology; and System Integration and Optimization. Individual papers were processed for inclusion in the Energy Data Base

  20. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  1. Progress in cassava technology transfer in Uganda

    OpenAIRE

    Otim-Nape, G. W.; Bua, A.; Thresh, J. M.

    1997-01-01

    This publication contains the full text of papers presented at a Workshop held in Masindi, Uganda, 9-12 January 1996, and sponsored by the Gatsby Charitable Foundation. During the Workshop the need became evident for additional statistics on the multiplication, distribution and uptake of improved varieties of cassava in the six districts where activities are supported by The Gatsby Charitable Foundation and also elsewhere. The results of a subsequent survey in selected sub-counties of each of...

  2. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  3. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  4. Proceedings of the 2nd Workshop on Awareness and Reflection in Technology-Enhanced Learning

    NARCIS (Netherlands)

    Moore, Adam; Pammer, Viktoria; Pannese, Lucia; Prilla, Michael; Rajagopal, Kamakshi; Reinhardt, Wolfgang; Ullman, Thomas; Voigt, Christian

    2013-01-01

    Moore, A., Pammer, V., Pannese, L., Prilla, M., Rajagopal, K., Reinhardt, W., Ullman, Th. D., & Voigt, Ch. (Eds.) (2012). Proceedings of the 2nd Workshop on Awareness and Reflection in Technology Enhanced Learning. In conjunction with the 7th European Conference on Technology Enhanced Learning: 21st

  5. U.S. DOE Roundtable and Workshop on Advanced Steel Technologies: Emerging Global Technologies and R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, Joan [Energetics, Inc., Columbia, MD (United States); Jamison, Keith [Energetics, Inc., Columbia, MD (United States)

    2015-12-01

    This report is based on the proceedings of the U.S. DOE Roundtable and Workshop on Advanced Steel Technologies Workshop hosted by Oak Ridge National Laboratory (ORNL) in cooperation with the U.S. Department of Energy s (DOE s) Advanced Manufacturing Office (AMO) on held on June 23, 2015. Representatives from industry, government, and academia met at the offices of the National Renewable Energy Laboratory in Washington, DC, to share information on emerging steel technologies, issues impacting technology investment and deployment, gaps in research and development (R&D), and opportunities for greater energy efficiency. The results of the workshop are summarized in this report. They reflect a snapshot of the perspectives and ideas generated by the individuals who attended and not all-inclusive of the steel industry and stakeholder community.

  6. Proceedings: 2nd IEA international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.

    1995-09-01

    The 2nd IEA International Workshop on Beryllium Technology for Fusion was held September 6--8, 1995 at Jackson Lake Lodge, Wyoming. Forty-four participants took part in the workshop representing Europe, Japan, the Russian Federation, and the United States including representatives from both government laboratories and private industry. The workshop was divided into six technical sessions and a ``town meeting`` panel discussion. Technical sessions addressed the general topics of: Thermomechanical Properties; Manufacturing Technologies; Radiation Effects; Plasma/Tritium Interactions; Safety, Applications, and Design; and Joining and Testing. This volume contains the majority of the papers presented at the workshop. In some instances, the authors of the papers could not be present at the workshop, and the papers were given by others, sometimes in summary form and in some instances combined with others. The full papers are included here in the sequence in which they would have been given. In other instances, presentations were made but no papers were submitted for publication. Those papers do not appear here. In summary, the workshop was very successful. The main objectives of bringing key members of the fusion beryllium community together was certainly met. Forty-four participants registered, and 35 papers were presented. Individual papers are indexed separately on the energy data bases.

  7. Proceedings of the workshop on new material development. Nano-technology and hydrogen energy society

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Asano, Masaharu; Ohshima, Takeshi; Sugimoto, Masaki; Ohgaki, Junpei

    2005-03-01

    We have newly held the Workshop on New Material Development in order to enhance the research activities on new material development using radiation. Theme of this workshop was 'nano-technology and hydrogen', both of which are considered to have great influence on our social life and have shown rapid progress in the related researches, recently. Researchers from domestic universities, research institutes, and private companies have attended at the workshop and had the opportunity to exchange information and make discussions about the latest trend in the leading edge researches, and have contributed to the material development in future. The technology for manufacturing and evaluation of very fine materials, which is essential for the nano-technology, and the development of new functional materials, which will support the hydrogen energy society in future, have increasingly become important and have been intensively investigated by many research groups. In such investigation, the ionizing radiation is indispensable as the tool for probing and modifying materials. For this reason, this workshop was held at JAERI, Takasaki, a center of excellence for radiation application in Japan. This workshop was held by JAERI, Takasaki, on November 19, 2004 under the joint auspices of the Atomic Energy Society of Japan, the Chemical Society of Japan, the Polymer Science Society of Japan and the Japanese Society of Radiation Chemistry. The workshop was attended by 97 participates. We believe that this workshop supported by many academic societies will largely contribute to the research on new material development in the field of nano-technology and hydrogen. The 10 of the presented papers are indexed individually. (J.P.N.)

  8. NASA-LaRc Flight-Critical Digital Systems Technology Workshop

    Science.gov (United States)

    Meissner, C. W., Jr. (Editor); Dunham, J. R. (Editor); Crim, G. (Editor)

    1989-01-01

    The outcome is documented of a Flight-Critical Digital Systems Technology Workshop held at NASA-Langley December 13 to 15 1988. The purpose of the workshop was to elicit the aerospace industry's view of the issues which must be addressed for the practical realization of flight-critical digital systems. The workshop was divided into three parts: an overview session; three half-day meetings of seven working groups addressing aeronautical and space requirements, system design for validation, failure modes, system modeling, reliable software, and flight test; and a half-day summary of the research issues presented by the working group chairmen. Issues that generated the most consensus across the workshop were: (1) the lack of effective design and validation methods with support tools to enable engineering of highly-integrated, flight-critical digital systems, and (2) the lack of high quality laboratory and field data on system failures especially due to electromagnetic environment (EME).

  9. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...... transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign......-owned and domestic firms along the supply chain not captured by commonly used measures of spillovers. This includes evidence of productivity gains through forward linkages for domestic firms which receive inputs from foreign-owned firms....

  10. The transfer of nuclear technology: necessities and limitations

    International Nuclear Information System (INIS)

    Haunschild, H.-H.

    1978-01-01

    Political and economical importance of the transfer of nuclear technologies to less developed countries is examined. Energy needs of the world create the necessity of technology transfer. Three levels are distinguished: 1) Basic elements of cooperation are agreed between the two Governments, 2) scientific cooperation and 3) industrial cooperation. Technology transfer is more than mere technology export. Limitations of nuclear technology transfer are: the lack of infrastructure, the high price of a nuclear power station but above all the problem of proliferation. In conclusion the solution of international problems of nuclear energy is the concept of cooperation on the basis of equal rights

  11. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  12. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    Science.gov (United States)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  13. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ...; Comment Request; Generic Submission of Technology Transfer Center (TTC) External Customer Satisfaction... technology transfer customers and stakeholders have never been assessed systematically. Input from these... and instruments, contact John D. Hewes, Ph.D., Technology Transfer Specialist, Technology Transfer...

  14. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  15. Food irradiation: technology transfer to developing countries

    International Nuclear Information System (INIS)

    Kunstadt, Peter

    1990-01-01

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand but also in the ASEAN region. (author)

  16. Transfer of communication skills training from workshop to workplace: the impact of clinical supervision.

    Science.gov (United States)

    Heaven, Cathy; Clegg, Jenny; Maguire, Peter

    2006-03-01

    Recent studies have recognised that the communication skills learned in the training environment are not always transferred back into the clinical setting. This paper reports a study which investigated the potential of clinical supervision in enhancing the transfer process. A randomised controlled trial was conducted involving 61 clinical nurse specialists. All attended a 3-day communication skills training workshop. Twenty-nine were then randomised to 4 weeks of clinical supervision, aimed at facilitating transfer of newly acquired skills into practice. Assessments, using real and simulated patients, were carried out before the course, immediately after the supervision period and 3 months later. Interviews were rated objectively using the Medical Interview Aural Rating Scale (MIARS) to assess nurses' ability to use key skills, respond to patient cues and identify patient concerns. Assessments with simulated patients showed that the training programme was extremely effective in changing competence in all three key areas. However, only those who experienced supervision showed any evidence of transfer. Improvements were found in the supervised groups' use of open questions, negotiation and psychological exploration. Whilst neither group facilitated more disclosure of cues or concerns, those in the experimental group responded more effectively to the cues disclosed, reduced their distancing behaviour and increasing their exploration of cues. The study has shown that whilst training enhances skills, without intervention, it may have little effect on clinical practice. The potential role of clinical supervision as one way of enhancing the clinical effectiveness of communication skills training programmes has been demonstrated. PRACTISE IMPLICATIONS: This study raises questions about the effectiveness of training programmes which do not incorporate a transfer element, and provides evidence to support the need for clinical supervision for clinical nurse specialist.

  17. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  18. Seeking the Tricorder: Report on Workshops on Advanced Technologies for Life Detection

    Science.gov (United States)

    Reiss-Bubenheim, D.; Boston, P. J.; Partridge, H.; Lindensmith, C.; Nadeau, J. L.

    2017-12-01

    There's great excitement about life prospects on icy fluid-containing moons orbiting our Solar System's gas giant planets, newly discovered planet candidates and continuing long-term interest in possible Mars life. The astrobiology/planetary research communities require advanced technologies to explore and study both Solar System bodies and exoplanets for evidence of life. The Tricorder Workshop, held at Ames Research Center May 19-20, 2017, explored technology topics focused on non-invasive or minimally invasive methods for life detection. The workshop goal was to tease out promising ideas for low TRL concepts for advanced life detection technologies that could be applied to the surface and near-subsurface of Mars and Ocean Worlds (such as Europa and Enceladus) dominated by icy terrain. The workshop technology focus centered on mid-to-far term instrument concepts or other enabling technologies (e.g. robotics, machine learning, etc.) primarily for landed missions, which could detect evidence of extant, extinct and/or "weird" life including the notion of "universal biosignatures". Emphasis was placed on simultaneous and serial sample measurements using a suite of instruments and technological approaches with planetary protection in mind. A follow-on workshop, held July 24 at Caltech, sought to develop a generic flowchart of in situ observations and measurements to provide sufficient information to determine if extant life is present in an environment. The process didn't require participant agreement as to definition of extant life, but instead developed agreement on necessary observations and instruments. The flowchart of measurements was designed to maximize the number of simultaneous observations on a single sample where possible, serializing where necessary, and finally dividing it into parts for the most destructive analyses at the end. Selected concepts from the workshops outlined in this poster provide those technology areas necessary to solicit and develop

  19. Proceedings of the workshop on molten salts technology and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hirokazu; Minato, Kazuo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Applications of molten salts technology to separation and synthesis of materials have been studied eagerly, which would develop new fields of materials science. Research Group for Actinides Science, Department of Materials Science, Japan Atomic Energy Research Institute (JAERI), together with Reprocessing and Recycle Technology Division, Atomic Energy Society of Japan, organized the Workshop on Molten Salts Technology and Computer Simulation at Tokai Research Establishment, JAERI on July 18, 2001. In the workshop eleven lectures were made and lively discussions were there on the fundamentals and applications of the molten salts technology that covered the structure and basic properties of molten salts, the pyrochemical reprocessing technology and the relevant computer simulation. The 10 of the presented papers are indexed individually. (J.P.N.)

  20. U.S. Department of Energy national technology information exchange workshops

    International Nuclear Information System (INIS)

    Daub, G.J.; Earle, S.D.; Smibert, A.M.; Wight, E.H.

    1994-01-01

    The U.S. Department of Energy National Technology Information Exchange (TIE) Workshops bring together environmental restoration and technology development personnel to exchange and share problems, needs, technological solutions, ideas, and successes and failures from lessons learned at DOE sites. The success of this forum is measured by the knowledge gained, contacts made, and program dollars saved by the people who actually do the work in the field. TIE is a unique opportunity to unite the DOE community and allow individuals to listen and to learn about each others' problems and solutions. By using today's technologies better, the National TIE Workshops help identify and implement cost-effective and appropriate technologies to meet the needs of the DOE environmental restoration program

  1. The National Information Infrastructure and Dual-Use Technology Transfer

    National Research Council Canada - National Science Library

    Wigand, Rolf

    1997-01-01

    .... Concepts and principles guiding the organization, structure, and design of Web sites as a suitable medium for electronic technology transfer are from the literature on transaction costs, marketing...

  2. Cooperation arrangements related to technology transfer

    International Nuclear Information System (INIS)

    Eysel, G.

    1986-04-01

    A developing country which considers to launch a nuclear program should put as much as possible efforts to elaborate a program which suits the country's needs as well as reflects its capabilities. It deems advantageous that a developing country makes use of the experience and knowledge in the nuclear field of a partner country already in the phase when exploring the technical and commercial aspects of a nuclear power program. For the different stages of cooperation between two countries a three-level concept appears advisable for establishing the basis for individual cooperation agreement. The first level are agreements between the governments of both countries on joint scientific research projects and technical development programs covering a broad spectrum of activities not limited to the energy sector. At the second level cooperation agreements can already concentrate on the energy sector and e.g. specifically investigate the energy structure of the developing country. If this investigation results in the decision of the developing country to establish a nuclear power program the next level will cover a broad based cooperation in the nuclear field including a large number of different cooperation contracts in various fields. In this stage of bilateral cooperation the main emphasis will be put on industrial cooperation. Cooperation agreements to be concluded between respective partners of both countries may cover fields related to research and development, engineering of a nuclear power plant, manufacturing of its components, erection and installation as well as operation of the plant. The most common agreements refer to technical cooperation, which covers not only the transfer of blueprints but also training of the recipient's personnel in the partner's country and delegation of experts to the recipient's country. The most comprehensive form of cooperation is the foundation of a joint venture company where the technology partner does not only transfer his know

  3. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  4. 78 FR 23574 - Public Workshop on Marine Technology and Standards

    Science.gov (United States)

    2013-04-19

    ... Material Bilgewater Monitoring Using Advanced Light Scattering Technology Vortex Induced Vibration Design... Verification of Energy Efficiency Design Index Testing and Approval of Ballast Water Treatment Systems... Technology and Standards AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The American Society of...

