WorldWideScience

Sample records for technology transfer model

  1. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  2. Technology Transfer: A Policy Model

    Science.gov (United States)

    1988-04-01

    34 Caveman Club-Without Nail." More serious scholars indicate that understand- ing how to start and maintain fires was the first tech- nology transfer of...others. From caveman clubs to hyper- velocity missiles, technology transfer has played a significant military role; it also has assisted imperialis- tic

  3. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  4. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  5. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  6. Conceptual Model for Transfer of Technology in a Shipyard

    OpenAIRE

    Firmansyah, Mohammad Rizal; Djafar, Wihdat

    2017-01-01

    Transfer of technology is an important program to be done by a shipyard if the respective shipyard is to maintain and increase its competitiveness. But sometimes, some aspects that need to be considered in a transfer of technology program are ignored. Before any transfer of technology program is to be conducted in any shipyard, identification of the required technology to be transferred and why the changes in shipyard technology are needed must be done. These identifications will lead to the ...

  7. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  8. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  9. Optimising Gas Quenching Technology through Modelling of Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang

    2004-01-01

    Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.

  10. Technology and technology transfer: some basic issues

    OpenAIRE

    Shamsavari, Ali; Adikibi, Owen; Taha, Yasser

    2002-01-01

    This paper addresses various issues relating to technology and transfer of technology such as technology and society, technology and science, channels and models of technology transfer, the role of multinational companies in transfer of technology, etc. The ultimate objective is to pose the question of relevance of some existing models and ideas like technological independence in an increasingly globalised world economy.

  11. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  12. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  13. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  14. Technology transfer by multinationals

    OpenAIRE

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  15. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  16. A Predictive Model of Technology Transfer Using Patent Analysis

    OpenAIRE

    Jaehyun Choi; Dongsik Jang; Sunghae Jun; Sangsung Park

    2015-01-01

    The rapid pace of technological advances creates many difficulties for R&D practitioners in analyzing emerging technologies. Patent information analysis is an effective tool in this situation. Conventional patent information analysis has focused on the extraction of vacant, promising, or core technologies and the monitoring of technological trends. From a technology management perspective, the ultimate purpose of R&D is technology commercialization. The core of technology commercializ...

  17. Economic modeling and energy policy planning. [technology transfer, market research

    Science.gov (United States)

    Thompson, R. G.; Schwartz, A., Jr.; Lievano, R. J.; Stone, J. C.

    1974-01-01

    A structural economic model is presented for estimating the demand functions for natural gas and crude oil in industry and in steam electric power generation. Extensions of the model to other commodities are indicated.

  18. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  19. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  20. Technology transfer and learning

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2002-01-01

    Despite the fact that international technology transfer has been widely studied its management still encounters many difficulties. To fully understand the issues that are relevant to the process of transferring production technology, it is necessary to determine the important factors that influence

  1. Small- and large-signal modeling of InP HBTs in transferred-substrate technology

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas

    2014-01-01

    In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing...

  2. Modeling of InP HBTs in Transferred-Substrate Technology for Millimeter-Wave Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas;

    2013-01-01

    In this paper, the modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. At first, a direct parameter extraction methodology dedicated to III-V based HBTs is employed to determine the small-signal equivalent circuit parameters from...

  3. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  4. Mississippi Technology Transfer Center

    Science.gov (United States)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  5. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  6. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  7. Technology transfer within the telecare technology innovation system

    NARCIS (Netherlands)

    Vlies, R.D. van der; Felix, E.

    2013-01-01

    Telecare technology is not common yet, although it is perceived as promising. Most studies on telecare technology transfer present a case involving the use of a single methodology and approach during some steps of technology transfer. Technology transfer models cannot be sensibly constructed if they

  8. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  9. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  10. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    Science.gov (United States)

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices.

  11. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  12. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  13. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  14. Glass Furnace Model (GFM) development and technology transfer program final report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S. A.; Petrick, M.; Energy Systems

    2007-12-04

    indices into the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

  15. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  16. Determination of the Most Suitable Technology Transfer Strategy for Wind Turbines Using an Integrated AHP-TOPSIS Decision Model

    Directory of Open Access Journals (Sweden)

    A. Dinmohammadi

    2017-05-01

    Full Text Available The high-speed development of industrial products and goods in the world has caused “technology” to be considered as a crucial competitive advantage for most large organizations. In recent years, developing countries have considerably tended to promote their technological and innovative capabilities through importing high-tech equipment owned and operated by developed countries. There are currently a variety of solutions to transfer a particular technology from a developed country. The selection of the most profitable technology transfer strategy is a very complex decision-making problem for technology importers as it involves different technical, environmental, social, and economic aspects. In this study, a hybrid multiple-criteria decision making (MCDM model based on the analytic hierarchy process (AHP and the technique for order of preference by similarity to ideal solution (TOPSIS is proposed to evaluate and prioritise various technology transfer strategies for wind turbine systems. For this purpose, a number of criteria and sub-criteria are defined from the viewpoint of wind energy investors, wind turbine manufacturers, and wind farm operators. The relative importance of criteria and sub-criteria with respect to the ultimate goal are computed using the eigenvalue method and then, the technology transfer alternatives are ranked based on their relative closeness to the ideal solution. The model is finally applied to determine the most suitable wind turbine technology transfer strategy among four options of reverse engineering, technology skills training, turn-key contracts, and technology licensing for the renewable energy sector of Iran, and the results are compared with those obtained by classical decision-making models.

  17. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  18. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  19. Information technology - Telecommunications and information exchange between systems - Private Integrated Services Network - Specification, functional model and information flows - Call transfer supplementary service

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Information technology - Telecommunications and information exchange between systems - Private Integrated Services Network - Specification, functional model and information flows - Call transfer supplementary service

  20. 解构美国大学技术转移的MIT模式%Deconstructing the Model of Technology Transfer at Massachusetts Institute of Technology

    Institute of Scientific and Technical Information of China (English)

    胡微微

    2012-01-01

    The United States of America is one of the most prosperous nations of the technology transfer, and its efficiency and income is the largest in the world. Massachusetts Institute of Technology has practiced technology transfer since the early twentieth century, and is a world class model of excellence in university technology transfer. This paper introduces and analyses the management methods and characteristics of the model of the technology transfer at MIT in order to offer enlightenments and references of reflecting and improving the technology transfer at universities.%美国大学技术转移率及收益率都位居世界前列。其中,麻省理工学院是开展技术转移较早的大学,其技术转移工作成绩卓著。本文通过对MIT技术转移模式的管理方法与特点的分析与比较,以期为我国大学技术转移工作提供启示。

  1. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  2. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  3. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  4. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    . It is undeniable that the role of technology in a society has been a motivating element of downsizing of social coexistence, which promotes  knowledge through the easy access to information and knowledge  This principle is supported in education, by evidences such as: curricular content virtualization or the educational offer. The teaching practice in classroom supported with multimedia resources and the disruptive in [H1] teaching-learning methodologies, based on an integrating framework of information technologies with teaching and research (Sandoval, 2011. It is valid that the organization of classrooms in different levels of training, must be related to the technological component,  before the scenarios for education represented by the twenty-first century; the new generations have already so almost innate skills for the use of the technology, so that interaction with this component is increasingly simple based on Prensky (2001; In addition, to the academic processes and collaborative work in classroom facilitation, this fact allows the educational projects in the institutions planning and direction  (Corner, 2015. It can be said, the  degree of technology incorporation in education has also strengthened the pedagogical models by which the students knowledge is transferred and assesses, this principle generates different spaces of learning characterized by promoting the critical skill, thought disruptive and collaborative work, as well as empowerment with the educational process, encouraging self-management and commitment in the students   Based on education and humanism journal in its 18 years of academic career and research through the academic praxis and research activities of the scientists who believe that a space of transcendent knowledge sharing has  been co-created in order to facilitate an adequate transfer of universal knowledge resulting from the science, technology and innovation activities,  generated and implemented in the institutions of

  5. Validation of InnoSPICE for technology transfer

    OpenAIRE

    Mitašiūnas, Antanas; Besson, Jeremy Daniel; Boronowsky, Michael; Woronowicz, Tanja

    2015-01-01

    Innovation and technology transfer consist mainly of process-oriented activities and can be described in process-oriented terms by an innovation and technology transfer process capability model such as InnoSPICE. To verify such a thesis, an extended validation of the InnoSPICE adequacy for different factual innovation and technology transfer activities is needed. The purpose of this paper is to validate the InnoSPICE model for technology transfer led by a technology developer based on capabil...

  6. Introducing economic parameters in industrial flotation dimensionless models used for intra-factory technology transfer

    Science.gov (United States)

    Batzias, Dimitris; Ifanti, Konstantina

    2012-12-01

    In this work, intra-factory technology transfer is realized by means of scale-up procedures, including the formation of a representative original set of dimensionless groups, when know-how obtained in the laboratory is transferred progressively (in successive steps) into industrial scale. For saving resources (highly skilled manpower, time, materials, energy) a Knowledge Base (KB) is designed/developed to maintain experience in flotation and select relevant information from other Data/Information/Knowledge Bases. Of significant importance is the introduction of economic parameters referring to investment and operation of the industrial unit, thus taking into account the capital and operating cost of output, respectively. We have proved that this introduction causes several problems since new technological dimensions should be also introduced (so that the economic parameters become meaningful) resulting by dimensional analysis to a new solution set that is incompatible to the original one. We solved this problem by keeping the original set and incorporating into it only the new dimensionless groups (eliminating all additional technological dimensions introduced ad hoc).

  7. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  8. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  9. Risk Management in Biologics Technology Transfer.

    Science.gov (United States)

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  10. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  11. Model of innovation, technology transfer, and the world distribution of income

    Energy Technology Data Exchange (ETDEWEB)

    Krugman, P.

    1979-01-01

    This paper develops a simple general-equilibrium model of product-cycle trade. There are two countries, innovating North and noninnovating South. Innovation consists of the development of new products. These can be produced at first only in North, but eventually the technology of production becomes available to South. This technological lag gives rise to trade, with North exporting new products and importing old products. Higher Northern per capita income depends on the quasi rents from the Northern monopoly of new products, so that North must continually innovate not only to maintain its relative position but even to maintain its real income in absolute terms. 7 references.

  12. Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases.

    Science.gov (United States)

    Miano, Alberto Claudio; Ibarz, Albert; Augusto, Pedro Esteves Duarte

    2016-03-01

    The aim of this work was to demonstrate how ultrasound mechanisms (direct and indirect effects) improve the mass transfer phenomena in food processing, and which part of the process they are more effective in. Two model cases were evaluated: the hydration of sorghum grain (with two water activities) and the influx of a pigment into melon cylinders. Different treatments enabled us to evaluate and discriminate both direct (inertial flow and "sponge effect") and indirect effects (micro channel formation), alternating pre-treatments and treatments using an ultrasonic bath (20 kHz of frequency and 28 W/L of volumetric power) and a traditional water-bath. It was demonstrated that both the effects of ultrasound technology are more effective in food with higher water activity, the micro channels only forming in moist food. Moreover, micro channel formation could also be observed using agar gel cylinders, verifying the random formation of these due to cavitation. The direct effects were shown to be important in mass transfer enhancement not only in moist food, but also in dry food, this being improved by the micro channels formed and the porosity of the food. In conclusion, the improvement in mass transfer due to direct and indirect effects was firstly discriminated and described. It was proven that both phenomena are important for mass transfer in moist foods, while only the direct effects are important for dry foods. Based on these results, better processing using ultrasound technology can be obtained.

  13. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  14. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  15. Technology transfer and space science missions

    Science.gov (United States)

    Acuna, Mario

    1992-01-01

    Viewgraphs on technology transfer and space science missions are provided. Topics covered include: project scientist role within NASA; role of universities in technology transfer; role of government laboratories in research; and technology issues associated with science.

  16. Transfer of computer software technology through workshops: The case of fish bioenergetics modeling

    Science.gov (United States)

    Johnson, B.L.

    1992-01-01

    A three-part program is proposed to promote the availability and use of computer software packages to fishery managers and researchers. The approach consists of journal articles that announce new technologies, technical reports that serve as user's guides, and hands-on workshops that provide direct instruction to new users. Workshops, which allow experienced users to directly instruct novices in software operation and application are important, but often neglected. The author's experience with organizing and conducting bioenergetics modeling workshops suggests the optimal workshop would take 2 days, have 10-15 participants, one computer for every two users, and one instructor for every 5-6 people.

  17. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  18. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    relay race, where one runner passes the baton to the next. Richard Dorf describes in "Models for Technology Transfer From Universities and Research...Meeting. 9. Dorf , Richard C. "Models for Technology Transfer From Universities and Research Laboratories," Technology Management Publication TM1.1988...both located at Wright- Patterson Air Force Base, Ohio. Namely, Tim Sharp, Chief, Technology Transfer Division and my faculty advisor, Major Richard

  19. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  20. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  1. TECHNOLOGY TRANSFER FOR CUCUMBER (Cucumis sativus ...

    African Journals Online (AJOL)

    Dell

    2011-11-07

    Nov 7, 2011 ... This technology transfer trials have shown the advantages and ... Key words: Cucumber production, protected agriculture tunnels, cost benefit ratio, technology transfer, ... Use of PA can increase production by more than five.

  2. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  3. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Accelerating the transfer of improved production technologies: controlling African cassava mosaic ... African Crop Science Journal ... A national network of cassava workers (NANEC) was created to address the problem of technology transfer.

  4. Geo energy research and development: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  5. Climate change scenarios and technology transfer protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates; Turton, Hal [Energy Economics Group, Paul Scherrer Institute, Villigen PSI, CH-5232 (Switzerland)

    2011-02-15

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. (author)

  6. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  7. National economic models of industrial water use and waste treatment. [technology transfer

    Science.gov (United States)

    Thompson, R. G.; Calloway, J. A.

    1974-01-01

    The effects of air emission and solid waste restrictions on production costs and resource use by industry is investigated. A linear program is developed to analyze how resource use, production cost, and waste discharges in different types of production may be affected by resource limiting policies of the government. The method is applied to modeling ethylene and ammonia plants at the design stage. Results show that the effects of increasingly restrictive wastewater effluent standards on increased energy use were small in both plants. Plant models were developed for other industries and the program estimated effects of wastewater discharge policies on production costs of industry.

  8. Judging the international transfer of technology

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology

  9. Judging The International Transfer Of Technology

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2000-01-01

    International transfer of technology is a widely discussed area in the scientific literature. Although many different factors are discussed in the literature that affect the transfer of technology, it is not clear how to judge the performance of companies involved in international technology transfe

  10. Initial Analysis on the Technology Transfer Model of Israeli Universities%浅析以色列大学技术转移模式

    Institute of Scientific and Technical Information of China (English)

    王世春

    2015-01-01

    Israel is one of the earliest country that set up technology transfer organization (TTO) in every university. Each Israeli university or research institute has set up technology transfer company. There are 12 TTOs in the Israel Technology Transfer Network (ITTN). The purpose of this study is to analysis the technology transfer model and successful experiences of TTOs at Israeli universities by the stories of four leading TTOs at Israeli universities and provide new ideas for technology transfer at Chinese universities.%以色列是世界上最早设立专门的大学技术转移机构的国家之一,每一所以色列大学和研究机构都有其技术转移公司.以色列成立了技术转移组织ITTN,其中包括12家技术转移机构.文章以以色列4家著名大学技术转移公司为模型,分析了以色列大学技术转移模式及成功经验,为我国高校开展技术转移提供一些新的思路.

  11. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  12. A case of technology transfer in Macedonia

    Directory of Open Access Journals (Sweden)

    Nattacia Dabescki

    2014-11-01

    Full Text Available As a process of transferring skills, knowledge, technologies, methods of manufacturing and facilities among organizations, the transfer of technology is instrumental for boosting the economy through creation of competitive products, new jobs and a better quality of life. The stagnant environment for technology transfers in Macedonia in the post-privatisation era is a result of a combination of factors. Among them is the outdated educational system that does not boost entrepreneurial spirit and innovation thinking. Main purpose of this paper is to examine the current status, conditions, anomalies and challenges for technology transfer in the Republic of Macedonia, as well as the potential for development and possibilities for improvement of the process. Through a lens of the technology transfer paradigm, this exploratory study will present a case in which the Foundation Business Start-up Centre in Macedonia, as a technology transfer agent provided links and cooperative platform for creation of new technologies and innovations within the local SME ecosystem. The focus will be on a couple of initiatives for technology development and transfer in a domestic context. Results from the process of implementation of these initiatives will be discussed, along with their stimulating impact on the environment for technology transfer.

  13. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  14. Technology Transfer/Commercialization Report 2002

    Science.gov (United States)

    2002-01-01

    Contents include the following: 1. Technology opportunities and successes in 2002: Hilbert-Huang transform. New sensors via sol-gel-filled fiber optics. Hierarchical segmentation software. 2. Activity in 2002: encouraging researcher involvment. 10th annual new technology reporting award program. Commercial technology development program. 3. Inventorying new technologies: Sensors and detectors. Environmental systems. Information systems. Guidance, navigation, and control. Thermal and cryogenics. Optics. Patenting Goddard technologies. Striking gold with NASA technology transfer.

  15. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  16. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP aim

  17. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer....

  18. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  19. Technology Transfer/Commercialization Report

    Science.gov (United States)

    2002-01-01

    Contents include the following: (1) Who we are. (2) Technology opportunities and successes in 2002: Hilbert-Huang transform; new sensors via sol-gel-filled fiber optics; hierarchical segmentation software. (3) Activities in 2002: encouraging researcher involvement; inventorying new technologies; patenting Goddard technologies; promoting Goddard technologies; establishing new agreements;seeking and bestowing awards. (4) How to reach Goddard's: technology commercialization office.

  20. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  1. A model for laboratory tech transfer investment

    Energy Technology Data Exchange (ETDEWEB)

    Otey, G.R.; Carson, C.C.; Bomber, T.M.; Rogers, J.D.

    1994-06-01

    A simple model has been developed to address a pragmatic question: What fraction of its research and development budget should a national laboratory devote to enhancing technology in the private sector? In dealing with lab-wide budgets in an aggregate sense, the model uses three parameters - fraction of lab R&D transferable to industry, transfer efficiency and payback to laboratory missions - to partition fixed R&D resources between technology transfer and core missions. It is a steady-state model in that the transfer process is assumed to work in equilibrium with technology generation. The results presented should be of use to those engaged in managing and overseeing federal laboratory technology transfer activities.

  2. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  3. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  4. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  5. Technology transfer — bridging space and society

    Science.gov (United States)

    Students of Technology Transfer Design Project Team (ISU Summer Session 1997)

    Strategies, policies and methods by which technologies can be cross-fertilized between the space and non-space sectors were examined by students of the design project "Technology Transfer — Bridging Space and Society". This project was undertaken by students attending the 1997 10th Anniversary Summer Session Program of the International Space University. General issues relating to transfer of technology were discussed including definitions and mechanisms (push, pull, interactive and pro-active). As well as looking at case studies and the impact of national policies on space agencies, the design project also sought to look at technology transfer on a country-by-country basis, selecting various countries for scrutiny and reporting on their technology transfer status. The project report shows how transfer of technology varies between nations and when analyzed with the case studies identifies the general strategies, policies and methods in use and how they can be improved. Finally, the report seeks to recommend certain issues to governments, space agencies and industrial organizations to facilitate the transfer of technology. These include the development of a generic metrics system and the implementation of better appropriate procedures and mechanisms for a positive diffusion process between space and non-space sectors.

