WorldWideScience

Sample records for technology transfer mission

  1. 48 CFR 970.5227-3 - Technology transfer mission.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  2. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  3. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  4. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  5. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission:. [Progress and Transition

    Science.gov (United States)

    Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.

    2014-01-01

    This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).

  6. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  7. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  8. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  9. Technology Transfer

    Science.gov (United States)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  10. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  11. IT Department Technology Transfer

    CERN Multimedia

    Birker, D

    2004-01-01

    The objective of Technology Transfer (TT) at CERN is “to make known and available to third parties under agreed conditions, technical developments achieved in fulfi lling the laboratory’s mission in fundamental research”. The IT Department contributes to this objective by the transfer of technology, expertise and know-how to industry, universities, public institutions and the society at large.

  12. Selected case studies of technology transfer from mission-oriented applied research

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, K.K.; Watts, R.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Abarcar, R.B. [Energetics, Inc., Columbia, MD (United States)

    1992-07-01

    The US Department of Energy (DOE) Advanced Industrial Concepts Division (AICD) under the Office of Industrial Technologies (OIT) supports interdisciplinary applied research and exploratory development that will expand the knowledge base to enable industry to improve its energy efficiency and its capability to use alternative energy resources. AICD capitalizes on scientific and technical advances from the United States and abroad, applying them to address critical technical needs of American industry. As a result, AICD research and development products are many and varied, and the effective transfer of these products to diverse targeted users requires different strategies as well. This paper describes the products of AICD research, how they are transferred to potential users, and how actual transfer is determined.

  13. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  14. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  15. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  16. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  17. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  18. MDP: Reliable File Transfer for Space Missions

    Science.gov (United States)

    Rash, James; Criscuolo, Ed; Hogie, Keith; Parise, Ron; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC by the Operating Missions as Nodes on the Internet (OMNI) project to demonstrate the application of the Multicast Dissemination Protocol (MDP) to space missions to reliably transfer files. This work builds on previous work by the OMNI project to apply Internet communication technologies to space communication. The goal of this effort is to provide an inexpensive, reliable, standard, and interoperable mechanism for transferring files in the space communication environment. Limited bandwidth, noise, delay, intermittent connectivity, link asymmetry, and one-way links are all possible issues for space missions. Although these are link-layer issues, they can have a profound effect on the performance of transport and application level protocols. MDP, a UDP-based reliable file transfer protocol, was designed for multicast environments which have to address these same issues, and it has done so successfully. Developed by the Naval Research Lab in the mid 1990's, MDP is now in daily use by both the US Post Office and the DoD. This paper describes the use of MDP to provide automated end-to-end data flow for space missions. It examines the results of a parametric study of MDP in a simulated space link environment and discusses the results in terms of their implications for space missions. Lessons learned are addressed, which suggest minor enhancements to the MDP user interface to add specific features for space mission requirements, such as dynamic control of data rate, and a checkpoint/resume capability. These are features that are provided for in the protocol, but are not implemented in the sample MDP application that was provided. A brief look is also taken at the status of standardization. A version of MDP known as NORM (Neck Oriented Reliable Multicast) is in the process of becoming an IETF standard.

  19. The role of the women's foreign missions in Serbia during the Great War: Transfer of medicalized technologies and the birth of biopolitics

    Directory of Open Access Journals (Sweden)

    Marinković Dušan

    2014-01-01

    Full Text Available This paper is theoretically and methodologically limited to one narrow aspect of the First World War - to the role of the women's foreign missions. The case of Serbia in this context is of particular importance not just in terms of the weight, dramatic and tragic consequences of the Great war, but because the international engagement of women in foreign missions served as a latent social mechanism - the transfer of medicalized political and social technologies and practices that at the time did not existed. In this paper we analyze the conditions and causes of the changes in social roles of women that were related to their activism, professionalism, mobilization and engagement in medical and humanitarian missions during the Great War. This historical event was also the turning point in regard to the social participation of women as well as the milestone for the changes in the culture of gender relations. The Second front as the front of missionary struggle with epidemics, contagious diseases, the sick, the wounded, poverty, hunger, refugees and orphans took more than a third of total war victims in Serbia. We conclude that social events on this front, especially with the help of the medical campaign, represented the transfer of medicalized technologies of control, medication and prevention over the population. Those were the strategic needs of Serbia at the time but also the foundations of the new biopolitics.

  20. Technology driven Robotic-Moon-Mission 2016

    OpenAIRE

    Bozic, Ognjan; Longo, Jose M. A.

    2007-01-01

    Summary The paper proposes a concept mission to Moon including a space-tug-vehicle in Moon orbit, a transfer surveillance/relay satellite into low lunar orbit, a Moon lander equipped with a rover for miscellaneous challenges and an Earth return spacecraft transporting Moon samples. To guaranty a low mission cost, trajectories of low impulse has been selected in combination of technologies like combined chemical-electrical propulsion; broad Ka–band/ X–band/ S-band transponder communication...

  1. International Technology Transfer.

    Science.gov (United States)

    Morris, Robert G.

    The flow of technology out of the United States is discussed. Methods of technology flow, such as licensing and investing, are identified, and the advantages and disadvantages of technology transfer are discussed, especially in relation to the government's role. (MLH)

  2. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  3. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  4. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  5. Distance technology transfer course content development.

    Science.gov (United States)

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  6. Transferring Technology to Industry

    Science.gov (United States)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  7. Industrial technology transfer

    International Nuclear Information System (INIS)

    Bulger, W.

    1982-06-01

    The transfer of industrial technology is an essential part of the CANDU export marketing program. Potential customers require the opportunity to become self-sufficient in the supply of nuclear plant and equipment in the long term and they require local participation to the maximum extent possible. The Organization of CANDU Industries is working closely with Atomic Energy of Canada Ltd. in developing comprehensive programs for the transfer of manufacturing technology. The objectives of this program are: 1) to make available to the purchasing country all nuclear component manufacturing technology that exists in Canada; and 2) to assure that the transfer of technology takes place in an efficient and effective way. Technology transfer agreements may be in the form of joint ventures or license agreements, depending upon the requirements of the recipient

  8. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  9. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  10. Technology transfer quality assurance

    International Nuclear Information System (INIS)

    Hood, F.C.

    1991-03-01

    The results of research conducted at Pacific Northwest Laboratory (PNL) for the DOE are regularly transferred from the laboratory to the private sector. The principal focus of PNL is on environmental research and waste management technology; other programs of emphasis include molecular science research. The technology transfer process is predicated on Quality to achieve its objectives effectively. Total quality management (TQM) concepts and principles readily apply to the development and translation of new scientific concepts into commercial products. The concept of technology transfer epitomizes the TQM tenet of continuous improvement: always striving for a better way to do things and always satisfying the customer. A successful technology transfer process adds value to society by providing new or enhanced processes, products, and services to government and commercial customers, with a guarantee of product pedigree and process validity. 2 refs

  11. Technology Transfer and Commercialization

    Science.gov (United States)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  12. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  13. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  14. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  15. Mission analysis for cross-site transfer

    International Nuclear Information System (INIS)

    Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.

    1995-11-01

    The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ''initial state'' (or current cross-site transfer system) to meet the requirements and constraints

  16. Technology transfer and innovation

    International Nuclear Information System (INIS)

    Ashworth, Graham; Thornton, Anna

    1987-01-01

    The aims of the conference were advice, assistance and action for all those with technology to licence or inventions to patent, and for people seeking financial help and advice. There was a free exchange of ideas and information. Of the forty or so papers collected together, many are concerned with the financial aspects of new ventures, others look at technology transfer from academic institutes and schemes which support technological problems. One paper on fast reactor collaboration in Europe, is indexed separately. (U.K.)

  17. Technology transfer at TRIUMF

    International Nuclear Information System (INIS)

    Gardner, P.

    1994-06-01

    TRIUMF is Canada's major national research centre for sub-atomic physics. For the past five or six years, there has been an increasing emphasis on commercializing the technology that has emanated from the scientific research at the facility. This emphasis on technology transfer reflects a national policy trend of the Canadian federal government, which is the funding source for the majority of the research performed at TRIUMF. In TRIUMF's case, however, the initiative and funding for the commercialization office came from the provincial, or local government. This paper will describe the evolution of technology transfer at the TRIUMF facility, identifying the theory, policies and practical procedures that have been developed and followed. It will also include TRIUMF's experiences in finding exploitable technologies, protecting those technologies, and locating and linking with suitable industry partners to commercialize the technologies. There will be a discussion of resource allocation, and how TRIUMF has endeavoured to establish a portfolio of projects of assorted risks and expected returns. (author). 15 refs

  18. Infusion of innovative technologies for mission operations

    Science.gov (United States)

    Donati, Alessandro

    2010-11-01

    The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.

  19. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  20. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  1. TRIUMF: Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In our occasional series highlighting the increasingly important area of technology transfer and industrial spinoff from high energy physics, this month the CERN Courier focuses on TRIUMF in Vancouver, Canada's major national facility for research in subatomic physics, a particularly illustrative example of the rewards and challenges involved. TRIUMF is based on a 520 MeV negative hydrogen ion cyclotron meson factory operated by a consortium of Canadian universities. Although the primary funding from the Canadian government is earmarked for support of basic research, the laboratory has always fostered applications of the technologies available, supporting them with funds from other sources. At first this ''applied programme'' involved simply the provision of particle beams for other scientific, medical and industrial uses - protons for the development of neutrondeficient radioisotopes, neutrons for activation analysis, pions for cancer therapy, and muons for chemistry and condensed-matter physics. Twenty five years on, the technology transfer process has resulted not only in a significantly expanded internal applied programme, with many areas of activity quite independent of the big cyclotron, but also in a number of successful commercial operations in the Vancouver area. Radioisotope production has been a particularly fruitful source for technology transfer, the early development work leading to two important initiatives - the establishment of a commercial radioisotope production facility on site and the inauguration of a positron emission tomography (PET) program at the University of British Columbia nearby. In 1979 Atomic Energy of Canada Ltd's isotope production division (now Nordion International Inc.) decided to establish a western Canadian facility at TRIUMF, to produce the increasingly important neutron-deficient radioisotopes obtainable with accelerator beams, primarily for medical applications. This would complement their

  2. Technology transfer in CANDU marketing

    International Nuclear Information System (INIS)

    Pon, G.A.

    1982-06-01

    The author discusses how the CANDU system lends itself to technology transfer, the scope of CANDU technology transfer, and the benefits and problems associated with technology transfer. The establishment of joint ventures between supplier and client nations offers benefits to both parties. Canada can offer varying technology transfer packages, each tailored to a client nation's needs and capabilities. Such a package could include all the hardware and software necessary to develop a self-sufficient nuclear infrastructure in the client nation

  3. Technology transfer of Cornell university

    International Nuclear Information System (INIS)

    Yoo, Wan Sik

    2010-01-01

    This book introduces technology transfer of Cornell university which deals with introduction of Cornell university, composition of organization and practice of technology transfer : a research contract, research perform, invention report, evaluation and succession of invention, a patent application and management, marketing, negotiation and writing contract, management of contract, compensation, result of technology transfer, cases of success on technical commercialization and daily life of technology transfer center.

  4. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  5. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  6. Flexible UAV Mission Management Using Emerging Technologies

    National Research Council Canada - National Science Library

    Desimone, Roberto; Lee, Richard

    2002-01-01

    This paper discusses recent results and proposed work in the application of emerging artificial intelligence technologies for flexible mission management, especially for unmanned (combat) airborne vehicles...

  7. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  8. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  9. Technology-transfer workshop

    International Nuclear Information System (INIS)

    1982-08-01

    A workshop was held to generate a better understanding of the many diverse factors and steps involved in the technology transfer process. The introductory presentations reviewed relevant theories, addressed the importance of planning for the process, and presented possible organizational structures to help promote the process. Specific cases were used to expose the participants to a variety of situations that were relevant to EPRI. These sessions served as a common starting point for small group discussions that were eventually combined into a list of recommendations for future action by EPRI (and should be useful for others as well). Some of the key conclusions reached are: it is important to identify incentives; the process is more effective if it is personalized; planning cannot start too early; recipes can be developed for customizing to specific situations; and both transmitter and receptor must recognize and fulfill their roles

  10. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  11. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  12. Possible LISA Technology Applications for Other Missions

    Science.gov (United States)

    Livas, Jeffrey

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.

  13. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  14. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  15. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  16. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  17. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  18. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  19. 2015 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  20. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  1. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  2. Technological inductive power transfer systems

    Science.gov (United States)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  3. NASA Technology Demonstrations Missions Program Overview

    Science.gov (United States)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  4. Logistics Reduction Technologies for Exploration Missions

    Science.gov (United States)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  5. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  6. Entrepreneurial separation to transfer technology.

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Richard R.

    2010-09-01

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  7. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  8. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  9. Technology transfer - the role of AEA Technology

    International Nuclear Information System (INIS)

    Hughes, A.E.; Bullough, R.; Mason, J.P.

    1989-01-01

    This paper concentrates mostly on examples of spin offs which have arisen from the more basic research carried out by the AEA. However, it should not be inferred from this that the only examples of successful technology transfer by the AEA are of a similar, often unforeseen nature. The most outstanding example of technology transfer by the AEA must surely be that achieved through the applied research which has enabled the establishment of a successful civil nuclear power programme in the UK. The natural transfer of technology here, achieved by virtue of the unique bridging position of the AEA with respect to universities and the nuclear industry, means that its success can easily be overlooked; to do so would be a mistake. However, by including spin off examples, we hope to illustrate how the AEA has also succeeded in bridging to more difficult areas where the special relationship which it shares with the nuclear industry is absent. (author)

  10. Technologies and Mission Concepts for NHST

    Science.gov (United States)

    Oegerle, William R.

    2003-01-01

    A technology workshop entitled "Innovative Designs for the Next Large Aperture Optical/UV Telescope" was held on April 10-11 at the Space Telescope Science Institute in Baltimore. This workshop was held to consider the technologies that will be required to support optical/UV space missions designed to carry out the science envisioned by the Hubble Science Legacy meeting held in April 2002 in Chicago. Subjects covered at the workshop included: optical designs, wavefront control, mirror technologies, spectrographs, coronagraphs, detector technologies, and in-space construction. A summary of the workshop and near-term plans for investigating several mission concepts will be provided. Funding for this workshop was provided by NASA.

  11. How Technology and Data Affect Mission Command

    Science.gov (United States)

    2016-05-17

    relevant. For example, a concept of support developed using the Op- erational Logistics Planner is not a complete list of detailed decisions by phase, but...a standard issue green notebook and a good me- chanical pencil. Technology and the analysis and mobilization of data can enable or disrupt mission

  12. Mission Systems Open Architecture Science and Technology (MOAST) program

    Science.gov (United States)

    Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.

    2017-04-01

    The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.

  13. Human Robotic Systems (HRS): Robotic Technologies for Asteroid Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic Technologies for Asteroid Missions activity has four tasks: Asteroid Retrieval Capture Mechanism Development and Testbed; Mission Operations...

  14. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  15. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  16. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  17. S5: Information Technology for Science Missions

    Science.gov (United States)

    Coughlan, Joe

    2017-01-01

    NASA Missions and Programs create a wealth of science data and information that are essential to understanding our earth, our solar system and the universe. Advancements in information technology will allow many people within and beyond the Agency to more effectively analyze and apply these data and information to create knowledge. The desired end result is to see that NASA data and science information are used to generate the maximum possible impact to the nation: to advance scientific knowledge and technological capabilities, to inspire and motivate the nation's students and teachers, and to engage and educate the public.

  18. Communication Received from the Permanent Mission of the Republic of Serbia to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 28 September 2012 from the Permanent Mission of Serbia to the International Atomic Energy Agency providing information on the decision of the Government of Serbia to adhere to the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2 [es

  19. Communication Received from the PermanentMission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  20. Communication Received from the Permanent Mission of Mexico to the International Atomic Energy Agency Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology and the Guidelines for Transfers of Nuclear-related Dual-use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2012-01-01

    The Director General has received a note verbale dated 15 June 2012 from the Permanent Mission of Mexico to the International Atomic Energy Agency providing information on the decision of the Government of Mexico to act in accordance with the 'Guidelines for the Export of Nuclear Material, Equipment and Technology', issued as document INFCIRC/254/Rev.10/Part 1, including its Annexes, and with the 'Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Material, Software and Related Technology', issued as document INFCIRC/254/Rev.8/Part 2

  1. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  2. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  3. Mission Benefits Analysis of Logistics Reduction Technologies

    Science.gov (United States)

    Ewert, Michael K.; Broyan, James Lee, Jr.

    2013-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  4. Business modeling process for university’s technology transfer offices

    Directory of Open Access Journals (Sweden)

    Marin Alexandru

    2017-07-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer centers from Romanian National Network for Innovation and Technology Transfer - ReNITT, hosted by universities. The study is focused on the definition of a conceptual frame to develop specific business models, by the specialized compartments from technology/knowledge transfer entities, and using the specific instruments of business modeling process. The qualitative and quantitative analysis of the 8 steps scheduling of pairing the building blocks of the Business Models Canvas, corresponding to the specific technology transfer models, and taking into account the elements of the value chain of technology transfer and making connections with technology readiness level, allows a clarification of this relative “fuzzy” and complicated modeling process of university’s Technology Transfer Offices activities, gathering in a concentrated format all necessary information. According to their mission, objectives and strategies, universities decide upon a certain business model for the Technology Transfer Offices, adaptable to client segment and value proposition to attain, by the offered services portfolio. In conclusion, during their activities, Technology Transfer Offices identify, validate and exploit the opportunities originated from applicative research results, by “technology push” methods. Also, there are necessary specific competences (human and material to develop externally aware business models starting from real needs of the clients, by “market pull” techniques, that would contribute to enhance the endogenous innovation potential of firms.

  5. Orbit-to-ground Wireless Power Transfer test mission

    Science.gov (United States)

    Bergsrud, C.; Noghanian, S.; Straub, J.; Whalen, D.; Fevig, R.

    Since the 1970s the concept of transferring power from orbit for use on Earth has had a great deal of consideration for future energy and environmental sustainability here on Earth. The cost, size and complexity of a production-grade system are extremely large, and have many environmental considerations. There has never been a publicly disclosed orbit-to-ground power transfer test mission. A proposed project provides an opportunity to test the conceptual operation of such a system, albeit at a much lower power level than the `grand' or `real scale' system. During this test, a small Solar Powered (SP) 6-U CubSat will be deployed into Low-Earth Orbit (LEO) (225 or 325 km) to collect and store 1 KW of power from solar energy as the satellite is orbiting. The goal is to transmit 1 KW of wireless power at a microwave frequency of 5.8 or 10 GHz to a ground antenna array system. This paper presents the architecture for the proposed mission and discusses the regulatory, legal, and environmental issues that such a mission poses. Furthermore, the gain of the transmitter is analyzed at 20 and 30 dB as well as the gain of the receiver is analyzed at 30, 40, and 50 dB. A SP 6-U CubeSat will have a Lithium Ion (LIon) battery capable of storing enough energy for 83.33 Whr charge to run the satellites controls, and 1 KW necessary for a 5-minute demonstration and test (in addition to power required for its own operational requirements). Once charged, the satellite will use highly accurate position and attitude knowledge provided by an onboard star-tracker, Global Positioning Satellite (GPS) and inertial measurement unit to determine the proper orientation for the power transfer test. The onboard Attitude Determination and Control (ADCS) will be utilized to achieve and maintain this orientation during the test period. A cold-gas propulsion system will be available to de-spin the reaction wheels to ensure that sufficient ADCS capabilities exist for attitude-stabilization use during

  6. Technology Transfer and its effect on Innovation

    OpenAIRE

    Sen, Neelanjan

    2014-01-01

    This paper analyses technology transfer and innovation activities by the high cost firm in a Cournot duopoly framework, where technology transfer between the firms may occur after the innovation decision. The two effects of innovation are to access the superior technology of the low cost firm if higher cost prohibits technology transfer and to affect the pricing rule of technology transfer via higher bargaining power. The incentive for innovation is more in fixed-fee licensing than in two-par...