  5. Business modeling process for university’s technology transfer offices

    Directory of Open Access Journals (Sweden)

    Marin Alexandru

    2017-07-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer centers from Romanian National Network for Innovation and Technology Transfer - ReNITT, hosted by universities. The study is focused on the definition of a conceptual frame to develop specific business models, by the specialized compartments from technology/knowledge transfer entities, and using the specific instruments of business modeling process. The qualitative and quantitative analysis of the 8 steps scheduling of pairing the building blocks of the Business Models Canvas, corresponding to the specific technology transfer models, and taking into account the elements of the value chain of technology transfer and making connections with technology readiness level, allows a clarification of this relative “fuzzy” and complicated modeling process of university’s Technology Transfer Offices activities, gathering in a concentrated format all necessary information. According to their mission, objectives and strategies, universities decide upon a certain business model for the Technology Transfer Offices, adaptable to client segment and value proposition to attain, by the offered services portfolio. In conclusion, during their activities, Technology Transfer Offices identify, validate and exploit the opportunities originated from applicative research results, by “technology push” methods. Also, there are necessary specific competences (human and material to develop externally aware business models starting from real needs of the clients, by “market pull” techniques, that would contribute to enhance the endogenous innovation potential of firms.

  6. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  7. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  8. Electronic Reading Workshop: Beyond Books with New Literacies and Instructional Technologies

    Science.gov (United States)

    Larson, Lotta C.

    2008-01-01

    In response to the challenge of meeting the needs of today's learners, teachers must know how to teach and facilitate new literacies and instructional technologies. This article introduces the concept of an electronic reading workshop (ERW), in which participants read eBooks, respond to literature in digital response journals, participate in…

  9. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  10. Transfer of nuclear technology: A designer-contractor's perspective

    International Nuclear Information System (INIS)

    See Hoye, D.; Hedges, K.R.; Hink, A.D.

    2000-01-01

    The paper presents the successful Canadian experience in developing a nuclear power technology - CANDU - and exporting it. Consideration is paid to technology that has to be transferred, receiver country objectives and mechanisms and organizational framework. (author)

  11. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  12. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  13. Summary of the National Technology Transfer and Advancement Act

    Science.gov (United States)

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  14. Technology Transfer: Use of Federally Funded Research and Development

    National Research Council Canada - National Science Library

    Schacht, Wendy H

    2007-01-01

    .... These applications can result from technology transfer, a process by which technology developed in one organization, in one area, or for one purpose is applied in another organization, in another...

  15. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    Technology and policy play a twofold role in international environmental laws. Stronger environmental policies encourage new green technologies and likewise, better technologies make it easier to regulate. “Technology transfer” refers to the transfer from one party, an association or institution...... that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...... of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  16. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  17. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    International Nuclear Information System (INIS)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-01-01

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1

  18. A continuing program for technology transfer to the apparel industry

    Science.gov (United States)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  19. Technology transfer and sustainable development in emerging economies

    OpenAIRE

    JAVIER CARRILLO

    2003-01-01

    (WP 01/03 Clave pdf) This paper aims to show how the process of diffusion of "clean technologies" confronts a variety of forces at the macro level that create systematic, technological and institutional barriers to their adoption. There is abundant literature on the role of technology transfer in the development of emerging economies, but this perspective is clearly new. What needs to be borne in mind is the possibility that the transferred dominant technology may be subject to a techno-insti...

  20. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  1. Japanese contributions to the Japan-US workshop on blanket design/technology

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Seki, Yasushi; Minato, Akio; Kobayashi, Takeshi; Mori, Seiji; Kawasaki, Hiromitsu; Sumita, Kenji.

    1983-02-01

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  2. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  3. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  4. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  5. Program and abstracts of the offshore oil and gas environmental effects monitoring workshop : approaches and technologies

    International Nuclear Information System (INIS)

    2003-01-01

    The offshore petroleum industry in eastern Canada has expanded rapidly, with exploration and production activities taking place over a wide range of oceanographic conditions. This workshop, hosted by Canada's largest marine research institute, was held to advance the understanding of environmental impacts from offshore oil and gas activity. In particular, it examined how information derived from environmental effects monitoring (EEM) programs contribute to improved drilling and production operations, mitigation measures, and the revision of regulations for waste treatment. The workshop examined if EEM programs are providing valuable information, and how they can be improved. The themes of the 3 sessions which focused on ways to carry out EEM were: (1) EEM and environmental management, (2) EEM methodologies and lessons learned, and (3) EEM methodologies and technologies. Participants form around the world identified priority research needs and coordinated collaborative research efforts. Approximately 70 papers and posters were presented at the workshop, of which 19 have been indexed separately for inclusion in this database (Author)

  6. Proceedings: An international workshop on offshore lease abandonment and platform disposal: Technology, regulation, and environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, A. [ed.] [Louisiana State Univ., Baton Rouge, LA (United States). Center for Energy Studies

    1997-03-01

    This Proceedings volume includes papers prepared for an international workshop on lease abandonment and offshore platform disposal. The workshop was held April 15, 16, and 17, 1996, in New Orleans, Louisiana. Included in the volume are several plenary speeches and issue papers. prepared by six working groups, who discussed: Abandoning Wells; Abandoning Pipelines; Removing Facilities; Site Clearance; Habitat Management, Maintenance, and Planning; and Regulation and Policy. Also included are an introduction, an afterword (reprinted with the permission of its author, John Lohrenz), and, as Appendix C, the complete report of the National Research Council Marine Boards An Assessment of Techniques for Removing Fixed Offshore Structures, around which much of the discussion at the workshop was organized. Short biographies of many speakers, organizers, and chairpersons are included as Appendix A. Appendix B is a list of conference participants. Selected papers have been processes separately for inclusion in the Energy Science and Technology database.

  7. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    OpenAIRE

    Uddin, Mahatab

    2011-01-01

    Technology and policy play a twofold role in international environmental laws. Stronger environmental policies encourage new green technologies and likewise, better technologies make it easier to regulate. “Technology transfer” refers to the transfer from one party, an association or institution that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technolog...

  8. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  9. Success in nuclear technology transfer: A Canadian perspective

    International Nuclear Information System (INIS)

    Lawson, D.S.; Stevens, J.E.S.; Boulton, J.

    1986-10-01

    Technology transfer has played a significant part in the expansion of nuclear power to many countries of the world. Canada's involvement in nuclear technology transfer spans four decades. The experience gained through technology transfer, initially to Canadian industry and then to other countries in association with the construction of CANDU nuclear power plants, forms a basis from which to assess the factors which contribute to successful technology transfer. A strong commitment from all parties, in terms of both financial and human resources, is essential to success. Detailed planning of both the scope and timing of the technology transfer program is also required together with an assessment of the impact of the introduction of nuclear power on other sectors of the economy. (author)

  10. The effectiveness of Family Science and Technology Workshops on parental involvement, student achievement, and student curiosity

    Science.gov (United States)

    Kosten, Lora Bechard

    The literature suggests that parental involvement in schools results in positive changes in students and that schools need to provide opportunities for parents to share in the learning process. Workshops are an effective method of engaging parents in the education of their children. This dissertation studies the effects of voluntary Family Science and Technology Workshops on elementary children's science interest and achievement, as well as on parents' collaboration in their child's education. The study involved 35 second and third-grade students and their parents who volunteered to participate. The parental volunteers were randomly assigned to either the control group (children attending the workshops without a parent) or the treatment group (children attending the workshops with a parent). The study was conducted in the Fall of 1995 over a four-week period. The Analysis of Variance (ANOVA) and Kruskal-Wallis tests were used to determine the effects of the workshops on children's science achievement and science curiosity, as well as on parents' involvement with their child's education. The study revealed that there was no significant statistical difference at the.05 level between the treatment/control groups in children's science achievement or science curiosity, or in parent's involvement with their children's education. However, the study did focus parental attention on effective education and points the way to more extensive research in this critical learning area. This dual study, that is, the effects of teaching basic technology to young students with the support of their parents, reflects the focus of the Salve Regina University Ph.D. program in which technology is examined in its effects on humans. In essence, this program investigates what it means to be human in an age of advanced technology.

  11. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  12. Legal aspects of the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1980-03-01

    The paper stresses the importance of nuclear technology transfer and describes the legal instruments for transfer of technical and scientific technology, particularly from the contractual viewpoint. A description follows of the setting-up of national joint ventures for nuclear power plant projects with emphasis on technological know-how to enable operation of plants in compliance with safety standards. The possibility is discussed of the export of nuclear technology, and finally mention is made of a proposal for a 'code of conduct' on such transfers in the framework of the United Nations, having regard to the 'London agreements' on nuclear exports. (NEA) [fr

  13. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... transfer in these sectors in China and India. We argue that the emphasis should shift from transfer of mitigation technology to international collaboration and local innovation...

  14. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  15. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  16. Legislation on university technology transfer and research management 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This book deals with legislation on university technology transfer in 2012, which includes invention promotion act, legislation on technology transfer and promotion of industrialization, legislation on industrial education and industrial cooperation, and special legislation on venture business. It lists the legislation related research and development by government department : fundamental law of scientific technique, law on evaluation and management of domestic research development business, national science and technology council and the patent office.

  17. Computers and terminals as an aid to international technology transfer

    Science.gov (United States)

    Sweeney, W. T.

    1974-01-01

    As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.

  18. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  19. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop

    Science.gov (United States)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1997-01-01

    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  20. An ISM approach for analyzing the factors in technology transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2015-07-01

    Full Text Available Technology transfer, from research and technology organizations (RTOs toward local industries, is considered as one of important and significant strategies for countries' industrial development. In addition to recover the enormous costs of research and development for RTOs, successful technology transfer from RTOs toward local firms forms technological foundations and develops the ability to enhance the competitiveness of firms. Better understanding of factors influencing process of technology transfer helps RTOs and local firms prioritize and manage their resources in an effective and efficient way to maximize the success of technology transfer. This paper aims to identify important effective factors in technology transfer from Iranian RTOs and provides a comprehensive model, which indicate the interactions of these factors. In this regard, first, research background is reviewed and Cummings and Teng’s model (2003 [Cummings, J. L., & Teng, B.-S. (2003. Transferring R&D knowledge: The key factors affecting knowledge transfer success. Journal of Engineering and Technology Management, 20(1-2, 39-68.] was selected as the basic model in this study and it was modified through suggesting new factors identified from literature of inter-organizational knowledge and technology transfer and finally a Delphi method was applied for validation of modified model. Then, research conducted used Interpretive Structural Modeling (ISM to evaluate the relationship between the factors of final proposed model. Results indicate that there were twelve factors influencing on technology transfer process from Iranian RTOs to local firms and also the intensity of absorption capability in transferee could influence on the intensity of desorption capability in transferor.

  1. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  2. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  3. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  4. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  5. 2nd International Workshop on Learning Technology for Education in Cloud

    CERN Document Server

    Tao, Yu-Hui; Yang, Hsin-Chang; Ting, I-Hsien

    2014-01-01

    Proceedings from the 2013 LTEC conference in Kaohsiung,Taiwan. The papers examine diverse aspects of Learning Technology for Education in Cloud environments, including social, technical and infrastructure implications. Also addressed is the question of how cloud computing can be used to design applications to support real time on demand learning using technologies. The workshop proceedings provide opportunities for delegates to discuss the latest research in TEL (Technology Enhanced Learning) and its impacts for learners and institutions, using cloud technolgies.

  6. Technology transfer and national participation. Key issue paper no. 3

    International Nuclear Information System (INIS)

    Chernilin, Y.F.

    2000-01-01

    Nuclear technology was developed in industrialized countries and largely remains in a few industrialized countries. Non-nuclear countries today find it necessary to import this technology. Some aspects of technology transfer: legal and institutional structure; different type of agreements; arrangements; and national participation are presented in this paper. (author)

  7. Workshop and conference on Grand Challenges applications and software technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

  8. Advanced Food Technology Workshop Report. Volumes 1 and 2

    Science.gov (United States)

    Perchonok, Michele

    2003-01-01

    The Advanced Human Support Technology (AHST) Program conducts research and technology development to provide new technologies and next-generation system that will enable humans to live and work safely and effectively in space. One program element within the AHST Program is Advanced Life Support (ALS). The goal of the ALS program element is to develop regenerative life support systems directed at supporting National Aeronautics and Space Administration's (NASA) future long-duration missions. Such missions could last from months to years and make resupply impractical, thereby necessitating self-sufficiency. Thus, subsystems must be developed to fully recycle air and water, recover resources from solid wastes grow plants, process raw plant products into nutritious and palatable foods, control the thermal environment, while reducing the overall system mass. ALS systems will be a combination of physico-chemical and biological components depending on the specific mission requirements. In the transit vehicle, the food system will primarily be a prepackaged food system with the possible addition of salad crops that can be picked and eaten with limited preparation. On the lunar or planetary evolved base, the food system will be a combination of the prepackaged menu item and ingredients that are processed from the grown crops. Food processing and food preparation will be part of this food system.