  6. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  7. Join TTC! | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) offers a unique opportunity for training through the NCI TTC Fellowship program. TTC also has a unit dedicated to marketing these research opportunities and their underlying technologies to potential collaborators and licensees. | [google6f4cd5334ac394ab.html

  8. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  9. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  10. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  11. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  12. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    Science.gov (United States)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  13. 76 FR 52670 - 2011 Technology Transfer Summit North America Conference

    Science.gov (United States)

    2011-08-23

    ... HUMAN SERVICES National Institutes of Health 2011 Technology Transfer Summit North America Conference...: The NIH Office of Technology Transfer extends invitations to attend the 2011 Technology Transfer... by the NIH Office of Technology Transfer, TTS Ltd. and regional host partners such as BIO Maryland...

  14. Status of Radiative Transfer Model (RTM) development for the Northrop Grumman Venus Atmospheric Maneuverable Platform (VAMP) Technology Development Program

    Science.gov (United States)

    Wong, Eric

    2014-11-01

    In support of the Northrop Grumman/L-Garde Venus Atmospheric Maneuverable Platform (VAMP) development, we are developing a multi-purpose radiative transfer model (RTM) for the applications of the Venus atmosphere. For the solar array sizing, spectral solar radiance calculations are needed and a Correlated-k method of spectral integration will be used. This method is relatively fast computationally and typical error of the method is within a few percent, sufficiently accurate for solar array sizing analyses. For sensor characterization or sensor performance study, details of an absorption line, e.g. the near-IR “atmospheric window” absorption lines, must be used and an equivalent line-by-line calculation will be performed. At the completion of the model a large data base of radiance profiles of different atmospheric conditions will be created. The database can also be used to support thermal radiation analysis for other sub-systems. In this poster, we present our current state of the RTM development and model validation development. Additionally, we will present some preliminary comparison of top-of-atmosphere solar radiance with Venus Express VIRTIS measurements.

  15. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  16. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    -2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...... and validates the PSM findings. A horizontal cluster analysis on 3-digit industry level data shows that foreign firms cluster in high technology industries....

  17. The Evolutionary Business Valuation of Technology Transfer

    NARCIS (Netherlands)

    Leloux, M.S.; van der Sijde, Peter; Groen, Arend J.; Oakey, R.; Groen, A.; Cook, G.; van der Sijde, P.

    2009-01-01

    Conventional models for the business valuation of technology are usually financially oriented and only measure economic value. Several of these financially oriented approaches have been reviewed by Leloux and Groen (2007). Current monetary (financial) valuation methods for technology include

  18. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Since the government cannot engage in the development, manufacture, and sale of products, the NCI Technology Transfer Center (TTC) makes its discoveries (and discoveries from nine other NIH Institutes) available to organizations that can assist in the further development and commercialization of these basic science discoveries, to convert them into public health benefits. | [google6f4cd5334ac394ab.html

  19. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  20. About TTC | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners, and helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class facilities, resources, and discoveries. Contact us to learn more. | [google6f4cd5334ac394ab.html

  1. Some aspects of technology transfer and direct foreign investment

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R.

    1978-05-01

    A model showing technology transfer to developing countries links questions of appropriations with the socio-economic reasons for technological change. The rate at which foreign capital is used is found to be directly related to after-tax profits. If the developing country raises taxes on foreign capital, the effect is to increase the proportion of domestic capital needed and to widen the technological gap between the two countries. The analysis also shows a higher gain from new techniques with increased demand volume and suggests large developing countries with similar capital to invest are more likely to generate intermediate technologies. 8 references.

  2. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  3. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  4. Prospects for Money Transfer Models

    CERN Document Server

    Wang, Y; Xi, N; Wang, Yougui; Ding, Ning; Xi, Ning

    2005-01-01

    Recently, in order to explore the mechanism behind wealth or income distribution, several models have been proposed by applying principles of statistical mechanics. These models share some characteristics, such as consisting of a group of individual agents, a pile of money and a specific trading rule. Whatever the trading rule is, the most noteworthy fact is that money is always transferred from one agent to another in the transferring process. So we call them money transfer models. Besides explaining income and wealth distributions, money transfer models can also be applied to other disciplines. In this paper we summarize these areas as statistical distribution, economic mobility, transfer rate and money creation. First, money distribution (or income distribution) can be exhibited by recording the money stock (flow). Second, the economic mobility can be shown by tracing the change in wealth or income over time for each agent. Third, the transfer rate of money and its determinants can be analyzed by tracing t...

  5. Domestic Technology Transfer versus Technology Export Control - The Emerging National Policies and the Role of the Bench Engineer

    Science.gov (United States)

    1984-01-01

    Defense Technology Transfer Fundamentals 10 B. Governmental Stimuli to Technology Transfer 1. Information Programs 2. Information Analysis Centers 3...networking. II. Domestic Technology Transfer A. Non- Defense Technology Transfer Fundamentals The nation’s technological reservoir is filled by

  6. Tropical medicine: Telecommunications and technology transfer

    Science.gov (United States)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  7. MHD Technology Transfer, Integration and Review Committee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  8. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available . An indicative list of recommendations to turnaround the knowledge and technology transfer condition of Africa into a more resounding success than currently existing is indicated. A brief conclusion that includes critical percepts and thoughts on the future... growth and development. "Knowledge Management caters to the critical issues of organizational adaption, survival and competence in face of increasingly discontinuous environmental change. Essentially, it embodies organizational processes that seek...

  9. Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model

    Energy Technology Data Exchange (ETDEWEB)

    LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

    2000-04-13

    Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

  10. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  11. New Ways in Technology Transfer from University Towards Industry.

    Science.gov (United States)

    van den Kroonenberg, H.H.

    1983-01-01

    Three approaches to technology transfer are described: passive, stimulative, and active. A condition for successful technology transfer to small- and medium-sized industry is the availability of "receivers" in the industries. Stimulating young engineers to start their own small company can affect technology transfer positively. (MSE)

  12. Transfer Rate Models for Gnutella Signaling Traffic

    OpenAIRE

    2006-01-01

    This paper reports on transfer rate models for the Gnutella signaling protocol. New results on message-level and IP-level rates are presented. The models are based on traffic captured at the Blekinge Institute of Technology (BTH) campus in Sweden and offer several levels of granularity: message type, application layer and network layer. The aim is to obtain parsimonous models suitable for analysis and simulation of P2P workload. IEEE Explorer

  13. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  14. Progress report on technology transfer at CERN since December 1999

    CERN Document Server

    2000-01-01

    In March 1999 the Finance Committee endorsed the CERN Technology Transfer paper FC/4126 entitled "Technology Transfer Policy at CERN". In June 1999 Council took note of the plan to create a new Division, the Education and Technology Transfer Division, one of its essential aims being to enhance the Technology Transfer activities at CERN. A verbal activity report on Technology Transfer was given at the December 1999 meeting of the Finance Committee. Finally, in January 2000, ETT Division came into existence. This document contains a description of the current organisation of TT activities together with some relevant results and highlights for the year 2000.

  15. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  16. Marketing for Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1989-06-15

    Martin Marietta Energy Systems, Inc., which manages major research and production facilities in Oak Ridge, Tennessee for the Department of Energy, has implemented a systematic approach to marketing for technology transfer. Unique mechanisms have been created to address the need for market research and analysis, strategy formulation, and the execution of plans designed to engender the broadest commercial use of government-funded technologies. Establishment of formal ties with the University of Tennessee Graduate School of Business has resulted in an expanded role for marketing in support of the Oak Ridge program. The creation of graduate research positions has enabled MBA students to contribute to, and learn from, a program which is at the forefront of an important national initiative.

  17. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  18. Space spin-offs: is technology transfer worth it?

    Science.gov (United States)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  19. TRIPS Agreement, International Technology Transfer and Least Developed Countries

    Directory of Open Access Journals (Sweden)

    Mark V. Shugurov

    2015-04-01

    Full Text Available The author examines the role of the trade-related aspects of intellectual property rights (TRIPS Agreement in facilitation the international technology transfer to least developed countries (LDCs. The primary purpose of this study is to investigate the new conditions of technology development of LDCs connected with TRIPS adoption. Special attention is paid to the potentials of Article 66.2 for solving the problem of LDCs capacity building. The article presents detailed analysis of the discussions on the impact of the TRIPS provisions concerning the strengthening of the intellectual property rights (IPRs and the protection of technology transfer to LDCs. An important finding of this study is the recognition of the need to take urgent measures for the transition unto a new model of partnership between developed countries and LDCs in area of technology transfer and IPRs protection. The study concluded that a new model needed to be elaborated at the international level should be based on the effective implementation of Article 66.2 of the TRIPS Agreement.

  20. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  1. Accelerated technology transfer: the UK quantum initiative

    Science.gov (United States)

    Bennett, Simon D.

    2016-10-01

    A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.

  2. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  3. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...... transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign......-owned and domestic firms along the supply chain not captured by commonly used measures of spillovers. This includes evidence of productivity gains through forward linkages for domestic firms which receive inputs from foreign-owned firms....

  4. OCT Technology Transfer and the OCT Market

    Science.gov (United States)

    Swanson, Eric A.

    The field of optical coherence tomography (OCT) has blossomed dramatically since the first studies by various researchers around the world began in the late 1980s and early 1990s. Since then cumulatively, there have been dozens of companies created, over a hundred research groups working on or with OCT, over a thousand OCT patents issued, over 10,000 research articles published, tens of millions of patients scanned with OCT, hundreds of millions of venture capital and corporate R&D dollars invested, hundreds of millions of dollars in company acquisitions, and over a billion of dollars of OCT system revenue. This chapter will describe some of the history and factors involved in OCT technology transfer and commercialization, give a snapshot of the current OCT market, and speculate on some future OCT issues.

  5. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  6. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  7. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Science.gov (United States)

    2011-11-18

    ... AGENCY Emergint Technologies, Inc.; Transfer of Data AGENCY: Environmental Protection Agency (EPA... claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Emergint Technologies, Inc. in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Emergint Technologies, Inc. has...

  8. Managing knowledge: a technology transfer case study in IEN

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ana Gabriella Amorim Abreu [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Servico de Transferencia de Tecnologia], e-mail: agaap@ien.gov.br

    2009-07-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  9. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities

    National Research Council Canada - National Science Library

    Nijboer, F

    2015-01-01

    .... Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed...

  10. Exploring student engagement and transfer in technology mediated environments

    Science.gov (United States)

    Sinha, Suparna

    Exploring student engagement and transfer of mechanistic reasoning skills in computer-supported learning environments by SUPARNA SINHA Dissertation Director: Cindy Hmelo-Silver Computer-supported environments designed on learning science principles aim to provide a rich learning experience for students. Students are given opportunities to collaborate, model their understanding, have access to real-time data and engage in hypotheses testing to solve authentic problems. That is to say that affordances of technologies make it possible for students to engage in mechanistic reasoning, a complex inquiry-oriented practice (Machamer, Craver & Darden, 2000; Russ et al., 2008). However, we have limited understanding of the quality of engagement fostered in these contexts. This calls for close observations of the activity systems that the students participate in. The situative perspective focuses on analyzing interactions of individuals (students) with other people, tools and materials within activity systems (Greeno, 2006). Importantly, as the central goal of education is to provide learning experiences that are useful beyond the specific conditions of initial learning, analysis of such interactions sheds light on key experiences that lead to transfer of mechanistic reasoning skills. This is made possible, as computer-supported contexts are activity systems that bring forth trends in students' engagement. From a curriculum design perspective, observing student engagement can be a useful tool to identify features of interactions (with technological tools, peers, curriculum materials) that lead to successful learning. Therefore, the purpose of the present studies is to explore the extent to which technological affordances influence students' engagement and subsequent transfer of reasoning skills. Specifically, the goal of this research is to address the following research questions: How do learners generalize understanding of mechanistic reasoning in computer

  11. Department of Defense Laboratories: Finding a Future in Technology Transfer

    Science.gov (United States)

    1993-04-01

    investment. There is no mention of DoD even trying. This, then, presents a problem for Defense technology transfer management. The President expects both...effort, but nonetheless felt unable to express their effort quantitatively. The potential size and demand for Defense technology transfer calls for some... Defense technology transfer is taking place, it is doing so on the enthusiasm and drive of a few key individuals. Political demand and legislation

  12. Geo energy research and development: technology transfer update

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.; Dugan, V.L.

    1983-01-01

    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  13. Trade, Foreign Direct Investment, and International Technology Transfer: A Survey

    National Research Council Canada - National Science Library

    Kamal Saggi

    2002-01-01

    ...? Using these questions as motivation, this article surveys the recent trade literature on international technology transfer, paying particular attention to the role of foreign direct investment...

  14. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  15. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  16. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  17. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  18. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  19. Auto-disable syringes for immunization: issues in technology transfer.

    Science.gov (United States)

    Lloyd, J S; Milstien, J B

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself.

  20. How technology transfer issues are managed

    Energy Technology Data Exchange (ETDEWEB)

    Sink, C.H. [Dept. of Energy, Washington, DC (United States); Easley, K.R. [Waste Policy Inst. (United States)

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover, these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.

  1. Helicity Transfer in Turbulent Models

    CERN Document Server

    Biferale, L; Toschi, F

    1998-01-01

    Helicity transfer in a shell model of turbulence is investigated. We show that a Reynolds-independent helicity flux is present in the model when the large scale forcing breaks inversion symmetry. The equivalent in Shell Models of the ``2/15 law'', obtained from helicity conservation in Navier-Stokes eqs., is derived and tested. The odd part of helicity flux statistic is found to be dominated by a few very intense events. In a particular model, we calculate analytically leading and sub-leading contribution to the scaling of triple velocity correlation.

  2. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  3. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  4. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  5. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  6. 英国南安普敦大学技术转移之 SETsquared 模式%The SETsquared Model of University Technology Transfer

    Institute of Scientific and Technical Information of China (English)

    郭东波

    2013-01-01

      As a research intensive university, the University of Southampton of the UK has committed itself in driving up the economic impact of its research by fostering stronger links with business. It also claims to be a global leader in spinning out companies. With a quick overview of the University’s research and commercialization work, this article analyses how the University achieves the above mentioned expectation via a joint effort called SETsquared partnership. It also gives an insight into and reflections on the SETsquared model of technology transfer for the reference of Chinese academia and business.%  英国南安普敦大学关注学术研究的社会与经济影响,其在产学研结合方面的实践颇具特色。通过简要介绍南安普敦大学研发与技术转移工作的特点,着重介绍南安普敦大学如何通过加入 SETsquared联盟为衍生公司和技术型公司的成长提供扶持,以及如何利用大学优势与企业开展合作等,在此基础上分析了 SETsquared 模式对我国的借鉴意义,以期推动大学科研成果有效商业化,逐步建立起符合我国国情的校企共赢的技术转移模式。

  7. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... transfer in these sectors in China and India. We argue that the emphasis should shift from transfer of mitigation technology to international collaboration and local innovation...

  8. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  9. Impact on technology transfer innovation processes: Ukrainian and foreign experience

    Directory of Open Access Journals (Sweden)

    Halyna Nahornyak

    2013-11-01

    Full Text Available The paper identified and reasonably effective mechanisms for technology transfer in Ukraine and several foreign countries. The analysis of the national and international technology transfer. It is shown that based on the experience of the transfer of innovative technologies in foreign countries, the priority areas of the state scientific and technical policy is to create conditions for innovation-based economic development and structural adjustment of industrial and technological sectors. The development of legislation affecting science and technology and innovation activity in Ukraine. Comparison of statistical data on the innovation process in the European Union and Ukraine. Investigated the technical and technological production in Ukraine, as well as the factors that hinder the development of innovations in the industry. Found effective mechanisms for technology transfer in foreign countries (USA, Germany, Japan, Russia. The role of technology transfer centres, public-private partnerships, long-term leasing of equipment, government contracts, the introduction of tax incentives to enterprises that carry out upgrading and development of new technologies. An effective means of technology transfer that will enhance innovation processes of enterprises in the innovation economy type.

  10. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  11. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  12. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  13. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  14. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  15. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  16. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  17. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  18. The Effects of Absorptive Capacity and Recipient Collaborativeness as Technology Recipient Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: As an efficient means to increase global competitiveness, technological capabilities and potential for local innovation, organizations in the developing countries are working hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs. Technology recipient characteristics, as one of the important actors/facilitators of inter-firm technology transfer, have increasingly become crucial factors in determining the success or failure of inter-firm technology transfer within IJVs. Since the current issue on inter-firm Technology Transfer (TT in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs therefore the success is often associated with or measured by degree of technology transferred to local partners. Based on the underlying knowledge-based view and organizational learning perspective, this study aims to empirically examine the effects of two critical elements of technology recipient characteristics: Absorptive Capacity (ACAP and Recipient Collaborativeness (RCOL on degree of technology transfer: Degree of tacit and explicit knowledge in IJVs. Approach: Using the quantitative analytical approach, the theoretical model and hypotheses in this study were tested based on empirical data gathered from 128 joint venture companies registered with the Registrar of Companies Of Malaysia (ROC. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that recipient collaborativeness as the critical element of technology recipient characteristics has strong significant effects on both degrees of tacit and explicit knowledge. Although absorptive capacity has been strongly emphasized of its significance effect, however, the results are not statistically significant

  19. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  20. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  1. Advancing Green Economy through Technology Transfer

    African Journals Online (AJOL)

    This qualitative study explores the transfer of renewable energy ... Based on experiences from the projects, a literature review, site visits and ... generated sustainable ideas, and disseminating information on successes and lessons learnt.

  2. Double-layered cell transfer technology for bone regeneration.

    Science.gov (United States)

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  3. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  4. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  5. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  6. Technology transfer in the space sector: an international perspective.

    Science.gov (United States)

    Hertzfeld, Henry R

    2002-12-01

    This article is an introduction to four articles in this issue, all related to the different policy objectives and approaches of technology transfer in space programs run by the United States, the European Space Agency, Canada, and Russia.

  7. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer

    This guidebook provides practical and operational guidance on how to assess and overcome barriersfacing the transfer and diffusion of technologies for climate change mitigation and adaptation.The guidebook is designed to support the analysis of specific technologies, rather than pursuing asectoral...... (e.g. transport) or technology group (e.g. renewable energy) approach.Given that there is no single solution to enhancing technology transfer and diffusion policies needbe tailored to country-specific context and interests. Therefore, the guidebook presents a flexibleapproach, identifying various...

  8. special issue: Technology transfer in United States universities

    OpenAIRE

    Ann-Charlotte Fridh; Bo Carlsson

    2002-01-01

    This paper examines the role of offices of technology transfer (OTT) in 12 U.S. universities in 1998 in commercializing research results in the form of patents, licenses, and start-ups of new companies. We study the organization and place of OTTs within the university structure, the process of technology transfer, and the staffing and funding of the office. Data were collected through a mail questionnaire followed up through telephone interviews. We also conducted a statistical analysis of da...

  9. Determination of Royalty Rates in the International Technology Transfer Contracts

    OpenAIRE

    Kapitsa, Yu.; Aralova, N.

    2015-01-01

    The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been ...

  10. Determination of Royalty Rates in the International Technology Transfer Contracts

    Directory of Open Access Journals (Sweden)

    Kapitsa, Yu.

    2015-03-01

    Full Text Available The existing approaches used in determination of the royalty rates for technology transfer contracts and based on the experience of research institutions of the National Academy of Sciences of Ukraine, research organizations and universities in Europe and USA were reviewed. The analysis of the existing rates has been made as well as recommendations on determination of the royalty rates for technology transfer contracts between research institutions and foreign and domestic partners have been worked out.