  7. Technology transfer and localization: A Framatome perspective

    International Nuclear Information System (INIS)

    Preneuf, R. de

    2000-01-01

    Localization and technology transfer have been important factors influencing the decision-making process in countries embarking on a nuclear power programme. It seems natural that relationships between donors and recipients of technology, beginning with sub-contracting, should evolve towards technology transfers and cooperation on an equal footing. France was both a receiver and a donor of technology transfer in the area of nuclear power. This paper describes the French experience in technology transfer and the lesson learned therefrom. (author)

  8. Project approach helps technology transfer

    International Nuclear Information System (INIS)

    Walcher, M.W.

    1982-01-01

    The placing of the contract by the National Power Corporation with Westinghouse for the Philippines nuclear power plant (PNPP-1) is described. Maximised use of Philippine contractors under Westinghouse supervision was provided for. Technology transfer is an important benefit of the contract arrangements, since National Power Corporation project management acquires considerable nuclear plant experience during plant construction through consultation with technical personnel. (U.K.)

  9. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  10. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  11. Solar sail-solar electric technology readiness and transfer assessment

    Science.gov (United States)

    Chase, R. L.

    1977-01-01

    A method of conducting a technology readiness assessment was developed. It uses existing OAST technology readiness and risk criteria to define a technology readiness factor that considers both the required gain in technology readiness level to achieved technology readiness plus the degree of effort associated with achieving the gain. The results indicate that Solar Electric Propulsion is preferred based on technology readiness criteria. Both Solar Sail and Solar Electric Propulsion have a high level of transfer potential for future NASA missions, and each has considerable technology spillover for non-NASA applications.

  12. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  13. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  14. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  15. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  16. The LUVOIR Mission Concept: Update and Technology Overview

    Science.gov (United States)

    Bolcar, Matthew R.

    2016-01-01

    We present an overview of the Large Ultra Violet Optical Infrared (LUVOIR) decadal mission concept study. We provide updates from recent activities of the Science and Technology Definition Team (STDT) and the Technology Working Group (TWG). We review the technology prioritization and discuss specific technology needs to enable the LUVOIR mission.

  17. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  18. Boeing Low-Thrust Geosynchronous Transfer Mission Experience

    Science.gov (United States)

    Poole, Mark; Ho, Monte

    2007-01-01

    Since 2000, Boeing 702 satellites have used electric propulsion for transfer to geostationary orbits. The use of the 25cm Xenon Ion Propulsion System (25cm XIPS) results in more than a tenfold increase in specific impulse with the corresponding decrease in propellant mass needed to complete the mission when compared to chemical propulsion[1]. In addition to more favorable mass properties, with the use of XIPS, the 702 has been able to achieve orbit insertions with higher accuracy than it would have been possible with the use of chemical thrusters. This paper describes the experience attained by using the 702 XIPS ascent strategy to transfer satellite to geosynchronous orbits.

  19. Cryogenic Propellant Storage and Transfer Technology Demonstration: Prephase A Government Point-of-Departure Concept Study

    Science.gov (United States)

    Mulqueen, J. A.; Addona, B. M.; Gwaltney, D. A.; Holt, K. A.; Hopkins, R. C.; Matis, J. A.; McRight, P. S.; Popp, C. G.; Sutherlin, S. G.; Thomas, H. D.; hide

    2012-01-01

    The primary purpose of this study was to define a point-of-departure prephase A mission concept for the cryogenic propellant storage and transfer technology demonstration mission to be conducted by the NASA Office of the Chief Technologist (OCT). The mission concept includes identification of the cryogenic propellant management technologies to be demonstrated, definition of a representative mission timeline, and definition of a viable flight system design concept. The resulting mission concept will serve as a point of departure for evaluating alternative mission concepts and synthesizing the results of industry- defined mission concepts developed under the OCT contracted studies

  20. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology

  1. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    Science.gov (United States)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  2. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  3. IMPaCT - Integration of Missions, Programs, and Core Technologies

    Science.gov (United States)

    Balacuit, Carlos P.; Cutts, James A.; Peterson, Craig E.; Beauchamp, Patricia M.; Jones, Susan K.; Hang, Winnie N.; Dastur, Shahin D.

    2013-01-01

    IMPaCT enables comprehensive information on current NASA missions, prospective future missions, and the technologies that NASA is investing in, or considering investing in, to be accessed from a common Web-based interface. It allows dependencies to be established between missions and technology, and from this, the benefits of investing in individual technologies can be determined. The software also allows various scenarios for future missions to be explored against resource constraints, and the nominal cost and schedule of each mission to be modified in an effort to fit within a prescribed budget.

  4. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  5. Transfer of technology; communicating helps

    Science.gov (United States)

    Poolman, M. I.

    2009-04-01

    How water resources technology and knowledge can or should be transferred has been subject to a number of paradigm shifts. There were shifts between believing that water-users were ignorant to believing in the need to stimulate water-users' participation in water-system design. Participation in design is viewed to enhance water-users' competence in and willingness to maintain water resources infrastructure. However, there are many different parties involved in design, all with different interests and backgrounds. This research therefore focuses on developing a methodology with which water-users, local supporting institutions and researchers could develop a basis for common dialogue when discussing redesign of small water systems. During the development of this methodology discussions between the stakeholders showed that one obstacle towards using the water to its full potential is caused by infrastructural problems that hinder water storage and transportation. Assessment of a water resource should therefore not look only at the (potential) value of water, but also at the (potential) value of the storage and transportation infrastructure that enables use of water. Results so far also show that redesign of water systems to enhance the productivity of water was not necessarily related to the viewed value of water by stakeholders, but to the possibility of stakeholders to invest in or to find ways to stimulate investment in the infrastructure. Thereby it was also concluded that investments in transferring understanding about use and maintenance of the infrastructure means investing in stakeholder communication that enable all stakeholders to express their views about the use of, maintenance of and investment in technology.

  6. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  7. SWAMI II technology transfer plan

    International Nuclear Information System (INIS)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-01-01

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection

  8. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  9. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  10. Optimizing technology investments: a broad mission model approach

    Science.gov (United States)

    Shishko, R.

    2003-01-01

    A long-standing problem in NASA is how to allocate scarce technology development resources across advanced technologies in order to best support a large set of future potential missions. Within NASA, two orthogonal paradigms have received attention in recent years: the real-options approach and the broad mission model approach. This paper focuses on the latter.

  11. Managing the Perception of Advanced Technology Risks in Mission Proposals

    Science.gov (United States)

    Bellisario, Sebastian Nickolai

    2012-01-01

    Through my work in the project proposal office I became interested in how technology advancement efforts affect competitive mission proposals. Technology development allows for new instruments and functionality. However, including technology advancement in a mission proposal often increases perceived risk. Risk mitigation has a major impact on the overall evaluation of the proposal and whether the mission is selected. In order to evaluate the different approaches proposals took I compared the proposals claims of heritage and technology advancement to the sponsor feedback provided in the NASA debriefs. I examined a set of Discovery 2010 Mission proposals to draw patterns in how they were evaluated and come up with a set of recommendations for future mission proposals in how they should approach technology advancement to reduce the perceived risk.

  12. A dynamic approach to technology transfer

    International Nuclear Information System (INIS)

    Shave, D.F.; Kent, G.F.; Giambusso, A.; Jacobs, S.B.

    1987-01-01

    Stone and Webster Engineering Corporation has developed a systematic program for achieving efficient, effective technology transfer. This program is based on transferring both know-why and know-how. The transfer of know-why and know-how is achieved most effectively by working in partnership with the recipient of the technology; by employing five primary transfer mechanisms, according to the type of learning required; by treating the technology transfer as a designed process rather than an isolated event; and by using a project management approach to control and direct the process. This paper describes the philosophy, process, and training mechanisms that have worked for Stone and Webster, as well as the project management approach needed for the most effective transfer of technology. (author)

  13. BUSINESS MODELS FOR INCREASING TECHNOLOGICAL TRANSFER EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Simina FULGA

    2016-05-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer organizations (centers from ReNITT, by using the specific instruments of Business Model Canvas, associated to the technological transfer value chain for the value added services addressed to their clients and according to a continuously improved competitive strategy over competition analysis.

  14. Partnering Events | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  15. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  16. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  17. Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission

    Science.gov (United States)

    Balint, Tibor S.; Kwok, Johnny H.; Kolawa, Elizabeth A.; Cutts, James A.; Senske, David A.

    2008-01-01

    Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program.

  18. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  19. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...... are able to upgrade their ‘dynamic capabilities’. It uses three indicators of firms’ dynamic capabilities: R&D expenditures to sales ratio, fuel consumption to sales ratio and total factor productivity growth. Secondly, it moves away from the analysis of technology transfer claims made in either Project...

  20. Development of nuclear technology transfer - Korea as a recipient

    International Nuclear Information System (INIS)

    Sung, N.C.

    1988-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigenous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turn-key approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented

  1. Technology Transfer in Digital Era: Legal Environment

    Directory of Open Access Journals (Sweden)

    Ivan Anatol’yevich Bliznets

    2018-03-01

    Full Text Available The spread of disruptive technology in the digital era is the ruling condition of modern sustainable development. The authors proceed from the fact that legal tools for the creation and use, protection of advanced technologies provide the technology transfer process from the owner to interested parties for further practical, commercial application or further improvement. The article analyzes the legal positions of the concept of technology, legal ways to use modern technologies, stages of their implementation and practical application. In the innovation process legal mechanism in combination with the modern means of innovative development stimulates the creation and transfer of new technologies and at the same time it is a key factor for sustainable development in the context of modern digital technology revolution. In the modern digital revolution, the technology transfer acquires new features and ways for the dissemination of technical innovation, which creates new challenges for legal theory and practice, and legal tools should meet the challenges of the time.

  2. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  3. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2001-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/2541Rev. 4/Part 2

  4. Communication from the Permanent Missions of Brazil and Romania to the International Atomic Energy Agency Regarding Guidelines for the Transfers of Nuclear-Related Dual-Use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbale from the Permanent Missions of Brazil and Romania, dated 28 February 2003, providing information on the export policies and practices of the Governments of Brazil and Romania with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbale is attached. The attachment referenced in the Note Verbale was issued previously as INFCIRC/254/Rev.5/Part 2

  5. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  6. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  7. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  8. Solar sailing technology, dynamics and mission applications

    CERN Document Server

    McInnes, Colin Robert

    1999-01-01

    Solar sailing offers the possibility of low-cost long-distance missions, impossible for any other type of conventional spacecraft The book provides a detailed account of solar sailing, at a high technical level but in a way accessible to the scientifically informed layman Solar sail orbital dynamics and solar radiation pressure form the foundations of the book, but the engineering design of solar sails is also considered, along with potential mission applications This book introduces the subject and at the same time provides a technical reference source

  9. Validating foundry technologies for extended mission profiles

    NARCIS (Netherlands)

    Dijk, K.; Volf, P.; Detcheverry, C.; Yau, A.; Ngan, P.; Liang, Z.; Kuper, F.G.

    2010-01-01

    This paper presents a process qualification and characterization strategy that can extend the foundry process reliability potential to meet specific automotive mission profile requirements. In this case study, data and analyses are provided that lead to sufficient confidence for pushing the allowed

  10. Space Missions and Information Technology: Some Thoughts and Highlights

    Science.gov (United States)

    Doyle, Richard J.

    2006-01-01

    A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.

  11. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  12. Technology Transfers for Climate Change

    OpenAIRE

    May Elsayyad; Florian Morath

    2013-01-01

    This paper considers investments in cost-reducing technology in the context of contributions to climate protection. Contributions to mitigating climate change are analyzed in a two-period model where later contributions can be based on better information, but delaying the contribution to the public good is costly because of irreversible damages. We show that, when all countries have access to the new technology, countries have an incentive to invest in technology because this can lead to an e...

  13. Hybrid Propulsion Technology for Robotic Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C3 Propulsion's Hybrid Propulsion Technology will be applied to a NASA selected Sample Return Mission. Phase I will demonstrate Proof-of-Principle and Phase II will...

  14. Risk Management in Biologics Technology Transfer.

    Science.gov (United States)

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  15. Technology Transfer: Creating the Right Environment.

    Science.gov (United States)

    McCullough, John M.

    2003-01-01

    Small and medium-sized enterprises are considered to be the backbone of many European economies and a catalyst for economic growth. Universities are key players in encouraging and supporting economic growth through technology and knowledge-related transfer. The right environment to foster transfer is a proactive culture. (Contains 22 references.)…

  16. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    Science.gov (United States)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  17. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  18. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  19. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  20. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  1. Understanding the CDM's contribution to technology transfer

    International Nuclear Information System (INIS)

    Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.

    2008-01-01

    Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations

  2. Space Technology Mission Directorate: Game Changing Development

    Science.gov (United States)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  3. Transfer of space technology to industry

    Science.gov (United States)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  4. NASA partnership with industry: Enhancing technology transfer

    Science.gov (United States)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  5. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  6. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  7. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  8. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  9. Selection of a Brine Processor Technology for NASA Manned Missions

    Science.gov (United States)

    Carter, Donald L.; Gleich, Andrew F.

    2016-01-01

    The current ISS Water Recovery System (WRS) reclaims water from crew urine, humidity condensate, and Sabatier product water. Urine is initially processed by the Urine Processor Assembly (UPA) which recovers 75% of the urine as distillate. The remainder of the water is present in the waste brine which is currently disposed of as trash on ISS. For future missions this additional water must be reclaimed due to the significant resupply penalty for missions beyond Low Earth Orbit (LEO). NASA has pursued various technology development programs for a brine processor in the past several years. This effort has culminated in a technology down-select to identify the optimum technology for future manned missions. The technology selection is based on various criteria, including mass, power, reliability, maintainability, and safety. Beginning in 2016 the selected technology will be transitioned to a flight hardware program for demonstration on ISS. This paper summarizes the technology selection process, the competing technologies, and the rationale for the technology selected for future manned missions.

  10. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  11. How Technology Can Revitalize Historic Mission.

    Science.gov (United States)

    Levine, Arthur

    2002-01-01

    In an excerpt from "The Wired Tower," a college president offers his perspective on the revolutionary and evolutionary changes that higher education will experience as a result of information technology and warns against a rush into the digital economy that could destroy higher education's reason for being. (EV)

  12. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  13. Technology needs for manned Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Bartine, D.

    1991-01-01

    As members of the Stafford Synthesis Group, we performed an investigation as to the most expeditious manner to explore Mars. To do this, rationale, objectives, requirements and systems definitions were developed. The objectives include the development of the necessary infrastructure and resources for Mars exploration and performing initial successful exploration of Mars. This will include a transportation system between Mars and Earth, habitats for living on Mars, utilization of Martian resources, and the ability to perform exploration over the entire Martian surface. Using the developed architecture, key technologies were identified. 6 figs., 1 tab

  14. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  15. People transfer-sinequanon for nuclear technology transfer

    International Nuclear Information System (INIS)

    Ahmed, M.

    1977-01-01

    The main obstacles facing the developing countries which wish to adopt sophisticated nuclear technology can be the following: lack of trained personnel, lack of entrepreneurs and capital, and bureaucracy. Of these the greatest problem is undoubtedly the lack of trained manpower. Urgently required skilled manpower may be obtained through training of selected persons in foreign countries on a crash program of nuclear energy. Exchange of expertise can also take place among the developing countries themselves. Another problem particularly peculiar to the poor developing countries is the lack of entrepreneurs and capital. It therefore becomes necessary to attract entrepreneurs from abroad with all the benefit of managerial know-how and capital transfer that it entails. Exchange of scientist, teachers, managerial and administrative personnel between the developed and developing countries and also among the developing countries themselves is therefore essential for an effective transfer of nuclear technology

  16. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  17. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  18. Implications of the Acquisition and Transfer of Technology | Opafola ...

    African Journals Online (AJOL)

    Acquisition and transfer of technology presupposes the acquisition and transfer of scientific and technological knowledge. I recognize and draw attention to the difference between acquiring and transferring scientific and technological knowledge, and acquiring and transferring technology. They are related. However, they ...

  19. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  20. Technology transfer, a two-way street

    International Nuclear Information System (INIS)

    Martin, H.L.

    1994-01-01

    Technology transfer through the Pollution Prevention ampersand Control Conferences, which have been cosponsored by the Environmental Protection Agency and by the professional societies of industry, greatly improved the environmental projects of the Department of Energy at Savannah River Site (SRS) in the mid-1980's. Those technologies, used in the liquid effluent treatment of the metal finishing liquid effluents from aluminum cleaning and nickel plating of fuel and targets for the nuclear production reactors, have been enhanced by the research and development of SRS engineers and scientists. The technology transfer has now become a two-way street to the benefit of our Nation's environment as these enhancements are being adopted in the metal finishing industry. These success stories are examples of the achievements anticipated in the 1990's as technology development in the federal facilities is shared with commercial industry

  1. NASA's Technology Transfer Program for the Early Detection of Breast Cancer

    Science.gov (United States)

    Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.

  2. Green Propellant Infusion Mission Program Development and Technology Maturation

    Science.gov (United States)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  3. Assessing technology transfer in the Clean Development Mechanism

    OpenAIRE

    Cools, Sara Lena Yri

    2007-01-01

    This paper presents an operational definition of technology transfer, to be applied in studies of technology transfer in projects under the Kyoto Protocol’s Clean Development Mechanism (CDM). Although the CDM has never been given an explicit mandate for transferring technologies, its contribution in this respect has both been hoped for and exacted. The discussions of technology transfer in CDM projects are however blurred by widely varying conceptions of what technology transfer is. Qu...

  4. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available -economic opportunities. It concludes by emphasing that a strategy to promnote technology innovation and transfer is required before tapping into, and adding value to, the local input in order that international co-operation and partnerships are adavanced and can...

  5. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... This paper, discusses the impact of oligopolistic research on transfer of global pharmaceutical manufacturing technology to the less developed countries of the South (Nigeria) in post globalism. On the basis of empirical evidence from the advanced industrialized world, it is argued that the growth of.

  6. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the long-run equilibrium relationship between various international factors and economic growth, as well as to assess the short-term impact of inward FDI, trade and economic growth on international technology transfer to Nigeria. To achieve this, the study used a time series data from ...