  9. 2nd International Workshop on Evidence-Based Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Marenzi, Ivana; Mascio, Tania; Prieta, Fernando

    2013-01-01

    Research on Technology Enhanced Learning (TEL) investigates how information and communication technologies can be designed in order to support pedagogical activities. The Evidence Based Design (EBD) of a system bases its decisions on empirical evidence and effectiveness. The evidence-based TEL workshop (ebTEL) brings together TEL and EBD.   The first edition of ebTEL collected contributions in the area of TEL from computer science, artificial intelligence, evidence-based medicine, educational psychology and pedagogy. Like the previous edition, this second edition, ebTEL’13, wants to be a forum in which TEL researchers and practitioners alike can discuss innovative evidence-based ideas, projects, and lessons related to TEL.   The workshop took place in Salamanca, Spain, on May 22nd-24th 2013.  

  10. Proceedings of the Nuclear Criticality Technology Safety Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  11. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  12. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  13. Solar sail-solar electric technology readiness and transfer assessment

    Science.gov (United States)

    Chase, R. L.

    1977-01-01

    A method of conducting a technology readiness assessment was developed. It uses existing OAST technology readiness and risk criteria to define a technology readiness factor that considers both the required gain in technology readiness level to achieved technology readiness plus the degree of effort associated with achieving the gain. The results indicate that Solar Electric Propulsion is preferred based on technology readiness criteria. Both Solar Sail and Solar Electric Propulsion have a high level of transfer potential for future NASA missions, and each has considerable technology spillover for non-NASA applications.

  14. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  15. Technology transfer for cucumber ( Cucumis sativus L.) production ...

    African Journals Online (AJOL)

    Pakistan) have encouraged the development of protected agriculture. Semicircular plastic tunnels were introduced in three districts of Balochistan. This technology transfer trials have shown the advantages and benefits of producing cucumber in ...

  16. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  17. U.S. EPA Federal Technology Transfer Program Fact Sheet

    Science.gov (United States)

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  18. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  19. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  20. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  1. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer

    This guidebook provides practical and operational guidance on how to assess and overcome barriersfacing the transfer and diffusion of technologies for climate change mitigation and adaptation.The guidebook is designed to support the analysis of specific technologies, rather than pursuing asectoral...... (e.g. transport) or technology group (e.g. renewable energy) approach.Given that there is no single solution to enhancing technology transfer and diffusion policies needbe tailored to country-specific context and interests. Therefore, the guidebook presents a flexibleapproach, identifying various...

  2. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    Science.gov (United States)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  3. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  4. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  5. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R and D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10-12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I and C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy's Light Water Reactor Sustainability Program. DOE

  6. Dogs That Haven't Barked: Towards an Understanding of the Absence of Expected Technological Threats Workshop Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Roseman, Mallory [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikry, Fareeda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    Lawrence Livermore National Laboratory’s Center for Global Security Research hosted a workshop to investigate why some consistently predicted threats from science and technology (S&T) have not manifested with the impacts to international security as forecasted. During the workshop, “Dogs That Haven’t Barked: Towards an Understanding of the Absence of Expected Technological Threats,” participants used two specific cases to focus the discussion: biotechnology and man-portable air defense systems (MANPADS).

  7. Technology transfer from NASA to targeted industries, volume 1

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  8. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  9. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event showcased technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR).

  10. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  11. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    International Nuclear Information System (INIS)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R ampersand D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R ampersand D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R ampersand D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and

  12. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, B.R.; Bauer, G.S. [comp.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. International technology identification, transfer, and program support

    International Nuclear Information System (INIS)

    Kitchen, B.

    1993-01-01

    Savannah River Site (SRS) activities primarily address vitrification technologies being investigated with Japan and the former Soviet Union (FSU). They also support the overall management of EM's international activities

  14. Polymer solidification: Technology transfer to DOE and industry

    International Nuclear Information System (INIS)

    Kalb, P.D.; Strand, G.

    1994-01-01

    In keeping with the congressional mandate for technology transfer between federal research and development institutions and U.S. industry, the Brookhaven National Laboratory (BNL) Environmental and Waste Technology Center is pursuing industrial partnership with industry. These efforts, supported by the Department of Energy's Office of Environmental Restoration and Waste Management involve both the transfer of BNL developed technology to industry and the use of commercially developed technologies as part of an integrated waste treatment system. A Cooperative Research and Development Agreement has been established with VECTRA Technologies, Inc. (formerly Pacific Nuclear), a U.S. company that provides waste treatment and other services to the commercial nuclear power industry. The agreement involves investigation of polyethylene encapsulation for treatment of ion exchange resin wastes. In addition, other avenues of cooperation are being investigated including use of a VECTRA Technologies volume reduction pre-treatment process for use with the polyethylene technology in treating aqueous radioactive, hazardous, and mixed wastes

  15. Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  16. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites

  17. Proceedings of the sixth IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Tanaka, Satoru; Ishitsuka, Etsuo

    2004-03-01

    This report is the Proceedings of the Sixth International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on December 2-5, 2003, at SEAGAIA in Miyazaki City, Japan with 69 participants who attended from Europe, the Russian Federation, Kazakhstan, Ukraine, China, the United States and Japan. The topics for papers were arranged into nine sessions; Status of beryllium study, Plasma and tritium interactions, ITER oriented issues, Neutron irradiation effects, Beryllide application, Disposal and recycling, Molten salt, Health and safety issues and Panel discussion. In the Panel discussion, the international collaboration for three topics, i.e., Neutron irradiation effects, Beryllide application, Recycling and Disposal, were discussed, and necessary items for the international collaboration were proposed. The 46 of the presented papers are indexed individually. (J.P.N.)

  18. Practical manual for technology transfer strategy

    International Nuclear Information System (INIS)

    Heo, Jae Gwan

    2004-03-01

    This book deals with technical transfer strategy in the 21 century, management period of intellectual property, which includes value of invisible and intangible assets, core topic of management of intellectual property construction of virtuous cycle of intellectual and creative activity, and phase and building strategy of intellectual property management system. It also mentions building of useful patent portfolio and strategy with patent problems in business management strategy, case of patent management strategy of IBM in the Uited Sates and Fujitsu in Japan, and profit process using intellectual property outside of the company.

  19. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  20. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  1. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  2. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  3. Support and Technology Transfer: Results and Accomplishments

    Science.gov (United States)

    2009-07-01

    Advanced Food Technology School of Enviromental and Biological Sciences New Brunswick, NJ 08903 FTR 213 Defense Logistics Agency 8725 John J. Kingsman Rd...Partners in and beyond the CORANET II Program, and maintain a high level of cooperation and rapport. The following modifications were issued :  0002

  4. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Since 1988, epidemics of African cassava mosaic disease (ACMD) caused by a whitefly-transmitted geminivirus have caused severe devastation in Uganda resulting in food shortages and famine in some areas. In order to control the disease and restore food security in the country, appropriate technologies had to be ...

  5. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  6. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... process. It includes basic process design or certain types of engineering designs. The peripheral components correspond to the body of knowledge that is needed for the application of core technologies in producing goods and service activities. (Junta del Acuerdo de categena, 1976). This component also ...

  7. Review of R and D status on beryllium technology for fusion in Japan reported at the fifth IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    2002-06-01

    In this paper, the R and D status on beryllium technology for fusion reactor in Japan were reviewed with the reports at the Fifth IEA International Workshop on Beryllium Technology for Fusion. This international workshop was held on October 10-12, 2001, at the Congress Center of the Financial Academy with about 60 participants who attended from ten countries (Germany, the Russian Federation, Kazakhstan, the United States, Japan, etc.). There were 39 presentations in this workshop including 13 presentations from Japan. From the review of the latest results of R and D status on beryllium technology for fusion reactor in Japan, the recent trend in beryllium technology was made clear. As neutron multiplier technology development, the studies are being concentrated into the beryllide (Be 12 Ti, etc.) by most Japanese researchers. As ITER first wall material technology, the Hot Isostatic Pressing (HIP) bonding technology with copper alloys attracts attentions. (author)

  8. Workshop on the Federal Role in the Commercialization of Large Scale Windmill Technology (summary and papers)

    Science.gov (United States)

    Lerner, J. I.; Miller, G.

    Large-scale wind system and windmill technology and prospects for commercial applications are discussed. Barriers that may affect the commerical viability of large-scale windmill systems are identified, including the relatively poor financial condition of much of the utility industry which effectively prevents many utilities from investing substantially in any new projects. The potential market addressed by the Federal program in large-scale windmill systems is examined. Some of the factors that may limit the degree of market penetration for wind energy systems are: costs of competing fossil and nuclear fuels and technologies; rate of acceptance of new technologies; and competition from other solar technologies, including biomass, solar thermal, and photovoltaic systems. Workshop participants agreed that existing Federal legislation provides significant incentives for the commercialization of large-scale wind machines.

  9. Workshop tools and methodologies for evaluation of energy chains and for technology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Maillard, D. [Energy and Raw Materials, 75 - Paris (France); Pumphrey, D. [Energy Cooperation, US Dept. of Energy (United States); Sverdrup, G.; Valdez, B. [National Renewable Energy Laboratory, Golden, CO (United States); Schindler, J. [LB-Systemtechnik (LBST), GmbH, Ottobrunn (Germany); His, St.; Rozakis, St. [Centre International de Recherche sur Environnement Developpement (CIRED), 94 - Nogent sur Marne (France); Sagisaka, M. [LCA Research Centre (Japan); Bjornstad, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Madre, J.L. [Institut National de Recherche sur les Transports et leur Securite, 94 - Arcueil (France); Hourcade, J.Ch. [Centre International de Recherche sur l' Environnement le Developpement (CIRED), 94 - Nogent sur Marne (France); Ricci, A.; Criqui, P.; Chateau, B.; Bunger, U.; Jeeninga, H. [EU/DG-R (Italy); Chan, A. [National Research Council (Canada); Gielen, D. [IEA-International Energy Associates Ltd., Fairfax, VA (United States); Tosato, G.C. [Energy Technology Systems Analysis Programme (ETSAP), 75 - Paris (France); Akai, M. [Agency of Industrial Science and technology (Japan); Ziesing, H.J. [Deutsches Institut fur Wirtschaftsforschung, DIW Berlin (Germany); Leban, R. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    2005-07-01

    The aims of this workshop is to better characterize the future in integrating all the dynamic interaction between the economy, the environment and the society. It offers presentations on the Hydrogen chains evaluation, the micro-economic modelling for evaluation of bio-fuel options, life cycle assessment evolution and potentialities, the consumer valuation of energy technologies attributes, the perspectives for evaluation of changing behavior, the incentive systems and barriers to social acceptability, the internalization of external costs, the endogenous technical change in long-tem energy models, ETSAP/technology dynamics in partial equilibrium energy models, very long-term energy environment modelling, ultra long-term energy technology perspectives, the socio-economic toolbox of the EU hydrogen road-map, the combined approach using technology oriented optimization and evaluation of impacts of individual policy measures and the application of a suite of basic research portfolio management tools. (A.L.B.)

  10. [Research progress in sperm mediated gene transfer technology].

    Science.gov (United States)

    Hao, Xiaoxiong; Zhu, Zheng; Cao, Mianfu; Li, Chengren; Lin, Yunlai

    2013-04-01

    With the rapid development of biotechnology, we can change the trait of organism using transgenetic technology. In recent years, there are growing interests in the establishment of sperm mediated gene transfer (SMGT) technology as an effective and convenient method to produce transgenic animals. SMGT technology is a transgenetic method, which is easy in operation and does little harm to the cell compared with the other transgenetic methods. In this review, we expound the background, development, mechanism, operation and application of SMGT.

  11. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  12. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    Science.gov (United States)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  13. Technology transfer - LSA project to industry

    Science.gov (United States)

    Gallagher, B. D.

    1981-01-01

    Program goals, procedural steps, and examples of different situations encountered in the Low-cost Solar Array (LSA) project managed at the Jet Propulsion Laboratory in conjunction with industrial contractors are outlined. The project is intended to result in the production-ready status of photovoltaic panels which produce power at $.70/peak W by 1986. The first phase of the program identified materials and processes which were promising for further development. Phase II served to correct steps and materials which did not work and were important to the array processing. The third phase will bring the processes to technical readiness by demonstration of successful fabrication of modules at a scale which can be increased to commercial production. An information exchange is ongoing between manufacturers and the JPL to alter specific steps which yield results which vary from those found in the laboratory when transferred to the factory.

  14. Building technology transfer meetings: A collaborative model for transferring DOE research results to potential users

    Energy Technology Data Exchange (ETDEWEB)

    Shankle, D.L.; Hawkins, D.M. [Pacific Northwest Lab., Richland, WA (United States); Love, P.M. [Oak Ridge National Lab., TN (United States); Wilde, G.M. [Lawrence Berkeley Lab., CA (United States)

    1994-08-01

    Transferring the technology and results from U.S. Department of Energy (DOE)-sponsored building energy research to potential users is a critical part of DOE`s successful research programs. To assist in this transfer of information and technologies, the DOE Office of Building Technologies (OBT) has established Building Technology Transfer Meetings that are held twice each year at one of the 10 DOE Regional Support Offices. Meeting participants include DOE personnel and representatives from each of the national laboratories involved in OBT buildings energy research as well as representatives from the DOE Regional Support Offices and other agencies involved in the buildings sector. Since 1991, OBT has held five meetings: Washington D.C., San Francisco, Denver, Oak Ridge, and Seattle. The purpose of these meetings is twofold: (1) for DOE to share information about such topics as new research results, new technologies, and new ways to collaborate with industry and universities to leverage resources; and (2) for the participants to use this information within their region to accelerate the transfer and deployment of new energy-efficient building technologies. The meetings include presentations, demonstrations, and tours. The meetings have provided an excellent opportunity for staff from the Regional Support Offices to learn about new technologies through their interactions with OBT and national laboratory program managers. Meeting tours and demonstrations have provided beneficial opportunities to get hands-on experience with new technologies and to see them in practice.