  11. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  12. International Water and Sanitation Technology Transfers, Experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer-Tockich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  13. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others fin

  14. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  15. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) SUMMARY: Under... control number. Proposed Collection: Title: Generic Submission of Technology Transfer Center (TTC... collaborations and alliances with the NIH. The needs of external technology transfer customers and stakeholders...

  16. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  17. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  18. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event that will showcase technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR). The goal of the Showcase is to encourage startup company formation, technology licensing, and public-private collaborations. It will introduce the Frederick community to the regional technology development stakeholders, as well as highlight available resources. WHO SHOULD ATTEND: Prospective investors, established companies, educators, those looking to commercialize technologies, and all interested stakeholders. | [google6f4cd5334ac394ab.html

  19. A Program Office Guide to Technology Transfer

    Science.gov (United States)

    1988-11-01

    maintenance is emphasized, interchan- tions. Second source component verification geability requirements are pushed lower to the activities often are...technology tiansfer risk, the program office considers the following: 10.7 THE TECNOLOGY TRANSFERPLAN * Schedule intensity and concurrency The

  20. Florida commercial space initiatives and technology transfer mechanisms

    Science.gov (United States)

    Moore, Roger L.

    1989-01-01

    This paper discusses commercial space policy for the State of Florida in the context of state initiatives for general technology and economic development. The paper also compares Florida's commercial space initiatives to national space policies and describes mechanisms for transferring space related technologies and research to Florida businesses for subsequent development and commercialization.

  1. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived…

  2. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  3. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  4. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  5. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  6. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  7. Technology Transfer: A Qualitative Analysis of Air Force Office of Research and Technology Applications

    Science.gov (United States)

    2006-06-01

    branch. Two, attending Department of Defense Technology Transfer Integrated Planning Team workshops. Three, attending two Federal Laboratory...Question 12 What database tools do you use to Perform ORTA duties? The number one database tool used was the Defense Technology Transfer Information

  8. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    Science.gov (United States)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  9. Advanced Manufacturing Technology: A Department of Energy technology transfer initiative

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R.S. Jr.; Barkman, W.E.

    1990-02-01

    This paper describes a new initiative called the Advanced Manufacturing Technology (AMT) Program that is managed for the US Department of Energy (DOE) by Martin Marietta Energy Systems in Oak Ridge, Tennessee. The AMT Program seeks to assist the US manufacturing community regain some of the market share that it has lost to competiting companies in both Europe and the Far East. One key element to this program is the establishment of teaching and development facilities called manufacturing technology centers (MTCs) which will showcase unclassified DOE manufacturing technologies. This paper describes some of the precision flexible manufacturing system (PFMS) technology that is available through the Oak Ridge Y-12 Plant. This technology will be highlighted in the first of the MTCs that is being established. 4 figs.

  10. A framework for evaluation of technology transfer programs. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  11. Uplifting developing communities through sustained technology transfer

    CSIR Research Space (South Africa)

    Mashiri, M

    2007-05-01

    Full Text Available feedback mechanisms to both the local Integrated Development Plan and the Provincial Growth and Development Strategy, was able to navigate potential conflict areas such as negotiating acceptable wage rates [below minimum wage] with the community... to mobilize and galvanize the community around the benefits of the project, as well as to explain and to iron out potential mine fields, such as the level of funding available, wage rate and payment policy, technology issues and project implementation...

  12. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  13. Nuclear transfer technology in mammalian cloning.

    Science.gov (United States)

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  14. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  15. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  16. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    This study examines how inter-firm heterogeneities in technology modes and intensities are linked to ownership of firms in India, using a panel dataset of 2000 odd Bombay Stock Exchange listed firms for the period from 2003 to 2014 drawn from the PROWESS database of CMIE. For the analysis, foreign...... ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008...

  17. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  18. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  19. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  20. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned,...

  1. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    Science.gov (United States)

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool.

  2. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  3. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... the future of the global climate regime. Technology transfer does not become less important as developing countries' capabilities mature, but the nature of technology transfer changes over time. This suggests a need to differentiate between countries at different levels of development. Lower middle-income...... countries may have greater needs for building technological capabilities whereas cooperative activities may be suitable for upper middle-income countries that already have capabilities to address climate change...

  4. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  5. Technology transfer from NASA to targeted industries, volume 2

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  6. Biomedical technology transfer. Applications of NASA science and technology

    Science.gov (United States)

    Harrison, D. C.

    1980-01-01

    Ongoing projects described address: (1) intracranial pressure monitoring; (2) versatile portable speech prosthesis; (3) cardiovascular magnetic measurements; (4) improved EMG biotelemetry for pediatrics; (5) ultrasonic kidney stone disintegration; (6) pediatric roentgen densitometry; (7) X-ray spatial frequency multiplexing; (8) mechanical impedance determination of bone strength; (9) visual-to-tactile mobility aid for the blind; (10) Purkinje image eyetracker and stabilized photocoalqulator; (11) neurological applications of NASA-SRI eyetracker; (12) ICU synthesized speech alarm; (13) NANOPHOR: microelectrophoresis instrument; (14) WRISTCOM: tactile communication system for the deaf-blind; (15) medical applications of NASA liquid-circulating garments; and (16) hip prosthesis with biotelemetry. Potential transfer projects include a person-portable versatile speech prosthesis, a critical care transport sytem, a clinical information system for cardiology, a programmable biofeedback orthosis for scoliosis a pediatric long-bone reconstruction, and spinal immobilization apparatus.

  7. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR) Program Policy Directives... Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) Policy... technology@sba.gov . SUPPLEMENTARY INFORMATION: I. Background Information SBA is publishing Policy Directives...

  8. The Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    After making a unique, non-obvious, and useful discovery, NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  9. Transfer bonding technology for batch fabrication of SMA microactuators

    Science.gov (United States)

    Grund, T.; Guerre, R.; Despont, M.; Kohl, M.

    2008-05-01

    Currently, the broad market introduction of shape memory alloy (SMA) microactuators and sensors is hampered by technological barriers, since batch fabrication methods common to electronics industry are not available. The present study intends to overcome these barriers by introducing a wafer scale transfer process that allows the selective transfer of heat-treated and micromachined shape memory alloy (SMA) film or foil microactuators to randomly selected receiving sites on a target substrate. The technology relies on a temporary adhesive bonding layer between SMA film/foil and an auxiliary substrate, which can be removed by laser ablation. The transfer technology was tested for microactuators of a cold-rolled NiTi foil of 20 μm thickness, which were heat-treated in free-standing condition, then micromachined on an auxiliary substrate of glass, and finally selectively transferred to different target substrates of a polymer. For demonstration, the new technology was used for batch-fabrication of SMA-actuated polymer microvalves.

  10. THE EFFICIENCY OF TECHNOLOGY TRANSFER – THEORETICAL AND METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Andreea-Clara MUNTEANU

    2006-06-01

    Full Text Available As the importance and complexity level of technological transfer increased, the need of adequate systems of assessing the efficiency of this process became the more obvious. Introducing sustainability criteria requires the creation of a complex framework for analysing and studying efficiency that would incorporate all other three dimensions of contemporary economic development: economic, social and environmental.

  11. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  12. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    Science.gov (United States)

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  13. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  14. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  15. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  16. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  17. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Boer, de Sirp

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The aircraf

  18. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  19. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  20. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  1. Taxation and the transfer of technology by multinational firms

    NARCIS (Netherlands)

    Huizinga, H.P.

    1995-01-01

    This paper analyzes a multinational's transfer of technology to a foreign subsidiary for the case where there is a risk of expropriation. An expropriation is assumed to give rise to competition between the parts of the previous multinational enterprise. To reduce the benefit of expropriation, the

  2. 48 CFR 970.5227-3 - Technology transfer mission.

    Science.gov (United States)

    2010-10-01

    ... benefits to the U.S. domestic economy. The Contractor shall consider the following factors in all of its... shall establish subject to the approval of the contracting officer a policy for making awards or sharing... believes that the transfer of technology to the U.S. domestic economy will benefit from, or other...

  3. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  4. Modeling ozone mass transfer in reclaimed wastewater.

    Science.gov (United States)

    Jiang, Pan; Chen, Hsiao-Ting; Babcock, Roger W; Stenstrom, Michael K

    2009-01-01

    Ozone mass transfer in reclaimed water was evaluated at pilot scale to determine mass-transfer characteristics and reaction kinetics and to assess the use of oxygen as a surrogate to measure this process. Tests were conducted in a 40-L/min pilot plant over a 3-year period. Nonsteady-state mass-transfer analyses for both oxygen and ozone were performed for superficial gas flow rates ranging from 0.13m/min to 0.40m/min. The psi factor, which is the ratio of volumetric mass-transfer coefficients of ozone to oxygen, was determined. The decrease in oxygen transfer rate caused by contaminants in reclaimed water was only 10 to 15% compared to tap water. A simple mathematical model was developed to describe transfer rate and steady state ozone concentration. Ozone decay was modeled accurately as a pseudo first-order reaction between ozone and ozone-demanding materials.

  5. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  6. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  7. Improving data transfer for model coupling

    Science.gov (United States)

    Zhang, C.; Liu, L.; Yang, G.; Li, R.; Wang, B.

    2015-10-01

    Data transfer, which means transferring data fields between two component models or rearranging data fields among processes of the same component model, is a fundamental operation of a coupler. Most of state-of-the-art coupler versions currently use an implementation based on the point-to-point (P2P) communication of the Message Passing Interface (MPI) (call such an implementation "P2P implementation" for short). In this paper, we reveal the drawbacks of the P2P implementation, including low communication bandwidth due to small message size, variable and big number of MPI messages, and jams during communication. To overcome these drawbacks, we propose a butterfly implementation for data transfer. Although the butterfly implementation can outperform the P2P implementation in many cases, it degrades the performance in some cases because the total message size transferred by the butterfly implementation is larger than that by the P2P implementation. To make the data transfer completely improved, we design and implement an adaptive data transfer library that combines the advantages of both butterfly implementation and P2P implementation. Performance evaluation shows that the adaptive data transfer library significantly improves the performance of data transfer in most cases and does not decrease the performance in any cases. Now the adaptive data transfer library is open to the public and has been imported into a coupler version C-Coupler1 for performance improvement of data transfer. We believe that it can also improve other coupler versions.

  8. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  9. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players.

  10. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  11. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, S. [ed.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  12. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    implementation measures. I have also taken in to account the decisions of the annual meetings of the Conference of the parties (COPs) of the UNFCCC. The thesis has also made a brief comparative discussion between the provisions of international environmental laws and the provisions of intellectual property...... of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  13. Effects of Critical Knowledge Characteristics on Degree of Inter-Firm Technology Transfer

    Directory of Open Access Journals (Sweden)

    A. W. Sazali

    2009-01-01

    Full Text Available Problem statement: The current issue on inter-firm technology transfer in the developing countries is centered on the efficiency and effectiveness of the transfer process by the Multinationals (MNCs. Thus, organizations in the developing countries are striving hard to collaborate, learn and internalize their foreign partner’s technological knowledge by forming strategic alliances or International Joint Ventures (IJVs as an efficient mean to increase their competitiveness, technological capabilities and potential for local innovation. Knowledge as the critical element underlying technology has become one of the main factors that affects the success and failure of inter-firm technology transfer within IJVs which is measured by the degree of technology transferred. Based on the underlying knowledge-based view perspective, this paper aims to empirically examine the effect of three critical knowledge characteristics: Tacitness, complexity and specificity on degree of technology transfer and its two dimensions: Degree of tacit and explicit knowledge. Approach: The theoretical model and hypotheses in this study were tested using empirical data gathered from 128 joint venture companies registered with the Registrar of Companies of Malaysia. Data obtained from the survey questionnaires were analyzed using the correlation coefficients and multiple linear regression analyses. Results: The results revealed that tacitness and complexity as two critical elements of knowledge characteristics have significant effects on both degrees of tacit and explicit knowledge; with complexity recording slightly stronger effect than tacitness. However, although specificity has a strong theoretical foundation, it did not record significant effect. Conclusion: The study has bridged the literature gaps in such that it provides empirical evidence on the effects of three generic knowledge attributes: Tacitness, complexity and specificity on degree of inter-firm technology

  14. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  15. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  16. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  17. BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

  18. Curbing international transfers of arms and military technology

    Energy Technology Data Exchange (ETDEWEB)

    Vayrynen, R.

    1978-07-01

    The magnitude of the value and quantity of transfers of arms and military technology, the internationalization and commercialization of armaments industry (through vastly increased direct investments, through co-production, licensing and sub-contracting arrangements), the supply of training and technical services as adjuncts of arms supply, the blurring of the dividing line between military and civilian technology--all have made control measures infinitely more complicated and difficult. What compounds the difficulty is the fact that, since an overwhelmingly preponderant portion of arms transfers is made up of government-to-government transactions, control measures must emanate from supplying and/or receiving governments. But even if by some miracle these measures were forthcoming and proved effective, they will have touched only a small part of the problem of disarmament, because the share of international transfers of arms and military technology amounts to only 5 to 6% of the total world military expenditure. The other, far larger and more intractable, part relates to the staggering stockpiles of both conventional and nuclear weapon systems, almost wholly concentrated in the hands of the two superpowers. Both transfers and stockpiles of armaments are inextricably enmeshed in the existing international structure, epitomized in a dominance-dependency relationship. This paper examines the measures that the supplier nations and recipient nations can take unilaterally, bilaterally, and multilaterally to curb arms transfers, and comes to the conclusion that unilateral initiatives, especially on the part of receiving nations, are more feasible. Not to take such initiatives on the ground that they cannot succeed unless taken in concert is only an excuse for doing nothing.

  19. Ethics and technology transfer: patients, patents, and public trust.

    Science.gov (United States)

    Zucker, Deborah

    2011-06-01

    Universities and academic medical centers have been increasing their focus on technology transfer and research commercialization. With this shift in focus, academic-industry ties have become prevalent. These relationships can benefit academic researchers and help then to transform their research into tangible societal benefits. However, there also are concerns that these ties and the greater academic focus on commercialization might lead to conflicts of interest, especially financial conflicts of interest. This paper briefly explores some of these conflicts of interest, particularly relating to research and training. This paper also discusses some of the policies that have been, and are being, developed to try to mitigate and manage these conflicts so that academic involvement in technology transfer and commercialization can continue without jeopardizing academic work or the public's trust in them.

  20. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...... and trade unions to articulate their interests and define the issues, in particular with regard to the working environment and the external environment? The paper will discuss these questions by exploring the significance of labour market structures, labour-management relations, concepts of knowledge...

  1. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R D) than has US industry. These expenditures have been divided largely among the nation's federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of market/application oriented'' technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  2. Transferring federally-funded technologies: New strategies for success

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.

    1993-02-01

    In almost every year of the post-war era, the federal government has spent more on research and development (R&D) than has US industry. These expenditures have been divided largely among the nation`s federal laboratories and universities and. contrary to widely held beliefs, devoted in greater measure to applied R&D than basic research. As pointed out by Salvador, this federally-funded research has resulted in the development of ``market/application oriented`` technology that, for the most part, has failed to reach the commercial marketplace. This report discusses new strategies for a more success technology transfer.

  3. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  4. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  5. ASSESSING THE IMPACT OF UNIVERSITY TECHNOLOGY TRANSFER ON FIRMS’ INNOVATION

    OpenAIRE

    Paola Cardamone; Valeria Pupo; Fernanda Ricotta

    2014-01-01

    This paper analyses the influence of universities on Italian firms’ probability to innovate. Using firm-level data, we focus on institutionalised technology transfer (TT) activities in universities, namely spin-offs, patents and research contracts. Results show that TT activities play a significant role in the probability to innovate by Italian manufacturing firms located in the same province as the university. Nevertheless, the effect is not uniform: the contribution of university TT activit...

  6. 教师信息技术应用能力迁移影响因子模型构建研究%Model Construction on Factors lnfluencing the Transfer of Teachers' lnformation Technology Application Ability

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 王以宁; 刘艳华; 张海

    2015-01-01

    The information technology application ability is an indispensable skill for teachers in the information socie-ty. It is therefore essential to make the training and transfer of the information technology application more effective. These effective measures are important to help teachers change their ways of teaching, deepen the curriculum reform, promote lifelong learning, facilitate teachers’ autonomous development in their areas of specialties. Rick Ginsberg, a well-known American professor of teacher education, found that only 10% of the teachers' in-formation technology application ability gained from related training programs can be transferred to teachers ’ daily teaching. Considerable research and studies have been done in many countries to find ways to improve the teachers' in-formation technology application skills. In China, nevertheless, the related research is still in its preliminary stage and the current status is barely satisfactory. In recent years, Chinese government has launched a variety of training sessions to improve the teachers' information technology application ability at different levels. However, what has been learned in the training is rarely applied into teachers’ daily practices. Therefore, it is urgent to find the causes of the problem and to develop appropriate solutions. This study selected 220 teachers as participants in an innovative experimental area of Northeast China. Adopting the Likert scale and a structural equation model, the authors developed a model of six factors influencing the transfer of teachers’ information technology application ability which include school factor, human factor, policy and institu-tional factor, training factor, self-efficacy factor and motivation factor. The results from this study could provide ref-erences for solving the existing problems in the training of teachers' information technology application ability.%信息技术应用能力是信息化社会教师必备的专业能力,如

  7. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  8. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    Science.gov (United States)

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  9. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  10. E-Beam—a new transfer system for isolator technology

    Science.gov (United States)

    Sadat, Theo; Huber, Thomas

    2002-03-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  11. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  12. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-08-08

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... Administration (SBA) is publishing the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program Commercialization Benchmark for the 11 participating agencies for public comment...

  13. Simplified models for heat transfer in rooms

    Science.gov (United States)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  14. Educational Technology Funding Models

    Science.gov (United States)

    Mark, Amy E.

    2008-01-01

    Library and cross-disciplinary literature all stress the increasing importance of instructional technology in higher education. However, there is a dearth of articles detailing funding for library instructional technology. The bulk of library literature on funding for these projects focuses on one-time grant opportunities and on the architecture…

  15. Evaluating the Intellectual Capital of Technology Transfer and Learning Public Services

    Directory of Open Access Journals (Sweden)

    Michele Grimaldi

    2013-03-01

    Full Text Available Since the rise of the knowledge‐based economy, many worldwide companies have begun to deal with different frameworks to manage and evaluate the performance of intellectual capital, especially in the area of knowledge management services. This paper presents a novel conceptual model aiming to support management in evaluating and prioritizing their intellectual capital competitive core competences. Based on the analytic hierarchy process, the model analyses interdependences among intellectual capital elements and determines the impacts of core competences on organizational performance. To validate the model, it is empirically applied in the Technology Transfer Unit of the Italian national agency for new technologies, energy and economic development.

  16. The role of public-private partnership for effective technology transfer

    Directory of Open Access Journals (Sweden)

    Albena Vutsova

    2014-08-01

    Full Text Available An effective technology transfer and the role of cooperation between the public and private sectors take a significant place in the modern development of economies based on knowledge. The rapid development of technology and innovation are the main features of this new content in their society. Economic changes due to innovation provoke important changes in policies and are significantly affected by the level of investments to sectors such as education and social science. Innovative development is determined by the relationship between public and private sectors that ensures different degrees of competitiveness in vast areas of knowledge. In order to address global challenges that affect strongly social-economic development, different models of collaboration from the traditional ones are needed. Such is the PPP. This article aims to analyze the different levels of development of public-private partnership and highlight its role in the implementation of technology transfer through introduction and implementation of new and / or more - custom models.