  7. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    2015-05-29

    May 29, 2015 ... Awosusi and Awolusi: Foreign Direct Investment and Economic Growth in Nigeria development ... (Saggi 2002) of international technology transfer, domestic investment, and growth is imperative, hence, the .... developing countries to draw upon the stock of knowledge created by their innovations. Contrary ...

  8. Advancing Green Economy through Technology Transfer ...

    African Journals Online (AJOL)

    We recommend increased knowledge-sharing to popularise the integration of green economy measures into poverty alleviation projects. This can be accomplished through both technical and educational study visits to the technology transfer projects, documenting practical, locally generated sustainable ideas, and ...

  9. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  10. NASA Program Office Technology Investments to Enable Future Missions

    Science.gov (United States)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86

  11. The Impact of Autonomous Systems Technology on JPL Mission Software

    Science.gov (United States)

    Doyle, Richard J.

    2000-01-01

    This paper discusses the following topics: (1) Autonomy for Future Missions- Mars Outposts, Titan Aerobot, and Europa Cryobot / Hydrobot; (2) Emergence of Autonomy- Remote Agent Architecture, Closing Loops Onboard, and New Millennium Flight Experiment; and (3) Software Engineering Challenges- Influence of Remote Agent, Scalable Autonomy, Autonomy Software Validation, Analytic Verification Technology, and Autonomy and Software Software Engineering.

  12. 76 FR 34041 - Clean Technologies Mission to India

    Science.gov (United States)

    2011-06-10

    ... will target a broad range of clean technologies including wind, hydro, waste-to-energy, solar power... water and waste water treatment and solid waste management. This mission will contribute to the National..., which will allow delegates to tap into a wealth of local contacts for matchmaking and participate in...

  13. Managing knowledge: a technology transfer case study in IEN

    International Nuclear Information System (INIS)

    Pereira, Ana Gabriella Amorim Abreu

    2009-01-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  14. The Importance of Technology Readiness in NASA Earth Venture Missions

    Science.gov (United States)

    Wells, James E.; Komar, George J.

    2009-01-01

    The first set of Venture-class investigations share the characteristic that the technology should be mature and all investigations must use mature technology that has been modeled or demonstrated in a relevant environment (Technology Readiness Level (TRL) >5). Technology Readiness Levels are a systematic metric/measurement system that supports assessments of the maturity of a particular technology and the consistent comparison of maturity between different types of technology. The TRL is used in NASA technology planning. A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a system or subsystem model or prototype must be demonstrated in a relevant environment (ground or space) representative model or prototype system or system, which would go well beyond ad hoc, "patch-cord," or discrete component level breadboarding. These TRL levels are chosen as target objectives for the Program. The challenge for offerors is that they must identify key aspects (uncertainty, multi subsystem complexity, etc) of the TRL estimate that should be properly explained in a submitted proposal. Risk minimization is a key component of the Earth Venture missions. Experiences of prior airborne missions will be shared. The discussion will address aspects of uncertainty and issues surrounding three areas of airborne earth science missions: (1) Aircraft or proposed flight platform -- Expressing the capability of the aircraft in terms of the supporting mission requirements. These issues include airplane performance characteristics (duration, range, altitude, among others) and multiship complexities. (2) Instruments -- Establishing that the instruments have been demonstrated in a relevant environment. Instruments with heritage in prior space missions meet this requirement, as do instruments tested on the ground. Evidence that the instruments have demonstrated the ability to collect data as advertised will be described. The complexity of

  15. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  16. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  17. Urban development applications project. Urban technology transfer study

    Science.gov (United States)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  18. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  19. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  20. Technology transfers, foreign investment and productivity spillovers

    OpenAIRE

    NEWMAN, CAROL

    2015-01-01

    PUBLISHED This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers fr...

  1. Technology Transfer of Isotopes-Based Assay: Strategies and Mechanisms

    International Nuclear Information System (INIS)

    Tabbada, R.S.D.C.; Rañada, M.L.O.; Mendoza, A.D.L.; Panganiban, R.; Castañeda, S.S.; Sombrito, E.Z.; Arcamo, S.V.R.

    2015-01-01

    Receptor Binding Assay for Paralytic Shellfish Poisoning (PSP RBA) is an isotope-based assay for detection and quantification of PSP toxins in seafood. It was established in the Philippines through a national program based on the recommendations of the Expert Mission sent by the International Atomic Energy Agency (IAEA). Through the said program, the Philippines Nuclear Research Institute (PNRI) was able to put up an RBA facility and develop expertise. Advantages of the technique against Mouse Bioassay (MBA) and high-performance Liquid Chromatography (HPLC) methods were are established. RBA is being utilized by some developed countries as screening method for Harmful Algal Bloom (HAB) Monitoring. However, it was not immediately adopted by the national HAB regulatory body for the following reasons: (1) acceptance of RBA as an official national method of analysis for PSP, (2) logistics and financial concerns in building up and maintaining a RBA facility, (3) considerations on the use of radioactive materials. To address these issues, the Philippines Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) approved a Grants-In-Aid Project to initiate and to facilitate the transfer of the RBA technology to the monitoring and regulatory body. The project has two major objectives: capacity building and technology transfer. The capacity building focuses on human resources development of HAB monitoring personnel, specifically training on RBA and on the use of radioactive materials. On the other hand, the technology transfer deals with assistance that PNRI may render in establishing the new RBA facility and over-all know-how of the project. In this is poster, the mechanisms and strategies being undertaken by PNRI, in collaboration with the regulatory and monitoring body, to address the limitation of transferring a technology that utilizes radioactive materials including the technical difficulties are presented and discussed. (author)

  2. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  3. NASA Earth Science Mission Control Center Enterprise Emerging Technology Study Study (MCC Technology Study)

    Science.gov (United States)

    Smith, Dan; Horan, Stephen; Royer, Don; Sullivan, Don; Moe, Karen

    2015-01-01

    This paper reports on the results of the study to identify technologies that could have a significant impact on Earth Science mission operations when looking out at the 5-15 year horizon (through 2025). The potential benefits of the new technologies will be discussed, as well as recommendations for early research and development, prototyping, or analysis for these technologies.

  4. A New Architecture for Visualization: Open Mission Control Technologies

    Science.gov (United States)

    Trimble, Jay

    2017-01-01

    Open Mission Control Technologies (MCT) is a new architecture for visualisation of mission data. Driven by requirements for new mission capabilities, including distributed mission operations, access to data anywhere, customization by users, synthesis of multiple data sources, and flexibility for multi-mission adaptation, Open MCT provides users with an integrated customizable environment. Developed at NASAs Ames Research Center (ARC), in collaboration with NASAs Advanced Multimission Operations System (AMMOS) and NASAs Jet Propulsion Laboratory (JPL), Open MCT is getting its first mission use on the Jason 3 Mission, and is also available in the testbed for the Mars 2020 Rover and for development use for NASAs Resource Prospector Lunar Rover. The open source nature of the project provides for use outside of space missions, including open source contributions from a community of users. The defining features of Open MCT for mission users are data integration, end user composition and multiple views. Data integration provides access to mission data across domains in one place, making data such as activities, timelines, telemetry, imagery, event timers and procedures available in one place, without application switching. End user composition provides users with layouts, which act as a canvas to assemble visualisations. Multiple views provide the capability to view the same data in different ways, with live switching of data views in place. Open MCT is browser based, and works on the desktop as well as tablets and phones, providing access to data anywhere. An early use case for mobile data access took place on the Resource Prospector (RP) Mission Distributed Operations Test, in which rover engineers in the field were able to view telemetry on their phones. We envision this capability providing decision support to on console operators from off duty personnel. The plug-in architecture also allows for adaptation for different mission capabilities. Different data types and

  5. Mission Control Technologies: A New Way of Designing and Evolving Mission Systems

    Science.gov (United States)

    Trimble, Jay; Walton, Joan; Saddler, Harry

    2006-01-01

    Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of

  6. Communication from the Permanent Mission of Malta to the International Atomic Energy Agency regarding guidelines for the transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General has received a Note Verbale from the Permanent Mission of Malta, dated 3 December 2003, regarding Malta's nuclear policies and practices. In the light of the wish expressed at the end of the Note Verbale, its text is attached

  7. Technology transfer in Activities Implemented Jointly (AIJ)

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P.E.O. [United Nations Environment Programme (Cayman Islands)

    1998-08-01

    The agreed objective of the United Nations Framework Convention on Climate Change is to bring about early and significant reductions in greenhouse gas emissions. For many, the most attractive option for promoting this end is joint implementation. Indivisible from this is the transfer of current and innovative technology, though technology transfer is not conditional on joint implementation. The somewhat ad hoc nature of Activities Implemented Jointly (AIJ) and the failure to establish ground rules at the outset is considered. Common action can contribute to cost-effective mitigation of climate change through a sharing of the costs, benefits and risks of R and D, cross fertilisation of ideas among countries, economies of scale for new technologies, and clear signals to the international market. Potential problems include: the reluctance of national private industry to share proprietary information which might compromise competitiveness; premature convergence on technical standards that might inhibit the emergence of more developed technology; specific national circumstances which mean that solutions satisfactory to others are inappropriate in its case. This latter issue is of particular relevance to developing countries. AIJ needs to be approached in a systematic way taking into account lessons learned from evaluating the pilot phase if it is to be seen to be working effectively. (UK)

  8. Space Biosensor Systems: Implications for Technology Transfer

    Science.gov (United States)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  9. Development of Life Support System Technologies for Human Lunar Missions

    Science.gov (United States)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  10. The Change Book: A Blueprint for Technology Transfer.

    Science.gov (United States)

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  11. 76 FR 52670 - 2011 Technology Transfer Summit North America Conference

    Science.gov (United States)

    2011-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health 2011 Technology Transfer...: Notice of Conference. SUMMARY: The NIH Office of Technology Transfer extends invitations to attend the 2011 Technology Transfer Summit North America Conference. DATES: October 3-4, 2011. ADDRESSES: NIH...

  12. Technology transfer from research and development to European industry

    International Nuclear Information System (INIS)

    Conrads, H.; Theenhaus, R.

    1989-01-01

    This paper gives an overview of technology transfer, i.e. the transfer of knowledge, insights and technologies from research and development to practical application, especially in the Federal Republic of Germany. Some examples and perspectives of technology transfer for nuclear fusion are given. (author). 7 refs.; 5 figs

  13. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  14. Technology transfer in the Spanish nuclear programme

    International Nuclear Information System (INIS)

    Perez-Naredo, F.

    1983-01-01

    The paper describes the process of technology transfer under the Spanish nuclear programme and its three generations of nuclear power plants during the last 20 years, with special reference to the nine new plants equipped with Westinghouse pressurized water reactors and the rising level of national involvement in these stations. It deals with the development of Westinghouse Nuclear's organization in Spain, referring to its staff and to the manufacturers who supply equipment for the programme, going into particular detail where problems of quality assurance are concerned. In conclusion, it summarizes the present capacity of Spanish industry in various areas connected with the design, manufacture and construction of nuclear power plants. (author)

  15. Reducing Mission Logistics with Multipurpose Cargo Transfer Bags

    Science.gov (United States)

    Baccus, Shelley; Broyan, James Lee, Jr.; Borrego, Melissa

    2016-01-01

    The Logistics Reduction (LR) project within Advanced Exploration Systems (AES) is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) have been designed such that they can serve the same purpose as a Cargo Transfer Bag (CTB), the common logistics carrying bag for the International Space Station (ISS). After use as a cargo carrier, a regular CTB becomes trash, whereas the MCTB can be unfolded into a flat panel for reuse. Concepts and potential benefits for various MCTB applications will be discussed including partitions, crew quarters, solar radiation storm shelters, acoustic blankets, and forward osmosis water processing. Acoustic MCTBs are currently in use on ISS to reduce the noise generated by the T2 treadmill, which reaches the hazard limit at high speeds. The development of the AMCTB included identification of keep-out zones, acoustic properties, deployment considerations, and structural testing. Features developed for these considerations are applicable to MCTBs for all crew outfitting applications.

  16. Multipurpose Cargo Transfer Bags fro Reducing Exploration Mission Logistics

    Science.gov (United States)

    Baccus, Shelley; Broyan, James Lee, Jr.; Borrego, Melissa

    2016-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) division is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) have been designed such that they can serve the same purpose as a Cargo Transfer Bag (CTB), the common logistics carrying bag for the International Space Station (ISS). After use as a cargo carrier, a regular CTB becomes trash, whereas the MCTB can be unfolded into a flat panel for reuse. Concepts and potential benefits for various MCTB applications will be discussed including partitions, crew quarters, solar radiation storm shelters, acoustic blankets, and forward osmosis water processing. Acoustic MCTBs are currently in use on ISS to reduce the noise generated by the T2 treadmill, which reaches the hazard limit at high speeds. The development of the AMCTB included identification of keep out zones, acoustic properties, deployment considerations, and structural testing. Features developed for these considerations are applicable to MCTBs for all crew outfitting applications.

  17. A Blended Transfer and Communications Center: Designing a State-of-the-Art Mission Control.

    Science.gov (United States)

    Morris, Melanie K; Carter, Kimberly F

    2015-01-01

    Health systems frequently are challenged by barriers to patient flow and transfer intake processes. To achieve the goals of seamless entry of patients into the health system, coordination of the safest, most appropriate transport of these patients, and efficient management of hospital throughput needs, our tertiary health system created a central transfer and communications center. From the design of the center's physical space to the collaborative education efforts, the immediate synergies created by this new "Mission Control" model impacted throughput and customer service. Achievement of these goals is facilitated with state-of-the-art technology, including an electronic throughput and flow software system, which provides real-time capacity updates and status of confirmed and pending discharges. Because a centralized, information-centered approach to coordination has been such a success, expansion to other departments is underway. We are also finding that our operations center is playing a more central role in emergency operations and disaster management logistics at both the local and regional levels. Centralization of key throughput components of health systems is quickly becoming best practice. Revenue savings can be gained by combining departmental resources as well as supporting throughput efficiencies.

  18. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  19. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    This study examines how inter-firm heterogeneities in technology modes and intensities are linked to ownership of firms in India, using a panel dataset of 2000 odd Bombay Stock Exchange listed firms for the period from 2003 to 2014 drawn from the PROWESS database of CMIE. For the analysis, foreign...... ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008......-2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...

  20. Science, technology and mission design for LATOR experiment

    Science.gov (United States)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.

    2017-11-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.

  1. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  2. Aerospace Communications Technologies in Support of NASA Mission

    Science.gov (United States)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  3. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  4. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  5. Cradle-to-Grave Logistic Technologies for Exploration Missions

    Science.gov (United States)

    Broyan, James L.; Ewert, Michael K.; Shull, Sarah

    2013-01-01

    Human exploration missions under study are very limited by the launch mass capacity of exiting and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA is Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing four logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion supply gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description, benefits, and challenges of the four technologies under development and a status of progress at the mid ]point of the three year AES project.

  6. LIDAR technology developments in support of ESA Earth observation missions

    Science.gov (United States)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  7. Fission Power System Technology for NASA Exploration Missions

    Science.gov (United States)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  8. The Science and Technology of Future Space Missions

    Science.gov (United States)

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data

  9. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  10. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    Science.gov (United States)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  11. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  12. Mission to Planet Earth: The role of new technologies

    Science.gov (United States)

    Caruso, Paul; Price, Robert

    1997-01-01

    The Mission to Planet Earth (MTPE) Enterprise is a long-duration, comprehensive program to advance scientific knowledge of the Earth as a system. It includes both national and international elements. A diverse array of spacecraft-borne instruments will be placed into various orbits to continuously monitor the land, oceans, atmosphere, ice cover, and solar irradiation. In addition to extending certain sets of data critical to assessing global change, new measurements will be made that further expand our understanding of the world and its dynamic environment. Because the program extends well into the 21st century, programmatic and technical changes are inevitable. This paper addresses the role of new flight and ground system technologies in sustaining the vitality of the MTPE program and describes some specific initiatives that will assist the technology infusion process.

  13. Technology transfers, foreign investment and productivity spillovers

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    2015-01-01

    This paper explores the relationship between foreign direct investment (FDI) and the productivity of host country domestic firms. We rely on a specially designed survey of over 4000 manufacturing firms in Vietnam, and separate out productivity gains along the supply chain (obtained through direct...... transfers of knowledge/technology between linked firms) from productivity effects through indirect FDI spillovers. In addition to identifying indirect vertical productivity spillovers from FDI, our results show that there are productivity gains associated with direct linkages between foreign......-owned and domestic firms along the supply chain not captured by commonly used measures of spillovers. This includes evidence of productivity gains through forward linkages for domestic firms which receive inputs from foreign-owned firms....

  14. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  15. The transfer of nuclear technology: necessities and limitations

    International Nuclear Information System (INIS)

    Haunschild, H.-H.

    1978-01-01

    Political and economical importance of the transfer of nuclear technologies to less developed countries is examined. Energy needs of the world create the necessity of technology transfer. Three levels are distinguished: 1) Basic elements of cooperation are agreed between the two Governments, 2) scientific cooperation and 3) industrial cooperation. Technology transfer is more than mere technology export. Limitations of nuclear technology transfer are: the lack of infrastructure, the high price of a nuclear power station but above all the problem of proliferation. In conclusion the solution of international problems of nuclear energy is the concept of cooperation on the basis of equal rights

  16. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  17. Physicochemical and biological technologies for future exploration missions

    Science.gov (United States)

    Belz, S.; Buchert, M.; Bretschneider, J.; Nathanson, E.; Fasoulas, S.

    2014-08-01

    Life Support Systems (LSS) are essential for human spaceflight. They are the key element for humans to survive, to live and to work in space. Ambitious goals of human space exploration in the next 40 years like a permanently crewed surface habitat on Moon or a manned mission to Mars require technologies which allow for a reduction of system and resupply mass. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. In order to design the most efficient LSS architecture for a given mission scenario, it is important to follow a dedicated design process: definition of requirements, selection of candidate technologies, development of possible LSS architectures and characterisation of LSS architectures by system drivers and evaluation of the LSS architectures. This paper focuses on the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC) and microalgae cultivated in photobioreactors (PBR). LSS architectures and their benefits for selected mission scenarios are demonstrated. Experiments on critical processes and interfaces were conducted and result in engineering models for a PEFC and PBR system which fulfil the requirements of a synergetic integrative environment. The PEFC system (about 1 kW) can be operated with cabin air enriched by stored or biologically generated oxygen instead of pure oxygen. This offers further advantages with regard to thermal control as high oxygen concentrations effect a dense heat production. The PBR system consists of an illuminated cultivation chamber (about 5 l), a nutrients supply and harvesting and analytics units. Especially the chamber enables a microgravity adapted cultivation of microalgae. However, the peripheral units still have to be adapted in order to allow for a continuous and automated cultivation and harvesting. These automation processes will be tested and evaluated by means of a parabolic

  18. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Science.gov (United States)

    2011-03-02

    ...; Comment Request; Generic Submission of Technology Transfer Center (TTC) External Customer Satisfaction... technology transfer customers and stakeholders have never been assessed systematically. Input from these... and instruments, contact John D. Hewes, Ph.D., Technology Transfer Specialist, Technology Transfer...