  15. Proceedings of the third IEA international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Okamoto, Makoto [eds.

    1998-01-01

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  16. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  17. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  18. The use of high-performance computing to solve participating media radiative heat transfer problems-results of an NSF workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gritzo, L.A.; Skocypec, R.D. [Sandia National Labs., Albuquerque, NM (United States); Tong, T.W. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering

    1995-01-11

    Radiation in participating media is an important transport mechanism in many physical systems. The simulation of complex radiative transfer has not effectively exploited high-performance computing capabilities. In response to this need, a workshop attended by members active in the high-performance computing community, members active in the radiative transfer community, and members from closely related fields was held to identify how high-performance computing can be used effectively to solve the transport equation and advance the state-of-the-art in simulating radiative heat transfer. This workshop was held on March 29-30, 1994 in Albuquerque, New Mexico and was conducted by Sandia National Laboratories. The objectives of this workshop were to provide a vehicle to stimulate interest and new research directions within the two communities to exploit the advantages of high-performance computing for solving complex radiative heat transfer problems that are otherwise intractable.

  19. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  20. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  1. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  2. A practical approach to the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Segerberg, F.

    1978-01-01

    The paper deals specifically with the transfer of light-water reactor technology to a developing country. The technology transfer scheme presented assumes that Sweden is the supplier of this technology. The basis of the proposed approach is that hardware deliveries for nuclear power plants in the recipient country should constitute an activity in parallel with the general technology transfer. It is pointed out that the developing countries form a very heterogeneous group with respect to industrial capability. On the other hand the supplier nations are not a homogeneous group. Sweden's most relevant characteristics as supplier nation can be summarized under the following headings: (i) fairly small and highly industrialized country; (ii) concentration on nuclear power to cover increasing electricity demands; (iii) independent reactor technology; (iv) well-established infrastructure with regard to component manufacturing; (v) political neutrality. It follows that each combination of two countries constitutes a unique example. The nuclear technology transfer schemes must consequently be extremely flexible. The paper outlines a 'modular' system. This concept means that the supplier offers a great variety of independent courses, training opportunities, facilities etc. which can then be combined into a package meeting the wishes of the recipient nation. The components in a Swedish package of this kind are elaborated. The paper ends with the general conclusion that Sweden has so far been successful in combining high national ambitions with limited manpower and limited financial resources. The underlying efficiency and flexibility will hopefully make Sweden an attractive partner for developing countries. (author)

  3. Technology transfer into the solid propulsion industry

    Science.gov (United States)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  4. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  5. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  6. Two perspectives on a successful lab/industry technology transfer

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Ulbrich, R.

    1995-01-01

    Technology transfer from government laboratories to private business is of increasing concern in today's marketplace. Some prospective partners (on both sides) believe that technology transfer is a relatively simple process requiring little or no extra effort from the participants. In the authors experience this is not true and, in fact, positive results from a collaboration are directly proportional to the effort that both parties invest in the relationship. Communication, both between prospective partners before an agreement and between partners following the agreement, is essential. Neither technology nor marketing can stand by itself; it is the combination of the two that can produce a useful and available product. Laboratories and industries often have very different ways of looking at almost everything. Misunderstandings arising from these differences can short-circuit the transfer process or result in the production of a product that is unsalable. The authors will cover some of their experiences, potential problems, and their solutions. Examples discussed here is transfer of technology for long-range alpha detection developed at Los Alamos National Laboratory and transferred to Eberline Instrument Corporation

  7. Technology transfer assessment in the nuclear agreement Brazil-Germany

    International Nuclear Information System (INIS)

    Cecchi, J.C.

    1985-04-01

    The three main arguments utilized in the Nuclear Brazil-Germany Agreement celebrated in 1975 were the following: a) the low Brazilian hydroelectric potential insufficient to attend the increasing of electrical energy demand; b) the low cost of nuclear energy related to hydroelectric energy: c) and finally, the nuclear technology transfer, involving inclusive the fuel cycle and that could permit to Brazil self-sufficiency in the nuclear energy field. Thus, this work intends to describe and discussing the 'technology transfer strategy' trying to understand and showing which are its main characteristics, and also which are the real actuals results. (author) [pt

  8. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... and trade unions to articulate their interests and define the issues, in particular with regard to the working environment and the external environment? The paper will discuss these questions by exploring the significance of labour market structures, labour-management relations, concepts of knowledge...

  9. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  10. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  11. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    Science.gov (United States)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  12. Proceedings of the 2nd International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC 2008)

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Unknown, [Unknown

    2008-01-01

    This volume contains the proceedings of the Second International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC 2008), held on July 5 in Porto, Portugal, in conjunction with the Third International Conference on Software and Data Technologies (ICSOFT

  13. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  14. Technology transfer from NASA to targeted industries, volume 2

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  15. 1998 federal technical standards workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The theme for the 1998 workshop was Standards Management -- A World of Change and Opportunities. The workshop`s goal was to further the implementation of the National Technology Transfer and Advancement Act of 1995 (Public Law 104-113) through the sharing of standards management success stories, lessons learned, and emerging initiatives within the Executive Branch of the Federal Government. The target audience for this workshop included agency/department and contractor personnel and representatives of standards developing organizations that either used technical standards in their work for the Federal Government of participated in standards writing/management activities in support of the missions and programs of Federal agencies/departments. As with previous standards workshops sponsored by the DOE, views on the technical subject areas under the workshop theme were solicited from and provided by agency Standards Executives and standards program managers, voluntary standards organizations, and the private sector. This report includes vugraphs of the presentations.

  16. Report of the 17th international workshop on nuclear safety and simulation technology (IWNSST17)

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2014-01-01

    The 17th International Workshop on Nuclear Safety and Simulation Technology (IWNSST17) was held in January 21, 2014 at Kyoto University, in Kyoto, Japan. This one-day workshop was motivated to exploit advanced safety researches for nuclear power plant (NPP) , by a unique synergetic collaboration of basically two different disciplines: material science and systems sciences. There were ten invited presentations at the ISSNP2013, and the subject of the presentations ranges from (1) material corrosion issue of NPP components, (2) application of augmented reality technology for NPP decommission, (3) functional modeling method for plant control system, (4) intrinsic understanding of Fukushima Daiichi accident phenomena based on simple physical model, (5) system reliability evaluation method for PWR safety system, (6) automatic control system design for small modular reactor, and (7) validation of computerized human-machine interface and digital I and C for PWR plant. This article provides the overview of the IWNSST17 with giving condensed summaries of all invited presentations given by international experts. (author)

  17. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    1986-09-01

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  18. Proceedings of the Japan-U.S. workshop P-118 on vacuum technologies for fusion devices

    International Nuclear Information System (INIS)

    Miyahara, A.

    1989-01-01

    Fusion community does not appreciate vacuum technologies to the same extent as accelerator community does. This is because, in the case of accelerators, in particular storage ring systems, the requirement of attaining ultrahigh vacuum in order to avoid collisional loss is well defined, on the other hand, it is not possible to define the requirement so precisely in the case of fusion devices. One of the reasons is that core plasma interacts with vessel wall so strongly and unpredictably that it becomes difficult to identify the role played by individual components. However, in the next step and the next generation machines like CIT, LHS, ITER, FER and NET, vacuum technologies would play more significant roles, because the CIT will introduce tritium in a vacuum vessel, and the aim of the ITER project is to demonstrate particle balance, namely, to achieve steady state operation with D-T fuel. The Japan-U.S. workshop P-118 was held at the Institute of Plasma Physics, Nagoya University, from August 1 to 5, 1988. 33 participants including 4 from the U.S. took part in the workshop. In the plenary session, 12 lectures were given, and also the topics-oriented session on pumping, gauging, remote maintenance, first wall, pump limiter, divertor and others was held. (K.I.)

  19. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  20. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be 12 Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented [ru

  1. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  2. Transfer And Adoption Of Labour Saving Technologies | Idu ...

    African Journals Online (AJOL)

    The study was carried out to assess the transfer and adoption of labour saving technologies in Apa Local Government area of BenueState. A total sample size One Hundred and Twenty was used in the study. Interview schedule was used to collect the data from respondents. The results revealed that herbicide was adopted ...

  3. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... written determination letter to SBA, the Senate Committee on Small Business and Entrepreneurship, the... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with...

  4. The Role of Education in Technology Transfer and Poverty ...

    African Journals Online (AJOL)

    The variations in the extent of its severity across countries depend on many economic and social variables prominent among which is the educational structure, which often determine people's vulnerability to poverty. This paper therefore reports on the role of education in technology transfer and highlights strategic options ...

  5. Globalization, Technology Transfer and the Knowledge Gap: Case ...

    African Journals Online (AJOL)

    This paper, discusses the impact of oligopolistic research on transfer of global pharmaceutical manufacturing technology to the less developed countries of the South (Nigeria) in post globalism. On the basis of empirical evidence from the advanced industrialized world, it is argued that the growth of oligopolistic research has ...

  6. TECHNOLOGY TRANSFER NETWORKS ON PAPAYA PRODUCTION WITH TRANSITIONAL GROWERS

    Directory of Open Access Journals (Sweden)

    Octavio Cano-Reyes

    2012-11-01

    Full Text Available Social networks analysis applied to rural innovation processes becomes a very useful technology transfer tool, since it helps to understand the complexity of social relationships among people and/or institutions in their environment, and it also defines those innovation networks given in specific working groups or regions. This study was conducted from April to May 2011 to determine those networks and key players present in the group of growers associated as “Productora y Comercializadora de Papaya de Cotaxtla S.P.R. de R.L.”, that influence the technology transfer process in Cotaxtla, Veracruz, Mexico. Data were analyzed using UCINET 6 software. Three centrality measures were obtained: range, degree of mediation and closeness. Of 32 network players, 27 actively diffuse innovations according to their interests; alliances must be established with them to transfer technology. Four growers stand out as central actors, which along with the Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, the Colegio de Postgraduados and the growers’ organization itself, could be the most appropriate actors to establish a technology transfer program to accelerate the diffusion and adoption of innovations. Wholesalers, middlemen and credit institutions do not participate in this process, but having capital they could be incorporated in the innovation diffusion process.

  7. University-Industry Technology Transfer in Hong Kong

    Science.gov (United States)

    Poon, Patrick S.; Chan, Kan S.

    2007-01-01

    In the modern knowledge economy, higher educational institutions are being required to deal with commercialising the results of their research, spinning out knowledge-based enterprises and facilitating technology transfer between their research centres and industrial firms. The universities are undergoing changes in institutional and…

  8. Technology transfer between the government and the aerospace industry

    Science.gov (United States)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  9. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  10. Technology transfer: A cooperative agreement and success story

    International Nuclear Information System (INIS)

    Reno, H.W.; McNeel, K.; Armstrong, A.T.; Vance, J.K.

    1996-01-01

    This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations

  11. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  12. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  13. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  14. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  15. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  16. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  17. Applications of aerospace technology in industry. A technology transfer profile: Cryogenics

    Science.gov (United States)

    1971-01-01

    Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  19. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  20. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  1. Blind Technology Transfer or Technological Knowledge Leakage: a Case Study from the South

    Directory of Open Access Journals (Sweden)

    Dario Codner

    2012-07-01

    Full Text Available Blurring boundaries between science and technology is a new phenomenon especially in fields such as biotechnology. The present work shows the fate of biotech research papers on foreign patents produced during the last decade in Quilmes National University. It aims at recognizing the flow of scientific knowledge developed at a public university towards foreign companies and organizations as well as reflecting on its technological value, the role of technology transfer management, the institutional significance of technology transfer processes and the need to develop innovative public policies for solving structural failures caused by industrial underdevelopment

  2. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... organizational arrangements for technology transfer which reflect the overall industry maturity in the solar PV sectors in these countries. This has great potential for long-term climate change mitigation efforts. However, the initiation of these new organizational arrangements often preceded the supply...... of technology into CDM projects. This raises important questions about the role of CDM in spearheading the development of technological capabilities required for sustainable development. The paper uses these findings to add to the literature about technology in CDM and to the wider policy debates over...

  3. Managing knowledge: a technology transfer case study in IEN

    International Nuclear Information System (INIS)

    Pereira, Ana Gabriella Amorim Abreu

    2009-01-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  4. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  5. Workshop Proceedings on Financing the Development and Deployment of Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-05-16

    The Working Party on Renewable Energy (REWP) of the International Energy Agency (IEA) organized a two-day seminar on the role of financing organizations in the development and deployment of renewable energy (RE). The World Bank (WB) and the US Department of Energy (USDOE) hosted the workshop. Delegates were mainly senior government representatives from the 23 IEA member countries, whose responsibilities are related to all or most of the renewable sources of energy. In addition, representatives of the European Union, United Nations, trade organizations, utilities and industries and the WB attended the meeting. The workshop was recognized as an important first step in a dialog required between the parties involved in the development of RE technology, project preparation and the financing of RE. It was also recognized that much more is required--particularly in terms of increased collaboration and coordination, and innovative financing--for RE to enter the market at an accelerated pace, and that other parties (for example from the private sector and recipient countries) need to have increased involvement in future initiatives.