  17. The Economic Mobility in Money Transfer Models

    CERN Document Server

    Ding, N; Wang, Y; Ding, Ning; Xi, Ning; Wang, Yougui

    2005-01-01

    In this paper, we investigate the economic mobility in some money transfer models which have been applied into the research on monetary distribution. We demonstrate the mobility by recording the agents' ranks time series and observing the volatility. We also compare the mobility quantitatively by employing an index, "the per capita aggregate change in log-income", raised by economists. Like the shape of distribution, the character of mobility is also decided by the trading rule in these transfer models. It is worth noting that even though different models have the same type of distribution, their mobility characters may be quite different.

  18. The economic mobility in money transfer models

    Science.gov (United States)

    Ding, Ning; Xi, Ning; Wang, Yougui

    2006-07-01

    In this paper, we investigate the economic mobility in four money transfer models which have been applied into the research on wealth distribution. We demonstrate the mobility by recording the time series of agents’ ranks and observing their volatility. We also compare the mobility quantitatively by employing an index, “the per capita aggregate change in log-income”, proposed by economists. Like the shape of distribution, the character of mobility is also decided by the trading rule in these transfer models. It is worth noting that even though two models have the same type of distribution, their mobility characters may be quite different.

  19. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ... Innovation and Technology Transfer AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION....D. Distinguished Lecture on Innovation and Technology Transfer. DATES: Friday, December 9, 2011, at... Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr. Pastan is an NIH Distinguished...

  20. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission,...

  1. In-Cylinder Heat Transfer Modelling

    Directory of Open Access Journals (Sweden)

    Žák Zdeněk

    2016-12-01

    Full Text Available The goal of the paper is to discuss specific features of the in-cylinder heat transfer calculation based on widely used empirical formulas. The potential of in-house codes compared with commercially available software packages is presented. The principles of user models in the GT-SUITE environment are also explained. The results of calibrated models are briefly discussed.

  2. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  3. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  4. Security technologies and protocols for Asynchronous Transfer Mode networks

    Energy Technology Data Exchange (ETDEWEB)

    Tarman, T.D.

    1996-06-01

    Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

  5. A first thermodynamic interpretation of the technology transfer activities

    CERN Document Server

    Ripandelli, S

    2016-01-01

    In the last years new interdisciplinary approaches to economics and social science have been developed. A Thermodynamic approach to socio-economics has brought to a new interdisciplinary scientific field called econophysics. Why thermodynamic? Thermodynamic is a statistical theory for large atomic system under constraints of energy[1] and the economy can be considered a large system governed by complex rules. The present job proposes a new application, starting from econophysic, passing throughout the thermodynamic laws to interpret and to described the Technology Transfer (TT) activities. Using the definition of economy (i.e. economy[dictionary def.] = the process or system by which goods and services are produced, sold, and bought in a country or region) the TT can be considered an important sub-domain of the economy and a transversal new area of the scientific research. The TT is the process of transferring knowledge, that uses the results from the research to produce innovation and to ensure that scientif...

  6. Modeling of vehicular hydrogen storage transfer processes

    Energy Technology Data Exchange (ETDEWEB)

    Viola, J.; Ventner, R.D. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering; Bose, T.; Benard, P. [Quebec Univ., Trois-Rivieres, PQ (Canada)

    2003-07-01

    The acceptance of hydrogen as an alternate fuel for powering vehicles depends on several factors, such as the performance properties of hydrogen fuels, the behaviour of the vehicle in terms of power response, and the handling of the fuel during the transfer operation to the vehicle. This paper presents a study which examined the transfer of fuel and compared the fueling processes of several hydrogen storage methods on a vehicle. The study involved a computer-simulation of different hydrogen storage systems to compare the characteristics of the various transfer processes. The thermodynamics of hydrogen transfer from a defined initial condition to its final state was studied. Tabulations of energy requirements, temperature and pressure variations, and limitations concerning the transfer rate were provided. The fueling procedure was simulated using dynamic models, and the components from the initial to the final equilibrium state within the vehicle were characterized. The fluctuations in the system during the physical transfer operations were illustrated. Some of the safety risks include passive risks from toxic and low temperature or cryogenic effects, and explosion and combustion. The authors used fuzzy analysis of survey results to examine safety, which is more subjective in nature than the other properties modeled. An introduction to fuzzy logic was presented, followed by a description of the method used. 2 refs., 7 figs.

  7. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  8. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology.

  9. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  10. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  11. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    This paper provides new evidence on the relationship between foreign direct investment (FDI) and the productivity of domestic firms. Using a specially designed survey on a sample of over 7,500 manufacturing firms in Vietnam we uncover some of the mechanisms that explain productivity spillovers from....... Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...

  12. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  13. Opportunities for the transfer of astronomical technology to medicine.

    Science.gov (United States)

    Hughes, S

    2007-12-01

    There are many examples of technology transfer from astronomy to medicine, for example algorithms for reconstructing X-ray CT images were first developed for processing radio astronomy images. In more recent times, X-ray detectors developed for the Hubble Space Telescope have been used in a fine-needle breast biopsy system. Software originally developed to mosaic planetary images has been incorporated into a system for detecting breast cancer. Australia has expertise in the development of instrumentation for producing radio images from an array of radio telescopes and in multi-object fibre systems for capturing the spectra of hundreds of stellar objects simultaneously. Two possible applications of these Australian technologies are suggested that may merit further exploration. A meeting between interested parties is suggested to discuss future directions and funding.

  14. Formal and Informal Technology Transfer from Academia to Industry : Complementarity Effects and Innovation Performance

    OpenAIRE

    Grimpe, Christoph; Hussinger, Katrin

    2008-01-01

    Literature has identified formal and informal channels in university technology transfer. While formal technology transfer typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing,...

  15. The role of technological transfer in the societies based on knowledge economy

    OpenAIRE

    2009-01-01

    The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  16. Dynamic Process of Money Transfer Models

    CERN Document Server

    Wang, Y; Wang, Yougui; Ding, Ning

    2005-01-01

    We have studied numerically the statistical mechanics of the dynamic phenomena, including money circulation and economic mobility, in some transfer models. The models on which our investigations were performed are the basic model proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with diverse saving rate [3]. The velocity of circulation is found to be inversely related with the average holding time of money. In order to check the nature of money transferring process in these models, we demonstrated the probability distributions of holding time. In the model with uniform saving rate, the distribution obeys exponential law, which indicates money transfer here is a kind of Poisson process. But when the saving rate is set diversely, the holding time distribution follows a power law. The velocity can also be deduced from a typical individual's optimal choice. In this way, an approach for building the micro-...

  17. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  18. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    Science.gov (United States)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  19. Radiative transfer model for Solar System ices

    Science.gov (United States)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2015-10-01

    We developed a radiative transfer model [1] that simulates the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions. Designed for planetary studies, this model has a fast computer implementation and thus is suitable for planetary high spatial/spectral resolution hyperspectral data analysis. We will present here its principles, its numerical and experimental validations and its possible applications.

  20. Inside the triple helix: technology transfer and commercialization in the life sciences.

    Science.gov (United States)

    Campbell, Eric G; Powers, Joshua B; Blumenthal, David; Biles, Brian

    2004-01-01

    The transfer and subsequent application of academic research results has demonstrable benefits for health care, researchers, universities, companies, and local economies. Nonetheless, at least three general concerns exist: bias in the reporting of results, limited revenues from these activities, and the lack of data to evaluate technology transfer activities. Future efforts with regard to technology transfer in the life sciences will need to recognize its importance without ignoring concerns or overestimating benefits. Next steps include better monitoring of university-industry relationships, the development of a better data system, the dissemination of best practices in technology transfer management, and evaluation of national technology-transfer policies.

  1. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  2. Persuasive Technology and Business Models

    DEFF Research Database (Denmark)

    Søndergaard, Morten Karnøe; Lindgren, Peter; Veirum, Niels Einar

    specific behavior, this results to the ability of designing for specific changes. Businesses use different persuasive technologies to persuade users, customers and network partners to change behavior. Operating more than one value proposition, both tangible and intangible value proposition, in combination...... seems to be crucial to the success of a persuasive business model. We will give a short introduction into the area of persuasive technology and business models. Moreover, we will present a number of concrete case examples where persuasive technologies were employed, the first in health care, the second...

  3. Thermodynamic Model of Noise Information Transfer

    Science.gov (United States)

    Hejna, Bohdan

    2008-10-01

    In this paper we apply a certain unifying physical description of the results of Information Theory. Assuming that heat entropy is a thermodynamic realization of information entropy [2], we construct a cyclical, thermodynamic, average-value model of an information transfer chain [3] as a general heat engine, in particular a Carnot engine, reversible or irreversible. A working medium of the cycle (a thermodynamic system transforming input heat energy) can be considered as a thermodynamic, average-value model or, as such, as a realization of an information transfer channel. We show that in a model realized in this way the extended II. Principle of Thermodynamics is valid [2] and we formulate its information form.

  4. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  5. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  6. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  7. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  8. A TRANSFERABLE MODEL FOR INNOVATIVE JOINT POSTGRADUATE DEGREE PROGRAMME DEVELOPMENT

    DEFF Research Database (Denmark)

    Maclachlan, Ross; Ion, William; Kochanowska, Rowena;

    2009-01-01

    aim of the programme is to produce graduates with an expanded perspective of innovation management to meet the needs of global industry. In particular this is to be achieved through a curriculum that integrates design based modules with progressive innovation and technology management education...... be overcome. This paper reflects on specific challenges met during development of the GIM programme and presents a programme model addressing these. The model is presented as transferable to other consortia and as basis for a set of tentative principles for joint programme development with particular...

  9. Technology transfer significance of the International Safeguards Project Office

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.; Waligura, A.J.

    1988-06-01

    The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

  10. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  11. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  12. Analysis and technology transfer report, 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

  13. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    Science.gov (United States)

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  14. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Science.gov (United States)

    2013-09-26

    ... ADMINISTRATION Small Business Innovation Research and Small Business Technology Transfer Programs... period for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR... Street SW., Washington, DC 20416; or send an email to Technology@sba.gov . Highlight the information that...

  15. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  16. Development and technology transfer of Haemophilus influenzae type b conjugate vaccines for developing countries.

    Science.gov (United States)

    Beurret, Michel; Hamidi, Ahd; Kreeftenberg, Hans

    2012-07-13

    This paper describes the development of a Haemophilus influenzae type b (Hib) conjugate vaccine at the National Institute for Public Health and the Environment/Netherlands Vaccine Institute (RIVM/NVI, Bilthoven, The Netherlands), and the subsequent transfer of its production process to manufacturers in developing countries. In 1998, at the outset of the project, the majority of the world's children were not immunized against Hib because of the high price and limited supply of the conjugate vaccines, due partly to the fact that local manufacturers in developing countries did not master the Hib conjugate production technology. To address this problem, the RIVM/NVI has developed a robust Hib conjugate vaccine production process based on a proven model, and transferred this technology to several partners in India, Indonesia, Korea and China. As a result, emerging manufacturers in developing countries acquired modern technologies previously unavailable to them. This has in turn facilitated their approach to producing other conjugate vaccines. As an additional spin-off from the project, a World Health Organization (WHO) Hib quality control (QC) course was designed and conducted at the RIVM/NVI, resulting in an increased regulatory capacity for conjugate vaccines in developing countries at the National Regulatory Authority (NRA) level. For the local populations, this has translated into an increased and sustainable supply of affordable Hib conjugate-containing combination vaccines. During the course of this project, developing countries have demonstrated their ability to produce large quantities of high-quality modern vaccines after a successful transfer of the technology.

  17. The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zucconi, L.

    1993-12-01

    Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

  18. Research on localization and alignment technology for transfer cask

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingchuan, E-mail: jchwang@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China); Yang, Ming; Chen, Weidong [Department of Automation, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai (China)

    2015-10-15

    Highlights: • A method for the alignment between TB and HCB based on localizability is proposed. • A localization method based on the localizability estimation is proposed to realize the cask's localization accurately and ensures the transfer cask's accurate docking in the front of the window of Tokmak Building. • The experimental results show that the proposed algorithm works well in the indoor simulation environment. This system will be test in EAST of China. - Abstract: According to the long length characteristics of transfer cask compared to the environment space between Tokmak Building (TB) and HCB (Hot Cell Building), this paper proposes an autonomous localization and alignment method for the internal components transportation and replacement. A localization method based on the localizability estimation is used to realize the cask's localization and navigation accurately. Once the cask arrives at the front of the TB window, the position and attitude measurement system is used to detect the relative alignment error between the seal door of pallet and the window of TB real-time. The alignment between seal door and TB window could be realized based on this offset. The simulation experiment based on the real model is designed according to the real TB situation. The experiment results show that the proposed localization and alignment method can be used for transfer cask.

  19. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  20. Technology Transfer Challenges in Indonesia: An Experience from Industry Turbine Overhaul

    Directory of Open Access Journals (Sweden)

    Subiakto Soekarno

    2012-01-01

    Full Text Available This paper discusses the problems and challenges that Indonesia faces in the process of its technology transfer. Matters discussed in this paper are based on the lead writer’s personal observation and experience of the technology transfer taking place in Indonesia’s turbine maintenance and overhaul industry.The first challenge faced is the lack of basic skills on the part of factory workers. The next challenge is the lack of supporting industries. Furthermore, the low level of English proficiency of the workforce has contribution to the technology transfer problems. Final challenges are the low credibility of the government entities that oversee the turbine maintenance industry in Indonesia. The steps undertaken in the technology transfer in the turbine maintenance and overhaul industry in Indonesia is done through several complex stages.Keywords: challenges in the transfer of technology, technology transfer in Indonesia, turbine maintenance and overhaul industry.

  1. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  2. Analyzing the Impacts of an IPM Vegetable Technology Transfer in Bangladesh

    OpenAIRE

    McCarthy, Evan Tyler

    2015-01-01

    This study evaluates the effectiveness and impacts of USAID's IPM IL vegetable technology transfer subproject in Bangladesh. The effectiveness of the technology transfer is evaluated in four ways: IPM adoption rates and determinants of IPM adoption, measuring the impact of IPM adoption on vegetable yields, pest management costs, and the number of pesticide applications used, estimation of the economic impacts of IPM adoption and the technology transfer, and analysis of the relative efficienc...

  3. Technology Transfer: A Compilation of Varied Approaches to the Management of Innovation.

    Science.gov (United States)

    1982-12-01

    Intergovernmental Cooperation in Science and Tech- nology--J. E. Clark 89. Department of Defense Technology Transfer Consor- tium: An Overview--G. F...DEPARTMENT OF DEFENSE TECHNOLOGY TRANSFER CONSORTIUM: AN OVERVIEW George F. Linsteadt Abstract The federal R&D laboratories represent a large...agencies who have compatible requirements. The Department of Defense Technology Transfer Consortium, as a subset of the Federal Laboratory Consortium for

  4. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  5. Towards an Integrative Model of Knowledge Transfer

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call...... business and academia, and implementing the respective legislature are enduring. The research objectives were to explore (i) the process of knowledge transfer in universities, including the nature of tensions, obstacles and incentives, (ii) the relationships between key stakeholders in the KT market...... and (iii) the meaning/reality that is construed as a result of these relationships. To address the above research objectives, grounded theory research was undertaken in four universities in the UK and one in Australia. Coding of the data revealed thirteen constructs, which became the building blocks...

  6. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    Science.gov (United States)

    2008-03-01

    specific technology screening instrument, Mandalas et al. (1998) demonstrated that technology transfer can be facilitated by making available user...S. D., and Aly, O. M. (1998). Chemistry of Water Treatment, 2nd Edition. Boca Raton, Florida: Lewis Publishers. Goltz, M. N., Mandalas , G. C...McGraw-Hill. Mandalas , G., Christ, J., and Goltz, M. (1998). Software to Aid Transfer of an Innovative In Situ Bioremediation Technology

  7. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  8. An Action Research on Open Knowledge and Technology Transfer

    Science.gov (United States)

    Ramos, Isabel; Cardoso, Margarida; Carvalho, João Vidal; Graça, José Ismael

    R&D has always been considered a strategic asset of companies. Traditionally, companies that have their own R&D function are better prepared to compete in the globalized economy because they are able to produce the knowledge and technology required to advance products and services. SMEs also need to become highly innovative and competitive in order to be successful. Nevertheless, their ability to have an internal R&D function that effectively meets their innovation needs is usually very weak. Open innovation provides access to a vast amount of new ideas and technologies at lower costs than closed innovation. This paper presents an action research study being carried out at University of Minho to develop a business model and technology platform for an innovation brokering service connecting ideas and technologies being developed at Universities with the specific innovation needs of SMEs. The expected contributions of the study include the empirical investigation of the effectiveness and risks of crowdsourcing innovation when applied in the socio-economic context of a European developing country where SMEs represent 99,6% of the businesses.

  9. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  10. Giving It Away : Free Technology Transfer to the Irish SME Sector

    OpenAIRE

    Kavanagh, Peter; Maguire, Andy; Casey, James J.

    2006-01-01

    One of Europe’s major weaknesses lies in its inferiority in terms of transforming the results of technological research and skills into innovations and competitive advantages. (European Commission, 1995, p. 8.) Technology transfer is a key aspect of economic development and research administration. These concerns are shared equally between academia and industry on both sides of the Atlantic. As technology is developed at a greater rate, concerns about the technology transfer will heighten....

  11. LAN technology transfer using the Naval Postgraduate School as a case study

    OpenAIRE

    1995-01-01

    In today's Department of Defense (DoD) environment, more emphasis is being placed on using computing resources to receive and process information. Local area networks (LANs) are used to access these computing resources by users. As new resources are added to networks, an effective mechanism is required to transfer this technology to the users. The effective transfer of technology requires user awareness of the technology and the ability of the user to use the technology. NA NA U.S. N...

  12. Bioprinting technologies for disease modeling

    DEFF Research Database (Denmark)

    Memic, Adnan; Navaei, Ali; Mirani, Bahram

    2017-01-01

    challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue......There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate...... the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical...

  13. Promoting Transfer and an Integrated Understanding for Pre Service Teachers of Technology Education

    Directory of Open Access Journals (Sweden)

    David Morrison-Love

    2014-11-01

    Full Text Available The ability of students to transfer learning between subjects and contexts when problem solving is critical for developing their capability as Technologists and teachers of Technology. However, a growing body of literature suggests this ability is often assumed or over-estimated, and rarely developed explicitly within courses or degree programs. The nature of the problems tackled within technology are such that solutions draw upon knowledge from a wide range of contexts and subjects, however, the internal organisation and structure of institutions and schools tends to compartmentalise rather integrate these. Providing a knowledge base and range of strategies that enhance students’ awareness of and skills in transferring learning may allow for a more integrated understanding to develop. The importance of developing this in a more explicit manner is heightened as trainee teachers will, in turn, be responsible for developing the similar capabilities of the children they go on to work with as professional teachers. This paper begins by considering problem solving in technology education and some of the issues associated with learning transfer. Thereafter, a framework and strategy for better integrating learning between courses is described and forms the basis for developments in an Initial Teacher Education degree program for Technology Education. Provisional data from evaluations and student work indicated a positive effect in enhancing trainee teachers’ thinking and additional data in the form of questionnaires, interviews and student work help to explore this further. Finally, it is argued that the development framework and approach enhances their mental models of teaching and offers a significant step forward in promoting student teachers’ transfer of future learning between subjects; something increasingly critical for 21st century STEM Education.