  19. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  20. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  1. Food irradiation: technology transfer to developing countries

    International Nuclear Information System (INIS)

    Kunstadt, Peter

    1990-01-01

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand but also in the ASEAN region. (author)

  2. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  3. Benefits and technology readiness for using cryogenic instead of storable propellants for return mission from Moon

    Science.gov (United States)

    Plachta, David W.

    1992-01-01

    Cryogenic requirements are examined for new missions to the moon. A comparison is made with previous moon landings and a technology assessment investigates the new requirements for such missions. All of the material is presented in viewgraph format.

  4. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  5. The National Information Infrastructure and Dual-Use Technology Transfer

    National Research Council Canada - National Science Library

    Wigand, Rolf

    1997-01-01

    .... Concepts and principles guiding the organization, structure, and design of Web sites as a suitable medium for electronic technology transfer are from the literature on transaction costs, marketing...

  6. Cooperation arrangements related to technology transfer

    International Nuclear Information System (INIS)

    Eysel, G.

    1986-04-01

    A developing country which considers to launch a nuclear program should put as much as possible efforts to elaborate a program which suits the country's needs as well as reflects its capabilities. It deems advantageous that a developing country makes use of the experience and knowledge in the nuclear field of a partner country already in the phase when exploring the technical and commercial aspects of a nuclear power program. For the different stages of cooperation between two countries a three-level concept appears advisable for establishing the basis for individual cooperation agreement. The first level are agreements between the governments of both countries on joint scientific research projects and technical development programs covering a broad spectrum of activities not limited to the energy sector. At the second level cooperation agreements can already concentrate on the energy sector and e.g. specifically investigate the energy structure of the developing country. If this investigation results in the decision of the developing country to establish a nuclear power program the next level will cover a broad based cooperation in the nuclear field including a large number of different cooperation contracts in various fields. In this stage of bilateral cooperation the main emphasis will be put on industrial cooperation. Cooperation agreements to be concluded between respective partners of both countries may cover fields related to research and development, engineering of a nuclear power plant, manufacturing of its components, erection and installation as well as operation of the plant. The most common agreements refer to technical cooperation, which covers not only the transfer of blueprints but also training of the recipient's personnel in the partner's country and delegation of experts to the recipient's country. The most comprehensive form of cooperation is the foundation of a joint venture company where the technology partner does not only transfer his know

  7. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  8. 75 FR 68600 - Secretarial India High Technology Business Development Mission; February 6-11, 2011

    Science.gov (United States)

    2010-11-08

    ... companies. Key service industries include information technology, telecommunications, hotels, banking, media... U.S. high technology industries. Representatives of the U.S. Trade and Development Agency (USTDA... Department of Commerce Secretarial India High Technology Business Development Mission; February 6...

  9. The evolution of wireless video transmission technology for surveillance missions

    Science.gov (United States)

    Durso, Christopher M.; McCulley, Eric

    2012-06-01

    Covert and overt video collection systems as well as tactical unmanned aerial vehicles (UAV's) and unmanned ground vehicles (UGV's) can deliver real-time video intelligence direct from sensor systems to command staff providing unprecedented situational awareness and tactical advantage. Today's tactical video communications system must be secure, compact, lightweight, and fieldable in quick reaction scenarios. Four main technology implementations can be identified with the evolutionary development of wireless video transmission systems. Analog FM led to single carrier digital modulation, which gave way to multi-carrier orthogonal modulation. Each of these systems is currently in use today. Depending on the operating environment and size, weight, and power limitations, a system designer may choose one over another to support tactical video collection missions.

  10. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  11. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  12. Transfer of nuclear technology: A designer-contractor's perspective

    International Nuclear Information System (INIS)

    See Hoye, D.; Hedges, K.R.; Hink, A.D.

    2000-01-01

    The paper presents the successful Canadian experience in developing a nuclear power technology - CANDU - and exporting it. Consideration is paid to technology that has to be transferred, receiver country objectives and mechanisms and organizational framework. (author)

  13. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  14. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  15. Summary of the National Technology Transfer and Advancement Act

    Science.gov (United States)

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  16. Technology Transfer: Use of Federally Funded Research and Development

    National Research Council Canada - National Science Library

    Schacht, Wendy H

    2007-01-01

    .... These applications can result from technology transfer, a process by which technology developed in one organization, in one area, or for one purpose is applied in another organization, in another...

  17. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    Technology and policy play a twofold role in international environmental laws. Stronger environmental policies encourage new green technologies and likewise, better technologies make it easier to regulate. “Technology transfer” refers to the transfer from one party, an association or institution...... that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...... of international environmental debates. This thesis addresses, firstly, the possible methods of technology transfer and secondly, how current international environmental laws play its role to facilitate the transfer. Accordingly, I have focused on the concerned provisions of Kyoto Protocol and its subsequent...

  18. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  19. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    Science.gov (United States)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  20. A continuing program for technology transfer to the apparel industry

    Science.gov (United States)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  1. Technology transfer and sustainable development in emerging economies

    OpenAIRE

    JAVIER CARRILLO

    2003-01-01

    (WP 01/03 Clave pdf) This paper aims to show how the process of diffusion of "clean technologies" confronts a variety of forces at the macro level that create systematic, technological and institutional barriers to their adoption. There is abundant literature on the role of technology transfer in the development of emerging economies, but this perspective is clearly new. What needs to be borne in mind is the possibility that the transferred dominant technology may be subject to a techno-insti...

  2. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  3. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Aeronautics Research Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.

  4. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  5. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  6. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Programs and Projects for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.

  7. Transfer Trajectory Design for the Mars Atmosphere and Volatile Evolution (MAVEN) Mission

    Science.gov (United States)

    Folta, David; Demcak, Stuart; Young, Brian; Berry, Kevin

    2013-01-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission will determine the history of the loss of volatiles from the Martian atmosphere from a highly inclined elliptical orbit. MAVEN will launch from Cape Canaveral Air Force Station on an Atlas-V 401 during an extended 36-day launch period opening November 18, 2013. The MAVEN Navigation and Mission Design team performed a Monte Carlo analysis of the Type-II transfer to characterize; dispersions of the arrival B-Plane, trajectory correction maneuvers (TCMs), and the probability of Mars impact. This paper presents detailed analysis of critical MOI event coverage, maneuver constraints, deltaV-99 budgets, and Planetary Protection requirements.

  8. Technology Development Roadmap: A Technology Development Roadmap for a Future Gravitational Wave Mission

    Science.gov (United States)

    Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John; hide

    2013-01-01

    Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA

  9. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  10. 76 FR 11203 - Water Technology Trade Mission to India

    Science.gov (United States)

    2011-03-01

    ... considered when determining business size. The dual pricing reflects the Commercial Service's user fee... target markets/ in the mission country(ies)], including likelihood of exports resulting from the mission...

  11. Analysis and technology transfer report, 1989 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

  12. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology

  13. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  14. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  15. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  16. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    OpenAIRE

    Uddin, Mahatab

    2011-01-01

    Technology and policy play a twofold role in international environmental laws. Stronger environmental policies encourage new green technologies and likewise, better technologies make it easier to regulate. “Technology transfer” refers to the transfer from one party, an association or institution that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technolog...

  17. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  18. Success in nuclear technology transfer: A Canadian perspective

    International Nuclear Information System (INIS)

    Lawson, D.S.; Stevens, J.E.S.; Boulton, J.

    1986-10-01

    Technology transfer has played a significant part in the expansion of nuclear power to many countries of the world. Canada's involvement in nuclear technology transfer spans four decades. The experience gained through technology transfer, initially to Canadian industry and then to other countries in association with the construction of CANDU nuclear power plants, forms a basis from which to assess the factors which contribute to successful technology transfer. A strong commitment from all parties, in terms of both financial and human resources, is essential to success. Detailed planning of both the scope and timing of the technology transfer program is also required together with an assessment of the impact of the introduction of nuclear power on other sectors of the economy. (author)

  19. The Lunar IceCube Mission Design: Construction of Feasible Transfer Trajectories with a Constrained Departure

    Science.gov (United States)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2016-01-01

    Lunar IceCube, a 6U CubeSat, will prospect for water and other volatiles from a low-periapsis, highly inclined elliptical lunar orbit. Injected from Exploration Mission-1, a lunar gravity assisted multi-body transfer trajectory will capture into a lunar science orbit. The constrained departure asymptote and value of trans-lunar energy limit transfer trajectory types that re-encounter the Moon with the necessary energy and flight duration. Purdue University and Goddard Space Flight Center's Adaptive Trajectory Design tool and dynamical system research is applied to uncover cislunar spatial regions permitting viable transfer arcs. Numerically integrated transfer designs applying low-thrust and a design framework are described.

  20. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  1. Legal aspects of the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1980-03-01

    The paper stresses the importance of nuclear technology transfer and describes the legal instruments for transfer of technical and scientific technology, particularly from the contractual viewpoint. A description follows of the setting-up of national joint ventures for nuclear power plant projects with emphasis on technological know-how to enable operation of plants in compliance with safety standards. The possibility is discussed of the export of nuclear technology, and finally mention is made of a proposal for a 'code of conduct' on such transfers in the framework of the United Nations, having regard to the 'London agreements' on nuclear exports. (NEA) [fr

  2. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... transfer in these sectors in China and India. We argue that the emphasis should shift from transfer of mitigation technology to international collaboration and local innovation...

  3. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.

  4. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  5. Understanding Spacecraft Agility for Orbit Transfers on the Dawn Low-thrust Mission

    Science.gov (United States)

    Smith, Brett A.; Vanelli, C. Anthony; Lee, Allan Y.

    2012-01-01

    Conventional maneuver design processes were inadequate. Long thrusting durations with the small force of SEP. Increased coupling between ACS and NAV teams. Definition of quantifiable constraints proved impractical. Specifically for the Dawn mission, because of the attitude steering algorithm. A time-efficient simulation tool, qSTAT, was developed and allowed fast verification of candidate thrust profile designs. This approach allowed Dawn to overcome the complications of low-thrust orbit transfers.

  6. Legislation on university technology transfer and research management 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This book deals with legislation on university technology transfer in 2012, which includes invention promotion act, legislation on technology transfer and promotion of industrialization, legislation on industrial education and industrial cooperation, and special legislation on venture business. It lists the legislation related research and development by government department : fundamental law of scientific technique, law on evaluation and management of domestic research development business, national science and technology council and the patent office.

  7. Computers and terminals as an aid to international technology transfer

    Science.gov (United States)

    Sweeney, W. T.

    1974-01-01

    As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.

  8. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  9. Orbit Transfers for Dawn's Vesta Operations : Navigation and Mission Design Experience

    Science.gov (United States)

    Han, Dongsuk

    2012-01-01

    Dawn, a mission belonging to NASA's Discovery Program, was launched on September 27, 2007 to explore main belt asteroids in order to yield insights into important questions about the formation and evolution of the solar system. From July of 2011 to August of 2012, the Dawn spacecraft successfully returned valuable science data, collected during the four planned mapping orbits at its first target asteroid, Vesta. Each mapping orbit was designed to enable a different set of scientific observations. Such a mission would have been impossible without the low thrust ion propulsion system (IPS). Maneuvering a spacecraft using only the IPS for the transfers between the mapping orbits posed many technical challenges to Dawn's flight team at NASA's Jet Propulsion Laboratory. Each transfer needs a robust plan that accounts for uncertainties in maneuver execution, orbit determination, and physical characteristics of Vesta. This paper discusses the mission design and navigational experience during Dawn's Vesta operations. Topics include requirements and constraints from Dawn's science and spacecraft teams, orbit determination and maneuver design and building process for transfers, developing timelines for thrust sequence build cycles, and the process of scheduling very demanding coverage with ground antennae at NASA's Deep Space Network.

  10. An ISM approach for analyzing the factors in technology transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2015-07-01

    Full Text Available Technology transfer, from research and technology organizations (RTOs toward local industries, is considered as one of important and significant strategies for countries' industrial development. In addition to recover the enormous costs of research and development for RTOs, successful technology transfer from RTOs toward local firms forms technological foundations and develops the ability to enhance the competitiveness of firms. Better understanding of factors influencing process of technology transfer helps RTOs and local firms prioritize and manage their resources in an effective and efficient way to maximize the success of technology transfer. This paper aims to identify important effective factors in technology transfer from Iranian RTOs and provides a comprehensive model, which indicate the interactions of these factors. In this regard, first, research background is reviewed and Cummings and Teng’s model (2003 [Cummings, J. L., & Teng, B.-S. (2003. Transferring R&D knowledge: The key factors affecting knowledge transfer success. Journal of Engineering and Technology Management, 20(1-2, 39-68.] was selected as the basic model in this study and it was modified through suggesting new factors identified from literature of inter-organizational knowledge and technology transfer and finally a Delphi method was applied for validation of modified model. Then, research conducted used Interpretive Structural Modeling (ISM to evaluate the relationship between the factors of final proposed model. Results indicate that there were twelve factors influencing on technology transfer process from Iranian RTOs to local firms and also the intensity of absorption capability in transferee could influence on the intensity of desorption capability in transferor.

  11. A new space technology for ocean observation: the SMOS mission

    Directory of Open Access Journals (Sweden)

    Jordi Font

    2012-09-01

    Full Text Available Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity, an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis. SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34 and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

  12. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  13. Nanosat Technology And Managed Risk; An Update Of The CYGNSS Microsatellite Constellation Mission Development

    OpenAIRE

    Rose, Randy; Wells, Will; Rose, Debi; Ruf, Chris; Ridley, Aaron; Nave, Kyle

    2014-01-01

    Existing and forecasted budget constraints continue to drive innovative solutions for space-based mission applications. NASA’s Earth science mission, the Cyclone Global Navigation Satellite System (CYGNSS) was selected as part of NASA's Earth Venture program with a total mission cost cap (excluding launch vehicle) of $103M. Performing valuable science at low cost is only possible given technology innovation and a development risk posture higher than typically accepted for NASA missions. CYGNS...

  14. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  15. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  16. HPCC technology awareness program: Improved economic competitiveness through technology awareness, transfer and application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    A need has been defined by Congress for the DOE National Laboratories to participate in various dual use and technology transfer programs. This requirement has spawned several technology transfer approaches at the DOE laboratories. These programs are designed to encourage large and small business to bring their problems and needs forward, and to allow the labs to transfer effective high performance computing technology to the commercial marketplace. This IG Technologies grant from the DOE was undertaken to address the issues and problems associated with technology transfer between the DOE National Laboratories and commercial industry. The key focus is to gain an understanding of how DOE and industry independently and collectively view the requirements and the missing elements that could allow DOE to facilitate HPCC technology transfer. At issue is HPCC Technology Transfer for the High Performance Computing industry and its relationship to the DOE National Laboratories. Several observations on this are addressed. The issue of a ``Technology Utilization Gap`` between the National Laboratories and Independent Software Vendors is discussed. This study addressed the HPCC Technology Transfer plans of all six DOE National Labs. Study team members briefed numerous industrial users of HPCC technology as to the feasibility of technology transfer for various applications. Significant findings of the effort are that the resistance to technology transfer is much higher than anticipated for both the National Labs and industry. Also, HPCC Technology Transfer is observed to be a large company`s dominion. Small businesses have a difficult time in addressing the requirements of technology transfer using Cooperative Research and Development Agreements (CRADA`s). Large businesses and the DOE National Labs however, often have requirements and objectives which are at cross purposes, making effective technology transfer difficult.

  17. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  19. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  20. Technology transfer and national participation. Key issue paper no. 3

    International Nuclear Information System (INIS)

    Chernilin, Y.F.

    2000-01-01

    Nuclear technology was developed in industrialized countries and largely remains in a few industrialized countries. Non-nuclear countries today find it necessary to import this technology. Some aspects of technology transfer: legal and institutional structure; different type of agreements; arrangements; and national participation are presented in this paper. (author)

  1. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  2. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  3. Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    Science.gov (United States)

    Erickson, C. M.; Hertzberg, D. W.

    1991-01-01

    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  4. Advanced Passive Microwave Radiometer Technology for GPM Mission

    Science.gov (United States)

    Smith, Eric A.; Im, Eastwood; Kummerow, Christian; Principe, Caleb; Ruf, Christoper; Wilheit, Thomas; Starr, David (Technical Monitor)

    2002-01-01

    An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.

  5. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    Science.gov (United States)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  6. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  7. Technology transfer for cucumber ( Cucumis sativus L.) production ...

    African Journals Online (AJOL)

    Pakistan) have encouraged the development of protected agriculture. Semicircular plastic tunnels were introduced in three districts of Balochistan. This technology transfer trials have shown the advantages and benefits of producing cucumber in ...

  8. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  9. U.S. EPA Federal Technology Transfer Program Fact Sheet

    Science.gov (United States)

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  10. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  11. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  12. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  13. Overcoming Barriers to the Transfer and Diffusion of Climate Technologies

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer

    This guidebook provides practical and operational guidance on how to assess and overcome barriersfacing the transfer and diffusion of technologies for climate change mitigation and adaptation.The guidebook is designed to support the analysis of specific technologies, rather than pursuing asectoral...... (e.g. transport) or technology group (e.g. renewable energy) approach.Given that there is no single solution to enhancing technology transfer and diffusion policies needbe tailored to country-specific context and interests. Therefore, the guidebook presents a flexibleapproach, identifying various...

  14. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    Science.gov (United States)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  15. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  16. Technology transfer from NASA to targeted industries, volume 1

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  17. The visible nulling coronagraph -- progress towards mission and technology development

    Science.gov (United States)

    Shao, Michael; Levine, B. Martin; Wallace, J. Kent; Serabyn, Eugene; Liu, Duncan T.; Lane, Benjamin F.

    2004-01-01

    This paper describes a space mission for visible direct detection and spectroscopy of Earth like extrasolar planets using a nulling coronagraph instrument behind a moderately sized telescope in space.

  18. Enabling Ring-Cusp Ion Thruster Technology for NASA Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — ESA is flying T6 Kaufman ion thrusters on the BepiColombo Mission to Mercury in 2018. They are planning to develop a longer life, higher performing, 30-cm ring-cusp...

  19. Technology under Moon and Mars Analog Missions Activities (MMAMA)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Analog Missions research addresses the need for integrated interdisciplinary field experiments as an integral part of preparation for planned human and robotic...

  20. 75 FR 60736 - Water Technology Trade Mission to India

    Science.gov (United States)

    2010-10-01

    ... dual pricing reflects the Commercial Service's user fee schedule that became effective May 1, 2008 (see... potential for business [in the target markets/ in the mission country(ies)], including likelihood of exports...

  1. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  2. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  3. Mass driver reaction engine characteristics and performance in earth orbital transfer missions

    Science.gov (United States)

    Snow, W. R.; Dunbar, R. S.

    1982-01-01

    Configurations of a typical mass driver reaction engine (MDRE) are presented and its use for delivery of payloads to geosynchronous orbit (GEO) from low earth orbit (LEO) is discussed. Basic rocket equations are developed for LEO to GEO round-trip missions using a single exhaust velocity. It is shown that exhaust velocities in the 5-10 km/sec range (specific impulse of 500-1000 sec) are well suited for mass drivers, minimizing the overall cost of missions. Payload delivery rate fractions show that there is little to be gained by stretching out LEO to GEO transfer times from 90 to 180 days. It therefore pays to use the shorter trip time, approximately doubling the amount of delivered payload during any fixed time of use of the MDRE.