  6. NATO Advanced Research Workshop: Application of Natural Microporous Materials to the Environmental Technology. Book of Abstracts

    International Nuclear Information System (INIS)

    1998-01-01

    In this proceedings About 80 people from Albania, Belgium, Bulgaria, Czech Republic, Estonia, Germany, Greece, Italy, Poland, Portugal, Romania, Russia, Spain, U.K., Turkey, Ukraine, U.S.A. and Slovakia took part in the workshop. 56 reports had been presented. from which 19 reports deals with the scope of INIS. The purpose of the workshop was the critical assessment of the current developments in the field of utilization of natural microporous materials (zeolites, clays, oxides) for the solution of problems related to the toxic and nuclear waste management, the water pollution control and decontamination, the environmental catalysis associated to the atmospheric pollution, the creation of new materials for energy storage and agricultural management including the development of artificial soils for plant growth in the space. Of especial importance for this meeting was the exchange of information and know-how among specialists working in institutions of NATO and Cooperation Partner countries aiming in the development of common strategies for the solution of environmental problems and the promotion of the further scientific and technological collaboration. Nineteen papers deals with the using of microporous materials for separation of radionuclides

  7. Westinghouse experience in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1977-01-01

    Westinghouse experience with transfer of technical information is two-sided. First is our experience in learning, and the second is our experience in teaching others. Westinghouse conducts a special school to which government, academic and industry people are invited. There are many problems involved in all technology transfers; these include: keeping information current, making certain changes are compatible with the supplier's manufacturing capability and also suitable to the receiver, patent right and proprietary information. The building, testing and maintenance of the unit on the line - and then a succession of its sister plant is the basis for the Westinghouse leadership

  8. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  9. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  10. Technology transfer and the Argentina-German cooperation agreement

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessary imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has shown recently new concepts for the implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is conditioned by the latter requirement for simulataneous assistance to create or promote that infrastructure. An example of international cooperation to meet the requirement explained above is the Argentine-German agreement for the peaceful applications of nuclear energy. Since 1971 it has been used to strengthen the scientific and technical programs of the Argentine Atomic Energy Commission, by application to fields relevant by its industrial implications. The objectives and implementation of the agreement are described: cooperative actions where initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-76 are critically analyzed. This analysis has influenced the selection of future cooperative projects as well as the extension of the cooperation to other nuclear fields of common interest [es

  11. Proceedings of the Technology Roadmap Workshop on Communication and Control Systems for Distributed Energy Implementation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-05-01

    More than 50 experts from energy and information technology industries, Federal and State government agencies, universities, and National Laboratories participated in the “Communication and Control Systems for Distributed Energy Implementation and Testing Workshop” in Reston, Virginia, on May 14-15, 2002. This was a unique workshop in that, for the first time, representatives from the information technology sector and those from energy-related industries, Federal and State government agencies, universities, and National Laboratories, gathered to discuss these issues and develop a set of action-oriented implementation strategies. A planning committee of industry, consultant, and government representatives laid the groundwork for the workshop by identifying key participants and developing an appropriate agenda. This document reflects the ideas and priorities discussed by workshop participants.

  12. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  13. Exploring student engagement and transfer in technology mediated environments

    Science.gov (United States)

    Sinha, Suparna

    Exploring student engagement and transfer of mechanistic reasoning skills in computer-supported learning environments by SUPARNA SINHA Dissertation Director: Cindy Hmelo-Silver Computer-supported environments designed on learning science principles aim to provide a rich learning experience for students. Students are given opportunities to collaborate, model their understanding, have access to real-time data and engage in hypotheses testing to solve authentic problems. That is to say that affordances of technologies make it possible for students to engage in mechanistic reasoning, a complex inquiry-oriented practice (Machamer, Craver & Darden, 2000; Russ et al., 2008). However, we have limited understanding of the quality of engagement fostered in these contexts. This calls for close observations of the activity systems that the students participate in. The situative perspective focuses on analyzing interactions of individuals (students) with other people, tools and materials within activity systems (Greeno, 2006). Importantly, as the central goal of education is to provide learning experiences that are useful beyond the specific conditions of initial learning, analysis of such interactions sheds light on key experiences that lead to transfer of mechanistic reasoning skills. This is made possible, as computer-supported contexts are activity systems that bring forth trends in students' engagement. From a curriculum design perspective, observing student engagement can be a useful tool to identify features of interactions (with technological tools, peers, curriculum materials) that lead to successful learning. Therefore, the purpose of the present studies is to explore the extent to which technological affordances influence students' engagement and subsequent transfer of reasoning skills. Specifically, the goal of this research is to address the following research questions: How do learners generalize understanding of mechanistic reasoning in computer

  14. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  15. A report from the second US/Japan workshop on global change research: Environmental response technologies (mitigation and adaptation). United States-Japan Science and Technology Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Edgerton, S. [comp.] [National Science Foundation, Washington, DC (United States). Committee on Earth and Environmental Sciences; Mizuno, Tateki [comp.] [National Inst. for Resources and Environment, MITI (Japan)

    1993-12-31

    The Second US - Japan Workshop on Global Change: Environmental Response Technologies for Global Change was hosted by the Program on Resources at the East-West Center, in Honolulu, Hawaii on February 1--3, 1993, on behalf of the United States Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET). This workshop brought together over fifty leading scientists from the two countries to review existing technologies and to identify needed research on the development of new technologies for mitigation and adaptation of global change. The Workshop was organized around three areas of research: (1) capture, fixation/utilization, and disposal of CO{sub 2} (e.g. CO{sub 2}, separation and capture technologies, ocean and land disposal of CO{sub 2}; (2) energy production and conservation technologies to reduce greenhouse gas emissions (e.g. combustion efficiency, non-carbon based energy technologies, energy conservation technologies); and (3) adaptation technologies and practices related to global climate change (e.g., adaptation responses of crops to climate change, adapting urban infrastructure for climate change). Priorities for joint research in each of these areas were discussed. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  16. Bidirectional Transfer of DoD Technology: Assessment of Science and Technology Education Applications of DoD Modeling and Simulation Resources

    National Research Council Canada - National Science Library

    Anderson, Rodney

    1996-01-01

    Collection, analysis, and dissemination of modeling and simulation technologies in meetings, seminars, conference, workshops, and reports are key processes in implementation of computer assisted education...

  17. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  18. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    FDI through vertical linkages along the supply chain. Our results suggest that domestic firms experience more productivity spillovers through forward linkages from foreign-input suppliers to domestic input users than through backward linkages from foreign customers to domestic producers of inputs....... Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...... imported intermediates is controlled for and are associated with innovations and technology investments made by firms....

  19. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  20. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  1. Presentations and recorded keynotes of the First European Workshop on Latent Semantic Analysis in Technology Enhanced Learning

    NARCIS (Netherlands)

    Several

    2007-01-01

    Presentations and recorded keynotes at the 1st European Workshop on Latent Semantic Analysis in Technology-Enhanced Learning, March, 29-30, 2007. Heerlen, The Netherlands: The Open University of the Netherlands. Please see the conference website for more information:

  2. Nuclear engineering and manufacturing technology transfer coproduction with technical assistance

    International Nuclear Information System (INIS)

    Marillier, J.C.; Boury, C.

    1985-10-01

    This paper emphasizes in the specific areas of design, engineering, and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of successful implementation of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  3. Technology Transfer of Isotopes-Based Assay: Strategies and Mechanisms

    International Nuclear Information System (INIS)

    Tabbada, R.S.D.C.; Rañada, M.L.O.; Mendoza, A.D.L.; Panganiban, R.; Castañeda, S.S.; Sombrito, E.Z.; Arcamo, S.V.R.

    2015-01-01

    Receptor Binding Assay for Paralytic Shellfish Poisoning (PSP RBA) is an isotope-based assay for detection and quantification of PSP toxins in seafood. It was established in the Philippines through a national program based on the recommendations of the Expert Mission sent by the International Atomic Energy Agency (IAEA). Through the said program, the Philippines Nuclear Research Institute (PNRI) was able to put up an RBA facility and develop expertise. Advantages of the technique against Mouse Bioassay (MBA) and high-performance Liquid Chromatography (HPLC) methods were are established. RBA is being utilized by some developed countries as screening method for Harmful Algal Bloom (HAB) Monitoring. However, it was not immediately adopted by the national HAB regulatory body for the following reasons: (1) acceptance of RBA as an official national method of analysis for PSP, (2) logistics and financial concerns in building up and maintaining a RBA facility, (3) considerations on the use of radioactive materials. To address these issues, the Philippines Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) approved a Grants-In-Aid Project to initiate and to facilitate the transfer of the RBA technology to the monitoring and regulatory body. The project has two major objectives: capacity building and technology transfer. The capacity building focuses on human resources development of HAB monitoring personnel, specifically training on RBA and on the use of radioactive materials. On the other hand, the technology transfer deals with assistance that PNRI may render in establishing the new RBA facility and over-all know-how of the project. In this is poster, the mechanisms and strategies being undertaken by PNRI, in collaboration with the regulatory and monitoring body, to address the limitation of transferring a technology that utilizes radioactive materials including the technical difficulties are presented and discussed. (author)

  4. Fastening Transfer of Technology Through the Franchise Agreement

    OpenAIRE

    Asikin, Zainal

    2014-01-01

    The major improvement of franchise practices in Indonesian within the last 10 (ten) years has speeded to many region. Yet the government and local government under informed about the exact concept and regulation of franchise. Therefore this research meant to find out the concept of franchise and how the government regulate franchise agreement and its relation with transfer of technology. This research in a normative research as a way to depth study legal norms in various primary and secondary...

  5. INTERNATIONAL TECHNOLOGY TRANSFER AND LOCALIZATION: SUCCESS STORIES IN NUCLEAR BRANCH

    Directory of Open Access Journals (Sweden)

    Yulia V. Chernyakhovskaya

    2016-01-01

    Full Text Available countries are considering nuclear power industry development [2, p. 3; 3, p. 3; 4]. For newcomer-countries it is of great importance to stimulate the national industry through NPP projects implementation based on technology transfer and localization (TTL. The study and systematization of world experience is useful in purpose to elaborate the national industry development programs. Objectives. The aim of article is to determine success factors of TTL; tasks: 1 to study TTL international experience in the fi eld of nuclear power technologies; 2 on the ground of the world practice to analyze preconditions, contents, stages, arrangement modes, formats and results of TTL. Methods. The following methods are utilized in the study: analysis and synthesis including problem-chronological, cause and eff ect and logical analysis and historical-diachronic method (method of periodization. Results. The following conclusions presented below have been made on the basis of the three cases study related to nuclear industry development using TTL (France, South Korea and China. Conclusions. The TTL success factors includes: Government support that provides long-term governmental development plan of nuclear power and industry for nuclear power based on TTL, and an appropriate international cooperation (under favorable conditions of “NPP buyers market”; Complex approach to implementation of the national TTL program and NPP construction projects: signing of NPP construction contracts with vendors stipulating technology transfer; NPP designing and constructing should be performed jointly with training and transferring of technical documentation and software. Technology transfer cooperation should be implemented through the licenses agreements and setting up joint ventures; Public acceptance and support.

  6. Embryo transfer and related technologies in sheep reproduction

    OpenAIRE

    Loi, Pasqualino; Ptak, Grazyna; Dattena, Maria; Ledda, Sergio; Naitana, Salvatore; Cappai, Pietro

    1998-01-01

    This paper reviews the status of embryo transfer and the major technologies applied to preimplantation of embryos in sheep. Embryo production from superovulated ewes is hindered by an unpredictable response to hormonal treatment. Progress in this area should be expected by an appropriated control of follicular development with gonadotropin-releasing hormone (GnRH) agonist or antagonist prior to gonadotrophin administration. Simple protocols for the cryopreservation of sheep embryos by vitrifi...

  7. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    Stephanie S. Shipp Gina K. Walejko Pamela B. Rambow Vanessa Peña Sherrica S. Holloman Phillip N. Miller Approved for public release; distribution is...Stephanie S. Shipp Gina K. Walejko Pamela B. Rambow Vanessa Peña Sherrica S. Holloman Phillip N. Miller iii Executive Summary Technology transfer is...1 From “About the Department of Defense (DOD),” http://www.defense.gov/about/. 2 S. V. Howieson, S. S. Shipp , G. K. Walejko

  8. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  9. Technology investment fund : issues for consideration : issue paper for an expert workshop

    International Nuclear Information System (INIS)

    Drexhage, J.

    2006-12-01

    This document was prepared in advance of an expert workshop held to discuss technology investment funds (TIF) related to Canada's Clean Air Act. TIFs are being considered in the development of the Clean Air Act as a compliance option for air emissions regulations. Energy production is expected to dominate Canadian business in the future, and the domestic sector is undergoing a marked shift from conventional to unconventional sources such as oil sands, coalbed methane (CBM) and liquefied natural gas. Technological solutions are required to allow Canada to obtain the benefits of the country's natural resource wealth while reducing impacts to the environment. However, solutions will vary from region to region. The report examined issues related to financing research and demonstration programs. Research and development policies were discussed, as well as the role of the government in encouraging public and private partnerships. It was suggested that a portfolio of policy approaches will be required, as well as a compliance-based TIF designed to address a range of greenhouse gas (GHG) and air pollutants. Issues concerning rates of contributions and recognition for existing technology investments were also reviewed. Various taxes, levies, and funding approaches were outlined. It was concluded that a successful TIF will form part of an overall emissions trading framework.1 tab

  10. Anaerobic digestion and opportunities for international technology transfer

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1997-01-01

    Unmanaged pollutants from organic farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only prevents pollution but can also convert a disposal problem into a new profit center. This report summarizes the current status of AD as a key technology that both reduces waste and recovers a fuel and other valuable co-products, and AD possibilities for the future. Beyond the technology arena, this paper also discusses the efforts of the International Energy Agency (IEA) Bioenergy AD Activity to encourage technology deployment. The Activity aims to provide reliable information on the cost-effectiveness of AD, markets for biogas and the other co-products, advanced technologies for biogas utilization, environmental benefits, and institutional barriers. The Activity's principal objectives are to accelerate exchange of information and practical experience, identify barriers to the deployment of AD technology, encourage the use of AD technology, and, where relevant, assist and encourage national Pilot and Demonstration (P and D) programs. The goal of these objectives is to increase the deployment of AD technologies and to transfer the ''lessons learned'' from past experience. (author)

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  12. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  13. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  14. Technology transfer. Determining industry needs: A guide for communities

    Science.gov (United States)

    1993-01-01

    This Guide was developed in accordance with the Memorandum of Understanding between the NASA George C. Marshall Space Flight Center and the following States: Alabama, Georgia, Louisiana, Mississippi, Tennessee, West Virginia. The economic welfare of individual communities is currently a matter of considerable interest. Concern for the position of US industry in the competitive world marketplace is a matter of growing concern as well. This 'guide' describes a process whereby communities may seize the opportunity to improve their own economic destiny. The method described involves linking the technology needs of existing industries to the technologies which are available from Federal Laboratories. Community technology transfer is an 'action possibility' which allows individual citizen groups to do something tangible to improve the economic climate of the places where they live and work. The George C. Marshall Space Flight Center in Huntsville, Alabama is pledged to promote and encourage such efforts, and stands ready to help communities both large and small in that regard.