  14. Technology transfer at CERN a study on inter-organizational knowledge transfer within multi-national R&D collaborations

    CERN Document Server

    Huuse, H; Streit-Bianchi, M

    2004-01-01

    This study focus on the knowledge aspect of inter-organizational technology transfer projects. We have studied two large R&D collaborations where CERN is involved as one of several participating organizations, in order to reveal the causalities related to the knowledge transfer processes within these projects. The objective of the study is to understand how knowledge transfer happens, identify influencing factors to the process, and finally investigate the outcome of such processes. The study is founded on a thorough literature review where we examine different aspects of inter-organizational knowledge transfer. Based on the theory, we develop an analytic framework and establish different elements in the knowledge transfer process to study in more detail. This framework illustrates the relation between the different elements in a knowledge transfer process and provides the structure for our empirical foundation. We perform an explanatory embedded multiple case study and analyze our findings in terms of th...

  15. Your idea and your university: issues in academic technology transfer.

    Science.gov (United States)

    Smith, Charles D

    2011-06-01

    Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved she or he will be in the commercialization process. In some cases, a university out-licenses the intellectual property, whereas in other cases, the investigator may want to be involved in the development process and choose to start his or her own company to develop and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, and his or her ability to run a company or step aside to allow business experts to make necessary decisions. This paper discusses some personal considerations in deciding to start a spinout company and provides information on some of the available government grants to assist you should you decide to undertake your product's commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies often are the source of early funding for new biomedical companies.

  16. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics. Base

  17. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  18. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  19. Public Relations and Technology Transfer Offices: An Assessment of US Universities' Relations with Media and Government

    Science.gov (United States)

    Haney, James M.; Cohn, Andrew

    2004-01-01

    This article discusses the importance for technology transfer offices of sound media and government relations strategies. It reports the results of a nationwide electronic survey in the USA and interviews with technology transfer managers on how they handle public relations issues in their offices. Strengths and weaknesses of their communication …

  20. Why NIH Scientists Need to Report an Invention | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    As an NIH scientist, you must report new inventions, including improvements of previously reported inventions, to the Technology Transfer Manager assigned to your Laboratory. If you do not know the name of your TTM, please call or email the Technology Transfer Center.  | [google6f4cd5334ac394ab.html

  1. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  2. Assessment of research and technology transfer needs for wood-frame housing

    Science.gov (United States)

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  3. Introduction to the Workshop on Software Technology Transfer in Software Engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roel

    2006-01-01

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  4. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    Science.gov (United States)

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  5. Vaccines for HIV | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The development of an effective HIV vaccine has been an ongoing area of research. The high variability in HIV-1 virus strains has represented a major challenge in successful development. Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV. Two major hurdles to overcome are immunodominance and sequence diversity. This vaccine utilizes a strategy for overcoming these two issues by identifying the conserved regions of the virus and exploiting them for use in a targeted therapy. NCI seeks licensees and/or research collaborators to commercialize this technology, which has been validated in macaque models.

  6. The Status Quo and Prospect of Chinese-funded Enterprises Technology Transfer to Africa

    Institute of Scientific and Technical Information of China (English)

    Yang Guang; Li Xinfeng; Chen Mo

    2015-01-01

    Weak technical foundation is an important bottleneck to restrict economic growth of African countries. To promote the technological progress of Africa, the Chinese African strategy always encourages and supports Chinese-funded enterprises to transfer technology to Africa, but it is worth nothing that the critique by some African scholars and local communities on technology transfer to Africa by the Chinese-funded enterprises is spreading. In fact, in order to implement the "localization" strategy, develop African market or honor cooperation agreement on additional technical transfer, Chinese-funded enterprises always adhere to actively carrying out technology transfer to Africa, and have made certain achievements in improving the host countries’ technical environment, increasing labor income and others. In order to cope with the challenges and dispel the crisis of public opinion, China should uphold the concept of "teaching how to fish" and push forward the continuous upgrading and optimization of technology transfer to Africa all-dimensionally.

  7. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer

    Science.gov (United States)

    Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff’s skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices. PMID:28886088

  8. An empirical research on relationships between subjective judgement, technology acceptance tendency and knowledge transfer.

    Science.gov (United States)

    Yuan, Yu-Hsi; Tsai, Sang-Bing; Dai, Chien-Yun; Chen, Hsiao-Ming; Chen, Wan-Fei; Wu, Chia-Huei; Li, Guodong; Wang, Jiangtao

    2017-01-01

    The purpose of this study was to explore the relationships among employees' usage intention pertaining to mobile information devices, focusing on subjective judgement, technology acceptance tendency, information sharing behavior and information transfer. A research model was established to verify several hypotheses. The research model based on integrated concepts of knowledge management and technology acceptance modeling. Participants were employees of enterprises in Taiwan, selected by combining snowball and convenience sampling. Data obtained from 779 e-surveys. Multiple-regression analysis was employed for hypothesis verification. The results indicate that perceived ease-of-use of mobile devices was affected by computer self-efficacy and computer playfulness directly; meanwhile, perceived ease-of-use directly affects perceived usefulness. In addition, perceived ease-of-use and perceived usefulness can predict information-sharing behavior in a positive manner, and impact knowledge transfer as well. Based on the research findings, it suggested that enterprises should utilize mobile information devices to create more contact with customers and enrich their service network. In addition, it is recommended that managers use mobile devices to transmit key information to their staff and that they use these devices for problem-solving and decision-making. Further, the staff's skills pertaining to the operation of mobile information devices and to fully implement their features are reinforced in order to inspire the users' knowledge transfer. Enhancing the playfulness of the interface is also important. In general, it is useful to promote knowledge transfer behavior within an organization by motivating members to share information and ideas via mobile information devices. In addition, a well-designed interface can facilitate employees' use of these devices.

  9. A Model For Non-Fickian Moisture Transfer In Wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2004-01-01

    A model for non-Fickian moisture transfer in wood is presented. The model considers the transfer of water vapour separate from the transfer of bound water. These two components are linked by an equation describing the sorption on the cell wall level. Hereby, a formulation capable of describing...

  10. A Model For Non-Fickian Moisture Transfer In Wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2004-01-01

    A model for non-Fickian moisture transfer in wood is presented. The model considers the transfer of water vapour separate from the transfer of bound water. These two components are linked by an equation describing the sorption on the cell wall level. Hereby, a formulation capable of describing kn...

  11. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  12. The role of Ethics in the process of Technology Transfer and Development of 206 Peugeot

    Directory of Open Access Journals (Sweden)

    Aliakbar Mazlomi

    2011-02-01

    Full Text Available Looking at the past history we find that the first phenomenon of technology transfer was taught by people who were traveling to another community and bring their technology, they move. After theindustrialization, transfer of knowledge from individuals to maintain their importance. However, now the situation for developing countries is controversial because it denied people with technical skills fromdeveloped countries to developing countries do not migrate, but the reverse is the professionals that are developing countries to developed countries loan go. Until developing countries can train your human resources specialist, they powerful companies overseas are the means of technology transfer, whether through direct investment, and whether through the sale of licenses and other means. (Noble, p. 105 - 106, 1367 Technology transfer is an important issue that should be given the capacity of countries to assess the possibility of application, absorption and its compatibility with local conditions to increase. Ie the transfer of technology and gain access to technology for its effective use for economic development and growth of countries relatively backward technology provides. (Archibugi, 2003 Today, the role of ethics in technology transfer and development is of great importance. The meaning of ethics and technology than are harvested, ethical values that have roles in the formation of modern technology. Another meaning of ethics and technology than is reached, that moral people who are dealing with technology, they must observe. It also includes technology to those that exist and sets it to those who apply and who are the analysis and criticism. In this article factors and ethical factors in the process of technology transfer and development for Peugeot 206 in Iran Khodro Company has been studied. For this purpose a questionnaire to determine and evaluate factors is designed and results are analyzed.

  13. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  14. Information for Our Partners | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY). | [google6f4cd5334ac394ab.html

  15. Polar firn layering in radiative transfer models

    Science.gov (United States)

    Linow, Stefanie; Hoerhold, Maria

    2016-04-01

    For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of

  16. Technology transfer for the implementation of a clinical trials network on drug abuse and mental health treatment in Mexico.

    Science.gov (United States)

    Horigian, Viviana E; Marín-Navarrete, Rodrigo A; Verdeja, Rosa E; Alonso, Elizabeth; Perez, María A; Fernández-Mondragón, José; Berlanga, Carlos; Medina-Mora, María Elena; Szapocznik, José

    2015-09-01

    Low- and middle-income countries (LMIC) lack the research infrastructure and capacity to conduct rigorous substance abuse and mental health effectiveness clinical trials to guide clinical practice. A partnership between the Florida Node Alliance of the United States National Drug Abuse Treatment Clinical Trials Network and the National Institute of Psychiatry in Mexico was established in 2011 to improve substance abuse practice in Mexico. The purpose of this partnership was to develop a Mexican national clinical trials network of substance abuse researchers and providers capable of implementing effectiveness randomized clinical trials in community-based settings. A technology transfer model was implemented and ran from 2011-2013. The Florida Node Alliance shared the "know how" for the development of the research infrastructure to implement randomized clinical trials in community programs through core and specific training modules, role-specific coaching, pairings, modeling, monitoring, and feedback. The technology transfer process was bi-directional in nature in that it was informed by feedback on feasibility and cultural appropriateness for the context in which practices were implemented. The Institute, in turn, led the effort to create the national network of researchers and practitioners in Mexico and the implementation of the first trial. A collaborative model of technology transfer was useful in creating a Mexican researcher-provider network that is capable of changing national practice in substance abuse research and treatment. Key considerations for transnational technology transfer are presented.

  17. Guiding healthcare technology implementation: a new integrated technology implementation model.

    Science.gov (United States)

    Schoville, Rhonda R; Titler, Marita G

    2015-03-01

    Healthcare technology is used to improve delivery of safe patient care by providing tools for early diagnosis, ongoing monitoring, and treatment of patients. This technology includes bedside physiologic monitors, pulse oximetry devices, electrocardiogram machines, bedside telemetry, infusion pumps, ventilators, and electronic health records. Healthcare costs are a challenge for society, and hospitals are pushed to lower costs by discharging patients sooner. Healthcare technology is being used to facilitate these early discharges. There is little understanding of how healthcare facilities purchase, implement, and adopt technology. There are two areas of theories and models currently used when investigating technology: technology adoption and implementation science. Technology adoption focuses mainly on how the end users adopt technology, whereas implementation science describes methods, interventions, and variables that promote the use of evidence-based practice. These two approaches are not well informed by each other. In addition, amplifying the knowledge gap is the limited conceptualization of healthcare technology implementation frameworks. To bridge this gap, an all-encompassing model is needed. To understand the key technology implementation factors utilized by leading healthcare facilities, the prevailing technology adoption and implementation science theories and models were reviewed. From this review, an integrated technology implementation model will be set forth.

  18. The role of technological transfer in the societies based on knowledge economy

    Directory of Open Access Journals (Sweden)

    Daniela HÎNCU

    2009-12-01

    Full Text Available The knowledge based economy is an economy based on innovation. Implementing innovation requires acquiring new technology, using the technique of technological transfer. The problems and the timing for implementing an emerging technology are under discussion in this paper.

  19. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Science.gov (United States)

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  20. What do we need from intermediaries for technology transfer to China?

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2012-01-01

    Cross-national technology transfer has been one of the most important vehicles by which firms in developed countries exploit the value of their technological innovations, and firms in developing countries gain access to technological and organizational knowledge from developed economies. To facil...

  1. An Empirical Analysis of Technology Transfer of National R&D Projects in South Korea

    Directory of Open Access Journals (Sweden)

    Mi-Sun Kim

    2015-01-01

    Full Text Available This study is aimed at seeking policy implications for the policy makers of South Korean government and finding a direction to support R&D institutions in performing R&D activities more efficiently, by analyzing the factors influencing technology transfer of the national R&D projects. The data retrieved from NTIS (National Science & Technology Information Service was used in analyzing the results of 575 projects with 1,903 cases of technology transfer, performed by the Ministry of Science, ICT and Future Planning, between 2002 and 2012. We found that there were significant differences between the government funded institutions and the universities and between basic R&D and applied ones. We also discovered that the government funded institutions did not necessarily take a better position than the universities in terms of the quantity of technology transfer. Lastly, the applied R&D of the universities was very vulnerable in terms of technology transfer.

  2. An ANP application for identifying and prioritizing opportunities and threatens for technology transfer

    Directory of Open Access Journals (Sweden)

    Reza Attaran

    2014-01-01

    Full Text Available During the past few years, there have been different changes in global market due to fast development of science and technology. These changes have increased competition among all existing companies and it has made it difficult for new rivals to gain market share. This paper tries to identify the opportunities and threats of technology transfer in one of world’s fastest growing gas development regions called Pars Special Economic Energy Zone. The proposed model of this paper first identify important factors influencing both opportunities as well as threats and then uses analytical hierarchy process to rank all factors. The results show that the threats were more important than the existing opportunities and among the most important threats, embargo and sales of oil were the most important ones.

  3. Research Funding, Patent Search Training and Technology Transfer: a collaboration

    KAUST Repository

    Tyhurst, Janis

    2016-01-01

    This paper will focus on the collaboration efforts of three different university departments to create, teach and evaluate the benefits of a joint patent training series, as well as the future directions this collaboration will take. KAUST has as one of its goals the diversification of the Saudi economy. There is a strong focus at the university on developing entrepreneurial ideas and commercializing research done. The University Library supports this goal through the provision of electronic resources and introductory patent search training skills. However, the patent training class offered by the University Library is only one step in a process that faculty and students need when starting or taking their research to the next level. In the Fall of 2015, I met with representatives of the two major stakeholders in the patent arena, the office of Sponsored Research (OSR) and the Technology Transfer Office (TTO), to develop a patent training program to meet the needs of researchers. The OSR provides funding to researchers who have demonstrated that their ideas have merit with potential applications, the TTO works with researchers who are at the point of needing IP protection. The resulting discussion led us to collaborate on creating a workshop series that benefit the researcher’s information needs and each of our departments as well. In the first of the series of three 2 hour workshops, the Manager of TTO and the Lead Integrative Specialist from the OSR presented a workshop on an overview of Intellectual Property and the patenting process. These presentations focused on when and how to determine whether research is potentially patentable, why a researcher needs to protect his/her research and how to go about protecting it. The second workshop focused on introductory patent search skills and tools, how to expand a literature search to include the information found in patents, and how this kind of research will improve not only the literature search but the research

  4. Technologies for Lunar Surface Power Systems Power Beaming and Transfer

    Science.gov (United States)

    Marzwell, Neville; Pogorzelski, Ronald J.; Chang, Kai; Little, Frank

    2008-01-01

    Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1-2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a ``rectenna.'' The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam

  5. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    Science.gov (United States)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  6. Transfer function modeling of damping mechanisms in distributed parameter models

    Science.gov (United States)

    Slater, J. C.; Inman, D. J.

    1994-01-01

    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.

  7. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  8. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  9. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  10. New research trends on high-precision time transfer technology

    Institute of Scientific and Technical Information of China (English)

    DONG; Ruifang; QUAN; Run’ai; HOU; Feiyan; WANG; Shaofeng; XIANG; Xiao; ZHOU; Conghua; WANG; Mengmeng; LIU; Tao; ZHANG; Shou’gang

    2015-01-01

    High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying w ith the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal,seeking for new time-transfer techniques betw een distant clocks w ith much further improved accuracy attracts attentions w orld-w idely. The time-transfer technique based on optical pulses has the highest precision presently,and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as w ell as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest,and has recently achieved many breakthroughs. Further investigations show that,utilizing quantum techniques,i.e. quantum measurement technique and quantum optical pulse source,can lead to a new limit on the measured timing information. Furthermore,it can be immune from atmospheric parameters,such as pressure,temperature,humidity and so on.Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements w ill form a technical basis for the future realization of sub-femtosecond time transfer system.

  11. Modelling heat generation and transfer during cure of thermoset composites processed by resin transfer moulding (RTM)

    OpenAIRE

    Skordos, Alexandros A.; Maistros, George M.; Turmel, Denis J-P; Partridge, Ivana K

    1997-01-01

    The development of a heat transfer model for the curing stage of the RTM process is presented. Despite the intense interest in the modelling and simulation of this process the relevant work is currently limited to development of flow models of the filling stage. The principles of heat transfer modelling of composites cure have already been reported and applied to the autoclave process by many investigators. In the present investigation, the same concept is used for the imple...

  12. The ADAPT design model: towards instructional control of transfer

    NARCIS (Netherlands)

    Jelsma, Otto; Merrienboer, van Jeroen J.G.; Bijlstra, Jim P.

    1990-01-01

    This paper presents a detailed description of the ADAPT (Apply Delayed Automatization for Positive Transfer) design model. ADAPT is based upon production system models of learning and provides guidelines for developing instructional systems that offer transfer of leamed skills. The model suggests th

  13. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    Science.gov (United States)

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive

  14. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Science.gov (United States)

    2010-04-01

    ... technology transfer work programs? 420.207 Section 420.207 Highways FEDERAL HIGHWAY ADMINISTRATION..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a...

  15. Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions

    Science.gov (United States)

    Morelli, Eugene A.

    2013-01-01

    A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.

  16. University technology transfer: comparative study of US, European and Australian universities

    NARCIS (Netherlands)

    Vinig, T.; van Rijsbergen, P.; Malach-Pines, A.; Özbilgin, M.F.

    2010-01-01

    We studied the factors that influence university knowledge commercialization through university Technology Transfer Office (TTO). We analyzed the resources associated with commercialization performance as measured by patenting, licensing, and spin-off activities in a sample of 124 Australian, Europe

  17. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  18. Technology transfer of large aggregate mix base [LAMBS] on Johannesburg roads.

    CSIR Research Space (South Africa)

    Horak, E

    1994-10-01

    Full Text Available done by the Department of Transport. The need for structural strengthening of the M2-Motorway in Johannesburg during its rehabilitation afforded opportunity of transferring the technology to the road construction industry. LAMBS were selected...

  19. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  20. Technology Transfer In Rural Industries of Thailand: The Case of Dessert And Palm Tree Industries

    Directory of Open Access Journals (Sweden)

    Apisek Pansuwan

    2013-07-01

    Full Text Available In last decade, the small industrial sector has increasingly received attention from Thai policy makers. This study investigates the relationship between small industries and community in rural area in term of technology transfer. In the research area, knowledge and experience gathered from workplace as an employee and family businesses are the core resources to establish and run busineSses. Technically, technology transfer is divided into 2 characteristics; intra-enterprise and inter-enterprise. Intra-enterprise technology transfer comes from employers to employees, emphasizing production development. Beside, technology transfer of inter-enterprise has two directions. Firstly, direction points from the entrepreneur to material suppliers aiming to secure raw material quality. Secondly direction points from consumers to the entrepreneur aiming to put a great emphasis on product development, quality control and management.