  4. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event showcased technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR).

  5. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  6. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  7. International technology identification, transfer, and program support

    International Nuclear Information System (INIS)

    Kitchen, B.

    1993-01-01

    Savannah River Site (SRS) activities primarily address vitrification technologies being investigated with Japan and the former Soviet Union (FSU). They also support the overall management of EM's international activities

  8. Polymer solidification: Technology transfer to DOE and industry

    International Nuclear Information System (INIS)

    Kalb, P.D.; Strand, G.

    1994-01-01

    In keeping with the congressional mandate for technology transfer between federal research and development institutions and U.S. industry, the Brookhaven National Laboratory (BNL) Environmental and Waste Technology Center is pursuing industrial partnership with industry. These efforts, supported by the Department of Energy's Office of Environmental Restoration and Waste Management involve both the transfer of BNL developed technology to industry and the use of commercially developed technologies as part of an integrated waste treatment system. A Cooperative Research and Development Agreement has been established with VECTRA Technologies, Inc. (formerly Pacific Nuclear), a U.S. company that provides waste treatment and other services to the commercial nuclear power industry. The agreement involves investigation of polyethylene encapsulation for treatment of ion exchange resin wastes. In addition, other avenues of cooperation are being investigated including use of a VECTRA Technologies volume reduction pre-treatment process for use with the polyethylene technology in treating aqueous radioactive, hazardous, and mixed wastes

  9. CLIpSAT for Interplanetary Missions: Common Low-cost Interplanetary Spacecraft with Autonomy Technologies

    Science.gov (United States)

    Grasso, C.

    2015-10-01

    Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned

  10. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100

  11. Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  12. Practical manual for technology transfer strategy

    International Nuclear Information System (INIS)

    Heo, Jae Gwan

    2004-03-01

    This book deals with technical transfer strategy in the 21 century, management period of intellectual property, which includes value of invisible and intangible assets, core topic of management of intellectual property construction of virtuous cycle of intellectual and creative activity, and phase and building strategy of intellectual property management system. It also mentions building of useful patent portfolio and strategy with patent problems in business management strategy, case of patent management strategy of IBM in the Uited Sates and Fujitsu in Japan, and profit process using intellectual property outside of the company.

  13. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  14. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  15. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  16. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  17. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  18. Support and Technology Transfer: Results and Accomplishments

    Science.gov (United States)

    2009-07-01

    Advanced Food Technology School of Enviromental and Biological Sciences New Brunswick, NJ 08903 FTR 213 Defense Logistics Agency 8725 John J. Kingsman Rd...Partners in and beyond the CORANET II Program, and maintain a high level of cooperation and rapport. The following modifications were issued :  0002

  19. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Since 1988, epidemics of African cassava mosaic disease (ACMD) caused by a whitefly-transmitted geminivirus have caused severe devastation in Uganda resulting in food shortages and famine in some areas. In order to control the disease and restore food security in the country, appropriate technologies had to be ...

  20. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  1. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... process. It includes basic process design or certain types of engineering designs. The peripheral components correspond to the body of knowledge that is needed for the application of core technologies in producing goods and service activities. (Junta del Acuerdo de categena, 1976). This component also ...

  2. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  3. System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag

    Science.gov (United States)

    Florence, D. E.; Fischer, G.

    1983-08-01

    The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.

  4. Advances in technology transfer at Federal Facilities

    International Nuclear Information System (INIS)

    Silva, R.R. Jr.

    1994-11-01

    The Hanford Site, located in the southeast portion of the state of Washington, is a 1450-hectare (560 square miles) reservation that was selected by the US Government in 1942 for production of the world's first nuclear weapons materials. For more than 40 years, defense production operations at Hanford generated hazardous and radioactive materials and wastes that for the most part remain there today. Environmental restoration of the Hanford Site is the primary mission of the Westinghouse Hanford Company (WHC) and it is also the thrust of the Tri-Party agreement among the US Environmental Protection Agency, the Washington State Department of Ecology and the US Department of Energy. Restoration will require treatment of about 1400 individual locations that are contaminated by chemically hazardous wastes, radioactive wastes, non-hazardous wastes and mixed hazardous and radioactive wastes. These locations include burial sites, storage facilities, obsolete buildings, settling ponds, waste cribs and large and small areas of near-surface and deep soil contamination. Burial trenches contain an estimated 109,000 cubic meters of low-level solid wastes contaminated with hazardous chemicals and radioactive materials. Approximately 450 sites were contaminated by discharge of liquids to the ground and there are about 250 additional areas where waste materials were spilled. At one time, ditches carried water from processing plants to settling/cooling ponds and 131 cribs were used over the years to dispose of slightly radioactive liquid wastes

  5. [Research progress in sperm mediated gene transfer technology].

    Science.gov (United States)

    Hao, Xiaoxiong; Zhu, Zheng; Cao, Mianfu; Li, Chengren; Lin, Yunlai

    2013-04-01

    With the rapid development of biotechnology, we can change the trait of organism using transgenetic technology. In recent years, there are growing interests in the establishment of sperm mediated gene transfer (SMGT) technology as an effective and convenient method to produce transgenic animals. SMGT technology is a transgenetic method, which is easy in operation and does little harm to the cell compared with the other transgenetic methods. In this review, we expound the background, development, mechanism, operation and application of SMGT.

  6. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  7. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    Science.gov (United States)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  8. Technology transfer - LSA project to industry

    Science.gov (United States)

    Gallagher, B. D.

    1981-01-01

    Program goals, procedural steps, and examples of different situations encountered in the Low-cost Solar Array (LSA) project managed at the Jet Propulsion Laboratory in conjunction with industrial contractors are outlined. The project is intended to result in the production-ready status of photovoltaic panels which produce power at $.70/peak W by 1986. The first phase of the program identified materials and processes which were promising for further development. Phase II served to correct steps and materials which did not work and were important to the array processing. The third phase will bring the processes to technical readiness by demonstration of successful fabrication of modules at a scale which can be increased to commercial production. An information exchange is ongoing between manufacturers and the JPL to alter specific steps which yield results which vary from those found in the laboratory when transferred to the factory.

  9. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  10. Building technology transfer meetings: A collaborative model for transferring DOE research results to potential users

    Energy Technology Data Exchange (ETDEWEB)

    Shankle, D.L.; Hawkins, D.M. [Pacific Northwest Lab., Richland, WA (United States); Love, P.M. [Oak Ridge National Lab., TN (United States); Wilde, G.M. [Lawrence Berkeley Lab., CA (United States)

    1994-08-01

    Transferring the technology and results from U.S. Department of Energy (DOE)-sponsored building energy research to potential users is a critical part of DOE`s successful research programs. To assist in this transfer of information and technologies, the DOE Office of Building Technologies (OBT) has established Building Technology Transfer Meetings that are held twice each year at one of the 10 DOE Regional Support Offices. Meeting participants include DOE personnel and representatives from each of the national laboratories involved in OBT buildings energy research as well as representatives from the DOE Regional Support Offices and other agencies involved in the buildings sector. Since 1991, OBT has held five meetings: Washington D.C., San Francisco, Denver, Oak Ridge, and Seattle. The purpose of these meetings is twofold: (1) for DOE to share information about such topics as new research results, new technologies, and new ways to collaborate with industry and universities to leverage resources; and (2) for the participants to use this information within their region to accelerate the transfer and deployment of new energy-efficient building technologies. The meetings include presentations, demonstrations, and tours. The meetings have provided an excellent opportunity for staff from the Regional Support Offices to learn about new technologies through their interactions with OBT and national laboratory program managers. Meeting tours and demonstrations have provided beneficial opportunities to get hands-on experience with new technologies and to see them in practice.

  11. Year 2000 Certification of Mission-Critical DoD Information Technology Systems

    National Research Council Canada - National Science Library

    1998-01-01

    Our objective was to determine whether the year 2000 certification process is adequate to ensure that mission critical DoD information technology systems will continue to operate properly after the year 2000...

  12. KickSat: A Crowd-Funded Technology Demonstration Mission for the Sprite ChipSat

    Data.gov (United States)

    National Aeronautics and Space Administration — KickSat is a cubesat technology demonstration mission designed to demonstrate the deployment and operation of prototype sprite "ChipSats" (femtosatellites) developed...

  13. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  14. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  15. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  16. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  17. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  18. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  19. A practical approach to the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Segerberg, F.

    1978-01-01

    The paper deals specifically with the transfer of light-water reactor technology to a developing country. The technology transfer scheme presented assumes that Sweden is the supplier of this technology. The basis of the proposed approach is that hardware deliveries for nuclear power plants in the recipient country should constitute an activity in parallel with the general technology transfer. It is pointed out that the developing countries form a very heterogeneous group with respect to industrial capability. On the other hand the supplier nations are not a homogeneous group. Sweden's most relevant characteristics as supplier nation can be summarized under the following headings: (i) fairly small and highly industrialized country; (ii) concentration on nuclear power to cover increasing electricity demands; (iii) independent reactor technology; (iv) well-established infrastructure with regard to component manufacturing; (v) political neutrality. It follows that each combination of two countries constitutes a unique example. The nuclear technology transfer schemes must consequently be extremely flexible. The paper outlines a 'modular' system. This concept means that the supplier offers a great variety of independent courses, training opportunities, facilities etc. which can then be combined into a package meeting the wishes of the recipient nation. The components in a Swedish package of this kind are elaborated. The paper ends with the general conclusion that Sweden has so far been successful in combining high national ambitions with limited manpower and limited financial resources. The underlying efficiency and flexibility will hopefully make Sweden an attractive partner for developing countries. (author)

  20. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers

    Science.gov (United States)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.

    2013-03-01

    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  1. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  2. Technology transfer into the solid propulsion industry

    Science.gov (United States)

    Campbell, Ralph L.; Thomson, Lawrence J.

    1995-01-01

    This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.

  3. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  4. Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

    Directory of Open Access Journals (Sweden)

    Goo-Hwan Shin

    2014-03-01

    Full Text Available The next generation small satellite-1 (NEXTSat-1 program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS and NIR Imaging Spectrometer for Star formation history (NISS. The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST and Korea Astronomy and Space science Institute (KASI respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1’s mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1’s science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  6. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  7. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    Science.gov (United States)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  8. Two perspectives on a successful lab/industry technology transfer

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Ulbrich, R.

    1995-01-01

    Technology transfer from government laboratories to private business is of increasing concern in today's marketplace. Some prospective partners (on both sides) believe that technology transfer is a relatively simple process requiring little or no extra effort from the participants. In the authors experience this is not true and, in fact, positive results from a collaboration are directly proportional to the effort that both parties invest in the relationship. Communication, both between prospective partners before an agreement and between partners following the agreement, is essential. Neither technology nor marketing can stand by itself; it is the combination of the two that can produce a useful and available product. Laboratories and industries often have very different ways of looking at almost everything. Misunderstandings arising from these differences can short-circuit the transfer process or result in the production of a product that is unsalable. The authors will cover some of their experiences, potential problems, and their solutions. Examples discussed here is transfer of technology for long-range alpha detection developed at Los Alamos National Laboratory and transferred to Eberline Instrument Corporation

  9. Thinking of serving nursing abroad: how technology assists nurses on mission trips.

    Science.gov (United States)

    Brown, Rachel M

    2015-06-01

    Advances in technology have assisted in the proliferation of short-term, faith-based international medical mission trips. Many of these mission trips include health care not only to local citizens but also building schools and churches and sharing the Gospel of Jesus Christ. Included in this article are my own personal experiences in short-term, faith-based medical missions. A step-by-step guide is offered to help prepare inexperienced mission participants gain insight into short-term mission trips. Advanced planning, fundraising, collaboration, and being open to change are key elements to successful participation in these life-changing missions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Technology transfer assessment in the nuclear agreement Brazil-Germany

    International Nuclear Information System (INIS)

    Cecchi, J.C.

    1985-04-01

    The three main arguments utilized in the Nuclear Brazil-Germany Agreement celebrated in 1975 were the following: a) the low Brazilian hydroelectric potential insufficient to attend the increasing of electrical energy demand; b) the low cost of nuclear energy related to hydroelectric energy: c) and finally, the nuclear technology transfer, involving inclusive the fuel cycle and that could permit to Brazil self-sufficiency in the nuclear energy field. Thus, this work intends to describe and discussing the 'technology transfer strategy' trying to understand and showing which are its main characteristics, and also which are the real actuals results. (author) [pt

  11. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... and trade unions to articulate their interests and define the issues, in particular with regard to the working environment and the external environment? The paper will discuss these questions by exploring the significance of labour market structures, labour-management relations, concepts of knowledge...

  12. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  13. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  14. Technology transfer from NASA to targeted industries, volume 2

    Science.gov (United States)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  15. Terrestrial Planet Finder Coronagraph : technology and mission design studies

    Science.gov (United States)

    Ford, Virginia G.

    2004-01-01

    The Terrestrial Planet Finder (TPF) coronagraph study involves exploring the technologies that enable a coronagraph style instrument to image and characterize earth-like planets orbiting nearby stars. Testbeds have been developed to demonstrate the emerging technologies needed for this effort and an architecture study has resulted in designs of a facility that will provide the environment needed for the technology to function in this role. A broad community of participants is involved in this work through studies, analyses, fabrication of components, and participation in the design effort. The scope of activities - both on the technology side and in the architecture study side - will be presented in this paper. The status and the future plans of the activities will be reviewed.

  16. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  17. Transfer And Adoption Of Labour Saving Technologies | Idu ...

    African Journals Online (AJOL)

    The study was carried out to assess the transfer and adoption of labour saving technologies in Apa Local Government area of BenueState. A total sample size One Hundred and Twenty was used in the study. Interview schedule was used to collect the data from respondents. The results revealed that herbicide was adopted ...

  18. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... written determination letter to SBA, the Senate Committee on Small Business and Entrepreneurship, the... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with...

  19. The Role of Education in Technology Transfer and Poverty ...

    African Journals Online (AJOL)

    The variations in the extent of its severity across countries depend on many economic and social variables prominent among which is the educational structure, which often determine people's vulnerability to poverty. This paper therefore reports on the role of education in technology transfer and highlights strategic options ...

  20. Globalization, Technology Transfer and the Knowledge Gap: Case ...

    African Journals Online (AJOL)

    This paper, discusses the impact of oligopolistic research on transfer of global pharmaceutical manufacturing technology to the less developed countries of the South (Nigeria) in post globalism. On the basis of empirical evidence from the advanced industrialized world, it is argued that the growth of oligopolistic research has ...

  1. TECHNOLOGY TRANSFER NETWORKS ON PAPAYA PRODUCTION WITH TRANSITIONAL GROWERS

    Directory of Open Access Journals (Sweden)

    Octavio Cano-Reyes

    2012-11-01

    Full Text Available Social networks analysis applied to rural innovation processes becomes a very useful technology transfer tool, since it helps to understand the complexity of social relationships among people and/or institutions in their environment, and it also defines those innovation networks given in specific working groups or regions. This study was conducted from April to May 2011 to determine those networks and key players present in the group of growers associated as “Productora y Comercializadora de Papaya de Cotaxtla S.P.R. de R.L.”, that influence the technology transfer process in Cotaxtla, Veracruz, Mexico. Data were analyzed using UCINET 6 software. Three centrality measures were obtained: range, degree of mediation and closeness. Of 32 network players, 27 actively diffuse innovations according to their interests; alliances must be established with them to transfer technology. Four growers stand out as central actors, which along with the Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, the Colegio de Postgraduados and the growers’ organization itself, could be the most appropriate actors to establish a technology transfer program to accelerate the diffusion and adoption of innovations. Wholesalers, middlemen and credit institutions do not participate in this process, but having capital they could be incorporated in the innovation diffusion process.

  2. University-Industry Technology Transfer in Hong Kong

    Science.gov (United States)

    Poon, Patrick S.; Chan, Kan S.

    2007-01-01

    In the modern knowledge economy, higher educational institutions are being required to deal with commercialising the results of their research, spinning out knowledge-based enterprises and facilitating technology transfer between their research centres and industrial firms. The universities are undergoing changes in institutional and…

  3. Technology transfer between the government and the aerospace industry

    Science.gov (United States)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  4. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  5. Technology transfer: A cooperative agreement and success story

    International Nuclear Information System (INIS)

    Reno, H.W.; McNeel, K.; Armstrong, A.T.; Vance, J.K.

    1996-01-01

    This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations

  6. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  7. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  8. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  9. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  10. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  11. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  12. Applications of aerospace technology in industry. A technology transfer profile: Cryogenics

    Science.gov (United States)

    1971-01-01

    Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.

  13. Status of the fast mission : Micro-satellite formation flying for technology, science and education

    NARCIS (Netherlands)

    Guo, J.; Maessen, D.C.; Gill, E.K.A.; Moon, S.G.; Zheng, G.

    2009-01-01

    FAST (Formation for Atmospheric Science and Technology demonstration) is a cooperative Dutch Chinese formation flying mission led by Delft University of Technology (TU Delft) in the Netherlands and Tsinghua University in China. It is expected to be the first international micro-satellite formation

  14. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  15. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    Science.gov (United States)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  16. Research in space commercialization, technology transfer, and communications

    Science.gov (United States)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  17. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  18. The Impact of Information Technology on the Design, Development, and Implementation of a Lunar Exploration Mission

    Science.gov (United States)

    Gross, Anthony R.; Sims, Michael H.; Briggs, Geoffrey A.

    1996-01-01

    From the beginning to the present expeditions to the Moon have involved a large investment of human labor. This has been true for all aspects of the process, from the initial design of the mission, whether scientific or technological, through the development of the instruments and the spacecraft, to the flight and operational phases. In addition to the time constraints that this situation imposes, there is also a significant cost associated with the large labor costs. As a result lunar expeditions have been limited to a few robotic missions and the manned Apollo program missions of the 1970s. With the rapid rise of the new information technologies, new paradigms are emerging that promise to greatly reduce both the time and cost of such missions. With the rapidly increasing capabilities of computer hardware and software systems, as well as networks and communication systems, a new balance of work is being developed between the human and the machine system. This new balance holds the promise of greatly increased exploration capability, along with dramatically reduced design, development, and operating costs. These new information technologies, utilizing knowledge-based software and very highspeed computer systems, will provide new design and development tools, scheduling mechanisms, and vehicle and system health monitoring capabilities that have hitherto been unavailable to the mission and spacecraft designer and the system operator. This paper will utilize typical lunar missions, both robotic and crewed, as a basis to describe and illustrate how these new information system technologies could be applied to all aspects such missions. In particular, new system design tradeoff tools will be described along with technologies that will allow a very much greater degree of autonomy of exploration vehicles than has heretofore been possible. In addition, new information technologies that will significantly reduce the human operational requirements will be discussed.