  15. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Science.gov (United States)

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  16. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    Science.gov (United States)

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  17. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  18. Workshop `Measurement technology for steady state and transient multi phase flows`; Workshop `Messtechnik fuer stationaere und transiente Mehrphasenstroemungen`

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. [ed.

    1997-12-01

    There is hardly another area of physics which has a comparable multiplicity of phenomena, like flow in multi-phase mixtures. The wishes of experimenters regarding measurement technique are correspondingly great: Apart from the conventional parameters of pressure, temperature and speed of flow, as great a collection with resolution of the instantaneous phase distribution is required. Also, the phases themselves frequently consists of several components, whose concentration should also be measured. The enormous progress which has recently been made with laser optics and tomographic processes, must be compared with a long list of unsolved problems, above all where non-contact measurement is concerned. The attempts at solutions are multifarious, the need for the exchange of experience is great and the comparson of measurement processes with one another must be strengthened. The workshop has set itself these targets. (orig.) [Deutsch] Es gibt kaum ein anderes Gebiet der Physik, das eine vergleichbare Vielfalt der Erscheinungen aufweist wie Stroemungen von Mehrphasengemischen. Entsprechend gross sind die Wuensche der Experimentatoren hinsichtlich der Messtechnik: Neben den klassischen Parametern Druck, Temperatur und Stroemungsgeschwindigkeit wird eine moeglichst hoch aufloesende Erfassung der momentanen Phasenverteilung benoetigt. Ausserdem bestehen die Phasen selbst haeufig aus mehreren Komponenten, deren Konzentration ebenfalls gemessen werden soll. Den enormen Fortschritten, ie mit laseroptischen und tomographischen Verfahren in letzter Zeit gemacht wurden, steht nach wie vor eine lange Liste bisher ungeloester Aufgaben gegenueber, vor allen Dingen, wenn beruehrungslos gemessen werden soll. Die Loesungsansaetze sind vielfaeltig, der Bedarf an Erfahrungsaustausch ist gross, der Vergleich der Messverfahren untereinander muss verstaerkt werden. Diesen Zielen hatte sich der Workshop ``Messtechnik fuer tationaere und transiente Mehrphasenstroemungen`` verschrieben.

  19. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  20. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    Science.gov (United States)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  1. Applications of aerospace technology in industry, a technology transfer profile: Fire safety

    Science.gov (United States)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    The fire safety field is considered as being composed of three parts: an industry, a technology base, and a user base. An overview of the field is presented, including a perspective on the magnitude of the national fire safety problem. Selected NASA contributions to the technology of fire safety are considered. Communication mechanisms, particularly conferences and publications, used by NASA to alert the community to new developments in the fire safety field, are reviewed. Several examples of nonaerospace applications of NASA-generated fire safety technology are also presented. Issues associated with attempts to transfer this technology from the space program to other sectors of the American economy are outlined.

  2. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  3. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  4. IEA-NEA Nuclear Technology Road-map Update - Asia Stakeholder Engagement Workshop

    International Nuclear Information System (INIS)

    Tam, Cecilia; ); Paillere, Henri; ); Guoxing, Gu; Tianmin, Xin; Autebert, Remy; Murphy, Paul; Barkatullah, Nadira; Nkong-Njock, Vincent; Dubinsky, Melissa; Cordero, Didier

    2014-01-01

    In 2010, the International Energy Agency (IEA) and the Nuclear Energy Agency (NEA) released a Nuclear Energy Technology Road-map which outlined the steps needed to accelerate the development of nuclear power and its role in achieve deep greenhouse-gas emissions reduction. Both the global energy sector and the outlook for nuclear have changed significantly since then and an update of this Road-map is currently underway. The IEA and NEA held a stakeholder dialogue meeting focused on nuclear develop in Asia on 25 February 2014 in Hong Kong. The meeting brought together key stakeholders from industry, government, finance and other relevant organisations from Asia and beyond to help define and prioritise key items to be discussed in the IEA/NEA's Nuclear Road-map Update. One of the expected outcomes of this intensive brainstorming and Road-map development session was to discus key targets, milestones, policy measures and other actions needed to support the development and deployment of nuclear power. The workshop was organized in 3 sessions dealing with: Session 1 - Technology development needs for nuclear (Reactor technology, Fuel cycle and decommissioning); Session 2 - Breakout Discussion: - Group I: Financing nuclear. This session focussed on today's reality for financing nuclear and the current economics of nuclear. Mechanisms such as government loan guarantees, vendor financing and role of export credit agencies were discussed. Participants were asked to share lessons learnt and current practices on financing nuclear as well as recommendations (if needed) for additional policy support or changes in technology development (e.g. SMR) which would facilitate greater deployment of nuclear technologies. - Group II: Nuclear regulation and safety. This session focussed on regulatory needs for enhanced security and regulation for new build programmes, institutional development requirements for new nuclear countries. Safety research following the Fukushima Daiichi accident

  5. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  6. [Development and technological transfer of functional pastas extended with legumes].

    Science.gov (United States)

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  7. Workshop report

    African Journals Online (AJOL)

    raoul

    2011-10-10

    Oct 10, 2011 ... Nursing partnerships established to build capacity can be an important resource, especially when considering nurses' pivotal role in generating and transferring knowledge to students, who will eventually address complex changes in health care. Notably, the workshop planned in Cameroon was founded ...

  8. Can CDM bring technology transfer to China?-An empirical study of technology transfer in China's CDM projects

    International Nuclear Information System (INIS)

    Wang Bo

    2010-01-01

    China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.

  9. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  10. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  11. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  12. Evaluation of technology transfer on collider quadrupole manufacture at LBL

    International Nuclear Information System (INIS)

    Boeer, J.; Fechteler, H.; Moryson, H.; Sommer, F.; Grueneberg, H.; Kreutz, R.; Krischel, D.; Bensiek, W.; Ryan, B.

    1992-01-01

    As part of the contract on the collider quadruple magnets a technology transfer to Siemens Power Generation Group (KWU) was performed at Lawrence Berkeley Laboratory, Berkeley in September 1991. One inner and outer 1 m long coil each should be manufactured under the surveillance of LBL staff to become familiar with the coil production facilities available at LBL. In addition, KWU had the possibility to observe the production process of 5 m quadruple coils. The work is successfully completed and provided additional information for the further hardware operations at the Siemens site

  13. EA20: Education and Architecture in the 20th Century. The Design Workshop, Colleges of Applied Arts and Technology (4th, Toronto, Ontario, November 16-17, 1971).

    Science.gov (United States)

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This document contains speeches and notes of workshop participants assembled to discuss the planning of Colleges of Applied Arts and Technology. The workshop was mainly concerned with learning resource centers, college student facilities, and planning for the future. Thirty-three selections cover such topics as appraisal of college development,…

  14. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  15. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  16. Workshop on body composition in basic and clinical research and the emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.

    2000-12-14

    A special one-day workshop was held to review the status, the need for, and the future role of BNL in the Body Composition Analysis Program (BCAP). Two speakers succinctly outlined the status and future new developments using gamma nuclear resonance technology as it applies to BCAP. Seven speakers from three institutions outlined the continued need for BCAP and presented new clinical applications of BCAP in theirs respective fields of expertise. Extensive increase in the use of surrogate instrumentation, e.g., DXA and BIA, in BCAP was recognized as a significant contributing factor to the growth in BCAP. The growing role of MRI in BCAP was also emphasized. In light of these developments BCAP at BNL, with its specialized In Vivo Neutron Activation (IVNA) facilities, was recognized as a unique user oriented resource that may serve the community hospitals in the area. Three regional large institutions expressed their desire to use these facilities. In addition, IVNA provides direct measure of the human compartments in vivo, thus providing a gold standard for the surrogate methodologies that are in use or to be developed. It was strongly felt that there is a need for a calibration center with a national stature for the different methodologies for in vivo measurements, a role that befits very well a national laboratory. This offers an exquisite justification for DOE to support this orphan technology and to develop BCAP at BNL to, 1, provide a user oriented regional resource, 2, provide a national reference laboratory, and 3, develop new advanced technologies for BCAP.

  17. Technological transfers and cooperation in the field of climatic change

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    Fighting against climatic changes and adapting to them is a necessary condition to achieve sustainable development. The ultimate goal of the Framework Convention on Climate Change signed in Rio in 1992, and specified in article 2, is to stabilize the concentrations of greenhouse gases at a level that does not threaten climatic systems and allows ecosystems to adapt to climatic change, ensures that food production is not in danger and that sustainable development be achieved. A radical paradigm change is required, and in particular the adoption of new technologies. First, the new technologies must assist in limiting the emissions of greenhouse gases, both in industrialized and developing countries, and to adapt to the climatic changes. The author is of the opinion that technology transfers represent a means to address the issue of climatic change. The concentration of carbon dioxide in the atmosphere continues to increase since the advent of the industrial revolution. It seems dubious that we will be able to stabilize the climate to its actual level, therefore we must learn to adapt while continuing to reduce the emissions of greenhouse gases. The author then examines the technological cooperation since the adoption of the Marrakech Accords in 2001. The next section deals with technological cooperation between francophone cities of the north and francophone cities of the south. The author concludes by placing the emphasis on the importance of regular meetings and the implementation of specialized networks, such as the network on the technology of arid regions, in an effort to assist the technological cooperation north-south and south-south in the fight against climatic change. 2 figs

  18. Best practices for health and safety technology transfer in construction.

    Science.gov (United States)

    Welch, Laura S; Russell, Dustin; Weinstock, Deborah; Betit, Eileen

    2015-08-01

    Construction continues to be a dangerous industry, yet solutions that would prevent injury and illness do exist. Prevention of injury and illness among construction workers requires dissemination, adoption, and implementation of these effective interventions, or "research to practice" (r2p). CPWR recruited participants with experience and insight into effective methods for diffusion of health and safety technologies in this industry for a symposium with 3 group sessions and 3 breakout groups. The organizers reviewed session notes and identified 141 recommendations, which were then assigned to 13 over-arching themes. Recommendations included a guide for researchers on patenting and licensing, a business case model, and in-depth case studies including development, testing, manufacturing, marketing, and diffusion. A more comprehensive understanding of the health and safety technology transfer landscape, the various actors, and their motivators and goals will help to foster the successful commercialization and diffusion of health and safety innovations. © 2015 Wiley Periodicals, Inc.

  19. Meeting the Needs of Mothers During the Postpartum Period: Using Co-Creation Workshops to Find Technological Solutions.

    Science.gov (United States)

    Slomian, Justine; Emonts, Patrick; Vigneron, Lara; Acconcia, Alessandro; Reginster, Jean-Yves; Oumourgh, Mina; Bruyère, Olivier

    2017-05-03

    The postnatal period is associated with many new needs for mothers. The aim of this study was to find technological solutions that meet the needs of mothers during the year following childbirth. Two co-creation workshops were undertaken with parents and professionals. The aim of the first workshop was to create a list of all the criteria the proposed solution would have to address to meet the needs of mothers after childbirth. The aim of the second workshop was to create solutions in response to the criteria selected during the first workshop. Parents and health professionals want solutions that include empathy (ie, to help fight against the feelings of abnormality and loneliness), that help mothers in daily life, that are personalized and adapted to different situations, that are educational, and that assures some continuity in their contact with health professionals. In practice, we found that parents and professionals think the solution should be accessible to everyone and available at all times. To address these criteria, technology experts proposed different solutions, such as a forum dedicated to the postpartum period that is supervised by professionals, a centralized website, a system of videoconferencing, an online exchange group, a "gift voucher" system, a virtual reality app, or a companion robot. The human component seems to be very important during the postnatal period. Nevertheless, technology could be a great ally in helping mothers during the postpartum period. Technology can help reliably inform parents and may also give them the right tools to find supportive people. However, these technologies should be tested in clinical trials. ©Justine Slomian, Patrick Emonts, Lara Vigneron, Alessandro Acconcia, Jean-Yves Reginster, Mina Oumourgh, Olivier Bruyère. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 03.05.2017.

  20. Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop -- Summary Report

    Science.gov (United States)

    Ambur, Manjula; Schwartz, Katherine G.; Mavris, Dimitri N.