  1. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  2. Technology Transition a Model for Infusion and Commercialization

    Science.gov (United States)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  3. ABOUT COMPLEX APPROACH TO MODELLING OF TECHNOLOGICAL MACHINES FUNCTIONING

    Directory of Open Access Journals (Sweden)

    A. A. Honcharov

    2015-01-01

    Full Text Available Problems arise in the process of designing, production and investigation of a complicated technological machine. These problems concern not only properties of some types of equipment but they have respect to regularities of control object functioning as a whole. A technological machine is thought of as such technological complex where it is possible to lay emphasis on a control system (or controlling device and a controlled object. The paper analyzes a number of existing approaches to construction of models for controlling devices and their functioning. A complex model for a technological machine operation has been proposed in the paper; in other words it means functioning of a controlling device and a controlled object of the technological machine. In this case models of the controlling device and the controlled object of the technological machine can be represented as aggregate combination (elements of these models. The paper describes a conception on realization of a complex model for a technological machine as a model for interaction of units (elements in the controlling device and the controlled object. When a control activation is given to the controlling device of the technological machine its modelling is executed at an algorithmic or logic level and the obtained output signals are interpreted as events and information about them is transferred to executive mechanisms.The proposed scheme of aggregate integration considers element models as object classes and the integration scheme is presented as a combination of object property values (combination of a great many input and output contacts and combination of object interactions (in the form of an integration operator. Spawn of parent object descendants of the technological machine model and creation of their copies in various project parts is one of the most important means of the distributed technological machine modelling that makes it possible to develop complicated models of

  4. Reaction-diffusion systems in natural sciences and new technology transfer

    Science.gov (United States)

    Keller, André A.

    2012-12-01

    Diffusion mechanisms in natural sciences and innovation management involve partial differential equations (PDEs). This is due to their spatio-temporal dimensions. Functional semi-discretized PDEs (with lattice spatial structures or time delays) may be even more adapted to real world problems. In the modeling process, PDEs can also formalize behaviors, such as the logistic growth of populations with migration, and the adopters’ dynamics of new products in innovation models. In biology, these events are related to variations in the environment, population densities and overcrowding, migration and spreading of humans, animals, plants and other cells and organisms. In chemical reactions, molecules of different species interact locally and diffuse. In the management of new technologies, the diffusion processes of innovations in the marketplace (e.g., the mobile phone) are a major subject. These innovation diffusion models refer mainly to epidemic models. This contribution introduces that modeling process by using PDEs and reviews the essential features of the dynamics and control in biological, chemical and new technology transfer. This paper is essentially user-oriented with basic nonlinear evolution equations, delay PDEs, several analytical and numerical methods for solving, different solutions, and with the use of mathematical packages, notebooks and codes. The computations are carried out by using the software Wolfram Mathematica®7, and C++ codes.

  5. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  6. Fundamental Research on Convective Heat Transfer in Electronic Cooling Technology

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; Y.P.Gan; 等

    1992-01-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelestanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microleectronic devices.This paper provides a review and summary of the programs with emphasis on direct liquid cooling.Included in this review are the heat transfer investigations related to the following cooling modes:liquid free,mixed and forced convection.liquid jet impingement,flowing liquid film cooling,pool boiling,spray cooling,foreign gas jet impingement in liquid pool,and forced convection air-cooling.

  7. Inward technology transfer as an interactive process: A case study of ICI.

    OpenAIRE

    Trott, Paul

    1993-01-01

    This thesis sets out to explore the area of inward technology transfer and in particular the notion of "receptivity". A conceptual framework is developed which identifies four major components of the inward technology transfer process. These are: "Awareness"- "Association"-"Assimilation"-"Application". Using this conceptual device a series of investigations are undertaken into three of these components. These studies are conducted within a number of businesses within ICI Che...

  8. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  9. Technology and Knowledge Transfer in the Graz Region Ten Years of Experience

    Science.gov (United States)

    Hofer, Franz; Adametz, Christoph; Holzer, Franz

    2004-01-01

    Technology and knowledge transfer from universities to small and medium-sized enterprises (SMEs) is seen as one way to strengthen a region's innovation capability. But what if SMEs do not want to play along? Looking back at some 10 years' experience of supporting SMEs, the authors describe in detail the 'Active Knowledge Transfer' programme, which…

  10. The Relevance of Career Aspirations for Transfer Students Persisting in Science, Technology, Engineering and Math Disciplines

    Science.gov (United States)

    Coyote, Ruthann T.

    2013-01-01

    This qualitative study utilizes data acquired from interviews with 18 community college transfer students in Science, Technology, Engineering and Math (STEM) majors and 7 university staff people who work in direct student services with this student population. This study explores the experiences of transfer students in STEM majors regarding what…

  11. Health care technology transfer in Latin America and the Caribbean

    NARCIS (Netherlands)

    Coe, G.A.; Banta, H.D.

    1992-01-01

    The greatest problem concerning health care technology for developing countries is that they are dependent upon the industrialized world for technology. The only short-term solution to this problem is to improve the choices that are available to them. This goal will require changes in the structure

  12. Technology transfer: how to remove obstacles in advancing employment growth

    NARCIS (Netherlands)

    Nijkamp, P.; Geenhuizen, van M.

    1995-01-01

    It has become increasingly evident that technology is a major determinant of thecompetitiveness of cities and regions nowadays. The availability of new technologyessentially reduces the amount of uncertainty with which companies deal in their dailyoperations. In addition, new technology is a basis f

  13. Technology transfer of hearing aids to low and middle income countries: policy and market factors.

    Science.gov (United States)

    Seelman, Katherine D; Werner, Roye

    2014-09-01

    The competitive market advantages of industry and the balancing force of international governmental organizations (IGOs) are examined to identify market and policy in support of sustainable technology transfer of hearing aids to low and middle income countries. A second purpose is to examine the usefulness of findings for other assistive technologies (AT). Searches of electronic databases, IGO documents, industry reports and journals were supplemented by informal discussions with industry and IGO staff and audiologists. The value chain is used to examine the competitive advantage of industry and the balancing tools of certain IGOs. Both industry and IGOs engage in intellectual property (IP) and competition activities and are active in each segment of the hearing aid value chain. Their market and policy objectives and strategies are different. IGOs serve as balancing forces for the competitive advantages of industry. The hearing aid market configuration and hearing aid fitting process are not representative of other AT products but IP, trade and competition policy tools used by IGOs and governments are relevant to other AT. The value chain is a useful tool to identify the location of price mark-ups and the influence of actors. Market factors and reimbursement and subsidization policies drive hearing aid innovation. UN-related international government organization activities are responsive to the needs of disability populations who cannot afford assistive technology. Policy tools used by international governmental organizations are applicable across assistive technology. A partnership model is important to distribution of hearing aids to low and middle income countries.

  14. System Architecture Modeling for Technology Portfolio Management using ATLAS

    Science.gov (United States)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  15. Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Chojnacki, Kent

    2013-01-01

    Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

  16. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according...... to the relative international climate convention program. The report also proposes the current hindrances and developing strategies according to Chinese current situation at this field. The report is mainly divided into three subjects: the relationship between clean technology transfer and the intellectual...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  17. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  18. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  19. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  20. Temperature fields in machining processes and heat transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics

    2002-07-01

    This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)

  1. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  2. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  3. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    as Amazon, Discovery Studios, Google, Under Armour , McCormick, and Cisco are invited to speak to researchers about innovation, how they manage it...commercialization and marketing strategies for each of the selected DoD technologies; • actively markets these technologies to industry...Publication This work was conducted by the Institute for Defense Analyses (IDA) under contract DASW01-04-C-0003, Task AI-6-3558 “Review of DoD

  4. The Commercialization of New Technologies Transfer from Laboratory to Firm.

    Science.gov (United States)

    1983-05-09

    immediate market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional research and development the...as successful commercialization. A failure occurs when a 15 potential innovation does not reach the point of market introduction for any reason. THE...ready for immediate * market introduction . A gap exists, which is a measure of technology maturity, that reflects the amount of additional

  5. A Conceptual Decision Methodology for High Technology Transfer Assessment.

    Science.gov (United States)

    1982-05-01

    review and provide input within given time periods on selected technologies. The basic industrial export control mechanism continues to be centered in...Department of Commerce is the center of the export control system, it is by no means predominate in the control of all exports. True, it is a key...Department of State endorsed the venture as, "in the national interest." The technology was promised during the Nixon- Pompidou Summit in the Azores. Without

  6. Knowledge management aiming to technology transfer: the challenges face by the tic of the state university of Santa Cruz

    Directory of Open Access Journals (Sweden)

    Luan Carlos Santos Silva

    2013-05-01

    Full Text Available The present article discusses the concept of organizational knowledge, and theory models for the creation and management of organizational knowledge that, in many approaches, do not take into account the specificity of each organization and the relationship. The paper analyses the innovation dynamics and the technology transfer from Technological Innovation Centers (TIC to the productive sector. The methodology employed was qualitative and of descriptive nature. The method used in the research was a case study in a TIC well-structured in respect to the constitution of the TICs from the perspective of the Federal Innovation Law nº 10.973 of the Innovation Law of the Bahia State nº 11.174. Barriers for knowledge creation and management that guarantee the effective technology transfer were identified.

  7. Brazilian university technology transfer to rural areas Transferência de tecnologia de universidades brasileiras na área rural

    Directory of Open Access Journals (Sweden)

    Enio Marchesan

    2010-10-01

    Full Text Available In agriculture, there is a difference between average yield obtained by farmers and crop potential. There is technology available to increase yields, but not all farmers have access to it and/or use this information. This clearly characterizes an extension and technology transference problem. There are several technology transfer systems, but there is no system to fit all conditions. Therefore, it is necessary to create extension solutions according to local conditions. Another rural extension challenge is efficiency, despite continuous funding reductions. One proposal that has resulted from extension reform worldwide has suggested integration between the public and private sectors. The public universities could play the role of training and updating technical assistance of human resources, which is the one of the main aspects that has limited technology transfer. The objective of this study was to identify approaches to promote technology transfer generated in Brazilian public universities to rural areas through literature review. An experimental approach of technology transfer is presented here where a Brazilian university extension Vice-chancellor incorporates professionals from consolidated research groups according to demand. In this way, public universities take part of their social functions, by integrating teaching, research, and extension.Em agricultura, há diferenças entre a produtividade média obtida pelos produtores e o potencial produtivo dos cultivos. Há informação tecnológica disponível para aumentar a produtividade, mas nem todos os produtores têm acesso e/ou usam a informação. Isso caracteriza claramente um problema de extensão e transferência de tecnologia. Há vários sistemas de transferência de tecnologia, mas, como não há sistema que se ajuste a todas as condições, é necessário criar alternativas adequadas às condições de cada local. Outro desafio da extensão rural é ser eficiente, apesar da cont

  8. Asynchronous Transfer Mode (ATM) Switch Technology and Vendor Survey

    Science.gov (United States)

    Berry, Noemi

    1995-01-01

    Asynchronous Transfer Mode (ATM) switch and software features are described and compared in order to make switch comparisons meaningful. An ATM switch's performance cannot be measured solely based on its claimed switching capacity; traffic management and congestion control are emerging as the determining factors in an ATM network's ultimate throughput. Non-switch ATM products and experiences with actual installations of ATM networks are described. A compilation of select vendor offerings as of October 1994 is provided in chart form.

  9. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  10. Modelling in Medical Technology Assessment

    NARCIS (Netherlands)

    B.C. Michel (Bowine)

    1996-01-01

    textabstractHealth care is a rapidly developing field in which new technologies are introduced continuously. Not all new technologies have the same impact however: most represent only small changes in existing technologies, whereas only a few - like organ transplants - really are revolutionary new d

  11. Innovation, Technology Transfer and Labor Productivity Linkages: Evidence from a Panel of Manufacturing Industries

    NARCIS (Netherlands)

    Apergis, N.; Economidou, C.; Filippidis, I.

    2008-01-01

    The paper explores the linkages between labor productivity, innovation and technology spillovers in a panel of manufacturing industries. The roles of R&D, human capital and international trade are considered in stimulating innovation and/or facilitating technology transfer. Using panel-based unit ro

  12. Technology Transfer Strategies for Creating Growth Opportunities in Frontier Markets of Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Nielsen, Ulrik B.

    be the new growth frontier. Evidence has shown that if countries in SSA where using the same level of technology utilized by industrial countries, income levels in SSA would be significantly higher. The paper aims to address this issue, and study how Danish agriculture firms can use technology transfer...... to create growth opportunities in Frontier Markets of Sub-Saharan Africa....

  13. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector.

    Science.gov (United States)

    Creighton, J. W., Ed.; And Others

    This report reviews a joint attempt of the United States Forest Service and the Naval Service to enhance the utilization of research results and the new technologies through improved effectiveness of technology transfer efforts. It consists of an introduction by J. W. Creighton and seven papers: (1) "Management for Change" by P. A.…

  14. Investigating Practices in Teacher Education That Promote and Inhibit Technology Integration Transfer in Early Career Teachers

    Science.gov (United States)

    Brenner, Aimee M.; Brill, Jennifer M.

    2016-01-01

    The purpose of this study was to identify instructional technology integration strategies and practices in preservice teacher education that contribute to the transfer of technology integration knowledge and skills to the instructional practices of early career teachers. This study used a two-phase, sequential explanatory strategy. Data were…

  15. Technology Transfer and Climate Change: Additional Considerations for Implementation under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Karen Sullivan

    2011-06-01

    Full Text Available Technology transfer is recognised as playing a central and critical role in the global response to climate change, as embodied in the Unite Nations Framework Convention on Climate Change (UNFCCC. However, technology transfer is a complex process, and despite numerous attempts to prescribe approaches to optimisation, there remain serious obstacles to its effective operation. The breadth of technologies and range of would-be recipient territories under the climate change regime serve to complicate things even further. Against this background, the Expert Group on Technology Transfer have produced a robust Strategy, which it will now fall to the Technology Mechanism announced in Cancun to implement. However, despite the rigour with which the technology transfer strategy was produced, it is never possible to cover all possible eventualities. It is on this basis that this article presents a number of tactical and strategic issues which may merit further consideration as the implementation process moves forward. At the operational level, such issues include a possible role for a centralised or regional technology procurement effort, the need for greater emphasis on sectoral specific approaches to technology transfer, and a pragmatic approach to reducing the impact of some barriers to transactions by the expedient use of insurance to reduce risk, as opposed to the longer term approach of international standardisation. At the strategic level, there are major issues with regard to prioritisation of resources applied to technology transfer, and in particular the resolution of the tensions existing between achieving sustainable development and the time critical need to achieve climate stabilisation.

  16. Seismic Physical Modeling Technology and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper introduces the seismic physical modeling technology in the CNPC Key Lab of Geophysical Exploration. It includes the seismic physical model positioning system, the data acquisition system, sources, transducers,model materials, model building techniques, precision measurements of model geometry, the basic principles of the seismic physical modeling and experimental methods, and two physical model examples.

  17. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  18. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  19. Anaerobic digestion: technology transfer, engineering performance and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, F.; Traverso, P.G.; Ganapini, W.

    1987-10-01

    The chemical, technological and process aspects of anaerobic digestion process are analysed on the basis of the Authors' experience and of scientific literature. Emphasis is put on the necessity of integrating the presentation of experimental data and some suggestions are common to those of the EEC to improve the knowledge of the process. An analysis of the types of full-scale digesters used in Europe and in the USA is supplied and suggestions are proposed on the future development of anaerobic technology with the aim of improving performance and efficiency.

  20. Transfer Function Model of Multirate Feedback Control Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the suitably defined multivariable version of Krancoperators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed-loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.

  1. Internet and technology transfer in acute care hospitals in the United States: survey-2000.

    Science.gov (United States)

    Hatcher, M

    2001-12-01

    This paper provides the results of the survey-2000 measuring technology transfer and, specifically, Internet usage. The purpose of the survey was to measure the levels of Internet and Intranet existence and usage in acute care hospitals. The depth of the survey includes e-commerce for both business-to-business and customers. These results are compared with responses to the same questions in survey-1997. Changes in response are noted and discussed. This information will provide benchmarks for hospitals to plan their network technology position and to set goals. This is the third of three articles based upon the results of the survey-2000. Readers are referred to prior articles by the author, which discuss the survey design and provide a tutorial on technology transfer in acute care hospitals. (1) Thefirst article based upon the survey results discusses technology transfer, system design approaches, user involvement, and decision-making purposes. (2)

  2. Modeling Technology in Traveling-Wave Fault Location

    Directory of Open Access Journals (Sweden)

    Tang Jinrui

    2013-06-01

    Full Text Available Theoretical research and equipment development of traveling-wave fault location seriously depend on digital simulation. Meanwhile, the fault-generated transient traveling wave must be transferred through transmission line, mutual inductor and secondary circuit before it is used. So this paper would maily analyze and summarize the modeling technology of transmission line and mutual inductor on the basis of the research achievement. Firstly several models of transmission line (multiple Π or T line model, Bergeron line model and frequency-dependent line model are compared in this paper with analysis of wave-front characteristics and characteristic frequency of traveling wave. Then modeling methods of current transformer, potential transformer, capacitive voltage transformer, special traveling-wave sensor and secondary cable are given. Finally, based on the difficult and latest research achievements, the future trend of modeling technology in traveling-wave fault location is prospected.  

  3. An Examination of Technology Transfer as a Tool for Management.

    Science.gov (United States)

    1986-03-01

    Berlo , R. K., Lamert, J. B., and Mertz, R. J., "Dimensions of Evaluating the Acceptability of Message Source", Public Opinion Quarterl, Vol. 33, 1979...1966. Carr-Harris, G. G. M., "The Information Scientist: Industry’s Link With Science and Technology", Industrial Canada, March 1964. Clark, David L

  4. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use n...

  5. Managing Technology Transfer in the Korean Military Establishment

    Science.gov (United States)

    1979-12-01

    Horticulture : Field crop production, I cultivation of orchards, gardens, nurseries, etc. For plant anatomy, physiology, etc. 991 Animal Husbandry...technology, physical therapy , and prosthesis. Environmental Biology: External influences on the V biological processes of organism. Ecology...and particle radiation. Dosimetry, health .physics, radiation injury. Prophylaxis and i therapy of nuclear radiation sickness and injury. Stress

  6. Co-Development Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's TTC uses three different co-development agreements to help industry and academia interact and partner with National Institutes of Health laboratories and scientists to support technology development activities. | [google6f4cd5334ac394ab.html

  7. An age structured demographic model of technology

    CERN Document Server

    Mercure, J -F

    2013-01-01

    At the heart of technology transitions lie complex processes of technology choices. Understanding and planning sustainability transitions requires modelling work, which necessitates a theory of technology substitution. A theoretical model of technological change and turnover is presented, intended as a methodological paradigm shift from widely used conventional modelling approaches such as cost optimisation. It follows the tradition of evolutionary economics and evolutionary game theory, using ecological population growth dynamics to represent the evolution of technology populations in the marketplace, with substitutions taking place at the level of the decision-maker. Extended to use principles of human demography or the age structured evolution of species in interacting ecosystems, this theory is built from first principles, and through an appropriate approximation, reduces to a form identical to empirical models of technology diffusion common in the technology transitions literature. Using an age structure...

  8. Transformation of Scientific and Technological Achievements of the University Technology Transfer Centers and Technology Transfer Analysis%高校技术转移中心科技成果转化及技术转移现状分析

    Institute of Scientific and Technical Information of China (English)

    崔岩; 郑帆帆; 朱继国

    2012-01-01

    Transformation of scientific and technological achievements and technology transfer in university technology transfer center is an important part of the field of technology transfer. However, conversion rate of scientific and technological achievements of our colleges and universities is low, and service capacity of technology transfer centers is not strong. Based on this, we will study and analyze the status of scientific and technological achievements transformation and technology transfer in domestic universities to provide reference for its future development and research.%高校技术转移中心的科技成果转化及技术转移是技术转移领域的重要组成部分.但是,我国高校的科技成果转化率很低,技术转移中心的服务能力不强.基于此,本文将研究分析国内高校科技成果转化及技术转移的现状,为其今后的发展和研究提供参考.