  19. Blind Technology Transfer or Technological Knowledge Leakage: a Case Study from the South

    Directory of Open Access Journals (Sweden)

    Dario Codner

    2012-07-01

    Full Text Available Blurring boundaries between science and technology is a new phenomenon especially in fields such as biotechnology. The present work shows the fate of biotech research papers on foreign patents produced during the last decade in Quilmes National University. It aims at recognizing the flow of scientific knowledge developed at a public university towards foreign companies and organizations as well as reflecting on its technological value, the role of technology transfer management, the institutional significance of technology transfer processes and the need to develop innovative public policies for solving structural failures caused by industrial underdevelopment

  20. Development Challenges of Game-Changing Entry System Technologies From Concept to Mission Infusion

    Science.gov (United States)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Don; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2016-01-01

    Realization within the US and NASA that future exploration both Human and Robotic will require innovative new technologies led to the creation of the Space Technology Mission Directorate and investment in game changing technologies with high pay-off. Some of these investments will see success and others, due to many of the constraints, will not attain their goal. The co-authors of this proposed presentation have been involved from concept to mission infusion aspects of entry technologies that are game changing. The four example technologies used to describe the challenges experienced along the pathways to success are at different levels of maturity. They are Conformal, 3-D MAT, HEEET and ADEPT. The four examples in many ways capture broad aspects of the challenges of maturation and illustrate what led some to be exceptionally successful and how others had to be altered in order remain viable game changing technologies.

  1. Tech transfer outreach. An informal proceedings of the first technology transfer/communications conference

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, S. [ed.

    1992-10-01

    This document provides an informal summary of the conference workshop sessions. ``Tech Transfer Outreach!`` was originally designed as an opportunity for national laboratory communications and technology transfer staff to become better acquainted and to discuss matters of mutual interest. When DOE field office personnel asked if they could attend, and then when one of our keynote speakers became a participant in the discussions, the actual event grew in importance. The conference participants--the laboratories and DOE representatives from across the nation--worked to brainstorm ideas. Their objective: identify ways to cooperate for effective (and cost-effective) technology transfer outreach. Thus, this proceedings is truly a product of ten national laboratories and DOE, working together. It candidly presents the discussion of issues and the ideas generated by each working group. The issues and recommendations are a consensus of their views.

  2. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    Science.gov (United States)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  3. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... organizational arrangements for technology transfer which reflect the overall industry maturity in the solar PV sectors in these countries. This has great potential for long-term climate change mitigation efforts. However, the initiation of these new organizational arrangements often preceded the supply...... of technology into CDM projects. This raises important questions about the role of CDM in spearheading the development of technological capabilities required for sustainable development. The paper uses these findings to add to the literature about technology in CDM and to the wider policy debates over...

  4. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Stackpoole, M.; Boghozian, T.; Chavez-Garcia, J.; Ellerby, D.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.; hide

    2017-01-01

    Future NASA robotic missions utilizing an entry system into Venus and the outer planets, results in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or AVCOAT. Previously, mission planners had to assume the use of fully dense carbon phenolic heatshields similar to what was flown on Pioneer Venus or Galileo. Carbon phenolic is a robust TPS material, however, its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. NASA has decided to invest in new technology development rather than invest in reviving carbon phenolic. The HEEET project, funded by STMD is maturing a game changing Woven Thermal Protection System technology. HEEET is a capability development project and is not tied to a single mission or destination, therefore, it is challenging to complete ground testing needed to demonstrate a capability that is much broader than any single mission or destination would require. This presentation will status HEEET progress. Near term infusion target for HEEET is the upcoming New Frontiers (NF-4) class of competitively selected Science Mission Directorate (SMD) missions for which it is incentivized.

  5. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  6. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  7. Westinghouse experience in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1977-01-01

    Westinghouse experience with transfer of technical information is two-sided. First is our experience in learning, and the second is our experience in teaching others. Westinghouse conducts a special school to which government, academic and industry people are invited. There are many problems involved in all technology transfers; these include: keeping information current, making certain changes are compatible with the supplier's manufacturing capability and also suitable to the receiver, patent right and proprietary information. The building, testing and maintenance of the unit on the line - and then a succession of its sister plant is the basis for the Westinghouse leadership

  8. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  9. Technology transfer and the Argentina-German cooperation agreement

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessary imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has shown recently new concepts for the implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is conditioned by the latter requirement for simulataneous assistance to create or promote that infrastructure. An example of international cooperation to meet the requirement explained above is the Argentine-German agreement for the peaceful applications of nuclear energy. Since 1971 it has been used to strengthen the scientific and technical programs of the Argentine Atomic Energy Commission, by application to fields relevant by its industrial implications. The objectives and implementation of the agreement are described: cooperative actions where initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-76 are critically analyzed. This analysis has influenced the selection of future cooperative projects as well as the extension of the cooperation to other nuclear fields of common interest [es

  10. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  11. Exploring student engagement and transfer in technology mediated environments

    Science.gov (United States)

    Sinha, Suparna

    Exploring student engagement and transfer of mechanistic reasoning skills in computer-supported learning environments by SUPARNA SINHA Dissertation Director: Cindy Hmelo-Silver Computer-supported environments designed on learning science principles aim to provide a rich learning experience for students. Students are given opportunities to collaborate, model their understanding, have access to real-time data and engage in hypotheses testing to solve authentic problems. That is to say that affordances of technologies make it possible for students to engage in mechanistic reasoning, a complex inquiry-oriented practice (Machamer, Craver & Darden, 2000; Russ et al., 2008). However, we have limited understanding of the quality of engagement fostered in these contexts. This calls for close observations of the activity systems that the students participate in. The situative perspective focuses on analyzing interactions of individuals (students) with other people, tools and materials within activity systems (Greeno, 2006). Importantly, as the central goal of education is to provide learning experiences that are useful beyond the specific conditions of initial learning, analysis of such interactions sheds light on key experiences that lead to transfer of mechanistic reasoning skills. This is made possible, as computer-supported contexts are activity systems that bring forth trends in students' engagement. From a curriculum design perspective, observing student engagement can be a useful tool to identify features of interactions (with technological tools, peers, curriculum materials) that lead to successful learning. Therefore, the purpose of the present studies is to explore the extent to which technological affordances influence students' engagement and subsequent transfer of reasoning skills. Specifically, the goal of this research is to address the following research questions: How do learners generalize understanding of mechanistic reasoning in computer

  12. Helicopter mission optimization study. [portable computer technology for flight optimization

    Science.gov (United States)

    Olson, J. R.

    1978-01-01

    The feasibility of using low-cost, portable computer technology to help a helicopter pilot optimize flight parameters to minimize fuel consumption and takeoff and landing noise was demonstrated. Eight separate computer programs were developed for use in the helicopter cockpit using a hand-held computer. The programs provide the helicopter pilot with the ability to calculate power required, minimum fuel consumption for both range and endurance, maximum speed and a minimum noise profile for both takeoff and landing. Each program is defined by a maximum of two magnetic cards. The helicopter pilot is required to key in the proper input parameter such as gross weight, outside air temperature or pressure altitude.

  13. Reliability versus mass optimization of CO2 extraction technologies for long duration missions

    Science.gov (United States)

    Detrell, Gisela; Gríful i Ponsati, Eulàlia; Messerschmid, Ernst

    2016-06-01

    The aim of this paper is to optimize reliability and mass of three CO2 extraction technologies/components: the 4-Bed Molecular Sieve, the Electrochemical Depolarized Concentrator and the Solid Amine Water Desorption. The first one is currently used in the International Space Station and the last two are being developed, and could be used for future long duration missions. This work is part of a complex study of the Environmental Control and Life Support System (ECLSS) reliability. The result of this paper is a methodology to analyze the reliability and mass at a component level, which is used in this paper for the CO2 extraction technologies, but that can be applied to the ECLSS technologies that perform other tasks, such as oxygen generation or water recycling, which will be a required input for the analysis of an entire ECLSS. The key parameter to evaluate any system to be used in space is mass, as it is directly related to the launch cost. Moreover, for long duration missions, reliability will play an even more important role, as no resupply or rescue mission is taken into consideration. Each technology is studied as a reparable system, where the number of spare parts to be taken for a specific mission will need to be selected, to maximize the reliability and minimize the mass of the system. The problem faced is a Multi-Objective Optimization Problem (MOOP), which does not have a single solution. Thus, optimum solutions of MOOP, the ones that cannot be improved in one of the two objectives, without degrading the other one, are found for each selected technology. The solutions of the MOOP for the three technologies are analyzed and compared, considering other parameters such as the type of mission, the maturity of the technology and potential interactions/synergies with other technologies of the ECLSS.

  14. Space Technology 5 – Enabling Future Constellation Missions Using Micro-Satellites for Space Weather

    OpenAIRE

    Le, Guan; Moore, Thomas; Slavin, James

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn – dusk, sun synchronous polar orbit on March 22, 2006. The spacecraft were maintained in a “pearls on a string” constellation with controlled spacing ranging from just over 5000 km down to under 50 km. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG). Although the short 90-day mission was designed to flight validate new technologies, the constellation mission returned...

  15. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  16. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  17. Technology transfers, foreign investment and productivity spillovers: evidence from Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Talbot, Theodore Purdendu

    FDI through vertical linkages along the supply chain. Our results suggest that domestic firms experience more productivity spillovers through forward linkages from foreign-input suppliers to domestic input users than through backward linkages from foreign customers to domestic producers of inputs....... Productivity externalities from upstream sectors are associated with joint venture foreign investors while downstream sectors experience direct technology transfers from upstream wholly foreign owned investors. Spillovers from FDI through backward linkages are also detected but only when competition from...... imported intermediates is controlled for and are associated with innovations and technology investments made by firms....

  18. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  19. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  20. Nuclear engineering and manufacturing technology transfer coproduction with technical assistance

    International Nuclear Information System (INIS)

    Marillier, J.C.; Boury, C.

    1985-10-01

    This paper emphasizes in the specific areas of design, engineering, and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of successful implementation of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  1. Fastening Transfer of Technology Through the Franchise Agreement

    OpenAIRE

    Asikin, Zainal

    2014-01-01

    The major improvement of franchise practices in Indonesian within the last 10 (ten) years has speeded to many region. Yet the government and local government under informed about the exact concept and regulation of franchise. Therefore this research meant to find out the concept of franchise and how the government regulate franchise agreement and its relation with transfer of technology. This research in a normative research as a way to depth study legal norms in various primary and secondary...

  2. INTERNATIONAL TECHNOLOGY TRANSFER AND LOCALIZATION: SUCCESS STORIES IN NUCLEAR BRANCH

    Directory of Open Access Journals (Sweden)

    Yulia V. Chernyakhovskaya

    2016-01-01

    Full Text Available countries are considering nuclear power industry development [2, p. 3; 3, p. 3; 4]. For newcomer-countries it is of great importance to stimulate the national industry through NPP projects implementation based on technology transfer and localization (TTL. The study and systematization of world experience is useful in purpose to elaborate the national industry development programs. Objectives. The aim of article is to determine success factors of TTL; tasks: 1 to study TTL international experience in the fi eld of nuclear power technologies; 2 on the ground of the world practice to analyze preconditions, contents, stages, arrangement modes, formats and results of TTL. Methods. The following methods are utilized in the study: analysis and synthesis including problem-chronological, cause and eff ect and logical analysis and historical-diachronic method (method of periodization. Results. The following conclusions presented below have been made on the basis of the three cases study related to nuclear industry development using TTL (France, South Korea and China. Conclusions. The TTL success factors includes: Government support that provides long-term governmental development plan of nuclear power and industry for nuclear power based on TTL, and an appropriate international cooperation (under favorable conditions of “NPP buyers market”; Complex approach to implementation of the national TTL program and NPP construction projects: signing of NPP construction contracts with vendors stipulating technology transfer; NPP designing and constructing should be performed jointly with training and transferring of technical documentation and software. Technology transfer cooperation should be implemented through the licenses agreements and setting up joint ventures; Public acceptance and support.

  3. Embryo transfer and related technologies in sheep reproduction

    OpenAIRE

    Loi, Pasqualino; Ptak, Grazyna; Dattena, Maria; Ledda, Sergio; Naitana, Salvatore; Cappai, Pietro

    1998-01-01

    This paper reviews the status of embryo transfer and the major technologies applied to preimplantation of embryos in sheep. Embryo production from superovulated ewes is hindered by an unpredictable response to hormonal treatment. Progress in this area should be expected by an appropriated control of follicular development with gonadotropin-releasing hormone (GnRH) agonist or antagonist prior to gonadotrophin administration. Simple protocols for the cryopreservation of sheep embryos by vitrifi...

  4. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    Stephanie S. Shipp Gina K. Walejko Pamela B. Rambow Vanessa Peña Sherrica S. Holloman Phillip N. Miller Approved for public release; distribution is...Stephanie S. Shipp Gina K. Walejko Pamela B. Rambow Vanessa Peña Sherrica S. Holloman Phillip N. Miller iii Executive Summary Technology transfer is...1 From “About the Department of Defense (DOD),” http://www.defense.gov/about/. 2 S. V. Howieson, S. S. Shipp , G. K. Walejko

  5. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  6. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  7. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  8. SMART-1 technology, scientific results and heritage for future space missions

    Science.gov (United States)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-05-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

  10. Anaerobic digestion and opportunities for international technology transfer

    International Nuclear Information System (INIS)

    Lusk, P.D.

    1997-01-01

    Unmanaged pollutants from organic farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only prevents pollution but can also convert a disposal problem into a new profit center. This report summarizes the current status of AD as a key technology that both reduces waste and recovers a fuel and other valuable co-products, and AD possibilities for the future. Beyond the technology arena, this paper also discusses the efforts of the International Energy Agency (IEA) Bioenergy AD Activity to encourage technology deployment. The Activity aims to provide reliable information on the cost-effectiveness of AD, markets for biogas and the other co-products, advanced technologies for biogas utilization, environmental benefits, and institutional barriers. The Activity's principal objectives are to accelerate exchange of information and practical experience, identify barriers to the deployment of AD technology, encourage the use of AD technology, and, where relevant, assist and encourage national Pilot and Demonstration (P and D) programs. The goal of these objectives is to increase the deployment of AD technologies and to transfer the ''lessons learned'' from past experience. (author)

  11. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  12. Infrared and submillimeter space missions in the coming decade programmes, programmatics, and technology

    CERN Document Server

    Sauvage, Marc; Gallais, Pascal; Vigroux, Laurent

    1996-01-01

    A revolution similar to that brought by CCDs to visible astronomy is still ahead in IR and submillimeter astronomy. There is certainly no wavelength range which has, over the past several years, seen such impressive advances in technology: large-scale detector arrays, new designs for cooling in space, lightweight mirror technologies. Scientific cases for observing the cold universe are outstanding. Observations in the FIR/Submm range will provide answers to such fundamental questions as: What is the spectrum of the primordial fluctuations? How do primeval galaxies look? What are the first stages of star formation? Most of the international space missions that have been triggered by these questions are presented in detail here. Technological issues raised by these missions are reviewed, as are the most recent achievements in cooling and detector technologies.

  13. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  14. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  15. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    Science.gov (United States)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  16. Technology transfer. Determining industry needs: A guide for communities

    Science.gov (United States)

    1993-01-01

    This Guide was developed in accordance with the Memorandum of Understanding between the NASA George C. Marshall Space Flight Center and the following States: Alabama, Georgia, Louisiana, Mississippi, Tennessee, West Virginia. The economic welfare of individual communities is currently a matter of considerable interest. Concern for the position of US industry in the competitive world marketplace is a matter of growing concern as well. This 'guide' describes a process whereby communities may seize the opportunity to improve their own economic destiny. The method described involves linking the technology needs of existing industries to the technologies which are available from Federal Laboratories. Community technology transfer is an 'action possibility' which allows individual citizen groups to do something tangible to improve the economic climate of the places where they live and work. The George C. Marshall Space Flight Center in Huntsville, Alabama is pledged to promote and encourage such efforts, and stands ready to help communities both large and small in that regard.

  17. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Science.gov (United States)

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  18. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    Science.gov (United States)

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  19. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  20. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Bacskay, Allen

    2010-01-01

    Use of heritage and new technology is necessary/enabling to implementing small, low cost missions, yet overruns decrease the ability to sustain future mission flight rates The majority of the cost growth drivers seen in the D&NF study were embedded early during formulation phase and later realized during the development and I&T phases Cost drivers can be avoided or significantly decreased by project management and SE emphasis on early identification of risks and realistic analyses SE processes that emphasize an assessment of technology within the mission system to identify technical issues in the design or operational use of the technology. Realistic assessment of new and heritage spacecraft technology assumptions , identification of risks and mitigation strategies. Realistic estimates of effort required to inherit existing or qualify new technology, identification of risks to estimates and develop mitigation strategies. Allocation of project reserves for risk-based mitigation strategies of each individual area of heritage or new technology. Careful tailoring of inheritance processes to ensure due diligence.

  1. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    Science.gov (United States)

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin

    2017-01-01

    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  2. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  3. Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions

    Science.gov (United States)

    Artis, Gwen R.; James, B.

    2006-12-01

    NASA’s In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the “aeroassist” techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each sub-system technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped “ballutes” and inflatable aeroshells are also under development. Computational tools required

  4. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    Science.gov (United States)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  5. Applications of aerospace technology in industry, a technology transfer profile: Fire safety

    Science.gov (United States)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    The fire safety field is considered as being composed of three parts: an industry, a technology base, and a user base. An overview of the field is presented, including a perspective on the magnitude of the national fire safety problem. Selected NASA contributions to the technology of fire safety are considered. Communication mechanisms, particularly conferences and publications, used by NASA to alert the community to new developments in the fire safety field, are reviewed. Several examples of nonaerospace applications of NASA-generated fire safety technology are also presented. Issues associated with attempts to transfer this technology from the space program to other sectors of the American economy are outlined.

  6. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  7. The educational value of Disaster Victim Identification (DVI) missions-transfer of knowledge.

    Science.gov (United States)

    Winskog, Calle; Tonkin, Anne; Byard, Roger W

    2012-06-01

    Transfer of knowledge is the cornerstone of any educational organisation, with senior staff expected to participate in the training of less experienced colleagues and students. Teaching in the field is, however, slightly different, and a less theoretical approach is usually recommended. In terms of Disaster Victim Identification (DVI) activities, practical work under supervision of a field team stimulates tactile memory. A more practical approach is also useful when multiple organizations from a variety of countries are involved, as language barriers make it easier to manually show someone how to solve a problem, instead of attempting to explain complex concepts verbally. "See one, do one, teach one" is an approach that can be used to ensure that teaching is undertaken with the teacher grasping the essentials of a situation before passing on the information to someone else. The key principles of adult learning that need to be applied to DVI situations include the following: participants need to know why they are learning and to be motivated to learn by the need to solve problems; previous experience must be respected and built upon and learning approaches should match participants' background and diversity; and finally participants need to be actively involved in the learning process. Active learning involves the active acquisition of knowledge and/or skills during the performance of a task and characterizes DVI activities. Learning about DVI structure, activities and responsibilities incorporates both the learning of facts ("declarative knowledge") and practical skills ("procedural knowledge"). A fundamental requirement of all DVI exercises should be succession planning with involvement of less experienced colleagues at every opportunity so that essential teaching and learning opportunities are maximized. DVI missions provide excellent teaching opportunities and international agencies have a responsibility to teach less experienced colleagues and local staff

  8. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  9. [Development and technological transfer of functional pastas extended with legumes].