    2016-01-01

    The fields of machine learning and big data analytics have made significant advances in recent years, which has created an environment where cross-fertilization of methods and collaborations can achieve previously unattainable outcomes. The Comprehensive Digital Transformation (CDT) Machine Learning and Big Data Analytics team planned a workshop at NASA Langley in August 2016 to unite leading experts the field of machine learning and NASA scientists and engineers. The primary goal for this workshop was to assess the state-of-the-art in this field, introduce these leading experts to the aerospace and science subject matter experts, and develop opportunities for collaboration. The workshop was held over a three day-period with lectures from 15 leading experts followed by significant interactive discussions. This report provides an overview of the 15 invited lectures and a summary of the key discussion topics that arose during both formal and informal discussion sections. Four key workshop themes were identified after the closure of the workshop and are also highlighted in the report. Furthermore, several workshop attendees provided their feedback on how they are already utilizing machine learning algorithms to advance their research, new methods they learned about during the workshop, and collaboration opportunities they identified during the workshop.

  1. Applications of aerospace technology in industry, a technology transfer profile: Plastics

    Science.gov (United States)

    1971-01-01

    New plastics technology bred out of the space program has moved steadily into the U.S. economy in a variety of organized and deliberate ways. Examples are presented of the transfer of plastics know-how into the plants and eventually the products of American business.

  2. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  4. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    Science.gov (United States)

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  5. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    International Nuclear Information System (INIS)

    Hahn, S; Jaffray, D; Chetty, I; Benedict, S

    2014-01-01

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshopTechnology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  6. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  7. Development of a bilateral technology transfer agreement. 2

    International Nuclear Information System (INIS)

    Loosch, R.

    1983-01-01

    On the basis of positive experience of bilateral co-operation in science and technology, particularly under the intergovernmental agreement in 1969, the Federal Republic of Germany and Brazil undertook a joint study of the energy demand and supply development in Brazil. This assessment concluded that nuclear energy would have to provide a substantial share of Brazil's electricity supply in the decades to come and that this could be achieved in a reliable, technically and economically sound manner only if Brazil would, over time, acquire appropriate technical and industrial competence in building nuclear power stations, and in the nuclear fuel cycle. To meet these requirements, a comprehensive design for co-operation between public and private institutions of both countries was set up, covering scientific, industrial, training, regulatory and other aspects of the Brazilian nuclear energy programme and defining material contents, institutional structures and time schedules of such co-operation. The overall theme was the transfer of Federal German nuclear technology and expertise to Brazil, as and when required, their optimal assimilation and, where necessary, adjustment or further development in Brazil. To provide the necessary legal and political framework for that co-operation, a number of agreements and contracts were concluded between different partners from both countries, interconnected as appropriate and governed by a specific intergovernmental agreement on peaceful nuclear co-operation, the contents and motives of which are described in the paper. The paper outlines the major developments in the implementation of co-operation and technology transfer between the Federal Republic of Germany and Brazil, and draws conclusions from experience gained during that process. (author)

  8. Renewable Energy Technologies for Decentralised Rural Electricity Services. Report from an International Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern; Arvidson, Anders; Forslund, Helena; Martinac, Ivo (eds.)

    2005-02-01

    The developing countries represented at the workshop were Brazil, India, Kenya, Mali, Mongolia, Nepal and Uganda. After keynote presentations which covered the experiences of different renewable electricity generation technologies in selected developing countries, the participants discussed the role of electrification in rural development, needs for further technological improvements and the needs for development of government policies for promotion of renewable energy for electricity generation. Finally, the participants discussed and agreed on recommendations addressed to donor agencies for consideration when formulating a revised Energy Policy. Renewable energy technologies should only be considered when these offer more advantages than the conventional alternatives - grid connection or stand-alone diesel generators. Such advantages may be lower costs, better supply reliability, fewer adverse local environmental impacts or better possibilities for local income-generating activities. Local needs and priorities must determine the choice of technology. Biomass-fuelled renewable technologies have a particularly strong potential in generating local economic activities compared to conventional supply options. Technologies for decentralised electricity generation using mini-hydro power plants, solar photovoltaics (PV), wind generators and biomass fuels are commercially available and are being applied in many developing countries. The limiting factors for further penetration of renewable energy are today linked to issues of cost, reliability, financing, service infrastructure, awareness of available technology and trust in the technologies from the perspective of entrepreneurs and end-users. One important limiting factor related to cost, is the capacity range within which each technology can compete with the conventional options. PV systems are still only realistic for very small power demands, whereas technologies using biomass fuels are unrealistic for small power

  9. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  10. CMC Participation in the Regional Centre for Strategic Studies (RCSS) Workshop: Defense, Technology and Cooperative Security in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    Biringer, K.L.; Olsen, J.

    1998-11-01

    As an ongoing part of the collaborative efforts between the Cooperative Monitoring Center (CMC) at Sandia National Laboratories, the United States Arms Control and Disarmament Agency (ACDA), and U.S. Department of Energy (DOE), staff from the CMC served as faculty in conducting a workshop in Shanghai, China. Sponsor of the workshop was the Regional Centre for Strategic Studies (RCSS) based in Colombo, Sri Lanka. The workshop included participants from throughout South Asia and China. The CMC presented four sessions related to the role of monitoring technologies in promoting regional security and building confidence among nations. Participation in these workshops supports U.S. efforts to further regional cooperation and promote arms control, nonproliferation and other cooperative securily measures and supplements efforts funded by DOE and ACDA over the past four years. The RCSS Shanghai meeting permitted a continued CMC involvement in regionally conducted training for anew generation of leaders in government, the military, and academia throughout South Asia and China. Nuclear issues are clearly a dominant South Asian concern since the nuclear tests of May 1998. However, there remains a strong interest in identifying opportunities for increased trade and reduced tensions in other areas. The RCSS and other regional organizations are enthusiastic about continued CMC involvement in future regional courses.

  11. International and domestic technology transfers and productivity growth: Empirical evidence for Flanders

    OpenAIRE

    Belderbos, Rene; Van Roy, Vincent; Duvivier, Florence

    2008-01-01

    We examine the drivers of international and domestic technology transfer strategies of firms and the impact of these transfers on firms’ productivity performance in a sample of 457 Flemish innovating firms during 2003-2006. We use data on innovating firms from the 4th Community Innovation Survey for Flanders. In this survey, responding firms indicate whether they sourced technology externally and if so, whether the source of this technology was domestic or foreign. Technology transfers may oc...

  12. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  13. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1

    Science.gov (United States)

    Lea, Robert N. (Editor); Villarreal, James (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  14. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  15. From computer images to video presentation: Enhancing technology transfer

    Science.gov (United States)

    Beam, Sherilee F.

    1994-01-01

    With NASA placing increased emphasis on transferring technology to outside industry, NASA researchers need to evaluate many aspects of their efforts in this regard. Often it may seem like too much self-promotion to many researchers. However, industry's use of video presentations in sales, advertising, public relations and training should be considered. Today, the most typical presentation at NASA is through the use of vu-graphs (overhead transparencies) which can be effective for text or static presentations. For full blown color and sound presentations, however, the best method is videotape. In fact, it is frequently more convenient due to its portability and the availability of viewing equipment. This talk describes techniques for creating a video presentation through the use of a combined researcher and video professional team.

  16. Carbon emissions linked to capital and technology transfer

    International Nuclear Information System (INIS)

    Smith, P.F.

    1994-01-01

    Reducing carbon dioxide emissions, and hence global warming, could be achieved by placing a carbon budget on buildings and light vehicles. In this scheme, a building or vehicle is allocated an annual carbon budget expressed as kg/carbon. The user of the building or vehicle is then taxed for every carbon unit used over its budget limit. The aim of this paper is to extend this carbon budget idea in order to set up a formula for achieving capital and technology transfer from industrialized countries to developing countries. In addition, the author proposes a mechanism for linking historic carbon emissions caused in the industrialized world with compensation strategies for the developing nations. (UK)

  17. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  18. What Motivates Brazilian Academic Researchers to Transfer Technology?

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2013-12-01

    Full Text Available This study investigated what motivates Brazilian academic researchers to get involved in University-Industry Technology Transfer (UITT and deterrents to contributing to this process. The research relied on interviews with experienced academic scientists and managers from four universities in Brazil. Determination, persistence and entrepreneurship, related to motivational types Self-direction and Stimulation, were prominent. Hedonism, Achievement and Power - highlighting a shift in their professional identity - were also observed. Universalism type involved opening career opportunities, awakening and maintaining the interest of students. The major motivational goals were: generate resources, solve problems, professional challenge, personal gains, personal gratification, academic prestige, competition, and solving problems of society. Factors that discouraged researchers were: time required for UITT, lack of incentive, innovation environment, and fear of contravening university rules, among others. Knowledge of motivational profiles of academic scientists favors the development of incentive policies and programs for UITT, helping to attract and retain qualified researchers at Brazilian universities.

  19. FEATURES OF THE USE OF COMPUTER AND INTERNET TECHNOLOGY IN THE WORKSHOPS ON LABOR TRAINING FOR SECONDARY SCHOOL PUPILS

    Directory of Open Access Journals (Sweden)

    Petro M. Bisirkin

    2013-09-01

    Full Text Available The article discusses the features of the use of Internet technologies in the workshops on labor training in secondary school. Training programs include the study of various technologies using web resources. The Internet offers many different training and educational materials that expand the opportunities for students to model and explore the processes, create their own products and projects under the subject "Labor Training". The effective use of educational online resources depends on the availability of ICT, their technical level, the ability of users efficiently search and use them at various stages of the learning process.

  20. Improving Nigerian health policymakers' capacity to access and utilize policy relevant evidence: outcome of information and communication technology training workshop.

    Science.gov (United States)

    Uneke, Chigozie Jesse; Ezeoha, Abel Ebeh; Uro-Chukwu, Henry; Ezeonu, Chinonyelum Thecla; Ogbu, Ogbonnaya; Onwe, Friday; Edoga, Chima

    2015-01-01

    Information and communication technology (ICT) tools are known to facilitate communication and processing of information and sharing of knowledge by electronic means. In Nigeria, the lack of adequate capacity on the use of ICT by health sector policymakers constitutes a major impediment to the uptake of research evidence into the policymaking process. The objective of this study was to improve the knowledge and capacity of policymakers to access and utilize policy relevant evidence. A modified "before and after" intervention study design was used in which outcomes were measured on the target participants both before the intervention is implemented and after. A 4-point likert scale according to the degree of adequacy; 1 = grossly inadequate, 4 = very adequate was employed. This study was conducted in Ebonyi State, south-eastern Nigeria and the participants were career health policy makers. A two-day intensive ICT training workshop was organized for policymakers who had 52 participants in attendance. Topics covered included: (i). intersectoral partnership/collaboration; (ii). Engaging ICT in evidence-informed policy making; use of ICT for evidence synthesis; (iv) capacity development on the use of computer, internet and other ICT. The pre-workshop mean of knowledge and capacity for use of ICT ranged from 2.19-3.05, while the post-workshop mean ranged from 2.67-3.67 on 4-point scale. The percentage increase in mean of knowledge and capacity at the end of the workshop ranged from 8.3%-39.1%. Findings of this study suggest that policymakers' ICT competence relevant to evidence-informed policymaking can be enhanced through training workshop.

  1. Improving Nigerian health policymakers’ capacity to access and utilize policy relevant evidence: outcome of information and communication technology training workshop

    Science.gov (United States)

    Uneke, Chigozie Jesse; Ezeoha, Abel Ebeh; Uro-Chukwu, Henry; Ezeonu, Chinonyelum Thecla; Ogbu, Ogbonnaya; Onwe, Friday; Edoga, Chima

    2015-01-01

    Information and communication technology (ICT) tools are known to facilitate communication and processing of information and sharing of knowledge by electronic means. In Nigeria, the lack of adequate capacity on the use of ICT by health sector policymakers constitutes a major impediment to the uptake of research evidence into the policymaking process. The objective of this study was to improve the knowledge and capacity of policymakers to access and utilize policy relevant evidence. A modified “before and after” intervention study design was used in which outcomes were measured on the target participants both before the intervention is implemented and after. A 4-point likert scale according to the degree of adequacy; 1 = grossly inadequate, 4 = very adequate was employed. This study was conducted in Ebonyi State, south-eastern Nigeria and the participants were career health policy makers. A two-day intensive ICT training workshop was organized for policymakers who had 52 participants in attendance. Topics covered included: (i). intersectoral partnership/collaboration; (ii). Engaging ICT in evidence-informed policy making; use of ICT for evidence synthesis; (iv) capacity development on the use of computer, internet and other ICT. The pre-workshop mean of knowledge and capacity for use of ICT ranged from 2.19-3.05, while the post-workshop mean ranged from 2.67-3.67 on 4-point scale. The percentage increase in mean of knowledge and capacity at the end of the workshop ranged from 8.3%-39.1%. Findings of this study suggest that policymakers’ ICT competence relevant to evidence-informed policymaking can be enhanced through training workshop. PMID:26448807

  2. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations.

    Science.gov (United States)

    Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.

  3. Analysis and technology transfer report, 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

  4. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  5. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  6. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  7. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  8. Causes and implications of the slow pace of technology transfer and ...

    African Journals Online (AJOL)

    The study was set up to examine the causes and implication of slow pace of technology transfer and adoption in rural agriculture. Based on this major objective, the paper among other specific objectives, examines the role of extension agent in technology transfer and adoption, identify factor militating against technology ...

  9. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... INFORMATION CONTACT: Office of Investment and Innovation at technology@sba.gov . SUPPLEMENTARY INFORMATION: I...

  10. Teachers and Their Use of Educational Technology. Report of a Regional Training Workshop (Seoul, South Korea, September 16-27, 1985).