  9. Radiative Transfer Model for Contaminated Rough Surfaces

    Science.gov (United States)

    2013-02-01

    plot of Figure 8 shows three sharp spectral features (in the LWIR region) that were used for calibration . 1000 1500 2000 2500 3000 3500 0 0.1 0.2...transfer, reflectance, rough surface, BRDF, Kramers-Kronig, penetration depth, fill factor, infrared, LWIR , MWIR, absorption coefficient, scattering...and the calibrated α are plotted in red, and green, respectively

  10. A new simulation model and its application in CO2 short-circuiting transfer welding

    Institute of Scientific and Technical Information of China (English)

    胡连海; 李桓; 李俊岳; 杨立军

    2002-01-01

    A new simulation model of CO2 short-circuiting transfer welding may be employed to develop a new pattern of welding machine and to predict welding process parameters to obtain the optimum welding technology properties. In this paper, a new simulating model is developed according to the AWP (adapting welding physics process) waveform control method. Good agreement is shown between the predicted and experimentally determined results. The model will make an important promotion in the development of CO2 arc welding technique.

  11. A Privacy Model for RFID Tag Ownership Transfer

    Directory of Open Access Journals (Sweden)

    Xingchun Yang

    2017-01-01

    Full Text Available The ownership of RFID tag is often transferred from one owner to another in its life cycle. To address the privacy problem caused by tag ownership transfer, we propose a tag privacy model which captures the adversary’s abilities to get secret information inside readers, to corrupt tags, to authenticate tags, and to observe tag ownership transfer processes. This model gives formal definitions for tag forward privacy and backward privacy and can be used to measure the privacy property of tag ownership transfer scheme. We also present a tag ownership transfer scheme, which is privacy-preserving under the proposed model and satisfies the other common security requirements, in addition to achieving better performance.

  12. CFD Modeling for Mercury Control Technology

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, J.I.

    2006-12-01

    Compliance with the Clean Air Mercury Rule will require implementation of dedicated mercury control solutions at a significant portion of the U.S. coal-fired utility fleet. Activated Carbon Injection (ACI) upstream of a particulate control device (ESP or baghouse) remains one of the most promising near-term mercury control technologies. The DOE/NETL field testing program has advanced the understanding of mercury control by ACI, but a persistent need remains to develop predictive models that may improve the understanding and practical implementation of this technology. This presentation describes the development of an advanced model of in-flight mercury capture based on Computational Fluid Dynamics (CFD). The model makes detailed predictions of the induct spatial distribution and residence time of sorbent, as well as predictions of mercury capture efficiency for particular sorbent flow rates and injection grid configurations. Hence, CFD enables cost efficient optimization of sorbent injection systems for mercury control to a degree that would otherwise be impractical both for new and existing plants. In this way, modeling tools may directly address the main cost component of operating an ACI system – the sorbent expense. A typical 300 MW system is expected to require between $1 and $2 million of sorbent per year, and so even modest reductions (say 10-20%) in necessary sorbent feed injection rates will quickly make any optimization effort very worthwhile. There are few existing models of mercury capture, and these typically make gross assumptions of plug gas flow, zero velocity slip between particle and gas phase, and uniform sorbent dispersion. All of these assumptions are overcome with the current model, which is based on first principles and includes mass transfer processes occurring at multiple scales, ranging from the large-scale transport in the duct to transport within the porous structure of a sorbent particle. In principle any single one of these processes

  13. Air Force Domestic Technology Transfer: Is It Effective

    Science.gov (United States)

    1992-04-01

    Solow , Robert M., and Thurow, Lester C., "Toward a New Industrial America," Scientific American, June 1989, Vol. 260, No. 6, p. 42. ’ National...pp. 1, 2. " Berger, Suzanne, Dertouzos, Michael L., Lester, Richard K., Solow , Robert M., and Thurow, Lester C., "Toward a New Industrial America...American industries, but the inability to bring " Inman, B.R., and Burton, Daniel F., Jr, "Technology and Competitiveness: The New Policy Frontier

  14. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  15. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  16. A Model of the Antecedents of Training Transfer

    Science.gov (United States)

    Mohammed Turab, Ghaneemah; Casimir, Gian

    2015-01-01

    Many organizations have invested heavily in training. However, only a small percentage of what is learnt from training is applied or transferred to the workplace. This study examines factors that influence training transfer. A conceptual model based on the Theory of Reasoned Action is hypothesized and tested. The sample consisted of 123 full-time…

  17. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  18. Technology Transfer at Edgar Mine: Phase 1; October 2016

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bauer, Stephen [Sandia National Laboratory; Nakagawa, Masami [Colorado School of Mines; Zhou, Wendy [Colorado School of Mines

    2017-09-14

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed as a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.

  19. An improved transfer-matrix model for optical superlenses.

    Science.gov (United States)

    Moore, Ciaran P; Blaikie, Richard J; Arnold, Matthew D

    2009-08-01

    The use of transfer-matrix analyses for characterizing planar optical superlensing systems is studied here, and the simple model of the planar superlens as an isolated imaging element is shown to be defective in certain situations. These defects arise due to neglected interactions between the superlens and the spatially varying shadow masks that are normally used as scattering objects for imaging, and which are held in near-field proximity to the superlenses. An extended model is proposed that improves the accuracy of the transfer-matrix analysis, without adding significant complexity, by approximating the reflections from the shadow mask by those from a uniform metal layer. Results obtained using both forms of the transfer matrix model are compared to finite element models and two example superlenses, one with a silver monolayer and the other with three silver sublayers, are characterized. The modified transfer matrix model gives much better agreement in both cases.

  20. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    Science.gov (United States)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  1. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...... for the same samples using the transferred model. However, sometimes the success of a model transfer is evaluated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference method will impact the evaluation. This paper proposes a new method...... for calibration model transfer evaluation. The new method is based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two...

  2. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  3. Research in space commercialization, technology transfer, and communications, volume 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.

  4. Academic medical product development: an emerging alliance of technology transfer organizations and the CTSA.

    Science.gov (United States)

    Rose, Lynn M; Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott

    2014-12-01

    To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health-related inventions. The technology transfer Offices (TTO) of CTSA-funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP-KFC) developed a survey to explore how CTSA-funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well-connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health-related inventions as measured by follow-on funding and industry involvement; either as a consulting partner or licensee.

  5. Comparing spatial and temporal transferability of hydrological model parameters

    Science.gov (United States)

    Patil, Sopan D.; Stieglitz, Marc

    2015-06-01

    Operational use of hydrological models requires the transfer of calibrated parameters either in time (for streamflow forecasting) or space (for prediction at ungauged catchments) or both. Although the effects of spatial and temporal parameter transfer on catchment streamflow predictions have been well studied individually, a direct comparison of these approaches is much less documented. Here, we compare three different schemes of parameter transfer, viz., temporal, spatial, and spatiotemporal, using a spatially lumped hydrological model called EXP-HYDRO at 294 catchments across the continental United States. Results show that the temporal parameter transfer scheme performs best, with lowest decline in prediction performance (median decline of 4.2%) as measured using the Kling-Gupta efficiency metric. More interestingly, negligible difference in prediction performance is observed between the spatial and spatiotemporal parameter transfer schemes (median decline of 12.4% and 13.9% respectively). We further demonstrate that the superiority of temporal parameter transfer scheme is preserved even when: (1) spatial distance between donor and receiver catchments is reduced, or (2) temporal lag between calibration and validation periods is increased. Nonetheless, increase in the temporal lag between calibration and validation periods reduces the overall performance gap between the three parameter transfer schemes. Results suggest that spatiotemporal transfer of hydrological model parameters has the potential to be a viable option for climate change related hydrological studies, as envisioned in the "trading space for time" framework. However, further research is still needed to explore the relationship between spatial and temporal aspects of catchment hydrological variability.

  6. Barriers to the Transfer of Low-carbon Electricity Generation Technologies in Four Latin American Countries

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Haselip, James Arthur

    2015-01-01

    This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low-carbon ene......This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low...... to the debate about the relationship between financial and economic barriers to technology transfer and electricity market structures, based on a new round of country-driven priorities and analysis, in support of the UNFCCC process on climate change mitigation....

  7. Operational Research for Developing Countries - a case of transfer of technology

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1986-01-01

    This paper is concerned with some fundamental aspects of the process of transfer of operational research from the industrialized countries to the Third World. Two complementary conceptions of operational research are identified: technical and social operational research. The main contribution...... of this paper is to regard the discussion of operational research for developing countries as a case of transfer of technology. Finally, some proposals for action and further research will be briefly outlined....

  8. Assisted Reproductive Technology and Newborn Size in Singletons Resulting from Fresh and Cryopreserved Embryos Transfer

    Science.gov (United States)

    Holzman, Claudia; Zhang, Yujia; Talge, Nicole M.; Li, Chenxi; Todem, David; Boulet, Sheree L.; McKane, Patricia; Kissin, Dmitry M.; Copeland, Glenn; Bernson, Dana; Diamond, Michael P.

    2017-01-01

    Objectives and Study Design The aim of this study was two-fold: to investigate the association of Assisted Reproductive Technology (ART) and small newborn size, using standardized measures; and to examine within strata of fresh and cryopreserved embryos transfer, whether this association is influenced by parental infertility diagnoses. We used a population-based retrospective cohort from Michigan (2000–2009), Florida and Massachusetts (2000–2010). Our sample included 28,946 ART singletons conceived with non-donor oocytes and 4,263,846 non-ART singletons. Methods Regression models were used to examine the association of ART and newborn size, measured as small for gestational age (SGA) and birth-weight-z-score, among four mutually exclusive infertility groups: female infertility only, male infertility only, combined female and male infertility, and unexplained infertility, stratified by fresh and cryopreserved embryos transfer. Results We found increased SGA odds among ART singletons from fresh embryos transfer compared with non-ART singletons, with little difference by infertility source [adjusted odds-ratio for SGA among female infertility only: 1.18 (95% CI 1.10, 1.26), male infertility only: 1.20 (95% CI 1.10, 1.32), male and female infertility: 1.18 (95% CI 1.06, 1.31) and unexplained infertility: 1.24 (95% CI 1.10, 1.38)]. Conversely, ART singletons, born following cryopreserved embryos transfer, had lower SGA odds compared with non-ART singletons, with mild variation by infertility source [adjusted odds-ratio for SGA among female infertility only: 0.56 (95% CI 0.45, 0.71), male infertility only: 0.64 (95% CI 0.47, 0.86), male and female infertility: 0.52 (95% CI 0.36, 0.77) and unexplained infertility: 0.71 (95% CI 0.47, 1.06)]. Birth-weight-z-score was significantly lower for ART singletons born following fresh embryos transfer than non-ART singletons, regardless of infertility diagnoses. PMID:28114395

  9. Transfer of adapted water supply technologies through a demonstration and teaching facility

    Science.gov (United States)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-09-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  10. Modelling heat transfer in heterogeneous media using fractional calculus.

    Science.gov (United States)

    Sierociuk, Dominik; Dzielinski, Andrzej; Sarwas, Grzegorz; Petras, Ivo; Podlubny, Igor; Skovranek, Tomas

    2013-05-13

    This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.

  11. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  12. Blocking layer modeling for temperature analysis of electron transfer ...

    African Journals Online (AJOL)

    Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. ... Journal of Fundamental and Applied Sciences ... of the quantum dots and free energy of system and finally the Marcus equation.

  13. Fast and simple model for atmospheric radiative transfer

    NARCIS (Netherlands)

    Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.

    2010-01-01

    Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the

  14. Radiative Transfer Model for Translucent Slab Ice on Mars

    Science.gov (United States)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2016-09-01

    We developed a radiative transfer model that simulates in VIS/NIR the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions to study martian ices.

  15. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    Science.gov (United States)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  16. Current status and potential of embryo transfer and reproductive technology in dairy cattle.

    Science.gov (United States)

    Hasler, J F

    1992-10-01

    Significant use of embryo transfer in dairy cattle commenced with the introduction of nonsurgical embryo recovery in the mid-1970s and developed with the use of nonsurgical transfers in the late 1970s. Numbers of registered Holstein calves from embryo transfer doubled yearly through 1980, after which the rate of increase slowed; the total reached nearly 19,000 calves in 1990. However, the efficacy of superovulation procedures and commercial success rates of transferred fresh embryos have not improved the past 10 to 15 yr. Fertilization rates in superovulated donors remain low. Although embryo-splitting techniques were perfected in the early 1980s, they are not used widely. A practical, commercial embryo-sexing procedure remains unavailable. Recent significant improvement is apparent in the technology of ultrasound-guided oocyte collection and in vitro oocyte maturation, fertilization, and embryo culture. In the future, this technology may be used in conjunction with sperm separated by sex with a flow cytometer. Modest numbers of embryo clones have been produced in several commercial programs via nuclear transfer techniques. However, the efficiency of gene transfer experiments involving ova of cattle and other domestic species has been low. Recently, DNA probe technology has begun to provide genotype information for cattle and will ultimately be applied to embryos.

  17. A Model Technology Educator: Thomas A. Edison

    Science.gov (United States)

    Pretzer, William S.; Rogers, George E.; Bush, Jeffery

    2007-01-01

    Reflecting back over a century ago to the small village of Menlo Park, New Jersey provides insight into a remarkable visionary and an exceptional role model for today's problem-solving and design-focused technology educator: Thomas A. Edison, inventor, innovator, and model technology educator. Since Edison could not simply apply existing knowledge…

  18. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  19. Formal and Informal Knowledge and Technology Transfer from Academia to Industry

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Hussinger, Katrin

    2013-01-01

    Literature has identified formal and informal channels in university knowledge and technology transfer (KTT). While formal KTT typically involves a legal contract on a patent or on collaborative research activities, informal transfer channels refer to personal contacts and hence to the tacit...... dimension of knowledge transfer. Research is, however, scarce regarding the interaction of formal and informal transfer mechanisms. In this paper, we analyze whether these activities are mutually reinforcing, i.e., complementary. Our analysis is based on a comprehensive data-set of more than 2,000 German...... manufacturing firms and confirms a complementary relationship between formal and informal KTT modes: using both transfer channels contributes to higher innovation performance. The management of the firm should therefore strive to maintain close informal relationships with universities to realize the full...

  20. Some ethical issues in technology transfer and applications

    Science.gov (United States)

    Shine, Kenneth I.

    1995-10-01

    Health care systems all around the world are struggling to provide care in an era of limited resources. In an article entitled, 'Straight Talk About Rationing,' Arthur Kaplan reviews the work of the Swedish Commission designed to prioritize health care for that country. The commission identified three core principles that they felt should underlie decisions about priorities for health care. Those principles were (1) all human beings are equally valuable; (2) society must pay special attention to the needs of the weakest and most vulnerable; and (3) all other things being equal, cost efficiency in gaining the greatest return for the amount of money spent must prevail. These are three extremely useful principles which can be helpful to us as we consider many of the issues confronted in this country about the allocation of resources for health. I would like to consider three major issues. The first issue is the current evolving nature of health care and the ethical dilemmas that exist in the present system. In balancing increased access to care with decreasing cost, particularly in managed care, all of us are concerned about ethical issues. I would like to emphasize that the current system -- the system that we have lived with and is changing -- has inherent in it a series of ethical dilemmas. Secondly, I would like to consider issues related to productivity and its measurement in relation to technology. This relates to the third item in the Swedish Commission, which is the principle that we ought to spend money in the most cost-efficient way. Finally, I would like to discuss the dilemma of decision making about health and how that impacts upon the ethics of health care in the application of technology.

  1. Mathematical Model of Moving Heat-Transfer Agents

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2010-01-01

    Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.

  2. WHO influenza vaccine technology transfer initiative: role and activities of the Technical Advisory Group.

    Science.gov (United States)

    Francis, Donald P; Grohmann, Gary

    2011-07-01

    In May 2006, the WHO published a Global Pandemic Influenza Action Plan. A significant part of that plan involves the transfer of technology necessary to build production capacity in developing countries. The WHO influenza technology transfer initiative has been successful. Clearly the relatively small WHO investments made in these companies to develop their own influenza vaccine production facilities have had quite dramatic results. A few companies are already producing large amounts of influenza vaccine. Others will soon follow. Whether they are developing egg-based or planning non-egg based influenza vaccine production, all companies are optimistic that their efforts will come to fruition.

  3. From Becquerel to Nanotechnology:. One Century of Decline of Scientific Dissemination, Publishing and Technology Transfer

    Science.gov (United States)

    Margaritondo, G.

    2008 marks the 100th anniversary of Henri Becquerel's death, the discoverer of radioactivity and a leading contributor to the birth of modern physics. In addition to well-deserved celebrations, this offers a chance for a sobering look at scientific dissemination then and now and at the evolution of technology transfer. The facts are shocking: both dissemination and technology transfer were much faster and effective at the time of Becquerel, in spite of all the new communication techniques. I briefly speculate on the causes of these dismal failures, arguing that they are primarily rooted in society, academic management and industrial management — and therefore very difficult to reverse.

  4. NASA Langley Research and Technology-Transfer Program in Formal Methods

    Science.gov (United States)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  5. Introduction of Virtualization Technology to Multi-Process Model Checking

    Science.gov (United States)

    Leungwattanakit, Watcharin; Artho, Cyrille; Hagiya, Masami; Tanabe, Yoshinori; Yamamoto, Mitsuharu

    2009-01-01

    Model checkers find failures in software by exploring every possible execution schedule. Java PathFinder (JPF), a Java model checker, has been extended recently to cover networked applications by caching data transferred in a communication channel. A target process is executed by JPF, whereas its peer process runs on a regular virtual machine outside. However, non-deterministic target programs may produce different output data in each schedule, causing the cache to restart the peer process to handle the different set of data. Virtualization tools could help us restore previous states of peers, eliminating peer restart. This paper proposes the application of virtualization technology to networked model checking, concentrating on JPF.

  6. Research of Home Information Technology Adoption Model

    Institute of Scientific and Technical Information of China (English)

    Ao Shan; Ren Weiyin; Lin Peishan; Tang Shoulian

    2008-01-01

    The Information Technology at Home has caught the attention of various industries such as IT, Home Appliances, Communication, and Real Estate. Based on the information technology acceptance theories and family consumption behaviors theories, this study summarized and analyzed four key belief variables i.e. Perceived Value, Perceived Risk, Perceived Cost and Perceived Ease of Use, which influence the acceptance of home information technology. The study also summaries three groups of external variables. They axe social, industrial, and family influence factors. The social influence factors include Subjective Norm; the industry factors include the Unification of Home Information Technological Standards, the Perfection of Home Information Industry Value Chain, and the Competitiveness of Home Information Industry; and the family factors include Family Income, Family Life Cycle and Family Educational Level. The study discusses the relationship among these external variables and cognitive variables. The study provides Home Information Technology Acceptance Model based on the Technology Acceptance Model and the characteristics of home information technology consumption.