    Science.gov (United States)

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  10. The Large UV/Optical/Infrared Surveyor (LUVOIR): Decadal Mission concept technology development overview

    Science.gov (United States)

    Bolcar, Matthew R.

    2017-09-01

    The Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor is one of four large mission concept studies being developed by NASA for consideration in the 2020 Astrophysics Decadal Survey. LUVOIR will support a broad range of science objectives, including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. The LUVOIR Science and Technology Definition Team (STDT) has tasked a Technology Working Group (TWG), with more than 60 members from NASA centers, academia, industry, and international partners, with identifying technologies that enable or enhance the LUVOIR science mission. The TWG has identified such technologies in the areas of Coronagraphy, Ultra-Stable Opto-mechanical Systems, Detectors, Coatings, Starshades, and Instrument Components, and has completed a detailed assessment of the state-of-the-art. We present here a summary of this technology assessment effort, as well as the current progress in defining a technology development plan to mature these technologies to the required technology readiness level (TRL).

  11. Progress Towards providing Heat-Shield for Extreme Entry Environment Technology (HEEET) for Venus and other New Froniters Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2017-01-01

    Heat-shield for Extreme Entry Environment Technology (HEEET) has been in development since 2014 with the goal of enabling missions to Venus, Saturn and other high-speed sample return missions. It is offered as a new technology and incentivized for mission use in the New Frontiers 4 AO by NASA. The current plans are to mature the technology to TRL 6 by FY18. The HEEET Team has been working closely with multiple NF-4 proposals to Venus, Saturn and has been supporting recent Ice-Giants mission studies. This presentation will provide progress made to date and the plans for development in FY18.

  12. Can CDM bring technology transfer to China?-An empirical study of technology transfer in China's CDM projects

    International Nuclear Information System (INIS)

    Wang Bo

    2010-01-01

    China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.

  13. A comparison of superconductor and manganin technology for electronic links used in space mission applications

    Science.gov (United States)

    Caton, R.; Selim, R.; Buoncristiani, A. M.

    1992-01-01

    The electronic link connecting cryogenically cooled radiation detectors to data acquisition and signal processing electronics at higher temperatures contributes significantly to the total heat load on spacecraft cooling systems that use combined mechanical and cryogenic liquid cooling. Using high transition temperature superconductors for this link has been proposed to increase the lifetime of space missions. Herein, several YBCO (YBa2Cu3O7) superconductor-substrate combinations were examined and total heat loads were compared to manganin wire technology in current use. Using numerical solutions to the heat-flow equations, it is shown that replacing manganin technology with YBCO thick film technology can extend a 7-year mission by up to 1 year.

  14. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    Science.gov (United States)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  15. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  16. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  17. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  18. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  19. Evaluation of technology transfer on collider quadrupole manufacture at LBL

    International Nuclear Information System (INIS)

    Boeer, J.; Fechteler, H.; Moryson, H.; Sommer, F.; Grueneberg, H.; Kreutz, R.; Krischel, D.; Bensiek, W.; Ryan, B.

    1992-01-01

    As part of the contract on the collider quadruple magnets a technology transfer to Siemens Power Generation Group (KWU) was performed at Lawrence Berkeley Laboratory, Berkeley in September 1991. One inner and outer 1 m long coil each should be manufactured under the surveillance of LBL staff to become familiar with the coil production facilities available at LBL. In addition, KWU had the possibility to observe the production process of 5 m quadruple coils. The work is successfully completed and provided additional information for the further hardware operations at the Siemens site

  20. SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the Iodine Satellite (iSAT) Project

    Science.gov (United States)

    Dankanich, John W.

    2014-01-01

    Closing Remarks: ?(1) SmallSats hold significant potential for future low cost high value missions; (2) Propulsion remains a key limiting capability for SmallSats that Iodine can address: High ISP * Density for volume constrained spacecraft; Indefinite quiescence, unpressurized and non-hazardous as a secondary payload; (3) Iodine enables MicroSat and SmallSat maneuverability: Enables transfer into high value orbits, constellation deployment and deorbit; (4) Iodine may enable a new class of planetary and exploration class missions: Enables GTO launched secondary spacecraft to transit to the moon, asteroids, and other interplanetary destinations for approximately 150 million dollars full life cycle cost including the launch; (5) ESPA based OTVs are also volume constrained and a shift from xenon to iodine can significantly increase the transfer vehicle change in volume capability including transfers from GTO to a range of Lunar Orbits; (6) The iSAT project is a fast pace high value iodine Hall technology demonstration mission: Partnership with NASA GRC and NASA MSFC with industry partner - Busek; (7) The iSAT mission is an approved project with PDR in November of 2014 and is targeting a flight opportunity in FY17.

  1. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  2. Real-time data system: Incorporating new technology in mission critical environments

    Science.gov (United States)

    Muratore, John F.; Heindel, Troy A.

    1990-01-01

    If the Space Station Freedom is to remain viable over its 30-year life span, it must be able to incorporate new information systems technologies. These technologies are necessary to enhance mission effectiveness and to enable new NASA missions, such as supporting the Lunar-Mars Initiative. Hi-definition television (HDTV), neural nets, model-based reasoning, advanced languages, CPU designs, and computer networking standards are areas which have been forecasted to make major strides in the next 30 years. A major challenge to NASA is to bring these technologies online without compromising mission safety. In past programs, NASA managers have been understandably reluctant to rely on new technologies for mission critical activities until they are proven in noncritical areas. NASA must develop strategies to allow inflight confidence building and migration of technologies into the trusted tool base. NASA has successfully met this challenge and developed a winning strategy in the Space Shuttle Mission Control Center. This facility, which is clearly among NASA's most critical, is based on 1970's mainframe architecture. Changes to the mainframe are very expensive due to the extensive testing required to prove that changes do not have unanticipated impact on critical processes. Systematic improvement efforts in this facility have been delayed due to this 'risk to change.' In the real-time data system (RTDS) we have introduced a network of engineering computer workstations which run in parallel to the mainframe system. These workstations are located next to flight controller operating positions in mission control and, in some cases, the display units are mounted in the traditional mainframe consoles. This system incorporates several major improvements over the mainframe consoles including automated fault detection by real-time expert systems and color graphic animated schematics of subsystems driven by real-time telemetry. The workstations have the capability of recording

  3. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  4. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  5. Technological transfers and cooperation in the field of climatic change

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    Fighting against climatic changes and adapting to them is a necessary condition to achieve sustainable development. The ultimate goal of the Framework Convention on Climate Change signed in Rio in 1992, and specified in article 2, is to stabilize the concentrations of greenhouse gases at a level that does not threaten climatic systems and allows ecosystems to adapt to climatic change, ensures that food production is not in danger and that sustainable development be achieved. A radical paradigm change is required, and in particular the adoption of new technologies. First, the new technologies must assist in limiting the emissions of greenhouse gases, both in industrialized and developing countries, and to adapt to the climatic changes. The author is of the opinion that technology transfers represent a means to address the issue of climatic change. The concentration of carbon dioxide in the atmosphere continues to increase since the advent of the industrial revolution. It seems dubious that we will be able to stabilize the climate to its actual level, therefore we must learn to adapt while continuing to reduce the emissions of greenhouse gases. The author then examines the technological cooperation since the adoption of the Marrakech Accords in 2001. The next section deals with technological cooperation between francophone cities of the north and francophone cities of the south. The author concludes by placing the emphasis on the importance of regular meetings and the implementation of specialized networks, such as the network on the technology of arid regions, in an effort to assist the technological cooperation north-south and south-south in the fight against climatic change. 2 figs

  6. Best practices for health and safety technology transfer in construction.

    Science.gov (United States)

    Welch, Laura S; Russell, Dustin; Weinstock, Deborah; Betit, Eileen

    2015-08-01

    Construction continues to be a dangerous industry, yet solutions that would prevent injury and illness do exist. Prevention of injury and illness among construction workers requires dissemination, adoption, and implementation of these effective interventions, or "research to practice" (r2p). CPWR recruited participants with experience and insight into effective methods for diffusion of health and safety technologies in this industry for a symposium with 3 group sessions and 3 breakout groups. The organizers reviewed session notes and identified 141 recommendations, which were then assigned to 13 over-arching themes. Recommendations included a guide for researchers on patenting and licensing, a business case model, and in-depth case studies including development, testing, manufacturing, marketing, and diffusion. A more comprehensive understanding of the health and safety technology transfer landscape, the various actors, and their motivators and goals will help to foster the successful commercialization and diffusion of health and safety innovations. © 2015 Wiley Periodicals, Inc.

  7. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    Science.gov (United States)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  8. Applications of aerospace technology in industry, a technology transfer profile: Plastics

    Science.gov (United States)

    1971-01-01

    New plastics technology bred out of the space program has moved steadily into the U.S. economy in a variety of organized and deliberate ways. Examples are presented of the transfer of plastics know-how into the plants and eventually the products of American business.

  9. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  11. Characterizing the Radiation Survivability of Space Solar Cell Technologies for Heliospheric Missions

    Science.gov (United States)

    Lee, J. H.; Walker, D.; Mann, C. J.; Yue, Y.; Nocerino, J. C.; Smith, B. S.; Mulligan, T.

    2016-12-01

    Space solar cells are responsible for powering the majority of heliospheric space missions. This paper will discuss methods for characterizing space solar cell technologies for on-orbit operations that rely on a series of laboratory tests that include measuring the solar cells' beginning of life performance under simulated (e.g. AM0 or air mass zero) sunlight over different operating temperatures and observing their end of life performance following exposure to laboratory-generated charged particle radiation (protons and electrons). The Aerospace Corporation operates a proton implanter as well as electron gun facilities and collaborates with external radiation effects facilities to expose space solar cells or other space technologies to representative space radiation environments (i.e. heliosphere or magnetosphere of Earth or other planets), with goals of characterizing how the technologies perform over an anticipated space mission timeline and, through the application of precision diagnostic capabilities, understanding what part of the solar cell is impacted by varying space radiation environments. More recently, Aerospace has been hosting solar cell flight tests on its previously-flown CubeSat avionics bus, providing opportunities to compare the laboratory tests to on-orbit observations. We hope through discussion of the lessons learned and methods we use to characterize how solar cells perform after space radiation exposure that similar methodology could be adopted by others to improve the state of knowledge on the survivability of other space technologies required for future space missions.

  12. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  13. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  14. Technology transfer - insider protection workshop (Safeguards Evaluation Method - Insider Threat)

    International Nuclear Information System (INIS)

    Strait, R.S.; Renis, T.A.

    1986-01-01

    The Safeguards Evaluation Method - Insider Threat, developed by Lawrence Livermore National Laboratory, is a field-applicable tool to evaluate facility safeguards against theft or diversion of special nuclear material (SNM) by nonviolent insiders. To ensure successful transfer of this technology from the laboratory to DOE field offices and contractors, LLNL developed a three-part package. The package includes a workbook, user-friendly microcomputer software, and a three-day training program. The workbook guides an evaluation team through the Safeguards Evaluation Method and provides forms for gathering data. The microcomputer software assists in the evaluation of safeguards effectiveness. The software is designed for safeguards analysts with no previous computer experience. It runs on an IBM Personal Computer or any compatible machine. The three-day training program is called the Insider Protection Workshop. The workshop students learn how to use the workbook and the computer software to assess insider vulnerabilities and to evaluate the benefits and costs of potential improvements. These activities increase the students' appreciation of the insider threat. The workshop format is informal and interactive, employing four different instruction modes: classroom presentations, small-group sessions, a practical exercise, and ''hands-on'' analysis using microcomputers. This approach to technology transfer has been successful: over 100 safeguards planners and analysts have been trained in the method, and it is being used at facilities through the DOE complex

  15. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  16. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  17. Impact of the CubeSat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) mission on future resource-constrained science missions

    Science.gov (United States)

    Ball, C.; Chen, C. C.; O'Brien, A.; McKelvey, C.; Smith, G.; Misra, S.; Bendig, R.; Andrews, M.; Brown, S. T.; Garry, J. L.; Jarnot, R.; Johnson, J.; Kocz, J.; Bradley, D.; Felten, C.; Mohammed, P.; Lucey, J.; Horgan, K. A.; Bonds, Q.; Duran-Aviles, C.; Solly, M.; Fritts, M.; Piepmeier, J. R.; Pallas, M.; Krauss, E.; Laczkowski, D.

    2017-12-01

    The CubeSat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) mission is developing a 6U CubeSat system to demonstrate radio frequency interference (RFI) detection and mitigation technologies for future microwave radiometer remote sensing missions. CubeRRT will perform observations of Earth brightness temperatures from 6-40 GHz using a 1 GHz bandwidth, 128 channel, digital spectrometer and will demonstrate on-board real-time RFI processing. The maturation of the RFI processor information system from TRL 5 to 7 is a key mission objective that is expected to facilitate the operation of next generation, high bandwidth radiometers in future satellite remote sensing systems. The CubeRRT payload and spacecraft are currently under development, with an expected launch date in March 2018 followed by a one year period of on-orbit operations. A critical challenge of this mission is the optimization of spacecraft resource usage while achieving sufficient sensor performance to satisfy mission requirements. Specifically, operation planning must balance limited electrical power and data downlink capacity. A simulation tool has been developed to optimize mission planning, and performance data from CubeRRT operations will validate the simulations and provide insight for future missions with similar resource constraints.

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  19. A Look at the Impact of High-End Computing Technologies on NASA Missions

    Science.gov (United States)

    Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart

    2012-01-01

    From its bold start nearly 30 years ago and continuing today, the NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency s science and engineering missions. Throughout this time, NAS experts have influenced the state-of-the-art in high-performance computing (HPC) and related technologies such as scientific visualization, system benchmarking, batch scheduling, and grid environments. We highlight the pioneering achievements and innovations originating from and made possible by NAS resources and know-how, from early supercomputing environment design and software development, to long-term simulation and analyses critical to design safe Space Shuttle operations and associated spinoff technologies, to the highly successful Kepler Mission s discovery of new planets now capturing the world s imagination.

  20. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  1. Development of a bilateral technology transfer agreement. 2

    International Nuclear Information System (INIS)

    Loosch, R.

    1983-01-01

    On the basis of positive experience of bilateral co-operation in science and technology, particularly under the intergovernmental agreement in 1969, the Federal Republic of Germany and Brazil undertook a joint study of the energy demand and supply development in Brazil. This assessment concluded that nuclear energy would have to provide a substantial share of Brazil's electricity supply in the decades to come and that this could be achieved in a reliable, technically and economically sound manner only if Brazil would, over time, acquire appropriate technical and industrial competence in building nuclear power stations, and in the nuclear fuel cycle. To meet these requirements, a comprehensive design for co-operation between public and private institutions of both countries was set up, covering scientific, industrial, training, regulatory and other aspects of the Brazilian nuclear energy programme and defining material contents, institutional structures and time schedules of such co-operation. The overall theme was the transfer of Federal German nuclear technology and expertise to Brazil, as and when required, their optimal assimilation and, where necessary, adjustment or further development in Brazil. To provide the necessary legal and political framework for that co-operation, a number of agreements and contracts were concluded between different partners from both countries, interconnected as appropriate and governed by a specific intergovernmental agreement on peaceful nuclear co-operation, the contents and motives of which are described in the paper. The paper outlines the major developments in the implementation of co-operation and technology transfer between the Federal Republic of Germany and Brazil, and draws conclusions from experience gained during that process. (author)

  2. International and domestic technology transfers and productivity growth: Empirical evidence for Flanders

    OpenAIRE

    Belderbos, Rene; Van Roy, Vincent; Duvivier, Florence

    2008-01-01

    We examine the drivers of international and domestic technology transfer strategies of firms and the impact of these transfers on firms’ productivity performance in a sample of 457 Flemish innovating firms during 2003-2006. We use data on innovating firms from the 4th Community Innovation Survey for Flanders. In this survey, responding firms indicate whether they sourced technology externally and if so, whether the source of this technology was domestic or foreign. Technology transfers may oc...

  3. Minimal support technology and in situ resource utilization for risk management of planetary spaceflight missions

    Science.gov (United States)

    Murphy, K. L.; Rygalov, V. Ye.; Johnson, S. B.

    2009-04-01

    All artificial systems and components in space degrade at higher rates than on Earth, depending in part on environmental conditions, design approach, assembly technologies, and the materials used. This degradation involves not only the hardware and software systems but the humans that interact with those systems. All technological functions and systems can be expressed through functional dependence: [Function]˜[ERU]∗[RUIS]∗[ISR]/[DR];where [ERU]efficiency (rate) of environmental resource utilization[RUIS]resource utilization infrastructure[ISR]in situ resources[DR]degradation rateThe limited resources of spaceflight and open space for autonomous missions require a high reliability (maximum possible, approaching 100%) for system functioning and operation, and must minimize the rate of any system degradation. To date, only a continuous human presence with a system in the spaceflight environment can absolutely mitigate those degradations. This mitigation is based on environmental amelioration for both the technology systems, as repair of data and spare parts, and the humans, as exercise and psychological support. Such maintenance now requires huge infrastructures, including research and development complexes and management agencies, which currently cannot move beyond the Earth. When considering what is required to move manned spaceflight from near Earth stations to remote locations such as Mars, what are the minimal technologies and infrastructures necessary for autonomous restoration of a degrading system in space? In all of the known system factors of a mission to Mars that reduce the mass load, increase the reliability, and reduce the mission’s overall risk, the current common denominator is the use of undeveloped or untested technologies. None of the technologies required to significantly reduce the risk for critical systems are currently available at acceptable readiness levels. Long term interplanetary missions require that space programs produce a craft

  4. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  5. A low-cost approach to the exploration of Mars through a robotic technology demonstrator mission

    Science.gov (United States)

    Ellery, Alex; Richter, Lutz; Parnell, John; Baker, Adam

    2006-10-01

    We present a proposed robotic mission to Mars—Vanguard—for the Aurora Arrow programme which combines an extensive technology demonstrator with a high scientific return. The novel aspect of this technology demonstrator is the demonstration of “water mining” capabilities for in situ resource utilisation (ISRU) in conjunction with high-value astrobiological investigation within a low-mass lander package of 70 kg. The basic architecture comprises a small lander, a micro-rover and a number of ground-penetrating moles. This basic architecture offers the possibility of testing a wide variety of generic technologies associated with space systems and planetary exploration. The architecture provides for the demonstration of specific technologies associated with planetary surface exploration, and with the Aurora programme specifically. Technology demonstration of ISRU will be a necessary precursor to any future human mission to Mars. Furthermore, its modest mass overhead allows the re-use of the already built Mars Express bus, making it a very low-cost option.