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    The workshop described in this report focused on uses of educational technology in the training and upgrading of teachers and on promoting the use of appropriate educational technology techniques by teachers. Experiences in the use of educational technology are described for each of the participating nations, i.e., Bangladesh, India, Indonesia,…

  11. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  12. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  13. The Second International Workshop on Bioprinting, Biopatterning and Bioassembly.

    Science.gov (United States)

    Mironov, Vladimir

    2005-08-01

    The Second International Workshop on Bioprinting, Biopatterning and Bioassembly was held at the Medical University of South Carolina (MUSC), located in the beautiful, historic city of Charleston. The workshop attracted > 50 participants from 10 different countries, including mechanical and chemical engineers, molecular, cell and developmental biologists, biophysicists, mathematicians, clinicians, humanists and artists. Bioprinting can be defined as computer-aided, automatic, layer-by-layer deposition, transfer and patterning of biologically relevant materials. The workshop goal was to gather the world's experts and leaders, present the latest results, assess future trends, explore new applications, and promote international collaborations and academic-industrial partnerships. The workshop demonstrated the multidisciplinary and global character of ongoing efforts in the development of bioprinting technology, galvanised an evolving community of bioprintists, and demonstrated feasibility as well as strong potential for a broad spectrum of applications of bioprinting technology. The Third International Workshop on Bioprinting, Biopatterning and Bioassembly is planned for Japan in 2006.

  14. The Implementation of a One-Day Science, Technology, Engineering and Mathematics (STEM) Career Exploration Workshop for Middle School Girls in Elmira, New York

    Science.gov (United States)

    Turner, Carol-Witkowski CW

    Even now, women are underrepresented in Science, Technology, Engineering, and Mathematics (STEM) careers. The literature shows that one significant approach to address this issue is to work with middle school girls, ages eleven to thirteen, to get them interested and excited about STEM career paths. In addition to appropriate in-school support a review of many different middle school programs indicates that such programs exist in certain service areas but are still missing in others, especially the rural areas. To address this situation, a one-day STEM workshop called "Full STEAHM Ahead!" was implemented spring 2012 in Elmira, New York, to address the career exploration "turning point" for rural middle school girls. The implementation involved pre-workshop, workshop, and post-workshop phases. The success and effectiveness of the workshop was demonstrated by survey comments and verbal feedback from both the girls and educators who attended.

  15. 4 years of successful knowledge transfer - the nuclear technology training center of the TUeV Nord Group

    International Nuclear Information System (INIS)

    Willenbockel, I.; Tietze, U.

    2007-01-01

    In connection with the 2002 amendment to the German Atomic Energy Act, the topics of generational change and maintenance of competence grew in importance and necessitated new solution approaches. To this end, various activities were launched, with the aim of conducting conceptual analyses of these topics. Examples include the 'National Competence Network for Nuclear Technology' (Nationaler Kompetenzverbund fuer Kerntechnik), various networks established by colleges and universities, the 'Knowledge Management for the Maintenance and Transfer of Competence in Reactor Safety' (Wissensmanagement zum Kompetenzerhalt und -transfer in der Reaktorsicherheit) workshop held in 2001 in Garching near Munich (Germany) and the 'Ad-hoc Workgroup on the Maintenance of Competence' (Ad-hoc-Arbeitskreis Kompetenzerhalt) of the VdTUeV. The nuclear technology departments of the TUeV Nord Group were aware of te challenges associated with the generational change early on. By establishing the 'Nuclear Technology Training Center' (Ausbildungszentrum fuer Kerntechnik, AfK), the TUeV Nord Group intended to ensure the required knowledge transfer during the generational change as well as maintain the renowned high qualification as regards the subject of nuclear technology and thus continue to provide - in the sense of social responsibility - crucial contribution to the long-term safety of nuclear plants. Four years have passed since the training center held the first courses in the fall of 2002. Up to now, more than 350 participants have been trained in the courses conducted by the AfK. In the opinion of the TUeV Nord Group, the activities of the AfK have laid the foundation for a successful change of generations within the group's nuclear technology organizations. (orig.)

  16. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  17. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  18. CRADA Payment Options | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).

  19. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  20. Proceedings (slides) of the OECD/NEA Workshop on Innovations in Water-cooled Reactor Technologies

    International Nuclear Information System (INIS)

    Spiler, Joze; Kim, Sang-Baik; ); Feron, Fabien; Jaervinen, Marja-Leena; Husse, Julien; ); Ferraro, Giovanni; Bertels, Frank; Denk, Wolfgang; Tuomisto, Harri; Golay, Michael; Buongiorno, J.; Todreas, N.; Adams, E.; Briccetti, A.; Jurewicz, J.; Kindfuller, V.; Srinivasan, G.; Strother, M.; Minelli, P.; Fasil, E.; Zhang, J.; Genzman, G.; Epinois, Bertrand de l'; Kim, Shin Whan; Laaksonen, Jukka; Maltsev, Mikhail; Yu, CHongxing; Powell, David; Gorgemans, Julie; Hopwood, Jerry; Bylov, Igor; Bakhmetyev, Alexander M.; Lepekhin, Andrey N.; Fadeev, Yuriy P.; Bruna, Giovanni; Gulliford, Jim; ); Ham-Su, Rosaura; Thevenot, Caroline; GAUTIER, Guy-Marie; MARSAULT, Philippe; PIGNATEL, Jean-Francois; White, Andrew; )

    2015-02-01

    New technologies and solutions have been developed over more than thirty years to improve the safety, performance and economics of nuclear power plants. Particular efforts were made in designing systems to prevent or mitigate nuclear accidents and, greatly limit or even avoid any offsite release of radioactivity. Reactor designs developed in the 1980's and later are often referred to as Generation III (Gen III) reactors. They offer enhanced safety compared to earlier Generation II (Gen II) designs, as well as improved performance and economics. Examples of Gen III safety design features include solutions for corium localisation, advanced containment structures, improved emergency core-cooling systems, filtered venting systems, hydrogen risk management solutions, etc. Some of these solutions have also been back-fitted or partially adapted to existing reactors, based on recommendations from regulators or modernisation efforts by the utilities operating these reactors, to bring their level of safety to levels approaching those of the more modern designs. Other innovations found in the latest water-cooled reactor designs include the use of passive safety systems, and often associated with those, a simplification in the design of the reactor. Gen III reactors also feature better economics, for example increased design lifetime up to 60 years, ability to use 100% MOX fuel and operate with higher flexibility, higher thermal efficiencies and reduced staff requirements. Modularity is often quoted as a feature of some Gen III designs as a way of reducing the construction times and simplifying the decommissioning of the plant. The scope of the Workshop includes, inter alia: - Evolution of regulatory and design requirements for commercial water-cooled reactors; - Innovations in water-cooled reactor technologies that allowed significant improvement in the level of safety, with a discussion on advantages and challenges of active vs. passive safety systems; - Innovations under

  1. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  2. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  3. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  4. TECHNOLOGY TRANSFER: Several Factors Have Led to a Decline in Partnerships at DOE's Laboratories

    National Research Council Canada - National Science Library

    2002-01-01

    Since 1980, the Congress has enacted several laws designed to make federally funded technology available to the public by facilitating the transfer of technology from federal laboratories to U.S. businesses...

  5. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  6. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  7. Transferring nuclear power technology to foster Chinese self-reliance

    International Nuclear Information System (INIS)

    Levi, J-D.

    1998-01-01

    Being convinced that nuclear energy will play an important role in meeting its huge future energy demands, China considers that the development of a very strong national nuclear industry capable of covering all aspects of a major national power program is of paramount importance.In this context, China has invited its foreign partners to propose contributions to the studies for this development, in view of establishing a suitable cooperation program with the entire Chinese nuclear power industry, including design institutes, equipment manufacturers, construction companies and plant operators.One of the main objectives defined by the Chinese authorities for the further development of their nuclear industry with some international cooperation is the achievement of a very high level of self-reliance by Chinese industry in all of the following areas: project management, design and engineering, construction, equipment design and manufacturing,operation and maintenance. The major key to reaching this target of overall and long term self reliance lies in the implementation of thorough design know how transfer towards all partners of the Chinese nuclear industry, who shall acquire the necessary capabilities so as to completely master nuclear engineering. While this policy might entail fairly high front end investments by the technology receivers, in terms of industrial infrastructure nad engineering capabilities it is expected to pay off over the long term with the development of a substantial nuclear power plant construction program.(DM)

  8. Your Idea and Your University: Issues in Academic Technology Transfer

    Science.gov (United States)

    Smith, Charles D.

    2013-01-01

    Structured Abstract Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved s/he will be in the commercialization process. In some cases a university out-licenses the intellectual property, while in other cases the investigator may want to be involved in the development process and choose to start his or her own company to develop, and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including: career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, as well as his or her ability to run a company or step aside to allow business experts to make necessary decisions. This article discusses some personal considerations in deciding to start a spin-out company and provides information on some of the available government grants to assist you should you decide to undertake your product’s commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies are often the source of very early funding for new biomedical companies. PMID:21245769

  9. Your idea and your university: issues in academic technology transfer.

    Science.gov (United States)

    Smith, Charles D

    2011-06-01

    Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved she or he will be in the commercialization process. In some cases, a university out-licenses the intellectual property, whereas in other cases, the investigator may want to be involved in the development process and choose to start his or her own company to develop and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, and his or her ability to run a company or step aside to allow business experts to make necessary decisions. This paper discusses some personal considerations in deciding to start a spinout company and provides information on some of the available government grants to assist you should you decide to undertake your product's commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies often are the source of early funding for new biomedical companies.

  10. Transfer of technology: Management of disused radioactive sources

    International Nuclear Information System (INIS)

    Friedrich, V.

    2001-01-01

    The number of sealed radioactive sources worldwide is estimated to be in the millions, although the existing registries indicate a much smaller number. If a source is no longer needed or has become unfit for the intended application, it is classified as spent or disused source. The activity of a disused source may still be in the order of GBq or TBq. Recognizing the risk associated with disused radioactive sources and the number of incidents and accidents with a wide range of consequences including widespread contamination and deterministic health effects, the IAEA has embarked on various activities dealing with the safe management of disused radioactive sources. These activities include publication of up-to-date technical information and guidance, development and distribution of management tools, transfer of technology and know-how through training and technical co-operation projects and direct assistance to solve specific safety and technical problems. This paper briefly describes these activities with reference to publications and projects carried out in various Member States. (author)

  11. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  12. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    Science.gov (United States)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  13. 77 FR 6579 - Vendor Outreach Workshop for Small Information Technology (IT) Businesses in the National Capitol...

    Science.gov (United States)

    2012-02-08

    .... This outreach workshop will review market contracting opportunities for the attendees. Business owners... INFORMATION: In accordance with the Small Business Act, as amended by Public Law 95-507, the Department has... small businesses, and in Fiscal Year 2010 also awarded over 50 percent of its $4.4 billion in contracts...

  14. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  15. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  16. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    Science.gov (United States)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  17. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber

  18. New pathways to medicare coverage for innovative PET radiopharmaceuticals: report of a Medical Imaging & Technology Alliance (MITA) workshop.

    Science.gov (United States)

    Hillman, Bruce J; Frank, Richard A; Rodriguez, Gail M

    2012-02-01

    PET and PET/CT have revolutionized the diagnosis, staging, and monitoring of treatment effect or recurrence for a wide range of cancers and shown promise for improving health outcomes for patients with cardiovascular and central nervous system diseases. However, this technology is challenged by insurance coverage policies that hinder patients' access to PET and discourage technologic innovation. Recently, the Medical Imaging & Technology Alliance (MITA), a Washington-based industry association, convened a workshop to consider new pathways for making decisions on Medicare coverage of new PET radiopharmaceuticals and imaging procedures that are currently subject to a national noncoverage decision, or "exclusionary rule." Stakeholders from the government, medical professional societies, academia, patient groups, and industry gathered to brainstorm alternatives to the national noncoverage decision and evaluate their potential to improve access and enhance innovation. Ultimately, MITA, on behalf of the PET community, expects to use the outcomes of the workshop to propose that the Centers for Medicare and Medicaid Services reconsider this current national noncoverage decision for PET and adopt a new framework for coverage. Copyright © 2012 Society of Nuclear Medicine, Inc. Published by Elsevier Inc. All rights reserved.

  19. Requirements for effective technology transfer for engineering and project management. The views of the recipient country and the technology supplier

    International Nuclear Information System (INIS)

    Backhaus, K.W.

    1986-04-01

    Technology transfer in the area of engineering and project management for nuclear power plant projects is considered a rather complex and sophisticated matter. Therefore only within a long-term nuclear co-operation a meaningful transfer of such a multifaceted technology can reasonably be achieved. A long-term nuclear co-operation anticipates a nuclear power plant program consisting of a few nuclear power plants of a certain type and size in order to achieve the indispensable effect ''learning by doing''. The objectives of nuclear technology transfer may be in general or in particular; absorption of a foreign nuclear technology and its adaptation to the conditions and needs of the receiver's country; built-up of industrial infrastructure for planning, construction and operation of nuclear power plants; raising of the general industrial level and achieve a spin-off effect; creation of a basis for independent development of nuclear technology. The technology transfer on one side and the construction program of nuclear power plants on the other side cannot be practiced by two parallel but separated event, however, they form one unit. Contrary to the import of industrial equipment in terms of ''black box'', by means of a nuclear technology transfer the introduction of new dependencies will be prevented. The technology transfer can remarkably be facilitated by forming a joint venture engineering company in the recipient country. The required know-how potential within a certain time period determines the intensity of the technology transfer and consequently the man power to be involved. The realization of such technology transfer is demonstrated by means of practical examples. (author). 12 figs

  20. Proceedings: international conference on transfer of forest science knowledge and technology.

    Science.gov (United States)

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...