  7. Two conceptual models of displacement transfer and examples

    Institute of Scientific and Technical Information of China (English)

    GUAN; Shuwei; WANG; Xin; YANG; Shufeng; HE; Dengfa; ZHAO; W

    2005-01-01

    This paper presents two conceptual models of displacement transfer, reverse symmetry model and infinitely equal division model, based on the fault-bend folding theory. If the fault shape is held constant in the trend, then the distribution of slip magnitude, geometry of imbricate structures and its axial surface map all display reverse symmetry on the process of displacement transfer, as called reverse symmetry model in this paper. However, if the ramp height of thrust fault decreases gradually along its strike, the displacement is postulated to be equally and infinitely divided to every thrust that is formed subsequently, this kinematic process is described using infinitely equal division model. In both models, displacement transfer is characterized by the regular changes of imbricate thrusting in the trend. Geometric analysis indicates that the displacement transfer grads can be estimated using the tangent of deflective angle of hinterland structures. Displacement transfer is often responsible for the distortion and branching of the surface anticlines, especially in the region where the multi-level detachment structures is developed. We also present some examples from the frontal structures of the Southern Tianshan fold-and-thrust belt, Xinjiang, China. Displacement transfer between deep imbricate thrusts in the middle segment of Qiulitag anticline zone causes the Kuqatawu and Southern Qiulitag deep anticlines left-lateral echelon. The region, where these two deep anticlines overlap, is characterized by duplex structures, and extends about 18 km. The shallow anticline is migrated southward displaying obvious "S" form in this area.

  8. Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1993-10-01

    In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

  9. Lead-free solder technology transfer from ASE Americas

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a

  10. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-31

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  12. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  13. An overview of remote sensing technology transfer in Canada and the United States

    Science.gov (United States)

    Strome, W. M.; Lauer, D. T.

    1977-01-01

    To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.

  14. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  15. Naval Surface Weapons Center Technology Transfer Biennial Report (Fiscal Year 1983/1984),

    Science.gov (United States)

    2014-09-26

    Catholic University of America by providing Van de Graff accelerator and computer assistance for the development of an improved data base and...1980 (Public Law 96-480). The objectives of Navy technology transfer are (1) to disseminate non-critical technology, originally developed in support of...A-4 10. HIGH ALTITUDE PARACHUTE DEPLOYMENT ... ........... .A-5 11. UNIVERSITY RESEARCH ASSIST ..... ............... A-6 12. GULF STREAM

  16. U.S. Technology Transfer to the Soviet Union: A Dilemma

    Science.gov (United States)

    1981-04-01

    record?" V That is what Don Landa of the Department of Commerce asked when a news reporter told him that Representative John Ashbrook had a secret...internal Department of Com- merce document describing illegal technology transfer to the Soviet Union. 1 Landa continued, "My reaction to that is that I’ll...to East." OECD Observer, November 1979, pp. 25-30. Tross, Carl H., ed. Export of Aerospace Technology. San Diego , CA: For American Astronautical

  17. Facial Performance Transfer via Deformable Models and Parametric Correspondence.

    Science.gov (United States)

    Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland

    2012-09-01

    The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.

  18. Impact of Export Control and Technology Transfer Regimes: International Perspectives

    Science.gov (United States)

    2012-01-07

    Australia has also chosen to acquire the E/F model. The others in the user community are Canada, Finland, Spain, Switzerland, Kuwait , and Malaysia. With...such retired aircraft as the F-14, A-6, S-3, KA -6, and EA- 6. While recognizing the associated loss of specialization, he concludes that “the Super...from 1981 (Australia) to 1993 (Malaysia). With the exception of Kuwait and Malaysia, all of the export buyers participated in the assembly of

  19. Transference in view of a classical conditioning model.

    Science.gov (United States)

    Rabinovich, Merav; Kacen, Lea

    2012-01-01

    This article presents a qualitative metasynthetic study, addressing 33 transference case studies, that investigates the interrelationship of the transference concept from psychoanalysis and cognitive-behavioral concepts in an attempt to construct a theoretical platform for clinical integration. Relationship between categories analysis was used to compare Luborsky's (1998) transference components (wish, response from other, and response of self) and cognitive-behavioral ones. Results showed reciprocal relations between transference and classical conditioning. Furthermore, explicit occurrences of distorted thinking due to overgeneralization were found in more than 90% of the cases. A conceptual model describes transference as a conditioned response activated by thematic conditioning, a particular case of classical conditioning that repeatedly pairs a given interpersonal situation with internal thematic stimuli, thus shaping the person's narrative. Theoretical and practical implications are discussed as well.

  20. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    Science.gov (United States)

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  1. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  2. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  3. Reseach of Supply Chain Modeling Technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The supply chain modeling technology is research. Firstly, the concept of supply chain and supply chain management is introduced. Secondly, enterprise-modeling methods, such as CIM-OSA, GIM-GRAI, PERA and ARIS, are analyzed and compared. The supply chain modeling technology is studied. Then the ARIS-based supply chain modeling method is proposed and the supply chain operation reference model is set up. Finally, the applications of ARIS-based supply chain modeling method in Shanghai Turbine Generator Co. Ltd. (STGC) is described in detail.

  4. Enhancements to the SSME transfer function modeling code

    Science.gov (United States)

    Irwin, R. Dennis; Mitchell, Jerrel R.; Bartholomew, David L.; Glenn, Russell D.

    1995-01-01

    This report details the results of a one year effort by Ohio University to apply the transfer function modeling and analysis tools developed under NASA Grant NAG8-167 (Irwin, 1992), (Bartholomew, 1992) to attempt the generation of Space Shuttle Main Engine High Pressure Turbopump transfer functions from time domain data. In addition, new enhancements to the transfer function modeling codes which enhance the code functionality are presented, along with some ideas for improved modeling methods and future work. Section 2 contains a review of the analytical background used to generate transfer functions with the SSME transfer function modeling software. Section 2.1 presents the 'ratio method' developed for obtaining models of systems that are subject to single unmeasured excitation sources and have two or more measured output signals. Since most of the models developed during the investigation use the Eigensystem Realization Algorithm (ERA) for model generation, Section 2.2 presents an introduction of ERA, and Section 2.3 describes how it can be used to model spectral quantities. Section 2.4 details the Residue Identification Algorithm (RID) including the use of Constrained Least Squares (CLS) and Total Least Squares (TLS). Most of this information can be found in the report (and is repeated for convenience). Section 3 chronicles the effort of applying the SSME transfer function modeling codes to the a51p394.dat and a51p1294.dat time data files to generate transfer functions from the unmeasured input to the 129.4 degree sensor output. Included are transfer function modeling attempts using five methods. The first method is a direct application of the SSME codes to the data files and the second method uses the underlying trends in the spectral density estimates to form transfer function models with less clustering of poles and zeros than the models obtained by the direct method. In the third approach, the time data is low pass filtered prior to the modeling process in an

  5. Modelling proton transfer in water molecule chains

    CERN Document Server

    Korzhimanov, Artem; Shutova, Tatiana; Samuelsson, Goran

    2011-01-01

    The process of protons transport in molecular water chains is of fundamental interest for many biological systems. Although many features of such systems can be analyzed using large-scale computational modeling, other features are better understood in terms of simplified model problems. Here we have tested, analytically and numerically, a model describing the classical proton hopping process in molecular water chains. In order to capture the main features of the proton hopping process in such molecular chains, we use a simplified model for our analysis. In particular, our discrete model describes a 1D chain of water molecules situated in an external protein channel structure, and each water molecule is allowed to oscillate around its equilibrium point in this system, while the protons are allowed to move along the line of neighboring oxygen atoms. The occurrence and properties of nonlinear solitary transport structures, allowing for much faster proton transport, are discussed, and the possible implications of...

  6. A strategy for nontimber forest products research and technology transfer for southern United States

    Science.gov (United States)

    James L. Chamberlain

    2003-01-01

    In mid-2001, the Southern Research Station (SRS) and the Southern Regional Office (R8) of the U.S. Forest Service worked through a 3-day facilitated discussion to develop a strategy to guide research and technology transfer on non-timber forest products (NTFPs). In all, more than 14 specialists took part in developing the strategy, representing the Forest Service...

  7. The International Trade Policy for Technology Transfers: Legal and Economic Dilemmas on Multilateralism versus Bilateralism

    DEFF Research Database (Denmark)

    Tang, Yi Shin

    In the book, the Researcher addresses the importance of international technology transfers for economic development, as well as the underlying causes for the different institutional arrangements that promote such activity. The work provides a systematic interpretation of the wide range of interests...

  8. Technical Education Transfer: Perceptions of Employee Computer Technology Self-Efficacy.

    Science.gov (United States)

    Decker, C. A.

    1999-01-01

    This study investigated influences on employee self-efficacy of computer technologies resulting from computer-training programs that were intended to meet individual and organization objectives for university personnel. Influences on the transfer of training process included previous computer training, computer-use requirements, computer-use…

  9. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Science.gov (United States)

    2010-10-01

    ... operations and (ii) data comprising source code listings, design details, algorithms, processes, flow charts... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... an abstract which is descriptive of the data and is suitable for dissemination purposes, (B) The...

  10. International technology transfer: building theory from a multiple case-study in the aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.

    2005-01-01

    International technology transfer occurs frequently in international operations, for example in cases of foreign direct investment where companies set-up existing manufacturing lines in new locations. It also occurs in situations of international outsourcing where a new supplier receives product and

  11. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  12. Research Universities, Technology Transfer, and Job Creation: What Infrastructure, For What Training?

    Science.gov (United States)

    Brodhag, Christian

    2013-01-01

    Technology transfer and innovation are considered major drivers of sustainable development; they place knowledge and its dissemination in society at the heart of the development process. This article considers the role of research universities, and how they can interact with key actors and institutions involved in "innovation…

  13. Transferring the Soft-Skills Technology of Workplace Learning and Performance to China.

    Science.gov (United States)

    Yan, Jenny; Rothwell, William J.; Webster, Lois

    2001-01-01

    Discusses international business and workplace learning and performance (WLP), and describes a long-term strategic alliance between Motorola University China, Penn State University, Beijing University, and Nankai University. Highlights include a needs assessment of multinational corporations in China; transferring the soft-skills technology of WLP…

  14. Considering Components, Types, and Degrees of Authenticity in Designing Technology to Support Transfer

    Science.gov (United States)

    Hardre, Patricia L.

    2013-01-01

    Authenticity is a key to using technology for instruction in ways that enhance learning and support learning transfer. Simply put, a representation is authentic when it shows learners clearly what a task, context, or experience will be like in real practice. More authentic representations help people learn and understand better. They support…

  15. Technology Transfer from University-Based Research Centers: The University of New Mexico Experience.

    Science.gov (United States)

    Rogers, Everett M.; Hall, Brad; Hashimoto, Michio; Steffensen, Morten; Speakman, Kristen L.; Timko, Molly K.

    1999-01-01

    A study of 55 research centers at the University of New Mexico investigated the nature of the typical center, why funding has risen during the 1990s, reasons for founding the centers, the director's role, how university-based research centers transfer technology to private companies and other organizations, and what determines program…

  16. Technology Transfer and Innovation Initiatives in Strategic Management: Generating an Alternative Perspective

    Science.gov (United States)

    Major, E.

    2003-01-01

    This paper taps the strategic management discipline to inform our understanding of technology transfer and innovation (TTI) initiatives. With special focus on the UK Foresight programme it considers the impacts that the resource-based and core competence approaches to strategy can have on understanding the nature and effectiveness of TTI…

  17. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  18. Brokerage and SME Innovation: An Analysis of the Technology Transfer Service at Area Science Park, Italy

    Science.gov (United States)

    Cattapan, Paolo; Passarelli, Mariacarmela; Petrone, Michele

    2012-01-01

    This paper contributes to the literature on innovation brokerage by analysing the effects of brokerage activities on the innovation and growth of small and medium-sized enterprises (SMEs). The authors provide a detailed description of the Technology Transfer Service (TTS), credited as a European best-practice innovation broker, at Area Science…

  19. Research Universities, Technology Transfer, and Job Creation: What Infrastructure, For What Training?

    Science.gov (United States)

    Brodhag, Christian

    2013-01-01

    Technology transfer and innovation are considered major drivers of sustainable development; they place knowledge and its dissemination in society at the heart of the development process. This article considers the role of research universities, and how they can interact with key actors and institutions involved in "innovation…

  20. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  1. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...

  2. Brokerage and SME Innovation: An Analysis of the Technology Transfer Service at Area Science Park, Italy

    Science.gov (United States)

    Cattapan, Paolo; Passarelli, Mariacarmela; Petrone, Michele

    2012-01-01

    This paper contributes to the literature on innovation brokerage by analysing the effects of brokerage activities on the innovation and growth of small and medium-sized enterprises (SMEs). The authors provide a detailed description of the Technology Transfer Service (TTS), credited as a European best-practice innovation broker, at Area Science…

  3. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  4. Clean energy technology transfer - a win-win strategy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.S. [Global Environment Facility - GEF Washington D.C. (United States)

    2001-07-01

    It's my great honor to participate in this extraordinary event in such a perfect location on World Environment Day. I am here on behalf of the Global Environment Facility, the leading international financier of renewable energy in developing countries. It is instructive to be in North-Rhine Westphalia, the leading German state, and perhaps the single leading sub-national agency supporting renewable energy anywhere in the world. Coming from the United States,I'm accustomed to believing that the US has the best of everything. With respect to renewable energy, we view California as the leader. But after listening to the Undersecretary's presentation, I will inform my American friends that they have much to learn from what is taking place in Germany. North-Rhine Westphalia is or may soon be the global leader and model.

  5. Feature Technology in Product Modeling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu; NING Ruxin

    2006-01-01

    A unified feature definition is proposed. Feature is form-concentrated, and can be used to model product functionalities, assembly relations, and part geometries. The feature model is given and a feature classification is introduced including functional, assembly, structural, and manufacturing features. A prototype modeling system is developed in Pro/ENGINEER that can define the assembly and user-defined form features.

  6. Improved Wave-vessel Transfer Functions by Uncertainty Modelling

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio

    2016-01-01

    This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in input...... variables, notably speed, draft and relative wave eading, often compromises results. In this study, uncertling is applied to improve theoretically calculated transfer functions, so they better fit the corresponding experimental, full-scale ones. Based on a vast amount of full-scale measurements data......, it is shown that uncertainty modelling can be successfully used to improve accuracy (and reliability) of theoretical transfer functions....

  7. Model Transport: Towards Scalable Transfer Learning on Manifolds

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Black, Michael J.

    2014-01-01

    “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image......We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use...... ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer...

  8. Radiative transfer model for contaminated rough slabs

    CERN Document Server

    Andrieu, François; Schmidt, Frédéric; Schmitt, Bernard

    2015-01-01

    We present a semi-analytical model to simulate bidirectional reflectance distribution function (BRDF) spectra of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze hyperspectral data. We designed it for planetary surfaces ices studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are supposed to be close to spherical, and of any type of other material than the ice matrix. It can be any type of other ice, mineral or even bubbles, defined by their optical constants. We suppose a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and th...

  9. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  10. Radiative transfer modeling of surface chemical deposits

    Science.gov (United States)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  11. Technology Acceptance Model for Wireless Internet.

    Science.gov (United States)

    Lu, June; Yu, Chun-Sheng; Liu, Chang; Yao, James E.

    2003-01-01

    Develops a technology acceptance model (TAM) for wireless Internet via mobile devices (WIMD) and proposes that constructs, such as individual differences, technology complexity, facilitating conditions, social influences, and wireless trust environment determine user-perceived short and long-term usefulness, and ease of using WIMD. Twelve…

  12. Fostering renewable energy in small developing island states through knowledge and technology transfer: the - DIREKT Project

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Walter; Schulte, Veronika; Gottwald, Julia

    2010-07-01

    Full text: It is widely acknowledged that the use of renewable energy may assist developing countries as a whole and Small Island States in particular, in addressing their energy needs and at the same time reducing their dependence on fossil fuels. In order to support these efforts, the project Small Developing Island Renewable Energy Knowledge and Technology Transfer Network (DIREKT) is being undertaken. DIREKT is a cooperation scheme involving universities from Germany, Fiji, Mauritius and Trinidad et Tobago with the aim of strengthening their science and technology capacity in the field of renewable energy, by means of technology transfer, information exchange and networking. Developing countries are especially vulnerable to problems associated with climate change and much can be gained by raising their capacity in the field of renewable energy, which is a key area. This paper introduces the project DIREKT, its aims and the partnership. It will also show how sustainable cooperation between the science and technology communities of ACP and EU institutions in the key area of Renewable Energy may be achieved, which is of great relevance for the socio-economic development of small island developing states. One of features of the project, namely the establishment of Research and Technology Transfer Centres within each of the partner countries, will be presented. (Author)

  13. Business Model Discovery by Technology Entrepreneurs

    Directory of Open Access Journals (Sweden)

    Steven Muegge

    2012-04-01

    Full Text Available Value creation and value capture are central to technology entrepreneurship. The ways in which a particular firm creates and captures value are the foundation of that firm's business model, which is an explanation of how the business delivers value to a set of customers at attractive profits. Despite the deep conceptual link between business models and technology entrepreneurship, little is known about the processes by which technology entrepreneurs produce successful business models. This article makes three contributions to partially address this knowledge gap. First, it argues that business model discovery by technology entrepreneurs can be, and often should be, disciplined by both intention and structure. Second, it provides a tool for disciplined business model discovery that includes an actionable process and a worksheet for describing a business model in a form that is both concise and explicit. Third, it shares preliminary results and lessons learned from six technology entrepreneurs applying a disciplined process to strengthen or reinvent the business models of their own nascent technology businesses.

  14. [Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways].

    Science.gov (United States)

    Crager, Sara Eve

    2015-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  15. Transfer of satellite applications and technology - The need for a U.S. initiative

    Science.gov (United States)

    Hudson, Heather E.

    In the brief history of satellite communications, the United States has passed through three major eras: the Era of Conjecture, the Era of Experiments and the Era of Services. NASA took the lead in the experimental era to demonstrate both technology and applications - and to ensure their transfer for commercial use. The developing world has also entered the Era of Services, but without the benefit of an experimental phase. Several developing countries now have their own domestic systems; others share regqional systems or lease domestic capacity from INTELSAT. However, the record of developmental applications of these satellites has been disappointing to date. Much capacity sits idle. The U.S. has a great deal to share with the developing world to assist in the effective utilization of this technology. A U.S. Satellite Applications and Technology Transfer (SATT) program is proposed.

  16. Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways.

    Science.gov (United States)

    Crager, Sara Eve

    2014-11-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  17. IOT technology application model research of transportation industry in China

    Institute of Scientific and Technical Information of China (English)

    Lai Mingyong; Zhou Tang; Liu Zhengchi

    2013-01-01

    The paper studied the connection between intemet of things (IOT) technology and transportation industry.Meanwhile,the definition of IOT in transportation was given.Concerning that many problems occurred during the process of traditional intelligent transportation system,the paper proposed a promising model of IOT in transportation.The advantage of the information utilization model from information to function was confirmed through comparative study.Finally,the model presented that a real interconnection of transportation would be achieved based on the unified information collection.It can greatly save cost on technology transfer,exploit potential value of information,and promote the emergence of a sustainable information service market and the industrial upgrade.

  18. Causal Models for Safety Assurance Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fulfillment of NASA's System-Wide Safety and Assurance Technology (SSAT) project at NASA requires leveraging vast amounts of data into actionable knowledge. Models...

  19. A merge model with endogenous technological change

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Bahn, O.

    2002-03-01

    A new version of the MERGE model, called MERGE-ETL, has been developed to consider endogenous technological change in the energy system. The basic formulation of MERGE-ETL as well as some first results are reported here. (author)

  20. Learning Transfer Principles in a Comprehensive Integration Model

    Science.gov (United States)

    Boitel, Craig; Farkas, Kathleen; Fromm, Laurentine; Hokenstad, M. C.

    2009-01-01

    In this article, the authors propose a comprehensive integration model (CIM) based on learning transfer principles that promote integration by systematically and multidimensionally linking coursework with field education. This model improves the integration of classroom and field instruction by specifying how content in each course and in the…