  6. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  7. High Leverage Space Transportation System Technologies for Human Exploration Missions to the Moon and Beyond

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1996-01-01

    The feasibility of returning humans to the Moon by 2004, the 35th anniversary of the Apollo 11 landing, is examined assuming the use of existing launch vehicles (the Space Shuttle and Titan 4B), a near term, advanced technology space transportation system, and extraterrestrial propellant--specifically 'lunar-derived' liquid oxygen or LUNOX. The lunar transportation system (LTS) elements consist of an expendable, nuclear thermal rocket (NTR)-powered translunar injection (TLI) stage and a combination lunar lander/Earth return vehicle (LERV) using cryogenic liquid oxygen and hydrogen (LOX/LH2) chemical propulsion. The 'wet' LERV, carrying a crew of 2, is configured to fit within the Shuttle orbiter cargo bay and requires only modest assembly in low Earth orbit. After Earth orbit rendezvous and docking of the LERV with the Titan 4B-launched NTR TLI stage, the initial mass in low Earth orbit (IMLEO) is approx. 40 t. To maximize mission performance at minimum mass, the LERV carries no return LOX but uses approx. 7 t of LUNOX to 'reoxidize' itself for a 'direct return' flight to Earth followed by an 'Apollo-style' capsule recovery. Without LUNOX, mission capability is constrained and the total LTS mass approaches the combined Shuttle-Titan 4B IMLEO limit of approx. 45 t even with enhanced NTR and chemical engine performance. Key technologies are discussed, lunar mission scenarios described, and LTS vehicle designs and characteristics are presented. Mission versatility provided by using a small 'all LH2' NTR engine or a 'LOX-augmented' derivative, either individually or in clusters, for outer planet robotic orbiter, small Mars cargo, lunar 'commuter', and human Mars exploration class missions is also briefly discussed.

  8. Fuel cells, electrolyzers, and microalgae photobioreactors: technologies for long-duration missions in human spaceflight

    Science.gov (United States)

    Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie

    Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.

  9. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  10. Communication of 29 April 1996 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1996-01-01

    The document contains the text of a note verbale dated 29 April 1996 received by the Director General of IAEA from the Permanent Mission of the Russian Federation which provides information on the export policies and practices of the Government of the Russian Federation with respect to transfer of nuclear-related dual-use equipment, material and related technology

  11. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  12. From computer images to video presentation: Enhancing technology transfer

    Science.gov (United States)

    Beam, Sherilee F.

    1994-01-01

    With NASA placing increased emphasis on transferring technology to outside industry, NASA researchers need to evaluate many aspects of their efforts in this regard. Often it may seem like too much self-promotion to many researchers. However, industry's use of video presentations in sales, advertising, public relations and training should be considered. Today, the most typical presentation at NASA is through the use of vu-graphs (overhead transparencies) which can be effective for text or static presentations. For full blown color and sound presentations, however, the best method is videotape. In fact, it is frequently more convenient due to its portability and the availability of viewing equipment. This talk describes techniques for creating a video presentation through the use of a combined researcher and video professional team.

  13. Carbon emissions linked to capital and technology transfer

    International Nuclear Information System (INIS)

    Smith, P.F.

    1994-01-01

    Reducing carbon dioxide emissions, and hence global warming, could be achieved by placing a carbon budget on buildings and light vehicles. In this scheme, a building or vehicle is allocated an annual carbon budget expressed as kg/carbon. The user of the building or vehicle is then taxed for every carbon unit used over its budget limit. The aim of this paper is to extend this carbon budget idea in order to set up a formula for achieving capital and technology transfer from industrialized countries to developing countries. In addition, the author proposes a mechanism for linking historic carbon emissions caused in the industrialized world with compensation strategies for the developing nations. (UK)

  14. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  15. What Motivates Brazilian Academic Researchers to Transfer Technology?

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2013-12-01

    Full Text Available This study investigated what motivates Brazilian academic researchers to get involved in University-Industry Technology Transfer (UITT and deterrents to contributing to this process. The research relied on interviews with experienced academic scientists and managers from four universities in Brazil. Determination, persistence and entrepreneurship, related to motivational types Self-direction and Stimulation, were prominent. Hedonism, Achievement and Power - highlighting a shift in their professional identity - were also observed. Universalism type involved opening career opportunities, awakening and maintaining the interest of students. The major motivational goals were: generate resources, solve problems, professional challenge, personal gains, personal gratification, academic prestige, competition, and solving problems of society. Factors that discouraged researchers were: time required for UITT, lack of incentive, innovation environment, and fear of contravening university rules, among others. Knowledge of motivational profiles of academic scientists favors the development of incentive policies and programs for UITT, helping to attract and retain qualified researchers at Brazilian universities.

  16. Concept and technology development for the multispectral imager of the Canadian Polar Communications and Weather mission

    Science.gov (United States)

    Moreau, Louis; Dubois, Patrick; Girard, Frédéric; Tanguay, François; Giroux, Jacques

    2012-09-01

    The Polar Communications and Weather (PCW) mission is proposed by the Canadian Space Agency (CSA), in partnership with Environment Canada, the Department of National Defence, and several other Canadian government departments. The objectives of the PCW mission are to offer meteorological observations and telecommunication services for the Canadian North. These capabilities are particularly important because of increasing interest in the Arctic and the desire to maintain Canadian sovereignty in this region. The PCW mission has completed its Phase A in 2011. The PCW Meteorological Payload is a Multi-Spectral Imager (MSI) that will provide near-real time weather imagery for the entire circumpolar region with a refresh period of 15 to 30 minutes. Two satellites on a Highly Elliptical Orbit (HEO) will carry the instrument so as to observe the high latitudes 24 hours per day from a point of view that is almost geostationary. The data from the imagers are expected to greatly enhance accuracy of numerical weather prediction models for North America and globally. The mission will also produce useful information on environment and climate in the North. During Phase A, a certain number of critical technologies were identified. The CSA has initiated an effort to develop some of these so that their Technology Readiness Level (TRL) will be suitable for the follow-on phases of the program. An industrial team lead by ABB has been selected to perform technology development activities for the Meteorological Payload. The goal of the project is to enhance the TRL of the telescope, the spectral separation optics, and the infrared multispectral cameras of the PCW Meteorological Payload by fabricating and testing breadboards for these items. We will describe the Meteorological Payload concept and report on the status of the development activities.

  17. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations.

    Science.gov (United States)

    Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.

  18. The Science and Technology in Future Remote Sensing Space Missions of Alenia Aerospazio

    Science.gov (United States)

    Angino, G.; Borgarelli, L.

    1999-12-01

    The Space Division of Alenia Aerospazio, a Finmeccanica company, is the major Italian space industry. It has, in seven plants, design facilities and laboratories for advanced technological research that are amongst the most modern and well equipped in Europe. With the co-ordinated companies Alenia Aerospazio is one of Europe's largest space industries. In the field of Remote Sensing, i.e. the acquisition of information about objects without being in physical contact with them, the Space Division has proven their capability to manage all of the techniques from space (ranging from active instruments as Synthetic Aperture Radar, Radar Altimeter, Scatterometer, etc… to passive ones as radiometer) in different programs with the main international industries and agencies. Space techniques both for Monitoring/Observation (i.e. operational applications) and Exploration (i.e. research for science demonstration) according to the most recent indication from international committees constitute guidelines. The first is devoted to market for giving innovation, added-value to services and, globally, enhancement of quality of life. The second has the basic purpose of pursuing the scientific knowledge. Advanced technology allows to design for multi-functions instruments (easy in configuration, adaptable to impredictable environment), to synthesise, apparently, opposite concepts (see for instance different requirement from military and civil applications). Space Division of Alenia Aerospazio has knowledge and capability to face the challenge of new millennium in space missions sector. In this paper, it will be described main remote sensing missions in which Space Division is involved both in terms of science and technology definition. Two main segments can be defined: Earth and interplanetary missions. To the first belong: ENVISAT (Earth surface), LIGHTSAR (Earth imaging), CRYOSAT (Earth ice) and to the second: CASSINI (study of Titan and icy satellites), MARS EXPRESS (detection

  19. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  20. Effect of NTP technology levels on engine sizing for a 2005 piloted Mars mission

    Science.gov (United States)

    Burr, Annette D.; Cross, Elden H.; Widman, Frederick W.; North, D. Michael

    1993-01-01

    Previous vehicle mass studies were performed for Mars launch windows in the 2010-2018 time frame. Within the last year, a study was performed to determine the effects of various Nuclear Thermal Propulsion (NTP) engine and mission parameters on Initial Mass in Low Earth Orbit (MLEO) for a piloted Mars mission during the 2005 opportunity. Particle Bed Reactor (PBR) and Enabler-type reactors were compared. Parameters evaluated included engine thrust, number of engines, number of Trans-Mars Injection (TMI) burns, engine thrust/weight, engine out capability, engine burn time, and Isp. Earth and Mars departure dates and outbound and return travel times were optimized for a 240-day total interplanetary transfer time (long-duration stay mission). Parameters which were seen to reduce IMLEO included a greater number of perigee burns, multiple engines, and higher Isp. Optimum engine thrust varied substantially depending on the configuration. Engine models developed jointly by Rocketdyne and Westinghouse within the last year formed the basis for the Enabler thrust optimization study.

  1. Effect of NTP technology levels on engine sizing for a 2005 piloted Mars mission

    International Nuclear Information System (INIS)

    Burr, A.D.; Cross, E.H.; Widman, F.W. Jr.; North, D.M.

    1993-01-01

    Previous vehicle mass studies were performed for Mars launch windows in the 2010--2018 time frame. Within the last year, a study was performed to determine the effects of various Nuclear Thermal Propulsion (NTP) engine and mission parameters on Initial Mass in Low Earth Orbit (MLEO) for a piloted Mars mission during the 2005 opportunity. Particle Bed Reactor (PBR) and Enabler-type reactors were compared. Parameters evaluated included engine thrust, number of engines, number of Trans-Mars Injection (TMI) burns, engine thrust/weight, engine out capability, engine burn time, and I sp . Earth and Mars departure dates and outbound and return travel times were optimized for a 240-day total interplanetary transfer time (long-duration stay mission). Parameters which were seen to reduce IMLEO included a greater number of perigee burns, multiple engines, and higher I sp . Optimum engine thrust varied substantially depending on the configuration. Engine models developed jointly by Rocketdyne and Westinghouse within the last year formed the basis for the Enabler thrust optimization study

  2. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  3. Fun with Mission Control: Learning Science and Technology by Sitting in the Driver's Seat

    Science.gov (United States)

    Fitzpatrick, A. J.; Fisher, D. K.; Leon, N.; Novati, A.; Chmielewski, A. B.; Karlson, D. K.

    2012-12-01

    We will demonstrate and discuss iOS games we have developed that simulate real space mission scenarios in simplified form. These games are designed to appeal to multiple generations, while educating and informing the player about the mission science and technology. Such interactive games for mobile devices can reach an audience that might otherwise be inaccessible. However, developing in this medium comes with its own set of challenges. Touch screen input demands a different type of interface and defines new rules for user interaction. Communicating informative messages to an audience on the go also poses unique challenges. The organization and delivery of the content needs to consider that the users are often distracted by their environments or have only short blocks of time in which to become involved with the activity. The first game, "Comet Quest," simulates the Rosetta mission. Rosetta, sponsored by the European Space Agency, with important contributions from NASA, is on its way to Comet 67P/Churyumov-Gerasimenko. It will orbit the comet and drop a lander on the nucleus. It will continue to orbit for two years as the comet approaches the Sun. Both orbiter and lander will make measurements and observations and transmit the data to Earth, in the first close study of a comet's evolution as it journeys to the inner solar system. In "Comet Quest," the player controls the release of the lander and records and transmits all the science data. The game is fun and challenging, no matter the player's skill level. Comet Quest includes a "Learn more" feature, with questions and simple, concise answers about comets and the Rosetta mission. "Rescue 406!" is another simulation game, this one enacting the process of rescuing individuals in distress using the Search And Rescue Satellite-Aided Tracking system, SARSAT. Development of this game was sponsored by NOAA's Geostationary Operational Environmental Satellite, R-series, program (GOES-R). This game incorporates the major

  4. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  5. Causes and implications of the slow pace of technology transfer and ...

    African Journals Online (AJOL)

    The study was set up to examine the causes and implication of slow pace of technology transfer and adoption in rural agriculture. Based on this major objective, the paper among other specific objectives, examines the role of extension agent in technology transfer and adoption, identify factor militating against technology ...

  6. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... INFORMATION CONTACT: Office of Investment and Innovation at technology@sba.gov . SUPPLEMENTARY INFORMATION: I...

  7. The Cubesat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) Mission

    Science.gov (United States)

    Misra, S.; Johnson, J. T.; Ball, C.; Chen, C. C.; Smith, G.; McKelvey, C.; Andrews, M.; O'Brien, A.; Kocz, J.; Jarnot, R.; Brown, S. T.; Piepmeier, J. R.; Lucey, J.; Miles, L. R.; Bradley, D.; Mohammed, P.

    2016-12-01

    Passive microwave measurements made below 40GHz have experienced increased amounts of man-made radio frequency interference (RFI) over the past couple of decades. Such RFI has had a degenerative impact on various important geophysical retrievals such as soil-moisture, sea-surface salinity, atmospheric water vapor, precipitation etc. The commercial demand for spectrum allocation has increased over the past couple of years - infringing on frequencies traditionally reserved for scientific uses such as Earth observation at passive microwave frequencies. With the current trend in shared spectrum allocations, future microwave radiometers will have to co-exist with terrestrial RFI sources. The CubeSat Radiometer Radio Frequency Interference Technology Validation (CubeRRT) mission is developing a 6U Cubesat system to demonstrate RFI detection and filtering technologies for future microwave radiometer remote sensing missions. CubeRRT will operate between 6-40GHz, and demonstrate on-board real-time RFI detection on Earth brightness temperatures tuned over 1GHz steps. The expected launch date for CubeRRT is early 2018. Digital subsystems for higher frequency microwave radiometry require a larger bandwidth, as well as more processing power and on-board operation capabilities for RFI filtering. Real-time and on-board RFI filtering technology development is critical for future missions to allow manageable downlink data volumes. The enabling CubeRRT technology is a digital FPGA-based spectrometer with a bandwidth of 1 GHz that is capable of implementing advanced RFI filtering algorithms that use the kurtosis and cross-frequency RFI detection methods in real-time on board the spacecraft. The CubeRRT payload consists of 3 subsystems: a wideband helical antenna, a tunable analog radiometer subsystem, and a digital backend. The following presentation will present an overview of the system and results from the latest integration and test.

  8. NASA Extreme Environments Mission Operations 10 - Evaluation of Robotic and Sensor Technologies for Surgery in Extreme Environments

    Science.gov (United States)

    2006-11-01

    were a number of minor medical issues typical of NEEMO missions that included skin lesions , a minor case of otitis externa and abrasions. During pre...mission. Treatment continued in saturation and the lesion healed successfully without complications. There were no infectious illnesses in any... meniscal injuries using an arthroscope or external fixation for joint dislocations. CMAS 5 Evaluation of tele- robotic technologies for

  9. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  10. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  11. Status of Solar Generator Related Technology Development Activities Supporting the Juice Mission

    Directory of Open Access Journals (Sweden)

    Baur Carsten

    2017-01-01

    Full Text Available The paper provides an overview of the current status of several technical development activities initiated by the European Space Agency (ESA to support the JUICE mission to the Jovian system. First of all, the qualification status of the solar cells to be used in the JUICE mission will be reported. Then, the conclusions from a dedicated activity aiming at assessing the potential degradation of triple-junction solar cells upon primary discharges will be discussed. Finally, the results on the coupon tests currently running at ESA will be presented. The coupons consist of representative solar cell assemblies including coverglasses with a conductive Indium Tin Oxide (ITO layer. Dedicated coverglass grounding technologies are tested on the coupons which connect the conductive coverglass surfaces to the panel ground. It will be shown how the resistivity of the materials used in the coupons evolves upon submission to extreme thermal cycles.

  12. Progress in Fire Detection and Suppression Technology for Future Space Missions

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    2000-01-01

    Fire intervention technology (detection and suppression) is a critical part of the strategy of spacecraft fire safety. This paper reviews the status, trends, and issues in fire intervention, particularly the technology applied to the protection of the International Space Station and future missions beyond Earth orbit. An important contribution to improvements in spacecraft fire safety is the understanding of the behavior of fires in the non-convective (microgravity) environment of Earth-orbiting and planetary-transit spacecraft. A key finding is the strong influence of ventilation flow on flame characteristics, flammability limits and flame suppression in microgravity. Knowledge of these flow effects will aid the development of effective processes for fire response and technology for fire suppression.

  13. Advanced robotic technologies for transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C.

    1994-10-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs.

  14. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  15. Small is Beautiful — Technology Trends in the Satellite Industry and Their Implications for Planetary Science Missions

    Science.gov (United States)

    Freeman, A.

    2017-02-01

    It’s an exciting time in the space business - new technologies being developed under the ‘NewSpace’ umbrella have some profound implications for planetary science missions over the next three decades.

  16. How to build an antimatter rocket for interstellar missions - systems level considerations in designing advanced propulsion technology vehicles

    Science.gov (United States)

    Frisbee, Robert H.

    2003-01-01

    This paper discusses the general mission requirements and system technologies that would be required to implement an antimatter propulsion system where a magnetic nozzle is used to direct charged particles to produce thrust.

  17. Ion drive technology readiness for the 1985 Halley Comet rendezvous mission

    Science.gov (United States)

    West, J. L.

    1978-01-01

    Results of a study undertaken in FY 77 to assess readiness by 1985 for a Halley's Comet rendezvous mission (HCR) are presented with reference to already identified risks, e.g., a marginal mass margin of 6.7%, driven by uncertainties in ion drive vehicle masses, and an unconfirmed solar array power degradation model of 12%. Technology for two of the six subsystems, thrust and solar array, is also largely undemonstrated. High-, medium-, and low-risk subsystems are evaluated and compared with one another. Among the low-risk subsystems are those relating to structure, data handling, temperature control, and power supply.

  18. Solar Electric Propulsion (SEP) Systems for SMD Mission Needs. Technology Infusion Study.

    Science.gov (United States)

    Anderson, David

    2014-01-01

    Two presentations for SBAG and OPAG meetings: 1) Solar Electric Propulsion Systems for SMD Missions, and 2) Technology Infusion Study - Draft Findings Recommendation Small Bodies Assessment Group (SBAG) meeting is January 9th in Washington D.C., and the Outer Planets Assessment Group (OPAG) meeting is January 23-14 in Tucson, AZ. NASA sponsors these assessment groups, through the NRC, for the science community to assess and provide advice. These talks are to provide a status of 2 NASA activities, and to seek feedback from the respective science communities.

  19. CRADA Payment Options | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).

  20. Validation of Lithium-ion cell technology for JPL's 2003 Mars Exploration Rover Mission

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, Bugga V.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.

    2004-01-01

    n early 2004 JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling >300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20 C to +40 C), withstanding long storage periods (e.g., cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the viability of Lithium-ion technology to meet these stringent requirements, a comprehensive test program was implemented aimed at demonstrating the performance capability of prototype cells fabricated by Lithion, Inc. (Yardney Technical Products, Inc.). The testing performed includes, determining the (a) room temperature cycle life, (b) pulse capability as a function of temperature, (e) self-discharge and storage characteristics mission profile capability, (f) cycle life under mission simulation conditions, (g) impedance characteristics, (h) impact of cell orientation, and (i) performance in 8-cell engineering batteries. As will be discussed, the Lithium-ion prototype cells and batteries were demonstrated to meet, as well as, exceed the requirements defined by the mission.